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Introduction

1.1 Macromolecular behaviour in life science and soft matter is

governed by di�usion

The biochemical complexity in life is astounding. Individual micrometre-sized cells house millions

of proteins1, as well as genomic information with a physical length orders of magnitude greater than

the cell itself2. Despite this enormous search space, protein-protein and protein-DNA interactions

are speci�c and e�cient enough to allow the cell to proliferate. For example, many prokaryotic

cells have an anti-viral defence mechanism called CRISPR-Cas (clustered regularly interspaced

short palindromic repeats and their associated proteins), which is burdened with searching and

destroying genomic elements belonging to invaders, while leaving the host DNA intact. A single

CRISPR-Cas protein is not only able to pinpoint the genomic element belonging to the invader

while bypassing the ∼100,000 times more abundant DNA of the host cell, but does this in the

timespan of only a few minutes3.

Likewise in the �eld of soft matter, complexity can be found on the same spatial scale.

Polymer-network gels, model systems for soft matter, show diverse and heterogeneous nanoscopic

architectural complexity, a�ecting many attributes of the material4,5. This is directly relevant for

their applications in for example food products, pharmaceuticals, and matrices in the analytical

sciences. Speci�cally, in κ-carrageenan hydrogels, which are widely used as a thickener agent in

many food products, long chains of monosaccharides form double helices with one other6. These

helices then further aggregate with the assistance of ions to form a gel that can hold up to hundred

times its own weight in water7.

The crucial building blocks in both these �elds are large molecules known as macro-

molecules, with sizes in the ∼5-100 nm regime. The interactions between macromolecules on the

nanoscale are governed by Van der Waals, electrostatic, and hydrophobic/hydrophilic interactions,

but the majority of the accessible volume is explored via di�usion, making this the main underlying

process leading to macromolecular interactions. As macromolecular di�usion is fundamentally sim-

ilar in life science and soft matter, techniques focused on characterising this movement can reveal

fundamental insights in both of these �elds when relating di�usional behaviour to the function of

the macromolecule of interest8,9, or to the surrounding medium4,10. Fundamental insights can lead

to a bottoms-up understanding of the complexity in life and soft matter, and the revealed knowl-

edge is very valuable for a wide range of applications, such as in the �elds of biotechnology and

intelligent food design.

1.1.1 Di�usion

Di�usion is an inherent random motion of entities caused by collisions with molecules in the sur-

rounding medium, which themselves are mobile due to heat. The �rst observation of di�usion was

the jittery and random motion of 5 - 6 µm diameter granules by Robert Brown11,12. The under-

lying mechanism based on molecular collisions was proposed by Albert Einstein in one of his four

papers published in his annus mirabilis 1905, and independently by Sutherland and Smoluchowski,

and provided a statistical framework for experimental validation on the existence of molecules13�15.

Importantly, a mathematical relationship between the particle size and its displacement over time
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was proposed by Einstein, Smoluchowski, and Stokes:

D =
kBT

6πηr
(1.1)

and

< r2 >= 2dD∆t (1.2)

in which D denotes the di�usion coe�cient, kB Boltzmann's constant, T the temperature, η the

solvent viscosity, r the particle radius, < r2 > the mean-squared displacement, d the dimensionality

of the system, and ∆t the time interval. Equation 1.1 assumes spherical particles.

1.1.2 Quanti�cation of macromolecular di�usion

Since their conception, equations 1.1 and 1.2 have gained large experimental support. Importantly,

it indicates that the di�usive movement of macromolecules in water exceeds their diameter by an

order of magnitude or more in the timespan of a millisecond. Characterisation of macromolecular

di�usion therefore requires techniques that are capable of both a spatial resolution at ∼10-1000 nm,
known as the mesoscale, as well as a temporal resolution in the milliseconds. Moreover, ideally,

disturbing of natural processes is prevented, information can be obtained from a small spatial region

(e.g. a single cell in life science), molecular selectivity is achieved, quantitative data is obtained,

and a lower technological barrier of entry is provided. Whilst this is an extensive list of criteria,

they are imperative for fundamental research on the complex dynamic processes in life science and

soft matter.

Various methodologies that can reveal (sub-)mesoscale spatial information exist. First,

electron microscopy (EM)16,17 can achieve atomic resolution, although it requires long sampling

times, has scarce selectivity, and often invasive sample preparation, making it impossible to study

dynamic macromolecular di�usion via EM. Second, small-angle scattering techniques via X-rays18

(SAXS) or neutrons19 (SANS) can also provide nanoscale resolution and can perform measure-

ments on a sub-millisecond timescale. However, it requires expensive equipment and has limited

speci�city combined with substantial spatial averaging, making it challenging to use SAXS/SANS

to study natural processes. Last, nuclear magnetic resonance (NMR)20,21 has various implementa-

tions, and contains methodologies that can directly assess the di�usion of (macro)molecules within

a sample. While NMR has been used to successfully characterise di�usion in life science and soft

matter20,22, it requires expensive equipment, is subject to substantial spatiotemporal averaging,

and poses challenges with introducing speci�city, especially in life science.

The ideal combination to study macromolecular di�usion in life science and soft matter,

consisting of mesoscale spatial resolution, millisecond temporal resolution, molecular selectivity,

non-invasive and non-destructive sample preparation, low spatial averaging, and accessible equip-

ment has not yet been achieved. Optical microscopy is a strong contender to resolve these short-

comings. It inherently has good spatiotemporal resolution, does not require destructive sample

preparation, and can be used on a wide range of samples. Furthermore, the technique can be ex-

panded to have molecular selectivity (via �uorescence), to nanometre and millisecond resolution

(via super-resolution microscopy techniques), and possibly to considerably more accessible equip-

ment. The advancements required for optical microscopy to fully comply with the demands to study

macromolecular di�usion are therefore further explored.
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1.2 Optical microscopy

Microscopy has its origin in the Ancient Greek words mikros (�small things�) and scopein (�looking

at�). While this is an extremely simple description, it encompasses the desired macromolecular

research. One of the most well-known microscopists is the draper Antoni van Leeuwenhoek, who

developed the �eld in a desire to analyse the quality of his cloth. He created single-lens microscopes

with magni�cation powers of 50-250x23�25, and investigated nearly everything he could place under

his microscope, in this way making the �rst observations of bacteria. His work directly showcases

the applicability of optical microscopy both in life- and material sciences.

In its simplest form, a microscope creates a magni�ed image of a specimen by employing

a set of lenses. The specimen can be illuminated with white light, and the transmitted light is

then projected on a detector, which can be a human eye or a camera. While this bright�eld

microscopy allows for good magni�cation of the specimen, the obtained contrast is determined

solely by attenuation of light through the specimen25. The contrast is therefore dictated by the

sample rather than by the observer: there is no speci�city. In the case of ideal speci�city, only the

(macro)molecules that are of interest to the researcher are visualised, while the rest of the sample

remains invisible.

This lack of speci�city can be resolved by introducing �uorescent molecules (�uorophores),

which can speci�cally emit light while the rest of the specimen remains dark. Light emission is a

consequence of electron energy transitions within molecules. In �uorophores, an external photon

can excite an electron from a lower energy level to a higher energy level. This new electron state is

unstable, causing it to quickly (ns timescale) `relax' to the lower energy level, which releases energy

from the molecule. This excitation-emission cycle contains some non-radiative processes, leading to

a lower emitted energy compared to the excitation energy. A photon of a longer wavelength (more

red-shifted) than the excitation photon will be produced, because a photon's wavelength is inversely

proportional to its energy (E = h · c/λ, where E is energy, h the Planck constant, c the speed of

light, and λ the wavelength). Moreover, the quantum nature of the electron's energy levels only

allows a speci�ed range of excitation photons, leading to speci�ed excitation and emission spectra

of �uorophores.

Incorporating �uorescence into microscopy allows the observer to di�erentiate between

structures within a specimen. Some (biological) structures are auto�uorescent, but most samples

require the introduction of �uorophores, which can be achieved in two possible ways. First, a

�uorophore that has a non-speci�c interaction with part of the sample can be introduced to provide

some speci�city, although not on the molecular level. Examples of this are molecules that are only

�uorescent in a certain local environment such as an apolar medium26; or electrostatic attraction

between a �uorophore and structures of interest27. Second, labelling speci�c molecules of interest

with �uorophores can ensure better speci�city. Examples of this are antibody conjugation, in which

a �uorophore-labelled antibody with high speci�city and a�nity for a structure of interest is added

to the sample28; and in vivo protein fusion, in which a �uorescent protein is genetically fused to a

protein of interest, after which this chimera is expressed in living cells29,30.
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1.3 Di�raction limit of microscopy

While �uorescence microscopy solves the speci�city problem of optical microscopy, there is a more

fundamental limit caused by the wave-nature of light. When photons from a coherent light source

are conceived at an in�nitesimal point, such as provided by a single molecule, these photons will

interfere. In microscopy, this interference results in a pattern called the point spread function (PSF;

Figure 1.1a), which can be mathematically described by an Airy disc25. The PSF size is dependant

on the wavelength of the light λ, as well as the collection angle of the microscope's objective lens

α, normally rephrased as the Numerical Aperture (NA):

NA = n · sin(0.5 · α) (1.3)

in which n is the refractive index of the medium the objective is working in (∼1.52 for immersion

oil). The PSF size follows equation 1.4, with the full width at half maximum (FWHM) of the main

peak of the PSF being31:

FWHMPSF ≈ 0.59 · λ
NA

(1.4)

This equation also indicates that if two molecules are placed close enough together that their

respective PSFs overlap substantially, they cannot be individually resolved. This fundamental

di�raction limit r has been calculated slightly di�erently due to con�icting opinions in the required

contrast between the maximum and minimum intensities32,33, but follows equation 1.5:

r ≈ [0.5− 0.61] · λ
NA

(1.5)

Due to the fundamental nature of this di�raction limit, it was predicted for centuries that

this was an unsolvable, fundamental limit, with no possibility of having far-�eld optical microscopy

with a resolution below ∼200 nm. Therefore, the di�raction limit was minimized as much as

possible by reducing λ and increasing NA. Smaller wavelengths have been realised by opting

for electrons rather than photons - creating electron microscopy (EM)16. While EM does indeed

substantially increase resolution, it lacks good temporal resolution and can therefore not provide

direct feedback on dynamic macromolecular processes34. Larger NA has been realised to some

extend, with currently NA ≥ 1.40 being commonplace in �uorescence microscopy, but further

increase is restricted by the refractive index of the objective medium (equation 1.3).

1.4 Super-resolution microscopy surpasses the di�raction

limit

Despite the aforementioned presumed fundamental resolution limit in microscopy, a few pioneering

researchers simultaneously developed optical microscopy methods shattering this limit, culminating

in the 2014 Nobel prize in Chemistry36�39. The methods developed by the laureates, as well as de-

rived techniques, are collectively known as super-resolution microscopy or nanoscopy25,40�42. While

they all obtain spatial resolution on the low end of the mesoscale (∼5-100 nm), the underlying

methodologies are very diverse. The most striking di�erence is whether a sub-di�ractive excitation

pro�le is used, or whether single �uorescent molecules are individually localized. Both these options

are further discussed.
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Figure 1.1: Point spread function formation and analysis. a Formation of the point spread function

(PSF). Photons originating from a point-like source (i) are dispersed by the objective (ii), causing colli-

mated light at di�erent positions (iii, iv) interfering constructively (red) or destructively (green), resulting

in a PSF (v). Figure adapted from [35]. b The original PSF (left half) when observed on a detector (right

half) is noisy and binned in pixels. c Fitting of the pixelated information (grey step-wise pattern) is often

performed with a Gaussian pro�le (black curve), which has a certain uncertainty on the �t (dark grey

outline). This uncertainty on the �t results in an uncertainty in the position of the emitter (red pro�le)

which is much smaller than the original PSF size.

1.4.1 Microscopy with sub-di�ractive excitation pro�les

If a sub-di�ractive excitation pro�le is used, only emitters present in this pro�le are allowed to

emit photons, thereby leading to sub-di�raction spatial resolution. First, in stimulated excitation

and depletion (STED) microscopy37,43, a di�raction-limited excitation pro�le is combined with a

doughnut-shaped stimulated depletion pro�le, which causes non-radiative energy loss of excited

�uorophores. The combination of these pro�les results in a sub-di�raction limited region where

�uorescence is achieved, generally realising spatial resolutions of 20-50 nm43. Second, in structured

illumination microscopy (SIM), series of structured excitation pro�les are used to sub-di�ractively

illuminate parts of the sample, resulting in ∼100 nm lateral resolution44.

1.4.2 Single-molecule localization microscopy

Individual localization of single �uorescent molecules is de�ned by using on/o� -switching of indi-

vidual �uorophores, while imaging on a typical �uorescence microscope39,45. The core concept of

these techniques is to elucidate the location of single emitters underlying a single PSF by �tting a

mathematical model function to the noisy �uorescence pattern formed on the microscope detector

(Figure 1.1b,c). This elucidation of single emitters is called `localization', de�ning this technique as

single-molecule localization microscopy (SMLM). The procedures for localization will be discussed

in detail below. Su�cient (∼2-3 PSF sizes) spatial separation of individual single emitters is a re-

quirement for these approaches, with sample coverage being achieved by temporally changing which

emitters are activated.
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Brie�y, three methodologies have been developed to combine good coverage with non-

overlapping emitting patterns. First, in (d)STORM, or (direct) stochastic optical reconstruction

microscopy, �uorophores are chosen or designed to create chemical equilibria between a �uorescent

and a non-�uorescent version of the �uorophore45�47. Normally, cis/trans-isomerisation, nucle-

ophilic addition/removal, or carbon ring-opening/closing creates or destroys a conjugated system in

a �uorophore, allowing energy transitions for excitation and emission in the visible spectrum48,49.

These �uorophores are conjugated to a structure of interest and turned to their o� -state, after

which many rounds of stochastic activation, localization, and de-activation or bleaching occur.

Over time, most �uorophores will have been activated, without having multiple active �uorophores

closer together than the di�raction limit. This approach will result in super-resolved imaging of the

structure of interest with good coverage28,42,45,46,50,51.

Second, in (F)PALM ((�uorescence) photo-activation localization microscopy) a very sim-

ilar concept as STORM is used, but the on/o� -transition stems from a photo-induced chemical

transition. Importantly, photo-activatable �uorescent proteins allow PALM to be used for in vivo

super-resolution3,29,30,39,52.

Last, in PAINT (points accumulation for imaging in nanoscale topography), the on/o� -

switching is achieved by individual �uorophores changing between di�usive and selectively bound

states. Di�using �uorophores will move enough during acquisition of a single frame to cause a blur

rather than a well-formed PSF, and will consecutively be excluded from localization53,54. Selectively

bound �uorophores, on the other hand, are spatially stable for (the majority of) single frame acqui-

sitions, and thus procure PSFs which can be localized. The most-commonly used method to induce

the selective, non-convalent, temporary binding of individual molecules is via DNA complementarity

(DNA-PAINT)53�55.

All SMLM techniques have a resolution limit dictated by the localization precision of the

individual �uorophores. Importantly, the lateral localization accuracy σx,y is inversely proportional

to the square root of the number of photons emitted by the molecule, leading to the development

of �uorophores with higher and higher photon budget56,57. With the �uorophores frequently used

in SMLM, it is possible to obtain localization accuracies of ∼10-40 nm31,42,58�60.

Recently, the concepts of sub-di�ractive excitation pro�les and SMLM have been united in

MINFLUX (minimal photon �uxes microscopy) and further derived techniques such as SIMFLUX

and ROSE (repetitive optical selective exposure)61�64. MINFLUX combines an excitation doughnut

pro�le with single activated �uorophores, with the general principle that this emitter emits zero

photons only when being in the exact centre of the pro�le. By slightly moving the excitation

doughnut around the single emitter, an accurate localization can be procured while minimally

depleting the photon budget of the emitter. SIMFLUX and ROSE combine spatial information

of SIM-like illumination with single-molecule localization methodologies, in this manner increasing

the spatial resolution further than either individual technique can realise. These techniques provide

good spatiotemporal resolution but are challenging to assemble, and thus limit accessibility of this

technique to expert laboratories.

Of the mentioned super-resolution techniques, SMLM is capable of e�ectively probing the

desired millisecond and mesoscale spatiotemporal regime, whilst remaining accessible for a broad
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user base in terms of instrumental complexity and costs, and is therefore further used throughout

this thesis.

1.5 Single-molecule localization microscopy hardware and soft-

ware

In SMLM, an inverse epi-�uorescence microscope is typically used (Figure 1.2a,b). Brie�y, a laser,

producing monochromatic light with de�ned wavelength, is collimated to procure a parallel light

beam. This beam is then focussed via a doublet lens on the back focal plane of a high NA (' 1.4),

high magni�cation (60x or 100x) objective. Focused light in the centre of the back focal plane of

an objective realises a parallel beam as output. Importantly, the excitation light crosses a dichroic

mirror before entering the objective. This ensures that emission light from the specimen (which by

de�nition has a longer wavelength than the excitation light) can be directed towards the emission

pathway of the microscope. The emission pathway simply consists of a tube lens which focuses

the obtained emission light on an EMCCD (electron-multiplied charge-coupled device) or sCMOS

(scienti�c complementary metal�oxide�semiconductor) camera for image formation.

This basic design can be expanded where desirable. In the excitation path, moving the

entry location of focused light out-of-centre on the back focal plane will lead to a slanted beam

coming out of the objective. A slanted beam will create highly inclined illumination (HiLo) or total

internal re�ection (TIR) microscopy, which will lead to a decreased axial penetration depth (∼µm
range for HiLo, ∼100s of nm for TIR). In turn, this increases the obtained signal-to-noise ratio

by removing background �uorescence and enhancing the electric �eld intensity65,66. Optical �lters

can be introduced in the emission path. Moreover, cylindrical lenses or more advanced optical

components such as phase masks or deformable mirrors can be introduced to obtain axial-position

dependant deformations of PSFs, which allows for 3-dimensional SMLM50,51,67�71.

Data acquisition consists of capturing camera frames while the sample is excited. Impor-

tant parameters that can be altered are camera frame time, laser excitation duration, and excitation

laser power. Frame time is normally in the range of 1 to 100 ms, limited on the low end by hardware

limitations, and limited on the high end by a too high density of molecules in the on-state, and

thus depends on the speci�c experiment. The laser excitation duration is either as long as the full

frametime, or shorter than the full frame to reduce blurring artefacts72. The excitation laser power

in�uences the obtained signal-to-noise ratio of single PSFs, as well as certain photophysical charac-

terisations of the single emitters such as bleaching time and blinking behaviour47. Recording a series

of many frames (i.e. a movie) then realises the possibility of temporal separation of spatially over-

lapping PSFs. Because of this, imaging experiments require immobile samples, otherwise excessive

motion blur would render the obtained image useless. Optimising these data acquisition parameters

is key in obtaining good SMLM data, and is equally important as sample preparation.

1.6 Data analysis of single-molecule localization microscopy

Principally, analysis of SMLM data is performed in 3 steps: molecule identi�cation, sub-pixel

localization, and data interpretation (Figure 1.2c). Molecule identi�cation is a collection of methods

that pinpoint where a PSF is likely present. Generally, this is done via image �ltering techniques,
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Figure 1.2: Hardware and software underlying single-molecule localization microscopy (SMLM) a Ex-

ample of an inverted �uorescence microscope capable of SMLM: the miCube3. Scale bar represents 5 cm.

b Optical path corresponding to the microscope shown in a. The excitation light originating in the laser

box is adjusted in the excitation path (cyan) and focused on the back focal plane of an objective via an

aperture and doublet lens. (Continued on next page)
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Figure 1.2 (previous page): In the cube (magenta), the excitation light is directed via a dichroic

mirror to the objective. Emission light originating from the sample (not depicted) is collected by the

objective, and directed towards the emission pathway (green). It is focused via a tube lens to a detector

(sCMOS). c Raw data analysis. Top: a section (∼2.5 x 2.5 µm) of a typical raw frame. Middle: PSF

identi�cation. Bottom: sub-pixel localization of individual PSFs. See the text for more details. d Typical

SMLM imaging procedure. An unknown structure (grey circle) with many blinking �uorophores (orange

pro�les) is imaged over many time points, and the PSFs of the individual �uorophores are localized (black

crosses). Taken together, the localizations reveal the underlying structure. e Typical single-particle

tracking procedure. Individual molecules are followed over multiple frames. Their PSFs (orange pro�le)

are localized (black crosses) and linked together (blue/red arrows). The jump distances (JD) originating

from these linked particles are then analysed via for example a jump distance histogram (right). The

histogram is �tted with equation 1.10 to reveal the di�usive states of the original particles (red and blue

pro�les).

where the background noise is suppressed, while potential PSFs are accentuated, followed by a local

maxima �nder73,74.

After outlining the position of PSFs, more accurate localization is performed in the sub-

pixel localization step. Regions of interest (ROIs) positioned around the found local maxima are

analysed with a mathematical equation to obtain the centre of the PSF with sub-pixel accuracy.

Historically, this has been done by �tting a 2-dimensional Gaussian pro�le, as the central lobe of

a PSF is Gaussian-shaped. In the �tting procedure, the error of the Gaussian pro�le is estimated

either via least-squares error estimation (LS) or via maximum likelihood estimation (MLE). This

�tting is repeated with di�erent parameters until a best �t is obtained.

The accuracy of the sub-pixel �tting depends on the experimental procedure, as well as

on the �tting algorithm. A fundamental limit on the localization accuracy on all �tting routines

is given by the Cramer-Rao lower bound (CRLB)59,75. Most modern algorithms are capable of

nearing the CRLB, with a maximum likelihood estimator (MLE) �tting procedure with Gaussian

pro�les reaching this �rst8,50,58,59,76. The CRLB of 2-dimensional, in-focus PSFs can be analytically

described by58,59:

∆x =

√
σ2 + a2/12

N
(1 + 4τ +

√
2τ

1 + 4τ
) (1.6)

with

τ =
2πb(σ2 + a2/12)

Na2
(1.7)

in which ∆x is 1-dimensional localization accuracy, σ the PSF width, a the pixel size, N the

signal photon count, and b the number of background photons per pixel. While localization often

falls short of reaching the CRLB, either due to non-optimal localization settings, inhomogeneous

background, or overlapping signals, equation 1.6 still provides excellent optimization strategies for

localization accuracy. Most importantly, the accuracy scales proportional to the square root of the

photon number N . Next, there is an optimum in pixel size a, depending on PSF width σ (which

depends on emission wavelength λ (equation 1.4)). A minimum for a can be found analytically, and

for typical settings in SMLM, a value of a ≈ 100-130 nm is optimal76. Last, an increased signal-

to-noise ratio (i.e. decreased b) intuitively also leads to a better localization precision. A higher
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signal-to-noise ratio can be realised experimentally by using HiLo or TIR illumination, removing

(auto-)�uorescence from the sample65, or computationally by applying temporal median �lters, to

accurately determine and subtract the background level of every pixel77.

The obtained list of localizations can now be used for further data interpretation. While

this step is very experiment dependant, the �rst step of data interpretation generally falls in one

of two categories (Figure 1.2d,e): image generation, or single-particle tracking (spt; combined with

�uorescence microscopy forming sptFM). Studies that create images from single-molecule data nor-

mally do so to visualise and quantify structures, such as microtubules28,50, nuclear pore complexes78

and synthetic materials79.

To combine mesoscale spatial resolution with millisecond temporal resolution, spt can be

used, in which a single emitter is free to move around either by itself or bound to an object of

interest such as proteins8,30,68,80,81. This movement is then quanti�ed and analysed further. Spt is

often combined with PALM if it is employed in vivo30, providing an excellent combination of non-

overlapping single PSFs, high intracellular copy numbers of the protein of interest, and molecular

speci�city.

1.7 Single-particle tracking analysis of di�usion

Obtained localizations in an spt experiment are collected into separate tracks by linking localizations

in consecutive frames, often limited by a maximum possible displacement between frames (Figure

1.2e). Interpretation of single-particle tracks for di�usion-based experiments is based on equation

1.2. Computationally, this can be achieved by calculating the step-wise displacement for every step

of every frame, after which these displacements are binned. This procedure results in a so-called

jump distance histogram.

To obtain con�dence in the value of the di�usion coe�cient of single populations, the

jumping distance histogram obtained from many individual molecules should be compared to a

theoretical distribution. The corresponding cumulative probability distribution function (CDF) is

based on equation 1.2 and on Fick's second law of di�usion82, and follows83:

P (r2,∆t) = 1− e−
r2

4D∆t (1.8)

in which r2 indicates 2-dimensional displacement. The stochastic and random nature of di�usion,

leading to the broadness of the populations (Figure 1.2e), indicates that recording of su�cient tracks

(ideally > 10.000) is needed to obtain reliable results in spt(PALM) experiments9,84. Equation 1.8

can be expanded to facilitate multiple populations as follows:

P (r2,∆t) = 1−
j∑

i=1

fie
− r2

4D∆t (1.9)

in which i represents one of the j multiple populations, each with fraction fi. For incorporation in

single-particle tracking experiments, equation 1.8 is changed to a probability distribution function,

and altered for the in�uence of statistical dependence within single tracks and for a localization

uncertainty (equation 1.6)3,52,85,86:

P (r2,∆t, n) =
( n
D+σ2/∆t

)n · (r2)n−1 · e−
n·r2

D+σ2/∆t

(n− 1)!
(1.10)
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in which n is the length of individual tracks, and σ is the localization uncertainty. Equation 1.10

can be used to precisely extract apparent di�usion coe�cient data from experimental data (Figure

1.2e).

Importantly, jump distance histograms are not capable of extracting state transitions. If a

particle can occasionally transition between a slow-di�usive and a fast-di�usive state, jump distance

histograms provide information on either state without information on the transition rate. If the

transitions are fast (i.e. on the same time scale as the frame time), jump distance histograms will

fail to work correctly as these will provide an `intermediate' di�usion coe�cient3,52. This limitation

currently bounds the temporal resolution by the camera frame time.

1.8 Aim and outline of this thesis

Single-molecule localization microscopy combined with single-particle tracking has the prospect of

being a strong framework to study macromolecular di�usion and interactions in the mesoscale and

millisecond spatiotemporal regime. However, the spatiotemporal limit of SMLM has not yet been

reached, and an increase in this respect would allow possible further fundamental research in life

science and soft matter. Moreover, SMLM is only seldom used by non-experts in microscopy, due to

a high barrier of entry with respect to required experimental expertise, hardware, and computational

power. The aim of this thesis is therefore to increase the spatiotemporal resolution and accessibility

of SMLM/sptFM and to provide insights in its ability to study macromolecular interactions in life

science and soft matter.

In this thesis, methodological improvements are described to better approach quanti�ca-

tion of macromolecular di�usion, both in microscopy hardware and in the downstream data analysis.

These improvements have a focus on increasing the accessibility of SMLM/sptFM, and to increase

the full potential and wide-spread use of the techniques. With these methodological improvements,

the di�usion of macromolecules in relation to their interactions was investigated.

A novel single-molecule localization algorithm is introduced (Chapter 2) and expanded

upon (Chapter 3). The localization of PSFs is performed via a Fourier-transform based phasor

approach (phasor-based single-molecule localization microscopy or pSMLM). This method drasti-

cally improves localization rates (∼3 orders of magnitude) on a CPU-based system, while retaining

excellent localization accuracies. Furthermore, pSMLM is expanded to perform axial localization of

PSFs that are shaped by astigmatic, double-helix, saddle-point, or tetra-pod optical pathways. The

algorithms are incorporated in multiple software packages, which are described and quantitatively

tested against other state-of-the-art software.

Chapter 4 expands the ability of SMLM to allow for spectral discrimination with min-

imal losses in the achievable accuracy and density. To create this, a simple and low-dispersion

grating ensemble is added to a microscope, which causes a single-molecule spectral pattern to ap-

pear alongside the original PSF on the camera. By performing sub-pixel �tting routines on the

PSF and the corresponding spectral pattern, ∼20 nm spectral resolution, alongside ∼20 nm spatial

resolution, can be achieved, with minimal compromises to single-molecule density and camera �eld

of view.

In Chapter 5, a biological system is described in which single-particle tracking photo-

activation localization microscopy (sptPALM) of inactivated ('dead') Cas9 is realised. The food-
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related lactic acid producing L. lactis is genetically modi�ed to house a dCas9 fused to di�erent

(photo-activatable) �uorescent proteins. Induction and photo-activation of the chimeras is de-

scribed. For the �rst time, photo-activatable �uorescent proteins are shown to be functional in

L. lactis. Moreover, single-particle tracking of dCas9-PAmCherry2 is performed and quanti�ed to

reveal multi-state behaviour of dCas9 in vivo.

Chapter 6 continues the single-particle tracking of dCas9-PAmCherry2 in L. lactis, com-

bined with a description of the modular and accessible single-molecule microscope `miCube'. The

dynamics of dCas9 PAM screening are investigated with a novel di�usional state analysis technique,

termed Monte-Carlo Di�usion Distribution Analysis, or MC-DDA. It is found that dCas9 transi-

tions from freely di�using to PAM screening with a rate of ∼40 s-1, while the reverse has a rate of
∼60 s-1. Furthermore, target-bound properties of dCas9 are investigated, which show that dCas9

will, on average, be removed from plasmid DNA after ∼100 minutes, possibly due to hindrance of

the DNA replication machinery.

In Chapter 7, sptFM is employed to quantitatively characterise the spatial heterogeneity

of κ-carrageenan hydrogels. This hydrogel is routinely used to provide structure to a wide variety

of food and healthcare products. The average �bre diameter of κ-carrageenan strands in the bulk

network is found to be ∼3.2 nm, in agreement with other techniques. Moreover, spatial mapping of

dense network structures of ∼1 µm diameter is performed, and it is shown that these dense networks

are mobile on the seconds-to-minutes timescale.

In Chapter 8 a general discussion on the �ndings presented in this thesis is pro-

vided.
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Chapter 2

Abstract

We present a fast and model-free 2D and 3D single-molecule localization algorithm that allows more

than 3·106 localizations per second to be calculated on a standard multi-core central processing

unit with localization accuracies in line with the most accurate algorithms currently available.

Our algorithm converts the region of interest around a point spread function to two phase vectors

(phasors) by calculating the �rst Fourier coe�cients in both the x - and y-direction. The angles of

these phasors are used to localize the centre of the single �uorescent emitter, and the ratio of the

magnitudes of the two phasors is a measure for astigmatism, which can be used to obtain depth

information (z -direction). Our approach can be used both as a stand-alone algorithm for maximising

localization speed and as a �rst estimator for more time consuming iterative algorithms.
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Phasor based single-molecule localization microscopy in 3D

2.1 Introduction

Single-molecule localization microscopy (SMLM) has become a widely used technique in the

biomolecular sciences since seminal contributions successfully demonstrated a roughly ten-fold im-

provement in spatial resolution over conventional �uorescence microscopy1�3. The key concept of

SMLM is that the position of a single �uorescent emitter can be determined with an accuracy ex-

ceeding the di�raction limit as long as the emission of di�erent molecules is su�ciently separated

in time and space4�6. To localize the individual particles with sub-di�raction accuracy in two or

three dimensions, a number of approaches have been developed7. Frequently employed localiza-

tion algorithms involve the use of two-dimensional Gaussian functions to �t the intensity pro�le

of individual emitters with high precision. These approaches, however, tend to be slow due to

their iterative nature8,9, albeit data analysis in real time using graphics processing units (GPUs)

has been successfully demonstrated10. Faster localization algorithms using, for example, centre

of mass (CoM) calculations11 or radial symmetry12,13 tend to have lower localization accuracy or

lack the ability to assess 3D information at >105 localizations per second14. Although a Fourier

domain localization scheme for non-iterative 2D localization has been demonstrated theoretically,

that method has not been widely adopted as it did not o�er signi�cant improvements in either

localization speed or accuracy compared to iterative algorithms15.

Here, we introduce a simple and non-iterative localization algorithm with minimal com-

putation time and high localization accuracy for both 2D and 3D SMLM. Our approach is based on

the phasor approach for spectral imaging16. In pSMLM-3D, we calculate the location and astigma-

tism of two-dimensional point spread functions (PSFs) of emitters. The real and imaginary parts of

the �rst coe�cients in the horizontal and vertical direction of the discrete Fourier transformation

represent coordinates of the x - and y-phasor in a phasor plot. The associated angles provide infor-

mation on the x - and y-position, while the ratio of their magnitudes is a measure for astigmatism

that can be used to determine the z -position of the emitter after introducing a cylindrical lens in

the detection pathway of the microscope17,18. Our analysis of simulated PSFs with di�erent photon

counts indicates that phasor-based localization achieves localization rates in the MHz range, using

only the central processing unit (CPU) rather than requiring a GPU implementation, with similar

localization accuracy as Gaussian-based iterative methods. Next to this, we localized microtubules

in dendritic cells in three dimensions obtaining similar results with pSMLM-3D as with an iterative

Gaussian-based algorithm. Finally, we implemented our algorithm both as a stand-alone MAT-

LAB script and into the freely available ImageJ19 plug-in ThunderSTORM20 to which we further

added the possibility to calculate intensity and background levels of emitters based on aperture

photometry21.

2.2 Methodology

Data analysis in SMLM consists of the following steps: Identifying potential molecules and selecting

regions of interests (ROIs) around their approximate location, sub-pixel localization within the ROI,

and visualization of results (Figure 2.1a).

Here, we will only focus on the sub-pixel localization step. We simulated the intensity

pattern of a point source emitter using a full vectorial model of the PSF as described previously22 and

depict it pixelated and with shot noise, mimicking a typical camera acquisition under experimental
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Figure 2.1: Illustration of sub-pixel localization using the phasor approach. a Standard work�ow in

single-molecule localization microscopy: 1. Acquisition of raw image data; 2. image �ltering; 3. approxi-

mate localization of emitters: obtaining ROIs; 4. sub-pixel localization. b Strongly pixelated image (7 Ö 7

pixel) including noise representing standard conditions using camera-based detection of a simulated ellip-

soidal point spread function with the ground-truth localization indicated by a pink cross. c Phasor plot

representation of the two �rst Fourier coe�cients of the image data. By plotting their real versus the

imaginary part, the angles θx and θy represent the position (phase) of the molecule in real image space

as the markings on the straight circle in the Fourier domain indicate the normalised 1D position of the

true centre. Furthermore, the magnitudes rx and ry are reciprocally related to the PSF width in x and y

in real-space, respectively. Dotted lines are added for visual guidance. d Inverse Fourier transformation

of the �rst two Fourier coe�cients with the cumulated discrete intensity pro�le plotted in the x - and

y-direction and �tted with a sinusoid for visual guidance. From the angles θx and θy obtained from c and

plotted in d, we obtain the position of the molecule in the image domain using y1 and x1 marked by a

green cross, with the pink cross from the ground-truth position shown for comparison.

conditions (Figure 2.1b). As our algorithm is able to utilise astigmatism commonly introduced by

placing a cylindrical lens in the emission path for localization in three dimensions17,18, we simulated

the full-width at half-maximum (FWHM) of the PSF in the y-direction to be larger than the in x -

direction. We then calculated the �rst Fourier coe�cients in the x - and y-direction by isolating them

from the full two-dimensional discrete Fourier transformation of the ROI (see also section 2.7.1).

Although the coe�cients can be calculated without computing the complete Fourier transformation,

this did not improve the localization speed in the MATLAB environment. The real and imaginary

parts of each �rst Fourier coe�cient are the coordinates of a phasor, which are both fully described

by their phase angles (θx and θy) and magnitudes (rx and ry), representing the relative position

of the emitter in real space and values for the PSF ellipticity, respectively (Figure 2.1c). To aid
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Figure 2.2: Comparison of computation speed and localization accuracy of phasor with other local-

ization algorithms (Gaussian-MLE10, Gaussian-LS23, radial symmetry12, and centroid11,23). a Speed

of localization after loading the raw data in the memory in MATLAB. 7 Ö 7 pixel ROIs are used; the

amount of PSFs at once supplied to the method is varied. b Accuracy comparison of phasor localization

with other localization algorithms, comparing simulated PSFs with di�erent total photon counts on a 10

photon/pixel background. Accuracy in the horizontal direction of all methods together with the Cramer-

Rao lower bound24 is shown. ROI size is 5 Ö 5 (<103 photons) or 7 Ö 7 (>103 photons) pixels for the

phasor algorithm and 7 Ö 7 pixels for all other algorithms.

the reader, we calculated the inverse Fourier transformation using only the isolated �rst Fourier

coe�cients to show the data that are used for the calculation of the emitter's position and relative

widths in real-space (Figure 2.1d). We also show the localized position as determined from the

phasor plot (Figure 2.1d, green cross) and the ground-truth position (Figure 2.1d, pink cross). The

two elements represented in the phasor plot (Figure 2.1c) have di�erent distances to the origin.

These magnitudes are inversely proportional to the FWHM of the original PSF: ry < rx, leading to

FWHMy > FWHMx, in agreement with the simulated data. The ratio of the PSF width in x - and

y-direction can be used to calculate unknown z -positions of emitters in sample data after recording

of calibration data.

2.3 Results

To assess the performance of the phasor algorithm, we analysed simulated data with a background

level of 10 photons/pixels and a varying degree of total photon counts from the emitter ranging

from 80 to 50,000 photons using images of 15 Ö 15 pixels. We compared the localization speed

and accuracy of pSMLM-3D with other well established localization algorithms (for details see

section 2.7.2): Gaussian-maximum likelihood estimation10 (Gauss-MLE), Gaussian-least squares

�t23 (Gauss-LS), radial symmetry12 (RS), and centroid11,23 (Figure 2.2). We further included

the Cramer-Rao Lower Bound (CRLB) to indicate the theoretically achievable resolution where

relevant24.

In terms of localization speed, pSMLM-3D achieved more than 3Ö106 localizations per

second (3 MHz) when using ROIs with 7 Ö 7 pixels (Figure 2.2a). This localization rate is at least
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an order of magnitude faster than our adapted implementations of other CPU-based algorithms and

even signi�cantly faster than GPU-enabled Gauss-MLE. Moreover, we found that the localization

speed of GPU-based algorithms depends on the amount of data transferred to the GPU: Whereas

a stack of 5000 7 Ö 7 pixel images was analysed at a rate of 30 kHz, a stack of 500,000 images

(representing 49 MB of transferred data to the GPU) could be analysed at 600 kHz. For CPU-based

algorithms, this dependency is absent, allowing fast analysis of small PSF-containing image stacks,

indicative that CPU-based methods are well suited for real-time analysis.

To assess the localization accuracy of the di�erent localization algorithms, we cropped the

area around each simulated PSF (15 Ö 15 pixels) to create ROIs of 7 Ö 7 pixels (in line with the

�rule of thumb� �tting region size10 of 2 · 3σPSF + 1) for analysis by all methods, except for phasor

where we used ROIs of either 5 Ö 5 (for simulated photon counts <103 photons) or 7 Ö 7 (≥103

photons). We note that determining the optimal ROI size is often challenging for all localization

algorithms: albeit working with larger ROIs can potentially increase the localization accuracy as

more information from the PSF is extracted, larger contributions from background and near-by

other emitters can have a diametric e�ect. Moreover, these e�ects depend on the photon count of

the PSF and the type of the localization algorithm used for analysis (see also section 2.7.3).

The comparison showed that for PSFs consisting of 80 photon counts, the localization

accuracy is around 0.3 unit pixels for Gauss-MLE, Gauss-LS, RS, and phasor and reduces to 0.005

unit pixels at 50,000 photon counts in line with the theoretically expected improvement of the local-

ization accuracy being proportional to the square root of the photon number25 (Figure 2.2b, Figure

S2.10a). Between these outer limits, pSMLM-3D shows on average a small 3.7% decrease in accuracy

compared to Gauss-MLE. We further note that the computationally inexpensive centroid-based lo-

calization algorithm has a substantially worse localization accuracy, in line with earlier results12. We

repeated all simulations at reduced background levels of 1 or 5 photons per pixel showing that the

localization accuracies of all methods improve with lower background levels (section 2.7.4).

So far, we limited our analysis to localizations in two dimensions. As our algorithm

allows using the ratio of the relative widths of the PSF in the x - and y-direction introduced by

astigmatism, the position of an emitter in three dimensions can be determined after performing

a calibration routine in which photostable �uorescent emitters (e.g., latex beads) are imaged at

di�erent focus positions. Compared to non-astigmatic PSFs, we used larger ROIs (11 Ö 11 pixels

for phasor, and 13 Ö 13 pixels for other methods, see Figure S2.4 in section 2.7.5 for details) to

account for the larger PSF footprint. Comparison of phasor with other algorithms on simulated

astigmatic PSFs showed that phasor remained the fastest tested algorithm whilst providing a lateral

localization accuracy close to that of Gauss-MLE and better than Gauss-LS and Centroid (Figure

S2.5 in section 2.7.5 and Figure S2.5b in section 2.7.8). Although RS is capable of determining the

ellipticity of PSFs14, localization rates did not exceed 105 Hz and the localization accuracy did not

match that of Gauss-MLE.

With Gaussian-based methods, the PSF FWHM can be elucidated directly from the

Gaussian �t; in our algorithm, the phasor magnitudes depend not only on the PSF FWHM in

the respective directions but also on the background. This dependency can introduce a bias if the

background of the calibration series di�ers from that of the actual data. However, the ratio of the

phasor magnitude in x versus in y remained unaltered (section 2.7.6), indicating that calibration
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Figure 2.3: Analysis of a super-resolved microtubule network of �xed HELA cells. a Visualization

of superresolution data after ThunderSTORM analysis using phasor (top, 7 Ö 7 pixel ROI) or Gauss-

MLE (bottom, 11 Ö 11 pixel ROI) as a sub-pixel localization algorithm. Axial position is colour-coded

between −350 nm and +350 nm. Note that this does not encompass all localized �uorophores. b Lat-

eral resolving power of phasor (red bars) and Gaussian-MLE (blue line). Shown here are three micro-

tubules spaced below the di�raction limit taken from panel b in a. c Axial resolving power of phasor

(top) and Gaussian-MLE (bottom). Each subpanel shows localized �uorophores in a 100 nm window.

d Localization speed of complete analysis (image �ltering, approximate localization, and sub-pixel local-

ization) using ThunderSTORM without sub-pixel localization (top), ThunderSTORM-Phasor (middle),

and ThunderSTORM-Gauss-MLE (bottom). Error bars represent standard deviations of at least three

repeats.

of the ratio between the magnitudes versus z -depth should be performed. We calculated the axial

localization accuracies using phasor and Gauss-MLE both of which provide similar accuracies de-

creasing from around 200 nm at very low photon counts (<500 per PSF) to under 20 nm at high

photon counts (>10,000 per PSF) (section 2.7.7 and Figure S2.10c in section 2.7.8).

To demonstrate the e�ectiveness of pSMLM-3D, we performed a standard 3D-STORM

measurement of �xed immature dendritic cells with �uorescently labelled microtubules. In to-

tal, we recorded 50,000 frames (256 Ö 256 pixels), resulting in 6.1 GB of raw data containing

roughly 2.7Ö106 localized molecules. We analysed these data with the ThunderSTORM20 plugin

for ImageJ19 both with phasor and Gaussian-MLE (Figure 2.3a). The limited signal-to-noise ratio

required changing the size of the ROIs for phasor and Gauss-MLE to 7 Ö 7 and 11 Ö 11 pixels,

respectively. The lateral (Figure 2.3b) and axial (Figure 2.3c) resolving power of phasor is in line

with that of Gauss-MLE. The complete analysis time using multi-core computing, including the

�ltering of the image to �nd potential single molecules and excluding the loading of the data in

the computers memory, was over 5 h for Gauss-MLE, while it took only around 90 s for pSMLM-

3D. Entirely omitting sub-pixel localization shortened the computation time by only ∼5 s, which

31



22

Chapter 2

means that around 95% of the 90 s computation time is spend on image �ltering and obtaining

the approximate localization. Complete SMLM analysis with phasor under these conditions is at

over 500 frames per second, indicative that it is fast enough for real-time analysis applications

(Figure 2.3d).

2.4 Discussion and conclusion

The presented pSMLM-3D combines excellent localization accuracies in three dimensions with ex-

ceptional localization speed achievable on standard PCs. In-depth analysis of synthetic point spread

functions with di�erent photon counts and background levels indicated that pSMLM-3D achieves

a localization accuracy matching that of Gaussian-based maximum likelihood estimation even at

low signal-to-noise ratios. Moreover, we demonstrated localization rates above 3 MHz, which are at

least one order of magnitude higher than with other CPU-based algorithms. In fact, even compared

to GPU implementations of Gaussian-based localization algorithms26, our algorithm is faster, thus

signi�cantly reducing the computational barrier and costs to analyse experimental SMLM data.

Porting the phasor approach to a GPU environment is likely to achieve only marginal improve-

ments in speed as the bandwidth of transferring raw data is becoming a limiting factor. However,

implementations using �eld programmable gate arrays (FPGAs) directly connected to the camera

chip are feasible, with real-time SMLM analysis with Gaussian methods shown before27.

Subpixel localization rates in the MHz range satisfy even the most demanding applications

as frame rates of cameras suitable for single-molecule detection are currently not above 100 Hz (full

frame), indicating that phasor localization could be used in real-time environments. Moreover, some

iterative localization algorithms currently use the centroid-based localization as a �rst estimation10.

We believe that in that setting, the phasor approach can replace the initial step as it shows a speed

as well as an accuracy improvement. We note that all necessary functions for performing the

phasor algorithm are trivial, which allows for an easy upgrade of existing SMLM software packages.

In computational environments in which a fast Fourier transformation function is not inherently

present, a minimal algorithm to compute only the �rst Fourier coe�cient can be written to minimize

computation times, as we did for our JAVA implementation of phasor (section 2.7.9).

Compared to MLE, subpixel localization is possible in smaller areas around each emitter

with good localization accuracy, allowing us to use e�ectively a higher concentration of �uorescently

active emitters. This is especially apparent with astigmatism, where an 11 Ö 11 pixel size in the

phasor approach gives similar localization accuracy as 13Ö 13 pixel size in the Gauss-MLE approach.

This directly results in a possible increase of 40% in �uorophore density with the same chance of

having partial emitter overlap. However, we note that our current phasor implementation does not

provide means of resolving molecules whose emission partially overlap.

Like most localization algorithms currently available, pSMLM-3D assumes well-behaved

PSFs with symmetrical emission pro�les. Therefore, the algorithm depends on emitters having

su�cient rotational mobility as emission pro�les deviating from symmetrical PSFs can result in

signi�cant localization errors as has been discussed28�31.

In summary, we believe that pSMLM-3D holds great promise to replace or complement

commonly used localization algorithms, as the combination of high localization speeds and high

localization accuracy has not been shown to this extent before.
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2.5 Material and methods

2.5.1 PSF simulations

PSF simulations have been performed as described earlier22 with NA = 1.25, emission light at

500 nm, 100 nm/pixel camera acquisition, and image sizes set to 15 Ö 15 pixels. The centre of

the PSF is within ±1 pixel of the centre of the image, and in the case of simulated astigmatic

PSFs, the astigmatism has a FWHM ratio between 0.33 and 3.0. We used a full vectorial model

of the PSF needed to describe the high NA case typically used in �uorescent super-resolution

imaging. We accounted for the fact that in �uorescent super-resolution imaging, the emitter can

rotate freely during the excited state lifetime (∼ns), so for many excitation-emission cycles, an

average over randomly distributed emission dipole orientations will be observed in one camera

frame (∼ms).

2.5.2 Computer and software speci�cations

All computational work was performed on a 64-bit Windows 7 computer with an Intel Core i7

6800K CPU @ 3.40 GHz (6 cores, 12 threads), NVIDIA GTX1060 GPU (1280 CUDA cores, 8 GHz

memory speed, 6 GB GDDR5 frame bu�er, driver version 376.51), and 64 GB of DDR4 RAM on

a ASUSTeK X99-E WS motherboard. We used two software packages in this work: MATLAB

(MathWorks, UK) version 2016b and FIJI32. FIJI is based on ImageJ19 version 1.51n, using JAVA

version 1.8.0_66.

2.5.3 Software scripts used

Unless speci�ed otherwise, we used variants of the phasor script implemented in MATLAB (sec-

tion 2.7.9). JAVA-implementation of the phasor approach is based around a minimal discrete

Fourier transformation (section 2.7.10) and includes a aperture photometry-based method to esti-

mate PSF intensity and background (section 2.7.11)21. Gauss-MLE, Gauss-RS, radial symmetry,

centre-of-mass, and Cremer-Rao lower bound algorithms were adapted from earlier use10,12. For

Gauss-MLE, 15 iterations were used10; Gauss-LS had 400 maximum iterations, with a tolerance of

10−6.

2.5.4 Chemicals

All chemicals were purchased from Sigma-Aldrich and used without further puri�cation, unless

speci�ed di�erently.

2.5.5 Labeling of in vivo microtubules

Microtubules were �uorescently labelled via a double antibody labelling; primary antibody was a

mouse-anti-βtubulin, clone E7, isotype mouse IgG1; the secondary antibody was labeled with Alexa

647 (goat anti-mouse IgG (H+L) Superclonal secondary antibody, Alexa Fluor 647, ThermoFischer).

HELA cells cultured on glass coverslips were �xed for 5 min with methanol at −20 °C, followed by

25 min �xation by 4% paraformaldehyde (PFA) in PBS. Next, a blocking step to prevent unspeci�c
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adsorption was performed by adding 3% bovine serum albumin in PBS pH 7.2 + 20 mM glycine

(MP Biomedicals) and incubated for 1 h. Primary antibody was added and incubated for 1 h.

After washing with PBS, the secondary antibody was added and incubated for 45 min. After a

�nal washing step, the cells were post-�xed with 2% PFA in PBS for 15 min at RT and stored in

PBS with 0.05% NaN3, with the �nal cells being stable for imaging for several days in PBS. During

imaging, a Gloxy bu�er33 containing 35 mM β-mercaptoethanol was added to boost blinking of the

�uorophores. This blinking bu�er was freshly prepared on the day of imaging.

2.5.6 Single-molecule microscopy

We used a home-built microscope for imaging similar to a microscope described in more detail

elsewhere34. Brie�y, our microscope is equipped with a laser engine (Omicron, Germany), a 100Ö

oil immersion SR/HP objective with NA = 1.49 (Nikon, Japan), and a Zyla 4.2 plus sCMOS camera

for image acquisition (Andor, UK). 2 Ö 2 binning was used during acquisition, which resulted in

a pixel size of 128 Ö 128 nm. A cylindrical lens with 1000 mm focal distance was placed in the

emission path at 51 mm from the camera chip to enable astigmatic measurements; alignment of the

lens' optical axis was performed to ensure PSF elongation in the x - or y-direction.

2.5.7 Microtubule imaging and analysis

Fully labelled cells with added blinking bu�er were imaged for 50,000 frames (256 Ö 256 pixels) at

10 ms frame time. A 642 nm laser at 70 mW in HiLo was used for imaging of the �uorophores, a

405 nm laser at increasing power throughout the measurement was used to activate �uorophores.

Analysis was performed via the ThunderSTORM20 plugin for ImageJ19, with phasor added as

sub-pixel localization option (section 2.7.10). ThunderSTORM parameters for image �ltering and

approximate localization were kept constant for phasor and Gauss-MLE localization: a β-spline

wavelet �lter with order 3 and scale 3 was used, and approximate localization was done via an

8-neighbourhood connected local maximum, with a peak intensity threshold equal to the standard

deviation of F1 of the wavelet �lter. These settings are the default ThunderSTORM settings; the

only di�erence was a β-spline wavelet �lter scale of 2 rather than 3. Sub-pixel localization was

performed with either elliptical Gauss-MLE (11 Ö 11 pixels, 1.6 pixels initial sigma) or phasor

(7 Ö 7 pixels). Localizations for pSMLM-3D and Gauss-MLE in the acquired datasets were �ltered

as follows: intensity/background > 2; background standard deviation < o�set/2 (note that these

are raw sCMOS counts rather than photon numbers). Calibration �les were recorded under similar

circumstances with immobilized �uorescent latex beads (560 nm emission, 50 nm diameter) and

moving the piezo z -stage from −1000 nm to +1000 nm. These calibration �les were used during the

sub-pixel localization to calculate the z -position of the �uorophores. Visualization of the superres-

olution data was done via the average shifted histogram options, with a magni�cation of 3 (Figures

2.3a,c) or 5 (Figure 2.3b). No lateral or axial shifts were added. 3D was enabled and visualised

coloured, after which a composite image was formed in FIJI (Figure 2.3a).
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2.7 Supplementary information

2.7.1 Information contained in �rst Fourier coe�cient

To show what information is present in the �rst Fourier coe�cient in either x - or y-direction, we

plotted the 1D inverse Fourier transformation of an isolated �rst coe�cient corresponding to a PSF

below (Figure S2.1). The parameters indicated by A, B, and C are related to the Fourier domain

as follows:

A =
Magn

P 2
(2.1)

B =
1

P 2
(2.2)

C =
Ang

2π
· P (2.3)

Where P is the width of the ROI in pixels, Magn the magnitude of the phasor in the

Fourier domain, and Ang the angle of the element in the phasor plot in radians. Parameter C is

further explored in this manuscript, as this is the direct measure for the position of a �uorophore

in the direction of the �rst Fourier coe�cient. Parameter A is in�uenced by the magnitude of the

phasor and changes reciprocally with respect to the FWHM of the PSF.

2.7.2 Working principle of other localization algorithms

Centroid / Centre of Mass

The centroid or centre of mass algorithm11,23 calculates the intensity-weighted centroid of the PSF.

In essence, the mean pixel position is calculated, with the pixels being weighted by their respective

intensities. This algorithm is fast, but sensitive to noise, the relative position of the PSF in the

ROI, and even to the relative position of the centre compared to the pixel35.

Figure S2.1: A 7 x 7 ROI containing a PSF has been Fourier transformed, after which the �rst Fourier

coe�cient is isolated (Figure 2.1c). Shown here is an inverse Fourier transformation of an isolated �rst

Fourier coe�cient (Figure 2.1d shows this in 2 dimensions). Parameters A, B, and C are explained in the

text.
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Radial symmetry (RS)

Radial symmetry12 is a non-iterative method, in which the intensities at each pixel are used to

calculate an intensity gradient on a displaced grid. This intensity gradient can be visualised as a

set of lines on the corners of the pixels, which all have a speci�c slope mk (which can be in�nite

for vertical lines, replaced with a large number in the software). The distance of the centre of the

PSF is related to mk and the position where the line is determined. The PSF centre is then found

by minimising the intensity weighted over all distances calculated in this manner35.

Gaussian � least squares �t (Gauss-LS)

Gauss-LS works by �tting a 2D Gaussian to a PSF23. Starting parameters are required, and often

chosen via fast methods such as Centroid. After �tting a 2D Gaussian to the PSF, the goodness-of-

�t is calculated by taking the di�erence between the data and the �t at each pixel. This procedure

is iterated until the best goodness-of-�t is found, conditional to parameters as maximum number

of iterations or a minimum required goodness-of-�t. Due to the iterative nature, the algorithm is

robust albeit relatively slow.

Gaussian � maximum likelihood estimation (Gauss-MLE)

For Gauss-MLE, rather than calculating the error, the likelihood that the dataset ~x corresponds to

parameters θ is calculated10 via equation 2.4:

L(~x|θ) =
∏
k

µk(x, y)
xk · e−µk(x,y)

xk!
(2.4)

The parameters are then updated by calculating the derivative of the likelihood of the

current iteration, and using this derivative to calculate the next iteration. Compared to Gauss-

LS, this provides similar robustness, but has a signi�cant increase in speed, as fewer iterations are

necessary.

2.7.3 Determination of ideal ROI size for phasor and Gaussian-MLE

As the size of the ROI has an e�ect on the localization accuracy, we �rst determined optimal

settings before comparing localization algorithms with one another. We used 5 x 5, 7 Ö 7, 9 Ö 9,

and 11x11 pixels around the approximate centre of the PSF (Figure S2.2), and determined the

localization accuracy of phasor and Gaussian-MLE. The same simulated data as Figure 2.2 is used

(10 photons/pixels background), with the ROI reduced towards to centre.

Figure S2.2 shows that Gauss-MLE is bene�ting from larger ROIs, albeit mainly between

5 Ö 5 pixels and 7 Ö 7 pixels. Phasor, on the other hand, does not bene�t from the larger ROIs

similarly at all photon levels. This can be explained by two counteracting processes:

1. Larger ROIs provide more information about the PSF, which results in better localization

accuracies. Importantly, when the ROI is smaller than the PSFs FWHM, both phasor and

Gauss-MLE start to show larger errors.
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Figure S2.2: Accuracy comparison of phasor localization (a, c, e) and Gauss-MLE localization (b, d,

f) of di�erent ROI sizes (in pixels), comparing simulated PSFs with di�erent total photon counts on a 1

photons/pixel (a, b), 5 photons/pixel (c, d) and 10 photons/pixel background (e,f).

2. Larger ROIs lead to a relatively larger contribution of the background, especially if the PSF

has low photon counts. This leads to decreased phasor localization accuracy, since the �rst

Fourier coe�cient inherently provides information about a sinusoid without background levels.
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As seen in Figures S2.2, enlarging the ROI beyond 7 Ö 7 pixels had only a visible e�ect of the local-

ization accuracy at very high photon levels (50,000 photons total) and minimal photon background

(1 photon/pixel). Thus, for experimentally relevant conditions, the relevant ROIs for phasor are

5 Ö 5 pixels and 7 Ö 7 pixels. Combining the presented information, we decided to use 5 Ö 5 pixel

ROIs for PSFs with <1000 photons, and 7 Ö 7 pixel ROIs for PSFs with higher photon counts for

non-astigmatism determination with the phasor algorithm.

2.7.4 Localization accuracy at lower background levels

In Figure 2.2, we compare di�erent localization algorithms by simulated PSFs with 10 photons/pixel

background. Here we present similar localization accuracy plots, but with lower background levels

(5 photons/pixel and 1 photon/pixel compared to 10 photons/pixel (Figure S2.3)). As expected,

lower background levels result in better localization accuracy for all tested methods.

2.7.5 Localization accuracy for astigmatic point spread functions

We simulated PSFs with astigmatic characteristics (FWHMx/FWHMy randomly between 1/3 and

3) to compare the localization accuracy with di�erent settings and algorithms. Here we look at the

standard deviation in the lateral plane rather than in a single dimension, as the 1-dimensional error

is dependent on the width of the PSF in the speci�ed direction. Note that the shape of the PSFs

has no e�ect on the speed of any of the algorithms. First, we look at the e�ect of di�erent ROI

sizes around the PSF (Figure S2.4). The same trend as non-astigmatic is observed for both phasor

and Gauss-MLE, but with di�erent optimal points. For phasor, the accuracy at high photon levels

improves mostly from 7 Ö 7 to 9 Ö 9 pixels, especially at high background levels. At lower photon

levels, the biggest losses are seen between 11 Ö 11 to 15 Ö 15 pixels. Therefore, a ROI of 11 Ö 11

pixels is used for phasor in astigmatic settings. For Gaussian-MLE, a signi�cant improvement in

localization accuracy at high photon levels is observed from 7 Ö 7 to 13 Ö 13 pixels, with a very small

improvement from 13 Ö 13 to 15 Ö 15 pixels. This di�erence from non-astigmatic (7 Ö 7) is a simple

result of wider PSFs, as Gaussian methods are sensitive to incomplete PSFs. A ROI of 13 Ö 13

pixels was used for Gauss-MLE and similar methods considering these localization accuracies and

localization speed.

After determining the ideal ROI sizes, we compared the lateral localization accuracy of

di�erent algorithms (Figure S2.5). Here it can be seen that phasor has better accuracy than Gauss-

MLE at low photon counts, with Gauss-MLE being slightly better than phasor at higher photon

counts.
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Figure S2.3: Accuracy comparison of phasor localization with other localization algorithms, comparing

simulated PSFs with di�erent total photon counts on a 1 photons/pixel background a, 5 photons/pixel

background b and 10 photons/pixel background c Accuracy in the horizontal direction of the phasor

approach (ROIs of 5 Ö 5 (<103 photons) or 7 Ö 7 (>103 photons) pixels), Gaussian-MLE10, Gaussian-

LS23, radial symmetry12 and centroid11,23 (all 7 Ö 7 pixels) are shown, together with the Cramer-Rao

lower bound24.
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Figure S2.4: Accuracy comparison of phasor localization (a, c, e) and Gaussian-MLE localization (b,

d, f) by changing the ROI size around the PSF. The combined localization accuracy in the horizontal

and vertical direction of PSFs with di�erent total photon counts on a 10 (a, b), 30 (c, d), or 50 (e, f)

photons/pixel background are shown.
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Figure S2.5: Accuracy comparison of phasor localization with other localization algorithms, comparing

simulated PSFs with di�erent total photon counts on a 10 (a), 30 (b), or 50 (c) photons/pixel background.

Combined accuracy in the horizontal and vertical direction of the phasor approach (11x11 pixels ROI),

Gaussian-MLE10 , Gaussian-LS23, and Centroid11,23 (all 13 Ö 13 pixels ROI) are shown, together with

the Cramer-Rao lower bound24. d Computation speed of the tested algorithms with the indicated ROI

sizes.
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Figure S2.6: Calibration curve acquired via phasor localization. The magnitude of the phasors in x and

y are �tted with curves as indicated in equation 2.5. 95% con�dence interval shown in dotted lines.

2.7.6 Calibration data based on astigmatism

By introducing an astigmatic lens in the emission pathway, the PSF will be elongated in x or y

depending on the position of the �uorophore in z. The axial position can be obtained by making

two calibration curves (defocus model) from the FWHM in x and y of PSFs of �uorophores with

known z -positions17,20 (Figure S2.6), which is built in into the ThunderSTORM plugin. Since the

PSFs are two-dimensional, two curves are found:

σx = a1 · (z − c1)
2 + b1 and σy = a2 · (z − c2)

2 + b2 (2.5)

Calculating the z -position from the width in x and y and the calibration curve is usually

performed by calculating z twice, as σ1/2, a1/2 and b1/2 are known, but give two values due to the

quadration. The �nal z position can be elucidated from this by comparing the four solutions. For

phasor, this is done slightly di�erent because the magnitude is dependent on the background level,

which might be di�erent as the calibration series. Therefore, equation 2.6 below is used rather

than using two separate equations, as the level of background noise has no e�ect on the ratio of σx

divided by σy (Figure S2.7). This equation can provide multiple numerical solutions, but only one

solution will be within the calibrated range.

σx

σy
=

a1 · (z − c1)
2 + b1

a2 · (z − c2)2 + b2
(2.6)

2.7.7 Error in determined z -position

The accuracy of the determined z -position is dependent on the accuracy of the determined sigma in

x and y. To assess this, we determined the goodness-of-�t of a defocus model (Equation 2.5) to sim-

ulated PSFs at di�erent z -positions with di�erent photon counts and 10 photons/pixel background.

This was performed both via Gaussian-MLE and phasor (Figure S2.8). This shows the expected

increase in �t certainty with higher photon counts. Next, simulated PSFs with 1435 photon counts
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Figure S2.7: E�ect of increasing background levels on the absolute phasor magnitude in x and y at

simulated astigmatic PSFs with di�erent z-positions. The phasor magnitude in x (a), y (b), or x divided

by y (c) are shown, using simulated PSFs with 10 (red), 30 (blue), or 50 (black) photons/pixel background.

A change in magnitude in both x and y can be observed with di�erent background levels, but the ratio

remains identical throughout the tested range.

provided magnitudes or FWHM that were �tted with two defocus curves (Equation 2.5). The z -po-

sition of simulated PSFs with photon counts from 100 to 50,000 were determined via Equation 2.6.

The standard deviation of the error in axial plane is dependent on the PSF photon number and the

background level (Figure S2.9). Phasor with an 11 Ö 11 ROI and Gauss-MLE with a 13 Ö 13 ROI

provide similar accuracies in the axial plane. The CRLB in z is calculated according to [36].

2.7.8 Assessment of bias for simulated astigmatic and non-astigmatic

PSFs

To be able to completely assess localization accuracy, there should be no bias introduced. We

tested this for multiple circumstances by plotting the lateral localization bias of non-astigmatic and

astigmatic PSFs, and the axial localization bias of astigmatic PSFs. As can be seen in the Figure

S2.10, no bias is introduced by any of the localization algorithms used.
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Figure S2.8: A defocus model �t with 95% con�dence intervals (in dotted lines) of FWHM in x and

y determined by Gauss-MLE (a,b) or of phasor magnitude in x and y (c,d), determined from simulated

PSFs with 379 photons (a,c) or 8469 photons (b,d). The reciprocal relationship of phasor magnitude

with PSF width is expected (main text).
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Figure S2.9: Axial accuracy as determined from simulated PSFs with photon counts from 100 to 50,000

photons and 10 (a), 30 (b), and 50 (c) photons/pixel background via Gauss-MLE (13 Ö 13 pixel ROIs)

and phasor (11 Ö 11 pixel ROIs), and CRLB at ROI of 13 Ö 13 pixels indicated. Calibration curve

determined from simulated PSFs with 1435 photon counts.
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Figure S2.10: Bias of SMLM algorithms while performing localization of PSFs with 10 photons/pixel

background: lateral localization bias of non-astigmatic PSFs (a), lateral localization bias of astigmatic

PSFs (b), and axial localization bias of astigmatic PSFs (c) at total photon counts ranging from 100 to

50.000 photons. The settings of the SMLM algorithms is identical to those speci�ed in Figure 2.2b (a),

Figure S2.5a (b), or Figure S2.9a (c).
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2.7.9 Minimal phasor calculation in MATLAB

Here we show a minimal MATLAB script for the phasor calculation of a single PSF, assuming that

the data of the PSF is present in a double-precision square matrix named ROI.

%% Perform a 2D Fourier transformation on the complete ROI.
f f t_va lue s = f f t2 (ROI ) ;

%Get the s i z e of the matrix
WindowPixelSize = s ize (ROI , 1 ) ;

%Calcu late the angle of the X=phasor from the f i r s t Fourier c o e f f i c i e n t in X
angX = angle ( f f t_va lue s ( 1 , 2 ) ) ;
%Correct the angle
i f (angX>0) angX=angX=2*pi ; end ;
%Normalise the angle by 2pi and the amount of p i x e l s of the ROI
Posit ionX = (abs (angX)/(2* pi/WindowPixelSize ) + 1 ) ;
%Calcu late the angle of the Y=phasor from the f i r s t Fourier c o e f f i c i e n t in Y
angY = angle ( f f t_va lue s ( 2 , 1 ) ) ;
%Correct the angle
i f (angY>0) angY=angY=2*pi ; end ;
%Normalise the angle by 2pi and the amount of p i x e l s of the ROI
Posit ionY = (abs (angY)/(2* pi/WindowPixelSize ) + 1 ) ;

%Calcu late the magnitude of the X and Y phasors by tak ing the abso lu te
%value of the f i r s t Fourier c o e f f i c i e n t in X and Y
MagnitudeX = abs ( f f t_va lue s ( 1 , 2 ) ) ;
MagnitudeY = abs ( f f t_va lue s ( 2 , 1 ) ) ;

%Print a l i n e with r e s u l t s
fpr int f ( ' \ nPos i t i on  found at  X=%.2f ,  Y=%.2f ,  with phasor  magnitude in
X=%.2f ,  phasor  magnitude in  Y=%.2 f \n ' ,
PositionX , PositionY , MagnitudeX , MagnitudeY ) ;

2.7.10 Partial Fourier transformation in JAVA

We designed a partial Fourier transformation for use in JAVA. In its core, we have a minimal

discrete Fourier transformation; with a reduction in computation time via two methods:

1. Since we are only interested in the �rst order harmonic, we do not need to compute the full

discrete Fourier transformation.

2. As we know the size of the sub-images containing the PSF, and since this size is constant

throughout the analysis, we do not need to re-calculate the value of the sine and cosine at

certain positions. Instead, we can calculate these values once and then use them as input in

the minimal function.

This approach does not o�er an increase in speed when transcribed to MATLAB, probably due to

the highly optimised �t2() function in MATLAB.
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The JAVA code to calculate the sine and cosine separately is as follows:

//Fi trad ius : amount of p i x e l s from centre p i x e l to edge of ROI.
// Size of ROI i s f i t r a d i u s *2+1
this . f i t r a d i u s = f i t r a d i u s ;
//Calcu late parts of the f i t t i n g tha t are only dependant on the f i t r a d i u s
this . im s i z e i n t = 2* f i t r a d i u s +1; // in teger
this . ims i zedoub le = 2* f i t r a d i u s +1; //double prec i s ion
//Create and ca l cu l a t e the cos and sine arrays with s i z e dependant on ROI s i z e
this . f i tomega = new double [ im s i z e i n t ] ;
this . f i t c o s = new double [ im s i z e i n t ] ;
this . f i t s i n = new double [ im s i z e i n t ] ;
for ( int i nd i = 0 ; i nd i < ims i z e i n t ; i nd i++){

f i tomega [ i nd i ] = ( i nd i / ims izedoub le )*2*Math . PI ;
f i t c o s [ i nd i ] = Math . cos ( f i tomega [ i nd i ] ) ;
f i t s i n [ i nd i ] = Math . s i n ( f i tomega [ i nd i ] ) ;

}

2.7.11 Aperture photometry to assess intensity and background levels

For the JAVA-based pSMLM-3D script, a aperture photometry-based method is implemented to

assess values for PSF intensity and background21 (Figure S2.11). All pixels in the ROI with a

distance to the ROI centre smaller than the ROI radius minus 2 are attributed to the emitters

signal, pixels with a distance to the centre between (ROI radius minus 2) and (ROI radius plus

0.5) are attributed to the background, and any other pixels are excluded. The background level is

estimated by taking the 56th percentile of the background pixels, while the intensity is estimated

by taking the sum of the signal pixels, with the background subtracted.

Figure S2.11: Maps of photometric aperture layout for ROIs of 5 Ö 5 (a), 7 Ö 7 (b), 9 Ö 9 (c), 11 Ö 11

(d), 13 Ö 13 (e), and 15 Ö 15 (f) pixels. White pixels are considered signal, grey pixels are considered

background, and black pixels are excluded from consideration.
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Abstract

In single-molecule localization microscopy (SMLM), the use of engineered point spread functions

(PSFs) provides access to three-dimensional localization information. The conventional approach

of �tting PSFs with standard Gaussian pro�les, however, often falls short in analysing complex

PSFs created by placing phase masks, deformable mirrors or spatial light modulators in the optical

detection pathway. Here, we describe the integration of PSF modalities known as double-helix,

saddle-point or tetra-pod into the phasor-based SMLM (pSMLM) framework enabling fast CPU

based localization of single-molecule emitters with sub-pixel accuracy in three dimensions. For the

double-helix PSF, pSMLM identi�es the two individual lobes and uses their relative rotation for

obtaining z -resolved localizations. For the analysis of saddle-point or tetra-pod PSFs, we present

a novel phasor-based deconvolution approach entitled circular-tangent pSMLM. Saddle-point PSFs

were experimentally realised by placing a deformable mirror in the Fourier plane and modulat-

ing the incoming wavefront with speci�c Zernike modes. Our pSMLM software package delivers

similar precision and recall rates to the best-in-class software package (SMAP) at signal-to-noise

ratios typical for organic �uorophores and achieves localization rates of up to 15 kHz (double-helix)

and 250 kHz (saddle-point/tetra-pod) on a standard CPU. We further integrated pSMLM into

an existing software package (SMALL-LABS) suitable for single-particle imaging and tracking in

environments with obscuring backgrounds. Taken together, we provide a powerful hardware and

software environment for advanced single-molecule studies.
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3.1 Introduction

Fluorescence microscopy is frequently employed in biological sciences due to its high selectivity

and non-invasiveness. Conventionally, the obtainable optical resolution in �uorescence microscopy

is given by Abbe's di�raction limit which is equal to the wavelength of the light divided by dou-

ble the numerical aperture of the objective (∼200 nm for visible light). However, a multitude

of techniques summarised by the term super-resolution (SR) microscopy or nanoscopy1�3 have

been developed to obtain spatial information well below this limit. These techniques include

(d)STORM (direct stochastic optical reconstruction microscopy)4,5, PALM (photo-activatable lo-

calization microscopy)6, SIM (structured illumination microscopy)7, STED (stimulated emission

depletion microscopy)8, RESOLFT (reversible saturable optical �uorescence transitions)9, SOFI

(super-resolution optical �uctuation imaging)10, SRRF (super-resolution radial �uctuations)11 and

MINFLUX (minimal photon �uxes localization microscopy)12.

Single-molecule localization microscopy (SMLM) is the sub-collection of super-resolution

techniques in which the �uorescent emission pro�le, ordinarily referred to as a point spread function

(PSF), of a single �uorophore is localized with a precision (∼5 - 40 nm) that can exceed the classical
resolution limit by more than one order of magnitude13�16. SMLM is therefore an integral part of

STORM and PALM, and has been extensively used in biological research17�19, for example to

study DNA transcription20,21, CRISPR-Cas DNA screening22�24, nuclear pore complexes25,26, and

microtubules27.

In a conventional �uorescence microscope, a PSF from a single emitter in focus resembles

an Airy pattern, which can be approximated by a 2-dimensional Gaussian function. This approach

has been the basis of the earliest localization algorithms13,16,28, which allow for determination of the

emitter locations16 as long as overlapping of PSFs is negligible. Besides Gaussian-based methods,

these symmetrical PSFs have been analysed via other mathematical frameworks, such as radial

symmetry29, cubic splines30, or phasor (Fourier) analysis31.

The shape of the PSF quickly deteriorates, however, if the emitter is out of focus (∼100s
of nm), leading to both a limited available axial range and inaccessibility of the absolute axial

position32. Therefore, a variety of methods have been developed to modulate the shape of the

PSF depending on the emitter's axial position33. Historically, the �rst method (astigmatism; AS)

introduced a cylindrical lens in the emission pathway to create ellipsoid PSFs if the emitters are out

of focus34,35. The extent of the deformation along with its orientation allows for determination of

the axial position after a calibration procedure, and �tting of these PSFs could usually be performed

by derivatised localization algorithms as the ones used for 2D PSFs28,31,36. However, the available

axial range of astigmatism is limited to less than ∼1 µm, which lead to the development of more

advanced PSF shaping procedures that involve modulating the light in the pupil (Fourier) plane.

Using a spatial light modulator (SLM), the principle was �rst employed to create a double helix

(DH) pattern, in which the PSF is split in two separate lobes that non-degeneratively rotate around

each other based on the emitters axial position, resulting in a usable axial range up to 2.5 µm37.

Later, the same group theoretically maximised the information content of PSFs resulting in the

Saddle-Point (SP) or Tetra-Pod (TP) designs, which are suitable for 3 µm (SP) or ≥6 µm (TP)

axial ranges38,39. PSFs for both SP and TP are altered in the Fourier plane via a phase mask38,39

or deformable mirror40.

55



333

Chapter 3

Determining the sub-pixel positions corresponding to the emitters via DH, SP, or TP

PSFs, however, is more challenging than for isotropic or AS PSFs, as �tting with a single 2D

Gaussian is insu�cient. The current state-of-the-art �tting algorithms41 rely on phase retrieving

methods40,42 or spline interpolation26 to determine a PSF model based on calibration samples. A

high-resolution PSF model can then be determined from these models which is �tted on experimental

data. These methodologies can work with arbitrarily shaped PSFs, including DH, SP and TP.

However, these methods are computationally expensive and thus time-consuming. Recently, real-

time �tting localization of experimental PSFs have been achieved using graphical processing units

(GPUs)26, but this has not yet been achieved on central processing units (CPUs), which would

increase the accessibility and might allow implementations directly on the camera hardware.

Here, we show fast retrieval of DH (1.5·104 loc/s) and SP/TP (2.5·105 loc/s) PSF local-

izations on a standard CPU via novel adaptations of the phasor-based single-molecule localization

microscopy (pSMLM) algorithm31. We �rst explain the underlying methodology for DH and for

SP/TP, termed circular-tangent (ct-)pSMLM, and then explore the performance of the methods by

analysing simulated and experimental data. We have implemented all pSMLM versions (2D, AS,

DH, SP/TP) in a recently published software package (SMALL-LABS43), resulting in user-friendly

and open-source software to quickly perform sub-pixel localization including advanced background

�ltering options.

3.2 Methods

3.2.1 Principles of engineered PSF localization with pSMLM: Double-helix:

DH-pSMLM

To localize double-helix (DH) PSFs, we rely on the fact that pSMLM-2D provides accurate lateral

localization even when using a relatively small ROI around the center of an emitter31. Therefore, the

two lobes rotating around each other (Figure 3.1a) can be localized separately. During calibration,

the distance and rotation between the two lobes is plotted against the axial position (Figure 3.1b).

The rotation is �tted with a third-order polynomial. This polynomial is weighted on the inverse of

the standard deviation of each axial position if more than one calibration bead has been used.

The lateral position is calculated as being the average lateral position of the two lobes,

corrected for a `wobble' factor. This wobble factor is determined in x and y as function of the

emitters axial position (Figure 3.1c) by comparing the lateral localization at all axial positions

with the lateral localization at the axial centre of the calibration dataset. The average of this

wobble factor over an axial sliding window (user-de�ned, default value is set to 5 axial positions)

is determined during calibration and stored for future correction of lateral localization calculation

(Figure 3.1d).

To extract positional information, �rst a standard pSMLM-2D �tting is performed31. The

localizations in each frame are compared with each other to �nd pairs within the expected distance

regime (determined during calibration; minimum and maximum of distance between lobe centres,

with a 10% error margin), and are discarded if no pair can be found. During the linking of the lobes,

priority is given to lobes that only have a single possible counter-lobe over those that have multiple

options to reduce mis-�tting of closely positioned DH PSFs. The axial position is then determined

from the rotation of the two lobes via the calibration curve. The obtained distance between lobes
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Figure 3.1: Double Helix PSF �tting

via phasor-based localization. a Typical

double helix axial position pro�le41. Red

markers indicate initial 2D �ts of sin-

gle lobes by pSMLM. Scalebar represents

1 µm. b Typical calibration curve de-

termined via DH-pSMLM. The distance

between the lobes is used to link sin-

gle lobes during analysis, while the an-

gle between the lobes is used to calcu-

late the axial position. c Typical wobble

calculated from calibration. The solid

line represents the average wobble in x

or y at every axial position, the shaded

area represents the standard deviation.

d Wobble correction e�ect for a single

calibration emitter. Magenta shows un-

corrected lateral position of a �xed sim-

ulated emitter, while black shows the

wobble-corrected position.

is checked against the distance determined during calibration at the found axial position, and the

localization is discarded if these values di�er more than ∼100 nm (user de�ned). Lastly, the lateral

position is determined from the mean of the 2D-determined position of the two lobes, and corrected

for the wobble determined during calibration (Figure 3.1d).

3.2.2 Principles of engineered PSF localization with pSMLM: Saddle-point and

tetra-pod: ct-pSMLM

We analyse saddle-point (SP) and tetra-pod (TP) PSFs with an adapted phasor-based localization

methodology. SP and TP have similar characteristics and show separation of a single point when

in focus into two lobes above and below the focus in perpendicular directions38,39. Moreover, they

are based on similar PSF deformations introduced by primary and secondary astigmatism Zernike

coe�cients40.

We modi�ed a spectral phasor-based approach44 in which the convolution of arbitrary

pro�les in real space is a linear combination of their respective phasor representations in phasor

space. In this approach, the normalised intensity ratio between the original pro�les in the convolved

pro�le (real space) is represented as the distance of the original phasor pro�les to the convolved

phasor pro�le (phasor space). This entails that if two pro�les are combined with a 1:1 ratio, the
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convolved phasor representation is on the mid-point of the line between the phasor representations

of the original pro�les.

In SP and TP PSFs, the �nal spatial representation of the PSF is a convolution of two

separated lobes of identical intensity. Thus, SP and TP PSFs can be treated as a 1:1 ratio of

arbitrary pro�les that are separated at a varying distance, depending on the axial position of the

emitters. Note that by orientating the respective optical components correctly, this separation can

be achieved perfectly on the x - or y-axis. Therefore, the value for the separation d lobes, along

with the orientation of this separation provides suitable information for calibration of SP and TP

PSFs.

To determine the separation d lobes with phasor-based single-molecule localization mi-

croscopy (pSMLM), we assume that the width of the individual lobes in the direction of the convo-

lution is identical to the width of the convolved PSF in the other, unconvolved spatial direction. For

illustration, we show a combination of two 2-dimensional Gaussian distributions (Figure 3.2a,b,c).

The phasor representation of the individual Gaussian distributions is represented by a single phasor

for both dimensions, each having a certain, but di�erent, angle representing the emitter's position

in real space31.

Then, if reasoned from the convolved PSF (Figure 3.2c) to obtain the individual lobes, the

tangent at the magnitude circle in the convolved spatial dimension (broad spatial dimension; small

phasor magnitude; black cross located on the red circle in Figure 3.2c) will intersect the magnitude

of the smaller spatial dimension (large phasor magnitude; represented as a blue circle) at two points

(Figure 3.2c; magenta and orange dots). These points are a measure for original arbitrary pro�les

with identical spatial sizes in both dimensions that combine in a 1:1 intensity ratio to result in the

convolved pro�le. The angle between these two obtained intersectional points (θlobes) in phasor

space is a direct normalised value for the distance d lobes in real space (Figure 3.2c). We call this

method circular-tangent pSMLM (ct-pSMLM).

The obtained d lobes is used to create well-de�ned calibration curves for both SP and

TP (SP shown in Figure 3.2d) that can be �tted with arbitrary functions (e.g. a fourth-order

polynomial) to deduce axial positional information from experimental PSFs (Figure 3.2e). The

lateral localization information of the SP or TP PSFs is still inherently present in the original

phasor-representation of the complete PSF.

Determining localization of the SP or TP PSFs in the SMALL-LABS-pSMLM software

consists of two parts: �nding the central positions and further analysis with ct-pSMLM. The mid-

points of single PSFs are determined by �rst checking whether two detected emitters that could

represent two lobes of a single SP/TP PSF belong to the same PSF. If these emitters have little

deviation in one dimension (<0.5 px) and are slightly separated in the other dimension (less than

the calibrated maximum distance), the mid-point of these emitters is calculated and stored. If no

other lobe can be found, it is assumed the located emitter is the mid-point of the SP/TP PSF.

Then, ct-pSMLM is performed around the central point with a reasonably large region of interest

(>2 µm) to obtain d lobes and to calculate the axial position.

58



333

pSMLM for engineered point spread functions

Figure 3.2: Principle of circular-tangent phasor-based single-molecule localization microscopy (ct-

pSMLM) which can be used for saddle-point (SP) and tetra-pod (TP) PSF localization. a Single simulated

2D-Gaussian pro�le (top). The phasor representation (bottom) in the x dimension shows a single phasor,

of which the angle θx1 represents x -position dx1 of the emitter in real space (orange cross in both real

space and phasor space). The angle θy in phasor space (blue plus) represents y-position dy in real space.

The magnitude of the x -dimension (red) and y-dimension (blue) are shown as circles with equal radius.

b Identical to a, but with the 2D-Gaussian pro�le at a di�erent position. c Top: Combination of the two

Gaussian pro�les shown in a and b. The wider x pro�le corresponds to a smaller x phasor magnitude

(red circle) as compared to the pro�le and magnitude in y. Bottom: The phasor representation of the

pro�le in x is represented by the black cross (the y-phasor is omitted for clarity). Next, a line (black

dashed) is placed perpendicular on the x phasor magnitude circle. The positions where this line crosses

the y phasor magnitude circle are indicated by the orange and magenta dots in phasor space. These val-

ues are normalised values for the single emitter positions in real space, indicated by orange and magenta

dots. The angle between the two phasor angles is θlobes (green) and represents d lobes in real space. d

Representative simulated SP emitters at varying axial positions (see Methods). Red markers indicate the

obtained lobe positions via ct-pSMLM. Scalebar represents 1 µm. e Typical calibration curve in which

the separation of the lobes in x and y is plotted as a function of the z position.

3.3 Results

3.3.1 Double-helix

To evaluate the performance of DH-pSMLM, we performed �tting of simulated datasets41 via the

full pSMLM-updated SMALL-LABS software package and compared with the currently best per-
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Table 3.1: Double Helix PSF �tting performance, comparing SMALL-LABS-pSMLM with SMAP.

Low density High density

High SNR Low SNR High SNR Low SNR

pSMLMa SMAP pSMLMa SMAP pSMLMa SMAP pSMLMa SMAP

RMSE x (nm) 10.7 9.6 24.7 8.9 32.0 37.3 53.7 57.1

RMSE y (nm) 7.5 6.5 16.4 6.1 21.1 23.0 35.0 41.0

RMSE z (nm) 15.1 13.5 34.2 12.6 35.6 36.8 70.3 65.8

RMSE xyz (nm) 22.9 20.5 51.3 19.0 60.8 67.0 108.2 110.1

Jaccard (%) 76 61 63 65 26 21 22 5

Analysis time (s) 52 196 58 190 9 15 9 16

Phasor time (s) 1.4 1.4 0.6 0.5
aUsing SMALL-LABS-pSMLM, including loading of .ti� �le, excluding intermediate .mat �le saving (also see Table S3.1).

forming non-machine learned localization algorithm (experimental PSF spline �tting methodology

incorporated in SMAP26).

As the ground truth of these datasets is publicly available, we were able to extract (Ta-

ble 3.1) quantitative performance parameters such as the expected deviation of localization ac-

curacy in all three dimensions (root mean squared error, RMSE) and the Jaccard index JACC

(a measure for correctly and incorrectly localized particles41). These performance parameters are

calculated from localizations that were found in both software packages and in the Ground-Truth

datasets.

We observe that both SMALL-LABS-pSMLM and SMAP have comparable RMSE errors

(Table 3.1) in the order of 10-25 nm for the low density (LD), high signal to noise (SNR) dataset

which are similar to the ones reported previously for SMAP26,41. However, at low signal to noise

levels, SMAP outperforms SMALL-LABS-pSMLM on all performance indicators. This is presum-

ably due to SMAP using the full PSF at once, while SMALL-LABS-pSMLM splits localization in

two steps. This results in SMALL-LABS-pSMLM working with a lower apparent signal to noise

level, causing a lower localization accuracy. We note that the reported RMSE values for SMAP

analysis of the LD, low SNR dataset are counter-intuitively better than those of SMAP analysis

of the LD, high SNR dataset. This is a result of the RMSE calculation methodology used (Mate-

rial and methods), as only localizations that are found in both software analyses as well as in the

ground-truth are used for RMSE calculations.

We observe that SMALL-LABS-pSMLM outperforms SMAP in terms of localization recall

rates (Jaccard index, Table 3.1) at high SNR (23% increased), but not at low SNR (4% decrease).

The Jaccard values for SMAP are slightly lower than reported earlier41 (Material and methods),

but can be compared directly with the Jaccard values for SMALL-LABS-pSMLM reported here.

We note that no background subtraction is performed in SMAP, while SMALL-LABS-pSMLM

subtracts the background based on foreground temporal variations (SMALL-LABS43).

Both software packages are not capable of recognizing HD PSFs with a good recall rate,

although SMALL-LABS-pSMLM outperforms SMAP in all conditions, as single DH lobes are lo-

calized with only 5 x 5 pixel ROIs, decreasing the in�uence of the other nearby emitters.
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Figure 3.3: Saddle-point (SP) ct-pSMLM performance. a Speed of ct-pSMLM, based on a 23 x 23 pixel

image stack. Shaded area indicates the standard deviation. b,c Localization precision of ct-pSMLM,

based on simulated saddle-point point spread functions with di�erent intensities (x axis) and background

noise levels (line types). Lateral localization precision is shown in b, while axial precision is shown in

c. d Experimental STORM microtubule network analysed with ct-pSMLM integrated in SMALL-LABS-

pSMLM. Inset: Lateral pro�le of the red boxed outline.

SMALL-LABS-pSMLM is ∼3 - 4 x faster compared to SMAP for low density datasets,

and ∼2x faster for high density datasets. However, most analysis time for SMALL-LABS-pSMLM

(∼65%) is spend on the background correction and format conversion rather than approximate

localization or sub-pixel DH-pSMLM localization (Table S3.1). The localization procedure itself

can achieve 1 - 1.5·104 localizations per second on a standard CPU.

3.3.2 Saddle-point and tetra-pod

The performance of the localization of saddle-point (SP) PSFs was assessed and compared to ex-

perimental PSF spline �tting26. As ct-pSMLM is a non-iterative method, high localization rates of

up to 2.5·105 localizations per second were achieved on standard CPUs (Figure 3.3a). This is an

order of magnitude lower than traditional pSMLM-3D31, mostly due to the large required region

of interest around the PSF (>2 µm; here 23 x 23 px), and partly due to the additional computa-

tions required for ct-pSMLM. Taken alone, the additional computations of ct-pSMLM compared to

pSMLM-3D only result in a 10 - 40% decrease in localization rates (∼10% for at a large region of

interests 23 x 23 px; ∼40% decrease for 7 x 7 px). The lateral localization accuracy of ct-pSMLM

is in line with that of experimental PSF spline �tting (Figure 3.3b), and decreases from ∼100 nm

(∼1 pixel) at typical (∼200 - 1300) photon values for �uorescent proteins to ∼10 nm (∼0.1 pixels)
at typical (∼(2 - 11) x 103) photon values for organic �uorophores. The localization accuracy is

roughly one order of magnitude lower than the lateral localization accuracy of non-engineered PSFs

at high photon values (∼0.08 pixels and ∼0.01 pixels, respectively31), and roughly 1.5x worse than

AS PSFs (∼0.05 pixels31) caused by lower e�ective signal to noise ratio due to the expanded PSF.

We observed a lower limit in lateral localization accuracy for SMAP �tting of ∼10 nm (∼0.1 pixel),
which has an unknown origin.
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The axial localization accuracy of ct-pSMLM increases with increasing photon values as

well (Figure 3.3c). The average axial accuracy at typical photon values for organic �uorophores is

∼40 nm, which is ∼3x worse than AS PSFs with similar total photon counts and photons/pixel

background31. The best obtainable axial accuracy is limited by the sub-optimal �tting of the

calibration curve to around 11 nm, which is similar to AS PSFs (Figure 3.3c, Figure S3.2, [31]). We

attribute this lower axial accuracy of SP PSFs compared to AS PSFs again to lower e�ective signal

to noise ratios due to expanded PSFs. Up to 20% of SMAP-localized emitters had to be discarded

from calculating the z o�set, as these were substantially mis�tted (> 3 times the corresponding

ct-pSMLM z o�set, see Methods).

We furthermore demonstrate the implementation of ct-pSMLM in SMALL-LABS-pSMLM

by analysing an experimental STORM experiment showing labelled microtubule of a Monkey cell

line (Figure 3.3d, Material and methods). The total analysis time for the SMALL-LABS-pSMLM

analysis for the ∼8 GB, 60.000 frames dataset containing 1.5 million localizations was ∼15 minutes
on a standard CPU, including �le conversion (Table S3.1), of which the ct-pSMLM sub-pixel �tting

routine comprised just 77 seconds.

3.4 Discussion

Here we present integration of the phasor-based single-molecule localization microscopy (pSMLM)

framework with double helix (DH), saddle-point (SP), and tetra-pod (TP) PSFs, achieving very good

accuracy and speed on standard CPUs. In the current implementation, DH-pSMLM can achieve up

to 1.5·104 localizations/second on a 3.10 GHz processing unit, while ct-pSMLM, the basis for SP and

TP localization, can achieve up to 2.5·105 localizations/second. Speci�cally, ct-pSMLM is desig-

nated for real-time localization methods, combined with computationally inexpensive �ltering and

background subtraction methods, to better enable (automated) feedback-oriented SMLM instru-

mentation. Possibly a pSMLM-based methodology could be implemented on the integrated circuits

of cameras to further increase end-user accessibility of advanced single-molecule techniques.

The DH-pSMLM implementation in the SMALL-LABS software has similar performance

as the current state-of-the-art methods when using organic �uorophores, while decreasing the overall

analysis time when ran on a CPU. We note that our implementation is not particularly sensitive to

over�tting, as stringent constraints on the pair-�nding are used. This allows for some false positives

during the initial localization steps which are later discarded.

Ct-pSMLM improves on our previous phasor implementation31 by o�ering a direct way

of determining the distance between two emission peaks of a single PSF, well-suited for the quan-

ti�cation of the axial position in SP and TP PSFs. Here, perfect horizontal and vertical elongation

of the PSFs is a requirement for ct-pSMLM to perform. Our algorithm is capable of retrieving

the emitters location with a precision similar to current best non-machine learning localization

algorithm41, and is mostly limited by the �tting of the calibration curve. Naturally, for ct-pSMLM

to work correctly, no other emitters or highly inhomogeneous background should be present in the

�tting region. As SP and TP PSFs require large ROIs (∼23 x 23 px), this results in substantially

lower accessible emitter density compared to approaches using standard and astigmatic PSFs. For

high-density engineered PSF localization approaches, we point to alternative approaches such as

deep learning45,46 or matching pursuit47.

62



333

pSMLM for engineered point spread functions

We incorporated the novel pSMLM-derivative localization methodologies in the SMALL-

LABS software43. The updated SMALL-LABS-pSMLM software package expands the original work

with a user-friendly GUI, wavelet �ltering, drift-correction in 3D, and result image generation. We

believe that the software package strikes an excellent balance between fast analysis, accurate results,

experimental freedom, good expandability, and hassle-free installation and operation. The software

is freely available at https://github.com/HohlbeinLab/SMALL-LABS-pSMLM.

3.5 Material and methods

3.5.1 Software and hardware

All software was written and ran in MATLAB (MathWorks, UK) version 2018b on a 64-bit Windows

10 computer equipped with an Intel i5-8600 CPU @ 3.10 GHz, 16 GB RAM.

3.5.2 SMALL-LABS software

Our software package expands the original SMALL-LABS software43 in several ways. Firstly, we

added the original pSMLM-3D algorithm for 2D or astigmatism PSF sub-pixel localization, as well

as the novel variations discussed in this manuscript. Next, a custom GUI was written to increase

user accessibility. Lastly, the pre- and post-processing options are expanded with wavelet �ltering48,

cross-correlation drift correction in three dimensions49, and average shifted histogram result image

generation50,51.

3.5.3 Saddle-point PSF simulations

PSF simulations have been performed as described earlier16,31 with NA = 1.25, emission light at

500 nm, 100 nm/pixel camera acquisition and 1000 PSFs for every intensity/noise combination.

We used a full vectorial model of the PSF needed to describe the high NA case typically used in

�uorescent super-resolution imaging. The center of the PSF is located within +− 1 pixel of the center

of the image. Zernike polynomials Z2
2 (primary astigmatism) and Z2

4 (secondary astigmatism) are

introduced in a 0.5:−0.65 ratio40, and z -positions were chosen randomly between −1.5 and +1.5 µm

away from the focal plane.

3.5.4 Sub-pixel localization of single-molecule data

For double-helix (DH) sub-pixel localization, the four datasets from the 2016 SMLM challenge41

were analysed, which use experimental PSF models. These datasets di�er in signal-to-noise (SNR)

values (`high SNR', which mimics Alexa647 �uorophores, and `low SNR', which mimics �uorescent

proteins) and in emitter density (`low density' (LD) at 0.2 loc/µm2 and `high density' (HD) at

2 loc/µm2).

For double-helix localization, the following settings were used. For SMALL-LABS-

pSMLM-DH, the temporal window length and the minimum duration of �uorophore on-time before

it is discarded were both set to 150 frames. Filtering for region-of-interest (ROI) �nding was per-

formed with a β-Spline wavelet �lter with the threshold set to 1.9 times the standard deviation of

a �ltered frame. Single-lobe DH localization was performed with a phasor radius of 4 pixels (low
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density) or 2 pixels (high density). The z -position was calculated via a calibration with identical

phasor radius. For the SMAP software with �t3dSpline sub-pixel localization26, a calibration was

performed with a 33 x 33 pixel ROI. Then, localizations were identi�ed via a mean calibrated PSF,

with a 2.9 pixel Gaussian blur, using all calibrated z -positions. A threshold set to an absolute cuto�

value of 86 (high SNR), 76 (low SNR, LD), or 29 (low SNR, HD) photons was used. The calibrated

spline PSF was �tted with a 15 x 15 pixel ROI. Then, localizations with relative log-likelihood lower

than −2 (low density) or −5 (high density) were discarded.

For the localization of simulated saddle-point PSFs, we note that in order to prevent

localization artefacts at speci�c z -positions for ct-pSMLM (Figure S3.1), a large ROI (> ∼1.2x the
maximum distance between the lobes) had to be used to determine lateral localization accurately,

while a smaller ROI (∼2.3 x 2.3 µm) was required for accurate axial localization, as ct-pSMLM with

a large ROI cannot accurately describe the axial position around the focus. Then, all PSFs were

localized directly with ct-pSMLM as described in the result section or via the SMAP software with

�t3dSpline sub-pixel localization26. For ct-pSMLM, we used a 23 x 23 pixel ROI to calculate the

z -position and a 43 x 43 pixel ROI to calculate the x and y position, and a 4th-order polynomial

was used to �t the calibration curve. For SMAP, calibration was performed with a 15-px Gaussian

blur to �nd PSFs, a 51 x 51 pixel ROI, and 10 nm axial distance between every localization. For

localization, a 10-px Gaussian blur was used to �nd PSFs, with a threshold of 20. A 41 x 41

pixel ROI spline �tting with 100 iterations based on the calibrated data was used to localize the

PSFs.

Localization of experimental saddle-point data was performed with the SMALL-LABS-

pSMLM software package. A median background subtraction with temporal window length of

150 frames and minimum duration of �uorophores to be discarded of 100 frames was used. Lo-

calizations were identi�ed via a bandpass �lter with a 95 threshold percentile. Potential lobes of

saddle-point point spread functions were identi�ed with a 3 pixel radius ROI 2D phasor �tting rou-

tine. Ct-pSMLM �tting was then performed with an 11 pixel radius ROI around the centre of local-

izations. Calibration was performed using simulated point spread functions at varying z -positions,

consisting of 5000 photons on a noiseless background, with deformations similar to experimental

data. Three-dimensional cross correlative drift correction was performed via the SMALL-LABS-

pSMLM software, with 10 lateral subpixels and 10 temporal bins. The average shifted histogram

image was created using ThunderSTORM50, using 50 nm axial bins and 10 lateral subpixels.

3.5.5 Assessment of localization performance

For double-helix (DH), localizations between ground-truth (GT) and software 1 (S1; SMALL-LABS-

pSMLM-DH) and between GT and software 2 (S2; SMAP with �t3dSpline) are linked on a frame-

by-frame basis, with a maximum allowed lateral distance of 250 nm, and a maximum allowed axial

distance of 500 nm. The median o�set between GT and S1 and between GT and S2 is calculated and

subtracted from the S1 and S2 datasets, to avoid introducing consistent o�set errors in the RMSE

calculations. The linking of localizations between GT and S1/S2 is repeated, as localizations can

be shifted in/out of the maximum linking distance due to the median o�set. Of this linked dataset,

the Jaccard index is calculated as follows:

JACC =
TPo

TPo+ FP + FN
(3.1)
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where TPo, FP , and FN are the true positive, false positive, and false negative localizations,

respectively.

Then, only localizations that are present in all three datasets (GT, S1 and S2) are selected,

and of these localizations, the root mean square error (RMSE) in a single dimension is calculated

as follows:

RMSE =

∑
i∈S

√
(pSi − pGT

i )2

TP
(3.2)

where pi indicates the position of localization i in any dimension, and S indicates S1 or S2.

For saddle-point (SP), 1000 PSFs for every signal-to-noise combination were simulated

(section 3.5.3), after which a calibration curve was created in SMALL-LABS-ct-pSMLM or SMAP

with PSFs containing 3·104 photons on a 1 photon/pixel background. For SMAP localizations,

obtained localizations well outside the expected regime (10 pixels or further removed from center)

were discarded, and frames containing multiple or no localizations were fully discarded. Note,

localizations obtained with SMAP that were clearly mis�tted (an o�set in z by at least 3 times the

average z o�set calculated by ct-pSMLM) were discarded; no such discarding was performed for

ct-pSMLM.

For both ct-pSMLM and SMAP, the x, y and z positions were compared with the ground-

truth, and the standard deviation of this o�set was calculated for every intensity and background

combination and is shown in the results. We note that the mean of the o�set was centred around

0 for every tested intensity/noise/software combination.

3.5.6 Single-molecule microscopy

For SMLM experiments, we used a home-built super-resolution microscope similar to one reported

previously24. Brie�y, light from a �bre-coupled 642 nm laser (Omicron, Germany) was collimated

using an achromatic lens (f = 30 mm, Thorlabs) and conducted to a parabolic mirror (RC12APC-

P01, Thorlabs). The laser light was then focused using an achromat lens (f = 150 mm, Thorlabs)

in front of a polychroic mirror (ZT532/640rpc, Chroma) into the backfocal plane of an 100x oil-

immersion objective (CFI Plan Apo, NA = 1.45, Nikon Japan) such that a highly inclined illu-

mination (HiLo) pro�le with a total laser power of ∼70 mW was achieved. Emitted �uorescence

passing the objective, the polychroic mirror and a bandpass �lter (ZET532/640m-TRF, Chroma)

was then guided into a 4f geometry using the following lenses (1: f = 200 mm, 2: f = 100 mm,

3: f = 100 mm) towards a Prime 95B sCMOS camera (Photometrics, Tucson, AZ, USA), resulting

in an e�ective 115 by 115 nm pixel size. A deformable mirror (DMP40-P01, Thorlabs) was placed

in the Fourier plane between lens 2 and 3. The deformable mirror used 40 segments with bending

arms for tip-tilt control to modulate and introduce di�erent Zernike modes. After calibrating (�at-

tening) the deformable mirror via the REALM software52 (https://github.com/MSiemons/REALM

and https://github.com/HohlbeinLab/Thorlabs_DM_Device_Adapter) we used the Zernike poly-

nomials Z2
2 (primary astigmatism) and Z2

4 (secondary astigmatism) to induce saddle-point

PSFs38,40.
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3.5.7 STORM experiment

A SAFe sample containing immobilised Cos7 �broblasts from Green African Monkeys (ATCC)

with Alexa Fluor 647 labelled tubulins was purchased from Abbelight (Paris, France). A nitrogen-

�ushed bu�er containing 50 mM TRIS pH8, 10 mM NaCl, 10% glucose, 50 mM 2-mercaptoethanol,

68 µg/mL catalase, and 200 µg/mL glucose oxidase27 was added to the sample chamber which was

sealed o� before the measurements. 60.000 frames of 20 ms length were recorded using the setup

described in section 3.5.6. Analysis of the single-molecule data was performed as speci�ed in section

3.5.4.
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3.9 Supplementary information

Table S3.1: Detailed analysis time for double-helix �tting by pSMLM-SL-DH.

TIFF
conversion

Intermediate �le
saving

Background
subtraction

Total
analysis time (s)

pSMLM-DH
�tting time (s)

N1-LD

(20.000 frames)

Yes Yes Yes 72.7 ± 1.7 1.4

Yes Yes No 43.7 +− 1.0 1.4

Yes No Yes 51.8 +− 0.4 1.4

Yes No No 34.6 +− 0.8 1.4

No Yes Yes 57 +− 1.1 1.4

No Yes No 25.8 +− 0.3 1.4

No No Yes 42 +− 0.2 1.4

No No No 24.6 +− 0.2 1.4

N1-HD

(2.000 frames)

Yes Yes Yes 13.4 ± 0.3 0.5

Yes Yes No 5.8 +− 0.3 0.6

Yes No Yes 8.5 +− 0.0 0.6

Yes No No 4.2 +− 0.2 0.6

No Yes Yes 11.6 +− 0.1 0.6

No Yes No 3.9 +− 0.0 0.6

No No Yes 8.2 +− 0.0 0.6

No No No 3.8 +− 0.1 0.6
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Figure S3.1: O�set (in nm) in y (left) and

x (right) based on z position (x -axis) and ROI

(vertical panels) used for ct-pSMLM. Note that

the o�set error is in the direction of the lobes (y-

direction at negative z positions, x -direction at

positive z positions), is very localized, and shifts

with increasing ROI size towards more extreme

z positions.
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Figure S3.2: Lateral accuracy of ct-pSMLM as a function of z position, calculated via simulated PSFs

without introduced noise. The mismatch between the �tted calibration curve and the actual distance is an

e�ective lower limit of the lateral localization accuracy, and is on average 11 nm for our tested simulated

PSFs.
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Abstract

Single-molecule localization microscopy (SMLM) is a powerful technique to elucidate structural and

dynamic properties in life- and material science with sub 20 nm spatial resolution. The simultaneous

acquisition of spectral information (spectral SMLM; sSMLM) can further increase the information

content by providing opportunities for �uorophore multiplexing and the characterisation of local

chemical environments caused by potential shifts in the emission spectra. The widespread utilisation

of sSMLM, however, is hindered by an increased complexity of the optical detection pathway, lower

accessible emitter densities, and compromised spatio-spectral resolution because the photon budget

is spread over additional (camera) pixels. Here, we present a low-cost (∼¿100) implementation of

sSMLM with just 0.4 nm/pixel spectral dispersion, orders of magnitude lower than typical sSMLM

implementations. We performed localization of both the spatial and spectral pro�les with typical

single-molecule localization algorithms, leading to a simple hardware set-up, a ∼5x increased max-

imum emitter density compared to existing approaches, and excellent spatio-spectral localization

accuracy. We demonstrate spectral discrimination of �uorophores with just 10 nm spectral di�er-

ence in dSTORM and DNA-PAINT, as well as applications in single-molecule FRET. We believe

that the combination of low-cost hardware that is easy to install with straightforward data analysis

via existing and future sub-pixel localization algorithms has the potential to �nd widespread use in

microscopy.
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4.1 Introduction

Super-resolution microscopy or nanoscopy has revolutionised life and material sciences as it allows

surpassing the optical di�raction limit by more than an order of magnitude1,2. One frequently used

implementation is single-molecule localization microscopy (SMLM), in which the stochastic activa-

tion of single �uorescent emitters leads to spatially separated point spread functions (PSFs) that

are used to determine the position of the emitters with sub 20 nm accuracy. Localizations obtained

via stochastic optical reconstruction microscopy (STORM) or point accumulation for imaging in

nanoscale topography (PAINT)1,3,4 provide access to detailed structural images, or can quantify

dynamics and mobilities via single-particle tracking (spt)5,6. In this capacity, SMLM has led to

breakthroughs in �elds such as DNA replication, CRISPR-Cas, and soft matter7�10.

Improving throughput via multiplexing of di�erent �uorophores in SMLM, or enabling

microenvironmental characterisation can be accomplished by combining SMLM with the additional

spectral characterisation of emitters. Spectral information of single emitters has been acquired and

analysed using various implementations that all rely on placing additional components into the

optical detection pathway.

The �rst implementation, ratiometric distinction of spectral emission pro�les, is based

on placing of one (or more) suitable dichroic mirror(s) in the emission pathway11�13. Photons

emitted from the sample are separated based on their wavelength, and directed towards two di�erent

detection channels. This entails either two separate detectors or using two areas on the same

camera chip. Then, the PSFs and their integrated intensities obtained in the two channels are

matched, and the intensity ratio of photons is used to discriminate between the emission spectra

of di�erent �uorophores. Importantly, this method requires photons to be directed towards each

channel implicating that only a de�ned spectral range around the cut o� wavelength of the dichroic

mirror can be accessed.

In the second implementation, point spread function engineering, a spatial light modulator

or a phase mask is employed in the Fourier plane of the emission path14,15. The introduced phase

o�set by these elements is depending on the incoming wavelength, which can be exploited to design

a pattern so that di�erent PSF shapes are realised when photons of di�erent wavelength arrive at

the detector. However, small spectral emission di�erences in the order of tens of nanometres in the

peak emission cannot create su�ciently distinct PSF shapes, hindering discrimination of spectrally

close �uorophores. Moreover, the voltage phase has to be speci�cally tuned for certain emission

wavelengths, complicating this method when di�erent �uorophores are used.

In the third implementation, spectral dispersion, a spectrally-dispersive optical element

is added, after which the spatial and spectral pro�les are guided to di�erent regions on a single

camera chip or to completely separate detectors16�19. The spatial pro�le is then analysed with

regular single-molecule localization algorithms20�23, while the spectral pro�le is spread out over

tens of pixels and is used to determine the corresponding emission pro�le. While these approaches

allow large spectral ranges to be used, and allow the discrimination of �uorophores with similar

emission spectra, various downsides still exist. First, the entire emission pathway needs to be

modi�ed to allow separation of the spatial from the spectral channel. Furthermore, as the spectral

channel is wide (tens of pixels), the signal-to-noise ratio obtainable in this channel is compromised,
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leading to a loss in spectral accuracy24. The broad spreading of the emission also directly limits the

usable density of emitters in the sample, as overlapping spectral pro�les cannot be resolved.

Comparing these implementations, there remains a need to combine easy implementation

with broad spectral range and good speci�city. Here, we demonstrate spectrally resolved single-

molecule localization microscopy (sSMLM) via an inexpensive (blazed) transmission grating that

can be easily implemented in most microscope con�gurations. By using a grating with a large

line pitch and placing it as close as possible to the camera, we created a low-dispersion sSMLM

implementation in which the 0th and 1st di�raction order of every emitter is imaged in a single �eld

of view and which does not require any additional optical elements such as mirrors, lenses, or �lters.

Our implementation is capable of accurately determining spectral properties of single molecules at

5x increased emitter density compared to traditional sSMLM implementations. With our sSMLM

approach, we show the technical feasibility of single-excited 3-colour multiplexing and observable

0-to-15% FRET changes in single-molecule FRET experiments.

4.2 Results

4.2.1 Implementation and characterisation of minimal dispersion

sSMLM

In order to maximise the achievable molecular density and the signal-to-noise ratio in spectral single-

molecule localization microscopy (sSMLM), the available photon budget should be distributed over

as few pixels as possible. Therefore, we opted for minimal spectral dispersion allowing to separate

spatial from spectral information. In our implementation, we placed a transmission grating with

the lowest commercially available di�raction (70 lines/mm) as close as possible to a camera chip

(< 1 cm, Figure 4.1a). This arrangement results in the minimum possible separation of 0th and

1st order di�raction patterns, and thus results in the highest achievable �uorophore density and

signal-to-noise ratio for the 1st order di�raction pattern (Figure 4.1b,c). Notably di�erent from

earlier implementations, this results in the full �eld of view containing both spatial and spectral

information16�19. Our approach does not require the addition of any other optical components or

secondary detectors.

Because the obtained 1st order di�raction patterns behave similar to a point spread func-

tion (PSF), we employed existing super-resolution algorithms to obtain sub-pixel localizations of

the 0th and 1st order di�raction patterns. Next, the localizations are linked with each other in the

dispersion direction, with the distance between the 0th and 1st order di�raction patterns (d1 and

d2 in Figure 4.1b; further called `0th-to-1st-order distance') being a direct measure for the emission

wavelength of the emitter (λ1 < λ2 with d1 < d2). Moreover, the width of the 1st order di�rac-

tion pattern, routinely used in astigmatic single-molecule �tting algorithms, is a measure for the

width of the emission spectrum. This directly results in a spectral accuracy being limited solely

by spatial super-resolution localization accuracy, a �eld which is progressing very rapidly via both

software and hardware developments20,25. Moreover, the achievable density in our implementation

without the need for specialised high-density �tting algorithms is 5x higher than earlier implemen-

tations of sSMLM, where the spectral information is spread out over 20-30 pixels19 (Figure 4.1d,

Methods).
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Figure 4.1: Grating based implementation of low-dispersion spectral single-molecule localization mi-

croscopy. a A low-dispersion transmission grating (blazed) is placed in the emission path of a typical

SMLM microscopy such that the distance of the grating to the detector is as small as possible (<1 cm).

Around 50% of the emission light will pass the grating without any di�raction, causing a 0th order point

spread function (PSF) to appear. The other ∼50% of the emission light is dispersed based on its wave-

length and will create a second, slightly elongated 1st order di�raction pattern. Image not to scale.

b Simulation of low-dispersion sSMLM data of two spectrally di�erent emitters with λ1 (corresponding

to d1) < λ2 (corresponding to d2). Six emitters create in total 10 0th and 1st order di�raction patterns

on the detector, which can be linked together (not all 1st order di�raction patterns are visualised). The

obtained distances between the 0th and 1st order di�raction patterns (d1 and d2) are a measure for the

mean emission wavelength. c Raw data as recorded by our sSMLM implementation, showing 85 spa-

tiospectrally resolvable emitters in a 31 x 31 µm �eld of view. Red outline is enlarged in the inset, in

which the 0th order patterns are encircled in magenta, while the 1st order di�raction patterns are encircled

in green. Scale bar represents 5 µm. d Comparison of achievable density in normal (non-spectral) SMLM

(black dotted line), our approach (red line), and sSMLM with 20-30 pixels spectral pattern elongation,

taken from ref [19]. The shaded background indicates a single standard deviation.

We determined the distance between the dispersion-inducing optics of the grating to the

camera chip to be 6.9 +− 0.1 mm in our system (Methods, Figure S4.1a,b). The spectral dispersion

(SD) was determined by calculating the 0th-to-1st-order distance of a sample labelled with ATTO542

and ATTO655 (Figure S4.1c). From the median distance of these obtained distances and the mean

emission pro�le of the �uorophores, a SD of ∼4.7 nm/nm (equivalent here to 0.4 nm/pixel) was

determined. We further did not observe a wavelength dependency on the angle between the spatial

and spectral pro�les (Figure S4.1d).

4.2.2 Multiplexing of 10 nm spectrally separated �uorophores in dSTORM and

DNA-PAINT

The excellent signal-to-noise ratio of the obtained 1st order di�raction pattern, combined with

high resolution of sub-pixel localization algorithms indicates that small spectral di�erences can

be elucidated. With our sSMLM implementation, we imaged double-labelled �xated Cos7 cells,

in which clathrin was labelled with CF660, and microtubulin with CF680. Pseudo-colour coding

a super-resolved image based on 0th-to-1st-order distance reveals good separation of the labelled

structures without further analysis (Figure 4.2a), even though these �uorophores only have a∼10 nm
intensity-weighted spectral separation in our microscope (CF660: 691.9 nm, CF680: 701.6 nm,

Figure 4.2b).
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Figure 4.2: Multiplexing STORM of �xated Cos7 cells with CF660-labelled clathrin and CF680-labelled

microtubules. a Obtained STORM image, colour-coded on 0th-to-1st-order distance. Separation between

microtubule and clathrin can be observed without further data analysis. Scale bar represents 1 µm.

b Emission spectra of CF660 (bright red) and CF680 (dark red). Dotted lines represent full spectra, while

the solid lines represent emission spectra corrected for the transmission characteristics of the optical com-

ponents present in the microscope. c Histograms representing 0th-to-1st-order distances of �uorophores

belonging to areas indicated by dotted outlines in a. These populations are �tted with Gaussian curves

(see main text), and attributed to CF660 (green) or to CF680 (magenta).

Binning image regions with only CF660-labelled structures or with only CF680-labelled

structures (dotted outlines in Figure 4.2a), and �tting the corresponding 0th-to-1st-order distances

with a Gaussian pro�le reveals that CF660 has a 0th-to-1st-order distance of 3077 +− 2 nm (σ =

56 +− 2 nm; mean +− 95% CI), with 3128 +− 2 nm for CF680 (σ = 62 +− 2 nm; Figure 4.2c). This is a

di�erence of 51 +− 2 nm in the raw data, which corresponds to a spectral distance of 10.9 +− 0.4 nm,

in agreement with the emission pro�les.

Next, we performed a DNA-PAINT experiment with polystyrene nanoparticles (NPs) with

DNA-PAINT imager strands bearing either ATTO647N or ATTO655 (Figure 4.3a). These �uo-

rophores have a weighted average emission wavelength separated only ∼9 nm (684.5 and 693.4 nm,

respectively, after correcting for optical components in our microscope (Figure 4.3b)), and a peak

emission wavelength separated ∼16 nm (664 and 680 nm, respectively). After outlining of the in-
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Figure 4.3: Low-dispersion sSMLM is capable of resolving ATTO647N from ATTO655 in DNA-PAINT.

a Two di�erent nanoparticles have associated DNA-PAINT imager strands containing either ATTO647N

or ATTO655. Scheme not on scale. b Emission spectra of ATTO647N (bright red) and ATTO655

(dark red). Dotted lines represent full spectra, while the solid lines represent emission spectra corrected

for the optical components present in the microscope. c Histograms representing observed 0th-to-1st-

order distances of �uorophores belonging to individual NPs, and hand-attributed to either population.

These populations are �tted with Gaussian curve(s) (see main text), and attributed to NPs accepting

ATTO647N-DNA (green) or to NPs accepting ATTO655-DNA (magenta). d Visualisation of individual

NPs, with individual localizations colour-coded based on the dotted line shown in b. Note that these NPs

are spatially further separated in the original images. Scale bar represents 500 nm.

dividual beads and analysing the 0th-to-1st-order distances of emitters belonging to the NPs, two

populations can be observed (Figure 4.3c).

The population with the lowest 0th-to-1st-order distance (green; Gaussian �t peak posi-

tion: 3014 ± 1 nm, σ = 34 ± 1 nm, mean ± 95% CI,) was attributed to ATTO647N �uorophores.

The population with the larger distances (magenta) was �tted with a combination of the Gaussian

curve �tted to the �rst observed population, along with a unique Gaussian curve (Gaussian �t peak

position: 3090 +− 2 nm, σ = 41 +− 3 nm). This population was attributed to ATTO655 �uorophores.

The larger standard deviation of the ATTO655 population compared to the ATTO647N population

can be attributed to a lower median localization accuracy (42 nm vs 50 nm), possibly caused by a

di�erence in quantum yield (65% vs 30%). The spectral distance between these �tted peak positions

(76 +− 2 nm distance; corresponding to 16.2 +− 0.4 nm spectral separation) is higher than expected

from the spectra. This is possibly caused by deviations of the described wavelength-dependant e�-

ciency of optical elements compared to our hardware implementation, which could lead to a shifted

weighted mean emission wavelength of ATTO647N, as its emission maximum is close to the spectral

cut-o� (∼660 nm).

Next, all linked localizations were colour-coded according to their distance (cut-o� at the

black dotted line in Figure 4.3c at 3054 nm). Visualisation of the individual NPs (Figure 4.3d) then

reveals their �uorophore distribution. This shows that the NPs are populated by either one DNA-

PAINT docking strand or the other, with minimal cross-talk between the used �uorophores.

Taken together with the dSTORM data of the �xated cells, the obtained order of the

mean emission wavelength of all four �uorophores (ATTO647N, CF660, ATTO655, CF680) coin-

cided with that of the 0th-to-1st-order distance (mean emission wavelength: 684.6, 691.9, 693.4,

701.3 nm; mean 0th-to-1st-order distance: 3014, 3077, 3090, 3128 nm). The separation of these 0th-
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to-1st-order distances suggests that simultaneous multiplexing of at least three �uorophores with

single-wavelength excitation is technically possible with our sSMLM implementation under realistic

experimental conditions.

4.2.3 Elucidation of single-molecule FRET states via sSMLM

Next, we were interested whether we could expand the low-dispersion sSMLM to assess single-

molecule Förster resonance energy transfer (smFRET). In a typical smFRET experiment, probes

labelled with a donor and an acceptor �uorophore are immobilised on a surface, and monitored over

time. Depending on the experiment, changes in FRET and/or changes in acceptor/donor activity

(i.e. blinking, bleaching) can be expected. Normally, a ratiometric spectral determination method

is applied to separate the donor emission from the acceptor emission on di�erent positions on a

camera chip, and the intensity ratio between these is a measure for the relative FRET e�ciency E.

However, in our implementation, we can use the full �eld of view of our camera, and determine E

via the 0th-to-1st-order distance, as well as the width of the 1st order di�raction pattern.

We performed smFRET measurements on well-characterised samples26 of immobilised

double-stranded DNA strands dual-labelled with ATTO550 and ATTO647N. Two samples were

used: 23-bp separation (∼8.5 nm) and 15-bp separation (∼5.6 nm), leading to FRET e�ciencies of

∼0.15 and ∼0.55, respectively. First, we performed simulations (Methods; Figure 4.4a,b) based on

our sSMLM implementation and the theoretical emission pro�les (corrected for the �uorophore's

quantum yield and the optical elements in our microscope). These simulations of donor-only, 15%

FRET, and 55% FRET samples show that the 0th-to-1st-order distance follows ddonor < d15%FRET

< d55%FRET, while the width of the 1st order di�raction pattern follows σ55%FRET < σ15%FRET <

σdonor.

Experimentally, the immobilised 15% FRET and 55% FRET DNA strands were imaged

separately with 561 nm excitation for 250 s. Contrary to the multiplexing before, both the 0th-

to-1st-order distance and the width of 1st order di�raction pattern are measures for the FRET

e�ciency and were therefore visualised (Figure 4.4c,d). The experimental data agrees with the

simulations showing ddonor < d15FRET < d55FRET (2620 nm, 2653 nm, 2781 nm, respectively) and

σdonor < σ15FRET < σ55FRET (172 nm, 204 nm, 238 nm, respectively).

Next, we explored to which extend we can monitor dynamic behaviour using spectrally

resolved smFRET. While no direct state transitions are expected for this sample, there is occasional

acceptor �uorophore blinking or bleaching, leading to a transition of FRET emission to donor-only

emission. For this, we �tted the combined [d, σ] 2-dimensional histogram with four 2-dimensional

Gaussian pro�les (Figure 4.4c,d black crosses and ellipses). These pro�les comprise donor-only, 15%

FRET e�ciency, 55% FRET e�ciency, and `background' states (background state not shown). The

`background' state is attributed to nonsense linkages occurring from sparse localizations unrelated

to the FRET sample.

Time traces of individual emitters were further assessed (Figure 4.4e-h). The likelihood of

an emitter belonging to the states determined before was calculated (Methods), and the most likely

state determines the background colour of the graphs in Figure 4.4e,g. With this methodology, we

were able to determine acceptor bleaching (Figure 4.4e) and acceptor blinking (Figure 4.4g) in 15%

and 55% FRET experimental data. Accurate state determination of the 15% FRET measurement
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Figure 4.4: Single-molecule FRET analysis with low-dispersion sSMLM. a Predicted emission spectra

of donor-only (top, ATTO550), 15% FRET (middle), and 55% FRET (bottom). Dotted lines represent

full spectra, while the solid lines represent emission spectra corrected for the transmission characteristics

of the optical components present in the microscope. Schemes represent donor (green; ATTO550) and

acceptor (red; ATTO647N) �uorophore placements on a DNA strand. b Simulated raw data obtained

in our low-dispersion sSMLM implementation, based on the emission pro�les determined in a. Vertical

dotted white lines are a guide for the eye. c,d 2-dimensional histograms of experimental data of 15%

FRET (c) and 55% FRET (d). The histograms were globally �tted with multiple Gaussian functions

(shown here centred around black crosses, with solid ellipses representing 1 sigma, and dotted ellipses

representing 2 sigma; Methods, main text). e-h Single emitter time trace analysis of a bleaching acceptor

�uorophore in a 15% FRET pair (e,f), and of a blinking acceptor �uorophore in a 55% FRET pair (g,h).

Horizontal grey lines with red and blue shading represent 15% (e) or 55% (g) FRET populations (red) and

donor-only populations (blue), determined from the �t in c,d. The vertical green, yellow, orange shading

represented current FRET pair state, with green representing donor-only, yellow representing 15% FRET,

and orange representing 55% FRET. The raw data corresponding to these FRET pairs throughout the

observation time is shown in f,h. Scale bars in f,h represent 500 nm.

proved to be di�cult due to the overlapping Gaussian pro�les representing the FRET and donor-only

states (Figure 4.4c), whereas this was better discriminable for 55% FRET (Figure 4.4d).
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4.3 Discussion

We have demonstrated minimal-dispersion spectral SMLM (sSMLM), which fundamentally max-

imises signal-to-noise and emitter density due to lowest possible photon spread on the detector. In

our implementation, we used a single optical component add-on to the detection path leading to

a spectral dispersion of just ∼0.04 nm/pixel, orders of magnitude lower than typical grating-based

sSMLM implementations. With this implementation, we realised a �ve times increased emitter den-

sity, achieved good separation of emitters with a ∼10 nm intensity-weighted spectral di�erence in

STORM, and were able to observe changes between 0 and 15% FRET e�ciency in smFRET.

The low spectral dispersion allows us to use sub-pixel localization algorithms, a �eld that

is advancing rapidly20, and all future developments are directly applicable to our sSMLM imple-

mentation. This could open up avenues for better spatial and spectral precision, more information

obtained from the 1st order pattern shape, and sSMLM at even higher emitter density. Recent

work by Song et al employed sub-pixel localization algorithms for sSMLM based on data obtained

via the -1st and +1st orders of a non-blazed transmission grating27. While this solution is elegant

and uses all photons that arrive on the camera chip for both spatial and spectral localization,

blocking out the 0th order leads to a signi�cant loss of photons. Moreover, the implementation

requires additional optical components (mirrors and lenses) to direct only the -1st and +1st orders

on the camera chip. Earlier theoretical work24, not employing sub-pixel localization algorithms,

discussed a best possible sSMLM implementation with spectral dispersions of ∼1-4 nm/pixel. This
determined minimum was ultimately dependant on pixel-based analysis, but with sub-pixel local-

ization we demonstrated accurate sSMLM with ∼2 orders of magnitude lower spectral dispersion

(∼5 nm/nm, or ∼0.04 nm/pixel).

Further reduction of the spectral dispersion will depend on overcoming current practical

and physical limitations. In our implementation, we have used a low-dispersion blazed grating

(70 lines/mm), and placed this as close to the camera chip (6.9 mm) as possible. A blazed grating

with lower line density is technically possible to create, however, its e�ciency is likely to decrease,

obscuring whether it will actually lead to better overall data. Placing a grating even closer to

the camera chip is possible especially on lower-end (s)CMOS cameras, where the sensor is not

additionally sealed as in our camera28. In any case, further minimisation of spectral dispersion

without loss of signal would lead to higher achievable spatial and spectral precision than reported

here. A trade-o� of spectral dispersion minimisation is a decreased information content about

the shape of the emission spectrum. In this study, we use the shape of the emission spectrum to

discriminate FRET states from the donor-only state.

Taken together, we believe that our implementation of low-dispersion sSMLM will �nd

widespread use in the life and material sciences due to its inherent simplicity and photon e�ciency

providing access to maximised spatiotemporal and spectral resolution. We further envision appli-

cations in which the photon e�cient separation of spectrally di�erent entities is desired, such as

in low-signal �ow cytometry. Here, the ideas taken from super-resolution microscopy such as sub-

pixel localization and spectral peak determination can be equally applied even for low magni�cation

con�gurations.
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4.4 Material and methods

4.4.1 Microscopy

All microscopy is performed on a home-build super-resolution microscopy fully described elsewhere9.

Brie�y, a 561 nm and 642 nm laser line were employed in epi�uorescent, HiLo, or TIRF (depending

on the experiment) illumination via a Nikon 100x 1.49 NA HP/SR objective. The emission light

was guided via the bypass mode of a rescan confocal microscope to a Zyla 4.2 plus sCMOS (at

2 x 2 pixel binning, 122 nm e�ective pixel size) controlled by the micromanager software29. Ei-

ther a 405/488/561 dichroic mirror and �lter set (ZT405/488/561rpc and ZET405/488/561m-TRF,

Chroma, Bellows Falls, VT, USA) for the smFRET experiments, or a 405/488/561/642 dichroic

mirror and �lter set (ZT405/488/561/642rpc and ZET405/488/561/642m-TRF, Chroma) was used.

The second set was only used in experiments where the 642 nm laser line was employed, unless spec-

i�ed di�erently.

Details implementation grating

A blazed transmission grating (70 grooves/mm, Edmund Optics, Barrington, NJ, USA, part nr

46-067) was housed in a 3D-printed plastic insert and was inserted in the inner tube of a Zyla 4.2

PLUS sCMOS camera. An external C-mount threaded retainer ring (Thorlabs, Newton, NJ, USA,

part id CMRR) was then threaded to keep the grating in this place, and the retainer ring was glued

to the plastic insert for repeatable insertion of the grating.

4.4.2 Multiplexing �xated cells

Immobilised Cos7 cells with CF660-immunostained clathrin and CF680-immunostained microtubu-

lin (Abbelight; France) were imaged for 100.000 frames at 20 ms frametime and 80 mW 642 nm

laser illumination. A STORM bu�er (Abbelight) was added directly before sealing of the sample

and ∼5 minutes before the start of imaging. STORM imaging was started after ∼2 minutes of

80 mW at 642 nm laser illumination to turn the molecules in their o�-state.

4.4.3 Multiplexing with polystyrene nanoparticles

Streptavidin-coated polystyrene nanoparticles (NPs) with a diameter of 400-700 nm (SVP-05-10;

Spherotech, Lake Forest, IL, USA) were functionalized with single-stranded DNA (ssDNA) by

mixing biotinylated ssDNA (20 µM) with the NPs (10 mg/mL) for 1 hr at room temperature. Two

analogue batches were created. Batch NP1 consists of nanoparticles equipped with docking strand 1

(TTATACATCTA); NP2 are equipped with docking strand 2 (TTTCTTCATTA), following earlier

protocols30. An imager solution was prepared, containing imager strand 1 (CTAGATGTAT), which

is conjugated with ATTO647N and complementary to docking strand 1, found on NP1; and imager

strand 2 (GTAATGAAGA), conjugated with ATTO655 and complementary to docking strand 2,

found on NP2.

A sample was created consisting of 1:1 ratio of 1 mg/ml NP1, NP2 adsorbed for ∼10 min-
utes between oven-cleaned coverslips (500 °C for 20 minutes to remove organic impurities31). Sub-

sequently a solution containing a 1:1 ratio of 5 nM imager strand 1 and 2 was added. Imaging was
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performed with a 642 nm laser in TIRF at 80 mW, with 100 ms frame time for 2500 frames, without

any additional emission �lter present.

4.4.4 smFRET

Biotinylated double-stranded DNA labelled with ATTO550/ATTO647N with 23-bp (15% FRET)

or 15-bp (55% FRET) separation was obtained via a multi-lab study on FRET measurements (1-

lo, 1-mid)26. PEGylated and biotinylated coverslips were created following an earlier protocol32.

Brie�y, oven-cleaned (500 °C for 20 minutes to remove organic impurities31) coverslips were washed

in acetone, and incubated in 1:50 Vectabond (in acetone; Vector labs, Burlingame, CA, USA).

Wells were created via silicone gaskets, and incubated with 200 mg/ml NHS-PEG (Laysan Bio,

Arab, AL, USA) and 2.5 mg/ml NHS-biotin-PEG (Laysan Bio) in 50 mM MOPS bu�er. Then,

∼20 µl 0.02 mg/ml neutravidin was added, and after rinsing, 20 pM of the biotinylated DNA was

added. Four movies of 2500 frames of 100 ms each were recorded using ∼20 mW 561 nm of laser

light in TIRF mode, without an additional emission �lter.

4.4.5 General computational analysis

A single-molecule dataset was localized via ThunderSTORM33 for FIJI34,35,

with the pSMLM plugin22, after performing a 50-frame temporal median �lter

(https://github.com/marcelocordeiro/median�lter-imagej). A β-spline wavelet �lter with

scale 2 and order 3, with a local maxima �nder with a threshold set to the standard deviation

of wave F1 of the �lter multiplied by 1.5, and a non-calibrated 3D astigmatism Gaussian �tting

routine or a pSMLM routine with ROI (region of interest) 11 x 11 or 5 x 5, respectively, was used.

For analyses where the width of the PSFs was critical (i.e. the smFRET experiments), analysis

was performed by SMAP with the �t3dSpline �tter21 without a calibrated PSF model. Here, a

di�erence-of-Gaussian �lter with size 3 was used alongside an absolute photon cut-o� value of 0.3

with a 5 pixel NMS kernel size, to identify PSFs. Fitting was performed with an elliptical PSF

with a 13 pixel ROI, 30 iterations. No further �ltering was performed.

Linking of the localizations found in this dataset was performed with a methodology

adapted from linking individual lobes of a double-helix point spread function36. Brie�y, the local-

izations in each frame are compared with each other to �nd pairs within a larger-than-expected

distance and rotation regime. While it is expected that the localizations are not rotated with re-

spect to each other (i.e. a rotation of 0 rad), slight inconsistencies in placing the grating can lead to

small rotations (< 0.1 rad; Figure S4.1). Then, the positions of the leftmost localization (the spatial

localization) is stored alongside information about the rightmost localization (the spectral localiza-

tion). The �nal information consists of the position of the spatial localization, the distance and

angle between the two localizations, and (if applicable) the obtained PSF width in both dimensions

for the spatial and the spectral localizations.

4.4.6 smFRET analysis

For the spectral smFRET analysis, the general analysis work�ow as presented above was used

(�tted with SMAP21). In addition, the obtained 0th-to-1st-distances and the spectral widths of all
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found pairs were plotted for each experiment (comprised of 4 movies of 2500 frames each) as a 2D

histogram. The sum of the 2D histograms of 15% and 55% FRET was �tted with 4 Gaussian pro�les,

representing donor-only, 15% FRET, 55% FRET, and background populations. For visualisation,

these Gaussian pro�les were re-�tted to either the 15% FRET or the 55% 2D histograms, only

changing the relative intensities of the pro�les, but not their position or spread.

Thereafter, individual linked pairs (i.e. a 0th and 1st order pattern) were classi�ed as

`FRET', `Donor Only', or `Background', based on the likelihood of belonging to each Gaussian

pro�le. Individual linked pairs were furthermore linked to other linked pairs throughout time via a

simple Nearest-Neighbours tracking algorithm37, with maximum 1 pixel movement between frames.

Only tracks of at least 10 positions without donor blinking events were investigated further.

4.4.7 Spectral SMLM simulation

A simulation of the expected spatial and spectral di�raction patterns was performed in MATLAB

2018b (The Matworks, Natick, MA, USA) based on physical properties of the grating and its

placement. First, the emission spectrum on which the simulation is based is quantised in single

wavelength units (i.e. a resolution of 1 nm). For every wavelength, the angle of the 1st order

di�raction with respect to the 0th order di�raction is calculated (based on a speci�ed density of

grooves of the grating: 70 mm-1 in our implementation), and is used to gain the spatial position of

the 1st order di�raction pattern on the camera chip (based on a speci�ed distance of the grating

to the detector). Then, a point spread function is approximated via a 2-dimensional Gaussian

function, positioned at the 0th order and the 1st order di�raction pattern positions, where the

positions are o�set by a pre-de�ned random position between 0 and 1 �nal pixel size. These are

then normalised for its relative intensity (speci�ed by the emission pro�le and by the e�ciencies

of the di�raction orders (41% and 32% for the 0th and 1st order, respectively)). This simulation

is �rst done over-sampled on a grid with 1 nm2-sized pixels, before it is binned into 122 x 122 nm

pixels, corresponding to our sSMLM hardware.

4.4.8 Simulating the resolvable emitter density

The resolvable emitter density possible in our implementation was simulated in MATLAB 2019b

(The MathWorks, Natick, MA, USA) with similar conditions as performed previously19. A 20-by-

20 µm frame was �lled with emitters speci�ed by a certain density. Then, localizations that are

located closer than 3 pixels (here 0.388 µm) are indicated as `overlapping'. For our sSMLM imple-

mentation, a secondary localization was placed to the right of the primary emitter with a randomly

chosen distance between 2500 and 3400 nm, and was taken into consideration for overlapping sce-

narios. This was repeated 500 times at every density, and the mean and standard deviation was

determined.
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4.4.9 Characterisation

Distance grating to camera chip

While the absolute distance between the camera chip and the grating is initially unknown, a full

rotation of the C-mount thread corresponds to exactly 1/32th inch (∼0.8 mm). Four sSMLM

experiments with increasingly more full rotations of the grating away from the camera were recorded.

The median value of the resulting distance between the 0th and the 1st order is plotted against the

absolute distance that the grating is removed from the closest position. Fitting and extrapolating

this curve with a 1st order polynomial then reveals the distance of the grating to the chip at the

crossing of the curve with the x -axis (Figure S4.1b).

Spectral dispersion

A 2D DNA-PAINT (Gattaquant, Germany) containing ATTO542 and ATTO655 �uorophores was

imaged with either a 561 nm or a 642 nm laser activated. The 0th-to-1st-order distance was calcu-

lated, and the di�erence in the median distance is divided by the di�erence of the weighted mean

of the �uorophore emission pro�les. The �uorophore emission pro�les were corrected for the optics

and detector used in the microscopy system9.

4.5 Competing interests

K.J.A.M. and J.H. have a manuscript and patent in preparation regarding low-dispersion spectral

microscopy.
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4.6 Supplementary information

Figure S4.1: Calibration of low-dispersion sSMLM. a,b Determination of distance between grating and

camera chip. The grating is incrementally distanced from the camera by a series of rotations (every rota-

tion is 1/32th inch or ∼0.8 mm). The histograms of the obtained distances between the 0th and 1st order

are plotted in a, while the linear �t of the median distances is shown in shown in b. c,d Determination

of the spectral distance (SD). A DNA-PAINT sample with ATTO542 and ATTO655 �uorophores was

imaged. The distances (c) show a clear di�erence between the two �uorophores, while the angle (d) is

not in�uenced.
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Chapter 5

Abstract

Lactic acid bacteria (LAB) are frequently used in food fermentation and are invaluable for the

taste and nutritional value of the fermentation end-product. To gain a better understanding of

underlying biochemical and microbiological mechanisms and cell-to-cell variability in LABs, single-

molecule techniques such as single-particle tracking photo-activation localization microscopy (spt-

PALM) hold great promises but are not yet employed due to the lack of detailed protocols and

suitable assays.

Here, we qualitatively test various �uorescent proteins including variants that are pho-

toactivatable and therefore suitable for sptPALM measurements in Lactococcus lactis, a key LAB for

the dairy industry. In particular, we fused PAmCherry2 to dCas9 allowing the successful tracking

of single dCas9 proteins, whilst the dCas9 chimeras bound to speci�c guide RNAs retained their

gene silencing ability in vivo. The di�usional information of the dCas9 without any targets showed

di�erent mechanistic states of dCas9: freely di�using, bound to DNA, or transiently interacting

with DNA. The capability of performing sptPALM with dCas9 in L. lactis can lead to a better,

general understanding of CRISPR-Cas systems as well as paving the way for CRISPR-Cas based

interrogations of cellular functions in LABs.

92



55555

Evaluating sptPALM in Lactococcus lactis

5.1 Introduction

Lactic acid bacteria are Gram-positive microbes that produce lactic acid as the main end product

of sugar fermentation, thereby contributing to preservation and microbial safety of fermented foods.

In addition, these bacteria are also essential for the taste, texture, and nutritional value properties

of these products1. In particular, Lactococcus lactis is extensively used in the production of dairy

products such as butter and cheese but also shows promise as a producer of �avour compounds,

vitamins, and other nutraceuticals2�4 . Moreover, the potential of L. lactis as a microbial cell

factory and as vector for therapeutic protein delivery has recently been highlighted5, suggesting

that L. lactis approaches the applicability of other well-established biotechnological work horses

such as Escherichia coli and Bacillus subtilis, while having the bene�t of being a well-established

food-grade bacterium. Furthermore, it is known that L. lactis employs bet-hedging strategies

under speci�c conditions, resulting in high inter-cellular heterogeneity6, emphasising the relevance

of single-cell studies in L. lactis.

Despite great progress in the �eld of industrial microbiology, the function and spatial

organisation of many cellular proteins remain elusive. Super-resolution microscopy is capable of

detecting individual proteins in living bacteria and as such has revealed intricate cellular dynamics

and organisation7. A promising super-resolution microscopy method to inquire molecular motion

in vivo is single-particle tracking photo-activation localization microscopy (sptPALM)8. SptPALM

allows tracking of individual entities in living cells with nanometre (∼40 nm) precision and millisec-
ond (∼10 ms) temporal resolution8,9, enabling the characterisation of single protein kinetics and

dynamics in real time10,11.

In typical sptPALM measurements, a photoactivatable �uorescent protein (PA-FP) is

genetically fused to the protein of interest, enabling non-invasive live cell imaging12. As PA-FPs

have the intrinsic ability to undergo `on'-switching in the presence of activation illumination (Figure

5.1a)13, careful tuning of the activation light intensity allows imaging of individual proteins in a

sequential manner thereby avoiding overlapping emission signals. Molecules that have not yet been

activated or already have been (photo-)bleached remain in a dark state. By focusing on a single

particle at a time, the motion of the active particle can be determined by analysing its position

in several subsequent frames until the PA-FP turns dark (Figure 5.1b). The procedure is then

repeated to generate precise quanti�cation of the proteins behaviour, often via analysis of the

di�usion coe�cient.

Although other industrially relevant bacteria have been tested in their compatibility with

single-particle tracking and as such have revealed dynamic cellular mechanisms14�17, single-particle

tracking in L. lactis was reported only by us18. Here, we provide a detailed overview about all steps

necessary to develop functional sptPALM assays and experiments in L. lactis. We �rst test various

PA-FPs that can be applied in L. lactis (see also reference [19] for benchmarking conventional

�uorescent proteins (FPs) in L. lactis), explain methods to label a protein of interest and elucidate

quantitative information. To demonstrate sptPALM, we PAmCherry2-tagged catalytically-inactive

Cas9 (dCas9), provided together with single guide RNA on a separate plasmid, and monitored its

mobility in the cellular environment. The ability to perform quantitative single-particle tracking of

dCas9, and more generally, of CRISPR-Cas systems, facilitates further research of the mechanistic

details of these systems. As CRISPR-(d)Cas has a well-established and important role in genomic
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Figure 5.1: Single-particle tracking PALM.

a Photoactivatable proteins are activated from

an initial non-�uorescent state upon activa-

tion irradiation. The activated state can

then be excited, after which it emits �uores-

cence until the �uorophore either irreversibly

bleaches or returns to a long-lived dark state.

b By controlling the activation rate, only one

or a small subset of the FPs get stochastically

activated per cell at a time. The majority of

proteins, which have not yet been activated,

remain in a dark state. The movement of the

�uorescent molecule is followed by localizing

its position in consecutive frames and subse-

quent connections of the localizations to form

a trajectory. Tracks of many molecules are

obtained by repeating the cycle.

silencing and editing20�22, this increased understanding is especially valuable in industrially relevant

organisms such as L. lactis.

5.2 Results

5.2.1 Evaluation of (photoactivatable) FPs in L. lactis

In order to test the compatibility of several FPs with L. lactis, we constructed strains harbour-

ing pNZ8150 derivatives for the nisin-controlled expression of PAmCherry2, PATagRFP, mScarlet,

mScarlet-I, mScarlet-H, mTurq2 or sYFP2 in the nisRK expressing host NZ9000 (Figure 5.2a).

Fluorescent protein expression was evaluated with �uorescence microscopy. Low-level expression

was detected in non-induced (−nisin) cells, whereas high expression (i.e. high level �uorescence)

was observed in induced cells (+nisin) (Figure 5.2b). The photoactivatable FPs (PAmCherry2 and

PATagRFP) responded appropriately to nisin induction and photoactivation, only becoming emis-

sive after photoactivation with a 405 nm laser (Figure 5.2c). Multiple cell divisions were observed

when the cells were grown on an agar pad under microscopy conditions at room temperature (Figure

S5.1), indicating that the cells remained alive during sample preparation and imaging.

5.2.2 Genetic design of �uorescently labelled dCas9

Catalytically inactive Cas9 (dCas9) strongly binds to speci�c nucleotide sequences. This feature

allows the employment of dCas9 for many applications, including DNA visualisation and gene

silencing21,23,24. Moreover, dCas9 can be used as a model for normal Cas9 to elucidate mechanistic

and protein behavioural details.

We designed a L. lactis codon-optimised plasmid encoding �uorescently labelled dCas9

(Figure 5.3). The engineered gene encodes a FP that is fused via a �exible linker (amino acid
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Figure 5.2: Nisin induction and photoactivation of FPs in L. lactis. a Annotated outline of the pNZ8150

derivatives for the expression of the FPs under the nisin-promoter. b Non-photoactivatable FP expres-

sion in cells after high induction (+nisin). Non-induced (−nisin) cells showed hardly any �uorescence.

c PAmCherry2 and PATagRFP photoactivation after exposure to the 405 nm laser. Without 405 nm

exposure, hardly any �uorescence is observed.

sequence: GSGSS) to the C-terminus of dCas9; dCas9-PAmCherry2. This gene was cloned under
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Figure 5.3: Schematic represen-

tation of pLAB-dCas9-PAmCherry2.

The pIL253 derived expression vec-

tor encodes the PAmCherry2 labelled

dCas9 under control of the nisin-

promoter (Pnis), contains an ery-

thromycin resistance marker (Ery),

replication genes (repD, repE and

repG), and a cloning site (Eco31I)

for sgRNA insertion and expression

under control of the constitutive eps

promoter (Peps).

transcriptional control positioned of the nisA promoter in a pIL253 derived vector-backbone (con-

ferring erythromycin resistance), allowing its nisin-controlled expression (plasmid was designated

pLAB-dCas9-PAmCherry2). The engineered gene contains restriction endonuclease target sites that

allow interchanging of the FP and/or dCas9 encoding region by other FP encoding sequences or

other CRISPR-associated nucleases, respectively. Furthermore, the plasmid contains a convenient

site for sgRNA introduction and expression (driven by the epsb40 promoter25 and appropriately

spaced relative to the required Cas9 binding hairpin and Streptococcus pyogenes terminator) that

was derived from the previously described pLABTarget vector26.

5.2.3 Functional evaluation of �uorescently labelled dCas9 in L. lactis

In order to validate appropriate functionality of the dCas9-PAmCherry2 expression and photoac-

tivation, cells harbouring pLAB-dCas9-PAmCherry2 were nisin-induced and imaged. Expression

was evaluated with �uorescence microscopy, with a 561 nm laser for excitation and a 405 nm laser

for photoactivation. Low-level �uorescence was detected in non-induced (−nisin) cells (Figure 5.4),
whereas high level and �uorescence was detected following photoactivation in nisin induced cells

(+nisin).

The use of protein chimeras requires veri�cation of the activity and characteristics of both

proteins. Therefore, we veri�ed that dCas9-PAmCherry2 is still able to localize and bind target

sites in a sgRNA-dependent manner, by performing CRISPR interference (CRISPRi) experiments27.

To this end, we inserted a sgRNA in the vector that targets the major-autolysin encoding acmA

gene that plays a critical role in proper cell segregation during cell division and mutation of this

gene have been shown to result in chain formation of cells28. Di�erent sgRNAs were designed to

target the acmA gene in di�erent ways (gene/promoter in template/non-template strand), which

are expected to have di�erent outcomes in terms of silencing of the acmA gene. Targeting dCas9
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Figure 5.4: dCas9-PAmCherry2 nisin induction and photoactivation. Cells harbouring pLAB-dCas9-

PAmCherry2 after 3 h of induction (+nisin) with 5 ng ml−1 nisin compared to non-induced (−nisin) cells.
After exposure to 405 nm, substantial �uorescent signal was detected.

to the −10 and −35 promoter regions on the template as well as the non-template DNA strand is

expected to block transcription initiation and thereby e�ectively silence the expression of acmA.

In contrast, targeting of dCas9 to bind within the coding region of the gene is only expected to

silence acmA expression when the sgRNA targets the non-template strand23. Employing sgRNAs

that target dCas9-PAmCherry2 to these sites within the gene and its upstream region, we observed

chain formation according to our expectation (Figure 5.5), indicating that dCas9-PAmCherry2 can

e�ective bind its target sites, and is functioning appropriately in CRISPRi gene silencing.

5.2.4 Tracking single dCas9-PAmCherry2 molecules in L. lactis

After ensuring dCas9-PAmCherry2 chimeras retained their capacity to e�ectively bind to targeted

DNA sequences in a sgRNA-dependent manner, we set out to perform single-particle tracking

on these proteins to obtain more detailed information on dCas9. We used L. lactis containing

dCas9-PAmCherry2 in combination with a sgRNA that lacks a full-length (20 bp) matching target

site within the chromosomal or plasmid DNA18. This allows us to ensure that, with such imperfect

sgRNA, dCas9-PAmCherry2 is unable to bind on a minute time-scale21, but still allows shorter-term

dCas9 binding events at PAM sites and at sites with partial sgRNA-DNA complementarity29.
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Figure 5.5: CRISPRi with dCas9-PAmCherry2. Cells expressing dCas9-PAmCherry2 guided to di�erent

sequences around the acmA gene. Chain formation was observed in the cells for which CRISPRi was

expected. The sgRNA sequences can be found in Table 5.1.

To perform the tracking, individual �uorophores need to be activated with no overlapping

signal from adjacent particles. This was achieved by using low level induction (0.4 ng ml−1 nisin)

and low-activation laser intensity (2.7-619 µW cm−2; for comparison, data shown in in Figure 5.4

was achieved using 5 ng ml−1 nisin and 800 µW cm−2 activation laser intensity) such that on

average less than one photoactivated particle is present in a single cell in the same frame.

For sptPALM, we �rst recorded bright�eld images (Figures 5.6a,b), which are used to

computationally segment individual cells (c). Then, individual �uorophores are activated and lo-

calized in multiple subsequent frames until turning to dark states (d and e). The localizations of

the single particles are connected if they occur in close proximity in consecutive frames within the

cell outline, resulting in dCas9 trajectories per individual cell (f).

The tracks corresponding to individual particles were assessed with regards to their ap-

parent di�usion coe�cient, which is directly related to the average distance travelled per time unit.

The apparent di�usion coe�cients of all dCas9-PAmCherry2 particles is represented in a single his-
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Figure 5.6: Single-particle data analysis steps. An image of the cells is made by averaging the intensities

of 200 bright�eld images (a, selection shown in the red square is enlarged in b), which is used as input for

the Interactive Watershed plug-in in Fiji to construct a watershed image (c). Raw data (d) is localized

with ThunderSTORM and �ltered on the cell outline (e; localizations within a cell are marked in red,

localizations outside a cell in black). Tracking is then performed on the localizations that were found

within the cell outline (f). Scale bar represents 5 µm (a) or 1 µm (b)-(f).

togram (Figure 5.7a), and �tted with a combination of di�usional states. Three distinct populations

were observed.

The slowest population is fully determined by the localization uncertainty inherently

present in a microscopy system30, and is therefore attributed to immobile dCas9-PAmCherry2

proteins. The fastest population agrees with di�usion of dCas9-PAmCherry2 restricted in a small

L. lactis cell through viscous and crowded cytoplasm18. The remaining population is governed

by transient interactions that occur on timescales of the order of the acquisition time of single

frames (10 ms). These represent quick interactions to DNA, such as PAM screening or partial DNA

matching18.

Transitions between the three distinct states can be inferred from rare long-lived tracks

(>250 ms, Figure 5.7b). Individual tracks indicate transitions in mobility, with state occupancies

in tens of ms-range (Figure 5.7c).
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Figure 5.7: Single-particle tracking of dCas9. a Histogram of dCas9 di�usion coe�cients in L. lactis

(bin width = 0.05 µm2 s−1). The three �tted populations are 0.13 ± 0.01 µm2 s−1 (black), 0.44 ± 0.02

µm2 s−1 (red) and 1.35 ± 0.05 µm2 s−1 (orange) with relative occupancies of 12.4 ± 2.4%, 39.5 ± 4.8%,

and 48.0 ± 7.3%, respectively. Dotted lines correspond with 95% con�dence intervals of the �tted curve

to the data. b Histogram of all track lengths. It should be noted that tracks shorter than 4 localizations

(gray) are not taken into account in a, and that for all tracks longer than 4 localizations (dark blue), only

the �rst 4 localizations are used to calculate the di�usion coe�cient as shown in a. c Individual tracks

that show state-transition behaviour. The top �gures are colour-coded with respect to their apparent

di�usion coe�cient calculated from a single step, and the track starts at the position marked by *. The

bottom �gures show the step sizes as a function of time. Dotted lines indicate single step sizes, while the

solid line is the �oating average over 3 data points (30 ms).

5.3 Discussion and conclusion

As L. lactis is gaining ground in the biotechnology sector, capabilities to explore its mechanistic

details and molecular behaviour on the single-cell level are highly desirable. Powerful experimental

techniques for investigating protein behaviour in vivo often involve �uorescence-based approaches.

For obtaining single-molecule speci�city and resolution, single-particle tracking o�ers excellent pos-

sibilities. Here, we demonstrated the compatibility of various FPs for �uorescence microscopy and

single-particle tracking in L. lactis.
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In particular, we qualitatively tested a range of FPs (PAmCherry2, PATagRFP, mScarlet,

mScarlet-I, mScarlet-H, mTurq2 and sYFP2). The plasmids encoding these FPs were successfully

transformed in the cells, indicating low-level expression of these proteins is tolerated by these cells.

Importantly, the observation that L. lactis cells succeeded to undergo division following sample

preparation and mounting onto slides proves that the cells remain viable and active during these

sample preparations. The signal of non-photoactivatable FPs was higher than the auto-�uorescent

signal of wild-type cells and allowed for nisin induction. The photoactivatable FPs (PAmCherry2

and PATagRFP) responded appropriately to photoactivation, being switched on by irradiation

with the 405 nm laser with hardly any �uorescent signal before photoactivation. sYFP and mTurq2

were less bright than the other FPs. Moreover, they are excited at low wavelength (488 nm and

405 nm, respectively), increasing the contribution of auto�uorescence and toxic e�ects. There-

fore, we consider sYFP and mTurq2 to be less-attractive candidates for �uorescence microscopy in

L. lactis.

We analysed the behaviour of PAmCherry2-labelled dCas9 controlled via photoactivation

and nisin induction. The tagged dCas9 could still successfully bind DNA target sites in a sgRNA

dependent manner, as shown by the CRISPRi results targeting di�erent sequences of the acmA gene

and its promoter region. Interestingly, we observed chain-formation even without nisin induction,

suggesting leakage of the nisin promoter. Single-particle tracking of individual dCas9-PAmCherry2

entities reveals the presence of immobile, transiently-interacting and freely di�usive dCas9 states.

Apparent di�usion coe�cients obtained from model simulations in which these three states were

simulated agreed well with the experimentally obtained D* values18.

In this work, we have established and evaluated the procedure for sptPALM of labelled

dCas9 in living L. lactis. After verifying the compatibility of various FPs as well as proper func-

tioning of dCas9 labelled with PAmCherry2, we show that the presented single-particle tracking

procedure allows distinguishing multiple di�usional dCas9 states in L. lactis. We anticipate that

the described assays can also be adapted to molecules other than dCas9.

5.4 Material and methods

5.4.1 Bacterial strain and growth conditions

Lactococcus lactis strain NZ9000 was used in this study, based on its suitability as a host for the

use of the nisin-controlled gene expression system31. Unless stated di�erently, cells were cultivated

in M17 medium (Tritium, Eindhoven, The Netherlands) supplemented with 0.5% (w/v) glucose

(G-M17) and grown at 30 °C without agitation. For the single-particle tracking studies, chemically

de�ned medium for prolonged cultivation (CDMPC) was used32. This growth medium shows sub-

stantially less background �uorescence when compared to M17 medium. The low auto-�uorescence

makes CDMPC vital for single-particle tracking in L. lactis.

Genes coding for the FPs were PCR ampli�ed using plasmids containing the target genes

as template. The primers were designed to contain a KpnI restriction site as overhang on the 3' end

of the fragment (Table 5.1). The resulting amplicons (FP encoding gene including its stop-codon

and KpnI restriction site) were digested with KpnI. The cloning vector pNZ815033 was ScaI-KpnI

digested and ligated with the FP encoding amplicons, using T4 ligase, according to the manufac-

turers protocol (Thermo Fisher Scienti�c, Waltham, MA, USA). The resulting plasmids encode the
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FP under control of the nisin-controlled nisA promoter25 and were electrotransformed to L. lactis

NZ900034; transformants were selected on G-M17 agar plates containing 10 µg ml−1 chlorampheni-

col. Transformants were screened using a colony PCR (primer S15 combined with the corresponding

reverse primer of each �uorescent gene insert; Table 5.1) with KOD Hot Start Mastermix according

to the manufacturers instructions (Merck Millipore, Amsterdam, the Netherlands). The expected

amplicon lengths were 200 bp (nisA promoter length) plus the base pair length of each insert.

5.4.2 FP expression, vector construction

PAmCherry2-labelled dCas9 was expressed from the pLAB-dCas9-PAmCherry2 plasmid. This

pIL253-derived expression vector36 encodes dCas9 under control of the nisin-promoter (PnisA),

contains an erythromycin resistance marker (ery), replication genes (repD, repE and repG), and

a cloning site (Eco31I) for sgRNA insertion and expression under control of the constitutive eps

promoter (Peps). Details on vector construction can be found elsewhere18.

5.4.3 Sample preparation

Cells were grown overnight from glycerol stocks in chemically de�ned medium for prolonged cul-

tivation (CDMPC)32. Overnight cultures were subcultured (1:50 (v/v)) in CDMPC until expo-

nential phase (∼3 h of growth) was reached. For the FP and dCas9-PAmCherry2 validation ex-

periments, cultures were induced with a �nal nisin concentration of 50 ng ml−1 and 5.0 ng ml−1

(stock compound containing approximately 2.5% active component) (Sigma-Aldrich, Zwijndrecht,

The Netherlands), respectively, and further grown for ∼3 h at room temperature before imaging.

For the tracking experiments, cultures were induced with a �nal nisin concentration of 0.4 ng ml−1

and further grown for 1.5 h at room temperature before imaging.

Single-molecule microscopy requires samples in which cells are densely packed in a single-

cell layer. In order to ensure low background �uorescence, cells were grown in CDMPC and washed

three times in PBS. Cells were centrifuged and immobilised on 1.5% agarose pads between two glass

coverslips (Paul Marienfeld GmbH & Co. KG; #1.5H or Menzel�Gläser, 24 Ö 60 mm #1.5) that

were heated beforehand to 500 °C in an oven for 20 min to remove �uorescent background particles.

Before single-molecule imaging, a series of bright�eld images is taken which was later used to

determine cell outlines. A detailed sample preparation protocol can be found elsewhere18.

5.4.4 FPs and dCas9-PAmCherry2 imaging

The cells were imaged on a custom-built total internal re�ection �uorescence (TIRF) microscope18.

Laser beams were provided by a multilaser engine (Omicron Lighthub, available wavelengths

405 nm, 488 nm, 561 nm and 642 nm) and focused onto the sample (100Ö oil immersion

Nikon SR HP TIRF with N.A. = 1.49). Fluorescent emission was �ltered by a dichroic mir-

ror (ZT405/488/561rpc-UF2 or ZT405/488/561/640rpc-UF2, Chroma, VT, USA) and appropriate

emission �lter (ZET405/488/561m-TRF or ZET405/488/561/640m-TRF, Chroma, VT, USA) and

recorded with a sCMOS camera (Andor Zyla 4.2 PLUS). During acquisition, pixels were binned

2 Ö 2 leading to an e�ective pixel size of 128 Ö 128 nm, such that a 512 Ö 512 pixel centre crop

led to a 65.64 Ö 65.64 µm �eld of view. Bright�eld light was provided by a LED source.
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Table 5.1: List of used plasmids and primers.

Plasmids

Name Description Reference

pNZ8150 Contains cmR and nisA inducable promoter system [33]

pNZ8150-mScarlet pNZ8150 with mScarlet inserted This study

pNZ8150-mScarlet-I pNZ8150 with mScarlet-I inserted This study

pNZ8150-mScarlet-H pNZ8150 with mScarlet-H inserted This study

pNZ8150-sYFP pNZ8150 with sYFP inserted This study

pNZ8150-mTurq2 pNZ8150 with mTurq2 inserted This study

pNZ8150-PAmCherry2 pNZ8150 with PamCherry2 inserted This study

pNZ8150-PATagRFP pNZ8150 with PATagRFP inserted This study

pLAB-dCas9-PAmCherry2 pIL253 backbone, inserted fusion of dspyCas9 to PAmCherry2, nonsense guide This study, [35]

pLAB-dCas9-PAmCherry2-acmA1 sgRNA to target the template strand of the acmA promoter This study

pLAB-dCas9-PAmCherry2-acmA2 sgRNA to target the template strand of the acmA gene This study

pLAB-dCas9-PAmCherry2-acmA3 sgRNA to target the non-template strand of the acmA promoter This study

pLAB-dCas9-PAmCherry2-acmA4 sgRNA to target the non-template strand of the acmA gene This study

Primers

Name Sequence Code

mScarlet FWD ATGGTGAGCAAGGGCGAGGCAGTGAT S1

mScarlet REV TTGAGGTACCTTACTTGTACAGCTCGTCCATGC S2

mScarlet-i FWD ATGGTGAGCAAGGGCGAGGCAG S3

mScarlet-i REV TTGAGGTACCTTACTTGTACAGCTCGTCCATGC S4

mScarlet-H FWD ATGGTGAGCAAGGGCGAGGCAGT S5

mScarlet-H REV TTGAGGTACCTTACTTGTACAGCTCGTCCATGCCG S6

sYFP2 FWD ATGGTGAGCAAGGGCGAGGA S7

sYFP2 REV TTGAGGTACCTTACTCGTTGGGGTCTTTGCTCA S8

mTurq2 FWD ATGGTGAGCAAGGGCGAGGAGCT S9

mTurq2 REV TTGAGGTACCTTACTTGTACAGCTCGTCCATGCCG S10

PAmCherry2 FWD ATGGCCATCATCAAGGAGTTC S11

PAmCherry2 REV TTGAGGTACCTTACTTGTACAGCTCGTCCATGC S12

PATagRFP FWD ATGAGCGAGCTGATTAAGGAG S13

PATagRFP REV TTGAGGTACCTTAATTAAGCTTGTGCCCCAG S14

pNZ8150-Insertion FWD CAGCTCCAGATCTAGTCTTA S15

acmA guide 1 FWD TGATGTCTTTTTTTAGCTTGAGGCG SG1

acmA guide 1 REV AAACCGCCTCAAGCTAAAAAAAGAC SG2

acmA guide 2 FWD TGATGAGCAGCGACTAACTCATCAG SG3

acmA guide 2 REV AAACCTGATGAGTTAGTCGCTGCTC SG4

acmA guide 3 FWD TGATGAAAAAAAGATGTCAATTTGG SG5

acmA guide 3 REV AAACCCAAATTGACATCTTTTTTTC SG6

acmA guide 4 FWD TGATGCTGGTTTATAAAAAGCGAG SG7

acmA guide 4 REV AAACCTCGCTTTTTATAAACCAGC SG8
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Table 5.2: Parameters during FP validation experiments.

Protein name Excitation Excitation Photo-activation Emission Dichroic Reference

laser intensity intensity �lter mirrora

(nm) (W cm−2) (µW cm−2) (nm)

mScarlet 561 0.12 � 595 ± 25 1 [37]

mScarlet-I 561 0.12 � 595 ± 25 1 [37]

mScarlet-H 561 0.12 � 595 ± 25 1 [37]

sYFP 488 0.12 � 525 ± 25 2 [38]

mTurq2 405 0.012 � � 2 [39]

PAmCherry2 561 0.12 800 595 ± 25 1 [35]

PATagRFP 561 0.12 800 595 ± 25 1 [40]

dCas9-PAmCherry2 561 0.12 2.7�619 � 1 [18]

a (1) re�ecting 405 nm, 488 nm and 561 nm. (2) re�ecting 405 nm, 488 nm, 561 nm and 642 nm.

Experimental conditions during the FP validation experiments (Table 5.2) are based on

their spectral properties, with 10 ms frame times. Continuous laser exposure was used. For the

single-molecule tracking experiments, movies were recorded at 10 ms/frame with 561 nm stro-

boscopic illumination (4 ms) and continuous 405 nm photoactivation increasing over time from

according to an earlier described UV-increment scheme18, all under an angle close to total internal

re�ection. Emission was �ltered by a dichroic mirror (re�ecting 405 nm, 488 nm and 561 nm) and

emission �lter (595 ± 25 nm).

5.4.5 CRISPRi experiments

Guides complementary to positions in the acmA gene and on its promoter, on the template strand

and non-template strand23, were designed (Table 5.1 and inserted into pLAB-dCas9-PAmCherry2

according to earlier described protocol26. As a control, a non-sense guide was used (Guide C)

that does not have a matching target sequence. Cells were transformed with one of pLAB-dCas9-

PAmCherry2-AcmA and grown overnight. Of the overnight cultures 3 µl was immobilised on 1.5%

0.2 µm-�ltered agarose pads between two glass coverslips, and bright�eld images were taken of these

preparations.

5.4.6 Single-molecule localization and tracking

The acquisition of raw data was performed using the open source Micro-Manager software41. To

extract single-molecule localizations, the Fiji plugin ThunderSTORM42 with added functionality of

phasor-�tting43 with a �tting radius of 3 pixels was used. For image �ltering, a β-spline wavelet �lter

with order 3 and scale 2 was used, and approximate localization was done via an 8-neighbourhood

connected local maximum with peak intensity threshold equal to the standard deviation of F1 of

the wavelet �lter. Custom-written MATLAB (The MathWorks, Natick, MA) scripts were used to

perform image analysis on single-molecule localizations (x, y) and particle trajectories.
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Cells were segmented using the Fiji plugin Interactive Watershed

(http://imagej.net/Interactive_Watershed) with an intensity average of 200 bright�eld im-

ages as input. The localizations were plotted within the cell outline in order to neglect �uorophores

that were localized outside the cell and to prevent trajectory construction over cell borders. Indi-

vidual molecules in adjacent frames were connected into a trajectory if they were located within

a radius of 1 µm to each other. An apparent di�usion coe�cient (D* ) was then calculated from

the mean-squared displacement (MSD) for each track7. The D* values were used to discriminate

between di�erent modes of di�usion and categorise molecules as bound (low D* values) or moving

(high D* values). The MSD was determined from the �rst four steps of a given track. Tracks

shorter than four steps were discarded.

The apparent di�usion coe�cient histogram is �tted with Equation 5.1:

y = ρ1 ·
( n
D1

)n · x(n−1) · e−n x
D1

(n− 1)!
+ ρ2 ·

( n
D2

)n · x(n−1) · e−n x
D2

(n− 1)!
+ ρ3 ·

( n
D3

)n · x(n−1) · e−n x
D3

(n− 1)!
(5.1)

here, ρ1 and ρ2 represent relative population sizes; D1, D2, and D3 the apparent di�usion coe�-

cients, n the track length (set to four here), and y the histogram count for every apparent di�usion

coe�cient histogram bin x.

The reported histogram containing information of apparent di�usion coe�cient consists

of 21,351 tracks of at least 4 track length, in total from 425 cells recorded in 2 technical duplicate

measurements in 2 biologically independent experiments on 2 days (quadruplicate measurements in

total).
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5.6 Supplementary information

Figure S5.1: Observation of cell growth via single bright�eld images. The pLAB-dCas9-PAmCherry2

L. lactis strain (non-induced) was typically prepared for microscopy after 3h of growth at 30 °C. Scale

bar represents 5 µm.
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Abstract

CRISPR-Cas9 is widely used in genomic editing, but the kinetics of target search and its relation to

the cellular concentration of Cas9 have remained elusive. E�ective target search requires constant

screening of the protospacer adjacent motif (PAM) and a 30 ms upper limit for screening was

recently found. To further quantify the rapid switching between DNA-bound and freely-di�using

states of dCas9, we developed an open-microscopy framework, the miCube, and introduce Monte-

Carlo di�usion distribution analysis (MC-DDA). Our analysis reveals that dCas9 is screening PAMs

40% of the time in Gram-positive Lactoccous lactis, averaging 17 +− 4 ms per binding event. Using

heterogeneous dCas9 expression, we determine the number of cellular target-containing plasmids

and derive the copy number dependent Cas9 cleavage. Furthermore, we show that dCas9 is not

irreversibly bound to target sites but can still interfere with plasmid replication. Taken together,

our quantitative data facilitates further optimisation of the CRISPR-Cas toolbox.
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6.1 Introduction

The discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-

associated proteins (Cas) as a microbial defence mechanism triggered an ongoing scienti�c revolu-

tion, as CRISPR-Cas can be adapted to perform sequence-speci�c DNA modi�cation in prokary-

otes, archaea, and eukaryotes1�4. Streptococcus pyogenes Cas9 is a widely used variant5 and an

endonuclease activity-de�cient version, termed dead Cas9 (dCas9), has been used to visualise en-

dogenous genomic loci in living cells6. The biochemical interaction mechanisms of Cas9 are well

understood7�12. The DNA-binding protein domain probes the DNA for a speci�c protospacer adja-

cent motif (PAM; 5'-NGG-3') via a combination of 3-dimensional di�usion and 1-dimensional sliding

on the DNA9. Upon recognition of the PAM, the enzyme starts unwinding the DNA double helix to

test for complementarity with a 20 nucleotide-long single guide RNA (sgRNA; R-loop formation).

If full complementarity is found, Cas9 continues to cleave the DNA at a �xed position 3 nucleotides

upstream of the PAM13.

Optimisation of Cas9-mediated genomic engineering in a desired incubation time whilst

minimising o�-target DNA cleavage requires exact kinetic information. In the Gram-negative bac-

terium E. coli, an upper limit for the binding time (30 ms) of dCas9 with DNA has been determined

in vivo14, but it is unknown if such binding times are ubiquitous in prokaryotes. In addition, there

is a limited understanding of the spatiotemporal relationship between cellular copy numbers of Cas9

proteins, the number of DNA target sites and the duration and dissociation mechanisms of target-

bound dCas9. Since genomic engineering of food-related microbes such as Gram-positive lactic

acid bacteria15 is becoming increasingly valuable16,17, it is important to assess whether previously

determined dCas9 kinetic information can be transferred to food-related microbes.

To study the behaviour of dCas9 in vivo with millisecond time resolution, we used single-

particle tracking photo-activated localization microscopy (sptPALM)18,19. In sptPALM, a photo-

activatable �uorescent protein, which is by default not �uorescently active but can be activated via

irradiation, is fused to the protein of interest, and the fusion protein is expressed in living cells.

By stochastically activating a subset of the available chromophores, the signal of a single emitter

is localized with high precision (∼30�40 nm)20,21 and, by monitoring its position over time, the

movement of the protein fusion is followed and analysed22.

However, sptPALM mostly provides quantitative information if the protein of interest

remains in a single di�usional state for the duration of a track (e.g. >40 ms using at least 4 camera

frames of 10 ms). As this temporal resolution is insu�cient to elucidate in vivo Cas9 dynamic

behaviour (<30 ms)14, we developed a Monte-Carlo based variant of di�usion distribution analysis

(MC-DDA, for analytical DDA see ref. [23]) to extract dynamic information on a timescale shorter

than the duration of a single track.

In the experimental realisation, we re�ne existing single-molecule microscopy frameworks

and introduce a new design, the miCube. The miCube is constructed from readily available and

custom-made parts, ensuring accessibility for interested laboratories. We then use MC-DDA in

combination with the miCube in an assay that employs a heterogeneous expression system in order

to explore the dynamic nature of DNA-dCas9 interactions in live bacteria and their dependency on

(d)Cas9 protein copy numbers. In particular, we assess dCas9 fused to photo-activatable �uorophore

PAmCherry2 in the lactic acid bacterium L. lactis, in the presence or absence of DNA targets. With
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this assay, we show that dCas9 is screening PAMs 40% of the time, with each binding event having

an average duration of 17 +− 4 ms. Moreover, we show a dependency of bound dCas9 fraction on

DNA target-binding sites, which allows quanti�cation of plasmid copy numbers. This, in turn,

indicates that bound dCas9 interferes with plasmid replication. These results are combined in a

model that predicts Cas9 cleavage e�ciencies in prokaryotes.

6.2 Results

6.2.1 Elucidation of sub 30 ms dynamic interactions with sptPALM

In the absence of cellular target sites, dCas9 is expected to be present in either one of two states

(Figure 6.1a): bound to DNA (red), which results in low di�usion coe�cients (∼0.2 µm2/s); or freely

di�using in the cytoplasm (yellow), which results in high di�usion coe�cients (∼2.2 µm2/s). If the

transitioning between these states is slow compared to the length of each track (here: 40 ms), di�u-

sion coe�cient histograms can be �tted with two static states (Figure 6.1b, top, Figure S6.1).

However, if transitioning between the states is on a similar or shorter timescale as the

length of sptPALM tracks, these transient interactions of dCas9 with DNA (orange) will result

in temporal averaging of the di�usion coe�cient obtained from a single track. Therefore, we de-

veloped a Monte-Carlo di�usion distribution analysis (MC-DDA; Figure 6.1b, bottom, Methods,

with an analytical approach available elsewhere23) that used the shape of the histogram of di�u-

sion coe�cients to infer transitioning rates between di�usional states. The analysis is based on

similar approaches used to describe dynamic conformational changes observed with single-molecule

Förster resonance energy transfer24�26. Brie�y, MC-DDA consists of simulating the movement and

potential interactions of dCas9 inside a cell with a Monte-Carlo approach: the simulated protein is

capable of interchanging between interacting with DNA and di�using freely, de�ned by kbound→free

and k free→bound. The MC-DDA di�usional data is compared with the experimental data, and by

iterating on the kinetic rates and di�usion coe�cients, a best �t is obtained.

6.2.2 miCube: an open framework for single-molecule microscopy

For MC-DDA to deduce high kinetic rates, experimental data with high spatiotemporal resolution

(< ∼50 nm, < ∼20 ms) is required. This is challenging, as individual �uorescent proteins have

a limited photon budget (<500 photons)27, and background �uorescence is introduced by the liv-

ing cells in which the �uorescent proteins are embedded. While suitable commercial microscopes

are available, they often lack accessibility or are prohibitively expensive. This has led to the cre-

ation of a plethora of custom-built microscopes in the recent past28�38, ranging from simpli�ed

super-resolution microscopes30�34 to additions to commercial microscopes35 or extremely low-cost

microscopes36,37.

To increase the accessibility of single-molecule microscopy with high spatiotemporal res-

olution further, we developed the miCube, an open-source, modular and versatile super-resolution

microscope, and provide details to allow interested researchers to build their own miCube or a

derivative instrument (Figure 6.1c, Figure 6.5, Methods, https://HohlbeinLab.github.io/miCube).

We used 3D-printed components where possible, surrounding a custom aluminium body to minimise

thermal drift and provide rigidity. All custom components are supported by technical drawings
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Figure 6.1: Probing cellular dynamics of dCas9 on an open-source microscope using sptPALM. a Simpli-

�ed expected dynamic behaviour of dCas9 in absence of DNA target sites. The protein can be temporarily

bound to DNA (PAM screening), or di�use freely in cytoplasm, with two kinetic rates governing the dy-

namics. If the interaction is on a similar timescale as the detection time, a temporal averaging due to

transient interactions is expected. b If the dynamic transitions are slow with respect to the camera frame

time used in sptPALM, the obtained di�usional data can be �tted with a static model (top), which as-

sumes that every protein is either free (yellow) or DNA-bound (red), but does not interchange. If the

dynamic transitions are as fast or faster than the frame time used, Monte-Carlo di�usion distribution

analysis (MC-DDA; bottom) can �t the di�usional data. In MC-DDA, dCas9 can interchange between

the two states, resulting in a broader distribution. c Render of the open-source miCube super-resolution

microscope. The excitation components, main cube, and emission components are indicated in blue, ma-

genta, and green, respectively. Details are provided in the Methods section. Scale bar represents 5 cm.

d Bright�eld images of L. lactis used for computationally obtaining the outline of the cells via watershed

(top), and raw single-molecule data (bottom; red outline in top is magni�ed) as obtained on the miCube

as part of a typical experiment, overlaid with the determined track where this single-molecule belongs to

(starting at red, ending at blue). Scale bars represent 2.5 µm (top) or 500 nm (bottom).

(Electronic Supplementary Information (ESI) Figures 10-18), along with STL �les for direct 3D

printing. We provide full details on the chosen commercial components, such as lenses, mirrors,

and the camera. A detailed description on building a functioning miCube, along with rationale of

the design choices, is given in the Methods section. Moreover, we discuss additional options for

replacing expensive components with cheaper options.
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To facilitate straightforward installation and �exible usability of the miCube, we simpli�ed

the alignment of the excitation module by decoupling the movement in the three spatial dimensions

(Figure 6.5). A variety of imaging modalities are possible on the miCube; super-resolution mi-

croscopy in 2D and 3D39, total internal re�ection �uorescence (TIRF) microscopy, and LED-based

bright�eld microscopy. In its current version, the sample area �ts a 96-wells plate. The excitation

and illumination pathways of the microscope are �tted with 3D-printed enclosures, allowing the in-

strument to be used under ambient light conditions (including single-particle microscopy). Lastly,

we restrained the footprint of the microscope to a 600 Ö 300 mm breadboard (excluding lasers;

Figure 6.5), further improving accessibility.

Linear drift calculations indicate that the system experiences a drift of 13 +− 12 nm/min in

the lateral plane and 25 +− 15 nm/min in the axial plane without active drift-suppressions systems

in place40 (average of three super-resolution measurements performed on three di�erent days). A

typical drift measurement is shown in Figure S6.2.

6.2.3 In vivo sptPALM in L. lactis on the miCube

For our sptPALM assay41, we introduced dCas9 fused to the photo-activatable �uorophore

PAmCherry227 in L. lactis under control of the inducible and heterogeneous nisA promoter42

(pLAB-dCas9, Methods). On the same plasmid, a sgRNA with no fully matching targets in

the genome is constitutively expressed. We immobilised the L. lactis cells on agarose, and us-

ing di�used bright�eld LED illumination we computationally separated the cells via the ImageJ

watershed43 plugin (Figure 6.1d top). Single-particle microscopy was performed with low induction

levels (0.1 ng/mL nisin) and low activation intensities (3�620 µW/cm2, 405 nm) to obtain on aver-

age PAmCherry2 activation of <1 �uorophore/frame/cell to avoid overlapping tracks (Figure 6.1d,

bottom). Single-particle tracks were limited to individual cells by using the previously obtained cell

outlines.

6.2.4 dCas9 is PAM-screening for 17 ms

We �rst assessed the di�usional behaviour of dCas9-PAmCherry2 (hereafter described as dCas9,

unless speci�cally mentioned) in L. lactis in the absence of target sites (pNonTarget plasmid; Meth-

ods). Under these conditions, dCas9 is expected to di�use freely in the cytoplasm and screen PAM

sites on the DNA for under 30 ms14. Under this assumption, di�usion ranges from completely immo-

bile (and thereby fully determined by the localization uncertainty: ∼40 nm leads to ∼0.16 µm2/s)

to freely-moving. The expected free-moving di�usion coe�cient can be theoretically described:

the fusion protein has a hydrodynamic radius of 5�6 nm27,44, resulting in a di�usion coe�cient of

36�43 µm2/s 45. Cytoplasmic retardation of ∼20Ö due to increased viscosity and crowding e�ects

reduces this to ∼1.8�2.2 µm2/s 46. We obtained di�usion coe�cients in the range of ∼0�3 µm2/s

(Figure 6.2a), which is within the expected range.

We used a heterogeneous promoter (nisA, Methods), causing the apparent cellular dCas9

copy numbers to vary between 20 and ∼1000 (Figure 6.2a, Figure S6.3; cells with less than 20

copies were excluded as we corrected for ∼7 tracks (∼14 apparent dCas9) found in non-induced

cells). The value of the cellular dCas9 is an approximation (Discussion), but a relative increase

in cellular dCas9 copy number is certain. We then created �ve di�usional histograms belonging
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Figure 6.2: sptPALM of dCas9-PAmCherry2 in pNonTarget L. lactis with increasing dCas9 concen-

tration. a Identi�ed tracks in single pNonTarget L. lactis cells. Tracks are colour-coded based on their

di�usion coe�cient. Three separate cells are shown with increasing cellular concentration of dCas9. Green

dotted outline is an indication for the cell membrane. Scale bars represent 500 nm. b Di�usion coe�-

cient histograms (light green) belonging to 20�200, 400�600, and 800�1000 dCas9 copy numbers, from

left to right. Histograms are �tted (dark green line) with a theoretical description of state-transitioning

particles between a mobile and immobile state (dashed line represents 95% con�dence interval based on

bootstrapping the original data). Five di�usion coe�cient histograms (Figure S6.3) were globally �tted

with a single free di�usion coe�cient (2.0 +− 0.1 µm2/s; mean +− standard deviation), a single value for

the localization error (σ = 38 +− 3 nm = 0.15 +− 0.03 µm2/s), and 5 sets of kbound→free and k free→bound

values (indicated in the �gures). Residuals of the �t are indicated below the respective distribution.

c kbound→free (red) and k free→bound (blue) plotted as function of the apparent cellular dCas9 copy num-

ber. Solid dots show the �ts of the actual data; �lled areas indicate the 95% con�dence intervals obtained

from the bootstrapped iterations of �tted MC-DDAs with 20.000 simulated proteins.

to cells with a particular apparent dCas9 copy number range (ranges of ∼200 dCas9 copy number

intervals; Figure 6.2b, Figure S6.3). These di�usional histograms are �tted with the aforementioned

MC-DDA, where the shape of the MC-DDA is governed by the localization uncertainty, the free-

moving di�usion coe�cient, and the kinetic rates of PAM-screening. The localization uncertainty

and free-moving di�usion coe�cient are independent of cellular dCas9 copy number, since they are

determined by the number of photons and a combination of hydrodynamic radius and cytoplasm

viscosity, respectively. Therefore, the histograms were globally �tted with a combination of 5

MC-DDAs, each consisting of 20.000 simulated dCas9 proteins, containing a single value for free-

moving di�usion coe�cient (D free = 2.0 +− 0.1 µm2/s (average +− standard deviation of 4 experiments

over 3 days, in total consisting of 32.971 tracks), in agreement with the theoretical expectation of

∼1.8�2.2 µm2/s), a single value for localization uncertainty (σ = 38 +− 3 nm, or D immobile* =

0.15 +− 0.03 µm2/s, expected for �uorescent proteins illuminated for 4 ms 39,41), and �ve pairs of

k free→bound and kbound→free (speci�ed in Figure 6.2b,c).
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The obtained kinetic constants of k free→bound and kbound→free were 40 +− 12 s−1 and

60 +− 13 s−1 (mean +− 95% CI), respectively, and did not show a signi�cant dependence on apparent

cellular dCas9 copy number (Figure 6.2c). This indicates that dCas9 is PAM-screening for 17 +− 4 ms

in L. lactis, consisting of screening 1 or more PAMs via 1D di�usion. This value is in the same

order of magnitude as the upper limit of 30 ms reported earlier for PAM-screening in E. coli14,

suggesting that these PAM-screening kinetics are a general feature of dCas9. Additionally, dCas9

is on average di�using within the cytoplasm for 25 +− 8 ms before �nding a new site for PAM

screening. This duration is governed by the di�usion coe�cient of the fusion protein, along with

the average distance between DNA PAM sites. These results also entail that dCas9 is di�using

in the cytoplasm ∼60% of the time, while interacting with the DNA ∼40% of the time. Removal

of the sgRNA resulted in similar di�usional data, which agrees with PAM-screening being a solely

protein�DNA interaction (k free→bound: 34 +− 16 s−1; kbound→free: 62 +− 21 s−1; di�usion time on

average 29 +− 18 ms; PAM-screening time on average 16 +− 6 ms; Figure S6.4). This also indicates

that partial sgRNA-DNA matching of dCas9 with non-targets is not prevalent enough in our assay

to a�ect the screening time signi�cantly.

6.2.5 Target-binding of dCas9 can be observed with sptPALM

We then investigated the e�ect of DNA target sites complementary to the sgRNA loaded dCas9.

To this end, we introduced 5 target sites on a plasmid (pTarget; Methods), which replaced the

pNonTarget plasmid used so far. Qualitative visualisation of di�usion in the L. lactis bacteria

shows tracks with small di�usion coe�cients (Figure 6.3a, black tracks), indicative of target-bound

dCas9. This immobile population can be observed throughout the dCas9 copy number range but

is more prevalent in cells with lower cellular dCas9 copy numbers.

We expect target-bound dCas9 to move with a di�usion coe�cient determined by the

plasmid size, which is independent on the cellular dCas9 copy number. Therefore, we globally �tted

the pTarget-obtained di�usional histograms with a combination of the corresponding pNonTarget

MC-DDA �t and an additional single di�usional state belonging to target-bound dCas9 (Figure 6.3b,

Dplasmid* = 0.38 +− 0.04 µm2/s = D immobile* + 0.23 µm2/s, which agrees with the expected di�usion

coe�cient from plasmids of similar size in bacterial cytoplasm46�48; 31.439 total tracks). The

plasmid-bound dCas9 population decreases with increasing apparent cellular dCas9 copy numbers

from 28 +− 3% at 105 (20�200) copies to 10 +− 5 % at 900 (800�1000) copies (Figure 6.3c left, purple

squares; mean +− 95% CI). No target-binding behaviour was observed when the sgRNA was removed

(Figure S6.4).

6.2.6 dCas9 does not bind targets irreversibly

This anti-correlation between dCas9 copy number and the size of the plasmid-bound population is

indicative of competition for target sites by an increasing amount of dCas9 proteins. To evaluate

this hypothesis, we consecutively simulated dCas9 proteins until the cellular dCas9 copy number

was reached (Methods). In the simulation, every protein binds or dissociates from a PAM with

the kinetic constants determined previously, and will instantly bind to a target site if it binds to a

PAM directly adjacent to it. We thus disregard e�ects of 1D sliding on the DNA, but we believe

these e�ects are limited, as 1D sliding between PAM sites has a low probability when PAMs are
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Figure 6.3: sptPALM of dCas9-PAmCherry2 in pTarget L. lactis shows target-binding behaviour of

dCas9. a Identi�ed tracks in individual pTarget L. lactis cells. Tracks are colour-coded based on their

di�usion coe�cient. Three separate cells are shown with increasing dCas9 concentration. Blue dotted

outline is an indication for the cell membrane. Scale bars represent 500 nm. b Di�usion coe�cient

histograms (light blue) are �tted (dark blue line) with a combination of the respective �t of pNonTarget

L. lactis cells (green line), along with a single globally �tted population corresponding to target-bound

dCas9 (purple) at 0.38 +− 0.04 µm2/s (mean +− standard deviation). c Left: The population size of the

plasmid-bound dCas9 decreases as a function of the cellular dCas9 copy number. The error bar of the

measurement is based on the 95% con�dence interval determined by bootstrapping; the solid line is a

model �t with 20 plasmids, with a 95% con�dence interval determined by repeating the model simulation.

Right: Occupancy of DNA targets by dCas9 based on 20 target plasmids (100 DNA target sites), based

on the same data as presented in the left �gure.

randomly positioned on the DNA (< ∼10% at 16 bp distance average9). A ko� is introduced which

dictates removal of dCas9 from the target sites.

This model fully explained the dependency of the target-bound dCas9 fraction on the

cellular dCas9 copy number (Figure 6.3c left, black line). The slope of the curve towards low

cellular dCas9 concentration is dependent on the total cellular number of PAM sites and ko�.

Assuming on average 1.5 genomes worth of DNA (haploid genome replicated in half the cells)

present in the cell, the ko� is ∼0.01 +− 0.003 s−1. The number of DNA target sites determines

the lower bound of the model, and ∼100 +− 50 DNA target sites (∼20 +− 10 plasmids) led to the

observed bound fraction at 900 cellular dCas9 proteins. The �t of the number of target sites at

high cellular dCas9 concentration is independent of ko�, since at the modelled concentrations and

PAM-screening kinetic parameters, the target sites are essentially fully occupied (Figure 6.3c right).

It thus follows that the used pTarget plasmid, a derivative of pNZ123, is present at a lower copy

number than expected (∼60�80) during measurements47. This could hint towards interference of
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Figure 6.4: Extrapolation of the dCas9 dynamic model to assess single target cleavage by Cas9. a The

proposed model surrounding dCas9 interaction with the obtained kinetic rates. Free dCas9 (yellow) in

the cytoplasm interact with PAM sequences (5'-NGG-3') on average every 25 ms. If the PAM is not in

front of a target sequence (red), only PAM-screening will occur for on average 17 ms. If the PAM happens

to be in front of a target, the dCas9 will be target-bound (purple). We extend this model to predict Cas9

cleavage under conditions where target-bound Cas9 will always cleave the target DNA. b Calculated

predicted probability that a single target in the L. lactis genome is cleaved after a certain period of time

with a certain cellular Cas9 copy number, based on the model shown in a. Error bars indicate standard

deviation calculated from iterations of the model.

plasmid replication due to dCas9 binding49,50. We investigated this with quantitative polymerase

chain reaction (qPCR)51, and we indeed observed a decrease in the amount of pTarget DNA with

dCas9 production (Figure S6.5).

These collective results lead to the model presented in Figure 6.4a. dCas9 di�uses freely

in the cytoplasm for 25 +− 8 ms on average, and will then interact with a PAM site for 17 +− 4 ms.

If the PAM site is not directly adjacent to a target site, dCas9 will move back to freely di�using in

the cytoplasm. However, if the PAM site is directly followed by a target site, dCas9 will be bound

to this site for 1.6 min on average, before it is removed by intrinsic or extrinsic factors.

6.2.7 A single copy of Cas9 �nd a single DNA target in ∼4 h

We adapted the computational target-binding model to predict Cas9 cleavage in L. lactis and other

prokaryotes with similar DNA content. We assume that all DNA is accessible to Cas9 and that

Cas9 behaves identical to dCas9, but will cleave a target directly after binding. Our proposed

Cas9 kinetic scheme depends only on PAM-screening kinetic rates and the ratio of total PAM sites

to target sites. We predicted the incubation time-dependent probability that a certain number of

cellular Cas9 proteins will bind a single target site on the L. lactis genome (Figure 6.4b).

The model shows that a single Cas9 protein can e�ectively �nd a single target with 50%

probability in ∼4 h. It also shows that an increasing cellular Cas9 copy number quickly decreases
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this search time: With 10 cellular copies of Cas9, the search time is reduced to ∼25 min, and 20

copies reduce the search time to ∼10 min. Therefore, a single target is almost certainly found within
a typical prokaryotic cell generation time (> ∼20 min). This agrees with in vivo data of Cas914

(accounting for E. coli 's larger genome (∼4.6 mbp versus ∼2.5 mbp)) and with in vivo data of

Cascade in E. coli23, though in di�erent organisms or with di�erent CRISPR-Cas systems.

6.3 Discussion

We have designed a sptPALM assay to probe DNA-protein interactions in vivo, and assessed the

kinetic behaviour of dCas9 in L. lactis on the open-hardware, super-resolution microscope miCube.

The high spatiotemporal resolution of the experimental data along with the heterogeneity of the used

induction protocol allowed us to develop a Monte-Carlo di�usion distribution analysis (MC-DDA)

of the di�usional equilibrium.

The obtained dCas9 PAM-screening kinetic rates (k free→bound = 40 +− 12 s−1, kbound→free

= 60 +− 13 s−1) indicate that non-target binding of dCas9 has a mean lifetime of 17 +− 4 ms, and

spends ∼40% of its time on PAM screening. In fact, a 1:1 ratio between di�using and binding

was shown to be optimal for target search time of DNA-binding proteins52. The MC-DDA further

suggests that the kinetic rates governing PAM�dCas9 interactions do not depend on cellular copy

number levels of dCas9.

We observed target-binding of dCas9, and showed that higher cellular dCas9 copy num-

bers resulted in lower probabilities of target-bound dCas9, although absolutely more targets were

occupied by dCas9. We linked this �nding to the previously found k free→bound and kbound→free rates

and postulate that dCas9 dissociation from target sites is responsible for the obtained probabilities

of target binding by dCas9. We made two assumptions when obtaining absolute cellular dCas9

copy numbers. Firstly, we assumed that measurements directly end after all �uorophores in the

centre of the microscopy �eld of view have been imaged once. Secondly, we assumed a maturation

grade of 50% (identical to that of PAmCherry1 in Xenopus53). Although an exact determination

is possible53,54, this is beyond the scope of this study.

We obtained a dCas9-target ko� rate of ∼0.01 s−1 that is dependent on the exact cellular

dCas9 copy number and total L. lactis genomic content. The biological cause of dissociation of

target bound dCas9 from DNA remains speculative: it could be an intrinsic property, resulting in

spontaneous release from target sites, or it could be caused by an extrinsic factor, such as RNA

transcription or DNA replication. We do not expect RNA polymerase activity on the DNA target

sites, although we did not actively block transcription. It is currently unknown whether genomic

target-bound dCas9 dissociates from the DNA due to DNA replication, with studies contradictory

showing that dCas9 is removed during cell duplication14 and that dCas9 is hindering genomic DNA

replication49 or transcription50. We note that genomic DNA replication substantially di�ers from

the rolling-circle DNA replication of pTarget55.

Our data indicate that dCas9 binding to plasmid DNA hinders DNA rolling-circle repli-

cation. The pNZ123 plasmid, of which pTarget is a derivative, is believed to be high-copy47 (60�80

plasmids per cell), although the quanti�cation of plasmid copy numbers is challenging (discussed for

the single-cell level in reference [51]). Our model suggests that pTarget is present in only ∼20 copy
numbers during our measurements. Although we saw an e�ect of dCas9 production on pTarget
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copy number via qPCR, the obtained decrease (∼20%) is not as large as observed with sptPALM

(∼70%). The median cellular dCas9 copy number, however, is low (∼40; Figure S6.5) compared
to most of the dCas9 copy number bins evaluated with MC-DDA. Therefore, using the averaged

cellular community, not all pTarget (60�80 cellular plasmids containing 300�400 target sites), are

occupied by a dCas9 protein, which would a�ect the ensemble qPCR results. The sptPALM plasmid

copy number determination, on the other hand, is mostly determined by the L. lactis sub-population

with high dCas9 copy numbers, for which pTarget replication is restricted more strongly.

We used our model to make predictions on Cas9 cleavage probabilities, based on kinetic

values extracted from the MC-DDA, which are not in�uenced by the approximated cellular dCas9

copy number. The kinetic parameters of dCas9-PAmCherry2 provide estimates for those of Cas9.

We reason that kbound→free will be unchanged, since this rate is based on the duration of the PAM

screening, while k free→bound will be slightly lower for Cas9 compared to dCas9-PAmCherry2, due

to the relatively higher di�usion coe�cient of Cas9. The model can be expanded to incorporate

a protein di�usion coe�cient to obtain a modi�ed k free→bound rate, and to include accessibility

of the DNA. These additions would allow the model to predict Cas9 behaviour in more diverse

environments such as eukaryotic cells. Other computational models have taken these parameters

into account56, but these models were not based on experimental in vivo data, and were based on

di�erent assumptions.

Our open microscopy framework enables the study of in vivo protein�DNA interactions

with high spatiotemporal resolution, here shown for CRISPR-Cas9 target search, and improves

the general accessibility of super-resolution microscopy. Our data shows that heterogeneity in

an expression system can be used to obtain new insights in any protein�DNA or protein�protein

interaction in vivo, here indicating that target-bound dCas9 interferes with rolling-circle DNA

replication. The derived kinetic parameters and information on target search times provide valuable

practical insights in CRISPR-Cas engineering and gene silencing in lactic acid bacteria speci�cally,

and suggest to re�ect prokaryotic Cas9 search times in general.

6.4 Material and methods

6.4.1 miCube design considerations

We designed the miCube to be easy to setup and use, while retaining a high level of versatil-

ity. The instrument and its design choices will be described in three parts: the excitation path;

the emission path, and the cube connecting the sample with the excitation and emission paths.

Throughout this description, we will refer to numbered parts as shown in Figure 6.5a,c and de-

scribed in ESI Table 1. The information on the miCube presented here can also be found on

https://HohlbeinLab.github.io/miCube. The instrument is fully functional in ambient light, due

to a fully enclosed sample chamber, illumination pathway and emission pathway. Moreover, the

miCube has a small footprint: the �nal design of the miCube, excluding the lasers and controllers,

�ts on a 300 Ö 600 mm Thorlabs breadboard. We placed the whole ensemble in a transparent poly-

carbonate box (MayTec Benelux, Doetinchem, The Netherlands) to minimise air�ow disturbing the

setup during experiments.
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Figure 6.5: The open-source miCube single-particle microscope. a Exploded render of the miCube

highlighting individual components. A full list of components indicated by the numbered items can be

found in ESI Table 5. b Top-down schematic view of the miCube on the breadboard, allowing clear

view of mounting positions. Distance between mounting holes on the breadboard is 25 mm. c Schematic

overview of the miCube instrument. Numbered items correspond to the items in a and ESI Table 5.

The excitation path is visualised with dashed lines, the emission path is visualised with dotted lines.

d Photograph of the fully assembled miCube as used for measurements in this manuscript. e Detailed

view of the miCube excitation path. This sub-assembly is comprised of numbers 12-18. Arrows indicate

isolated movement in the three spatial dimensions: distance from objective (blue), height of excitation

unit (green), and horizontal position with respect to the objective (red).

6.4.2 miCube excitation path

The excitation path is designed to be both robust and easy to align and adjust. The four laser

sources located in an Omicron laser box are combined and guided via a single mode �bre towards a
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re�ective collimator (nr. 18) ensuring a well-collimated beam. The re�ective collimator is attached

directly to an aperture (nr. 17), a focusing lens (nr. 16, 200 mm focal length), and an empty spacer

(nr. 12). This excitation ensemble is placed in the 3D-printed piece designed to hold the assembly

into place (nr. 13). This holder is then attached to a right-angled mounting plate (nr. 14), which

is placed on a 25 mm translation stage (nr. 15). The translation stage should be placed at such a

position on the breadboard that the focusing lens (nr. 16) is exactly 200 mm separated from the

back-focal plane of the objective when following the laser path.

Easy alignment and adjustment are ensured by isolating the three axes of movement of this

excitation ensemble (Figure 6.5e). Adjustments of distance from objective is achieved by moving the

collimator ensemble (nrs. 12, 16�18) inside its holder (nr. 13). Height of the path can be adjusted

via a bracket clamp that supports the collimator ensemble (nrs. 13 and 14), and the horizontal

alignment can be adjusted via a translation stage where the bracket clamp rests on (nr. 15). We

note that the excitation pathway is uncoupled from any laser source due to the �bre-connection,

allowing for freedom of choice for the excitation laser unit.

Additionally, the translation stage (nr. 15) can be used to enable highly inclined illumina-

tion (HiLo) or total internal re�ection (TIR). The stage allows �ne and repeatable adjustment of the

excitation beam position on the back focal plane of the objective. By aligning the excitation beam

in the centre of the objective, the microscope will act as a standard epi�uorescence instrument. If

the excitation beam is aligned towards the edge of the back focal plane, the miCube will operate in

HiLo or TIR.

6.4.3 miCube cube and sample mount

The central component of the miCube is the cube (nr. 5) that connects excitation path, emission

path, and the sample. The cube is manufactured out of a solid aluminium block maximising stability

and minimising e�ects of drift due to thermal expansion. Black anodisation of the block prevents

stray light and unwanted re�ections. The illumination path is further protected from ambient light

by screwing a 3D-printed cover (nr. 11) on the side of the cube, as well as a door to close the cube

o�.

Next, the dichroic mirror�full mirror part is assembled (nrs. 6�10). The dichroic mirror

unit (nr. 7) consists of a dichroic mount that is magnetically attached to an outer holder. On the

side of the dichroic mirror unit, opposing the excitation path, a neutral density �lter (nr. 6) is

placed to prevent scattered non-re�ected light entering the miCube thereby minimising background

signal being recorded by the camera. At the bottom of the dichroic mount assembly, a TIRF

�lter (nr. 8) is placed to remove scattered back-re�ected laser light from entering the emission

pathway. This ensembled dichroic mirror unit is screwed via a coupling element (nr. 9) to a mirror

holder containing a mirror placed at a 45° angle (nr. 10), which re�ects the emission light from

the objective to the camera. This completed dichroic mirror�full mirror part is screwed into the

backside of the miCube via two M6 screws, which hold the ensemble into place and directly in line

with the excitation path (nrs. 12-18), the objective (nr. 3), and the tube lens (nr. 30).

Then, an objective (nr. 3) (Nikon 100Ö oil, 1.49 NA, HP, SR) is directly screwed into an

appropriate thread on top of the cube. Around the objective, a sample mount (nr. 4) is screwed

on top of the cube, which is designed to ensure correct height of the sample with respect to the
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parfocal distance of the chosen objective. We opted for using a sample mount, as it can be easily

swapped for another to retain freedom in peripherals. For example, only the height of the sample

mount has to be changed if an objective has a di�erent parfocal distance as the one used here. We

designed two di�erent sample mounts (nr. 4a, 4b). The �rst one can hold an xy-translation stage

with z -stage piezo insert (nr. 2), to enable full spatial control of the sample (nr. 4a). The second

one only holds the z -stage piezo insert, which decreases instrument cost (nr. 4b). In any case, the

xy-translation stage with z -stage piezo insert, or only the z -stage piezo insert is screwed in place

into corresponding threaded holes in the sample mount. A glass slide holder (nr. 1) is made from

aluminium to �t inside a 96-wells-holder like the z -stage (nr. 2).

6.4.4 miCube detection path

A tube lens ensemble is made (nrs. 27�30) which houses a 200 mm focal length tube lens (Thorlabs)

in a 3D-printed enclosure which provides space to slot in an emission �lter (nrs. 27, 28). This

ensemble is then attached directly to the miCube by screwing it into place with four M6 screws.

The alignment of the tube lens is therefore exactly in line with the emission light, as the centre of

the full mirror (nr. 10) is at the same height of the tube lens. The direction of the emission light

can be aligned, which can simply be achieved by tuning the angle of the full mirror (nr. 10).

A cover (nr. 25) is attached to the tube lens ensemble to ensure darkness of the emission

path, which is connected to the tube lens by a 3D-printed connector piece (nr. 26). On the other end

of the cover, a 3D-printed holder for 2 astigmatic lenses (nr. 21) is placed and screwed into place in

the breadboard. Astigmatic lenses (nrs. 22-24) can optionally be used to enable 3D super-resolution

microscopy57. They can be easily changed for lenses with a di�erent focal length or with empty

holders. With this, astigmatism can be enabled or disabled, and a choice between more accurate

z -positional information with a lower total z -range, or less accurate information with a larger range

can be made. The Andor Zyla 4.2 PLUS camera (nr. 19) is placed behind the astigmatic lens holder,

and is positioned in a 3D-printed camera mount (nr. 20) to ensure correct height and position of

the camera, so that the focus of the tube lens is at the camera chip. We chose for a scienti�c

Complementary Metal-Oxide Semiconductor (sCMOS) camera to take advantage of a larger �eld

of view and increased temporal resolution compared to the more traditional electron-multiplying

charge coupled device (EMCCD) cameras58.

Note that the length of the cover (nr. 25) and the alignment of the holes at the feet of

the 3D-printed astigmatic lens holder (nr. 21) are dependent on the focal length of the tube lens,

and of the position of the chosen camera chip with regards to the 3D-printed mount for the camera.

The pieces used here were designed for the Andor Zyla 4.2 PLUS, a 200 mm focal length tube lens,

and the used custom-designed camera mount (nr. 20).

6.4.5 Strain preparation and plasmid construction

Lactococcus lactis NZ9000 was used throughout the study. NZ9000 is a derivative of L. lactis

MG136359 in which the chromosomal pepN gene is replaced by the nisRK genes that allow the use

of the nisin-controlled gene expression system42. Cells were grown at 30 °C in GM17 medium (M17

medium (Tritium, Eindhoven, The Netherlands) supplemented with 0.5% (w/v) glucose (Tritium,

Eindhoven, The Netherlands) without agitation.
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6.4.6 DNA manipulation and transformation

Vectors used in this study are listed in ESI Table 2. Oligonucleotides (ESI Table 3) and primers

(ESI Table 4) were synthesised at Sigma-Aldrich (Zwijndrecht, The Netherlands). Plasmid DNA

was isolated and puri�ed using GeneJET Plasmid Prep Kits (Thermo Fisher Scienti�c, Waltham,

MA, USA). Plasmid digestion and ligation were performed with Fast Digest enzymes and T4 ligase

respectively, according to the manufacturer's protocol (Thermo Fisher Scienti�c, Waltham, MA,

USA). DNA fragments were puri�ed from agarose gel using the Wizard SV gel and PCR Clean-Up

System (Promega, Leiden, The Netherlands). Electro competent L. lactis NZ9000 cells were gen-

erated using a previously described method60. Prior to electro-transformation, ligation mixtures

were desalted for one hour by drop dialysis on a 0.025 µm VSWP �lter (Merck-Millipore, Biller-

ica, US) �oating on MQ water. Electro-transformation was performed with GenePulser XcellTM

(Bio-Rad Laboratories, Richmond, California, USA) at 2 kV and 25 µF for 5 ms. Transformants

were recovered for 75 min in GM17 medium supplemented with 200 mM MgCl2 and 2 mM CaCl2.

Chemically competent E. coli TOP10 (Invitrogen, Breda, The Netherlands) were used for transfor-

mation and ampli�cation of the Pnis-dCas9-PAmCherry2-containing pUC16 plasmid (Figure S6.6).

Antibiotics were supplemented on agar plates to facilitate plasmid selection: 10 µg/ml chloram-

phenicol (for pTarget/pNonTarget) and 10 µg/ml erythromycin (for pLAB-dCas9). Screening for

positive transformants was performed using colony PCR with KOD Hot Start Mastermix according

to the manufacturer's instructions (Merck Millipore, Amsterdam, the Netherlands). Electrophoresis

gels were made with 1% agarose (Eurogentec, Seraing, Belgium) in tris-acetate-EDTA (TAE) bu�er

(Invitrogen, Breda, The Netherlands). Plasmid digestions were compared with in silico predicted

plasmid digestions (Benchling; https://benchling.com).

6.4.7 pLAB-dCas9 plasmid construction

Construction of the pLAB-dCas9 plasmid41,61 was performed by synthesising (Baseclear B.V.,

Leiden, The Netherlands) a codon-optimised fragment containing the sequence of Pnis-dCas9-

PAmCherry2, �anked by XbaI/SalI restriction sites (Figure S6.6, ESI Note 1). This fragment

was supplied in a pUC16 plasmid. After transformation in E. coli, the plasmid was isolated and

digested with XbaI and SalI to obtain the Pnis-dCas9-PAmCherry2 fragment. From the pLABTar-

get expression vector62, the Cas9 expression module was removed by digestion with XbaI and SalI,

and replaced by the XbaI-SalI fragment containing Pnis-dCas9-PAmCherry2. The single-stranded

guide RNA (sgRNA) for targeting pepN was constructed with the correct overhangs and inserted

in the Eco31I digested sgRNA expression handle to yield the pLAB-dCas9 vector62. The plas-

mids used in this study, and vector maps for pLABTarget and pLAB-dCas9 are available upon

request. pLAB-dCas9-PAmCherry2 was sequenced, and was con�rmed to be intact in the used

strains.

6.4.8 pLAB-dCas9 no-sgRNA

The pLAB-dCas9-nosgRNA plasmid was constructed by BoxI/SmaI digestion of the pLAB-dCas9-

PAmCherry2 plasmid, and subsequent self-ligation. This resulted in deletion of the sgRNA handle

and transcriptional terminator, successfully removing the functional sgRNA. The resulting pLAB-

dCas9-nosgRNA plasmid was con�rmed via sequencing.
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6.4.9 pTarget and pNonTarget plasmid construction

The plasmid with binding sites for dCas9 (pTarget) was established by engineering �ve pepN target

sites in the pNZ123 plasmid63. To this end, two single-stranded oligonucleotides (10 µl of 100 µM,

each, ESI Table 3) that upon hybridisation form the a single target sequence for the pepN -targeting

sgRNA were incubated in 80 µl annealing bu�er (10 mM Tris [pH = 8.0] and 50 mM NaCl) for

5 min at 100 °C, followed by gradual cooling to room temperature. The annealed mixed multiplexed

oligonucleotides were cloned in HindIII-digested pNZ123. Afterwards, we selected a derivative that

contains �ve pepN target sites via colony PCR (ESI Table 4). HindIII re-digestion was prevented by

�anking the pepN DNA product by di�erent base pairs, changing the HindIII site. Plasmids with

�ve pepN target sites were designated pTarget (Figure S6.7). Plasmids without the pepN target

sites (the original pNZ123 plasmids) were designated pNonTarget. The vector maps for pTarget and

pNonTarget are shown in Figure S6.7. Correct insertion of the �ve pepN target sites was con�rmed

via sequencing.

6.4.10 Construction of strains with pLAB-dCas9 and p(Non)Target

Electro competent L. lactis NZ9000 cells60 harbouring pLAB-dCas9 were transformed with pTarget

or with pNonTarget and subsequently used for sptPALM or stored at −80 °C.

6.4.11 Quantitative polymerase chain reaction (qPCR)

Both L. lactis strains containing pLAB-dCas9 and pTarget or pNonTarget were grown under similar

lab conditions as the imaging experiments performed in this study (n = 2). After 3 h of growth,

the cultures were split and dCas9 was induced (0 ng/ml nisin, 0.4 ng/ml nisin and 2 ng/ml nisin).

The cells were then harvested after 12 h of growth by centrifugation. The cell pellets were washed,

and DNA was extracted using InstaGene Matrix (Bio-Rad Laboratories, Richmond, California,

USA).

Oligonucleotides were designed to amplify a region of spanning approximately 1000 base

pairs on both pTarget and pNonTarget, and a region of similar length on the NZ9000 chromosome

(Q3 + Q4 and Q7 + Q8; ESI Table 4). These oligonucleotides were used in a PCR reaction to

generate templates which were diluted to function as a calibration curve in the following qPCR.

Both qPCR reactions were performed on each isolated DNA sample (6 technical replicates) and the

ratio between measured chromosomal amplicons (Q5 + Q6) and plasmid amplicons (Q1 + Q2) was

determined. The samples which were uninduced with nisin were used to standardise the estimated

pTarget and pNonTarget copy numbers.

6.4.12 Sample preparation

The strains to be used for single-molecule microscopy were grown o/n from glycerol stocks at 30 °C

in chemically de�ned medium for prolonged cultivation (CDMPC)64. Then, they were sub-cultured

at 5% v/v and grown for 3 h (average duplication time in CDMPC is ∼90 min (determined via

OD600 measurements)), before induced with 0.1 ng/ml nisin. 90 min later, the sample preparation

began (see below).
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Samples were prepared as described previously41. Brie�y, after culturing of the cells,

0.5 µg/mL cipro�oxacin (Sigma-Aldrich, Zwijndrecht, The Netherlands) was added to slightly

inhibit further cell division and DNA replication for sgRNA-pTarget and sgRNA-pNonTarget

experiments65. Then, cells were centrifuged (3500 RPM for 5 min; SW centrifuge (Froilabo,

Mayzieu, France) with a CENSW12000024 swing-out rotor �tted with CENSW12000006 15 mL

culture tube adaptors) and washed two times by gentle resuspension in 5 mL phosphate-bu�ered

saline (PBS; Sigma-Aldrich, Zwijndrecht, The Netherlands). After removal of the supernatant,

cells were resuspended in ∼10�50 µL PBS from which 1�2 µL was immobilised on 1.5% 0.2 µm-

�ltered agarose (Certi�ed Molecular Biology Agarose; BioRad, Veenendaal, The Netherlands) pads

between two heat-treated glass coverslips (Paul Marienfeld GmbH & Co. KG, Lauda-Königshofen,

Germany; #1.5H, 170 µm thickness). Heat treatment of glass coverslips involves heating the cov-

erslips to 500 °C for 20 min in a mu�e furnace to remove organic impurities.

6.4.13 Experimental settings

All imaging was performed on the miCube as described at 20 °C. A 561 nm laser with ∼0.12 W/cm2

power output was used for HiLo-to-TIRF illumination with 4 ms stroboscopic illumination24 in the

middle of 10 ms frames. Low-power UV illumination (µW/cm2 range) was used and increased during

experiments to ensure a low and steady number of �uorophores in the sample until exhaustion of

the �uorophores. A UV-increment scheme was consistently used for all experiments (ESI Table 5).

No emission �lter was used except for the TIRF �lter (Chroma ZET405/488/561m-TRF). The raw

data were acquired using the open source Micro-Manager software66. During acquisition, 2 Ö 2

binning was used, which resulted in a pixel size of 128 Ö 128 nm. The camera image was cropped

to the central 512 Ö 512 pixels (65.64 Ö 65.64 µm) or smaller. For sptPALM experiments, frames

500�55.000 were used for analysis, corresponding to 5�550 s. This prevented attempted localization

of overlapping �uorophores at the beginning, and ensured a set end-time. 200�300 bright�eld images

were recorded by illuminating the sample at the same position as during the measurement. For the

bright�eld recording, we used a commercial LED light (INREDA, IKEA, Sweden) and a home-made

di�user from weighing paper.

6.4.14 Localization

To extract single-molecule localizations, a 50-frame temporal median �lter

(https://github.com/marcelocordeiro/median�lter-imagej) was used to correct background

intensity from the movies67. In short, the temporal median �lter determines the median pixel

value over a sliding-window of 50 pixels to determine the median background intensity value for a

pixel at a speci�c position and time point. This value is subtracted from the original data, and any

negative values are set to 0. In the process, all pixels are scaled according to the mean intensity of

each frame to account for shifts in overall intensity. The �rst and last 25 frames from every batch

of 8096 frames are removed in this process.

Single-particle localization was performed via the ImageJ68/Fiji69 plugin

ThunderSTORM70 with added phasor-based single-molecule localization algorithm (pSMLM39).

Image �ltering was done via a di�erence-of-Gaussians �lter with Sigma1 = 2 px and Sigma2 = 8 px.

The approximate localization of molecules was determined via a local maximum with a peak
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intensity threshold of 8, and 8-neighbourhood connectivity. Sub-pixel localization was done via

phasor �tting39 with a �t radius of 3 pixels (region-of-interest of 7 Ö 7 pixels). Custom-written

MATLAB (The MathWorks, Natick, MA, USA) scripts were used to combine the output �les from

ThunderSTORM.

6.4.15 Cell segmentation

A cell-based segmentation on the localization positions was performed. First, a watershed was

performed on the average of 300 bright�eld-recorded frames of the cells. The watershed was done

via the Interactive Watershed ImageJ plugin (http://imagej.net/Interactive_Watershed). Second,

the localizations were �ltered whether or not they fall in a pixel-accurate cell outline. If they do, a

cell ID is added to the localization information.

6.4.16 Estimating the copy number of dCas9

The total copy number of dCas9 in a cell is not identical to the number of tracks found in each

cell. Firstly, the UV illumination (405 nm wavelength) on the miCube required to photo-activate

PAmCherry2 is not homogeneous over the complete �eld of view. To correct for this, a value for

the average UV illumination experienced by each L. lactis cell is calculated. For this, a map of

the UV intensity is made by placing a mirror on top of the objective and measuring the re�ected

scattering of the UV signal. Then, the mean UV intensity in the pixels corresponding to a cell

according to the segmented bright�eld images is stored. The cellular apparent dCas9 copy number

is corrected for this normalised mean cellular UV intensity. Moreover, the cellular apparent dCas9

copy number was corrected for the average maturation grade of PAmCherry1, which is 50%53

(shown schematically in Figure S6.8). We assume the maturation grades of PAmCherry1 and

PAmCherry2 to be similar.

6.4.17 Tracking and �tting of di�usion coe�cient histograms

A tracking procedure was performed in MATLAB, using a modi�ed Particle Point Analy-

sis script71 (https://nl.mathworks.com/matlabcentral/�leexchange/42573-particle-point-analysis)

with a tracking window of 8 pixels (1.0 µm) and no memory. Localizations corresponding to di�er-

ent cells were excluded from being part of the same track. As the tracking window is of similar size

as the cells itself, in practice all localizations in a cell are linked together in a track if they appear

in successive frames.

An apparent di�usion coe�cient, D*, was then calculated for each track from the mean-

squared displacement (MSD) of single-step intervals72. In short, for every track with at least 4

localizations, the D* was calculated by calculating the mean square displacement between the �rst

four steps and taking the average of that. Qualitative tracking information in cells (Figure 6.2a,

Figure 6.3a) shows that di�usion coe�cients up to ∼4 µm2/s are obtained. These high di�usion

coe�cient tracks are caused by including false positive localizations in tracks. Therefore, tracks with

a di�usion coe�cient clearly caused by inclusion of false positive localizations (D* > 2.5 µm2/s)

were excluded from further analysis. We then binned the di�usion coe�cients in 40 logarithmic-

divided bins from D* = 0.01 to D* = 2.5 µm2/s. The pNonTarget di�usional information was
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�rst corrected for the di�usion histogram obtained from a non-induced sample, subtracting the

non-induced histogram from the pNonTarget histogram based on the approximated relative size of

the non-induced histogram (∼7.2 tracks per cell were found in non-induced cells).

Then, a Monte-Carlo di�usion distribution analysis (MC-DDA; described-below) consist-

ing of 20.000 dCas9 proteins was �tted via a general Levenberg-Marquardt �tting procedure in

MATLAB. The error of this �t was determined via a general bootstrapping approach, where a

D*-list with the same length as the original, but randomly �lled with values from the original

(allowing for more than one entry of the same data), was �tted via the same procedure. For the

pTarget di�usional information, the pNonTarget best �tted model (calculated via the same model,

but with 100.000 dCas9 proteins) was �tted and smoothed via a Savitzky-Golay �lter with order

3 and length 7, to reduce noise on the �t, alongside a single population following the following

equation:

y =

(
n

Dplasmid

)n

· x(n−1) · e
−n x

Dplasmid

(n− 1)!
(6.1)

where Dplasmid is the D*-value corresponding to plasmid-bound dCas9, n the number of steps in

the trajectory (set to four in this study), y the count of the histogram, and x the D*-value of the

histogram. Dplasmid was kept constant in the global �t, while the size of this population and the

size of the pNonTarget model were allowed to vary between apparent cellular dCas9 copy number

bins. Again, the error of this �t was determined via a general bootstrapping approach.

6.4.18 pNonTarget Monte-Carlo di�usion distribution analysis

The pNonTarget data is �tted with a Monte-Carlo di�usion distribution analysis (MC-DDA), in

which a variable D free, localization error, k free→bound, and kbound→free need to be provided (ESI

Software). A set number of dCas9 proteins are simulated (20.000 for the �t, 100.000 for visualising

the �t). These proteins are then randomly placed in a cell, which is simulated as a cylinder with

length 0.5 µm and radius 0.5 µm, capped by two half-spheres with radius 0.5 µm, and the current

state of the proteins is set to free or immobile, based on the respective kinetic rates (cbound =

kfree→bound/(kbound→free + kfree→bound), cfree = 1− cbound).

Moreover, the proteins are given a time before they are changed between states

(log(rand)/ − k, where rand is a random number between 0 and 1, and k is the respective ki-

netic rate). Then, the movement of the proteins is simulated with over-sampling with regards to

the frame time (0.1 ms). The free proteins will move a distance equal to a randomly sampled nor-

mal distribution with σ =
√

2 ·Dfree · steptime, where steptime is 0.1 ms. Then, it checked if this

position is still within the cell outline. If not, a new location will be pulled from the distribution

and checked against the cell outline. Every time-step, the time until state-change is subtracted

with the time-step, and if this value becomes ≤ 0, the proteins will switch states, getting a new

di�usion coe�cient and state-change time. Every 10 ms after an initial equilibrium time of 200 ms,

the current location of the proteins is convolved with a random localization error, from a randomly

sampled normal distribution with σ = localization error. The simulation is ended after 5 localiza-

tion points are acquired for every protein. Further tracking and di�usion coe�cient calculations

are done the same as the experimental data.
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6.4.19 Target simulation

For the target simulation, a certain number of dCas9 are simulated (similar to the average of

the bins used in experiments), alongside a variable total number of PAM sites (1/16 chance at

∼7.5 mln bases, or 1.5Ö double-stranded L. lactis genome73), plasmid copy number, target sites

(5 per plasmid), incubation time (90 min), �uorophore maturation time (20 min27), and a ko�

rate. The dCas9 proteins are simulated one by one. The �rst dCas9 will have access to all target

sites, and will be simulated for [incubation time], assuming the �rst dCas9 was made exactly at

the start of the nisin incubation. Subsequent dCas9 proteins will have access to fewer target sites,

depending on whether or not earlier dCas9 proteins have ended the simulation bound to target

sites. Subsequent dCas9 proteins will also be simulated for a shorter time, linearly scaling from

[incubation time] to [�uorophore maturation time], which assumes that dCas9 proteins are steadily

produced throughout the incubation time, but allowing for the fact that dCas9 proteins that do not

yet have a matured PAmCherry2 are not visible during sptPALM.

Then, the dCas9 proteins randomly start in the free, PAM-probing, or target-bound state,

based on the previously determined kinetic constants, similarly as in the pNonTarget simulation.

The proteins are also given a time until state change, as was done in the pNonTarget simulation.

Next, the simulation time of a single dCas9 protein was decreased by this time until state change,

whereupon a new state was given to the protein: free proteins changed to PAM-probing or target-

bound, with the target-bound chance being equal to nrtargetsites/totalnrofPAMsites; PAM-probing

or target-bound proteins were changed to free proteins. This was continued until the end of the

simulation, after which the �nal state was determined. If the dCas9 was bound to a target, the

available target sites were decreased by 1 for the next simulated dCas9. The reported values are

the mean of 50 repetitions of the simulation, with the 95% con�dence interval determined via the

standard deviation of these repetitions.

For simulating Cas9 cleavage rates, it was assumed that a single target site was present

and that a dCas9 would never be removed from a target site. By then analysing the bound dCas9,

it indicates whether the target site has been cleaved by Cas9. The other simulation parameters

were kept constant.

6.4.20 miCube drift quanti�cation

We characterised the positional stability of the miCube via super-resolution measurements of

GATTA-PAINT 80R DNA-PAINT nanorulers (GATTAquant GmbH, Germany). We imaged the

nanorulers in total internal re�ection (TIR) mode using a 561 nm laser (∼7 mW) with a frame time

of 50 ms using 2 Ö 2 pixel binning on the Andor Zyla 4.2 PLUS sCMOS. Astigmatism was enabled

by placing a 1000 mm focal length astigmatic lens (Thorlabs) 51 mm away from the camera chip.

A video of 10.000 frames was recorded via the MicroManager software66.

After recording the movie, we �rst localized the x, y, and z -positions of the point spread

functions of excited DNA-PAINT nanoruler �uorophores with the ThunderSTORM software70 for

ImageJ68 with the phasor-based single-molecule localization (pSMLM) add-on39. The Thunder-

STORM software was used with the standard settings, and a 7 Ö 7 pixel region of interest around

the approximate centre of the point spread functions was used for pSMLM. To determine the z -posi-
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tion, we compared the astigmatism of the point-spread function to a pre-recorded calibration curve

recorded using immobilised �uorescent latex beads (560 nm emission peak, 50 nm diameter).

After data analysis, we performed drift-correction in the lateral plane using the cross-

correlation method of the ThunderSTORM software. The cross-correlation images were calculated

using 10x magni�ed super-resolution images from a sub-stack of 1000 original frames. The �t of

the cross-correlation was used as drift of the lateral plane. Drift of the axial plane was analysed

by taking the average z -position of all �uorophores, assuming that all DNA-PAINT nanorulers are

�xed to the bottom of the glass slide.
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6.7 Supplementary information

Electronic supplementary information (ESI) can be found at doi:10.1038/s41467-019-11514-0, and

consists of the following:

ESI Figures 10-18: Technical drawings of various miCube components.

ESI Note 1: DNA and amino acid sequences belonging to dCas9-PAmCherry2 used in this study.

ESI Table 1: Descriptive list of miCube components.

ESI Table 2: List of used vectors.

ESI Table 3: List of oligonucleotides.

ESI Table 4: List of primers.

ESI Table 5: Adjustment of the 405 nm laser power during sptPALM experiments.

ESI Software: MATLAB scripts used in this study.

Figure S6.1: E�ect of state transitions on di�usion coe�cient histogram. The pNonTarget model as

described in Methods was ran with varying kbound→free and k free→bound values as indicated in the �gure,

while keeping the localization error and Dfree constant at the values determined while �tting the actual

data (38 nm and 2.0 µm2/s, respectively). a Di�usion coe�cient histogram if no state transitions would

be present. b - e Di�usion coe�cient histograms with the same kbound→free : k free→bound ratio as the

determined best-�tting values of ∼3:2, while varying the absolute values of the two. f Di�usion coe�cient
histogram if the kinetic parameters were swapped.
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Figure S6.2: Typical drift experienced by the miCube. Typical drift in x (black), y (red), and z (blue)

as experienced by the miCube used throughout this study. Repetition of this experiment led to the values

speci�ed in the main text.

Figure S6.3: Individual pNonTarget and pTarget distributions a All �ve pNonTarget di�usional dis-

tributions �tted with MC-DDA, as explained in the main text, Methods section, and Figure 6.2. At

the bottom, the Chi-squared value is plotted for a range of MC-DDAs (100.000 simulated proteins) with

di�erent k free→bound and kbound→free. b All �ve pTarget di�usional distributions �tted with the com-

putational target-binding model, as explained in the main text, Methods section, and Figure 6.3.
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Figure S6.4: no-sgRNA distributions �tted with MC-DDA or the target-binding model a The �ve

no-sgRNA pNonTarget di�usional distributions were �tted with MC-DDA as explained in the main text,

Methods section. b The �ve no-sgRNA pTarget di�usional distributions were �tted with MC-DDA, as

explained in the main text, Methods section. We note that the found kinetic rates are not signi�cantly

di�erent from the no-sgRNA pNonTarget rates. c The �ve no-sgRNA pTarget di�usional distributions

were �tted with a combination of the �xed no-sgRNA pNonTarget populations (from a) and a global

non-�xed bound population. We note that no target-bound dCas9 population can be �tted, while the

�tting methodology is identical to that of normal pTarget (Figure S6.3b).

Figure S6.5: E�ect of dCas9 on pTarget copy number a Representative normalised cumulative num-

ber of cells that have certain mean dCas9 copy numbers. Black squares are values taken from pNon-

Target dataset, the dotted line is a �tted curve with equation y = 1.05 · [dCas9copynumber]/(44 ·
[dCas9copynumber]). b Normalised qPCR-determined ratio of plasmid:genome DNA for pTarget and

pNonTarget for di�erent Nisin induction. Error bars are the standard deviation determined from the

average of two biological replicates (both averaged on two technical replicates). Individual data points

are plotted as black circular markers.
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Figure S6.6: Outline of the pLAB-dCas91 vector Top The sequence encoding dCas9 (S. pyogenes;

AddGene.org plasmid #44249) is fused to the sequence encoding PAmCherry227 (AddGene.org plasmid

#31932) with a �exible linker (amino acid sequence GSGSS), downstream of the nisA-promoter (Pnis)

with an ribosomal binding site (15 bp spacing) and ending with a transcriptional terminator sequence

derived from a lactococcal pepN gene. PAmCherry2 is �anked by two KpnI sites which should allow

for interchanging �uorophores. The whole sequence is �anked by XbaI and SalI restriction sites to allow

convenient cloning into a (expression) vector of choice. Bottom The pLAB-dCas9 expression vector

consists of PAmCherry2-labelled dCas9, an erythromycin resistance marker (Ery) and replication genes

(repD, repE and repG)61. The pepN DNA matching region together with the dCas9 binding hairpin and

the S. pyogenes terminator form the sgRNA, which is expressed under a constitutive promoter (Peps).

Once the sgRNA molecule is transcribed, it folds to form the secondary structure that allows complex

formation with dCas9.
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Figure S6.7: pNonTarget and pTarget construction and veri�cation a,b Vector maps of pNonTarget

and pTarget. Both targets contain repA and repC (DNA replication initiators) and a chloramphenicol-

resistance marker (cm). Moreover, pTarget contains 5 target sites speci�ed at `Target Sites'. c dCas9

binding sites consisting of a 20 base pairs pepN recognition site, a 5'-NGG-3' PAM sequence, and spacing

and overhang sequence motifs that are complementary to each other (indicated with black stripes) were

annealed and ligated. This formed an array of �ve dCas9 binding sites in pNZ123, resulting in pTarget.

Digestion and subsequent gel electrophoresis of plasmids isolated from two colonies revealed the expected

length of the binding array in pTarget. One binding site is 54 base pairs in length, the �nal array of �ve

binding sites is 278 base pairs (the expected PCR amplicon is 300 base pairs).

Figure S6.8: Schematic representation of obtaining cellular dCas9 copy number from number of tracks

The raw track count (�rst sub�gure) is convolved with the experience UV intensity that the cell on

average experienced (second sub�gure; deduced via re�ective scattering of excitation lasers), and with the

expected maturation grade of PAmCherry2 (Methods).

140



666666

Visualisation of dCas9 target search using an open-microscopy framework

141





Spatiotemporal heterogeneity of

κ-carrageenan gels investigated via

single-particle tracking �uorescence

microscopy

7
A version of this chapter has been published as:

Koen J.A. Martens, John van Duynhoven, and Johannes Hohlbein. Spatiotemporal Hetero-

geneity of κ-Carrageenan Gels Investigated via Single-Particle-Tracking Fluorescence Microscopy

Langmuir 36 no. 20 (2020)



7777777

Chapter 7

Abstract

Hydrogels made of the polysaccharide κ-carrageenan are widely used in the food and personal

care industry as thickeners or gelling agents. These hydrogels feature dense regions embedded in

a coarser bulk network, but the characteristic size and behaviour of these regions have remained

elusive. Here, we use single-particle tracking �uorescence microscopy (sptFM) to quantitatively

describe κ-carrageenan gels. Infusing �uorescent probes into fully gelated κ-carrageenan hydrogels

resulted in two distinct di�usional behaviours. Obstructed self-di�usion of the probes revealed that

the coarse network consists of κ-carrageenan strands with a typical diameter of 3.2 +− 0.3 nm leading

to a nanoprobe di�usion coe�cient of ∼1-5 µm2/s. In the dense network regions, we found a fraction

with a largely decreased di�usion coe�cient of ∼0.1 µm2/s. We also observed dynamic exchange

between these states. The computation of spatial mobility maps from the di�usional data indicated

that the dense network regions have a characteristic diameter of ∼1 µm and show mobility on the

second-to-minute timescale. sptFM provides an unprecedented view of spatiotemporal heterogeneity

of hydrogel networks, which we believe bears general relevance for understanding transport and

release of both low- and high-molecular weight solutes.
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7.1 Introduction

Carrageenan is a collection of linear sulfated polysaccharides, which are widely used as thickeners

or gelling agents in food products, personal care products, and healthcare1�3. Gelation is induced

by cooling down hot solutions of carrageenan, whereupon single helices are formed that can sub-

sequently form double helices with other carrageenan strands under the assistance of cations such

as potassium, sodium, or calcium4�7. This double helix formation results in cross-linking and thus

thickening or gelling behaviour. Altering the precise chemical composition or concentration of car-

rageenan or the introduced cations results in di�erent properties of the material4�6. Cations are

required to induce gelation, with low concentrations of cations leading to low-strength hydrogels.

Increasing the concentration of potassium, on the other hand, results in an increasing presence

of sti� �ber rods, while addition of sodium ensues more �exible superstructures5. The degree of

sulfonation dictates the exact type of carrageenan; µ, λ, and ι-carrageenans are the most common

carrageenan variants, having one, two, and three sulfate ester groups, respectively2. In this study,

we focused on the industrially relevant κ-carrageenan, for which the gel properties can readily be

manipulated by speci�c ion additions1,2,8.

Detailed knowledge of the structure of carrageenan hydrogels is desirable for rational

design of food and personal care products. Analysis of carrageenan gels or solutions is usually

performed via bulk techniques such as rheology5, di�erential scanning calorimetry (used to study

gel transition points6), scattering techniques (small angle X-ray scattering and small angle neutron

scattering, used to elucidate strand thickness and behaviour7), and pulsed �eld gradient nuclear

magnetic resonance (PFG NMR, used to study self-di�usion of low- and high-molecular-weight

solutes9�11). Although these methods provide a wealth of information on the structure, formation,

and behaviour of carrageenan gels, they generally do not provide spatial information on network

heterogeneity.

Spatial heterogeneity is an important aspect of hydrogels: it in�uences rheological prop-

erties, plays an important role in the loading and releasing behaviour of solutes, and may also

modulate enzyme activity during digestion12�14. Currently used imaging techniques (e.g. electron

microscopy (EM)5,8, raster image correlation spectroscopy (RICS)10, or �uorescence recovery af-

ter photobleaching (FRAP)15,16) have indicated that dense network regions exist on a micrometre

scale. However, these methods require invasive or destructive sample preparation (EM) or have

limited power to quantitatively resolve spatial heterogeneity (RICS and FRAP)11,17. Quantitative

non-destructive and non-invasive imaging techniques could prove to be valuable in con�rming the ex-

istence and size of these regions. Here, we apply single-particle tracking �uorescence microscopy18,19

(sptFM) to study κ-carrageenan networks with high spatiotemporal resolution and non-destructive

sample preparation.

In subdi�raction-resolution sptFM, the positions of small (<100 nm) �uorescent particles

are determined with ∼10-40 nm accuracy by �tting the emitted point spread functions (PSFs) with

a mathematical model20,21. By assessing the position of these �uorescent particles at a high tem-

poral resolution (∼100 Hz), the movement of the particles in the xy focal plane can be determined.

While the 2D sptFM methodology can be extended to include z -positional information (3D sptFM)

using engineered PSFs, this can be actually detrimental for di�usion analysis because of a lower

localization accuracy in the xy plane20,22. Because the behaviour of the particles is directly in-
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�uenced by the local environment14,19,23�25, quanti�cation and analysis of the movement leads to

spatial characterization of the local surrounding medium. Recent sptFM performed on mixtures of

ι- and κ-carrageenan gels19,24 focused on using larger �uorescent particles (∼100 nm), e�ectively

probing larger spatial structures than intended here. In this study, we will employ sptFM to ob-

tain quantitative and spatially de�ned structural information on κ-carrageenan gels by infusing

�uorescent nanoprobes of 28 nm diameter in fully gelated networks. First, we will investigate the

existence and properties of κ-carrageenan gel heterogeneity and analyse the di�usional behaviour

of the nanoprobes. Next, we will determine the morphology of the gel heterogeneity by evaluating

nanoprobe trajectories based on their spatial position with sub-µm resolution.

Our results show the existence of primarily two nanoprobe di�usional states, which we

attribute to di�usion in the coarse bulk network and in dense network regions, along with occasional

switching between these states. The relationship between nanoprobe di�usion in the bulk coarse

network is consistent with Johnson's obstruction model10,26,27, describing the coarse network as

consisting of 3.2 +− 0.3 nm diameter κ-carrageenan �bres independent of sodium ion concentration.

Within this coarse network, regions of dense networks with ∼1 µm diameter are embedded, irre-

spective of the sodium ion or κ-carrageenan polymer concentration. These dense network regions

occasionally show mobility on the second-to-minute timescale, which we directly observed with

multiple techniques.

7.2 Results and discussion

7.2.1 κ-Carrageenan gel networks probed using �uorescent probes

κ-Carrageenan solutions were prepared at varying polymer concentrations (0.5-2.5% w/v), varying

NaCl concentrations (100-200 mM), and a �xed KCl concentration (20 mM). These compositions are

commonly employed in food products28 and literature4�6,10, and form gels throughout the parameter

space. After cooling on a glass coverslip, 28 nm diameter carboxylate-modi�ed �uorescent polymer

nanospheres were infused into the gel. These probes were expected to move around in the gel

network with a reduced di�usivity because of obstruction caused by the local network structure

(Figure 7.1a)26. When we attempted to infuse nanospheres before gelation, we observed that a

combination of residual salt and heating to 75 °C resulted in probe aggregation, and thus this

procedure was not pursued further. Either the presence of residual salt or an increased temperature

did not a�ect the di�usion of nanospheres, however.

Fluorescence emission from single probes could be observed using a 642 nm excitation

laser light and a 5 ms camera frame time (Figure 7.1b). The PSFs were then identi�ed and �tted

(Methods; blue asterisks in Figure 7.1b,c). These positions were compared and potentially linked

to those in the previous frames to create tracks. The di�usivity and jump distance of single tracks

are shown as lines in Figure 7.1b,c.

7.2.2 Revealing network heterogeneity by the multimodal probe self-di�usion

behaviour

Qualitatively, we could distinguish primarily two di�erent mobilities of the �uorescent probes in

the hydrogel network. We found that some of the probes were able to move around in the gel
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Figure 7.1: sptFM in κ-carrageenan gels. a Schematic representation of �uorescent probes (red), em-

bedded in a gel matrix (dotted lines). These probes are capable of di�usion in the gel matrix (arrows).

A coarse network (light grey region) allows for obstructed di�usion of the �uorescent probes, while dense

network regions (dark grey region) further decrease the mobility of the probes. b Typical localization

(blue asterisks) and tracking (yellow-red coloured lines) overlaid on a raw microscopy image. Shown here

is single-particle tracking of 28 nm diameter polymer probes in a 1% κ-carrageenan gel with 200 mM NaCl,

20 mM KCl. Highlighted regions are enlarged in c. c Examples of obstructed di�using (top), largely im-

mobile (middle) or transitioning (bottom) particles. Left: the corresponding 2D movement of the single

tracks. Middle: jump distance of this track plotted against the time of the track. Right: histogram

created from the jump distances found in the track.

network slightly obstructed, leading to jumping distances in the order of several hundred nanometres

(e.g. Figure 7.1c top). Other probes showed largely decreased self-di�usion over long time scales

(>seconds; e.g. Figure 7.1c middle) in which the jumping distance is below ∼100 nm. Occasionally,
probes showed interchanging behaviour between these two previous states (e.g. 7.1c bottom).

These results agree with earlier studies indicating the presence of spatial heterogeneity in

the κ-carrageenan hydrogel networks10,29,30. The coarse network bulk is expected to have a polymer

concentration-dependent mesh size of ∼100 nm, allowing slightly obstructed di�usion of the 28 nm

diameter probes, in agreement with our �rst observed species (Figure 7.1c top). Meanwhile, distinct

regions in the network exist with a much denser network with mesh size < ∼20 nm10, leading

to hampered entry of the probes in the dense, but inherently �exible hydrogel network. This

�nding is in agreement with probes getting trapped and showing largely decreased self-di�usion

(Figure 7.1c middle). Because probes are con�ned in both the coarse network bulk and the dense

network regions, the di�usion coe�cient obtained from jump distance analysis employed here is

equally informative as mean squared displacement (MSD) analysis. Moreover, further quanti�cation

of the con�nement e�ects via MSD would have to build on the assumption of spatial homogeneity31,

which is not present here.

Nonspeci�c chemical adsorption of the probes to network strands is unlikely because of

repulsive negative charges. Moreover, similar experiments in a non-gelated κ-carrageenan polymers

(because of the absence of salt) showed only a single-di�usive population (Figure S7.1), suggesting

that in those experiments, di�usion is determined solely by the viscosity of a semidilute polymer

solution32.
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The observation of occasional switching of the probe behaviour from the trapped state to

the obstructed di�using state or vice-versa (Figure 7.1c bottom) indicates structural rearrangement

of the dense network. This �nding is strengthened by the presence of trapped probes in these

experiments in general, as the probes were infused after network formation and became trapped in

the already gelled dense network region.

7.2.3 3.2 nm diameter κ-carrageenan network �bres hinder probe self-di�usion

in the coarse network

To quantify the probe di�usion pro�les, we plotted the mjd of individual tracks weighted by their

corresponding number of localizations as histograms (Figure 7.2a,b, Methods). These data can be

well described by two populations30; one corresponding to the probes trapped in the dense network

(red outline in Figure 7.2a,b); and one corresponding to the probes showing obstructed self-di�usion

in the coarse network (blue outline in Figure 7.2a,b). The state-switching behaviour shown in

Figure 7.1c bottom should be present in these histograms as a population with a convolved mjd of

the trapped and obstructed probes33,34. However, this behaviour is rare (<2% of all tracks longer

than 20 frames likely show state-switching behaviour; Methods), and is therefore not attempted to

quantify. The mjd of each population was determined by �tting logarithmic Gaussian functions on

the histogram (Figure 7.2a,b).

The mjd plotted as a function of κ-carrageenan polymer and NaCl concentrations (Fig-

ure 7.2c) revealed that the population describing the trapped probes (red outline in Figure 7.2a,b)

is una�ected by the polymer or NaCl concentration. The trapped probes had an average jump

distance of ∼70 nm, which is higher than expected for fully immobile probes in which the mea-

sured jump distance is fully covered by the �nite localization precision (22 nm; Methods). This

trapped population had a self-di�usion coe�cient of ∼0.1 µm2/s, which is an inseparable convolu-

tion of probe self-di�usion and movement of the dense network region. We note that we observed a

higher self-di�usion than shown previously for dendrimers trapped in κ-carrageenan gels observed

via PFG NMR (10−14 m2/s)10. We attribute this to the coating of the dendrimers used previously10

with inert ethoxylate chains, which may entangle with polymer strands in the dense network.

The population describing the probes in the coarse network (blue outline in Figure 7.2a,b)

shows a decreasing mjd with increasing κ-carrageenan polymer concentration, while it is mostly

una�ected by the NaCl concentration. The mean di�usion coe�cient of this obstructed population

was ∼1 µm2/s in 2.5% κ-carrageenan gels and increased to ∼5 µm2/s in 0.5% κ-carrageenan gels.

This relation between the probe self-di�usion coe�cient and the polymer concentration can be

accurately �tted by Johnson's obstruction model10,26 (Figure 7.2d; Methods), indicating that the

probe self-di�usion is obstructed by �bres of 3.2 +− 0.3 nm diameter in the coarse network. This

�nding agrees with earlier NMR studies in which a �bre diameter of ∼3 nm was found10,27.

7.2.4 Dense networks span 1 µm-sized regions

Next, we were interested in the spatial distribution of the network heterogeneity, which was not yet

addressed in comparable experimental settings25,30. To this end, the observed tracks were divided

into three groups based on their respective mjd (Figure 7.3a). The �rst group (red) consists of
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Figure 7.2: Quanti�cation of network obstruction experienced by �uorescent probes. a,b Histogram

of mean jump distances, weighted on track length, found for freely di�using 28 nm probes in water

(top) and in 0.5-2.5% κ-carrageenan gels with 20 mM KCl and 100 mM NaCl (a) or 200 mM NaCl

(b). The histograms are �tted with 2 Gaussian pro�les shown in red (trapped population) and blue

(obstructed population). Vertical black-dotted lines are added as a guide to the eye, shaded red/blue

pro�les show the standard deviation of the �t, derived from populations �tted to individual single-particle

tracking movies (each 12.5% of the complete data). c The mean trapped (red population in (a,b))

and obstructed (blue population in (a,b)) jump distance plotted vs the κ-carrageenan polymer content.

Error bars represent the standard deviation of the �tted pro�le determined in (a,b). d Normalised

di�usion coe�cient corresponding to the mjd of the obstructed fraction as plotted in c, assuming a 22 nm

localization uncertainty. An obstruction model (dashed line, Methods, main text; dotted lines indicate

95% con�dence interval of the �t) was �tted to the data and reveals a �bre diameter of 3.2 +− 0.3 nm.

tracks that have ≥95% probability of belonging to probes trapped in the dense regions. The second

group (yellow) consists of tracks that have ≥95% probability of belonging to probes in the coarse

network. The third group consists of tracks that cannot be attributed clearly to either the �rst or

second group and where therefore discarded from further analysis.

Next, we created mobility maps (Methods) in which an image with a pixel size of 61 Ö 61

nm is pseudo-colour coded based on the local probe behaviour (Figure 7.3b). The map shows the

existence of ∼1 µm sized regions characterised by the presence of immobile probe(s), while there are

no nearby mobile probe(s). Probes are trapped in these regions (red), while probes present in the

coarse network surrounding the dense regions (yellow) are unable to enter (Figure 7.3c), possibly

resulting in black regions indicative of the absence of any probes. These dense network regions have

similar length scales to those shown previously with EM15.

We con�rmed the existence and size of these dense regions via rescan confocal microscopy

(RCM)35. Here, the κ-carrageenan gels were infused with a higher concentration of �uorescent

probes (0.03% w/v instead of 0.002%), causing �uorescence accumulation in the dense regions with

respect to the coarse network10. As a result, the dense regions with the trapped probes were very
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Figure 7.3: Mobility mapping of immobile and mobile regions in κ-carrageenan gels. a Procedure to

sort single localizations in immobile (red), mobile (yellow), or intermediate (discarded) groups based on

the mjd of their corresponding track. b Representative image of a resulting pseudocolour-coded mobility

maps. Red regions are locations consisting of solely immobile particles, yellow regions are locations

consisting of solely mobile particles, and orange regions (arrows) are locations where both immobile and

mobile probes are present. The outlined region is enlarged in c. c Zoom-in from b with a proposed

schematic network structure overlaid on the image. Dense network regions show translational migration

in κ-carrageenan hydrogels.

bright compared to the areas in which the obstructed di�using particles cause a heterogeneous and

noisy background �uorescence. The dense regions were identi�ed by taking a temporal median

average over multiple RCM images (Figure S7.2) and had a similar size to the ones determined via

sptFM. Moreover, the size and distribution of the dense regions did not seem to depend on the

tested κ-carrageenan polymer concentration range (Figure S7.2).

Two species of immobile particle regions could be distinguished in the single-particle

tracking derived mobility maps (Figure 7.3). First, there were regions that are characterised by

the presence of immobilised probe(s) in the centre and the absence of mobile probes in the direct

periphery. We attributed these regions to stable dense network regions, as these mobility maps rep-

resent a temporal integration and are therefore averaged over 40 s of each recorded movie. Second,

we observed immobilised probe(s) directly adjacent to and overlapped by mobile probes (i.e. orange

regions, arrows in Figure 7.3b), which could not be attributed to stable dense network regions. We

hypothesised that these occurrences are caused by temporal variations in the gel network, where

the dense network regions themselves are mobile within the acquisition time (40 s).

Therefore, we investigated the same mobility maps, but with a sliding temporal window.

Similar dense network regions were observed, but some appear to migrate or disintegrate over time.

We show an example in Figure 7.4a, where the same position in the gel is shown as a mobility map

integrated over 0-20 s and 21-40 s of the same movie. During the �rst 20 s, a dense network region

with a diameter of ∼1.5 µm is visible (dotted outline in Figure 7.4a). Later at the same position,

however, only mobile particles are present. Meanwhile, a new dense region can be found ∼0.5 µm
below the previous dense region. This �nding suggests that dense network regions itself can migrate

on the second to minute timescale even after full gelation. We note that by decreasing the temporal

integration time, we are reducing the number of localizations used for creating the mobility maps.

This e�ectively sets a lower limit to the time interval possible to be studied with mobility maps

because of a decreasing signal-to-noise ratio.
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Figure 7.4: Movement of dense network regions in the coarse network. a Mobility maps of immobile

(red) and mobile (yellow) probes in a 1% κ-carrageenan, 200 mM NaCl, and 20 mM KCl gel. The position

of all particles found in the time range 1-20 s (left) or 21-40 s (right) are overlaid. The white-dotted outline

represents the proposed outline of the dense region. b RCM images show a migrating dense network region

(indicated by arrows) in a 1% κ-carrageenan, 200 mM NaCl, and 20 mM KCl gel (also see ESI Movie 1).

Images represent single RCM frames, except for the 6-73 and 79-156 s images, where the median of the

corresponding RCM frames is shown.

We con�rmed the migration of dense regions via rescan confocal microscopy operating

at 1 Hz. While the presence of immobile regions is di�cult to assess in single frames because of

a low signal-to-noise ratio, assessment of multiple frames shows occasional and abrupt migration

of dense network regions (Figure 7.4b, ESI Movie 1). This single migration event had a di�usion

coe�cient of ∼0.4 µm2/s; this is faster than the trapped probe fraction determined earlier, but

an order of magnitude slower than probes moving in the coarse network. This indicates that

the migration is not caused by di�usion of the dense regions while normally embedded in the

coarse network. Identical experimental conditions of solely mobile �uorescent probes revealed no

observable immobile or migrating regions as these move too fast to be captured with a frame rate

of 1 Hz (ESI Movie 2).

This dense network region migration is de facto di�erent from the trapped �uorescent

probe di�usion shown earlier. The trapped probe di�usion is a convolution of probes di�using within

single immobile dense network regions and possible movement of these dense network regions. Most

observed dense network regions (Figure 7.3 and ESI Movie 1) are immobile on the micrometre scale,

indicating that the trapped probe di�usion is governed by probe di�usion within dense network

regions rather than dense network region migration. Contrarily, mobility maps and RCM movies

show movement of the dense network regions themselves, as these methods are only sensitive to

movement of the complete dense network regions rather than of single probes.

Migration of dense network regions can be explained by continuous slow reorganisation of

the bulk coarse network, whereupon at a certain critical reorganisation level, the dense network is

allowed to suddenly migrate within the bulk coarse network. Because of the rarity of these migrating

dense network regions, along with poor signal to noise levels in both the temporally limited mobility

maps and the RCM images, we did not attempt further quanti�cation of the dense network region

movement in this study.
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7.3 Conclusions

In this study, we qualitatively and quantitatively visualised heterogeneity present in κ-carrageenan

gels with sptFM. We observed bimodal self-di�usion of inert �uorescent probes embedded in the

gels with occasional switching between the two states. By analysing these states, we characterised

κ-carrageenan gels as consisting of a coarse network with 3.2 +− 0.3 nm diameter �bres, in which

∼µm-sized dense network regions are present. These dense network regions showed rare and abrupt
migration with a di�usion coe�cient of ∼0.4 µm2/s, suggesting continuous reorganisation of the

κ-carrageenan network even after full gelation. Quantitative information on the heterogeneity and

reorganisation kinetics is relevant for transport and release of low- and high-molecular-weight solutes

in hydrogels, as well as for infusion and activity of digestive enzymes.

The existence and size of the dense network regions, as well as the size of the κ-carrageenan

�bres, are in line with the results obtained from studies using either invasive or nonspatial techniques

(nuclear magnetic resonance di�usometry or EM5,8,10). Our work indicates that the technique used

here is reliable and has distinct advantages because of its noninvasive nature and spatial resolving

power. Employment of sptFM, therefore, has potential to quantitatively and spatially assess the

self-di�usion behaviour of multiscale solutes in complex heterogeneous hydrogels.

7.4 Material and methods

7.4.1 κ-Carrageenan gel creation

κ-Carrageenan (Sigma-Aldrich, Zwijndrecht, The Netherlands) was thoroughly mixed with Milli-

Q water with various volumes of 1 M 0.2 µm-�ltered NaCl and KCl solutions to obtain various

κ-carrageenan gels (0.5-2.5% (w/v) κ-carrageenan, 20 mM KCl, and 100-200 mM NaCl). This

mixture was then heated in a heat block (Dry Block Thermostat, Grant Instruments Ltd, Shepreth,

UK) to 75 °C and was left at this temperature for at least 15 min while regularly vortexing the

solution. Then, 20 µL of the hot κ-carrageenan solution was pipetted on a cleaned (oven-burned

at 500 °C for 20 min to remove possible organic �uorescent impurities36) glass coverslip (Paul

Marienfeld GmbH & Co. KG, Lauda-Königshofen, Germany; #1.5H, 170 µm thickness), where the

sample was con�ned by silicone wells. The sample was then left to solidify for at least 5 min before

any measurement.

7.4.2 Probe infusion in κ-carrageenan gels

After solidi�cation of the gel and directly (∼1-5 min) before imaging, 2 µL of 0.02% w/v 28 nm diam-

eter nanospheres (FluoSpheres carboxylate-modi�ed dark red, Thermo Fisher Scienti�c, Waltham,

MA, USA) solution was added to the side of the gels (leading to 0.002% w/v nanosphere concen-

tration in the �nal sample volume). Single-particle tracking results shown in this study consist of

two replicates with four areas characterised in every replicate.

7.4.3 Single-particle imaging

All imaging was performed on a home-built single-molecule microscope, fully described elsewhere33.

Brie�y, a 642 nm laser line was employed for epi�uorescent illumination to excite the nanospheres
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via a Nikon 100Ö 1.49 NA HP/SR objective. The emission light was then �ltered via a 700 +− 75 nm

bandpass �lter and imaged at 200 Hz with a Zyla 4.2 plus sCMOS (at 2 Ö 2 pixel binning, 128 nm

pixel size) controlled using the micromanager software37. Occasionally, the emission light was guided

via the bypass mode of a rescan confocal microscope, which reduced the pixel size to 122 nm (at

2 Ö 2 pixel binning). Four di�erent �elds of view of every gel were recorded for 8000 frames (40 s)

each and analysed.

7.4.4 Rescan confocal imaging

The home-built microscope described above was expanded with a rescan confocal microscope (RCM)

unit (Confocal.nl, Amsterdam, The Netherlands)35. The RCM uses the same laser line, and scans

the confocal excitation spot over the sample through the same objective. The resulting emission

light is rescanned with a mirror with 2Ö the sweep length as the excitation scanning mirror, leading

to a 43 nm pixel size on the sCMOS chip. In practice, RCM is capable of a ∼40% increase in

resolution with respect to the classical resolution limit.

7.4.5 Single-particle tracking analysis

The raw recorded single-molecule data were analysed with the ThunderSTORM plugin38 with

pSMLM functionality20 in FIJI39,40. A β-spline wavelet �lter with scale 2 and order 3 was used

for identi�cation of molecules, after which a threshold of 1.25 times the standard deviation of the

wavelet F1 value was used to detect single point spread functions (PSFs). Then, a 2D pSMLM

sub-pixel �tting routine was employed on a 7 Ö 7 pixel region of interest around the centre of the

PSF. These sub-pixel localizations were loaded in MATLAB (The MathWorks, Natick, MA, USA)

2018b for further analysis.

Tracking of the individual localizations was performed via the tracking methodology incor-

porated in the SMALL-LABS software package41, with a minimum merit of 0.01, 5 ms integration

time, a gamma of 1, a minimum track length of 2 frames, and a maximum step size of 5 pixels

(0.6 µm). Then, for every track found in a movie, the mean jump distance (mjd) was calculated

and a histogram of the mjd was produced, weighing the mjd on the number of localizations per track.

The histograms were plotted on a logarithmic x -axis and �tted with a double log-Gaussian, con-

straining the peak position of the Gaussians between [7 and 148] nm, and between [55 and 1097] nm,

respectively. These bounds were never limiting the �tting peak positions.

The peak positions are plotted either directly as mjd, or recalculated as the di�usion

coe�cient: mjd =
√
4 ·D ·∆t+ σ, where σ is the localization uncertainty. The localization uncer-

tainty was estimated by �tting a representative subset (∼4% of frames evenly spread over a single

movie) of all localizations of all datasets with a maximum likelihood (MLE) Gaussian �tting model

within ThunderSTORM38, and extracting the calculated localization uncertainty42. MLE-Gauss

�tting is shown to have a ∼4% di�erence in localization uncertainty compared to the used phasor

�tting20. Over all localizations, a mean localization uncertainty of 22 nm was found, corrected for

the di�erence in localization uncertainty.
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7.4.6 Quanti�cation of probe state switching

To have an indication of how many probes show behaviour characteristic of switching from ob-

structed di�usion in the coarse network to largely immobilised di�usion in the dense network re-

gions (e.g. Figure 7.1c bottom), all tracks from a single movie were tested as follows: �rst, tracks

shorter than 20 frames were discarded, as these show insu�cient information to assess switching

behaviour. Then, a 2-frame-moving average of the jumping distance plot was created. If this mov-

ing average plot had at least 5 consecutive frames (25 ms) of at least 150 nm jump distance (i.e.

obstructed di�usion in the coarse network), along with at least 10 consecutive frames (50 ms) of

at most 100 nm jump distance (i.e. largely immobile behaviour), the track was indicated to be

state-switching.

7.4.7 Obstruction model

Johnson's obstruction model10,26 was calculated according to equation 7.1:

D

D0
=

e−0.84·α1.09

1 +
(

r2s
κ

)0.5

+ 1
3
· r2s

κ

with α = φ ·
(
rs + rf

rf

)2

andκ = 0.31 · r2f · φ−1.17 (7.1)

where D is the measured di�usion coe�cient, D0 the di�usion coe�cient of the probe in pure

water, rs the nanosphere radius, rf the κ-carrageenan strand radius, and φ the polymer volume

fraction. The κ-carrageenan strand radius is the only unknown parameter in this equation. This

model is �tted to the obtained mjd log-Gaussian peak positions for both experimental conditions

via a non-linear �tting procedure in MATLAB and a 95% con�dence interval was obtained from

this �t.

Johnson's obstruction model assumes the following conditions: (1) the collisions between

the probe and network are elastic; (2) the movement of the �bres is slow compared to the interaction

times of the probes; (3) the entire volume is accessible except for the volume occupied by the

probes and the �bers; (4) di�usive freedom of the probes in the polymer; and (5) non-negligible

hydrodynamic drag of the probes. In our setting, the use of the Johnson model is justi�ed, as (1)

the probes and polymers are both hard structures, (2) only brief (elastic) interactions between the

probes and polymers occur, and (3) the probes have no expected a�nity to the polymer.

7.4.8 Mobility maps

To create mobility maps, all localized particles were divided into three groups (immobile, mo-

bile, or unde�ned) based on the mjd of the track to which the localizations belong. The double

Gaussian �t of the mjd histograms of a single experiment (described above) was used to deter-

mine cut-o� jump distances at which the ratio of the probability of the Gaussians was 0.95 for

either P (mobile)/P (immobile) or for P (immobile)/P (mobile) (also see Figure 7.3a). Then, the

localizations that correspond to tracks with jump distances lower than the jump distance found for

P (immobile)/P (mobile) = 0.95 were termed �immobile�. A similar procedure was performed to �nd

localizations that were termed �mobile�. Localizations that were neither �immobile� nor �mobile�

were discarded for mobility mapping.
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Next, an average shifted histogram of only the �immobile� or �mobile� localizations was

created via an algorithm identical to the ThunderSTORM38 average-shifted histogram visualisation

option with a magni�cation of 2 and a lateral shift of 2 pixels. These �immobile� and �mobile�

mobility maps were coloured and overlaid on each other.
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7.7 Supplementary information

ESI Movie 1 and 2 are available at doi:10.1021/acs.langmuir.0c00393, and contain the following

information:

ESI Movie 1: Rescan confocal microscopy operating at 1 Hz of 2% κ-carrageenan infused

with 0.03% (w/v) �uorescent nanoprobes. Images shown in Figure 7.4b are extracted from this

movie.

ESI Movie 2: Rescan confocal microscopy operating at 1 Hz of 0.03% (w/v) �uorescent nanoprobes

in milli-Q water.

Figure S7.1: Histogram of jumping distances, weighted

on track length, of probes in 1 - 2% (w/w) κ-carrageenan

polymer solutions (two repetitions of each sample) without

any salt addition.
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Figure S7.2: Probe infusion investigated with rescan confocal microscopy. The median value of a 50-

frame window is shown, and the intensity for every individual image is rescaled to remove the highest

and lowest 1% intensity values. The observed horizontal patterns represent the fast scanning direction

of the RCM. Rows are repetitions of the same sample. For the 0% κ-carrageenan sample, 25% glycerol

is used to decrease the di�usion coe�cient of the nanosphere without introducing spatial heterogeneity.

Scale bars represent 2.5 µm.
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General discussion

8.1 Dynamic macromolecular research requires a demanding tech-

nique

A fundamental understanding of di�usion and behaviour of key macromolecules in life science and

soft matter could be very in�uential in their respective applied �elds by hypothesising and studying

application-oriented e�ects propagating from fundamental studies. In life science, for example,

good knowledge of (kinetic) interactions of CRISPR-Cas proteins with DNA can predict adverse

e�ects as a function of protein concentration and incubation time1�3. This prediction allows for

intelligent choices in genomic editing protocols designed for higher eukaryotes, including humans,

where safe applicability is of paramount importance4. In the �eld of soft matter, a similar emphasis

can be placed on fundamental knowledge. If a material can be described on the mesoscale (i.e.

∼10-1000 nm) and if the interactions of the essential macromolecules are known, the e�ects on

for example internal solute release can be predicted5�7. Understanding solute release can aid in

designing novel food products or pharmaceuticals, where slow release of solutes (i.e. nutrients or

medicine, respectively) is required8.

However, devising a technique that is capable of studying these dynamic macromolecular

interactions is not trivial. Ideally, this technique satis�es multiple demanding criteria: 1) The

sample is minimally invaded or destructed, because all samples are ideally studied in a state as

natural as possible. 2) Minimal spatiotemporal averaging is taking place, to study macromolecular

interactions independently of the sample spatiotemporal heterogeneity. 3) Molecular speci�city is

reached, to speci�cally study key macromolecules without noise stemming from other molecules in

the sample. 4) It is as accessible as possible, because all techniques become more powerful when

used by experts in specialistic �elds, rather than by experts in the technique. 5) A su�ciently high

spatiotemporal resolution is achieved; studying macromolecular interactions minimally requires a

spatial resolution on the scale of the macromolecule (i.e. ∼1-100 nm), and a temporal resolution

dictated by its di�usion (i.e. millisecond range). However, further increase in spatiotemporal

resolution can open up the technique to study more exotic (macro)molecules or interactions.

Single-molecule localization microscopy (SMLM) and its derivation single-particle track-

ing �uorescence microscopy (sptFM) are methodologies based on localizing emission patterns of sin-

gle �uorescent emitters. SptFM is a promising contender to ful�l the stated criteria (Chapter 1),

but can be further improved by better accessibility and by an increased spatiotemporal resolu-

tion. Moreover, the application of sptFM in life science and soft matter should be investigated to

accurately determine the possibilities and limitations of the technique.

This thesis is focused on these hardware and software improvements to increase the spa-

tiotemporal resolution of sptFM, as well as to increase its accessibility. Moreover, multiple applica-

tions of sptFM in life science and soft matter are investigated. This thesis �rst described advances

in sptFM hardware and analysis procedures. Computational ease-of-use was increased via a novel

and computationally inexpensive phasor-based localization algorithm (Chapters 2 and 3). Next,

a novel low-dispersion spectral SMLM implementation that maximises spatiospectral resolution was

designed (Chapter 4). A large increase in temporal resolution was achieved in the form of Monte

Carlo di�usion distribution analysis (MC-DDA; Chapter 6). Last, a modular and open-source mi-

croscope with minimal optical components was designed (Chapter 6). These improvements were

employed to obtain high �delity dynamic information on in vivo dCas9-DNA interactions (Chapter
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5 and 6) and to investigate the hydrogel κ-carrageenan via sptFM (Chapter 7). In this chapter,

the hardware and computational improvements will be discussed, followed by a discussion on the

capability of SMLM and sptFM to elucidate macromolecular interactions in life science and soft

matter.

8.2 SMLM adoption requires good accessibility and high spa-

tiotemporal resolution

Currently, SMLM and sptFM are regarded as techniques usable mainly by microscopy experts.

Further adoption of SMLM/sptFM broadly requires the realisation of two goals. First, it should

be accessible for non-experts in microscopy, so it can be employed by experts in applied research.

Increasing the accessibility of SMLM can be realised by creating robust, easy-to-install equipment

and software packages, and by decreasing the associated costs. Second, SMLM/sptFM needs to be

powerful enough to provide substantial incentive to use SMLM/sptFM rather than more established

techniques. Speci�cally, the spatiotemporal resolution needs to be maximised, allowing SMLM to

be used in a wider range of experimental settings. These goals can be con�icting with one another,

as an increase in spatiotemporal resolution often stems from more complex hardware and more

computationally expensive software and vice-versa. In this thesis, we describe various improve-

ments in the accessibility of SMLM/sptFM while retaining maximal spatiotemporal resolution, as

well as methods to increase the spatiotemporal resolution without decreasing the accessibility of

SMLM/sptFM.

8.2.1 Improving computational accessibility

A more widespread use of the technique can be directly aided by an increased computational acces-

sibility, due to more approachable and rapid processing, and due to lowering computational costs

and required expertise. Moreover, better computational accessibility can be part of important in-

cremental improvements that eventually lead to novel insights. This thesis describes an increase in

the single-molecule localization rate by ∼3 orders of magnitude (reaching ∼3·106 localizations/s)

via implementation of phasor-based algorithms in the pSMLM software suite without substantially

sacri�cing spatial resolution (pSMLM; Chapter 2). This rate is high enough for real-time local-

ization rates on a standard central processing unit (CPU), where previously graphical processing

units (GPUs) were vital to achieve this9. The pSMLM methodology was furthermore extended with

3-dimensional localization of engineered point spread functions (PSFs), such as astigmatic, double-

helix, saddle-point, and tetra-pod point PSFs (Chapter 3). We integrated pSMLM in stand-alone

software packages providing a complete computational pipeline to extract localizations from raw

data to provide good accessibility. Implementation of real-time analysis based on pSMLM is feasi-

ble on current computer hardware, but could also possibly be implemented on the hardware of the

camera itself, leading to a highly streamlined analysis pipeline in SMLM.

8.2.2 Improving hardware accessibility

Generally, microscopy hardware involves a trade-o� between associated costs, required expertise,

and upgradability (Figure 8.1a). Commercial instruments have high initial costs, but minimise

required expertise, whilst its upgradability generally depends on external factors such as the business
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Figure 8.1: Trade-o�s in the hardware (a) and experimental design (b) of SMLM. a SMLM microscopes

have a preferred combination of low required expertise (top), low associated costs (bottom left), and high

modularity (bottom right). The miCube (magenta) aims to combine all three factors. Commercial mi-

croscopes (blue) have a minimised associated expertise, but lack good cost-e�ectiveness, and occasionally

have good modularity (light blue). Home-built microscopes (red) normally combine low costs with high

modularity at the cost of higher required expertise. Some, especially complex home-built microscopes,

have increased associated costs (light red). b The experimental parameter space in SMLM is a trade-o�

of total photon budget of �uorophores, temporal resolution, and spatial resolution. These three proper-

ties in�uence each other. Speci�cally, spatial resolution is directly related to photon collection per frame

(Equation 1.6), which can be in�uenced by a higher excitation power (requiring a higher total photon

budget), or by longer frame duration (sacri�cing temporal resolution).

model of the vendor. Home-built instruments, on the other hand, are often characterised by lower

associated costs, as well as an upgradability level fully determined by the laboratory, but requires

a substantial higher level of expertise. With the miCube (Chapter 6), we realised a modular

and upgradable SMLM-capable microscope that is fully open-source. It requires lower levels of

expertise to recreate than most other home-built instruments and has lower associated costs than

commercial instruments, in this manner aiding to an increased hardware accessibility in the �eld

of SMLM. The decrease in expertise required for building the miCube mainly stems from pre-

aligned optical components and detailed installation instructions. Furthermore, we designed a

spectral add-on (Chapter 4) usable in any SMLMmicroscope, which minimises the required optical

components to introduce spectral information in SMLM. In previous implementations of spectral

SMLM (sSMLM), multiple optical components such as mirrors and lenses had to be employed in

combination with a di�ractive element such as a grating, a prism, or a spatial light modulator to

obtain good spatiospectral resolution. In our implementation, we decreased the optical components

to just the di�ractive element, decreasing implementation costs and photon loss. In addition, we

minimised spectral dispersion, improving the photon budget utilisation, the e�ects of which will be

further discussed later.

Costs associated with SMLM hardware could be further decreased by employing

industrial-grade CMOS or smartphone cameras, which are 10-100x cheaper than scienti�c CMOS
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or EMCCD detectors normally employed in SMLM10�13. These implementations are promising in

opening up opportunities for sub-di�raction resolution microscopy with a much decreased �nancial

barrier of entry. Low-cost SMLM hardware could be useful for massively parallelised, in-�eld, or

teaching-oriented applications. However, microscopes equipped with these alternatives currently

have a decreased obtainable spatial resolution due to lower photon collection e�ciency and higher

background noise levels.

8.2.3 Spatiotemporal resolution increase in SMLM

The achievable data quality in SMLM fundamentally stem from a trade-o� between spatial reso-

lution, temporal resolution, and the emitter's total photon budget (Figure 8.1b). Because of this

strong dependency on one another, stretching the boundaries of one property will increase the com-

plete accessible experimental parameter space in SMLM. However, this also indicates that a true

increase in spatiotemporal resolution can only be accomplished via a method that improves either

spatial resolution, temporal resolution, or photon budget, without a�ecting the others.

Recently conceived technologies that combine SMLM with sub-di�raction illumination

pro�le information, such as MINFLUX, SIMFLUX, and ROSE14�17, have substantially increased

the achievable spatiotemporal resolution in SMLM. In MINFLUX, high spatial resolution (<5 nm)

is combined with good temporal resolution (sub-millisecond) and photon budget depletion (minimal

from a technical point of view), but at the cost of a vastly decreased throughput due to sequential

rather than parallel localization, and decreased accessibility due to the need for a complex and

expensive microscope. SIMFLUX and ROSE achieve a ∼2x increase in spatial resolution without

sacri�cing temporal resolution or photon budget, but again require a complex microscope with

more optical components and control elements compared to a typical SMLM microscope. The

following sections will discuss spatiotemporal resolution increase without sacri�cing throughput or

substantially increasing the hardware complexity.

Spatial resolution increase

Spatial resolution increase in traditional SMLM can stem from more accurate sub-pixel localization

procedures. In Chapters 2 and 3, the pSMLM sub-pixel localization algorithm framework is

presented, which achieves similar spatial resolution as state-of-the-art techniques, and additionally

substantially increases localization speed as discussed before. The �eld of sub-pixel localization

algorithm development is currently advancing rapidly, and recently, many SMLM localization algo-

rithms have been objectively compared18. The SMLM localization algorithms have moreover been

expanded with localization algorithms based on neural networks (also known as machine-learning),

which show excellent performance with regards to emitter detection and positional accuracy19�23.

Moreover, while the network training is generally slow, neural network-based localization relies on

simple mathematical operations, and can thus achieve high localization rates, outperforming non-

machine-learning algorithms on all aspects. The caveat with these algorithms is their dependence

on the similarity of training data to experimental data. Because the underlying mathematical steps

in neural networks are generally unknown, it cannot be a priori assumed that small deviations be-

tween a training dataset from the experimental dataset results in negligible localization errors. This
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is especially important with structured noise, inhomogeneous background �uorescence, or refractive

index mismatches, which are di�cult to model realistically22.

This thesis also describes a spatio-spectral resolution improvement in spectral SMLM

(sSMLM) in Chapter 4. By focusing on minimisation of the dispersion caused by the grating,

the spectral pro�le results in the highest possible signal-to-noise ratio, and thus the best spectral

precision when sub-pixel localization algorithms are used. In other sSMLM implementations, a ∼1:3
ratio of photons for the spatial:spectral pattern is used24�26, but the increased attainable spectral

resolution described in this thesis allows for a larger ratio of the arriving photons to inhabit the

spatial pattern, thereby increasing spatial localization accuracy. Nonetheless, compared to non-

spectral SMLM, the spatial localization has a little less than half of the original photons (∼1:1
ratio between spatial and spectral pattern, with additional imperfect e�ciency of the dispersive

element). Spectral information is therefore gained by trading only a factor of ∼
√
2 in spatial

accuracy (Equation 1.6). Further optimisation of the data analysis of this minimum-dispersive

sSMLM implementation can possibly improve spatial accuracy, especially in the direction una�ected

by the spectral dispersion (i.e. the y-axis). This increased resolution can be achieved by using the

1-dimensional pro�le of both di�raction orders, thereby using all photons for spatial localization. A

recent sSMLM method that elegantly uses the -1st and +1st orders of a transmission grating also

employs SMLM localization algorithms, and uses all photons that arrive on the detector for both

spatial and spectral localization. However, it does have a higher overall photon loss because the

0th order is not incorporated26. An intriguing possibility would be the combination of our sSMLM

implementation with SIMFLUX or ROSE, which would lead to a technique that has a ∼
√
2 increase

in spatial resolution compared to standard SMLM, as well as excellent spectral resolution.

Temporal resolution increase

Increasing temporal resolution without a�ecting spatial resolution in traditional SMLM can, like

spatial resolution increases, be achieved via computational processing. Consider a macromolecule

that changes between a fast-di�usive and a slow-di�usive state. The rate by which the state changes

could previously only be quanti�ed if both di�usive states are clearly observed in a single track,

as well as at least one state change27. Correct state determination is complex due to the high

stochasticity inherently present in di�usion (Equation 1.10). While this issue could be resolved by

obtaining tracks much longer than the expected dynamics, the photon budget of existing in vivo

PALM (photo-activation localization microscopy) �uorophores is insu�cient to accomplish both

long tracks and adequate spatial accuracy. This problem is addressed via Monte Carlo di�usion

distribution analysis (MC-DDA; Chapter 6). MC-DDA is capable of resolving di�usive state

changes on the same timescale as the frame time, even with short tracks. This enables a substantial

increase in e�ective temporal resolution without a�ecting the spatial resolution or photon budget

of the individual emitters. In our experimental implementation, we employed 10 ms frametimes,

and were able to deduce dynamic interactions of 17 ms, with 4 ms uncertainty.

In MC-DDA, an experimentally obtained di�usion distribution histogram is compared

with a simulated one, after which its parameters can be modi�ed to �nd a best �tting parameter

set. This allows great �exibility in MC-DDA, being theoretically unlimited in for example the

number of di�usive states and complexity of the environment geometries, but does result in a com-
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putationally expensive procedure. Moreover, adding more computational freedom possibly results

in a redundancy of solutions, leading to multiple computationally correct, but conceptually di�erent

interpretations of the data. However, this is not the case with the current MC-DDA implementation

of two di�usive states with two state-changing rate constants.

An analytic alternative to MC-DDA (analytical di�usion distribution analysis or

anaDDA) was inspired by MC-DDA3,28, and provides a computationally inexpensive method to

describe the di�usion distribution histogram. However, it is currently restricted to only a single

mobile and a single immobile state, and is limited to relatively simple sphere- or rod-shaped cell ge-

ometries. Other than these considerations, MC-DDA and anaDDA are fundamentally very similar

and can both obtain di�usional state changes both faster and slower than the frame time, and �ll

slightly di�erent niches in sptFM analysis. The DDA software suite to a certain extend uncouples

the quanti�able temporal range from the experimentally employed frame time. This allows more

freedom to optimise experimental frame time based on practical considerations such as hardware

limitations and blurring artefacts, generally increasing applicability of sptFM.

8.3 Applications of sptFM

With the introduced advances in sptFM in terms of accessibility of soft- and hardware and of

spatiotemporal resolution, we explored STORM (stocastic optical reconstruction microscopy) and

PAINT (point accumulation in nanoscale tomography) imaging in Chapters 2, 3, and 4, predom-

inantly demonstrating the accuracy of the presented techniques. While three-dimensional single-

molecule localization was successfully used in super-resolution imaging, it was not employed in

sptFM experiments. Three-dimensional localization inherently decreases lateral localization uncer-

tainty (as studied in Chapters 2 and 3), while di�usional movement is dimension-independent

(Equation 1.2). Adding z -positional information to sptFM experiments therefore does not provide

additional dynamic information, but does decrease the localization accuracy, making it more di�cult

to quantitatively assess slow di�usion. Moreover, single-molecule spectral determination was not

employed in the sptFM experiments, as only a single �uorophore was studied in each experimental

setting.

8.3.1 Single-particle tracking of dCas9 in vivo

The dynamic behaviour of dCas9 in L. lactis was studied via sptFM (Chapters 5 and 6), leading

to a novel model showing that dCas9 is in a PAM-screening con�guration for ∼17 ms, and then

moves to a freely di�using state for ∼25 ms. By investigating DNA target-binding behaviour as

a function of single cell dCas9 copy number, we could show a relatively short (∼100 s) dCas9-

target bound time. These insights lead us to hypothesise that dCas9 target binding and plasmid

replication are competing processes. Moreover, from the inferred dynamics we predicted target

cleavage probability in L. lactis as a function of incubation time and single cell dCas9 copy number.

These insights have direct applicability for safe utilisation of genome editing via CRISPR-Cas

with minimal o�-target e�ects across the domains of life, and can have a more indirect future

applicability by aiding in fundamental understanding of CRISPR-Cas9 dynamic behaviour in vivo.

Notably, single-protein CRISPR-Cas dynamics are currently mostly elucidated via �uorescence

microscopy, with for example smFRET29,30, DNA curtains31 (both only in vitro), �uorescence
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correlation spectroscopy32, and sptPALM2,3,32 being used, which provide more detailed information

compared to ensemble techniques such as SDS-PAGE31,33,34 and cell proliferation assays3. This

showcases the strength of �uorescence microscopy in general, and sptFM in particular.

This in vivo study moreover pinpoints multiple assay designs that can be used more

generally. The �rst utilisation of photo-activated �uorescent proteins in L. lactis shows that sptFM

is applicable in this model food-related bacterium species (Chapter 5), opening possibilities for a

wide range of novel studies. Next, while tracking individual dCas9 proteins in these prokaryotes,

we further ascertained a pseudo-single-cell study by analysing the dCas9 based on their single-

cell copy number (Chapter 6). In the case of dCas9 target �nding, equilibrium dynamics were

studied by analysing a varied protein copy number combined with an unrelated and static amount

of DNA targets, revealing that dCas9 is removed from a target every ∼100 s. This method of

analysing single-particle tracks based on their host cell conditions is directly extendable to more

in vivo sptFM studies, as long as a cell outline can be revealed. This could prove very interesting

when combined with for example single-cell transcriptome analysis35 or single-cell growth behaviour

experiments36.

8.3.2 Nanoparticle di�usometry reveals hydrogel network structure

In Chapter 7, sptFM of �uorescent nanoprobes in κ-carrageenan hydrogel is performed to eluci-

date its mesoscale structure. This work revealed that κ-carrageenan hydrogels consist of a coarse

network with ∼3.2 nm diameter �bres, in which dense regions with a diameter of ∼1 µm are em-

bedded. Furthermore, we could show that these dense regions are mobile on a seconds-to-minutes

timescale. These insights are important to intelligently design soft matter with slow release of its

solutes, which is an attractive goal for food products, but also for pharmaceuticals. Some of the

revelations obtained via sptFM were previously elucidated by NMR di�usometry7, where a similar

heterogeneity of bulk network with dense regions was found. However, since NMR di�usometry

is a spatial-independent method, it is insensitive to movement of these dense regions. This move-

ment was therefore not directly observed with NMR di�usometry, but it was hypothesised based

on slow movement of probes trapped in dense network regions. Similarly, EM measurements of

κ-carrageenan show the network with a resolution surpassing the individual strands and indicates

the spatial heterogeneity37,38, but could not show dense region movement due to the cryogenic

temperatures employed. This comparison showcases both the quantitative accuracy of sptFM, as

well as the advantages of a spatial technique with non-destructive sample preparation.

8.4 Challenges in sptFM

The obtainable spatiotemporal resolution of �uorescent particles employed in life science and soft

matter is explored in Chapters 5 to 7, using very di�erent �uorescent particles (Table 8.1). In

L. lactis, a �uorescent protein (PAmCherry2) was conjugated to a dCas9 protein, creating a ∼12 nm
diameter particle with a single �uorescence centre. In the κ-carrageenan hydrogel, however, a multi-

�uorophore polystyrene nanoparticle (NP) of 28 nm diameter was used. The observed di�usion

coe�cients in these experiments were similar (∼1-5 µm2/s) due to increased viscosity and molecular

crowding in prokaryotic cytoplasm compared to the κ-carrageenan strands in the hydrogel, and a
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Table 8.1: Comparison of the �uorescent particles used in prokaryotic life science and in soft matter

sptFM in this thesis.

Name dCas9-

PAmCherry2

Polystyrene

nanoparticles

Application Life science

(Chapter 5 and 6)

Soft matter

(Chapter 7)

Diameter (nm) ∼12 ∼28
Nr. of �uorophores 1 ∼200

Laser power (J/frame) ∼0.17 ∼0.4
Relative photon budget per frame 1 >400

Localization accuracy (nm) ∼40 ∼22

similar frame time was used. However, the ∼2x increased localization precision does not match the

attributes of the �uorescent particles and the experimental conditions (Table 8.1): the total number

of �uorophores in each particle and the used excitation intensity indicates a photon budget that is

>400x higher, and would therefore realise a localization precision >20x higher. This could be an

overestimation, since it is assumed that no quenching takes place in the polystyrene NPs, as well

as that PAmCherry2 and the unknown �uorophore in the polystyrene NPs have a similar quantum

yield, but does not explain the large discrepancy. The reason that higher localization accuracy was

not achieved is due to a heavy loss of signal-to-noise ratio in the more di�cult to image soft matter

material compared to L. lactis cells, which is further discussed below.

8.4.1 Practical achievable resolution in sptFM

Loss of signal-to-noise ratio in soft matter has multiple causes (Figure 8.2). First, while low HiLo

conditions can be used in prokaryotic sptPALM (i.e. imaging of the ∼1 µm closest to the cover-

slip), soft matter such as the κ-carrageenan hydrogel needs to be imaged deeper in the material

(> ∼5 µm) to prevent artefacts induced by the edge of the material, requiring epi�uorescence.

This causes a higher background �uorescence level in the sample due to unwanted out-of-focus

�uorophores present in the sample, e�ectively decreasing the signal-to-noise ratio and achievable

spatial resolution. Second, the inhomogeneity and low refractive index of the material below the

focal plane result in optical aberrations a�ecting the PSFs, leading to lower accuracy in single-

molecule �tting. Last, the presence of long-lasting immobile particles in the κ-carrageenan prevents

the use of a temporal median �lter, which substantially decreases in�uence of background �uores-

cence in single-molecule experiments. Importantly, the required imaging depth and induced optical

aberrations are inherently related to soft matter studies, making this a more fundamental issue

rather than a speci�c issue for κ-carrageenan hydrogels used in this thesis.

8.4.2 Extending the use of sptFM to complex soft matter

To investigate the possibility of using sptFM in a very challenging sample, we attempted to use

a similar experimental setup described in Chapter 7 to study an anisotropic protein-based meat

analogue. Meat analogues are very promising to reduce meat intake of humanity, accordingly reduc-

ing animal su�ering and environmental impact. Speci�cally, we tried to deduce spatial mesoscale
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Figure 8.2: E�ect of sample and illumination pro�le on background �uorescence. Scale bar represents

1 µm. a Experimental conditions of imaging in prokaryotes such as employed in Chapter 6. Here,

the �uorophores of interest (red) are embedded in prokaryotic cells close to the objective, leading to a

focal plane close to the objective (red dotted line), which allows low HiLo imaging conditions (green

shading). This excitation pro�le in turn leads to minimal illumination of unwanted, out-of-focus spurious

�uorophores (black, magenta) present in for example the agar layer on top of the prokaryotes. b Exper-

imental conditions of imaging in soft matter as employed in Chapter 7. Because the material close to

the glass can be a�ected (f.e. tearing or adsorption), the focal plane needs to be positioned deeper in the

sample (red dotted line). A deeper focal plane in turn requires epi�uorescence illumination, leading to

many illuminated unwanted �uorophores (magenta).

information of a calcium caseinate (CaCas) meat alternative that attains a dense network on the

microscale and a �brous macroscale structure by shearing heated protein material via a shear cell

in a cone-cone geometry39�43. While this provides good texture on the consumer-relevant spatial

scale, it is unknown if the macroscale anisotropy propagates from underlying anisotropic mesoscale

structures, or is only formed on a micro-to-macroscale level.

Fluorescent nanoparticles applicable in sptFM

A major challenge to overcome in this complex soft matter material is to �nd suitable nanoparticles

that can be visualised on the single-molecule level via sptFM. First, the 28 nm polystyrene nanopar-

ticles (Figure 8.3) that proved successful in κ-carrageenan hydrogel sptFM were not capable of en-

tering the calcium caseinate meat analogue. This hints to a dense protein structure in the material,

and con�rms the complexity of applying sptFM on the material. Second, organic �uorophores with

a size of 1-3 nm (f.e. rhodamine, Figure 8.3) were capable of entering the material, leading to ho-

mogeneous staining on the spatial scale resolvable with di�raction-limited microscopy techniques39.

However, it proved impossible to use these �uorophores for sptFM due to the insu�cient signal-to-

noise ratio caused by the reasons listed earlier. Therefore, it was imperative to attempt to create

∼7-10 nm diameter �uorescent nanoparticles with a substantial increase in intensity compared to
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Figure 8.3: Fluorescent particles used in this thesis. BSA (bovine serum albumin; PDB 3V0348) was

covered with multiple organic �uorophores (not depicted), and used to study dense protein networks in

meat analogues. Rho110 (Rhodamine 110) is a typical organic �uorophore which could infuse in dense

protein networks. Note that other organic �uorophores such as ATTO and Alexa dyes have a similar size,

and have been employed in super-resolution imaging in this thesis (Chapters 2, 3, and 4). CdTe/CdS

quantum dots (orange) were modi�ed with a silicum-oxide shell (TEOS; blue) and a tetra-ethylene glycol

(TEG) layer (to create QD-TEOS-TEG; a cross-section is depicted), but was found to blink on similar

timescales as the frametime employed in sptFM. dCas9-PAmCherry2 was employed in the prokaryotic

life science study and contains a single �uorophoric centre in the PAmCherry2 (Chapters 5 and 6;

PDB 4CMP, 3KCT49,50). Carboxylated 28 nm diameter polystyrene nanoparticles (a cross-section is

depicted here without �uorophore distribution) was used to reveal the structure of κ-carrageenan hydrogels

(Chapter 7). Scale bar represents 5 nm.

individual �uorescent molecules. Dense packing of many �uorophores in a small nanoparticle can

give rise to self-quenching44, which guided us to realise nanoparticles with single �uorophore centres

with high photon budget. Quantum dots (QDs) appear to be good candidates that �t this pro-

�le, and therefore I created cadmium-tellurium/cadmium-selenium (CdTe/CdS) QDs, which have

a broad excitation spectrum and a narrow red emission wavelength peak with a diameter of ∼5
nm, leading to a ∼7-15 nm diameter nanoparticle after modi�cation (Figure 8.3)45,46. However,

these CdTe/CdS QDs proved inapplicable for our needs of sptFM at a 5-10 ms frametime, because

substantial blinking was observed in this same temporal regime. Therefore, only very short tracks

could be obtained, along with an increased probability of erroneously linking di�erent QDs during

tracking. While QDs have been used in sptFM studies where longer frame times were employed47,

this would result in excessive motion blur in di�usion in water-based soft matter.
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Alternatives to sptFM

Because of the di�culties in designing a �uorescent nanoparticle capable of determining the

mesoscale network of dense protein networks via sptFM, we attempted to use another �uorescence

technique, which can provide di�usional behaviour on a meso-to-microscale based on 2-dimensional

pair correlation functions (2D-PCF)51,52. In this technique, a temporal cross-correlation between

the intensity of every pixel in a �uorescent microscopy movie is performed, and the shape of the

individual pixel-to-pixel correlation curves can provide information on the local di�usive behaviour.

2D-PCF is therefore technically capable of resolving dynamic and sub-micron spatial information

(with a ∼100 x 100 nm pixel size). Moreover, it does not require su�cient signal-to-noise to lo-

calize individual emitters, as the �uctuation in �uorescence intensity is directly used to deduce

di�usive behaviour. This technique has for example been used to show anisotropy and barriers with

sub-micron spatial resolution in vivo51.

We attempted to perform 2D-PCF with CaCas meat analogue infused with multi-Alexa

Fluor 647-labelled bovine serum albumin (BSA, Figure 8.3), creating a ∼7 nm diameter bright

�uorescent particle. First, we ran simulations of the labelled BSA undergoing Brownian di�usion in

liquids with varying viscosity, and of the labelled BSA con�ned by barriers present in CaCas with an

expected ∼100 nm separation, based on EM data39. These simulations indicated that anisotropy on

this scale should be quanti�able with nanoprobes over a broad range of di�usion coe�cients. Free

Brownian motion of the labelled BSA in water investigated as a control agreed with theory and with

the simulations. However, experimental realisation in CaCas meat analogues proved impossible,

since the obtained 2D-PCF results were distorted to the extend that no proper computational

analysis could be performed. The lack of proper analysis could be due to low infusion of the

nanoprobes in the material; due to poor signal-to-noise ratio originating from a high background

caused by high �uorophore concentration and a deep focal plane; or due to very limited di�usion

in the material, which results in bad interpretation of the cross-correlation. Limited di�usion in

the material could indicate phase separation of low-density protein regions and high-density protein

regions in the meat analogue. A protein-rich network would explain the di�culty in 2D-PCF

together with the obtained contrast in earlier EM investigations of the material. NMR di�usometry,

on the other hand, did reveal that the material has slight anisotropy (preliminary ∼1-5% di�erence

in water di�usion in perpendicular directions) on the same spatial scale. Taken together, the

practical limits of nanoprobe di�usometry by �uorescence microscopy are demonstrated, especially

for the soft matter �eld. Possibly, sptFM in complex soft matter can be performed by combination

of SMLM with light sheet microscopy and optical aberration correction, which would resolve the

limited signal-to-noise ratio and induced optical artefacts53�55.

8.5 Outlook

Single-particle tracking �uorescence microscopy (sptFM) has been advancing rapidly over the past

decades. The achievable spatiotemporal resolution is increasing quickly, and can reach molecular

resolution (i.e. < 5 nm), and will therefore likely not be limited by technical challenges but rather

by experimental design and hard- and software accessibility. The accessibility of sptFM is similarly

quickly improving: where it was a fully specialistic technique only a decade ago, super-resolution

microscopy �nds more and more use by non-experts in a wider variety of research. This combi-
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nation could eventually lead to the possibility of direct investigation of single-molecule position

and dynamics in natural environments, and can provide a fundamental approach to many research

areas. The experimental developments presented in this thesis could be extended to investigation of

many in vivo protein-DNA or even protein-protein interactions across the domains of life; as well as

observation of the structure and dynamic properties in diverse soft matter materials with molecular

resolution.

While sptFM is possibly capable of these scienti�c outlooks, some technical challenges

have yet to be overcome. The fundamental premise of sptFM will always dictate optical transparent

samples and the necessity of embedding �uorophores in the sample of interest. Next, because the

resolution of sptFM is capable of surpassing the size of �uorescent probes, the distinction between

�uorophore and the conjugated protein of interest is becoming relevant, and should be accounted

for. This can be done computationally, but it is preferable to minimise the size of �uorophores

while retaining a high photon budget. Implementation of small �uorophores in sptFM can to a

certain extend be realised by nanobodies56,57 or organic �uorophores conjugated to proteins in

vivo58 rather than �uorescent proteins. Furthermore in life science, prior knowledge of the protein

of interest is required to allow for conjugation while retaining protein functionality, leading to a

dependence on other techniques such as crystallography59. Likewise in soft matter, the �uorescent

probe design is also a limiting factor, as it should have an outstanding combination of high photon

budget, small physical size, and a complete lack of chemical interaction with the bulk material.

Moreover, as discussed previously, sptFM in soft matter has an inherent lower signal-to-noise ratio

than in life science, requiring multiple incremental advances before sptFM will be widely applicable

in soft matter. If these challenges are overcome, though, the very good spatiotemporal resolution,

broad applicability, non-invasiveness, and non-destructiveness will continue to make sptFM a very

powerful technique in many scienti�c disciplines.
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Macromolecular motion is dictated by di�usion on >100 nm spatial scales, while speci�c

interactions occur on the nanoscale based on Van der Waals, electrostatic, and hydrophobic/hy-

drophilic forces. Characterising macromolecular motion reveals fundamental insights when relating

di�usional behaviour to the function of a macromolecule of interest. To adequately investigate

di�usion, a technique is required that ideally 1) minimises sample invasion and destruction; 2) min-

imises spatiotemporal averaging; 3) reaches molecular speci�city; 4) is accessible by non-experts

of the technique; and 5) has a spatiotemporal resolution of at least ∼5-100 nm and ∼10 ms, and

preferably even better.

Single-particle tracking �uorescence microscopy (sptFM) is a derivative of single-molecule

localization microscopy (SMLM) and o�ers the possibility to investigate macromolecular motion

while upholding these criteria. SMLM is a super-resolution optical microscopy methodology char-

acterised by localizing point spread functions (PSFs) originating from single �uorescent molecules,

with an accuracy surpassing the di�raction limit of light by roughly one order of magnitude. SptFM

tracks single molecules moving through time, describing their position with ∼5-40 nm spatial reso-

lution and good temporal resolution. These motions can then be quantitatively characterised and

used to reveal macromolecular behaviour.

While sptFM is a promising technique to observe macromolecular motion, it can be further

improved. SptFM can then be applied to study macromolecular di�usion in life science and soft

matter. This thesis aims to advance the �eld of sptFM by increasing the achievable spatiotemporal

resolution, and by increasing the accessibility of the hardware and software in sptFM. Next, sptFM,

enriched by these advances, is applied to study dynamic CRISPR-Cas9 behaviour in vivo, and to

study the spatiotemporal heterogeneity of κ-carrageenan hydrogels.

In Chapter 2 we develop a novel single-molecule localization algorithm called phasor-

based single-molecule localization microscopy (pSMLM). pSMLM can localize individual PSFs with

a rate of 3·106 localizations/s on a regular central processing unit (CPU), ∼3 orders of magnitude
faster than other localization algorithms, while keeping localization accuracies in line with other

state-of-the-art algorithms. A region of interest surrounding a PSF is converted to two phasors by

calculating the �rst Fourier coe�cients in both the x - and y-dimension. The angles of these phasors

when plotted in a phasor plot are representative of the emitter's lateral position. The ratio of the

phasors' magnitudes describes the elongation of the PSF, which is used to obtain the emitter's

axial position when employing astigmatism lenses. pSMLM can be used both as a stand-alone

localization algorithm, as well as a starting point for iterative algorithms, and is integrated in the

ThunderSTORM software for ImageJ and FIJI.

The pSMLM algorithm is expanded in Chapter 3, and the engineered PSFs known as

double-helix (DH), saddle-point (SP), and tetra-pod (TP) are accurately localized in three dimen-

sions via adaptations to the original pSMLM. For the DH PSF, pSMLM �rst identi�es the two

individual lobes with good accuracy while employing small regions of interest to prevent localiza-

tion artefacts. Then, the two lobes are connected, and their relative rotation and distance are

measures for the emitter's z -position. For the analysis of SP and TP PSFs, the distance between

symmetrical lobes of a SP or TP PSF is extracted by deconvolution in phasor-space via an approach

entitled circular-tangent pSMLM (ct-pSMLM). These novel pSMLM implementations are compared

to the existing state-of-the-art software SMAP, and reveals that pSMLM delivers similar precision
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and recall rates at signal-to-noise ratios typical for organic �uorophores. Importantly, the pSMLM

software package increases the localization rate by a factor of ∼2-4, and achieves rates of up to

15 kHz (DH) or 250 kHz (SP/TP). pSMLM and its adaptations are implemented in an existing

software package (SMALL-LABS), suitable for single-particle imaging and tracking.

While SMLM normally ignores spectral characteristics, the addition of spectral informa-

tion (creating spectral SMLM or sSMLM) provides opportunities for �uorophore multiplexing and

the characterisation of local chemical environments. A simple and minimal-dispersion method to

obtain spectral as well as spatial information of single emitters is presented in Chapter 4. Existing

implementations of sSMLM fall short in accessibility, as complex and expensive modi�cations were

required to microscopes; or in signal-to-noise ratios, as the spectral information was spread out

over 20-30 camera pixels. We placed a low-dispersion transmission grating as close to the camera

as possible, leading to an implementation that is both low-cost (∼ ¿100) and that has a spectral

dispersion of just 0.4 nm/pixel, orders of magnitude lower than typical sSMLM implementations.

This results in a maximised signal-to-noise ratio and achievable emitter density. The obtained spa-

tial and spectral pro�les can both be analysed by typical single-molecule localization algorithms

with high accuracy. This low-dispersion sSMLM is successfully applied in dSTORM and DNA-

PAINT, showcasing spectral discrimination of �uorophores with just 10 nm spectral di�erence, and

in single-molecule FRET, showcasing 0-to-15% FRET changes.

The applicability of single-particle tracking in the model lactic acid bacterium Lactococcus

lactis is explored in Chapter 5. First, we qualitatively investigate the suitability of various non-

photoactivatable and photoactivatable �uorophores in L. lactis. This is continued by creation a

chimera of PAmCherry2, a red-emitting photoactivatable �uorescent protein, with dCas9, a dead

variant of the Streptococcus pyogenes CRISPR-Cas9 used in genomic engineering procedures. We

con�rm the correct photoactivation of PAmCherry2 in combination with retained correct activity

of dCas9. Last, a data analysis procedure for single-particle tracking of dCas9-PAmCherry2 is

proposed and used to obtain information on single dCas9 proteins. This shows that dCas9 exists

in three states in the absence of DNA targets: fully immobile, a transient state attributed to PAM

screening, and fully mobile.

Single-particle tracking of dCas9-PAmCherry2 in L. lactis is continued in Chapter 6.

The experimental data is acquired on a fully open-source SMLM microscope termed the miCube.

The miCube combines high achievable data quality with low associated hardware costs, easy in-

stallation, and high modularity. Full details on all home-built components, including technical

drawings and 3D models, and the commercial components are provided, allowing for reproduction

of the miCube or derivative instruments.

The expected dynamic behaviour of dCas9 in the absence of DNA targets consists of

a PAM-screening (slow di�usion) state, and a free (fast di�using) state. Because the transitions

between these states are expected to be on the same timescale as the individual frames (<30 ms), a

novel analysis procedure termed Monte-Carlo Di�usion Distribution Analysis (MC-DDA) is created.

MC-DDA is used to �t experimental di�usion data with a model describing protein motion with

multiple di�usive states in con�ned environments, and can accurately predict observed di�usion of

molecules experiencing fast state-changes.
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Using the miCube and MC-DDA, we determine that dCas9 is screening PAMs ∼40% of

the time, averaging 17 +− 4 ms per binding event, after which it remains 25 +− 8 ms in a di�using

state before it re-starts PAM-screening. Using heterogeneous dCas9 expression, we determine that

∼100 DNA target sites are present in individual cells. Moreover, we show that dCas9 is removed

from its target on average every 100 seconds, possibly due to interference with polymerases, and

in this state interferes with plasmid replication. The determined dynamic state-changing rates are

used to predict the DNA target cleavage probability in L. lactis as a function of incubation time

and cellular dCas9 copy number, inferring that a single Cas9 protein �nds a single DNA target in

∼4 h.

In Chapter 7, the ability of sptFM to quantitatively assess spatiotemporal heterogeneity

of the hydrogel κ-carrageenan is investigated. The tracking of infused �uorescent nanoprobes in

κ-carrageenan reveals the existence of ∼1 µm dense network regions in a coarse bulk network. By

quantifying the di�usion of the probes as a function of polymer concentration, we further determine

that the individual �bres have a diameter of 3.2 +− 0.3 nm. Last, the use of sptFM reveals that the

dense network regions are mobile on the seconds-to-minutes scale.

The �ndings presented in the previous chapters are discussed in Chapter 8, and their

impact on the future development of sptFM is evaluated. Moreover, the challenges of applying

sptFM in complex soft matter such as �brous protein-based meat analogues are described and

discussed.
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Samenvatting

De beweging van grote moleculen (of macromoleculen) wordt bepaald door di�usie op groottes van

>100 nm, terwijl speci�eke interacties op de nanoschaal plaatsvinden op basis van Van der Waals,

elektrostatische, en hydrofobische/hydro�ele krachten. Het karakteriseren van macromoleculaire

beweging onthult fundamentele inzichten wanneer di�usiegedrag gerelateerd wordt aan de functie

van een macromolecuul. Om di�usie adequaat te onderzoeken, is een techniek nodig die idealiter 1)

het monster minimaal schendt of vernietigt; 2) minimale tijdsruimtelijke middeling teweegbrengt;

3) moleculaire speci�citeit bereikt; 4) toegankelijk is voor non-experts van de techniek; en 5) een

tijdsruimtelijke resolutie heeft van minstens ∼5-100 nm en ∼10 ms, maar idealiter zelfs beter dan

dit.

Enkel-molecuul-volgen �uorescentie-microscopie (emvFM) is een techniek afgeleid van

enkel-molecuul lokalisatie-microscopie (EMLM), en biedt de mogelijkheid om macromoleculaire be-

weging te onderzoeken met inachtneming van deze criteria. EMLM is een super-resolutie optische

microscooptechniek waarbij puntspreidfuncties (PSFs), welke voortkomen vanuit enkele �uorescente

moleculen, gelokaliseerd worden met een nauwkeurigheid die meer dan 10 keer beter is dan de di�rac-

tielimiet van licht. EmvFM volgt dan individuele moleculen door de tijd heen, waarmee hun positie

wordt beschreven met ∼5-40 nm spatiële resolutie en goede temporele resolutie. Deze beweging kan

daarna kwantitatief gekarakteriseerd worden om macromoleculair gedrag te onthullen.

Hoewel emvFM een veelbelovende techniek is om macromoleculaire beweging te ob-

serveren, kan het verder verbeterd worden. EmvFM kan daarna toegepast worden om macromolec-

ulaire di�usie te bestuderen in de levenswetenschappen en in zachte materialen. Dit proefschrift

heeft het doel om het veld van emvFM te bevorderen door de haalbare tijdsruimtelijke resolutie te

verhogen, en door de toegankelijkheid van de hardware en software in emvFM te verhogen. Daarna

wordt emvFM, verrijkt met deze verbeteringen, toegepast om dynamisch CRISPR-Cas9 gedrag

te bestuderen in vivo, en om de tijdsruimtelijke heterogeniteit van κ-carrageenan hydrogellen te

bestuderen.

In Hoofdstuk 2 ontwikkelen we een enkel-molecuul lokalisatie-algoritme genaamd

phasor-gebaseerde enkel-molecuul lokalisatie-microscopie (pEMLM). pEMLM kan individuele PSFs

lokaliseren met een snelheid van 3·106 lokalisaties/seconde op een normale computerprocessor (cen-

trale verwerkingseenheid, of CPU in het Engels), ∼3 ordes van grootte sneller dan andere lokalisatie-
algoritmes, terwijl de lokalisatienauwkeurigheid niet afwijkt van andere geavanceerde algoritmes.

Een gebied van interesse om de PSF heen wordt omgezet in twee phasors door de eerste Fourier

coë�ciënten in de x - en y-richting te berekenen. De hoeken die deze phasors hebben als ze worden

weergegeven in een phasordiagram zijn representatief voor de laterale positie van de PSF. De ratio

van de grootte van de phasors beschrijft de mate van ellipticiteit van de PSF, die gebruikt kan wor-

den om de axiale positie van het molecuul te bepalen als astigmatische lenzen worden gebruikt in de

microscoop. pEMLM kan zowel gebruikt worden als een alleenstaand lokalisatie-algoritme alsmede

als een startpunt voor iteratieve algoritmes, en is geïntegreerd in de ThunderSTORM software voor

ImageJ en FIJI.

Het pEMLM algoritme is uitgebreid in Hoofdstuk 3, waarmee de ontworpen PSFs bek-

end als dubbele-helix (DH), zadel-punt (ZP), en tetra-pod (TP) nauwkeurig in drie dimensies

gelokaliseerd worden via bewerkingen van de originele pEMLM. Voor de DH PSF indenti�ceert
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pEMLM eerst de twee afzonderlijke lobben met goede nauwkeurigheid, terwijl kleine gebieden van

interesse worden gebruikt om lokalisatie-artefacten te voorkomen. Daarna worden de twee lobben

verbonden, en hun relatieve rotatie en afstand zijn maten voor de z -positie van het molecuul.

Voor de analyse van ZP en TP PSFs, wordt de afstand tussen symmetrische lobben van een ZP of

TP PSF berekend via deconvolutie in phasor-ruimte met een aanpak genaamd circulaire-raaklijn

pEMLM (cr-pEMLM). Deze nieuwe pEMLM verwezenlijkingen worden vergeleken met de bestaande

geavanceerde software SMAP, wat laat zien dat pEMLM vergelijkbare nauwkeurigheid heeft op

signaal-ruis-verhoudingen typerend voor organische �uoroforen. Belangrijk is dat het pEMLM soft-

warepakket de lokalisatiesnelheid met een factor van ∼2-4 verhoogd, waarmee snelheden van 15 kHz
(DH) of 250 kHz (ZP/TP) worden bereikt. pEMLM en de aanpassingen zijn geïntegreerd in een

bestaand softwarepakket (SMALL-LABS) geschikt voor enkele-molecuul experimenten.

Hoewel EMLM normaal gesproken spectrale eigenschappen negeert, kan de toevoeging van

spectrale informatie (spectrale EMLM of sEMLM) mogelijkheden creëren om meerdere �uoroforen

tegelijkertijd te identi�ceren, of om lokale chemische omgevingen te karakteriseren. Een eenvoudige

en minimale-dispersie methode om zowel spectrale als spatiële informatie van enkele moleculen

te verkrijgen is beschreven in Hoofdstuk 4. Bestaande implementaties van sEMLM schieten

tekort in toegankelijkheid, omdat complexe en dure aanpassingen nodig waren aan microscopen; of

in signaal-ruis-verhoudingen, omdat de spectrale informatie uitgesmeerd werd over 20-30 camera

pixels. Wij hebben een lage-dispersie transmissie di�ractierooster zo dichtbij de camera als mogelijk

geplaatst, wat leidt tot een uitvoering die zowel goedkoop is (∼ ¿100) en een spectrale dispersie

van slechts 0.4 nm/pixel heeft, ordes van grootte kleiner dan bestaande sEMLM implementaties.

Hierdoor wordt de signaal-ruis-verhouding en bereikbare molecuul-dichtheid gemaximaliseerd. De

verkregen spatiële en spectrale pro�elen kunnen beide geanalyseerd worden door normale enkel-

molecuuls lokalisatie-algoritmes met goede nauwkeurigheid. Deze lage-dispersie sEMLM techniek is

toegepast in dSTORM en DNA-PAINT, waarmee �uoroforen met slechts 10 nm spectrale verschillen

onderscheid kunnen worden, en in enkel-molecuuls FRET, welke veranderingen tussen 0 en 15%

FRET laat zien.

De toepasbaarheid van enkel-molecuul-volgen in de melkzuur-modelbacterie Lactococcus

lactis is onderzocht in Hoofdstuk 5. Ten eerste hebben wij de geschiktheid van verschillende non-

foto-activeerbare en foto-activeerbare �uoroforen onderzocht in L. lactis. Daarna is een chimera

gemaakt van PAmCherry2, een rood foto-activeerbaar �uorescent eiwit, met dCas9, een `dode' vari-

ant van Streptococcus pyogenes CRISPR-Cas9 welke gebruikt wordt in DNA manipulatie. We beves-

tigen de correcte foto-activatie van PAmCherry2 in combinatie met behoudde activiteit van dCas9.

Tenslotte wordt een data-analyse procedure voor enkel-molecuul-volgen van dCas9-PAmCherry2

voorgesteld, welke wordt gebruikt om informatie over enkele dCas9 eiwitten te verkrijgen. Dit laat

zien dat dCas9 in drie staten bestaat als er geen DNA-doelen beschikbaar zijn: compleet immobiel,

een kortstondige staat toegeschreven aan PAM-exploratie, en compleet mobiel.

Enkel-molecuul-volgen van dCas9-PAmCherry2 in L. lactis wordt voortgezet in Hoofd-

stuk 6. De experimentele data is verworven op een compleet open-source EMLM microscoop

genaamd miCube. De miCube combineert goede data-kwaliteit met lage hardware-kosten, een-

voudige installatie, en hoge modulariteit. Volledige details van alle handgemaakte onderdelen,

waaronder technische tekeningen en 3D modellen, en de commerciële onderdelen zijn verstrekt,

zodat reproductie van de miCube of afgeleide microscopen mogelijk is.
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Het verwachte dynamische gedrag van dCas9 als er geen DNA-doelen aanwezig zijn bestaat

uit een PAM-exploratie (langzame di�usie) staat, en een vrije (snelle di�usie) staat. Omdat de tran-

sitie tussen deze staten waarschijnlijk op dezelfde tijdsschaal als de individuele frames van de camera

(<30 ms) plaatsvinden, hebben we een nieuwe analysemethode genaamd Monte-Carlo Di�usie Dis-

tributie Analyse (MC-DDA) gemaakt. MC-DDA is gebruikt om experimentele di�usiedata passend

te maken aan een model dat eiwitbeweging met meerdere di�usie-staten in een begrensde omgeving

beschrijft, en kan nauwkeurig de waargenomen di�usie van moleculen die snelle staatsveranderingen

ondergaan beschrijven.

Gebruik makend van de miCube en MC-DDA, hebben we vastgesteld dat dCas9 PAMs

exploreert voor ∼40% van de tijd, waarbij iedere bindings-gebeurtenis gemiddeld 17 +− 4 ms duurt,

waarna dCas9 25+− 8 ms vrij di�undeert voordat het opnieuw PAMs gaat exploreren. Via heterogene

productie van dCas9, bepalen we dat ∼100 DNA-doelen beschikbaar zijn in individuele cellen.

Daarnaast laten we zien dat dCas9 gemiddeld elke 100 seconden van zijn doel wordt verwijderd,

mogelijk via interferentie met DNA polymerases, en dat dCas9 in deze staat plasmidereplicatie

belemmerd. Deze bepaalde dynamische staats-veranderingssnelheden zijn gebruikt om de kans op

splijting van de DNA doelen in L. lactis als een functie van de incubatietijd en cellulaire dCas9

kopieën te bepalen, waaruit we ontdekken dat een enkel Cas9 eiwit een enkel DNA-doel in ∼4 uur
vind.

In Hoofdstuk 7 onderzoeken we de mogelijkheid van emvFM om kwantitatief de tijd-

sruimtelijke heterogeniteit van de hydrogel κ-carrageenan te bepalen. Het volgen van �uorescente

nanosondes in κ-carrageenan onthult het bestaan van ∼1 µm dichte netwerkgebieden in een open

bulknetwerk. Via het kwanti�ceren van de di�usie van de nanosondes als een functie van de poly-

meerconcentratie kunnen we verder bepalen dat de individuele netwerkstrengen een diameter van

3.2 +− 0.3 nm hebben. Tenslotte onthult emvFM dat de dichte netwerkgebieden mobiel zijn op een

seconden-tot-minuten tijdsschaal.

De bevindingen van de eerdere hoofdstukken worden bediscusieerd in Hoofdstuk 8, en

hun impact op de toekomstige ontwikkelingen van emvFM wordt geëvalueerd. Daarnaast worden de

uitdagingen om emvFM toe te passen in complexe zachte materialen zoals vezelachtige plantaardige

vleesvervangers beschreven en bediscusieerd.
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