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Abstract

Climate variability is an important driver for regionally anomalous production levels
of especially rainfed crops, with implication for food security of subsistence farm-
ers and economic performance for market oriented agriculturalists. In large parts
of the tropics, modern seasonal ensemble forecast systems have useful levels of skill,
that open up the possibility to develop climate services that assist agriculturalist and
others in the food chain (farm suppliers, commodity traders, aid organisations) to
anticipate on expected anomalous conditions. In this thesis we explore the forecast
skill at various steps in the modelling chain for seasonal maize yield anomalies in East
Africa. First, we analyse the skill of ECMWF System-4 (S4) climate forecasts for pri-
mary meteorological variables against gridded observations and find both potential
and real skill for rainfall and temperature in typical cropping seasons in eastern Africa.
However, forecast skill is a function of geographical region, season, climate variable
(i.e. higher skill in temperature, rainfall, downwelling shortwave radiation in that
order) and forecast lead-time, as such skill assessment should not be generalized over
a large geographical area. Next we analyse correlations between reported production
and anomalous weather conditions, using a range of climate indicators relevant for
arable farming, such as growing and killing degree days, and rainfall amount, even-
ness, random independent events (unevenness), and timing during consequent maize
growth phases in two case study regions. In this case significant levels of correla-
tion and skill are revealed that open up the potential for statistical forecasting by
use of climate forecast derived variables. Sensitivity of yields to climate indicators
depend on geographical location, for example, higher sensitivity to rainfall is found
in northern Ethiopia while in a location in equatorial-western Kenya, there is higher
sensitivity to temperature indicators. At the next level of complexity we explore the
use of full process based crop models forced by seasonal climate forecasts to forecast
anomalous water-limited maize yield in the region, and find again potentially useful
levels of skill with at least two months lead before planting, in most agricultural re-
gions. But this again depends on regions, for example yield forecasts in Tanzania, in
the season starting October did not have skill. Finally, we try to attribute skill levels
to physiographic characteristics (soils, maize cultivars, geographical region etc.) and
address some issues of scale of aggregation for two case study regions in Kenya and
Ethiopia. The results showed that skill assessment at national boundaries and high
resolution crop simulation units may inform both maize production related policy
decisions at regional or national levels, and also support maize production decisions
at specific cropping locations such as farm management decisions made by farmers.
We conclude with a synthesis discussing further on found skill levels in relation to
potential climate services aimed at the agricultural sector in East Africa and beyond.
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Chapter 1

Introduction

1.1 Background

In its many forms, agriculture remains highly sensitive to climate on a range of scales
e.g. climate extremes, climate variability and climate change. Agriculture is the
major land use across the globe and it is of high economic, social, and cultural im-
portance. Its sensitivity to climate is greatest in less developed countries that possess
less resilience to climate impacts. Of the many climate variables, rainfall and its
variability in both time and space is of utmost importance in the greater horn of
Africa (GHA), an area prone to recurrent droughts and floods that have resulted into
successive disasters. The success or failure of a crop growing season affects both the
economic growth of East African countries as well as the livelihoods of the general
populace. Impacts are experienced, whether extremes occur in the region or elsewhere
largely because of relatively low food production and hence effects on availability and
affordability.

Rainfall in this region is the primary water source for agriculture there being less
developed structures to enable irrigation. Ground water supply for irrigation is either
not fully exploited or is limited, stream flow and reservoir exploitation are limited
(Auffhammer, 2011). This means that larger proportion of agricultural production is
rain fed and will remain so in the near future. To meet the increasing food demands in
the region, food production must be increased under these conditions yet climate vari-
ability has been found to contribute to the observed difference between actual yields
and what can potentially be produced (yield gap) in Rodriguez et al. (2018). Effects
of climate variability is either directly through impacts on crop physiology or indi-
rectly via inappropriate farm management decisions. This underscores the potential
to improve yields by knowing the forthcoming climate, distribution (especially rainfall
and temperature) plus/or impacts on crop performance with suitable lead-time before
a crop season. Further, such should enhance the potential of early warning systems.
Besides enabling farmers, such should enhance the potential of relief organizations,
governments, and other stakeholders to plan and adjust their activities in accordance
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Chapter 1. Introduction

with the expected seasonal climate.

Crop failures due to bad weather do not only affect those buying and selling in the
global marketplace but also have perhaps even greater direct impact on subsistence
farmers. Understanding how such extreme weather events that are also predicted to
become more frequent under climate change (Boogaard et al., 2013) and its effects
on both yield and total production of the world’s staple food crops is thus an issue
of scientific and societal concern (Auffhammer, 2011). Although understanding of
seasonal rainfall anomalies is of great interest, it is the frequency of wet and dry
spells within a given rainy season that is generally more important to users such as
the agriculture, health, water resources, power generation and industry sectors. Thus,
assessing the mean rainfall forecast over a season is not enough in some applications
such as in assessing agricultural production. For example, a season may be wet overall
in terms of the total amount of rainfall received but if the rain is not reasonably
distributed through the season, then rainfed agriculture does not benefit (Owiti and
Zhu, 2012). Good seasonal climate forecasts may help manage agriculture related
risks.

1.2 Climate Forecasting and Agriculture

Forecasting seasonal climate has been possible because of the interactions of the at-
mosphere and slowly varying components of the climate system such as land surface,
ocean surface temperatures (Hansen et al., 2011; Stockdale et al., 2010) and their
teleconnections. Managing seasonal climate impacts on agricultural production in
many regions of the world have been based on the prediction of El-Niño Southern
Oscillation (ENSO) and its impacts on regional climates(Baigorria et al., 2008; Hoell
and Funk, 2014) in regions and seasons where ENSO has influence. For example,
rainfall variability over southern and eastern Africa show strong correlation to ENSO
(Black et al., 2003; Goddard et al., 2001; Indeje et al., 2000; Liebmann et al., 2014;
Smith and Semazzi, 2014; Omondi et al., 2013). The Indian Ocean Dipole (IOD) also
drives climate variability in East Africa, either acting alone or together with ENSO
variability (Black, 2005; Owiti et al., 2008; Owiti and Ogallo, 2007). Regional and
local circulation patterns such as the Somalia Jet stream, monsoonal winds, topogra-
phy and large inland water bodies modulate the influence of ocean processes on East
African climate thus complicating seasonal forecasting in the GHA. These forcings
result from internal variability of the climate system but as highlighted in Stockdale
et al. (2010), other external factors such as the sunspot cycle, volcanic eruptions and
greenhouse gases influence the climate to some extent. All these factors provide a
basis for seasonal climate forecasting.

In the Greater Horn of Africa, operational seasonal climate forecasts are issued
through the Greater Horn of Africa Climate Outlook Forum (GHACOF) convened by
the IGAD Climate Prediction and Applications Centre (ICPAC); with support from
the World Meteorological Organization (WMO), Global Forecast Producing Centres

2



1.2. Climate Forecasting and Agriculture

and other international organizations such as the International Research Institute for
Climate and Society-University of Columbia (IRI), the UK-Met Office and Meteo-
France (Hansen et al., 2011; Martinez et al., 2010). The forecasts are issued over a
whole season and for large areas as the probability of excedence of a certain threshold,
or the forecast parameter being within a range of thresholds, mostly relative to the
long-term mean seasonal climate. By overlaying climate forecasts with crop produc-
tion areas (see example in Figure 1.1), GHACOF also issues a statement on outlooks
for agriculture for large areas generally based on expert judgment and opinions on
expected impacts.

Even though these prediction methods above have been used with a relative degree of
success, seasonal climate predictability is more complicated than the annual cycle of
ocean sea surface temperatures (SSTs) because it is just one of the many influences
of GHA’s climate variability (Hansen et al., 2011), impacting predictability in some
areas and seasons. For example, ENSO has influence on OND and JJAS seasons as
opposed to MAM which is a major season in southern Ethiopia, in Kenya and large
areas of Tanzania. Again, the atmosphere is not completely constrained and may
bring rain even when oceanic conditions are not favourable (Hansen et al., 2011; Lyon
and Mason, 2009). Using dynamical climate models may offer advantages in seasonal
forecasting over the statistical models. Comparing GHACOF forecast skill to the
UK Met Office GloSea5 dynamical model, Walker et al. (2019) found higher skill in
GloSea precipitation forecasts compared to that from GHACOF; dynamical forecasts
have also been found to outperform operational statistical forecasts over large areas
in Australia (Rodriguez et al., 2018; Charles et al., 2015). This shows the forecast
potential in dynamic models such as System-4 from the European Centre for Medium
Range Weather Forecast (ECMWF) and the need to evaluate their forecast skill as a
basis for application in impacts modelling.

Forecasts given over large areas may not capture the intricate interactions between
large-scale simulations and local features that influence climate and hence their use to
assess impacts on agriculture in smaller areas is limited. Forecasts given in terms of
mean seasonal rainfall or temperature may not favour explicit use in applications such
as crop production since the distribution of weather and timing over a crop growing
season impacts yields more compared to the total or average seasonal weather. Crop
growth over a growing season is determined by interactions of the various weather
elements such as moisture availability and daily temperatures on a daily time scale.
Thus,current operational forecasts cannot be used to explicitly assess crop growth
but may give an estimation of expected yields. This has been useful. For example,
a stronger correlation between maize yields and the Pacific sea surface temperatures
(SSTs) associated with ENSO than to seasonal total rainfall has been found in Zim-
babwe (Cane et al., 1994). Climate change further complicates the use of statistical
models to either forecast oncoming season or to predict crop yields because the world
is slowly moving into climate regimes not experienced historically in terms of atmo-
spheric temperatures, climate variability, and the frequency of extremes. Globally, a
non uniform relationship has been observed between maize yields and ENSO signal

3



Chapter 1. Introduction

in the current climate. Yield impacts are more in ENSO-teleconnected lower income
countries due to their lack of resilience to ENSO signals (Ubilava and Abdolrahimi,
2019). The ability to predict seasonal climate before the start of a planting sea-
son raises prospects of their use in estimating the coming season’s crop yield by use
of dynamic crop models (Shin et al., 2009). In addition, reliable seasonal forecasts
with suitable lead-time before planting would enable adoption of farm management
practices as dictated by the oncoming growing season climate.

Figure 1.1: Map showing GHA October-December 2018 probabilistic rainfall forecast overlay with
cropping areas to show crop performance outlook for agriculture and food security sector (source:
ICPAC (2018))

4



1.3. Climate forecasts and crop models

1.3 Linking Dynamical Seasonal Climate Forecast
and Crop Models

An alternative to maize production assessment is to use process based dynamic sea-
sonal forecasts provided by GCMs and crop simulation models. Direct application
of GCM forecasts in agricultural impact modelling are limited (Hansen et al., 2006)
requiring first a downscale to suitable resolutions by either regional climate models
(RCMs), weather generators (Cantelaube and Terres, 2005; Semenov and Doblas-
Reyes, 2007) or either by a range of statistical downscaling or bias correction tech-
niques. Because of the uncertainty of climate forecasts over a season, multi-model
ensemble (MME) forecasting approaches are employed to generate more reliable prob-
ability forecasts of seasonal climates rather than the use of a single model (Doblas-
Reyes et al., 2009; Palmer et al., 2004) a phenomenon that may hold for agricultural
models as well (McIntosh et al., 2005; Martre et al., 2015; Asseng et al., 2013).

Seasonal climate forecasts have been used in agricultural impacts modelling globally
with varied results suggesting variability due to factors like spatio-temporal scales,
surface heterogeneity, crop management practices, and model initialization amongst
others (Jones et al., 2000; Shin et al., 2009). An important factor perhaps is climate
predictability, assuming that skilful seasonal forecasts should bear similarly skilful
agricultural yield predictions. But driving agricultural impact models with skilful
seasonal climate forecasts may not guarantee good yield forecasts (Baigorria et al.,
2007; Semenov and Doblas-Reyes, 2007; Shin et al., 2010), the reverse i.e. better
skill in the crop forecast than in the meteorological forecast has also been reported
(McIntosh et al., 2005). In addition, the time of the year, and lead-time in which a
forecast is useful varies depending on the crop and region (McIntosh et al., 2007) that
in turn depends on cropping calendars.

It would be useful therefore to know the forecast skill of both climate forecasts and
maize yield forecasts as a function of geographical area, season, and forecast lead-
time. The findings of this research will improve modelling by identifying suitable lead
times and best methods to drive the impact models besides detailing the crop char-
acteristics over the study area. Better so, the lead-time of useful forecasts to enable
change in farm management decisions. For successful crop yield forecasts in a locality,
it becomes necessary to know the uncertainties involved to facilitate apportionment
of confidence levels to each model. Reducing uncertainties should improve prediction
skill and the use of ensemble forecasting techniques helps provide information on fore-
cast uncertainties. Further, the ability to simulate impacts of extremes improves the
capability to deal with such events presuming a pro-active response.

Reliable agricultural impacts predictions are useful for seasonal early warning and
adaptation policy advisories. Seasonal probabilistic yield and production forecasts
either in advance of harvest or sowing is important if used appropriately, with un-
derstanding of their capabilities and limitations. This is not enough for the farming
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Chapter 1. Introduction

communities whose ability to cope with the constraints and opportunities of climate
variability need enhancement (Hansen and Ines, 2005; Skees et al., 1999). A climate
information service should then deliver understandable impact predictions to stake-
holders, considering locations in which particular methods or models are applicable.
Findings of this research should augment the information provided by GHACOF by
providing explicit quantitative impacts on agriculture by use of dynamical climate
forecasts and crop simulation models.

1.4 Objectives of the Study

The broad objective of this project is to test whether seasonal climate forecasts in
combination with crop model can be a useful addition to the existing agricultural ex-
tension services or may form a basis for establishment of agricultural climate service.
This assessed by making use of currently available seasonal climate forecasts form
one of the global forecast producers, and a physical process based crop model. It
assesses skill in the climate-yield model chain, assess growing season climate variable
characteristics as a basis for statistical modeling and the impacts of model grid res-
olution, level of aggregation, soils and geographical region in maize yield simulation.
The specific research objectives were:

1. Assess the skill of GCM and bias corrected seasonal climate forecasts over East
Africa via comparative analysis of hindcasts with observational data for the
period 1981 to 2010

2. Assess maize yield predictive skill of a crop simulation model through both
baseline and hindcasts validation for the period 1981 to 2010

3. Asses the influence of choice of cultivars, and spatial aggregation on predictabil-
ity of seasonal forecasts of maize production

4. Assess the important growing season climate characteristics or indices that in-
fluence maize yield predictions, and their predictability

The above objectives are addressed by use of GCM ensemble seasonal climate fore-
casts from one of the global forecast producing centres, gridded pseudo historical
climate observations, historical official national yield observations, and a field-scale
crop simulation model configured and upscaled for regional crop simulation.

1.5 Methodological Approach

To answer the above questions, long time series of daily historical observed climate
data for 1981-2010 from Watch Forcing Data ERA-Interim (WFDEI) (Weedon et al.,
2011) will be used as a reference observation. Hindcast ensemble (15-ensembles) sea-
sonal forecasts provided by European Centre for Medium Range Weather Forecasts
(ECMWF) (Molteni et al., 2011), is post processed, bias corrected and verified against
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historical observations by use of a range of verification measures already developed
and used in meteorological communities. Even though forecast skill have already been
computed by the forecasting centres at their native grid box level, in this research, an
in-depth regional analysis for relevant seasons and forecast lead times is performed.
Forecast skill of variables that are important for crop growth i.e. rainfall, tempera-
ture, and incoming shortwave radiation are assessed for relevant cropping seasons in
East Africa.

Figure 1.2: Research steps

Hindcasts of crop yield are created by driving both the World Food Study (WOFOST)
crop growth model (Boogaard et al., 2013; Van Diepen et al., 1989; Keulen and
Wolf, 1986; Van Diepen et al., 1988; Supit et al., 2010) with the reference gridded
pseudo observations (WFDEI) and compared to official maize yield statistics from
Food and agriculture organization (FAO), and data from each of the country’s agri-
cultural statistics authorities. This enables assessment of the goodness or correctness
of gridded reference yields relative to the official observed yield statistics. Maize
production forecasts are generated by driving the WOFOST with each of the 15-
climate forecast ensemble members, resulting in fifteen yield ensemble forecasts thus
enabling sampling of forecast uncertainties. WOFOST is a field scale crop simulation
model but setup and configured in this study for regional crop simulation based on
the FAO landuse map and with a resolution similar to its landuse cells (≈0.1° grid)
with region specific cultivars. Only water limited yield maize production is simulated.
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Comparisons and assessment of yield prediction skill is at sub-national levels for cho-
sen agricultural regions subject to availability of at least ten years observed data. It
must be noted here that a model, being a simplification of reality is not expected to
simulate results that completely agree with the actual observed values, but focus is on
yield anomalies. In any case, the ’actual’ observed yields from the national statistical
bureaus of the individual countries are themselves estimations, not completely accu-
rate, and the methods to compile the statistics vary among countries. The essence of
comparison and improvement will be to provide adequacy of the relative, year-to-year
variations in simulated yields, rather than of absolute production; to provide ade-
quacy of forecasted yield percentiles (e.g. terciles or quintiles). A set of established
probabilistic performance statistical measures (Murphy and Wilks, 1998; Willmott
and Matsuura, 2005) are used to verify both climate and yield forecasts. The same
probabilistic forecast skill measures from the weather and climate forecasting com-
munities are applied to maize yield predictions. Validation of yield forecast is at both
the crop model grid and sub-regions of the study area by use of case studies regions.

Seasonal climate forecasts possess uncertainties because of the long forecast duration.
It is also known that the total or average season climate (e.g. rainfall) may not
influence variability in yields as much as the distribution over the growing season
would. Growing season climate characteristics that influence yield variability are
identified and their predictability assessed as a function of forecast lead-time. In
summary, this research sought to identify an optimal lead-time, geographical region
and period skill that would form the basis for an integrated forecasting system from
climate to maize production.A summary of the research approach is shown in Figure
1.2.

1.6 Overview: Agriculture and climate in the study
area

1.6.1 Ethiopia

Ethiopia has a wide range of ecological diversity ranging from tropical to temperate
climates with a land area of approximately 1.2 million Km2 of which, ≈61% is arable.
Ethiopia’s topography ranges in altitude from −125 masl in the north East to 4620
masl in the North-West. Average temperatures range from 15°C over the mountains
to 35°C in the lowlands (Jury and Funk, 2013). Major cropping areas are in the sub-
humid, humid and moist-semi arid zones while major cereals are grown in regions with
elevation of 1800 to 3000 masl, average annual rainfall of 950mm to 1500mm and mean
annual temperature of 11 to 21°C. Maize particularly is grown in between 1500 masl
to 2200 masl in almost all regions of the country but with variations in production
due to moisture stress, low soil fertility, lack of improved cultivars, pests, diseases,
weeds, among others (Fantaye, 2020). Soils of Ethiopia comprise 23% Nitosols, 19%
Cambisols and 18% Vertisols in more than half of the arable area in different ecological
zones. Agriculture is a major economic activity in Ethiopia contributing to ≈43%
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of the national Gross Domestic Product (GDP) and employs 85% of the working
population. Small holder farming under rain fed conditions predominate agricultural
production systems, and >95% of national output is generated by subsistence farmers
owning less than 1 ha of cultivated land with poor soil fertility(FAO, 2020a; Taffesse
et al., 2012; Kassie et al., 2014; Kassie, 2014; Komarek et al., 2019). Agriculture
in Ethiopia highly depend on rainfall and its characteristics such as onset, duration,
amount and distribution determines performance of the sector and as a consequence,
the national economy.

1.6.2 Kenya

Kenya has a total land area of ≈576076 Km2, out of which about 17% has high to
medium agricultural potential for intensive crop cultivation. The rest is classified
as arid and semi-arid (ASAL) lands. More than 7 million people derive their liveli-
hoods from the ASALs while the remaining population live in the high agricultural
potential areas or in cities. Rainfall amounts and temporal distribution determine
cropping systems because agriculture is mainly rain fed often resulting in serious im-
pacts due to recurrent cycles of floods and droughts. Less than 7% of cropped land
in Kenya is under irrigation (Boulanger et al., 2018; Adimo, 2020). Kenya is charac-
terized by two distinct rainfall seasons (i.e. the long rains of March-May and short
rains of October-December) though minor season from June-August is also seen in the
western and coastal regions resulting in regions with single-crop and double-cropping
systems. Soils vary from sandy-to-clay, shallow-to-very deep, low-to-high fertility due
to varying geology, relief and climate. Major soils used for agriculture are ferral-
sols, vertisols, acricols, lixisols, luvisols, and nitisols (Omuto, 2013; Adimo, 2020).
Agriculture is a major economic activity in Kenya providing ≈ 33% of the national
GDP directly as of 2016 (GOK, 2019), another 27% indirectly through linkages with
other sectors, and employs 40% of the total population and supports ≈ 80% of the
rural population (Adimo, 2020; FAO, 2020b). It accounts for 60% of export earnings.
This sector has been identified in Vision (2007) as a key sector expected to drive
Kenya’s economy to an annual growth of approximately 10% by 2030, and to deliver
to other regional and global commitments such as the African Union Agenda 2063,
Sustainable Development Goals (SDGs) and the Comprehensive Africa Agricultural
Development Programme (Boulanger et al., 2018). Agricultural transformations are
needed to achieve these, especially by improving smallholder farmer’s productivity.
Farming systems range from small-scale to large-scale mechanized enterprises. Land
ownership in the high potential areas range from 0.5 to 10 ha. Today, there are ≈4.5
million small scale farmers in Kenya accounting fro 63% of the national agricultural
output on approximately 90% of land under agriculture. Out of this, 3.5 million are
crop farmers (GOK, 2019).
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1.6.3 Tanzania

Tanzania has a tropical climate and is divided into four climatic zones i.e. the hot
humid coastal plains, semi-arid central plateau, high rainfall lake region, and the tem-
perate highlands. Hottest periods are in November to February with a temperature
of 10◦C to 31◦C, while the cold period is from May to August with temperatures of
15°C to 20°C (Makio, 2020). The annual mean temperature range from 17°C to 27°C
depending on location. Relative humidity range between 50% and 80% in the whole
country with the main moisture sources being the Indian Ocean, Lake Tanganyika (to
the west) and Lake Victoria to the north (Cioffi et al., 2016; Makio, 2020). Tanzania
experiences two rainfall regimes, uni-modal (musuni) from October to April in south-
ern, central and north western parts of the country; and a bi-normal pattern of long
rains(Masika) from March to May (MAM) and the short rains (vuli) from October to
December (OND) in the lake region and extending east to the coast. The bi-modal
pattern is caused by seasonal migration of the ITCZ. MAM rains are associated with
northward, and OND rains with the southward migration ITCZ (Borhara et al., 2020;
Cioffi et al., 2016). Rainfall cycles result from annual cycle of monsoonal winds in
combination with Indian Ocean sea surface temperature (SST) and modification of
large-scale atmospheric flows by local topography. Tanzania has a range of soil types
highlighted in (Makio, 2020), but not all types are suitable for agricultural activities.
High potential agricultural regions of Arusha, Kilimanjaro and southwest highland
regions are dominated by volcanic soils. Light sandy soils along the coast are suitable
for grazing in the rainy seasons; poor soils of granite origin in the mid-west; red soils
in the central plateau is used for forage in both the dry and rainy seasons; and ver-
tisols soils that is widespread and used for forage in the dry seasons. FAO-UNESCO
Soil Classification System however classifies Tanzania soils into nineteen different
types discussed in Mlingano (2006) There also are ironstone soils mainly in Kagera,
Kigoma, Sumbawanga are poor and acidic but their productivity can be improved by
use of farm management practices such as nutrient application, and mulching.

Agriculture is a major factor in the economy of Tanzania contributing to about 24%
of GDP, accounts for 24% of exports and employ almost 75% of the working pop-
ulation. Out of a total land area of 94.5 million hectares, 44 million hectares are
classified as arable but only 26 millon hectares is under use. Area under irrigation by
2013 is less that 5% of the cultivated land. About 23% of the arable land is under
cultivation dominated by food crop production (World-Bank, World-Bank; Makio,
2020). Agriculture is mainly rain fed, and this has affected agricultural production
due to increasingly unreliable and irregular weather conditions.

1.7 Summary; study area

The economies of these three countries and millions of its populace are dependent
on agriculture with a majority of the rural poor involved in rain fed agricultural
production. Because many poor households are involved in agricultural production,
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there exist a potential for poverty alleviation with proper interventions since the sec-
tor growth is strongly tied to climate variability. Knowledge of expected weather
conditions in advance of a cropping season may help mitigate against weather va-
garies by influencing some farm management decisions that improve profitability of
agriculture by for example, increasing gains in favorable seasons or reducing losses
in dry seasons (Parton et al., 2019). Luckily, seasonal climate over this region is
predictable some months in advance due to the interactions of the atmosphere with
slowly varying ocean and land components of the climate system (Thomson et al.,
2006; Doblas-Reyes et al., 2013). A major source of predictability that forces cli-
mate anomalies globally is the El-Niño Southern Oscillation (ENSO), it is predictable
with lead-times of up to 12-months (Harrison, 2005; Jan van Oldenborgh et al., 2005;
Charles et al., 2012; Doblas-Reyes et al., 2013). It is known to have strong correlations
with East African rainfall (Goddard et al., 2001; Indeje et al., 2000; Semazzi et al.,
1988). The Inter-Tropical Convergence Zone (ITCZ), and the Indian Ocean Dipole
(IOD) among other features also influence East African seasonal climate (Goddard
et al., 2001; Owiti and Ogallo, 2007). The possibility to forecast seasonal climate with
useful skill in his region holds the potential for use by a range of decision-makers to
better manage climate risks. Predictability of climate forecasts also provide an op-
portunity for new technologies to also deliver sectoral impacts information. Potential
skill in predictability of East Africas’climate makes the region suitable for exploring
the seasonal climate-agricultural impacts modelling axis with assumption that skillful
climate forecast should likewise result in skillful impacts prediction at lead-times that
would influence decisions.

1.8 Thesis Outline

This report consists of seven chapters; chapter 1 provides the context of this research;
highlighting the objectives plus research approach. Chapter 2 deals with the setup
and configuration the crop growth model. The chapter is important because the
model is designed for field scale use but in this study, it is configured for a regional
scale simulation using grids of 0.1° by 0.1° degree as the basic simulation unit. The
following four chapters will address each of the research objectives.

Chapter 3 identifies from the seasonal climate forecast systems, regions, seasons ((i.e.
MAM, JJAS, OND, JF seasons) and lead-times of skillful climate forecasts. It will
indicate whether there is a necessity to bias correct the climate forecasts before using
them to drive the crop. The chapter will identify optimum climate forecast lead-time
for optimum skill and reliability before use in a crop model. It focuses on climate
variables relevant for crop model and yield simulation.

It is known that average seasonal climate conditions plus distribution of weather
during a crops’ growth season influence yield variability. Chapter 4 identifies the im-
portant weather characteristics or indicators in the growing season and consequent
crop growth stages that explain yield variability. Prediction skill of identified indi-
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cators could provide an alternative yield forecast system using statistical methods
rather than the use of full forecast ensembles.

Chapter 5 highlights the results of crop model set up, yield simulations and yield
forecast skill. It gives a comparison of the reference simulated yields to the official
observed yield statistics, and model simulated cropping dates to the observed The
chapter also indicates cropping seasons, geographic regions, and lead times in which
maize yields can be reliably predicted.

Chapter 6 assesses the influence of yield aggregation on forecast skill. This is done
based on horizontal grid resolution, physiographic characteristics (i.e. soils, maize
cultivars, geographical region etc.) and address some issues of scale of aggregation
for two case study regions in Kenya and Ethiopia.

Chapter 7 provides a synthesis of the findings of this research in a wider context. It
elaborates on the methodological strengths and limitations to the research setup. It
discusses the findings from all chapters and implications to the scientific community
and society. It discusses further on skill levels in relation to possible agricultural sector
climate services in East Africa. It gives recommendations on further research, and
how this methodological setup may fit in existing early warning systems and possible
use in climate risk management.
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Chapter 2

Implementation of WOFOST
for Yield Prediction over East
Africa

2.1 Introduction

Sub-Saharan Africa (SSA) is one region of the world that is and will be highly im-
pacted by climate change. Agricultural sector is already affected due to over reliance
on weather for agriculture i.e. Africa is already experiencing changes in average tem-
perature, rainfall amounts and patterns, frequency and intensity of extreme events.
This has or will consequently impact agricultural systems for example, length of grow-
ing seasons, yields (Kotir, 2011) and possibly the traditional crop calendars. These
changes in climate also affect east African region. With an increasing population
and reducing per capita food production, the region needs to boost food production
in order to feed the populace (van Loon et al., 2018). A number of methods such
as expansion of cultivated areas, intensify irrigation systems, improved soil fertility,
improved crop varieties, or optimum use of climate information may improve yields.

Infertile soils has been identified to hinder maize yields by the highest political lead-
ership in the continent thus a resolve by Africa Fertilizer Summit to increase fertilizer
consumption from 8 Kg ha−1 in 2006 to 50 Kg ha−1 by 2050 (AGRA, 2019; Decla-
ration, 2006). One of the reasons identified in Bonilla Cedrez et al. (2020) for low
fertilizer uptake in SSA is that ”variability of rainfall makes it too risky to invest in
fertilizers and insurance programs may be needed to support fertilizer use”. Agricul-
ture in this region is largely rain fed and sensitivity to weather aggravate farmer’s
challenges (Tesfaye et al., 2017). In addressing yield gap in SSA, Hillocks (2014)
notes that yield gap (i.e. the difference between potential and actual yields) would
be difficult to close under rainfed conditions. Optimal use of of climate information
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may help farmers to cope.

To explore the yield-climate interactions, or how other factors like fertilizer applica-
tion affect crop models using a range of approaches can be used. In weather-crop
simulation, available approaches are based on crop physiology and climate under-
standing (i.e. climatological, water-stress models, dynamic crop-weather models);
and based on type and purpose (i.e. statistical, mechanistic, deterministic, dynamic,
static,simulation, descriptive and explanatory models). Crop models have been used
globally as a tool to explore effectiveness of differing crop management practices,
to study effects of inputs, explore climate change adaptation options to minimize
climate risks,and to study crop growth processes. Crop model use in the context
of climate change impacts on food security has been strongly simulated in recent
decades amongst others through the Agricultural Model Intercomparison and Im-
provement (AgMIP) Programme (Rosenzweig et al., 2013). This research explores
the use of seasonal climate forecasts and a crop model to forecast maize yields. A
crop model, World Food Studies crop simulation model (WOFOST) is used. The
following sections will explain the setup of such model and experiment.

2.2 Methods and data

2.2.1 Model Description

We use the World Food Studies crop simulation model (WOFOST) version in the
Python Crop Simulation Environment (PCSE/WOFOST) implementation. The PCSE
is a Python package for building crop simulation models. It provides the environment
to implement crop simulation models, tools for reading ancillary data (weather, soil,
agromanagement), and the components for simulating biophysical processes such as
phenology, respiration and evapotranspiration (de Wit et al., 2019). Also included
in PCSE is the LINTUL3 crop model.The model is provided with full source code
and documentation through public repositories (de Wit et al., 2019) and details are
available at https://pcse.readthedocs.io/en/stable/index.html.

WOFOST is a simulation model for quantitative analysis of growth and production
of annual crops. It is a mechanistic crop growth model that describes plant growth
by using light interception and CO2 assimilation as growth driving processes and by
using crop phenological development as a growth controlling process. WOFOST was
extended with the nutrients routines similar to the ones in in the Lintul model. These
routines are based on Shibu et al. (2010). It can simulate potential yield situation,
water limited, and a combined water and nutrient limited situation. WOFOST is pho-
tosynthetically driven and simulates the growth and production of annual crops using
a range of daily physiological processes in response to weather, soil types, soil moisture
conditions,as defined by crop cultivar characteristics. Physical processes include light
interception, photosynthesis, respiration, evapotranspiration, assimilate partitioning,
leaf area dynamics, phenological development, and root growth. Not implemented are
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the effects of pests, weeds, farm management practices de Wit et al. (2010); Boogaard
et al. (2013). The model can simulate either potential yields or water-limited yield.
Potential yield simulation is where crop growth is driven purely by temperature, day-
length,solar radiation and cultivar characteristics assuming no water nor other growth
limiting factors. In water-limited yield simulation, crop growth is limited by water
availability but assumes adequate nutrient supply de Wit et al. (2010) and hence
influenced by rainfall, soil type and field topography but assumes adequate nutrient
supply (Boogaard et al., 2013). WOFOST was originally developed to simulate crop
yield for a single location with homogeneous cultivars, soil characteristics and weather
(Boogaard et al., 2013; Van Diepen et al., 1989; Supit et al., 2010) but in this study,
it is set up for a regional simulation.

2.2.2 Input Data

2.2.2.1 Crop data

Many approaches have been employed to estimate crop sowing dates in regional
yield simulation studies. This includes the use of observed panting dates and ex-
pert advice, use of rainfall and characteristics at the start of planting season, use
of cumulative rainfall and soil moisture, and optimization of sowing dates on max-
imum yields plus minimum variability in yields. In this study, we use a method
that combines the “optimization of sowing dates on maximum yields” and “opti-
mization on climate and crop specific characteristics”. This procedure has been
used and de-tailed in Wolf et al. (2015). We start with crop calendars from FAO
(http://www.fao.org/agriculture/seed/cropcalendar/welcome.do) and Sacks’ calendar
described in Sacks et al. (2010)), and standard tropical maize varieties for crop mod-
elling compiled in Van Heemst (1988) and Van Diepen et al. (1988).

2.2.2.2 Land use and soil data

Soil input data are derived from the International Soil Reference and Information
Centre-World Soil Information (ISRIC-WISE) database (Batjes, 2012). The database
includes information on soil physical characteristics, root depth, and landscape char-
acteristics such as elevation, slope gradients, and slope aspects. Soil properties such
as wilting point and field capacity are estimated with the pedotransfer functions from
Saxton et al. (1986).Maize growing areas are determined based on FAO land use maps
(Fischer et al., 2008).

2.2.2.3 Historic weather data

Since we want to use WOFOST over a large spatial domain where weather stations are
relatively sparse and often produce incomplete records, we revert to gridded weather
datafrom other sources that do have the required continuity in the space and time
domains. The Water and Global Change (WATCH) project (Boucher and Best, 2010;
Harding et al., 2011; Weedon et al., 2011) prepared a meteorological forcing data, the
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WATCH Forcing Data (WFD) making use of ERA-40 reanalysis (Uppala et al., 2005)
from the European Center of Medium range Weather Forecasts (ECMWF) for the
period 1958-2001. WFD was based on interpolation of ERA-40 reanalysis to 0.5°×
0.5° resolution followed by elevation correction of surface meteorological variables and
monthly bias correction using gridded global land observations at 0.5-degree resolu-
tion. The WATCH Forcing Data methodology applied to ERA-Interim (WFDEI) was
processed using a similar methodology to WFD but based on ERA-Interim reanaly-
sis. ERA-40 and ERA-Interim reanalysis details are in Weedon et al. (2014) and Dee
et al. (2011).

Figure 2.1: FAO land use map showing rainfed agricultural regions of the study area at 0.1°times0.1°
resolution

Briefly, ERA-Interim compares GCM modeled state of observations at 6-hourly inter-
val including allowance for their exact time stamp as opposed to ERA-40 reanalysis
(Weedon et al., 2014) leading to steady updates that are consistent to the observed.
ERA-Interim incorporates more satellite derived products, atmospheric soundings,
and surface observations hence providing an improvement over the ERA-40. As elab-
orated in Dee et al. (2011), there is an improvement in representation especially of
hydrological variables i.e. improved humidity analysis, assimilation of satellite passive
microwave data for total column water vapor in areas affected by clouds and rain, and
assimilation of satellite derived snow extent. ERA-Interim has a reduced Gaussian
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Grid Spectral model resolution of T255 (approximately 0.7° at the equator). From
WFDEI, precipitation, air temperature and downwelling shortwave radiation are used
in this study. Processing applied to these variables are explained in the following para-
graph but details are available in Boucher and Best (2010); Weedon et al. (2011, 2014).

This study uses the WFDEI rainfall data corrected against CRU data(Harris et al.,
2014). Precipitation totals,ERA-Interim rainfall/precipitation ratio,and rainfall gauge
are bias corrected using CRUTS3.1.01/TS3.21 while CRU TS3.1 is used to correct the
number of wet days. In regions with large elevation differences between ERA-Interim
and CRU grids, differences in precipitation phases are corrected via the procedure
elaborated in Weedon et al. (2014). Briefly; for each grid box and each calendar
month, over in the period 1979-2009, minimum temperature (tmin) during rainfall
and maximum temperature (tmax ) during snow fall are stored. Each phase tem-
perature extreme is obtained from the library of eight 3-hourly steps × 30-days(a
month) × 31-years. For each grid box and 3-hour time step, precipitation phase was
switched if combination of phase with elevation and bias corrected air temperature
(tair) lay beyond a phase temperature extreme. In most grid boxes and time steps
precipitation phase remained unswitched because the spatial resolution of elevation
in the ERA-Interim and CRU are fairly similar. Two-meter air temperature data
in ERA-Interim were bias corrected for elevation by use of environmental lapse rate.
Average monthly temperatures and diurnal temperature range were bias corrected us-
ing CRU TS3.1/3.21 data. Downwelling short wave radiation is bias corrected using
CRU TS3.1/3.2 cloud cover and effects of interannual changes in atmospheric aerosol
loading. Monthly aerosol correction for downwelling shortwave radiation fluxes was
done separately for clear and cloudy sky. corrections for aerosol loading were imple-
mented after correction for distances between monthly modelled and observed cloud
cover. The WFDEI is used as the best possible proxie, continuous in space and time,
for observed historic weather data.

2.2.2.4 Climate Forecasts

S4 re-forecasts starting 1981 to 2010 is evaluated. This is a fully coupled ocean–atmosphere
GCM based on the Integrated Forecast System (IFS c36r4) atmospheric model at a
resolution of TL255 (approximately 0.75° horizontal resolution) and 91 vertical levels.
Forecast initialization starts on the first day of each month with fifteen perturbed
initial conditions giving 15-ensemble members, each providing a forecast 7-months
into the future. A combination of atmospheric singular vectors and an ensemble of
ocean analysis provide a means to create the perturbations (Molteni et al., 2011).

2.3 Setup

In order to use WOFOST for yield simulation, it was necessary to establish units of
simulation [Soil mapping units (SMUs)]. These are grid cells of more or less homoge-
neous weather, soil and crop characteristics. A number of data sets were required to
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establish SMUs i.e.

� WFDEI at 0.5°×0.5°horizontal grid resolution

� Climate forecasts (S4 ) at 0.75°×0.75° horizontal resolution (15-ensemble mem-
bers)

� FAO land use cells at 0.1°×0.1° horizontal resolution

� Soil map from ISRIC-WISE database

Figure 2.2: Average maximum WFDEI simulated
yields (in Kg ha−1) over the period 1980-2011

Figure 2.3: Average standard deviation of yields
(in Kg ha−1)

From land use map, we selected only land use cells where agricultural landuse ≥5%
and disregarded irrigated areas. We assumed then that the selected land used cells
are rain fed. The resulting FAO land use map (shown in Figure 2.1) was overlayed
with soil map and soil properties assigned to each cell using pedo-transfer rules from
Saxton et al. (1986). The next step was to assign climate data to each SMU. The
resulting map containing land use and soil information was thus overlayed with both
WFDEI and S4, WFDEI having been remapped to S4 resolution of 0.75°. This was
done to preserve the GCM S4 simulations. The forecasts were bias corrected using
the quantile-mapping method A.1. For the baseline (WFDEI), we attributed to all
land-use cells within a WFDEI (0.75°×0.75°) box the weather that belongs to that
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grid. Also assigned to each is the weather from S4, each grid having 15-ensemble
members. Weather variables assigned to each grid include maximum temperature,
minimum temperature, wind, rainfall and irradiance. Since each land use cell has
required soil and weather data, the next step was to establish sowing dates and crop
varieties.

Figure 2.4: Derived nominal crop varieties based
on optimized TSUMs

Figure 2.5: Optimal sowing dates (units day of the
year)

We did not have specific crop varieties for the region, so we first chose cultivar param-
eters detailed in Table-6 of Van Heemst (1988) and allocated this to the simulation
units. Thermal unit approach is used to simulate phenological development. Each
phenological of teh crop is expressed by DVS Next, we allocated to each simulation
unit the crop calendars in Sacks et al. (2010). This is a gridded map resulting from
digitizing and georeferencing of observed dates and a derivation of climate statistics
such as the average temperature at which planting occurs in each region. To each
simulation unit, we allocated dates that coincide to the first seasons of the year. As-
suming availability of 60Kg ha−1 of Nitrogen (N) during the growing season. This
assumption gives simulated yields same range as the statistical yields.

Next, we derive optimal sowing dates and crop varieties for each region using the
WFDEI climate data for 1980 to 2011. Yields are simulated for maize varieties planted
at every grid point every 10 days, starting 90 days before and end 90 days after the cal-
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endars in Sacks et al. (2010) using 10-11 TSUMS. TSUMs refer to thermal heat units
for each crop variety required for maize to advance in phenology from emergence to
anthesis (TSUM1) and from anthesis to maturity (TSUM2). It is obtained by cumu-
lative summing of the difference between daily temperature and the base temperature
(10◦C)for each day that daily temperature is above the base temperature. Thermal
time accumulation in WOFOST is based on planting dates and a base temperature on
10◦C and upper limit of 30◦C. We then selected the sowing date-TSUM-development
stage combination that resulted in maximum average yields (Figure 2.2) and lowest
deviation (Figure 2.3) over the period 1980-2011. The resulting crop parameters for
the varieties (Figure 2.4) and sowing dates (Figure 2.5) are then attributed to each
simulation unit. TSUMS corresponding to these maize varieties are in Table 5.1. The
dates and varieties are then fixed for both historical and forecast yield simulation.
harvest date are not fixed but are determined by crop-soil-weather characteristics
during the growing season.

Simulated yields are stored in a database at the resolution of SMUs (0.1°×0.1°) but
these can be aggregated to any other resolution (e.g. 0.5°), national or sub-national
administrative boundaries by weighting against the fraction of cultivated area. The
NUTS concept used and described in Supit and Van der Goot (1999) and Boogaard
et al. (2013) is adopted in this study. NUT0 refers to national administration units
while NUT1 refers to sub-national region in which also official yield statistics are
collected. A validation of NUT0 level model simulations are detailed in chapter ??.
While a conceptual diagram of the experiment setup is shown in Figure 2.6. Simula-
tions obtained from the approach described in this chapter form the basis of Chapters
4 to Chapter 6.
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2.3. Setup

Figure 2.6: A conceptual diagram of experiment design
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Chapter 3

Skill of ECMWF System-4
Ensemble Seasonal Climate
Forecasts for East Africa

Abstract
This study evaluates the potential use of the ECMWF System-4 seasonal forecasts
(S4 ) for impact analysis over East Africa. For use, these forecasts should have skill
and small biases. We used the 15-member ensemble of 7-month forecasts initiated ev-
ery month, and tested forecast skill of precipitation (tp), near-surface air temperature
(tas) and surface downwelling shortwave radiation (rsds). We validated the 30-year
(1981–2010) hindcast version of S4 against the WFDEI reanalysis (WATCH Forcing
Data ERA-Interim) and to independent relevant observational data sets. Probabilis-
tic skill is assessed using anomaly correlation, ranked probability skill score (RPSS)
and the relative operating curve skill score (ROCSS) at both grid cell and over six
distinct homogeneous rainfall regions for the three growing seasons of East Africa (i.e.
MAM,JJA and OND). S4 exhibits a wet bias in OND, a dry bias in MAM and a mix
of both in JJA. Temperature biases are similar in all seasons,constant with lead-time
and correlate with elevation. Biases in rsds correlate with cloud/rain patterns. Bias
correction clears biases but does not affect probabilistic skills. Predictability of the
three variables varies with season, location and lead-time. The choice of validating
dataset plays little role in the regional patterns and magnitudes of probabilistic skill
scores. The OND tp forecasts show skill over a larger area up to 3 months lead-time
compared to MAM and JJA. Upper- and lower-tercile tp forecasts are 20–80% better
than climatology. Temperature forecasts are skillful for at least 3 months lead-time

This chapter has been published as:
Ogutu G.E., W.H. Franssen,I. Supit,P. Omondi and R.W. Hutjes,2017: Skill of ECMWF system-4
ensemble seasonal climate forecasts for East Africa. International Journal of Climatology, 37 (5),
130-146.

23



Chapter 3. Skill of ECMWF System-4 Ensemble Seasonal Climate Forecasts for
East Africa

and they are 40–100% better than climatology. The rsds is less skillful than tp and
tas in all seasons when verified against WFDEI but higher in all lead months against
the alternative datasets. The forecast system captures El-Niño Southern Oscillation
(ENSO)-related anomalous years with region-dependent skill.

3.1 Introduction

The economies of East Africa and the livelihood of millions of people in the region
are heavily affected by climate variability. Advance knowledge of adverse climate
anomalies would enhance timely development and implementation of coping mecha-
nisms with respect to food security and water management. Seasonal forecasts may
provide such information and, when skillful, have considerable potential to improve
the present situation.

Seasonal forecasts provide climate outlooks from a month to over a year ahead based
on the interactions of the atmosphere with slowly varying climate system components
like the oceans and land surface (Thomson et al., 2006; Kim et al., 2012; Doblas-
Reyes et al., 2013; Manzanas et al., 2014). A major source of seasonal predictability
is the El-Niño Southern Oscillation (ENSO) because it forces climate anomalies glob-
ally (Harrison, 2005; Jan van Oldenborgh et al., 2005; Hoskins, 2006; Palmer, 2006;
Charles et al., 2012; Doblas-Reyes et al., 2013; Manzanas et al., 2014) and is pre-
dictable with 6–12 months lead-time.

While ENSO originates in the pacific, other tropical ocean basins also exert influence
on the climate variability over land. For example, variations in the horizontal struc-
ture of tropical Atlantic sea surface temperatures (SSTs) influence the position of
the Inter-Tropical Convergence Zone (ITCZ) and consequently the local climate over
Northeastern Brazil, West Africa and East Africa (Camberlin et al., 2001; Goddard
et al., 2001; Philippon et al., 2002; Semazzi et al., 1988; Diro et al., 2011; Doblas-
Reyes et al., 2013).

Rainfall variability over southern and eastern Africa show strong correlation to ENSO
(Goddard et al., 2001; Black et al., 2003; Liebmann et al., 2014; Smith and Semazzi,
2014). However, the Indian Ocean Dipole (IOD) is also known to drive climate vari-
ability over East Africa, especially during the ‘short rains’ (OND) (Goddard et al.,
2001; Saji and Yamagata, 2003; Black, 2005; Owiti and Ogallo, 2007; Owiti et al.,
2008) either acting alone or together with ENSO variability.

Nowadays Global or Regional Climate Models (GCM/RCMs) are used to produce sea-
sonal forecasts. Over the last decade, these dynamical models have improved such that
their forecast skill now surpasses that of statistical models in some seasons (Jan van
Oldenborgh et al., 2005). Even so, uncertainties related to initial boundary condi-
tions, data assimilation, external forcings and model formulation all limit the skill of
a single deterministic forecast. Probabilistic approaches overcome these limitations
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through ensemble prediction (Kalnay et al., 2006) using multiple realizations for a
single forecast time and location to sample forecast uncertainty. Ensemble generation
is achieved by either perturbations of initial conditions, perturbations introduced at
each model integration (stochastic physics) or use of multi-model ensembles (Graham
et al., 2000; Tebaldi et al., 2005; Thomson et al., 2006; Shutts et al., 2011; Weisheimer
et al., 2011; Doblas-Reyes et al., 2013; Weisheimer and Palmer, 2014).

This study analyses the performance of one such dynamical forecasting system i.e.
the ECMWF Ensemble Prediction System-4 (hereafter S4 ). A number of studies have
examined the skill of ECMWF ensemble prediction systems starting with system-1
introduced in 1997 (Stockdale et al., 1998) to the current S4 (Molteni et al., 2011).S4
was found to predict El-Niño/La-Niña phenomenon better than statistical models es-
pecially in spring season (Jan van Oldenborgh et al., 2005). It has been assessed for
skill in predicting Asian summer monsoons (Kim et al., 2012); Northern hemisphere
winter (Kim et al., 2012); global meteorological drought (Dutra et al., 2014); below
normal rainfall in the horn of Africa (Dutra et al., 2013) and drought forecasting in
East Africa (Mwangi et al., 2014). All analysis over east African domain concentrated
on the evaluation of precipitation forecasts. Critically needed is evaluation of other
agriculturally important variables such as shortwave radiation and temperature. This
study first aims to evaluate the prediction skill of S4 over Eastern Africa for all three
agriculturally relevant climate variables.

When used to drive impacts models (e.g. agriculture or hydrology), the performance
of raw and bias-corrected driving climate information vary. For example, at climate
projection time scales, dynamical downscaling does not improve an agricultural model
simulation of maize yields over the United States (Glotter et al., 2014). However, sta-
tistically bias-corrected driving data did show improvement over the raw GCM and
raw RCM downscaled projections. This is good news for poor countries that cannot
invest in RCMs. When forecast and observations are in near-equal spatial resolutions,
it is unknown whether dynamically downscaling to a higher resolution than verifying
data would be valuable, but bias correction still is. Therefore, the second objective
of this study is to assess the value of bias correction of S4 forecasts over East Africa.

The potential application of such forecasts in agricultural impacts assessments to
enable timely adaptation requires predictive skill of the relevant variables and in-
formation on associated forecast uncertainty before the respective cropping seasons.
Thus, the third objective of the present work is to assess the skill of S4 for each
cropping season relevant to the different regions of East Africa.

Thus, we address the following research questions:

1. How well does the S4 simulate the climatology and seasonality of the variables
relevant to agricultural impacts modelling over East Africa?

2. How does climate forecast skill for these variables at various lead-times compare
for each season relevant to different sub-regions?
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3. How does climate forecast skill for these variables at various lead-times compare
for each season relevant to different sub-regions?

4. Does bias correction either improve or adversely affect skill for lead-times, sea-
sons and geographical forecast units assessed?

5. How well does S4 simulate anomalous wet and dry years associated with positive
or negative ENSO phases?

3.2 Data description

S4 reforecasts starting 1981 to 2010 is evaluated. This is a fully coupled ocean–atmos
phere GCM based on the Integrated Forecast System (IFS c36r4) atmospheric model
at a resolution of TL255 (approximately 0.75° horizontal resolution) and 91 vertical
levels. Forecast initialization starts on the first day of each month with 15-perturbed
initial conditions giving 15-ensemble members, each providing a forecast 7 months
into the future. A combination of atmospheric singular vectors and an ensemble of
ocean analysis provide a means to create the perturbations (Molteni et al., 2011).

Forecast verification requires good observational data (Maraun et al., 2010) and ro-
bust methodologies. Over East Africa, a sparse climatological station network limits
use of pure in situ observations to verify gridded forecast products. We therefore use
a gridded model–observation fusion data product, the Climate Research Unit (CRU)
bias-corrected version of the Water and Global Change (WATCH) forcing data ERA-
Interim (WFDEI) (Weedon et al., 2010, 2011, 2014; Harding et al., 2011) as reference
for precipitation, near-surface air temperature and downward surface shortwave radi-
ation. Since, ERA-Interim and S4 use the same atmospheric model (though different
versions; c31r2 vs c36r4, resp.), independence of the forecast and reference data is
inadequate, even though the former assimilates, and is bias corrected to, in situ ob-
served data and the latter does not.

Therefore, in addition to the WFDEI, we use separate alternative data sets. The
African Rainfall Climatology version 2 (ARC2) developed by the NOAA Climate
Prediction Centre for precipitation, radiation data from NASA/GEWEX Surface Ra-
diation Budget release-3.0 data (SRB3), and University of Delaware (UD11) near-
surface air temperature data.

ARC2 is a 0.1° resolution daily precipitation data from 1983 to the present de-
rived from a combination of EUMETSAT observed 3-hourly infra-red precipitation
estimates and gauge observations from WMO’s Global Telecommunication System
(Novella and Thiaw, 2013). It is operationally used by the US Agency for Interna-
tional Development’s Famine Early Warning Systems Network (USAID-FEWS NET)
to generate hazard outlooks over regions of Africa. Note that ARC2 is a real-time
product and may not include as many gauge observations as CRU used in WFDEI.
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SRB3 is a global 1° dataset available from July 1983 to December 2007 (Mlynczak
et al., 2010; Raschke et al., 2006). UD11 is a 0.5° global dataset starting from 1901 to
2014 produced from a combination of the Global Historical Climate Network (GHCN)
(Lawrimore et al., 2011) and archives of Legates and Willmott (Willmott and Mat-
suura, 2001) and http://climate.geog.udel.edu/ climate/html pages/Global2011/REA
DME.GlobalTsT2011.html).

Figure 3.1: The study area and homogeneous rainfall regions (a) relative to African continent (b).
Colours show 0.5° gridded elevation (in metres) data downloaded from University of Washington
Archive (http://www.jsao.washington.edu/data-climate data archive).

3.3 Methodology

We downloaded WFDEI and S4 precipitation rate (tp), near-surface air temperature
(tas) and surface downwelling shortwave radiation (rsds) data for East Africa (Figure
3.1) from the ECOMS User Gateway (Magariño et al., 2014; http://meteo.unican.es/ec
oms-udg). We accessed SRB3 data from https://eosweb.larc.nasa.gov/project/srb,
ARC2 data from http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.F
EWS/.Africa/.DAILY/.ARC2/ and UD11 data from http://www.esrl.noaa.gov/psd/da
ta/gridded/data.UDel AirT Precip.html.We interpolated all data from their native
grids to the 0.5° WFDEI grid using a bilinear method with an appropriate land mask.

Bias correction was performed by empirical quantile–quantile mapping (qqmap) ap-
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proach (Jakob Themeßl et al., 2011; Amengual et al., 2012; Lafon et al., 2013) on
daily forecast data against each of the reference datasets by use of one common set of
correction parameters calibrated for each month on the ensemble mean then applied
on each of the 15-ensemble members individually.

Forecast aggregation to monthly means enabled skill evaluation through 7 months
lead-time. Aggregation into 3-month seasonal means allow evaluation at 0–4 months
before start of the relevant rainfall seasons i.e. JJA, MAM and OND seasons in the
northern, inner equatorial region and the southern parts of the study area, respec-
tively. Lead-time refers to the number of months the forecast started before a target
month or season. We evaluate skill at grid points and for regions of similar rainfall
regimes shown in Figure 3.1. Regions A and B have been delineated using principal
component analysis on observed annual rainfall in Ethiopia by Eklundh and Pilesjö
(1990) (their Figure 7), while the remaining regions are from a combination of empir-
ical orthogonal function and simple correlation analysis on monthly rainfall totals by
Indeje et al. (2000) (their Figure 1(b)).

3.3.1 Skill assessment

We use mean error (bias) (Willmott, 1982; Legates and McCabe Jr, 1999; Willmott
and Matsuura, 2005; Willmott et al., 2012) to show the mean difference between fore-
casts and the reference data. Assuming that each ensemble member is an equally
probable forecast, conversion to forecast probabilities enable validation by use of two
verification measures, the Ranked Probability Skill Score (RPSS) and the Relative Op-
erating Curve Skill Score (ROCSS) for above normal (AN) and below normal (BN), or
upper and lower-tercile forecasts, respectively. ROCSS and RPSS compare the skill of
a forecast to that of a standard reference (i.e. the climatological forecasts and observed
climatology, respectively) such that zero means the forecast is as good as the reference.
Positive values imply an improvement, and negative values imply no skill. See Appen-
dices B.1 and B.2 for brief descriptions. We apply Spearman’s rank correlation coeffi-
cient and its significance to assess the correspondence between average ensemble fore-
cast and the reference data anomalies. R-packages,‘SpecsVerification’ (Siegert, 2015)
and ‘easyVerification’ (Bhend et al., 2016) are used to calculate the RPSS and ROCSS,
respectively with standard error to mark significantly positive skill. We used ‘down-
scaleR’ package (https://github.com/SantanderMetGroup/downscaleR) for bias cor-
rection and data interpolation.

The ability to capture ENSO associated anomalous rainfall is assessed based on
anomalous years identified from NOAA’s Oceanic Niño Index (ONI) based on the Ex-
tended Reconstructed SST version 4 (ERSST.v4) (Smith et al., 2008; Liu et al., 2015)
and available at http://www.cpc.noaa.gov/products/analysis monitoring/ensostuff/
ensoyears.shtml. As an example, 1982/83, and 1997/98 represent El-Niño years while
1983/84, 1988/89 and droughts of 1999/2001 represent La-Niña years, agreeing with
other studies (i.e.Camberlin and Philippon (2002); Camberlin et al. (2001); Indeje
et al. (2000); Meyers et al. (2007); Omondi et al. (2013)).
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3.4 Results

3.4.1 Simulated climatology and inter-annual variability

In this section, spatio-temporal patterns of tp, tas and rsds averaged over 15-members
in the period from 1981 to 2010 are compared to the reference data sets at each grid
point for MAM, JJA and OND seasons. We consider bias (mean error) in Figures 3.2
to 3.4, and mean correlation (and its significance) in Figures 3.5 to 3.7.

3.4.1.1 Precipitation rate (tp)

The skill of a model depends on the quality of reference data. The two reference data
sets agree better in JJA than in MAM and OND seasons in which differences in mean
spatial patterns and biases exist when validated against WFDEI and ARC2 (Figure
3.2). Relative to WFDEI, MAM forecast exhibits dry biases over large swathes of the
study area while validation against ARC2 shows lower biases. In southeastern Tan-
zania, biases of opposing signs (i.e. up to 5mmd−1 against WFDEI and −2mmd−1

against ARC2, respectively). ARC2 is known to underestimate tp over East Africa
and especially summer rainfall in Ethiopia (Novella and Thiaw, 2013). This may ex-
plain the dominance of S4 wet bias when validated against ARC2 in JJA and OND.
Biases against WFDEI are lower in both JJA and OND, possibly stemming from S4
initial conditions (also ERA-interim reanalysis).

In MAM, extents of region with a dry bias enlarge with lead-time over western
Kenya (verified against both WFDEI and ARC2) and northern Tanzania (against
WFDEI).The change in bias with lead-time is unsystematic, getting better with fore-
casts initialized in the months of November and December (lead-time 4 and 3). This
could result from either model drift or due to the stability of ENSO circulation in
November–December even though available literature does not establish the signifi-
cance of ENSO in MAM rainfall (Camberlin and Philippon, 2002). A similar charac-
teristic is evident over Ethiopia in JJA where biases reduce with increasing lead-time.

In OND, dry biases in central Kenya (against WFDEI) and wet biases in southern
Tanzania (against ARC2) do not drastically change with forecast lead-time suggesting
an existing influence of local features such as surface topography. The ITCZ position
in southern Tanzania from October–May influences rainfall and could explain the
persistent of tp biases.

Figure 3.5 shows good temporal pattern correlation (0.2 ≤r ≤0.8) at lead-0, with
significance over large extents of the study area. Beyond lead-0, the relative strengths
differ depending on the reference data and lead-time. In JJA (Figure 3.5b, ARC2
show poorer correlation to the forecasts even though it is known to reproduce well
the inter-annual variability of precipitation (Novella and Thiaw, 2013). A physical
understanding of the JJA patterns require analysis of associated atmospheric and
oceanic circulations not undertaken in this study.
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(a) (b)

(c)

Figure 3.2: Thirty year average mean error in raw S4 precipitation forecasts (tp) compared to
WFDEI and ARC2 reference data for MAM (a), JJA (b) and OND (c). Negative (positive) values
show wet (dry) biases. Plots are shown for forecast lead-time 0, 2 and 4 months before start of each
season.

We conclude that S4 simulates well the inter-annual variability, spatial patterns and
structure of tp with bias characteristics that are dependent on season and the validat-
ing dataset. Similar bias patterns in JJA suggest closeness in precipitation in both
reference data sets.

3.4.1.2 Near-surface air temperature (tas)

Figure 3.3 shows the spatial fields of mean tas biases. While the spatial structure is
fairly simulated, cold biases (<3◦C in some grid cells) dominate large areas in
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(a) (b)

(c)

Figure 3.3: Thirty year average mean error in raw S4 precipitation forecasts (tas) compared to
WFDEI and UD11 reference data for MAM (a), JJA (b) and OND (c). Negative (positive) values
show cold (warm) biases. Plots are shown for forecast lead-time 0, 2 and 4 months before start of
each season.

all seasons irrespective of the reference. Apparent mix of both warm and cold tas
biases characterize the JJA season. Temperature biases against WFDEI and UD11
are similar especially in JJA, while biases in tp (Figure 3.2) and rsds (Figure 3.4) are
not. Hence, the link between cloudiness and temperature cannot explain this JJA
temperature bias. Despite these biases, there is a high correlation of tas forecast with
both WFDEI and UD11 in JJA and OND over four lead-months (Figure 3.6). The
correlation weakens in some grid cells at lead-4 of MAM forecasts but is still positive
in many places.

Thus, we conclude that magnitudes, patterns and direction of temperature biases are
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(a) (b)

(c)

Figure 3.4: Thirty year average mean error in raw S4 precipitation forecasts (rsds) compared to
WFDEI and SRB3 reference data for MAM (a), JJA (b) and OND (c). Negative (positive) values
show cold (warm) biases. Plots are shown for forecast lead-time 0, 2 and 4 months before start of
each season.

largely similar in the three seasons and nearly constant with lead-time, irrespective of
the reference dataset. Temperature biases seem to correlate with elevation, i.e. warm
biases in the high grounds upwards of 1500 m elevation (Figure 3.1), and cold biases
at lower elevations.

3.4.1.3 Surface downwelling shortwave radiation (rsds)

Overestimation of rsds against WFDEI and underestimation against SRB3 are ap-
parent over Ethiopian highlands in JJA (Figure 3.4). Regions of high positive bias
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(a) (b)

(c)

Figure 3.5: Thirty year average anomally correlation coefficient between raw S4 precipitation fore-
casts (tp against WFDEI (top row), ARC2 (bottom row) for MAM (a), JJA (b) and OND (c) seasons.
Dots show areas of significant correlation at 95% level. Plots rare shown for forecast lead-times 0, 2
and 4 months before start of each season.

against WFDEI (≈80Wm−1) extend with increasing lead-time. Validation against
SRB3 shows lower magnitudes of negative bias apparent at lead-0. Low rsds ampli-
tudes in WFDEI may result from inherent absence of elevation correction in WFDEI
rsds data (Weedon et al., 2014). Drier regions in each season also exhibit negative rsds
biases related to atmospheric conditions such as cloudiness and related properties. In
MAM, influence of lead-time on rsds bias is not obvious except over an area of posi-
tive bias in Ethiopia that enlarges with increasing lead-time. Less bias is apparent in
OND relative to other seasons. There is however a region running from southeastern
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Tanzania through central to northern Kenya that exhibits negative bias unique to
WFDEI validation that seems to correspond with the Rift Valley escarpment.

(a) (b)

(c)

Figure 3.6: Thirty year average anomally correlation coefficient between raw S4 near-surface air
temperature (tas against WFDEI (top row), D11 (bottom row) for MAM (a), JJA (b) and OND
(c) seasons. Dots show areas of significant correlation at 95% level. Plots rare shown for forecast
lead-times 0, 2 and 4 months before start of each season.

Regions of significant correlations in rsds (r≥2) are apparent at lead-0, against both
the WFDEI and SRB3 (Figure 3.7). Verified against SRB3, more grids show good and
significant correlations in all lead-times in JJA. Against WFDEI, higher correlations
and significance in OND exist over all lead-times. The numbers of grid cells with
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(a) (b)

(c)

Figure 3.7: Thirty year average anomally correlation coefficient between raw S4 downward surface
shortwave radiation forecasts (rsds against WFDEI (top row), SRB3 (bottom row) for MAM (a),
JJA (b) and OND (c) seasons. Dots show areas of significant correlation at 95% level. Plots rare
shown for forecast lead-times 0, 2 and 4 months before start of each season.

significant correlations reduce with lead-time in all seasons. An understanding of anti-
correlations seen in MAM and present for either reference data would require study
of cloudiness patterns or regional aerosol load patterns, among others not studied in
this paper.

Concluding, the behavior of biases in rsds suggests dependence on validation data
set, the seasons’ atmospheric conditions related to cloudiness and its properties, and
on surface conditions related to elevation. High rainfall–high cloudiness areas show a

35



Chapter 3. Skill of ECMWF System-4 Ensemble Seasonal Climate Forecasts for
East Africa

positive radiation bias and a negative bias in the low rainfall areas.

Figure 3.8: Relative operating curve skill score (ROCSS) for lower-tercile (column 1), and upper-
tercile (column 2) S4 bias corrected precipitation (tp) forecasts. Figures are shown for MAM, JJA,
OND seasons and for lead-times 0, 2 and 4 before start of each season. Only areas of skill (i.e.
ROCSS>0) are shown with shades. Dots show areas where ROCSS is significantly greater than zero
at 95% level.
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Figure 3.9: Relative operating curve skill score (ROCSS) for lower-tercile (column 1), and upper-
tercile (column 2) S4 bias corrected near-surface air temperature (tas) forecasts. Figures are shown
for MAM, JJA, OND seasons and for lead-times 0, 2 and 4 before start of each season. Only areas of
skill (i.e. ROCSS>0) are shown with shades. Dots show areas where ROCSS is significantly greater
than zero at 95% level.
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Figure 3.10: Relative operating curve skill score (ROCSS) for lower-tercile (column 1), and upper-
tercile (column 2) S4 bias corrected downward surface shortwave radiation (rsds) forecasts. Figures
are shown for MAM, JJA, OND seasons and for lead-times 0, 2 and 4 before start of each season.
Only areas of skill (i.e. ROCSS>0) are shown with shades. Dots show areas where ROCSS is
significantly greater than zero at 95% level.
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Figure 3.11: ROCSS averaged over homogeneous regions of the study area for MAM, JJA and
OND seasons. Bar graphs are for lower-tercile (beloe-normal) and upper-tercile (above-normal) for
precipitation (tp) (a), and near-surface air temperature (tas (b). Results are shown to illustrate the
influence of spatial aggregation of skill.
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3.4. Results

3.4.2 Grid point RPSS and ROCSS

Inadequate skill in middle-tercile forecasts negatively affects RPSS, suggesting a lower
potential usefulness than actually exists. We therefore concentrate on ROCSS and
refer to Figures C.1, C.2, and C.3 in the Supporting information for grid point tp, tas
and rsds RPSS, respectively. Figures 3.8, 3.9, and 3.10 show grid point tp, tas and
rsds ROCSS for MAM, JJA and OND seasons’ lower- and upper-tercile forecasts,
respectively. Verified against both WFDEI and ARC2, lower- and upper-tercile tp
forecasts are better than the climatological forecasts by 20–80% in MAM season in
many grid points up to at least lead-2. In JJA, lower- and upper-tercile skill of 20–80%
encompasses the entire study area through lead 0–4 against WFDEI and less against
ARC2 even though the patterns remain similar. High OND precipitation forecast
skill at lead-0 depreciates with increasing lead-time but with different rates that are
region dependent. In general, MAM upper and lower-tercile tp forecasts possess lower
skill than in both JJA and OND.

The upper- and lower-tercile tas forecast skill (Figure 3.9) are 40–100% better than
climatology in all seasons up to at least 3-months before start of season but decay
with lead-time. OND and JJA forecasts are skillful in all the four lead-months. Fig-
ure 3.10 shows lower- and upper-tercile ROCSS for rsds forecasts for all seasons. In
MAM, upper and lower-terciles show skill in many grid points (up to 60% better
than climatology) irrespective of the reference dataset. Even though there is loss
of skill with increasing lead-time, usable skill exists at lead-2 in the northern part.
Verification against WFDEI exhibits lower skill in JJA than against SRB3 (skillful
up to lead-4) especially in the northern parts of East Africa. In OND, lead-0 fore-
casts show higher skill for both lower- and upper-terciles irrespective of the reference
datasets. Verified against WFDEI however, lower-tercile forecast shows skill from
lead-0 through to lead-4 (Figure 3.13c. The lower-terciles are predictable with good
skill in all lead-times while the upper-tercile possess skill at lead-0 and 1 only beyond
which the forecasts are generally as good as, or only marginally better than climato-
logical forecasts.

In conclusion, grid-point analysis shows that forecast skill of tp and rsds depend on
season, lead-time and the choice of verifying dataset. Choice of reference data set is
irrelevant for temperature. In all instances, the middle-terciles forecasts are either
as good as the climatological forecasts or worse. Bias correction does not result in
significant improvement in grid point ROCSS (see Figures C.4, C.6, and C.7 for raw
model simulations of tp, tas and rsds, respectively).

3.4.3 Regional ROCSS

We use tp and tas forecasts plus WFDEI to show variation of regionally averaged skill.
Bar graphs compare ROCSS averaged over East Africa to the scores averaged over
the various homogeneous rainfall regions for tp (Figure 3.11a and tas (Figure 3.11b.
There generally is a regional dependency of tp ROCSS in all the seasons, terciles and
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lead months. Noteworthy are MAM and OND above-normal forecasts in which the
skill averaged over East Africa is less than for each of the sub-regions. Table 3.1 shows
precipitation ROCSS for single grid points from each homogeneous rainfall regions.
Results show that good skill at grid point will not necessarily result in good skill over
a region (and vice versa). An example is JJA lower-tercile tp forecasts in region-
4 with apparent strong positive scores at the regional level but negative in a single
grid. Above-normal tas forecast ROCSS (Figure 3.11b) are better than climatological
forecasts irrespective of the spatial extent of aggregation. Below-normal ROCSS is
also dependent on region and lead-time. Monthly ROCSS are season, forecast tercile,
and lead-time dependent. Good forecast skill at monthly timescales especially at the
start of respective seasons (i.e. March, July and October) implies that the start of
seasonal rainfall may be correctly simulated and is quite important for application
purposes, for example in determining proper crop planting dates in agricultural impact
assessments.

3.4.4 Prediction of particular anomalous years and seasons

Figures 3.12, 3.13, and 3.14 (companion figures for non-bias corrected forecasts are
in Figures C.7 to C.9) show probabilities assigned to each predicted bias-corrected
precipitation tercile (colour bar) and the tercile in which observations fell (small cir-
cles) for the period of 1981 to 2010 for MAM, OND and JJA (regions A and B only),
respectively. By examining the observation position and the forecast probabilities,
it is possible to assess the year-to-year performance and hence anomalous dry and
wet years (similar analysis is done in Manzanas et al. (2014)). We only consider pre-
cipitation forecasts. S4 forecasts do not capture all the dry/wet years whether over
East Africa or the sub-regions, see e.g. the above-normal (upper-tercile) rainfall in
MAM and OND seasons of 1999/2000 La-Niña years. These are fairly simulated in
JJA over Ethiopia (Figure 3.14) i.e. coincides with higher than normal rainfall. Dry
conditions of 1983/1984, 1988, 2000/2001 are well simulated. Dissimilar skill scores
are evident when analyzed over the sub-regions e.g. in region-1 the model fails to
simulate observed 1983/1984 drought conditions. Upper-tercile forecast skill depends
on region though the model captures wet conditions of 1982/1983 and 1997/1998.
These two very wet periods were very strong Indian Ocean SSTs in addition to the
Pacific SSTs (Latif et al., 1999; Black, 2005; Owiti et al., 2008).

El-Niño conditions result in higher global temperatures because of heat transfer from
oceans to the atmosphere while La-Niña conditions do the opposite (WMO, 2014).
Considering tas forecasts of the same anomalous years, (figure not shown), the in-
fluence ENSO on tas is not obvious in 1997/1998 but captured well in most other
years. The later part of the century shows high forecast probabilities of upper-tercile
temperatures and observations as opposed to the start of the study period probably
related to greenhouse gas driven warming trends in the global atmosphere, hence
resulting in higher skill scores.
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Figure 3.12: Year-to-year bias corrected precipitation textittp forecast probabilities (shades), tercile
of occurrence of observation (unfilled circles) and ROCSS for the study period over East Africa
and sub-regions in MAM season.Asterisk indicate El-Niño years; arrows indicate La-Niña years and
circular dots indicate significant score at 95% level.

3.5 Discussion

3.5.1 Methodology

3.5.1.1 Reference data

Verification of any forecast product preferably uses high quality (in situ) observations
against which to assess systematic errors, deterministic and probabilistic forecast qual-
ity. Current gridded observational climate data practically assimilate station, satellite
and model-output data. We used a variety of reference data, each having its strengths
and weaknesses, and vary in their degree of independency from each other, and from
our forecast product.

Our forecast product S4 is based on the ECMWF IFS (c36r4) where the hindcasts
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Figure 3.13: Year-to-year bias corrected precipitation textittp forecast probabilities (shades), tercile
of occurrence of observation (unfilled circles) and ROCSS for the study period over East Africa
and sub-regions in OND season.Asterisk indicate El-Niño years; arrows indicate La-Niña years and
circular dots indicate significant score at 95% level.

are each unconstrained runs, started from ERA-Interim initial conditions, slightly
perturbed to create an ensemble. Our prime reference is the WFDEI, a reanalysis
based product in which observations play a role twice. First, during the production
of ERA-Interim, the model (also IFS, but c31r32) assimilates observed data (except
precipitation) from WMO ground, sea and upper-air networks (Dee et al., 2011), and
the model thus recreates a series of constrained daily best possible known status of
the climate at the model resolution. Even though the model state is kept as close
as possible to the ingested observations, drift and chaotic (convective) processes still
produce simulation biases. For WFDEI, these biases are then corrected in a second
step against in situ observations from CRU-TS3.1 (Weedon et al., 2010, 2011, 2014),
a statistically homogenized, exclusively station-based data set (Harris et al., 2014).

The models used in forecast and reanalysis are largely identical, justifying some ques-
tions as to their independency. On the other hand, the unconstrained nature of the
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forecast runs generates drift characteristics very different from the reanalysis runs.
Bias corrections of the latter make the results even more divergent. Therefore, we
also used alternative, arguably more independent datasets for the variables under
study. For tp we used ARC2, a satellite product, but bias corrected, in this case
again against WMO-GTS. That makes it independent from WFDEI in its fine scale
spatial patterns and daily values, but when aggregated to monthly values, the respec-
tive bias corrections will make them more similar again. ARC2 is known to capture
inter-annual variability well, but known weaknesses occur in regions of complex to-
pography and rain shadows (Dinku et al., 2007; Novella and Thiaw, 2013), related to
interactions between cloud top temperatures and orographic lift and misinterpreted
surface temperatures over snow and ice at high elevations. WFDEI precipitation
poorly reproduces observed precipitation rates on sub-daily and daily time scales in
regions dominated by local convective processes (due to convective parameterisation
issues). However, the WFDEI algorithms adjust the monthly precipitation to match
the observed numbers of wet days and gauge totals (Weedon et al., 2014). Such ref-
erence data peculiarities largely explain the different biases we found over e.g. the
Ethiopian highlands versus ARC2 and WFDEI, respectively and it explains the anti-
correlations in ARC2 JJArainfall relative to S4.

For tas we used UD11, a pure station-based product. We do not know the exact
degree of overlap in the station network of GHCN (used for UD11) WMO-GTS (for
ERA-Interim) and CRU (for WFDEI), but it will be large (GHCN is ingested into
both CRU and UD11 datasets) (Tanarhte et al., 2012) and thus their level of de-
pendency. Their statistical homogenization procedures are developed independently,
decreasing their dependency.

For rsds we used SRB3, a pure satellite-based product.As such it can be assumed
to be completely independent from WFDEI and S4. SRB3 is known to perform
very well against in situ observations (Zhang et al., 2013). WFDEI rsds suffers for
similar reasons as for tp i.e. from poor sub-daily performance under local convective
conditions and has minor issues due to lack of elevation corrections (Weedon et al.,
2014).

3.5.1.2 Bias correction and skill metrics

Bias correction is essential prior to application of GCM output in impact models,
whether on seasonal or longer time scales. For example, a number of thermal time
parameters influence crop phenological stages. Any bias in temperature, such as in
the S4 (biases of up to ±4.5◦C) will quickly accumulate in thermal times and lead to
anomalous simulation of crop development and especially yield fractions. Similarly,
systematic biases in tp may result in wrong soil moisture status and together with
those in rsds lead to anomalous overall plant productivity (Liu et al., 2014; Macadam
et al., 2016).

For bias correction, we used a quantile–quantile mapping approach (Jakob Themeßl
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et al., 2011; Amengual et al., 2012; Lafon et al., 2013) on daily forecasts. Alterna-
tives exist but we use qqmap because it can be applied to any variable with no prior
assumption of distribution of variables.

Bias correction matches the forecast and observed distribution; nevertheless, in our
study it does not significantly improve probabilistic forecast skills. The reasons for
this may be twofold. First, the influence of near equality of S4 and observed data
resolutions that averages out the extreme values in any variable, and second, prob-
abilistic validation looks at a range of values in the forecast, typically percentiles.
When biases are similar across percentiles, correction will not affect probabilistic
metrics especially when these are computed for forecast and reference each in its own
distribution. Finally, the relatedness between S4 and WFDEI, (both depend on very
similar model codes and both use ERA-Interim) may also result in a good distribu-
tion match. The success of empirical mapping for bias correction using other datasets
is because the technique applied acts to match individual observed and simulated
distributions without preserving the relationships between variables.

3.5.1.3 Aggregation issues

There exist variations in forecast skill depending on the domain of assessment (i.e.
whether assessed over East Africa, in the sub-regions or at a single grid point). This
again advocates the importance of skill evaluation at smaller spatial scales since it is
already known that rainfall in the region is quite complex and is modulated by many
other processes apart from ENSO circulation.Getting an average skill score over the
whole domain may not be meaningful to those affected by seasonal climate variability
in the sub-regions (the homogeneous rainfall units in this case).

3.5.2 Verification results

3.5.2.1 Model errors

S4, WFDEI, ARC2, UD11 and SRB3 all show the basic pattern and climatology of the
region as described in other studies. The shift in rainfall seasons largely follows the
ITCZ, but interacts with complex topography, presence of large lakes, variations in
vegetation and land-ocean contrasts (Indeje et al., 2000). Northern parts (Ethiopia)
exhibit a unimodal rainfall patterns with one season from June to September. Large
parts of Kenya and northern Tanzania experience a bimodal pattern receiving its
rainfall in MAM, and OND, while western Kenya and the coastal regions exhibit a
tri-modal pattern experiencing rainfall in MAM, JJA and OND seasons (Nicholson,
2014; Indeje et al., 2000; Korecha and Barnston, 2007; Gitau et al., 2015).

Errors exist in S4 that have unique seasonal magnitudes and characteristics deter-
mined by the validating data sets. Forecast lead-time generally does not severely alter
bias characteristics thereby implying the presence of similar influences.
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Bias characteristics in each season may be due to rainfall causing mechanisms as-
sociated with regional and local features as opposed to large-scale features that in-
fluence OND and JJA seasons (Nicholson, 2014; Camberlin et al., 2001; Camberlin
and Philippon, 2002; Ogwang et al., 2014). These could be the influence of water
bodies, topography or other meso-scale forcings and their interaction with large-scale
mechanisms (Indeje et al., 2000).

Cold bias dominates tas simulation, with a persistent structure over lead-time per-
haps because local influences such as land-use cover, soil moisture and orography are
not well represented in the model resulting in misses when compared to observations.
Biases in tas may also depend on the number of station observations included in
WFDEI and UD11. The influence of topography on temperature is a feature already
identified in other studies such as Ogwang et al. (2014) and exhibited in S4 lower
(higher) temperatures in higher (lower) elevations.

Biases in rsds seem to correlate with cloud/rain patterns. Cloud processes remain a
challenge in climate model simulations and in S4, parameterized cloud/convection and
radiation processes explain most of it biases in tp and rsds (Rotach and Zardi, 2007;
Bechtold et al., 2008; Morcrette et al., 2008,?; Jung et al., 2010). To our knowledge
this is the first study analysing rsds performance in S4.

3.5.2.2 Overall forecast skill

Higher precipitation skill (RPSS) seen in OND compared to lower skills in MAM and
JJA result from influence of large-scale circulations such as the ENSO and SSTs.
Similar results are seen in previous studies such as Hastenrath (1995); Kumar et al.
(1999); Mutai and Ward (2000) and Nicholson (2014). There exist less predictability
of MAM rainfall because of the influence of local features and processes not well sim-
ulated by models. Such influences are discussed in the previous section. JJA rainfall
is influenced by other factors such as SST anomalies off the coast of Africa between
South Africa and Madagascar (Smith and Semazzi, 2014) accounting for around 51%
of the seasonal rainfall variability. This should give the season some predictability
though primarily, not only ENSO circulations and local factors influence JJA rainfall
but also the Atlantic and Indian Ocean SSTs as illustrated in Nicholson (2014).

Good simulation of rainfall initiated at 3 and 4 months before start of MAM sea-
son [i.e. December and November of year (x − 1)] can be explained by the maturity
of ENSO signal resulting in higher signal-to-noise ratio hence a better predictabil-
ity before it starts dissipating in the boreal spring season. Available literature does
not however establish a significance of ENSO acting alone in MAM seasonal rainfall
(Camberlin and Philippon, 2002).

Shortwave radiation forecasts are no better than the climatology in JJA at all forecast
lead months when validated against WFDEI, but shows better skill against SRB3.
This may result from weaknesses of WFDEI discussed before. Note that RPSS is a
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summary measure of skill over all terciles and would nevertheless result in low skill
even if the model simulates one tercile well.

Figure 3.14: Year-to-year precipitation forecast probabilities (shades), tercile of occurrence of obser-
vation (unfilled circles), and ROCSS for the study period over sub-regions that receive rainfall in
JJA season. Asterisk indicate El-Niño years; arrows indicate La-Niña year and circular dots indicate
significant scores at 95% level.
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3.5.3 Skill of the seasonal forecasts as a function of geographic
forecast units

Another measure, the ROCSS evaluates the performance of forecast terciles. The
patterns in skill levels are clearly visible when assessed over East Africa. Differences
exist at regional scales perhaps because of the model’s inability to simulate small-
scale processes. Overall, lower-tercile and upper-tercile forecasts are skillful over
many regions compared to commonly low middle-tercile also seen in other studies
such as Kharin and Zwiers (2003) and van Van Den Dool and Toth (1991). Lead-
time of skillful forecasts depend on regions and seasons reiterating the importance of
a detailed validation process in relevant spatio-temporal scales. Verification dataset
play a fundamental role in the patterns and magnitudes of ROCSS, but in general,
the model fairly simulates above-normal and below-normal terciles compared to near-
normal forecasts.

3.5.4 Model simulation of anomalous wet and dry years

Skill in simulation of wet and dry anomalies influenced by El-Niño/La-Niña conditions
in the equatorial pacific oceans vary among the sub-regions. Since system-4 simulates
well the ENSO conditions (Molteni et al., 2011); forecasts should therefore capture
related anomalies over East Africa. Strong ENSO years such as 1982/1983,1997/1998
and dry years of 1984/1985 and 1999, 2000,2001 are captured in most of the regions
but missed in others perhaps because ENSO is not the only condition that influence
climate variability. It is known that other anomalies such as the IOD (Goddard et al.,
2001; Saji and Yamagata, 2003; Black, 2005; Owiti and Ogallo, 2007; Owiti et al.,
2008) and the East African lakes exert influence on the local climates (Song et al.,
2004; Thiery et al., 2015).

JJA forecasts in the northern part of the study area show good skill in upper-tercile
forecasts beyond lead-2 in this study. The GCM provides this advantage over statisti-
cal methods. For example, Nicholson (2014) and Korecha and Barnston (2007) found
no more than 2 months lead-time in prediction of summer rainfall (JJA) in the GHA.
The same studies found shorter lead-times in MAM prediction. The skills shown for
MAM forecasts at lead-3 and -4 provide an advantage of the GCM even though lead-1
and -2 also show useful skill in many grid cells. Nicholson (2014), Korecha and Barn-
ston (2007) and Jan van Oldenborgh et al. (2005) argue that spring predictability
barrier limited prediction of MAM and summer rains. Good skill in OND precipita-
tion forecast at long lead-times is comparable to other studies employing statistical
methods (Philippon et al., 2002; Nicholson, 2014). However, GCM forecasts provide
advantage because they are based on physical relationships and are expected to hold
into the future unlike the statistical models that may break with future climate change.

This study shows the potential use of S4 for impact studies. Skill in tp is not only
important for agricultural impact studies but also hydrological impacts such as surface
runoff, river discharge and hydropower generation. It potentially enables estimation of
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water demand, water availability and water quality months in advance. For example,
Region-3 (Figure 3.1) that hosts several hydropower dams show tp skill at least 3-
months before MAM and OND seasons. Application to hydrological flow simulations
would be of high importance to the power generation companies. Agricultural regions
over Ethiopia (regions A and B) for example have its cropping season in JJAS. A
season in which tp and tas are potentially predictable with longer lead-times could
influence farm management practices to avoid losses several months before start of
season. A continuation of this research will assess whether the use of a rather skillful
S4 results in a likewise skillful impact modelling.

3.6 Conclusions

We investigated the potential usefulness of ECMWF ensemble forecasts for East Africa
in impacts modelling. For utilization, the forecasted variables must have skill. We
therefore validated forecasted precipitation, air temperature and shortwave radiation
against WFDEI and other independent climate data sets (i.e. ARC2, SRB3 and
DU11 for tp, tas and rsds, respectively) for the relevant seasons, at grid point and
sub-regional levels. Deterministic measures; the mean and bias, and probabilistic
measures; the RPSS and the ROCSS are considered as metrics of forecast skill. It is
shown in general that skill of the three variables (tp, tas and rsds) depends on season,
forecast lead-time and location. The role of the quality of a validating dataset cannot
be over-emphasized.

S4 realistically reproduces the spatial patterns of observed seasonal climatology, of tp,
tas and rsds irrespective of the reference data sets considered but with biases. Pre-
cipitation bias characteristics are season-dependent. The error magnitudes depend on
verifying data set. Dry precipitation biases characterize the MAM season; wet biases
characterize OND and a mixture of both in JJA. Cold biases dominate tas forecasts
in all seasons, the spatial patterns of which do not show a strong seasonal variation.
Warm biases exist over dry regions during each of the three individual seasons. Biases
and patterns in rsds follow rainfall seasons and the surface topography.

Bias correction of the raw data does not improve probabilistic forecast skill but is
important for impact applications. For example, biases of driving temperature or
rainfall fields may have gross influences in crop growth or hydrological flow simula-
tions.

Grid point verification using RPSS show that precipitation and shortwave radiation
forecasts initialized at the start of the first month show skill only at start of season
(lead-0) but skill levels are low. Even though lead-0 forecast skill may be influenced
by initial conditions, it is important for impacts assessment and especially in agricul-
ture as it determines the sowing dates (i.e. rainfall onset dates).

The ROCSS reveals that S4 skillfully discriminates between upper-tercile, middle-
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tercile and lower-tercile forecasts. Aggregated over East Africa, upper-tercile and
lower-tercile precipitation forecasts initialized up to at least three lead-months show
skill. Temperature forecasts initialized up to 4 months before start of season are skill-
ful and useful while rsds show less skill though still usable. Middle-tercile predictions
remain poor for all variables at all seasons and lead-times. In the sub-regions, ter-
cile skills and lead-times of useful forecasts are season and region specific, no general
statement is possible.

Verification of yearly OND and MAM forecasts indicate good simulation of anomalous
years when assessed over the whole of East Africa. The forecasts capture manifesta-
tions of anomalous years in terms of rainfall and temperatures in certain sub-regions
(the geographical forecast units) in particular years and seasons. This reiterates the
importance of verifying skill at smaller relevant spatial extents relevant for impact
assessments but not at larger regions such as East Africa where prediction skill is not
uniform.

S4 fairly captures the inter-annual climate variability of the three variables. Inter-
annual climate variability affects socio-economic activities (such as food production
and hydropower generation) of large populations over East Africa. This is true es-
pecially when socio-economic activities depend on highly variable climate parameters
like rainfall. When used in impacts models, an assumption is that the skill in driving
variables will propagate into the impact models. In this study, skill shown by S4 grid
point, sub-regions and seasons for the three variables suggest a potential application
in impact models. We have shown the importance of using more verification measures
since a single one cannot capture all forecast attributes.

A follow-up research to this will therefore investigate the influence of precipitation,
surface temperature and shortwave radiation in crop production and hydrological
simulations over East Africa.
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Chapter 4

Sensitivity and Predictability
of Rain-fed Maize Yields to
Growing Season Climate
Indices: East Africa

Abstract
This paper explores the influence of rainfall and temperatures indicators on maize
yields and their seasonal predictability in northern Ethiopia (North-Gonder) and
equatorial Kenya (Bungoma). We use characteristics that define rainfall distribution
i.e. evenness (ER), unevenness (UR), time of rainfall in a period (Ad). Tempera-
ture characteristics including Growing Degree Days (GDD) and Killing Degree Days
(KDD). We explore their influence in the entire maize growing season, vegetative,
around anthesis, and in the reproductive stages. Reference rain fed yields are ob-
tained from WOFOST crop model driven by WATCH forcing data ERA-Interim for
the period 1980-2011; reference weather indicators are derived from the same. We
derive predicted ensemble weather indicators from an ensemble of fifteen seasonal
climate predictions from the ECMWF’s System-4 (S4 ) initialized three forecast lead
months before planting dates. Findings show that the relationship between rainfall,
temperatures and yields are location specific. While both rainfall and temperature
characteristics influence yields in northern Ethiopia, only temperature characteristics
are of significant influence in western Kenya. Sensitivity of yields to climate indicators
vary with maize phenological stages. Some indicators are predictable in one growth
phase, but not in another. In northern Ethiopia, above normal temperature forecasts
are more predictable than below–normal forecasts. GDD forecasts are no better than

This chapter is submitted for publication as:
Ogutu G.E.,I. Supit,P. Omondi and R.W. Hutjes, 2020: Sensitivity and Predictability of Rain-fed
Maize Yields to Growing Season Climate Indices: East Africa. Journal Climate Services
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climatology (i.e. ROCSS<0.3). Forecasts of rainfall indicators during entire growing
season and phenological phases are predictable with certainty at lead times–0 and
–1. Forecasts of temperature indicators show uncertainty except GDD and KDD but
varying with lead-time and growth stage. In Bungoma, growing season rainfall char-
acteristics lack predictability. In the vegetative stage, temperature characteristics are
predictable except GDD. Around anthesis, only the minimum and daily temperatures
above–normal forecasts are predictable. Forecasts of above–normal maximum, mini-
mum and daily temperatures are predictable in the reproductive stage. The results
show that crop yields correlate with certain climate indicators during successive phe-
nological stages. A subset of these indicators are predictable up to 2–lead months
before planting. This opens the possibility to skillfully predict crop yields, with-
out the need to run crop models in ensemble mode. Long forecast lead-times allow
anticipatory planning of interventions targeted at each growth stage.

4.1 Introduction

It is possible to predict crop performance ahead of time using climate data as input
and a broad range of crop simulation models. This allows assessment of climate and
other factors’ (Guo et al., 2010) affect on crop production from seasonal, decadal,
to climate change timescales (Hui et al., 2013). In many crop models, secondary
influences such as soil nutrition, occurrence of weeds, pests and diseases are not im-
plemented. Most research is biased towards direct effects of climate (Guo et al., 2010).
Common climate input into crop simulation models are temperature, precipitation,
relative humidity, wind speed and incoming solar radiation. Temperature is used to
simulate the rate of crop development and other growth processes such as leaf expan-
sion, photosynthesis and respiration. Precipitation, relative humidity, wind speed and
solar radiation are used to calculate daily crop water demand. Considering the huge
data requirements for crop modelling, forcing by ensemble climate forecasts requires
high technical skills. However, this may be mitigated by use of climate indices (i.e.
indicators in this study).

Patterns of seasonal climate and their impacts are important for understanding vul-
nerability and adaptation of regional agricultural production. Robust relationships
have been established between regional atmospheric circulations, surface climate and
crop productivity (Tao et al., 2008), mainly using the seasonal climate forecasts. Rain
fed crop production practiced in the GHA is grossly influenced by meteorological vari-
ables (Zhao et al., 2015) and the climate-yield relationships are quite complex. Water
deficit is a significant factor in crop production worldwide, but precipitation affects
yields non-linearly, implying that good total seasonal rainfall during a crop growing
period may not result in good yields (Bannayan et al., 2010; Lobell and Field, 2007).
However, quantifying crop vulnerability to water stress is not defined in a standardized
and spatially comparable manner (Kamali et al., 2018) and vulnerability differs from
one region to another. Linking crop failure to drought in sub–Saharan Africa, Ka-
mali et al. (2018) found geographical dependency of vulnerability to climate stresses.
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Vulnerability to water stress (drought) was dominant in South African and Sahelian
countries, and temperature stress vulnerability in the Central African countries. For
better understanding of spatial differences in maize yield response to climate in the
Greater Horn of Africa, we investigate the influence of well-defined climate indicators
in two regions of contrasting seasons and climate.

Maize is extremely sensitive to water stress during the critical periods for example
from flowering to grain filling (Slingo et al., 2005) mainly due to evapotranspira-
tion and high physiological sensitivity when determining the main yield components
such as number of ears per plant and kernels (Omoyo et al., 2015). In North Amer-
ica, higher precipitation is found to have partly contributed to corn yield increases
(Nadler and Bullock, 2011). Temperature, drought, wet conditions, and precipitation
have been found to have detrimental effects on maize yields in the northern spring
zone and Yellow-Huai valley summer maize zones in rural china (Ma and Maystadt,
2017). In southern Africa, within season distribution can affect yields in low rainfall
seasons but has little effect in average and above rainfall seasons. Thus, within season
rainfall distribution is a critical crop-yield determinant because crop needs water at
each growth stage, especially in areas of highly variable and low rainfal (Duffy and
Masere, 2015). Also in the GHA it is desirable to assess the influence of rainfall indi-
cators for successive development stages on maize yields.

Temperature effects on maize production are well documented; warmer temperatures
accelerate the rate of crop development until an optimum temperature above which
development rate reduces, shortening the duration of crop growth and thus reducing
yields (Hui et al., 2013). Cooler than normal temperatures slow plant growth rate.
Globally, extreme daytime temperatures have been evidenced to have a large negative
effect on crop yields (IPCC, 2014). Extreme heats have been found detrimental to
crop production in USA (Fisher et al., 2012; Hatfield et al., 2011) and especially when
they coincide with critical growth stages. When analyzing the sensitivity of United
States maize yield to extreme temperatures, Butler and Huybers (2013) found high
temperature sensitivity during silking and grain filling but with major regional vari-
ations. In a controlled environment, Hatfield and Prueger (2015) found that warm
temperatures increase the rate of phenological development but has no effect on vege-
tative biomass compared to normal temperatures and that greater impacts of warmer
temperatures is in the productive stage as compared to vegetative stage because of
a higher vegetative stage optimum temperature. Porter and Semenov (2005) also
found damage to crops from increased development stage temperatures. Minimum
temperatures affect night time respiration rates and can potentially affect biomass
accumulation for example, high minimum temperature increase the rate of senescence
and decrease ability of plants to efficiently produce grain (Hatfield and Prueger, 2015).
These studies emphasize the effect of climate evolution during maize growth stages.

Climate variables individually and collectively affect crop growth processes contrast-
ingly, often non-linearly at each stage of development. The separate influences aggre-
gate to determine the variability in final yields. Extents of influence of the climate
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variables vary both temporally and spatially. Thus, understanding the predictabil-
ity of phenological stages and types of meteorological stresses that affect maize yield
variability in each stage may interest many stakeholders in agriculture. In the GHA,
predictability of absolute climate forecast variables are highlighted in Ogutu et al.
(2017). The ambition of this study is to examine: 1. Rainfall and temperature in-
dicators of significant influence to maize yield variability. 2. Predictability of these
indicators, as a function of seasonal climate forecast lead times. 3. Uncertainty in
predictability or model simulation of indicators identified in (1.) as a function of
forecast lead time. All these are assessed considering the main phenological stages of
maize development.

4.2 Methodology

We focus on two sub-national regions of the Greater Horn of Africa (North-Gonder
(in Ethiopia) and Bungoma (in Kenya) shown in Figure-4.1 selected based on skillful
climate forecasts (Ogutu et al. (2017) and good WLY maize yield predictions (Ogutu
et al., 2018). North-Gonder lies between latitudes 11.75N –13.75N and longitudes
32.25E-38.75E, with surface elevation ranging from 527-4000 metres above mean sea
level (masl). Rainfall season is in June-September, with mean seasonal rainfall rang-
ing from 470-950mm, average maximum temperature range of 25-36◦C and average
minimum temperature range of 12-22◦C. In the modelling study, seven maize varieties
differing in their TSUMs (see Table 5.1) are grown in North-Gonder.

Bungoma spans longitudes 34.3E-35.1E and latitudes 0.43N-1.15N, with elevation of
1249-4000 masl. Rainfall season in Bungoma is in the month of March-May, and
October-November with mean mean seasonal rainfall of approximately 700-800mm
in MAM; mean maximum temperature range of 25-27◦C and minimum temperature
range of 12-14◦C. We consider only the first cropping season (MAM). Variability in
Bungoma’s climate is less than the variability in North-Gonder. Only two maize
varieties are used in Bungoma, with a single variety with TSUM1=670 planted in
over 90% of the area. We focus on this variety and April planting date. We perform
analyses based separately on the entire maize growing season, vegetative stage, ±10
days around anthesis, and the reproductive stages.

4.2.1 Climate distribution indicators

We adopt rainfall indicators that describe the temporal distribution of rainfall by the
evenness parameter (ER), the unevenness parameter (UR) and the shape properties
(Ad) of a cumulative rainfall curve as detailed in Monti and Venturi (2007) in addition
to rainfall rate (RR). ER describes even distribution of rainfall during the growing
season, UR describes uneven independent rain events and Ad enables us to represent
either early or late rainfall. In addition we use the total rainfall (RR) over any period.
The indicators ER, UR and Ad are used as defined in Monti and Venturi (2007).
Similar distribution measures have been used in Duffy and Masere (2015).
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Figure 4.1: Case study areas (North Gonder in Ethiopia and Bungoma in Kenya) shown in relation
to Kenya, Ethiopia and African continent

Maize requires a specific amount of heat to transit from one development stage to
another. As indices, we use the daily maximum temperature (TX), daily minimum
temperature (TN), daily temperature (TG), Growing Degree Days (GDD) and Killing
Degree Days (KDD). Heat accumulation during crop growth is assessed using Growing
Degree Days (GDD); it estimates the beneficial effects of temperature and can be
used to predict plant development stages. The KDD represent the negative effects
of high temperatures, quantifying the effects of temperatures to reduce yields. In
this study, we use the GDD and KDD versions as defined in Butler and Huybers
(2015), considering both the lower threshold (base temperature) and the maximum
temperature for maize growth.
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4.2.2 Climate and yield data

To assess the relationship between yield variability and weather/climate character-
istics, we derive reference climate indicators from the 0.5°× 0.5° gridded Water and
Global Change (WATCH) forcing data (WFDEI) for the period 1981-2010. The
WFDEI is based on monthly ERA-Interim reanalysis bias corrected using gridded
observed climate data from the University of East Anglia’s Climate research Unit
(Harris et al., 2014). Preparation of WFDEI is detailed in Harding et al. (2011);
Weedon et al. (2010, 2011, 2014). Forecast climate indicators are derived from the
European Centre for Medium Range Weather Forecasts (ECMWF) system-4 sea-
sonal climate ensemble prediction system (S4 ) reforecasts for the period 1981-2010
described in Molteni et al. (2011), but bias corrected against the WFDEI. The sea-
sonal climate reforecasts is an ensemble of 15-members (individual forecasts), each
being produced from a different initial conditions. Details of S4 and generation of
ensembles is found in Molteni et al. (2011).

We generate water-limited reference maize yields from WOFOST driven by WFDEI.
In relation to crop physiology, the WOFOST enables a specification of local maize
varieties. Originally developed for farm scale use, the model has been adopted for
regional simulation with Ogutu et al. (2018) providing details related to the model
inputs, setup, and validation against nationally available maize yield statistics for
East African countries. WOFOST is setup to simulate water limited yields at a hor-
izontal grid resolution of 0.1°× 0.1° resolved by superimposing Food and Agriculture
Organization (FAO) land use data, topography, crop calendar, soil data and climate
data. Detailed description of WOFOST model is available in Boogaard et al. (2013);
Van Diepen et al. (1989); Keulen and Wolf (1986); Rotter (2014); Supit et al. (2012,
2010). In this study, both yields and climate data are aggregated to sub-national
boundaries representative of administrative units (NUTS) for which agricultural yield
statistics are collected using the equation:

Xaggregated =

∑k
i=1 Xi ×Areacultivated,i∑k

i=1 Areacultivated,i
(4.1)

Where i = each grid cell within NUTS-2 boundary, k = total number of grid cells,
X = simulated yields (Kg ha−1) by WOFOST, and Areacultivated,i = cultivated area.
The latter is based on observed production statistics. NUTS concept is explained in
Resop et al., (2012) and Supit and Van Der Goot, (1999) i.e. NUTS-0 corresponds
to the national boundaries, which are in addition divided into NUTS-1 regions and
farther to NUTS-2 (sub-region).

4.2.3 Forecast verification metrics

Three forms of verification metrics are chosen, i.e. Metrics that work on the full en-
semble members to assess the spread of the forecasts (spread Vs. Skill ratio) and to
assess consistency and reliability (the rank histogram); metrics that work on prob-
abilistic forecasts such as the relative operating curve skill score (ROCSS) and the
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generalized discrimination score (GDS); and Error metrics that work with the mean
(or median) of the ensembles and [i.e. mean error (bias), percentage bias (pbias), and
the root mean squared error (RMSE)]. The metrics are determined as implemented
in Bhend et al. (2016).

The spread-error ratio (SprErr)>1 implies an over dispersion (under confidence) i.e.
observed variability is higher than the forecasted variability. SprErr <1 1implies un-
der dispersion (over confidence) i.e. the observed variability is lower than the expected
variability (under dispersion/over confidence), and SprErr = 1 implies that there is
no discrepancy between the observed and forecasted variability (equi–dispersion). We
use the metric to measure uncertainty.

The ROCSS, derived from the area under the Relative Operating Curve (AROC) mea-
sures skill of tercile forecasts i.e. above normal (upper tercile), below normal (lower
tercile) and near normal (middle tercile) forecasts. Briefly, ROCSS = 2AROC -1,
where -1.0≤ROCSS≤1.0. ROCSS = 1.0 indicates a perfect forecast system; ROCSS<
0 indicates perfectly useless forecast system, and ROCSS = 0 indicates no skill. De-
tailed descriptions of the ROCSS is available in Barnston et al. (2010); Diro et al.
(2012); Hamill and Juras (2006)arnston et al. (2010); Diro et al. (2012); Hamill and
Juras (2006); Mason and Graham (1999) and Appendix-B.1.

The generalized discrimination score (GDS) measures how well a forecast can dis-
tinguish between two observations; it measures forecast skill. For a skillful forecast,
the proportion of correctly picked observations will exceed 50% (i.e. GDS >50%); a
perfect score is 100%. Details and formulations of the GDS is found in Ebert et al.
(2013); Mason and Weigel (2009); Weigel and Mason (2011); Bhend et al. (2016).

Forecast Bias (bias), Percentage Bias (pbias), Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE) and correlation (r) assess the difference between the
observed and ensemble mean or median. The metrics are calculated for each ensemble
member individually (15-ensembles) before aggregating the mean over all ensembles.
For each ensemble member, the metrics are determined as illustrated in Willmott
(1981, 1982).

Like the spread error ratio, the rank histogram is useful for determining the reliability
of ensemble forecasts and diagnosing errors in its mean and spread. For a reliable
n–member ensemble forecast, if the forecast and observation are pooled into a vector
and ranked from lowest to highest then the observation is equally likely to occur in
each of the n+1 possible ranks resulting in a flat histogram. Consistent bias in the
ensemble will show a sloped rank histogram while a lack of variability in the ensemble
will show a U-shaped or concave population of ranks (Elmore, 2005; Hamill, 2001).
Statistical tests are used to assess flatness or otherwise of the ranks and to identify
the causes of deviation. We use the chi-square test (X2) to assess deviation of the
resulting rank histogram from flatness and its decomposition explained in Jolliffe and
Primo (2008) to identify specific alternatives to flatness such as bias or under/over
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dispersion. A detailed description and discussion of the rank histogram is available
in Elmore (2005); Hamill (2001); Jolliffe and Primo (2008).

4.3 Results

4.3.1 Ethiopia

4.3.1.1 Climate indicators that significantly correlate with maize yield

Figure 4.2; rows 1 and 2 show rainfall and temperature indicators that explain maize
variability in North-Gonder (northern Ethiopia). Considering the entire growing sea-
son, the average rainfall rate (RR), evenness parameter (ER), average season minimum
temperature (TN), daily temperature (TG), explain yield variability. Growing season
RR, ER, TG, and KDD respectively explain 15%, 16%, 26%, and 8% variability in
yields. This illustrates the importance of both rainfall and temperature indicators to
maize yields.

In the vegetative stage, RR, ER, timing Ad and TX show significant correlations with
yields and respectively explain 21%, 20%, 20%, and 15% variability in yields. More
rainfall indicators during vegetative stage explain yield variability than does temper-
ature indicators.

Around anthesis, Ad, TN and TG have significant correlation to yield and respectively
explain 21%, 19%, and 17% of yield variability. In the reproductive stage average
maximum temperature TX, TN, TG, and GDD respectively explain 17%, 11%, 23%,
and 24% of maize yield variability. In anthesis and reproductive stage, it is noted
that temperature explain maize yield variability as opposed to rainfall indicators.

4.3.1.2 Predictability of indicators

Figure 4.2 and Figure 4.3; row 5 show predictability of above-normal and below-
normal climate indicators for northern Ethiopia using ROCSS. We use significance of
the ROCSS (shown by predictability threshold line) to identify predictable character-
istics.

Growing season RR, ER, TN and TG are identified in section 4.3.1.1 to influence
yields. Above-normal forecasts of the indicators are predictable with significant skill
in all the forecast lead-times. Predictability of below normal forecasts of these indi-
cators vary. For example, below normal RR forecasts is predictable at lead-0, and -2
while ER is predictable at lead-1 and lead-2 only. Below normal forecasts of Daily
temperature (TG) are predictable in the three lead-times. Growing season KDD fore-
casts are predictable with significant skill. Even though not identified to influence
yields, its predictability provides information that may be useful in developing mit-
igation options against effects of high temperatures. Other verification metrics are
shown in Table D.1. All growing season forecast indicators
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Figure 4.2: Maize yield variability as explained by various climate indicators (top 2 rows of bars)
and the predictability of the latter (bottom 2 rows of bars) for both the entire June –July-August
growing season and the three crop development stages within that season (schematized in middle
graph) for North Gonder, Ethiopia (map insets). The wide bars at far top and far bottom present
the respective statistics for the entire growing season, the narrow bars on the second and before
last rows reflect the three consecutive development stages, from left to right Vegetative, Flowering
(Anthesis) and Reproductive stage, respectively. The metric used to quantify explanatory power of
the indicators on yield is here the Coefficient of Determination R2 (other explanatory metrics are
given in supplementary tables D.1 to D.4 The metric used to quantify predictability is the ROCSS
shown in this figure for the upper tercile, or above normal (AN) conditions. Significance levels for
correlation (r2>0.1) and skill (ROCSS>0.33) are shown with black dashed lines with apparently
missing bars implying negative correlation coefficient and or zero ROCSS respectively.
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Figure 4.3: Same as figure-4.2, for Below Normal Indices; correlations (top two rows) are not shown
are not shown (identical to figure 4.2)

including those not found to influence yields have good forecast discrimination shown
by GDS>50% (Table D.1)in all lead-times except GDD which has poor discrimination
(i.e. GDS = 45%, 46% and 40% in lead-0, lead-1 and lead-2 respectively). Errors in
forecasts quantified by pbias, MAE, and RMSE in Table D.1 are low in all lead-times
with pbias≤ 10%. This is also true for all growing season climate indicators displaying
poor terciles forecasts. Temperature characteristics show higher correlations with the
observed at all lead times except GDD. During the growing season in North-Gonder,
climate indicators that influence yields have variability almost equal to that of the
observed (equi-dispersion) as shown by SprErr in Table D.1. Rainfall indicators es-
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pecially have higher SprErr in all lead-teams indicating better spread than that of
temperature indicators. GDD and KDD are characterized by under-dispersion and
over-dispersion respectively in all lead-times. Good dispersion in rainfall indicator
forecasts are also shown by uniform rank histograms at lead-0 and lead-1 (Table
D.9). Lower RR and ER, (SprErr ≈ 0.7) at lead-2 translates to non-uniformity of
rank histogram as a result of either biases or lack of variability or both. Forecasts of
growing season temperature indicators are uncertain while all forecasts of rainfall in-
dicators show equi-dispersion and uniformity of histograms irrespective of lead-times
(shown in Table D.1 and Table D.9) implying certainty in all the three lead-times.

In the vegetative stage (row-4 of Figure 4.2 and Figure 4.3), both AN and BN forecast
of RR, ER, and TG are predictable with significant skill in all the three lead-times.
These indicators are identified to explain yields together with Ad. But Ad is un-
predictable in all lead-times and all terciles. It shows the difficulty in predicting
the time of occurrence of rainfall (Ad) during vegetative stage. TN, which has no
influence on yields is predictable in all terciles with significant skill suggesting its
importance for other crops. For example, crops that are sensitive to frost like condi-
tions such as tea. Forecasts of vegetative stage climate indicators are in Table D.2.
All indicators have good discrimination with GDS ranging from 52% to 71% in all
lead-times except GDD. GDD also show no correlation with the observed nor is it
predictable. There exist acceptable biases in forecasts of all climate indicators that
influence yields as seen in the error statistics in (Table D.2). Ad, and KDD especially
at lead-1 and lead-2 show high biases rendering them unsuitable for yield estimation.
Results show that vegetative rainfall indicators are more predictable compared to
temperature characteristics. The predictability and significant correlations with the
observed characteristics imply the possible use of such to forecast yields when actual
forecasts are unavailable. Forecasts of both rainfall and temperature indicators during
vegetative stage show reasonable spread i.e. near equi-dispersion (Table D.2). GDD
is grossly under-dispersed in all lead-times while KDD forecast is over-dispersed at
lead-2. Rainfall characteristics show uniformity of rank histogram (Table D.9) except
lead-2 ER forecasts that deviate from uniformity due to bias. All temperature indica-
tors deviate from uniformity of histogram in all lead-times due to either bias or lack
of variability or a combination of both. The findings imply a higher uncertainty in
forecasts of temperature indicators forecast compared to rainfall.

Of the anthesis period indicators that influence yields, only TN and TG are pre-
dictable with significant skill in all terciles and lead times. Though anthesis period
GDD does not influence maize yields, it is predictable with significant skill (shown by
ROCSS). Predictability of GDD is useful as it makes it possible to forecast ripening
stage or disease and pest outbreaks hence implications for farm management prac-
tices. Temperature indices that influence yields, plus all rainfall indicators exhibit
good forecast discrimination in all the three lead-times. However, discrimination of
rainfall indicators are lower (see GDS in Table D.3). KDD forecasts show poor dis-
crimination of GDS = 48%, 50% and 42% in lead-0, lead-1 and lead-2 respectively.
Apart from TN and TG showing significant correlations with the observed in all lead-
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times, the rest of the characteristics have almost nil correlations with the observed.
But even with the low correlations, simulation errors as shown by the bias, pbias,
MAE and RMSE are within acceptable limits in all lead-times except lead-2 KDD
with pbias of -42% (pbias in Table D.3). Considering predictability and error statis-
tics, most of the climate indicators during anthesis can be useful in yield estimation.
Forecasts of TX (lead-0 and lead-1), and GDD (lead-0 to -2) exhibit under-dispersion
(shown by SprErr). UR, and ER are under-dispersed at lead-0. Rainfall characteristics
forecasts have reasonable dispersion at longer lead times. Under-dispersion of GDD
forecasts in all lead-times implies nil certainty. The rank histogram statistics (Table
D.9) show that GDD forecasts deviate from uniformity due to biases in simulation in
all lead-times. Generally, GDD forecasts around anthesis have higher uncertainty in
prediction compared to all other characteristics irrespective of the forecast lead-time.

In the reproductive stage, TX, TN, TG and GDD are found to influence yields. Of
these above-normal forecast of TN is predictable across the three lead-times while
that of TX forecast is predictable at lead-0 only. Both above-normal and below-
normal forecasts of TG and GDD have prediction skill. Rainfall indicators during
the reproductive stage are not predictable. TX, TN, TG and GDD indicators iden-
tified to explain yield variability all have good forecast discrimination (GDS>50%)
in the three lead-times (see Table D.4). Lead-0 rainfall characteristics forecasts have
no discrimination (i.e. GDS < 40%) but this improves in longer lead-times. Rainfall
characteristics also show very low correlations at lead-0 but this improves at lead-1
where there exist significant correlations. Temperature characteristic forecasts have
significant correlations with the observed at lead-0 but this reduces in longer lead-
times. Temperature indicators are dominated by negative biases in all lead-times.
The errors are acceptable except lead-1 Ad with pbias of 29%. Rainfall character-
istics have higher simulation errors and less predictable compared to temperature
indicators.

All indicators in the reproductive stage have reasonable spread as shown by the SprErr
in Table D.4 with the exception of GDD (under-dispersion in lead-1) and KDD (over-
dispersion in lead-1 and lead-2). All forecasts of rainfall and temperature indicators
show uniformity in rank histogram except TX (lead-0 and lead-1), GDD (lead-1and
lead-2) and TG (lead-2). Lead-1 GDD rank histogram deviation is due to both a lack
of variability and bias in the forecasts while the rest of deviations from uniformity
are due to bias. Generally, forecasts of rainfall indicators in North-Gonder during
consequent phenological stages and in the entire crop cycle may be predicted with
higher certainty at lead-0 and lead-1. Temperature characteristics show certainty
except GDD and KDD though this varies with lead-time and stage of growth.
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4.3.2 Bungoma

4.3.2.1 Climate indicators that significantly correlate with maize yield

In the equatorial region of East Africa (i.e. Bungoma; Kenya), rainfall indicators do
not have significant correlations with yields irrespective of the stage of growth (Figure
4.4a snd 4.5b, rows 1 and 2). Temperature indicators in the entire growing season,
vegetative stage, and around anthesis explain the variability in yields but marginally
in the reproductive stage. Growing season TX, TN, TG and KDD account for 39%,
28%, 41% and 9% of the variability in yields. Temperatures during the vegetative
stage seem to account for a higher percentage in variability i.e. TX, TN and TG
account for 58% of variability in yield while KDD accounts for 23%.

Around anthesis, TX, TN, TG, GDD, and KDD individually account for 32%, 37%,
36% and 20% of yield variability. In the reproductive stage however, TX, TN, and
TG marginally explain yield variability. Yield variability cannot be explained by
rainfall indices because there could be enough water or rainfall is regular. Sensitivity
to temperature as opposed to soil moisture (in extension rainfall) has also been found
in Iizumi et al. (2013).

4.3.2.2 Predictability

The ROCSS shown in Figure 4.4 and Figure 4.5 illustrate AN and BN predictability
of climate indices as a function of forecast lead-time respectively for the entire growing
season and maize growth stages in Bungoma. In the growing season and reproduc-
tive stage, we show predictability for lead time-0 and lead-1 because forecasts beyond
lead-1 do not span the entire duration of maize growth. Growing season AN and BN
rainfall indicators lack predictability but TX, TN and TG forecasts are predictable in
lead-times zero and one. Though GDD and KDD do not explain yields, their forecasts
are predictable and may be useful for farm management practices.

Forecasts of growing season temperature indicators that explain yields (i.e. TX,TN,
TG) and indeed all forecast of temperature indicators exhibit good discrimination,
low biases in all lead times considered and good correlations with the observed. GDD
shows poor forecast discrimination, poor correlation with the observed but with low
forecast errors in the three lead-times. Forecasts of rainfall indicators generally ex-
hibit poor discrimination, poor correlations, and higher errors in all lead-times as
evidenced by bias, pbias, MAE, and RMSE (Table D.5).

Yield explaining temperature indicators show almost equi-dispersion in all lead-times
except TN with SprErr = 0.5 in both lead-0 and lead-1 respectively (see Table D.5).
Maximum temperature (TX) SprErr degrades from equi-dispersion (SprErr = 1) in
lead-0 to under-dispersion (SprErr = 0.3) in lead-1. Forecasts of rainfall indicators
are almost equi-dispersed in both lead times. Ad, TN, and GDD rank histograms
deviate from uniformity in lead-0 and lead-1 due to either bias or dispersion as shown
in Table D.10. The three indicators are already seen to have SprErr≤0.6. Generally,
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it is observed that in many instances. SprErr 6=1 results into deviations from unifor-
mity of histograms. Of the growing season climate indicators that influence yields,
TX and TG are forecasted with certainty as are rainfall characteristics except Ad.

In the vegetative stage, TX, TN, TG and KDD explain variability in maize yields
and are predictable in lead times-0, 1, and 2. GDD though not found to explain yield
variability, is predictable as are some rainfall indicators. For example, above-normal
and below-normal forecasts of ER are predictable in the three lead-times, RR in lead-
1 and lead-2, while Ad is only predictable at lead-0. Vegetative stage predictability
assessment suggests that variability in temperature indicators is feasibly more useful
in predicting yields than rainfall indicators.

Forecasts of yield explaining temperature indicators (i.e. TX, TN, TG, KDD) all
exhibit good forecast discrimination (GDS>50%), low forecast errors and good cor-
relations to the observed in all lead-times but not GDD. Negative biases dominated
forecasts of temperature indicators (Table D.6) even though they explain yields. Un-
predictability of rainfall indicators forecasts is exhibited but errors are low as shown
by bias, pbias, MAE, RMSE. Vegetative period Ad is not predictable in all lead-times.
In the vegetative stage, all indicator forecasts have variability that is almost equal
to the observed as shown by SprErr in Table D.6 in all lead times. KDD forecast
show equi-dispersion at lead-0 but over-dispersion at longer lead-times though the
rank histogram does not deviate from uniformity (Table D.10). TN rank histogram
deviate from uniformity due to both biases and lack of variability in all lead times.
All indicators show forecast certainty except TN and KDD.

Around anthesis, only TN and TG forecasts are predictable in both categories (i.e. AN
and BN) in all the three lead-times (Figure 4.4 and 4.5; row-4; column-2). TX, GDD,
and KDD though found to explain yields are not predictable except below normal
forecasts of TX. Some rainfall indicators show insignificant below-normal predictabil-
ity. All temperature indicators have good forecast discrimination and acceptable
biases in all lead-times except KDD (Table D.7). Correlation between forecasts and
observations is lacking in all lead-times except TN that with significant correlation
of r = 0.4 in all lead times. Ad and KDD have high errors rendering them unusable
(i.e. Ad pbias = -98%, -88%, -202%; KDD pbias = 149%, 169% and 157% in lead-0,
lead-1 and lead-2 respectively). Lead-0 RR and ER also possess higher biases (>25%).
Only KDD ensemble forecasts have a variability that is higher than the observed (i.e.
over-dispersion) in all lead-times implying uncertainty. The rest of the forecasted in-
dicators show similar variability to the observed in all lead-times. But considering the
rank histograms, only forecasted lead-0 RR show a deviation from uniformity of the
rank histogram at lead-0 (Table D.10) due to bias even though the variability is equal
to that of the observed. Even with low uncertainty, lead-0, lead-1 and lead-2 biases
in RR, ER, Ad and KDD forecasts have high forecast errors (pbias in Table D.7) thus
rendering them unusable. With thse findings, we propose that a single metrics is not
enough to assess all attributes of a forecast.
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Figure 4.4: Maize yield variability as explained by various climate indicators (top 2 rows of bars)
and the predictability of the latter (bottom 2 rows of bars) for both the entire June –July-August
growing season and the three crop development stages within that season (schematized in middle
graph) for North Gonder, Ethiopia (map insets). The wide bars at far top and far bottom present
the respective statistics for the entire growing season, the narrow bars on the second and before
last rows reflect the three consecutive development stages, from left to right Vegetative, Flowering
(Anthesis) and Reproductive stage, respectively. The metric used to quantify explanatory power of
the indicators on yield is here the Coefficient of Determination R2 (other explanatory metrics are
given in supplementary tables D.5 to D.8. The metric used to quantify predictability is the ROCSS
shown in this figure for the above normal (AN) conditions. Significance levels for correlation (r2>0.1)
and skill (ROCSS>0.33) are shown with black dashed lines with apparently missing bars implying
negative correlation coefficient and or zero ROCSS respectively.
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Figure 4.5: Same as Figure-4.4 for Below Normal Indices; correlations (top two rows) are not shown
(identical to 4.4)

Only temperature indicators are predictable in the reproductive stage i.e. above-
normal TX, TN and TG are predictable (with significance) at lead-0 and lead-1 while
the BN predictability do not show significant ROCSS. Important indicators (i.e. TX,
TN and TG show good forecast discrimination, low forecast errors (shown by bias,
pbias, MAE, RMSE ) at lead-0 and lead-1 (Table D.8). All reproductive stage rainfall

indicators exhibit poor forecast discrimination and no predictability. As with the
other growth stages in Bungoma, forecasts of rainfall indicators have higher simulation
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errors compared to temperature. In the reproductive stage, TN forecasts are under-
dispersed in lead times zero and one but the rank histogram does not deviate from
uniformity. GDD and KDD are over-dispersed but the rank histogram does not
deviate from uniformity. Even though forecasts of rainfall indicators exhibit under-
dispersion, the rank histograms do not deviate from uniformity. Only TX and TG are
equi-dispersed and rank histograms do not deviate from uniformity in lead times-zero
and –one implying only TX and TG are forecasted with certainty. The findings for
reproductive stage also highlights two challenges, one; one metric is not enough to
measure all attributes of a forecast, and two; more than metrics for a single attribute
makes it difficult to conclude on the performance of an attribute. A compromise
should therefore be allowed depending on the attribute of interest.

4.4 Discussion

4.4.1 Methodology

Agriculture in East Africa is majorly rain fed and therefore the importance of good
rainfall amount cannot be over-emphasized. Rainfall distribution during a crops life
may play a greater role in crop yields than the total rainfall because rather than rain-
fall amounts, available soil water determines maize growth and yields as discussed
in Asseng et al. (2001); Cakir (2004); Duffy and Masere (2015); Huzsvay and Nagy
(2005); Monti and Venturi (2007). Few studies have examined the influence of rainfall
indicators on yields in East Africa. This study both supports and makes use of these
rainfall indices to quantify the timeliness and rainfall distribution over the course of
maize growth. It allows a possible quantification of their influences on maize yields.
We show clearly that both rainfall rate (RR and rainfall distribution (ER and Ad
more so than UR) are important in areas where crop production is more water than
temperature limited, such as Northern Ethiopia. The distribution indicators are ob-
viously correlated. RR and ER should covary strongly, so only one could be used.

When we consider their relation with yields, correlations of RR and ER with yield are
generally very similar, as are those of UR and Ad even though the two do not covary.
Also when we consider their predictability, their similarities are obvious, RR and ER

have practically equal skill across all metrics, as do UR and Ad. So, yes, when build-
ing a climate service, providing RR or ER and UR or Ad would suffice. Perhaps, some
measure of extreme rainfall could have been added covering the hazardous effects of
extreme precipitation events on yield.

Temperature is known to influence maize yields especially in terms of the number of
days in which daily temperature is within the lower and upper limits of maize growth
or above the upper threshold represented by GDD and KDD. Apart from the ac-
tual temperatures, the temperature indices represent temperature influences on plant
physiological processes which in turn determine biomass assimilation and allocation
without details of bio-physiological processes. Also here the indicators used must be

69



Chapter 4. Sensitivity and Predictability of Rain-fed Maize Yields to Growing
Season Climate Indices: East Africa

co-varying to some extent, though perhaps less directly than the ones for rainfall. TX
and KDD both represent heat stress, and TG accumulates in GDD when above the
base temperature, but TN or TX relation to GDD is not so straightforward. Looking
at the results, both at their correlation with yield, or at their predictability, their co-
variance is apparently lower than perhaps expected and we cannot simply discard one
in favor of another. However, GDD and KDD are because of their cumulative nature,
very sensitive to biases in relation to the thresholds used in their calculation. That
makes data with relatively low spatial resolution notoriously problematic in regions
with intense topography (applicable in North Gonder more so than in Bungoma).
Assessing influences of rainfall and temperature indicators on yields individually at
various phenological stages may enable design of mitigating inventions because of
negative influences. For example, use of drought resilient cultivars when depressed
rainfall is forecasted or quick maturing varieties in hotter areas or shifting to a more
resilient crop if climate conditions are dire.

Forecasts with long forecast lead times before planting allow design of farm manage-
ment practices and can be adjusted with reduction in lead time. Ensemble forecast
enables quantification of uncertainty in the forecasts as it is already known that sea-
sonal forecasts are imperfect. We have used a number of verification metrics to sample
aspects of forecast attributes since not all may be good. For example, the terciles of
a forecast may be predictable (assessed by ROCSS) yet possess errors (biases) and
may/may not be of similar variability with the observed.

4.4.1.1 Yield explaining climate indicators

We have identified rainfall and temperature indicators that explain maize yield vari-
ability over two sub-national regions differing in seasons and season length, i.e. North-
Gonder in northern Ethiopia and Bungoma in the equatorial region of Kenya. It has
allowed a view of spatial differences on climate-yield relationships. Growing season
rainfall and temperature are the main climatological variables influencing maize phe-
nology and yields. The relationship between either temperature and yields or rainfall
and yields are generally inhomogeneous in the two locations. While both rainfall and
temperature indicators influence yields during a crops’ growing season in northern
Ethiopia, only temperature indicators influence yields in Bungoma. These relation-
ships between climate variables and maize yields are location specific and cannot be
generalized.

Climate-yield relationships may result from other factors such as temperature-rainfall
interactions, soil types and hence water holding capacity, temperature-water vapor
deficit interactions. These findings are not unique, as similarities have been obtained
in both global and regional studies. For example, in studying the impact of climate
variation in global crop yield variability, Ray et al. (2015) found that where, and by
how much a crop’s yield varied due to climate is highly locational and crop specific.
Huang et al. (2015) found that total growing season precipitation had a stronger influ-
ence on yields in North eastern United States (US) than in the South East. Varying
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sensitivity to climate variables has also been found in Mongolia (Huang et al., 2017);
North East China (Zhao et al., 2015); Sri-Lanka (Karunaratne and Wheeler, 2015). In
sub-Saharan Africa, sensitivity to water stress is found in southern Africa and some
countries in the Sahel region, while sensitivity to temperature stress is in Central
African countries (Kamali et al., 2018).

Yield sensitivity to growing season temperature only, as in Bungoma may be due
to uniform and sufficient precipitation and soil moisture variability during the crop
season i.e. there exist less spatial and temporal variability as opposed to northern
Ethiopia. This may be true as the entire Bungoma almost falls within one grid box
of 0.5°× 0.5° ERA-Interim input climate data as opposed to the larger North-Gonder
region with many grid cells that could result in a higher spatial variability.

Both vegetative stage rainfall and temperature are important for maize growth. We
however find contrasting yield sensitivities in northern Ethiopia and equatorial Kenya.
In northern Ethiopia, even distribution and period of occurrence of rains, the average
daily temperature, GDD and KDD during vegetative growth stage influences yield
variability.

In equatorial Kenya however, yields show sensitivity to vegetative stage tempera-
ture indicators only (i.e. maximum temperature, minimum temperature, mean daily
temperature and KDD). Higher daily temperatures during this period result in higher
respiration rates and faster growth rate (Via influence on GDD). Higher temperatures
above the upper threshold influences KDD, which in turn limits carbon assimilation.
Sufficient water availability lowers yield sensitivity to temperature. This may be the
reason for lower R2 between temperatures and yields in North-Gonder.

A difference in sensitivity of yield is evidenced during anthesis. While the time of
occurrence of rainfall (Ad), minimum temperature and average daily temperature
during anthesis influence yields in northern Ethiopia, only temperature indicators in-
fluence yields in Bungoma. Maize has high sensitivity to high temperatures during
anthesis and in the reproductive stage i.e productivity is reduced when extreme tem-
peratures and is further exaggerated when there are water deficits (Hatfield and Dold,
2018). This may explain sensitivity to Ad (timing of occurrence of rainfall) amongst
the rainfall indicators in northern Ethiopia. Regional variation in sensitivity of yield
to temperatures during silking and reproductive stage have been found in the USA
(Butler and Huybers, 2013) like in this study and with a higher sensitivity in the
reproductive stage (Hatfield and Prueger, 2015).

During anthesis and reproductive stages, warmer temperatures above upper threshold
causes a reduction in yields as it accelerates development thus reducing the period re-
quired for grain filling and reduces rate of photosynthesis. This statement may explain
the sensitivity to temperature characteristics (anti-correlations) as opposed to rainfall
during anthesis and development stage in the two regions. In other studies however,
water availability during anthesis and grain filling stage have been found highly ex-
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planatory of-and- results in high grain yield (Armstrong, 1999; Butts-Wilmsmeyer
et al., 2019). Because both rainfall and temperatures are important in all stages of
maize growth, we hypothesize that regionally varying sensitivities may be a function
of other factors not examined such as soil characteristics and soil moisture availability
during each phenological stage. In conclusion, sensitivity of yields to climate charac-
teristics is localized.

4.4.2 Predictability

Generally, RR (and thus ER) can be better predicted than ER (or Ad), although there
is skill for the latter sometimes in the vegetative stage (which is effectively closer to
initialization of the forecast, i.e. a reduced lead time). Similarly, TN, TG and TX
can be predicted well than KDD, while GDD cannot be predicted at all in the two
regions. Not all indicators are predictable in all growth stages nor forecast terciles
and forecast lead-times.

The results are interesting because higher predictability is expected at shorter lead-
times (lead-0 for example) than at longer lead months but this is not the case in our
findings. Some indicators are less predictable at lead-0 compared to lead-1 and lead-2.
Comparable findings are seen in Ogutu et al. (2017) in which for example, in region-4
where Bungoma falls, MAM lower-tercile rainfall is predictable in lead-times 1-2 but
only lead-1 upper-tercile is predictable. And in northern Ethiopia (region-A) only
lead-0 lower-tercile rainfall forecast show some skill while the upper-tercile forecasts
are not predictable at all. The findings do not negate findings in this study but may
offer advantage of longer lead-time forecasts.

We find good predictability of daily temperature at all the three lead-times agreeing
with findings in Ogutu et al. (2017). Likewise, minimum and maximum tempera-
tures are more predictable than rainfall indicators. Predictability of indices related
to temperature quantities (i.e. GDD and KDD) is poorer but given their collinearity
to daily temperature and maximum temperature respectively, predictability of the
former is still useful in all the crop development stages. Since we have not identified
days with temperatures higher than the upper threshold for maize growth, we may
speculate that predictability of growing season temperatures or GDD and KDD may
give farmers a chance to prepare for adaptation options early in the season for exam-
ple by providing irrigation during periods of high temperatures, it noted in Anderson
et al. (2015) that sensitivity of maize yields to high temperatures may be modulated
by availability of sufficient moisture.

Predictability of indicators during each growing phases offer possibility of short time
tailored interventions. In vegetative state, high temperatures accelerate the rate of
crop development, one reason being that the number of thermal units mandatory for
leaf appearance is invariable (Hatfield and Dold, 2018) while increased rainfall inten-
sity during vegetative stage has been found to decrease yields (Mtongori et al., 2015).
The presence of good predictability of above and below-normal vegetative stage rain-
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fall distribution and daily temperatures in lead months zero to two in North-Gonder
provide good potential to assess maize yields. Low temperatures decrease biomass
and leaf area index because of low photosynthesis and carbon assimilation rates. Pre-
dictability of periods of low temperatures before planting offer the possibility to adapt
by for example changing plant dates to limit low temperature effects.

In this study, rainfall indicators during anthesis do not influence yields nor are they
predictable in both North-Gonder and Bungoma. It should be realized that the an-
thesis period is much shorter than either vegetative or reproductive stage, which
makes it inherently more difficult to predict its weather at long lead times. This
does not however invalidate the importance of rainfall indicators during anthesis.
Rather, the influence of rainfall attributes may be muted by adequate soil moisture
since both water availability during anthesis and extreme temperature episodes affect
maize yields (Butts-Wilmsmeyer et al., 2019; Hatfield and Dold, 2018). Anthesis pe-
riod average minimum temperature and daily temperature are predictable in all the
three lead-times in both North-Gonder and Bungoma. It is known that exposure to
high temperatures (best represented by KDD in this study) during anthesis reduces
kernel number and hence grain yields. KDD is not predictable. Even so, the effects of
high temperatures can still be mitigated using the predictability of daily temperatures
(TG).

We did not identify significant correlations between reproductive stage rainfall nor
temperature indicators with yield variability in Bungoma. The exists however, a sig-
nificant correlation and predictability of the daily temperature with three months
lead-time in North-Gonder in which also TX and GDD have predictability at only
lead-0. The finding agrees with other studies showing sensitivity of yields to repro-
ductive stage temperatures. For example, exposure to elevated temperatures during
this stage reduces yields and the impact is even higher with water deficits or excess
soil moisture (Hatfield and Prueger, 2015). This may still be useful in assessing yields.

4.4.3 Uncertainty in predictions

Seasonal climate forecasts are characterized by uncertainty, in many instances, en-
semble forecasting samples the uncertainty space and provides forecast in terms of
probabilities. Measures such as ensemble spread, and its relationship to ensemble
error (SprErr), the spread of the histogram amongst others also quantify uncertainty.
The two measures are interrelated, i.e. non-uniformity of rank histogram is due to
bias or due to difference in variances between the observed and the forecasts (or
both). It has been noted in this study that SprErr lower or larger than unity results
in non-uniformity of the rank histogram thus the two measures may result in dis-
crepancy when used together. Though the need to measure different attributes of a
forecast has been advanced, we would propose not to use many measures for a single
attribute. An example is forecasts of GDD in North Gonder which shows consistent
non-uniformity of histograms (uncertainty) in all growth stages considered though
with acceptable spread-error ratios (certainty) in some stages. Some characteristics
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(e.g. North-Gonder rainfall indicators) are predictable with certainty irrespective of
the measure used indicating robustness in the forecasts. Uncertainty in climate char-
acteristics prediction depend on region and on maize growth phase but varies less
with forecast lead-time. For example, KDD uncertainty in predictions vary with phe-
nological phase and geographical region. Generally less uncertainty ±10-days around
anthesis may be due to short duration in terms of days. Though far from the time of
lead-0 forecasts (e.g. > 60days), interventions at this critical phase of maize growth
can still affect maize yields.

4.4.4 Implications of the study

Precipitation and temperature are the two critical climate factors but not the only
factors that influence maize production. They are most critical in rain fed agriculture
in East African region. Assessing the influence of their characteristics in terms of
indicators/indices during the maize growing season and in the successive phenologi-
cal stages provides a better understanding of the role of climate on certain (critical)
stages of maize growth.

This would enable development of geographical region and phenological stage tar-
geted interventions to maize production. Understanding of yield response to varying
climatic conditions and partial variation in sensitivities is crucial for sustainable maize
production since it informs adaptation and increases resilience to maize production
especially in the current climatologically changing world. To researchers, identifying
suitable climate indicators during maize growth phases that influence yields makes it
possible to harvest expected yields depending on weather and adaptation practices
during each growth stage. Since it is the first term rainfall indices defined in Monti
and Venturi (2007) are used over eastern Africa, (i.e. ER, ER, and Ad), the study
contributes to scientific body of knowledge. Changes in expected yields are detectable
with each growth phase. It also enables the use of simple climate indices to forecast
yields, while foregoing the use of complex process based crop models, driven by daily
forecast data, in the forecast production chain. For organizations that offer agri-
culture related climate service in the region such as IGAD Climate Prediction and
Applications Centre (ICPAC), the results of this study may enrich their products such
as the crop monitor products.

4.5 Conclusion

The general conclusion in this study is that the relationship between climate indi-
cators and maize yields are location specific, and differ with crop growth stage and
forecast lead-time. As such for possible use in yield forecasting, useful indicators
should be chosen according to growth stage. But they can also inform interventions
that are tailored to the local needs and situation.
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In northern Ethiopia, the distribution and period of occurrence of rains (ER and
Ad respectively), the average daily temperature, GDD and KDD during vegetative
growth stage influence yield variability. The presence of good predictability of above
and below normal vegetative stage rainfall distribution and daily temperatures in lead
months zero to two in North-Gonder provide good potential to predict maize yields.

Forecasts of rainfall indicators in North-Gonder during anthesis do not influence yields
nor are they predictable. Anthesis period minimum temperature and daily tempera-
ture are predictable in but only lead-0 GDD. This is still useful because lead-0 refers
to one month before sowing permitting possible prediction of yields and adequate
time to make decisions before the crop reaches anthesis.

There is a significant correlation and predictability of reproductive stage daily tem-
perature with three months lead-time in North-Gonder. Growing season rainfall char-
acteristics forecasts in North-Gonder may be forecasted with certainty in all the three
lead-times as opposed to temperature characteristics that show lower certainty in pre-
diction.

Yield sensitivity to growing season temperature only seen in Bungoma may be due
to both uniform and sufficient precipitation and soil moisture variability during the
crop growing season i.e. there is less spatial and temporal variability as opposed to
northern Ethiopia. In Bungoma however, yields show sensitivity to vegetative stage
temperature indices only.

Anthesis rainfall indices in Bungoma do not explain yields probably due to the short
period around anthesis. Anthesis period average minimum temperature and daily
temperature are predictable in all the three lead-times in both North-Gonder and
Bungoma. There is neither significant correlations nor sensitivity between reproduc-
tive stage rainfall, nor temperature indicators and yield variability in Bungoma.

Uncertainty in forecasts of climate indicators depend on region, maize growth phase
but varies less with forecast lead-time. Importance of temperature and rainfall for
maize growth varies in space, time and phenological stage.

While average climate conditions during a crops’ growth cycle drives yields, this study
has illustrated important localized, growth phase dependent yield sensitivities. This
knowledge would enable yield forecasting without use of complex crop models and may
provide a service by enabling tailored cheap, short duration, localized adaptation in-
terventions to ensure good yields as opposed to generalized regional interventions.
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Chapter 5

Probabilistic Maize Yield
Prediction over East Africa
using Dynamic Ensemble
Seasonal Climate Forecasts

Abstract
We tested the usefulness of seasonal climate predictions for impacts prediction in
eastern Africa. In regions where these seasonal predictions showed skill we tested if
the skill also translated into maize yield forecasting skills. Using European Centre for
Medium-Range Weather Forecasts (ECMWF) system-4 ensemble seasonal climate
hindcasts for the period 1980-2011 different initialization dates before sowing, we
generated a 15–member ensemble of yield predictions using the World Food Studies
(WOFOST) crop model implemented for water-limited maize production and single
season simulation. Maize yield predictions are validated against reference yield sim-
ulations using the WATCH Forcing Data ERA-Interim (WFDEI), focusing on the
dominant sowing dates in the northern region (July), equatorial region (March-April)
and in the southern region (December). These reference yields show good anomaly
correlations compared to the official FAO and national reported statistics, but the
average reference yield values are lower than those reported in Kenya and Ethiopia,
but slightly higher in Tanzania. We use the ensemble mean, interannual variability,
mean errors, Ranked Probability Skill Score (RPSS) and Relative Operating Curve
skill Score (ROCSS) to assess regions of useful probabilistic prediction. Annual yield
anomalies are predictable 2–months before sowing in most of the regions. Difference

This chapter has been published as:
Ogutu G.E., W.H. Franssen,I. Supit,P. Omondi and R.W. Hutjes,2018: Probabilistic maize yield
prediction over East Africa using dynamic ensemble seasonal climate forecasts. Agricultural and
Forest Meteorology, 250 , 243-261.
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in interannual variability between the reference and predicted yields range from from
±40%, but higher interannual variability in predicted yield dominates. Anomaly cor-
relations between the reference and predicted yields are largely positive and range
from +0.3 to +0.6. The ROCSS illustrate good pre-season probabilistic prediction of
above-normal and below–normal yields with at least 2–months lead time. From the
sample sowing dates considered, we concluded that, there is potential to use dynami-
cal seasonal climate forecasts with a process based crop simulation model WOFOST
to predict anomalous water-limited maize yields.

5.1 Introduction

Agriculture is the major land use across the globe and is of high economic, social, and
cultural importance. In its many forms, agriculture remains highly sensitive to both
climate extremes and to variations in climate and trends on a range of time scales;
particularly in regions where rainfed agriculture supports majority of the population
and plays crucial roles in national economies like East Africa. Improving resilience of
the agricultural sector by preparing the vulnerable populations for extreme weather
variability and developing reliable crop production systems (Matthew et al., 2015)
can not only have a positive effect on socio-economic development but also enhance
food security through better agricultural management and policy formulation that
proactively accounts for variable climatic conditions (Bahaga et al., 2016).

Operationally, efforts towards improved resilience to extreme climate variability are
on-going through issuance of pre-season climate forecasts generated by both statis-
tical and dynamical methods. In Eastern Africa, these forecasts are issued through
the Greater Horn of Africa Climate Outlook Forum (GHACOFs) (Martinez et al.,
2010; Ogallo et al., 2008) organized by the Intergovernmental Authority for Develop-
ment (IGAD)- Climate Prediction and Applications Centre (ICPAC) and the World
Meteorological Organization (WMO) together with other partners. It brings together
scientists from the global climate producing centers, meteorologists from the National
Meteorological and Hydrological Services (NMHS) from the GHA region, climate
forecast end-users and the relevant stakeholders to develop a consensus rainfall and
temperature forecasts for the coming season plus likely impacts on climate sensitive
sectors (Hansen et al., 2011; Ogallo et al., 2008) including agriculture. The scien-
tists further downscale the consensus seasonal climate outlooks for national impacts
and other purposes. Seasonal climate impacts outlook are generally based on sub-
jective expert judgement rather than explicit quantitative methods. Model based,
quantitative pre-season crop yield forecasting plus communication of associated un-
certainty and skill could be incorporated into GHACOF process to enhance use of
seasonal climate forecasts by providing direct impacts on maize production, based on
the assumption that predictable climate can be translated into predictability of crop
phenological development and subsequent yields. This study presents the possibility
of providing bio-physical process based, quantitative yield forecasts besides the sea-
sonal climate forecasts already routinely issued.
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A number of early warning systems (EWS) exist in East Africa with mandates to pro-
vide food security outlooks and warnings. For example, the United States Agency for
International Development (USAID) Famine EWS (FEWS-NET) provides food secu-
rity outlooks, assistance outlooks, markets and agricultural trading outlooks (Brown
et al., 2007; Ververs, 2012). The Global Information and Early Warning Systems
(GIEWS) of United Nations’ Food and Agriculture Organization (FAO) (FAO, FAO;
Ververs, 2012) provides information on crop prospects and food situation depending
on emerging crisis often after crop and food security assessment missions. The Food
Security and Nutrition Working Group (FSNWG), a regional platform whose mem-
bers include NGOs, UN agencies, and research institutions, amongst others, provide
food security and nutrition outlook in their monthly meetings. For crop monitoring,
these organizations use agrometeorological assessment reports and satellite technolo-
gies that monitor conditions of food crops after planting for example the normalized
difference vegetation index (NDVI), rainfall estimates, and expert judgement to esti-
mate impending food security situations. The existing EWS largely focus on water
availability without considering the water-temperature interactions, even though tem-
perature is critical in both rainfed and irrigated agriculture as it influences the rate of
crop development and water deficit in irrigated fields. The complex reactions between
climate variables and crop physiology are better simulated using biophysical models
as in in this study.

Since existing EWS monitor crops when they are already in the fields, little adap-
tation measures can be implemented to adjust to the prevailing climate situation.
This study can directly expand the time horizon of crop performance prediction from
existing EWS by including pre-season forecasts, and provide high resolution yield
forecast information that is also relevant to farmers, rather than only to their tradi-
tional clients (i.e. governments and humanitarian agencies).

Seasonal climate forecasts are currently routinely issued up to 12-months before the
start of seasons (lead-time) by numerous operational global forecast centers. With
sufficient lead time before the start of a growing season, different adaptation options
are possible (e.g. choosing different crops or varieties, heavy or low investment in
farm inputs) as opposed to forecasts issued after crops are planted. Global Climate
Model (GCM) based seasonal climate forecasts have been used in agricultural impacts
modelling globally with varied results, suggesting variations in skill due to factors like
spatio-temporal scales used, level of surface heterogeneity, crop management practices,
and model initialization, amongst others (Jones et al., 2000; Lawless and Semenov,
2005; Neumann et al., 2010; Shin et al., 2010). Driving crop models with skillful
seasonal climate forecasts may not guarantee good yield forecasts (Baigorria et al.,
2007; Semenov and Doblas-Reyes, 2007; Shin et al., 2010), but the reverse, i.e. better
skill in the crop forecast than in the meteorological forecast has also been reported
(McIntosh et al., 2005). In addition, whether a crop in a certain region experiences
temperature or moisture limitations affects yield predictability differently. For exam-
ple, since temperature influences crop phonological development and its predictability
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is generally higher than for precipitation (Iizumi et al., 2013; Ogutu et al., 2017), its
predictability influences yield predictability differently. Finally, the time of the year in
which a forecast is useful depends on the crop and region (McIntosh et al., 2007), i.e.
depends on the local cropping calendars. This study seeks to identify lead times and
regions in East Africa with useful preseason yield predictability based on pre-season
climate forecasts.

Seasonal crop yield forecasts have been derived from either historical statistical re-
lationships with rainfall or large scale climate indices such as the El Nino Southern
Oscillation (ENSO) Index (Amissah-Arthur et al., 2002; Iizumi et al., 2014; Hansen
et al., 2009; Martin et al., 2000; Phillips et al., 1998), and its influence on seasonal
rainfall in some parts of the world such as eastern and southern Africa. These sta-
tistical methods are successful at broader spatial extents like national boundaries or
regions (Amissah-Arthur et al., 2002; Iizumi et al., 2014; Lobell and Burke, 2010;
Phillips et al., 1998; Thornton et al., 2009) and may not suffice for smaller spatial
scales where heterogeneities exist. For example, above normal rainfall season may
result in low yields related to nutrient leaching depending on soil types. High rainfall
variability exist in small regional extents even in an otherwise “good rainfall seasons”
and statistical relationships do not capture rainfall characteristics (such as distribu-
tion during a season and frequency) that are important for crop yields. Weaknesses
related to the use of large scale climate indices to forecast yields are highlighted in
Mjelde and Keplinger (1998). Poor records of historical yields on which the statistical
models are calibrated also influence prediction skill.

Confronted with the current climate change and variability together with climate
teleconnections between a region of interest and other parts of the globe, any past
statistical relationships between yields and climate indices may no longer hold true
because the future will be under climate regimes (variability) not observed before.
It is not clear if the relationships between phenological observations and satellite de-
rived vegetation indices will hold true since observations will also be under different
climate regimes (for example higher temperatures than in the historical period) and
since crop response to climate is not linear (Porter and Semenov, 2005), mean his-
torical observations may not suffice. Most studies related to yield impacts modelling
over East Africa use GCM outputs to assess future climate change impacts on yields.
In this study, we explore the use of seasonal forecasts and crop models to simulate
yields at the shorter seasonal scales that determine year-to-year food production.

This work explores the use of dynamical seasonal climate forecasts based on Global
Climate Models to simulate agricultural impacts. We assess ensemble (probabilistic)
predictive skill of maize yields based on GCM seasonal climate forecasts via both
baseline and hindcasts validation for the period 1981-2010. The aim is to identify
lead times and areas of potential pre-season yield forecasting based on seasonal cli-
mate forecasts and maize planting dates. We assess how well yield forecasts capture
observed/reference yield anomalies due to interannual climate variability and climate
anomalies.
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Because of inherent biases in climate models, bias correction of model output is im-
portant for impact studies. For example, biases in temperature would grossly affect
simulation of maize phenology which depends on (cumulative) thermal time units
during growing period. This study therefore uses bias corrected climate forecasts.

5.2 Materials and methods

5.2.1 Model description

Hindcast grid point maize yield forecasts over East Africa are simulated using the
World Food Studies crop simulation model (WOFOST); a simulation model for the
quantitative analysis of the growth and production of annual crops. WOFOST is a
detailed model with respect to crop physiology allowing for example a specification of
regionally used varieties. It was originally developed to simulate crop yield for a sin-
gle location with homogeneous cultivars, soil characteristics and weather (Boogaard
et al., 2013; Van Diepen et al., 1989; Keulen and Wolf, 1986; Supit et al., 2010) but
is adopted for use in a larger region in this study. It has been used widely for many
studies such as climate change impacts (Supit et al., 2012, 2010), regional yield fore-
casting and crop yield analysis in Ethiopia and Kenya (Hengsdijk et al., 2005; Rotter,
2014).

The model is photosynthetically driven and simulates the growth and production of
annual crops using a range of physiological processes at daily time steps from sowing
to maturity in response to weather, soil type, soil moisture conditions and as defined
by crop characteristics. The physical processes simulated include:- light interception,
photosynthesis and respiration, evapotranspiration, assimilate partitioning, leaf area
dynamics, phenological development and root growth determined by cultivar charac-
teristics, soil water balance and drought response.

We use the World Food Studies crop simulation model (WOFOST) version in the
Python Crop Simulation Environment (PCSE/WOFOST) implementation (de Wit
et al., 2019) to simulate maize yield under rainfed conditions. Details on this im-
plentation are available at https://pcse.readthedocs.io/en/stable/index.html. In this
study, the model simulates theoretical water-limited-yields (WLY) at simulation units
of approximately 0.1°× 01° resolution determined by overlaying land use, elevation,
crop calendar, soil maps and climate data. The yields are then aggregated to 0.5°
grid cells (corresponding to climate data grid) weighted by cultivated area within
each grid (Boogaard et al., 2013). WLY is influenced by rainfall assuming a soil ni-
trogen level that reflects a maximum yield level of about 40-50% of the potential,
typical for the region, and otherwise optimal crop management and that no losses
occur due to pests or diseases. Only the main cropping season is modelled from emer-
gence to maturity; this may result in lower than observed annual national yields (as
reported in e.g. FAO and national reported agricultural statistics), because double-

81



Chapter 5. Probabilistic Maize Yield Prediction over East Africa using Dynamic
Ensemble Seasonal Climate Forecasts

season cropping is not implemented in areas where it exists (e.g. Belg rains receiving
areas of Ethiopia, eastern and northern Ethiopia, and the bimodal rains region of
Kenya and Tanzania (see Supplementary Figure C.10). The model has been cali-
brated, applied and validated for maize production in Kenya (Rotter, 2014); in the
Central Rift Valley of Ethiopia (Kassie et al., 2014, 2015); and in Tanzania in the
Global Yield Gap Atlas project (Makio, 2020). Further details on WOFOST are also
available at http://www. supit.net/ and http://www.wageningenur.nl/en/Expertise-
Services/Research-Institutes/alterra/Facilities-Products/Software-and-models/WOF
OST/Implementation-WOFOST.htm.

5.2.2 WOFOST input data

5.2.2.1 Sowing dates and crop varieties

Crop sowing dates impact accurate simulation of crop growth and yields. A range of
approaches that include: use of observed sowing dates; use of rainfall characteristics
at the start of a season; optimization of dates on crop-and-climate specific character-
istics; optimization of sowing dates on maximum yields, amongst others, have been
used to setup sowing dates in simulation studies (Srivastava et al., 2016). In this
study, we have used a method that combines the “optimization of sowing dates on
maximum yields” and “optimization on climate and crop specific characteristics”.
This procedure has been used and detailed in (Wolf et al., 2015).

Briefly, we start with coarse crop calendars from FAO (http://www.fao.org/agriculture
/seed/cropcalendar/welcome.do) and Sacks’ calendar (Sacks et al., 2010), and stan-
dard tropical maize varieties for crop modelling compiled in Van Diepen et al. (1988)
and Van Diepen et al. (1988). Yields are simulated for the different maize varieties
planted at every grid point every 10 days, starting 90 days before and end 90 days
after the sowing dates presented in the coarse crop calendars, using the baseline cli-
mate forcing for the period 1981 to 2010. Maize varieties differ mainly in thermal
time accumulation needed to reach flowering and maturity. Thermal time accumu-
lation in WOFOST is based on the planting dates and a base temperature of 10◦C.
We subsequently selected the sowing date and crop variety that provided highest crop
yield averaged over the baseline period, resulting in 10 varieties in East Africa (see
Table-5.1). The derived sowing date for each grid point was fixed in WOFOST, while
harvest dates are determined by the weather conditions during growth period. The
same sowing dates are used for both the baseline and forecast yield simulations. Note
that in reality there are more than 2000 maize varieties in East Africa and sowing date
may also be influenced by other, non-climatic factors such as availability of labour,
seeds, customs and traditions etc.

5.2.2.2 Land use and soil data

Land use and soil input data are derived from the International Soil Reference and In-
formation Centre-World Soil Information (ISRIC-WISE) database Batjes (2012) and
http://www.isric.org/data/isric-wise-international-soil-profile-dataset). The database
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includes information on soil physical characteristics, root depth, and landscape char-
acteristics such as elevation, slope gradients, and slope aspects. Soil properties such
as wilting point and field capacity are estimated with the pedotransfer functions from
Saxton et al. (1986). Maize growing areas are determined based on FAO land use
maps (Fischer et al., 2008). To ensure germination, the threshold soil water content
was set to 10mm. Derived nominal crop varieties based on optimized TSUMs

Table 5.1: Derived nominal crop varieties based on optimized TSUMs. Note:TSUM1 = temperature
sum from emergence to anthesis [degree days]; TSUM2 = temperature sum from anthesis to maturity
[degree days]

MAIZE VARIETY PARAMETER NAME VALUE

1 TSUM1 400
TSUM2 350

2 TSUM1 550
TSUM2 500

3 TSUM1 620
TSUM2 570

4 TSUM1 670
TSUM2 620

5 TSUM1 720
TSUM2 670

6 TSUM1 770
TSUM2 720

7 TSUM1 820
TSUM2 770

8 TSUM1 870
TSUM2 820

9 TSUM1 920
TSUM2 870

10 TSUM1 970
TSUM2 920

5.2.2.3 Weather data

The sparse climatological station network in East Africa limits the use of pure ob-
served meteorological station data to simulate crop yields over a large area. Moreover,
station data are impractical for the evaluation of gridded products, even though they
are invaluable for farm level or field experimental studies. We therefore use requisite
weather data (i.e. precipitation (tp), maximum and minimum temperatures (tmax
and tmin respectively), surface downward shortwave radiation (rsds) from a model,
and an observation fused data product from the Water and Global Change (WATCH)
forcing data ERA-Interim at 0.5°× 0.5° resolution (Harding et al., 2011; Weedon et al.,
2014, 2011, 2010) to simulate grid point reference yields. WFDEI is obtained after
elevation correction and monthly bias correction of the ERA-Interim re-analysis (Dee
et al., 2011) using gridded observed climate data from University of East Anglia’s
Climate Research Unit (CRU)(Harris et al., 2014). ERA-Interim is one of several
available climate reanalysis products providing a numerical description of the recent
climate; produced by assimilation of weather observations in forecast model simula-
tions. Reanalysis are considered the most consistent multivariate representation of
the past climate.

83



Chapter 5. Probabilistic Maize Yield Prediction over East Africa using Dynamic
Ensemble Seasonal Climate Forecasts

In this study we use WFDEI to represent the observed climate during the study pe-
riod.

To simulate yield forecasts, we use climate reforecasts (also called hindcasts) from
the ECMWF System-4 seasonal climate ensemble pre-diction system (Molteni et al.,
2011)), and bias corrected against WFDEI. Seasonal climate forecasts are initialized
on the first day of every month from 1981 to 2010 with 15–perturbed (different) initial
conditions. Since weather evolution during an upcoming season is not certain, initial-
izing the climate forecast model from different initial conditions allows sampling of
the possible weather evolution path during the coming season. Forecasts initialized
from each of the perturbed initial conditions results in 15-different forecasts (ensem-
ble members). Each member provides a forecast 7–months into the future. Details of
initial conditions generation (perturbations) and forecast ensemble generation can be
obtained from Molteni et al. (2011).

Useful probabilistic prediction skill in climate forecast exists in all major cropping
regions of East Africa, but the skill level decreases from near surface air temperature;
to precipitation; to surface downwelling surface radiation. A detailed analysis of
applied climate forecast for the region is presented in (Ogutu et al., 2017). To simulate
yield forecasts, WOFOST is driven with each of the 15 climate forecast ensemble
members. This results in 15–ensemble yield forecasts, i.e. it spans the range of
possible yields resulting from the 15 probable evolution of climate during the crop
growing period.

5.2.3 Validation methodology

Our validation and verification methodology is outlined in Figure-5.1. We generate
baseline or reference yields from WOFOST driven by WFDEI climate (henceforth
referred to as WFDEI yields). WFDEI yields are compared to country level yield
statistics from the Food and Agriculture Organization yield statistics (FAO) and to
nationally reported yields (NAT) to evaluate how well the WFDEI yields corresponds
to the “observed”. The national annual yield statistics are estimates of actual yields
from agriculture ministry or authorities in each country obtained by agricultural cen-
sus or farmer interviews in sub-national districts and aggregated to country levels.
The surveys are carried out by the individual countries, as such; survey methodologies
may not be uniform. Observed yields are not expected to represent scientific biophys-
ical relationships between climate variables and crop characteristics as represented in
WFDEI yield simulations. Further, yield data from agricultural surveys may depend
on socio-economic factors not incorporated in WOFOST. Our interest is to simulate
climate related impacts on yields and will therefore focus on yield anomalies rather
than actual values. Anomalies for each data set are calculated by taking the differ-
ence between annual yield and detrended mean yields during the study period, and
normalised by the standard deviation over the same period.
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Figure 5.1: Study setup and validation methodology

We use WFDEI yields to validate yield reforecasts because gridded observed yields
data are non-existent for East Africa (or elsewhere). Harvested yields from all grid
points planted in a chosen month are used to assess yield predictability for particu-
lar lead-times (months before sowing). Because each climate forecast runs for seven
months ahead from the initialization month we use forecasts that allow growth from
sowing to maturity (i.e. a complete growing cycle). The weight in storage organs
achieved during the growing period from planting to harvest is taken as the yield
forecast.

‘Lead months’ correspond to the number of months before sowing that a climate fore-
cast was initialized. For example, if maize is sown in March, forecasts initialized in
March will represent lead-0, forecasts initialized in February represents lead-1 and so
forth, and this applies to both climate and yield forecasts.

Validation is performed on yields aggregated to national country boundaries, and grid-
point level corresponding to climate grid. We use coefficient of variation (CV) measure
to assess the interannual variability of the reference and forecast yields. To verify
ensemble predictions we use probabilistic metrics that are based on contingency tables
of hits and false alarms of predicted and observed yield falling in a certain percentile.
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We use the ranked probability skill score (RPSS) to examine the average model skill
and the relative operating characteristic curve skill score (ROCSS) to assess skill
of yield prediction in specific terciles, i.e. the near-normal (middle tercile), below-
normal (lower) and the above-normal (upper) yields, respectively. Below-normal (BN)
and above-normal (AN) yields are below the 0.33 and above the 0.66 percentiles of
the historical yields respectively. Near-normal (NN) yield fall in between these 0.33
and 0.66 percentiles. A set of hit-rates and false alarm rates constructed from the
ensemble of reforecasted yields are determined and plotted for a range of decile forecast
probability thresholds for each forecast category (AN, NN, or BN) thus generating
a ROC curve (e.g. see Figure 5.7). Hit-rates refer to the proportion of events that
occur as forecasted; while the false-alarm rates are the proportion of events forecasted
but do not occur. The area under the ROC curve (AROC) indicates the performance
of the forecast. Because there is skill only when the hit rates are higher than the
false-alarm rates, the ROC curve lies above the 45-degree line (1:1 line) for a skilful
forecast (i.e. AROC > 0.5), and below (AROC < 0.5) for a forecast with no skill (see
Figure 5.7 and supplementary Figure C.12). A score of 1.0 (AROC = 1) indicates a
perfect forecast while AROC = 0.5 indicates the forecast is as good as a climatological
forecast. P-value determined from Mann-Whitney U statistics show the significance
of AROC i.e. p-values < 0.05 show significant scores at 95% significance level. This
measure is detailed in Barnston et al. (2010); Buizza and Palmer (1998); Diro et al.
(2012); Hamill and Juras (2006); Mason and Graham (1999)See Appendix B.2 for a
detailed description of RPSS.

5.3 Results

We start by comparing WOFOST determined sowing dates and simulated harvest
dates to known cropping calendars for the region from the Famine Early Warn-
ing System Network (FEWSNET;http://www. fews.net/east-africa/kenya/seasonal-
calendar, http://www.fews.net/ east-africa /ethiopia/seasonal-calendar, and http://
www.fews.net/ east-africa/tanzania/seasonal-calendar) shown in supplementary Figure–
C.10. We compare annual WFDEI yields to both FAO and NAT statistics to assess
model simulation accuracy. For a useful yield forecasting system we do not necessarily
need equality in mean yields, as already mentioned, rather we need a level of similar-
ity of yield anomalies as influenced by climate anomalies. We then describe results
of deterministic and probabilistic validation of yield forecasts at both the national
(country) and 0.5°×0.5° grid point levels.

5.3.1 Crop calendars

WFDEI determined reference sowing and harvest dates are shown in Figures 5.2(a)
and (b) respectively. Reforecasted harvest dates averaged over fifteen ensemble mem-
bers and forecast lead times are in Figure 5.2(c). We compare these simulated calen-
dars to the FEWSNET calendars (see supplementary Figure C.10).

86



5.3. Results

Figure 5.2: Figure of study area showing the reference mean sowing dates (WFDEI) (a), reference
harvest dates (b), average reforecasted harvest dates (c) and the difference between WFDEI harvest
dates and reforecasted harvest dates across 15-ensemble members (d). Dates shown in months of the
year.
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WFDEI derived sowing dates (5.2(a)) and simulated reference and forecasted harvest
dates (5.2(b) and (c)) correspond to FEWSNET calendars accurately. But because it
is configured for only one season in a year, some planting seasons for example the short
rains planting season in Kenya is not simulated. Harvest dates in both the reference
and hindcast yield forecasts in our study are fairly replicated with differences being
less than 10 days (5.2(d)). In a majority of pixels, the differences are near zero. We
conclude that the method used to determine sowing dates is accurate and suitable
for our study, and the simulated harvest dates correspond well to the typical crop
calendars for the region.

5.3.2 Deterministic validation

5.3.2.1 National annual average simulated grain yields, anomalies, and
interannual variability

We compare our reference WFDEI yields to both NAT and FAO for the period
1981–2010. Figure 5.3 and 5.4 respectively show box plots and interannual anomaly
time series of WFDEI yields, FAO (1981–2010 for Kenya and Tanzania; 1993–2010
for Ethiopia) and NAT (1981–2005 for Kenya; 1997–2010 for Tanzania; 1995-2008 for
Ethiopia) yields.

The difference in mean (and median) yields between WFDEI, FAO and NAT are
underestimated by between 600–700Kg ha−1 by the model over Kenya and Ethiopia,
but less than 200Kg ha−1 over-estimation by the model over Tanzania. Tanzania
FAO yield anomalies show a remarkable difference from the simulated reference yields,
(Figure 5.4b) characterized with high yields from 1995 to 2002. These outliers are
unique only to FAO statistics and cannot be explained either from the NAT or WFDEI
yields. Further, differences in FAO and NAT statistics also highlight the uncertainty
in official observed yields which are not surprising as already highlighted in Section
5.2. The differences described are also visualized in Figure 5.3a to 5.3c for Kenya
Tanzania and Ethiopia respectively. FAO yield distributions are quite different from
NAT and WFDEI in Tanzania and Ethiopia. Figure 5.4 compares anomaly time series
of WFDEI, FAO and NAT yields. Some yield anomalies are fairly well captured in the
three datasets, notably for Kenya (Figure 5.4a). Less variability in Tanzania WFDEI
yields (Figure 5.4b) results in less anomalous yields especially in the period 1997–2010
compared to FAO. Yield anomalies in Figures 5.4 and 5.5 subjectively correspond
well to the interannual rainfall anomalies (shown in Figure 5.4) indicating the crucial
role climate plays in maize production or simulation even though low correlations
between WFDEI precipitation and both FAO and NAT are apparent (i.e. r = 0.02 to
0.2 against FAO and -0.15 to 0.2 against NAT). Reason being that rainfall (or climate
in general) is not the only factor that influences actual yields. Anomaly correlation
coefficient between annual WFDEI rainfall anomalies and simulated WFDEI reference
yield anomalies show good correlations of 0.4 to 0.6.
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Figure 5.3: Box plots showing comparison of mean and data range of WFDEI yields, FAO yield and
national (NAT) reported yields for Kenya, Tanzania, and Ethiopia. Thick line in the centre of the
box represent the median yield; mean yield is represented by red dots; top of the box represent the
75th percentile; the bottom of the box are the maximum and minimum values respectively while the
length of the box is the interquartile range (IQR). Suspected outliers are yields 1.5×IQR or more
above the third quartile or 1.5×IQR or more below the first quartile. Note the the three data sets
do not span the same period as shown in Figure 5.4.

5.3.2.2 National yield predictions

We assess the prediction of annual mean yields by comparing WFDEI yields to fore-
casted yields for each country focusing on chosen sowing dates. Predictions in form
of standardized anomalies are shown in Figure 5.5 as time series of ensemble average
forecasted yields at lead-times 0 to 3 months before sowing. Predictability of yield
anomalies varies with each sowing date and region. Some anomalies are commonly
captured and potentially predicted at least 2-months before sowing over the entire
region for example 1984, 1989, 1997, and 1998. These years correspond to extreme
El-Niño Southern Oscillation (ENSO) events illustrating the influence of ENSO on
crop production. Predictability of other annual yield anomalies depend on sowing
dates for example, predictability of harvests of maize planted in April in Kenya and
Ethiopia (Figure 5.5a and b) are better than harvests for maize planted in March
(Figure 5.5e) and July (Figure 5.5d). Likewise predictability and even variance of
Tanzania harvests sowed in December and March (Figure 5.5c and f respectively)
differ. In general though, anomalous annual yields over East Africa are predictable 3-
lead months before sowing except in Tanzania. This could be related to less variance
of yields in Tanzania during the study period, which in turn may be related to climate
characteristics. The inter-tropical convergence zone (ITCZ) which is responsible for

89



Chapter 5. Probabilistic Maize Yield Prediction over East Africa using Dynamic
Ensemble Seasonal Climate Forecasts

spatial distribution of rainfall lies over Tanzania from October–April/May and may
be responsible for less variability in climate during growing season and hence less
variability in maize yields.

Figure 5.4: Time series of WFDEI, FAO, and NAT standardized yield anomalies plus standardised
annual rainfall anomalies (a-c) for Kenya, Tanzania and Ethiopia.
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Figure 5.5: Predicted yield anomalies (standardized) and WFDEI yield anomalies (standardized)
shown for particular dominant sowing dates in each country and forecast lead times. Time series
plot show interannual variability of the reference and reforecasted yields for varying forecast lead
months.
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Figure 5.6: Mean yield for the period 1981-2010 (in Kgha−1) for reference and reforecast yields at
various sowing dates.
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5.3.3 Grid point validation

In this section, we use a range of deterministic and probabilistic measures to compare
WFDEI and forecasted yields for different sowing dates and forecast lead-times. Maps
are used to show the spatial distribution of both deterministic and probabilistic (i.e.
ROCSS and RPSS) verification measures.

5.3.3.1 Average yields, deviation and interannual variability

Spatial patterns of WFDEI and forecasted yields are similar (Figure 5.6). Differences
in WFDEI and forecasted mean yields depend on sowing dates, forecast lead-time
and region of the study area. Mean forecasted yields reduce with increasing lead-
time before sowing dates. This may be because maize does not grow to maturity
during the 7-month forecast period in some grids (i.e. fewer grids are harvested at
long lead-months). Large deviations from mean yields indicate areas of large spread of
simulations and may be a result of the interannual variability of climate. We therefore
show this variability using the coefficient of variation (CV) in the supplementary
material Figure C.11. The forecasted yield coefficient of variation is the average
of the CVs from each ensemble member (i.e. average of 30 years Ö 15-ensemble
members). Higher (lower) percentages indicate higher (lower) variability in yields.
Subtracting forecasted yield CV from WFDEI yields CV, we show areas where inter-
annual variability in the reference yields is higher or lower (Figure C.11). Positive
CV (red colours) implies higher inter-annual variability in WFDEI yields. In many
grid cells, forecasted yields generally show higher inter-annual variability than the
WFDEI (i.e. CV maximum difference is in the range ±40% but differences less than
±20% dominates). The magnitudes however depend on the sowing dates. March
and April sowing dates show a number of grid cells where WFDEI yields have higher
inter-annual variability mainly in drier regions suggesting a dependency of yields
on climate. In dry areas, yields are more dependent on the availability of rainfall
hence large differences (and mean deviation) during years of rainfall and in years of
drought. The least interannual variability is associated with December sowing dates
in Tanzania, probable reasons for this is highlighted in Section 5.3.2. Even though
there are differences in inter-annual variability, the mean errors between WFDEI and
mean reforecasted yields are low, not exceeding 200Kg ha−1. In general forecasted
mean yields approximate the reference yields, the difference in interannual variability
are no more than 40% implying potentially good yield predictions.

5.3.3.2 Probabilistic validation

We present the predictability of above-normal (AN), below-normal (BN) and near-
normal (NN) terciles relative to climatological yield forecasts using area under Rela-
tive Operating Curve (AROC) and it skill sore (ROCSS). We use the Ranked Prob-
ability Skill Score (RPSS) to show the average skill in forecasting all yield forecast
probabilities relative to WFDEI yield climatology at each 0.5°× 0.5° grid cell.
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Climatological yield forecasts are taken as the average of reforecasted yield over all
the 15-members.

We show the skill of prediction of national yields as a function of lead-time using ROC
curve, AROC and its significance (p-value) in Figure 5.7 and supplementary Figure
C.12 for sample sowing dates. Lead time of significant skill depends on sowing date
and forecast tercile; for example, Ethiopian AN yields planted in July show significant
skill with 1-month lead-time (AROC = 0.68 to 0.86) while BN show significant skill
with 2-months lead time (Figure 5.7b). Kenyan yields planted in April (Figure 5.7a)
show above normal and below normal significant skill at lead-months 0, 2 and 3 but
insignificant at lead-1. This may be related to less skill in lead-1 climate forecasts
also found and discussed in Ogutu et al. (2017). Other sowing dates shown in sup-
plementary Figure C.12 show less skill.

We convert AROC into the relative operating curve skill score (ROCSS). The per-
centage of planted grids with significant skill for each sowing date is shown in Figure
5.8. There are apparently few grids planted in December with significant ROCSS
(Figure 5.8d), this is even less than the 5% of grid cells to be expected to show skill
by chance (at the 95% significance level used here). This illustrates the lack of skill
in forecasting December planted yield terciles. Skill at 2-months lead-time could be
related to rainfall forecast skill also seen at longer lead times in the October-December
and March-May rainfall seasons (Ogutu et al., 2017). The proportion of planted grids
with significant skill scores generally varies with forecast lead-time, sowing dates and
regions. We cannot say whether AN yield forecast skill is systematically higher than
for BN, nor vice versa but both are higher than NN yield forecast skill. This feature
is also seen in probabilistic climate forecasts.

We use spatial maps to show distribution of ROCSS for March, April, July and De-
cember sowing dates in Figures 5.9 to 5.12 respectively. In all the figures, dotted cells
indicate areas where the scores are significantly greater than zero at 95% confidence
level. The percentage of cells with significant forecast skill relative to planted cells is
already shown in Figure 5.8 and discussed in the above paragraph. In Figures 5.9,
5.10, 5.11 and 5.12, ROCSS show that above normal (AN) and below normal (BN)
yields are predictable compared to near-normal forecasts. In Figures 5.9 and 5.10, i.e.
yields planted in March and April respectively, many cells have good predictability of
BN and AN yield forecasts three months before sowing date. Similar characteristic is
shown in Figure 5.11, i.e. July sowing date in Ethiopia. This sowing date also shows
higher number of cells with good predictability compared to March and April sowing
dates (5.9 and 5.10 respectively) Maize planted in December i.e. over Tanzania show
no potential predictability.

Grid point ranked probability skill score (RPSS) for the same sowing dates are in sup-
plementary Figure C.14. RPSS being an average skill measure over all yield forecast
categories (decile categories) exhibit lower skill than seen in ROCSS.
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Figure 5.7: ROC curves of April (Kenya) and July (Ethiopia) reforecasted yields (a and b respec-
tively). Validation is done at country level to show skill of tercile prediction of above-normal (AN),
below-normal (BN) and near-normal (NN) yields. Area under ROC (AROC) and significance level
for these 3-categories are given in the inset. Other sowing dates are in supplementary Figures C.12
and C.13

.
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Very few grids show significant RPSS scores with the exception of July sowing date
over Ethiopia (supplementary Figure C.14b) where more grid cells show significant
scores. In general, the RPSS are quite low and may not demonstrate the potential
prediction skill that actually exists. Good ROCSS skill illustrates the potential to
offer good anomalous above or below normal yield forecasts from seasonal climate
forecasts with at least 2-lead months.

Figure 5.8: Percentage of grid points with significant ROCSS (at 95% level) fro the relevant sowing
dates and forecast lead-times. The horizontal dashed line at 5% level shows a threshold below which
skill may be purely by chance.

5.4 Discussion

5.4.1 Regional sowing dates

Grid based planting dates as established in this study allow crop models to be used
in areas where high resolution crop calendars are not available or where the available
calendars are too coarse such as in Sacks et al. (2010). We optimized sowing dates on
a combination of maximum yields and climate-crop specific characteristics (Srivastava
et al., 2016) resulting from an interaction of cultivars, soil properties, and climate in
each crop simulation unit thus providing the best possible dates for this study. The
method used samples various planting dates, this also samples the uncertainty space
related to planting dates. Over regions of high climate variability and topographical
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variations, such as East Africa, setting dates for each grid point or simulation unit is
more appropriate than using the available coarse generic calendars. It would also be
futile to fit actual observed sowing dates to each grid cell because of high variability.
A similar methodology to derive sowing dates i.e. running the model for a number of
days around an assumed sowing date, have resulted in the best dates for highest water
limited yields over Burkina Faso (Wolf et al., 2015). This lends credibility to apply
a similar methodology in the present study. The method also agrees with findings in
Stehfest et al. (2007) i.e. averaging crop calendars over regions of strong climate and
topographical gradients would likely lead to unrealistic dates.

It is noted however that in practice and at fine resolutions and farm level spatial
extents planting dates are not only functions of climate (e.g. onset of seasonal rainfall)
but also depends on non-climatic factors such as labour, availability of farm inputs,
and other socio-economic factors (Deryng et al., 2011; Hansen et al., 2011; Jones et al.,
2000; Wolf et al., 2015). The derived dates however compare well to the FEWSNET
calendar already described in Section 5.3.

5.4.2 Harvest dates

Harvest dates are influenced by crop growth and maturity that are constrained by the
bio-physical nonlinear interactions between climate, soils, cultivars and management
practices. As such, harvest dates determined by these interactions resulted in dates
that were quite non-uniform even in regions with homogeneous rainfall regimes. The
length of a growing period is determined by thermal time accumulation i.e. effective
temperature from emergence to anthesis (TSUM1) and affective temperature from
anthesis to maturity (TSUM2) in WOFOST. This results in different harvest dates
even in region of equal rainfall amounts. The influence of thermal time accumulation
is also highlighted in (Deryng et al., 2011). The differences between forecasted harvest
dates and the reference (i.e. less than 10 days) however illustrate good simulation of
the bio-physical interactions in WOFOST.

5.4.3 Deterministic validation

Simulated WFDEI yields show differences compared to FAO and NAT yield statis-
tics. The difference may be due to a variety of reasons. One reason could be the
single cropping season in the current WOFOST setup and non-climate related fac-
tors that influence observed yields (such as availability of seeds, fertilizers, change in
technologies or civil strife amongst others) but are not represented in WOFOST. All
countries in the study area have two seasons of rainfall, and hence cropping. Con-
figuring WOFOST to simulate double cropping as opposed to the current setup may
improve simulated yields in comparison to the observed. Methods used to record ob-
served statistics may also cause differences, for example, FAO only includes the bulk
of harvests in a particular year based on sample agricultural production surveys. Any
harvests in the latter part of the year are added to the following year’s statistics. In
WFDEI yields we aggregate all harvests within one year.
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Differences between FAO and NAT yields (and accumulated sub-national yields; not
shown) highlight the uncertainty in Observed yield statistics and yield statistics col-
lection methodologies.

Existing differences between WFDEI and reforecasted yields could result from a va-
riety of factors. Since sowing dates, maize varieties, and fertilizer applications rates
are fixed in both the WFDEI and reforecasted yield simulations, any differences must
be attributed to variations in the climate input fields. Changes in weather distribu-
tion and characteristics not only modify soil characteristics, but also interact with
maize physiological processes during the growing season. For example, because it is
not possible to provide the exact distribution of weather during a season from climate
forecasts, the distribution of dry-wet day frequencies and temperatures below or above
critical thresholds would each individually, or acting in combination grossly influence
carbon assimilation and partitioning to different organs. Even though we corrected
biases in climate forecasts against the reference climate in a bid to capture their daily
distributions, any chronological differences would still trigger nonlinear interactions
with maize physiological processes. All these complex non-linear interactions result
in simulated yields different from the observed and are probably responsible for the
difference between forecasted and WFDEI yields. An explanation of some of the
weather-climate related interactions are found in Ceglar and Kajfež-Bogataj (2012)
and Porter and Semenov (2005). Existing difference may also result from fixed sowing
dates, for example, assuming that rainfall is the main determinant of sowing dates
and emergence, fixed dates in model simulation may result in non-emergence in some
years and seasons or poor timing of crop phenological stages and hence affecting har-
vests. Improvements on sowing dates can be made by allowing evolving weather to
determine sowing and emergence dates. Detailed evaluation at a single grid point or
smaller spatial extent may highlight the causes of complete losses in some planted ar-
eas. Still, good/poor skill at a single grid point or land use cell cannot be generalized
over a larger area if neighboring cells do not show skill.

In seasonal prediction, whether yields or climate, anomalies are of more interest than
the forecast of absolute values. In the following paragraphs therefore, we present a
discussion on probabilistic forecasts of anomalous below-normal and above-normal
yields.

5.4.4 Probabilistic prediction skill

We employ an ensemble based yield prediction to assess the skill of probabilistic
yield forecasting. The use of historical WFDEI climate data to simulate reference
yields assumes perfect knowledge of weather during the growing season. Ensemble
yield forecasting enables us to include uncertainty information in yield forecasts even
though the current study did not investigate sources of uncertainty in the modelling
chain (i.e. from climate to yield forecasts). Any improvement in forecast skill above
climatological forecast therefore illustrates the value gained by ensemble forecasting.
We have used RPSS and ROCSS to evaluate the overall ensemble yield forecast skill
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Figure 5.9: Grid point S4 yield ROCSS for March sowing date and 0-2 lead-months. Red colours
show regions of skill while blue colours are regions with no skill. ROCSS of -0.2 to +0.2 show regions
of no forecast improvement over a climatological forecast. Dots indicate areas where ROCSS is
significantly positive at 90% confidence level.
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Figure 5.10: Same as Figure 5.8 but for April sowing date.

and ROCSS to evaluate performance in predicting anomalous yields (i.e. below, near
or above tercile yield thresholds). Even though the use of RPSS and ROCSS is
established in atmospheric sciences to evaluate ensemble climate forecasts, the metric
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and its results can also be meaningfully applied to other ensemble climate impact
forecasts, such as hydro-logical forecasts or crop forecasts like in our study. ROCSS
has been applied to assess skill of ensemble seasonal forecasts of impacts such as
yield prediction (Cantelaube and Terres, 2005; Challinor et al., 2005; Marletto et al.,
2005), hydrological forecasts, and malaria prediction (Marletto et al., 2005; Morse
et al., 2005) among others.

5.4.4.1 Ranked probability skill score (RPSS)

RPSS evaluates closeness of cumulative probabilities of forecasts and observation vec-
tors relative to a climatological forecast. This measure is sensitive to the number of
ensemble members. It results in negative bias for fewer members (Kumar et al., 2001;
Mason, 2004) and increases positively when more ensembles are used. Buizza and
Palmer (1998) assessed the impact of ensemble size on ECMWF seasonal cli-mate
forecast (varied ensemble members from 2 to 32 in multiples of 2) and concluded
that increasing ensemble size improves ensemble prediction skill but the effect is also
dependent on the specific performance metric. Kumar et al. (2001) conclude that
skill achieved by 10–20 members in climate predictions is sufficient and close to the
expected average skill from infinite ensemble size. Using fifteen (15) ensembles in this
study should be sufficient to assess yield prediction skill. The score is increasingly
penalized the more its cumulative probabilities deviate from the reference cumulative
probabilities (Weigel et al., 2008, 2007a,b). RPSS values obtained in this study are
significantly positive in only a few grid points. This we attribute to the fact that
RPSS does not consider skill of individual probability threshold forecasts but rather
the cumulative distribution of the forecast. Even though good skill may be achieved
from a single tercile probability threshold and poor skill in others, the final score
would be low or even negative when averaged over all tercile thresholds. Negative
or low values of RPSS has however been noted to hide useful information regarding
forecasts (Mason, 2004). This may be true for this study.

Assuming we have sufficient ensemble members, we conclude therefore that low and
negative RPSS scores result from the distance between the cumulative yield forecast
probability curve and the reference yields but not from ensemble size. However a study
involving more ensemble can give a definite conclusion on how the size influences RPSS
in crop prediction.

5.4.4.2 Anomalous yield prediction

We use the ROCSS, a skill measure with values ranging from −1 (perfectly wrong
forecast) through zero (no skill forecast) to 1 (perfect forecast). We assessed forecasts
of above-normal (upper tercile), below-normal (lower tercile) and near-normal (mid-
dle tercile) yield anomalies.

There is significant positive prediction skill of anomalous low (crop failure) and high
yields. This is true for at least 15–35% of the areas planted with maize in a par-
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Figure 5.11: Same as Figure 5.8 but for July sowing date.

ticular season. The fact that areas of significant skill are continuous, i.e. consist of
multiple adjacent cells that are significant, and persistent, i.e. extends over multiple
lead months, lends even more credibility to the potential value of seasonal crop yield
prediction. Areas worth mentioning in this context are for March sowing in Tanza-
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Figure 5.12: Same as Figure 5.8 but for December sowing date.

nia: Kagera, Mwanza, Mara and Lindi. For March and April sowing in Kenya we
found skill in its south western regions (Western, Nyanza, Narok, Kajiado), its Coast
and some areas in central Kenya (Laikipia, Meru). For July sowing in Ethiopia we
have skill in large parts of Tigra, Amhara, Benishangul-Gumaz and western Oromia
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(Shewa, Wellega). Even though good skill of at least 2-lead months are achieved
in this study, prediction over crop growing period can be improved by for example
updating yield predictions based on updated climate forecasts during crop growing
season or by improving physical processes in WOFOST for example improved soil
moisture maps or including a soil sub-model that can account for detailed processes
plus double cropping where it exists.

Such information would greatly benefit farmers, governments, policy makers, relief
agencies, agricultural commodity traders and even crop insurance companies if done
at suitable spatial extents.

5.4.5 Implications of the study

Seasonal climate forecasts are operationally issued to users accompanied by informa-
tion on expected impacts on various sectors, including agriculture, water resources,
etc. Over East Africa and the greater horn of Africa (GHA), consensus seasonal cli-
mate forecasts are issued by the greater horn of Africa regional climate outlook forum
(GHACOF) as the probability of exceedance of a certain rainfall threshold, or of rain-
fall being within a range of thresholds (Husak et al., 2011). This information must
be understandable to the recipients if expected to influence any change in farm man-
agement activities, policy decisions either by relief agencies or governments to better
manage associated climate risks (Troccoli et al., 2008; Jones et al., 2000). Forecasts
should contain related uncertainty information. According to Jones et al. (2000),
uncertainty limits the benefits of seasonal climate forecasts but Troccoli et al. (2008)
notes that climate information and predictions play an essential role in management
of risks associated with climate variability and change.

A number of early warning systems and organizations (described in Section 5.1) exist
in East Africa. These organizations provide their services largely to governments and
humanitarian agencies and do not target the local farmers. For crop monitoring they
use agrometeorological assessment reports and satellite technologies that monitor con-
ditions of food crops after planting (e.g. NDVI) and rainfall to estimate impending
food security situations. FEWSNET for example uses seasonal climate forecast in its
assessments but does not provide explicit yield forecasts. This study can feed into
the existing EWSs by providing pre-season yield forecasts to farmers through farm
extension officers based on yield forecasts in their locations (because they can ad-
just their farm management decisions), farm input commodity traders (for stocking
of farm merchandise) besides extending the time horizons of the existing EWSs by
providing forecasts of expected yields before planting.

Even though the results shown in this study are aggregated to half degree grid
(weighted by planted area) and further to national country boundaries, the half degree
provides a resolution presently lacking and may be useful to governments, insurance,
and relief agencies because it captures the sub-national variability. The WOFOST
crop model simulation in this study is done at FAO land use cells, an even finer res-
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olution product that may be useful for farmers. We plan further work on this finer
resolution FAO land use cells. The Climate Change Agriculture and Food Security
(CCAFS) propose to develop an Integrated Agricultural Production and Food Secu-
rity Forecasting System (INAPES) for East Africa (Kadi et al., 2011). This system
will integrate improved seasonal climate forecasts, yield and pricing forecasts at high
temporal and spatial resolution to enhance the early warning systems. With such
developments, this study is timely as it may provide useful insights. We have as-
sessed seasonal climate skill for East Africa (Ogutu et al., 2017), and have gone ahead
to demonstrate its usability in crop yield fore-casting in this paper. Our study can
directly feed into the development of new systems envisaged for the future such as
INAPES.

Cited references in this manuscript have evaluated yield prediction skill focusing on
several months lead time before harvesting. In this study we evaluate yield prediction
prior to sowing. To the best of our knowledge, this is a first attempt to perform such
pre-season evaluation using dynamic GCM climate forecast and a crop simulation
model over East Africa.

5.5 Conclusions

We have shown the potential of ensemble seasonal climate forecasts in combination
with a crop simulation model to predict pre-season water-limited maize yields. The
study showed that there is potential to predict maize yields for at least 2-months be-
fore planting dates. Yield forecast skill varies with regions and hence sowing/harvest
date combinations, and lead time. Such lead time has potential to influence regional
policy and local management decisions related to maize production, such as adjust-
ments of farm management for the upcoming seasons.

While accurate crop calendar data is an essential input into crop models, there is
lack of a high resolution regional data that can be applied in regional studies. The
calendars used are sufficient to assess maize predictions even though we recommend a
detailed study to assess the sensitivity of ensemble yield predictions to planting dates
through a case study or field experiments. Incorporating the use of remote sensing to
derive dates such as emergence could play a role in improving the planting dates.

To a large extent, the spatial patterns of mean yields and harvested grid cells are well
simulated. Interannual variability in forecasted yields are higher than the reference
in most of the grid cells but depend on the growing seasons (i.e. sowing dates).

In general, distribution of grids with significant RPSS varies with sowing dates/harvest
dates and regions of the study area. The RPSS generally results in low skill as op-
posed to the ROC and ROCSS that has shown good skill for anomalous low and high
yields. This emphasizes the importance of using more verification measures since they
quantify different attributes of a forecast.
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Since the aim of seasonal forecasts, whether climate or its impacts, is in prediction
of anomalies, there is in Eastern Africa a definite and significant potential to provide
seasonal crop yields prediction based on seasonal climate forecasts. Predictions may
be improved further if the crop simulation model was configured to simulate double
cropping in regions where it occurs.
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Chapter 6

Influence of spatial
aggregation from maize yield
simulation grid on
predictability: a case study

Abstract
The purpose of this study is to examine the influence of crop model output aggre-
gation on sub-national crop simulation and predictability of seasonal climate driven
maize production forecasts over East Africa. We assessed this using two case study
regions (i.e. North-Gonder in northern Ethiopia, and Bungoma in the equatorial re-
gion of Kenya). The WOrld FOod Studies crop simulation model (WOFOST), a field
scale crop model is configured to simulate maize production over East Africa at a high
spatial resolution of 0.1° grid corresponding to input soil data grid. Rainfall, tem-
perature and downward shortwave radiation seasonal climate forecasts for the period
1981-2010 from the European Centre for Medium range Weather forecasts are fed into
WOFOST. Climate grids are coarser (0.5°) implying that several 0.1° grid boxes are
within climate grids and thus have similar climate characteristics. This likely resulted
in crop simulation missing the detailed small scale crop-soil-climate interactions es-
pecially so in a region with steep rainfall variability such as East Africa. We assessed
the influence of aggregation over sub-national boundaries by soil types and by crop
varieties using the two case study areas. Influence of aggregation on average yields de-
pend on physiographic characteristics and area of sub-national administrative units.
After aggregation to sub-national regions, higher predictability is exhibited in larger
areas compared to the smaller ones, perhaps influenced by the number of climate grid

This chapter is under review for publication as:
Ogutu G.E.,I. Supit,P. Omondi and R.W. Hutjes, 2020: Spatial Aggregation Units’ Influence on
Predictability of Seasonal Forecasts of Maize Production: a case study. Agricultural Systems Journal
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cells over each region. Crop production simulation and predictability is similar over
the dominant soil types within the case study areas (i.e. loamy sand-to-sandy loams;
and sandy loams-to-loam soils). This may be because of similar available soil water
characteristics. Good, significant prediction skill in individual high resolution grid
cells are degraded little when averaged over sub-national boundaries. The higher the
number of climate grids in a spatial extent, the better the crop simulation and pre-
dictability implying that higher resolution climate data may improve simulation and
predictability. The results of this study i.e. skill assessment at national boundaries
and high resolution crop simulation units may inform both maize production related
policy decisions at regional or national levels, and also support maize production de-
cisions at specific cropping locations such as farm management decisions made by
farmers.

6.1 Introduction

Potential benefits can be extracted from the use of seasonal climate forecasts for
agricultural production. Also, significant progress has been made in modeling agri-
cultural and climatic processes and some of their interactions (Baron et al., 2005) but
a challenge of linking climate forecast to agricultural impact models exists due to the
different spatial and temporal scales. Such challenges include deriving appropriate in-
put information from climate forecast models, mainly Global Climate Models (GCMs)
for crop models, validation by ground data that is at times unavailable or of poor qual-
ity, and the effect of scale on the laws governing processes relevant to crop growth
and development. Even though climate-yield relationships are quite complex, robust
relationships can be established between regional atmospheric circulations, surface
climate, and crop productivity . The patterns of seasonal climate and their impacts
are important for understanding vulnerability and adaptation of regional agricultural
production. Zhao et al. (2015) notes that even though there have been increased de-
velopment of agricultural systems, rain fed crop production is still grossly influenced
by meteorological variables. Precipitation remains a determinant in many regions of
the world and water deficit is one of the most significant factors of crop production.
Therefore, understanding climate-crop relationships and developing tools to predict
crop production would help develop risk management strategies. But the forecasts
are important if used appropriately with an understanding of their capabilities and
limitations (Hansen and Ines, 2005; Skees et al., 1999).

This makes communication of associated uncertainties to facilitate apportionment of
confidence levels to the predictions necessary. Targeted users of climate forecasts and
its impacts will only act if they have confidence in the products, and this applies to
all users irrespective of their level of understanding of forecasts. For example farmers,
governments, aid agencies whether local or international, insurance companies and
even disaster risk reduction practitioners would require tailored forecast information
in different formats.
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A climate information service should then deliver understandable impact predictions
to stakeholders considering regions and periods of high or low skill and uncertainty
in prediction.

Because crop models are basically designed for farm level studies, implementing their
use in regional studies requires spatial aggregation of the yield or biomass output,
weighted by the fraction of areas cultivated or harvested within regional boundaries.
Alternatively, regional crop production simulations may be conducted at particular
sites or grid-boxes across smaller or larger areas but with soil and climate character-
istics spatially averaged over the simulation units. Yet again, input data aggregation
have been found to influence simulations of yields (Folberth et al., 2012; Supit and
Van der Goot, 1999; Olesen et al., 2000; Porwollik et al., 2017), phenology (Van Bussel
et al., 2011), and biomass (Kuhnert et al., 2017). Country masks used for aggregation
of simulation outputs has been found to influence simulated yields due to variability
in harvested areas (Porwollik et al., 2017). Input data aggregation does not however
wholly capture the interactions between crop varieties, soil types and climate charac-
teristics at fine resolutions for which crop models were originally designed. Because
of highly variable local climate-soil-crop interactions, regional forecast variations do
not necessarily represent local variations representative of a farm scale (Martin et al.,
2000). For example, local weather variation can lead to dry spells at higher spatio-
temporal resolutions than is captured when the outputs are aggregated over a region.
As such, farm scale variability has been noted to be higher than regional variability
(Martin et al., 2000).

Applied in yield forecasting, aggregation introduces uncertainties in the forecasts and
may either cause reduced prediction skill, or may average out simulation errors thus
resulting in better prediction. Even so, spatial aggregation of crop production suf-
fices for sub-national, national or regional crop performance assessment (Olesen et al.,
2000), and is sufficient to inform policy decisions mostly operationally made at re-
gional units (Van Bussel et al., 2011; Folberth et al., 2012). Comparing the variability
of yields aggregated over a spatial region to actual observed yields (official yield statis-
tics); largely collected via agricultural census would give an indication of the influence
of aggregation in the current study.

Prediction results at regional scales are useful mainly to governments, relief agencies,
and regional early warning organizations. Farmers need high resolution information
near farm-scale that would enable adaptation to the expected climate over a crop
growing season . In the Greater Horn of Africa (GHA) sub-region, pre-season crop
yield forecasting driven by seasonal climate forecast has been found skilful for at least
two lead months prior to sowing in some regions and seasons (Ogutu et al., 2018) based
on crop production data aggregated to half degree resolution from a high resolution
simulation unit of 0.1-degree. A number of studies on crop prediction have been car-
ried at 0.5° being close to the nominal resolution of many gridded input climate data.
This resolution has been suggested as useful for regional scale analysis (de Wit et al.,
2010) and has been used for crop prediction studies in many regions of the world . In
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Ogutu et al. (2018), half degree climate input data with high resolution 0.1-degree soil
characteristics and land use data (soil mapping units, SMU) was used with optimised
crop varieties in crop simulation units as well. This means that several soil resolution
grids falling within single climate half degree grids had similar climate characteristics
and variability. Even though this method may not capture the highly variable cli-
mate (i.e. rainfall) in the tropical regions, forecasting at 0.1-degree resolution (near
farmers’ field-scale) without aggregation to neither half-degree nor county boundaries
could epitomize the usefulness of crop forecasts to farmers. It is therefore necessary
to assess crop production forecasts at such high resolution before upward aggregation.

Among different soil types and crop varieties, yields may vary due to differences in
nutrient availability, soil nutrient retention capacity and water holding capacity and
the interactions between crop characteristics and soil types for example, the max-
imum root depth and plant water available capacity are assumed to vary between
soil types. Simulated yields at field scales have been shown to respond differently to
climate variations on different soil types which would make the response of aggre-
gated yields strongly dependent on the soil-climate-cultivar interactions. Soils deter-
mine the crops’ suitability and offer a platform for cultivars, fertilizer and moisture
interactions. Aggregation camouflages these small scale interactions, thus making
estimation of the optimum scales for estimating (e.g. county and national) yields dif-
ficult. Aggregation can cause large systematic errors due to non-linear crop behavior
and may lead to scale mismatches . Evaluating the effect of aggregation on prediction
skill over varying soil types is therefore fundamental in order to make forecasts useful.

Similarly, crop cultivars show varying sensitivity to soil types, fertility, and climate
characteristics at different SMUs. The sensitivity to temperature and rainfall for ex-
ample are cultivar specific influenced by many processes such as but not limited to
evaporation and transpiration. The variability in soils and climate may affect crop
processes in one cultivar variety but not necessarily the same processes in another
cultivar (Porter and Semenov, 2005) resulting in good performance of one cultivar
in a large spatial area or SMU but performing poorly in another. Evaluating the
performance of different cultivars in varying soil types, geographical regions, plus the
influence of aggregation on each variety over sub-national spatial regions help in un-
derstanding crop production predictions.

This study therefore seeks to understand the influence of crop production aggregation
over a sub-national region referred to as ”Nomenclatures des Unitẽs Territoriales
Statistiques level 2 (NUTS2)” in (Supit and Van der Goot (1999) and Boogaard et al.
(2013)) on seasonal maize forecasts by:

1. assessing the influence of yield aggregation on predictability by comparing the
official observed agricultural statistics to simulated NUTS2 crop yields aggre-
gated upwards from both half-degree and 0.1-degree resolutions

2. analyzing and comparing influence of aggregation on predictability based on
0.5° and 0.1° resolutions
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3. assessing predictability by aggregation over similar soils and varieties.

In all cases we want to assess how the original grid before aggregation affects pre-
dictability of both yields and biomass (TAGP).

Figure 6.1: Map of study area, case study NUT2 regions and FAO land use grids (approximately
0.1° resolution)

6.2 Methodology

6.2.1 Model description

We simulate hindcast maize production for the period 1981-2010 using the WOrld
FOod STudies (WOFOST) crop simulation model, a detailed model with respect to
crop physiology allowing for specification of regionally used crop varieties. It was
originally developed to simulate crop yield for a single location with homogeneous
cultivars, soil characteristics and different weather. The model is photosynthesis
driven and simulates daily growth and production of annual crops using a range of
physiological processes from sowing to maturity in response to weather, soil type, and
soil moisture conditions as defined by crop characteristics during growth season.
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The physical processes comprise light interception, photosynthesis, respiration, evap-
otranspiration, assimilate partitioning, leaf area dynamics, phenological development,
and root growth (Supit et al., 2010; Boogaard et al., 2013).

In this study, the model simulates theoretical water-limited-yields (WLY) at simula-
tion units of 0.1°×0.1° resolution determined by overlaying land use, elevation, crop
calendar, soil maps and climate data. All overlapping features in the input layers
are clipped and extracted to create soil mapping units (SMU) or simulation units.
For WLY simulation, WOFOST soil profile is divided into two layers; the upper
rooted zone and the lower zone between actual rooting depth and maximum rooting
depth. The first zone and second zone merge gradually as the roots grow deeper.
The groundwater is so deep that it does not influence the soil water content in the
rooting zone. WLY is influenced by rainfall assuming a soil nitrogen level that reflects
a maximum yield level of about 40-50% of the potential, typical for the region, and
otherwise optimal crop management and that no losses occur due to pests or diseases.
In the current setup, the first cropping season in a year is modelled from emergence
to maturity determined by the thermal time required to reach the development stages
(TSUMS). See Chapter 2 for further description of the model.

Table 6.1: Maize varieties used in this study as defined by WOFOST thermal time parameters.
Note:TSUM1 = temperature sum from emergence to anthesis (◦C day); TSUM2 = temperature
sum from anthesis to maturity (◦C day); both relative to a base temperature of 10◦C

.
MAIZE VARIETY TSUM VALUE REGION

1 TSUM1 400 North-Gonder
TSUM2 350

3 TSUM1 620 North-Gonder and
TSUM2 570 Bungoma

5 TSUM1 720 North-Gonder
TSUM2 670

6 TSUM1 770 North-Gonder and
TSUM2 720 Bungoma

7 TSUM1 820 North-Gonder
TSUM2 770

9 TSUM1 920 North-Gonder
TSUM2 870

10 TSUM1 970 North-Gonder
TSUM2 920
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6.3 WOFOST input data

6.3.1 Soil and land use data

Land use and soil input data are derived from the 0.1°×0.1° grid International Soil Ref-
erence and Information Centre-World Soil Information (ISRIC-WISE) database (and
http://www.isric.org/data/isric-wise-international-soil-profile-dataset). The database
includes information on soil physical characteristics, root depth, and landscape char-
acteristics such as elevation, slope gradients, and slope aspects. Soil properties such
as wilting point and field capacity are estimated with the pedo-transfer functions
from Saxton et al. (1986). Maize growing areas are determined based on FAO land
use maps . The intersection between ISRIC-WISE soil data base, FAO land use
maps and country administrative region maps (known as NUTS regions) and weather
data results in SMU, the basic WOFOST 0.1°×0.1° simulation unit in this study.
The SMUs are assumed to be spatially homogeneous with respect to planted crop
varieties, weather and soil characteristics. NUTS structure is such that the highest
level follows the national country boundaries; NUTS-0 which is further divided into
regions (NUTS-1) and NUTS-1 are divided to sub-regions (NUTS-2). The method
used to formulate modelling units is congruent to methods by, among others, Supit
and Van der Goot (1999) and Resop et al. (2012).

6.3.1.1 Weather data

We use weather data (i.e. precipitation (tp), maximum (tmax ) and minimum (tmin)
temperatures, surface downward shortwave radiation (rsds) from a re-anlysis (ERA-
Interim) and observation fused data product from the Water and Global Change
(WATCH) forcing data ERA-Interim (WFDEI) at 0.5°×0.5° resolution (Harding et al.,
2011; Weedon et al., 2010, 2011, 2014) to simulate reference yields. WFDEI is ob-
tained after elevation and monthly bias corrections of the ERA-Interim re-analysis
(Dee et al., 2011) using gridded observed climate data from University of East Anglia
Climate Research Unit (Harris et al., 2014). ERA-Interim is one of several available
climate reanalysis products providing a numerical description of the recent climate
produced by assimilation of weather observations in forecast model simulations and
are considered the most consistent multivariate representation of the past climate
(Dee et al., 2011). We use WFDEI to represent the observed climate for the period
1981-2010.

To simulate yield forecasts, we use climate reforecasts (hindcasts) from the ECMWF
System-4 seasonal climate ensemble prediction system , bias corrected at grid level
for each initialisation and target month combination separately against WFDEI. Sea-
sonal climate forecasts are initialized on the first day of every month from 1981-2010
with 15 perturbed (different) initial conditions. Since weather evolution during an
upcoming season is not certain, initializing the climate forecast model from different
initial conditions allows sampling of the possible weather evolution path during the
coming season. Forecasts initialized from each of the perturbed initial conditions re-
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sults in 15 different forecasts (ensemble members). Each member provides a forecast
7-months into the future. We will only consider forecasts starting in the month of
sowing (lead-0) or one or two months prior to sowing (lead-1 and lead-2).

Predictability of the seasonal climate forecasts over East Africa is analysed in Ogutu
et al. (2017) in which useful probabilistic prediction skill is found in all major crop-
ping regions of East Africa, but the skill level decreases from near surface air temper-
ature; to precipitation; to downward surface radiation. To simulate yield forecasts,
WOFOST is driven with each of the 15 climate forecast ensemble members; resulting
in 15 ensemble yield forecasts, i.e. it spans the range of possible yields resulting from
the 15 probable climate evolution during the crop growing period. This enables an
assessment of probabilities of anomalous forecasts.

6.3.1.2 Crop data

In this study, we have used a method that combines the optimization of sowing dates
on maximum yields; and optimization on climate and crop specific characteristics to
determine maize sowing dates at 0.1-degree resolutions. Details of these methods are
described in chapter 2 and Ogutu et al. (2018). The procedure starts with coarse
crop calendars from Sacks et al. (2010), and standard tropical maize varieties for crop
modeling compiled in Van Heemst (1988). Yields are simulated for the different maize
varieties planted at every grid point every 10 days, starting 90 days before and end 90
days after the sowing dates presented in the coarse crop calendars, using the baseline
climate forcing (WFDEI) for the period 1981 to 2010. Maize varieties differ mainly in
terms of the thermal time that is needed to reach flowering and maturity calculated
based on the planting dates and a base temperature of 10◦C. We subsequently selected
the sowing date and crop variety that provided the highest average crop yield over the
baseline period, resulting in 10 varieties in East Africa (see Table 6.1. The derived
sowing date for each grid point was fixed (i.e. not varying between years) in WOFOST,
while harvest dates are determined by the weather conditions during growth period.

6.3.2 Choice of case studies

For our case studies we select two sub-national regions (NUT2), North-Gonder (in
Ethiopia) and Bungoma (Kenya) NUT2 regions shown in Figure 6.1. Choice was based
on the following criteria; regions of good maize yield predictions based on findings
in Ogutu et al. (2018); skillful climate prediction (Ogutu et al., 2017); areas of good
records of actual observed (official) yields; and areas dominated by rainfed agriculture.
North-Gonder lies between latitudes 11.75–13.75N and longitudes 32.25–13.75N, with
surface elevation ranging from 527-4000 metres above mean sea level (masl). Bungoma
spans longitudes 34.3–35.1E and latitudes 0.43–1.15N, with elevation of 1249–4000
masl. It would be useful to know if the same level of predictability observed at 0.5
degree resolution is affected by scale of spatial yield aggregation.
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We have 25-years and 10-years of observed yield data for Bungoma and North-Gonder
respectively, enabling a comparison with model simulated average yields, though not
long enough to calculate more probabilistic skill metrics.

Figure 6.2: North-Gonder altitude ((a) in colours); crop varieties ((a) in numbers) and soil types
shown in terms of available water capacity (AWC) in figure (b). Fine grid lines delineate SMUs;
bold grid lines the 0.5° cells; white cells indicate non-agricultural regions.

North-Gonder has a complex terrain with altitude range of 527m to 4000m amsl and
soil available water capacity range of 0.07 to 0.25% i.e. sandy soils in low latitude
regions to silt-loam soils in the high altitude areas (see illustration in Figure 6.2).
Seven crop varieties differing in their TSUMs (see table 6.1) are used in North-Gonder.
The complexity in terrain, soils and crop varieties make this region a good candidate
to assess complexities related to the influence of spatial aggregation on forecast skill.
Predictability in this region is contrasted to predictability in Bungoma (Kenya), a
region of less variability in altitude (though a high terrain), few crop varieties (see
Figure 6.3a) and less variability in soil types (see Figure 6.3b)
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Figure 6.3: Bungoma altitude (figure (a) colors) crop varieties (Figure (a) numbers) and soil types
shown in terms of available water capacity (AWC) in figure (b). Fine grid lines delineate SMUs ;
bold grid lines the 0.5° cells

6.3.3 Assessment of crop production simulation and predictabil-
ity

6.3.3.1 Model simulation

To assess skill of model simulation, good observed statistics are required. In this
study we require good maize yield statistics at sub-national levels; in many instances
such data are difficult to get. We use the mean and coefficient of variation (CV) to
compare the degree of spread of yields, and error indices described in Willmott (1981);
Willmott and Matsuura (2005) to compare the observed and simulated values. The
metrics include mean error (bias), percentage bias (pbias), the root mean squared
error (RMSE) and the index of agreement between the simulated and observed (d).
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6.3.3.2 Predictability

We assess the effect of spatial aggregation on yield forecast skill using the relative
operating curve skill score (ROCSS) to show skill of anomalous above normal (upper-
tercile), below normal (lower-tercile) and near normal (middle-tercile) forecasts. For
probabilistic forecasts, a warning is issued when the forecast probability for a pre-
defined event exceeds some threshold. A set of hit-rates and false alarm rates are
determined and plotted for these thresholds (we use decile forecast intervals) thus
generating a ROC curve. The area under the ROC curve (AROC) is a measure for
forecast performance. Because there is skill only when the hit rates are higher than
the false-alarm rates, the ROC curve lies above the 45-degree line for a skillful fore-
cast (AROC > 0.5), and below (AROC < 0.5) for a forecast that is no better than
the climatology. AROC is transformed into a skill ROCSS = 2AROC − 1, where
−1.0 ≤ ROCSS ≤ 1.0. A score of 1.0 indicates a perfect forecast system; a −1
indicates perfectly useless forecast system, and zero indicates no skill. For details see
Appendix B.1. ROCSS has been used to assess predictability of seasonal climate fore-
casts for the study region (Ogutu et al., 2017) and for assessing skill of 0.5° grid yield
forecast (Ogutu et al., 2018). In this article we assess forecast skill for each SMU, and
aggregated to NUT2 boundary. Aggregation is accomplished with equation 4.1. We
then aggregate SMU yields and biomass based on soil types (AWC) shown in Figures
6.2 and 6.3. We report the ROCSS and its significance plus the percentage of SMUs
possessing significant prediction skill.

6.4 Results

6.4.1 Case study characteristics

Figure 6.4 and Figure 6.5 show the mean growing season climate for North-Gonder,
and Bungoma NUT2-regions respectively for rainfall, maximum, and minimum tem-
perature for 1981-2010. The two regions have different climate characteristics with
North-Gonder having a highly variable rainfall (CV = 12%-30%), minimum tem-
perature standard deviation of 0.4 to 0.5◦C) and maximum temperature standard
deviation (std) of 0.6 to 0.7◦C). Variability in climate may be related to the variabil-
ity in orography (Figure 6.2); and also the fact that North-Gonder has more weather
grids (0.5°) than Bungoma. CV shown by North-Gonder rainfall emphasizes the com-
plexity in simulations over regions of complex orography and climate. A combination
of rainfall gradients, (i.e. range from 473 mm to almost 1000 mm) over the growing
season combined with temperature and altitude gradients resulted in six maize vari-
eties. Bungoma altitude and weather (from WFDEI) are not as variable (i.e. rainfall
CV = 20.3%; maximum temperature std = 0.6 to 0.7◦C; minimum temperature std
= 0.6◦C). Only two varieties are planted in Bungoma, with a single variety (variety-6)
in over 90 percent of the simulation units (Figure 6.3a).
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Figure 6.4: Mean cropping season climate of North-Gonder (JJAS) as represented by (a) seasonal
rainfall (mm) (b) Coefficient of variation (%) (c) Maximum Temperature (◦C) (d) Standard deviation
for Tmax (e)minimum temperature and (f) Standard deviation for Tmin . Gridlines delineate SMUs;
white cell are non-agricultural regions..

6.4.2 Influence of spatial aggregation on yield simulation and
predictability

6.4.2.1 Comparison of model simulated yields to the observed

Table 6.2 show comparison between observed (OBS), WFDEI driven reference yields
aggregated to NUT2 region from 0.5° resolution grids (NUT2 05), and yields aggre-
gated from the SMUs (approximately 0.1°) grid. Observed yields are also compared
to mean yield forecasts from 0.5° grid (05 FCST) and from 0.1° grid (FCST) for lead-
time 0, 1, and 2. We show this for North-Gonder (Table 6.2a) and Bungoma (Table
6.2b).
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Figure 6.5: Same as figure 6.4 but for Bungoma (MAM season)

Half degree reference (NUT2 05) and forecasts (05FCST) at lead zero are generally
not significantly different from the observed (OBS) in North-Gonder (Table 6.2a),
however at 0.1-degree both NUT2 reference and forecast yields (FCST LEAD0 to
FCST LEAD2) are generally higher and significantly different from OBS. In North-
Gonder, higher CV is discerned inWFDEI reference yields aggregated from half degree
grid than when aggregated from SMU (NUT2 05 = 9.0%, NUT2 = 7.3%). Higher
CV in forecasts aggregated from half degree grid range from 11.4% - 9.8% while those
from SMU are 8.1% - 6% for forecast lead-0 to 2 respectively. In this region, less
spread is obtained from forecasts aggregated from SMU grid than from yield data
aggregated from 0.5 degree grid, the latter decreases with lead time because perhaps
cells that are not harvested are eliminated before aggregation resulting in reduction
of aggregated cells with lead time. Hence reduced yields when weighted by cultivated
area. This is as opposed to aggregation from 0.5° cell i.e. to generate yield data at
0.5-degree, simulated data is weighed by the percentage area cultivated within the
grid box. These two approaches may result in the differences in spread.

In Bungoma (Table 6.2b), all simulated yields are lower and significantly different from
OBS irrespective of initial resolution before aggregation. NUT2 yield aggregated from
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SMUs has a higher CV equal to 22.9% compared to 19.2% from NUT2 05. Half de-
gree forecasts 5FCST LEAD0 and LEAD1= 11.3% and 14.6% while FCST LEAD0
and LEAD1 = 18.1% and 15.4% respectively.

This may be because Bungoma is enclosed in a single 0.5° grid compared to North-
Gonder, resulting in a relatively lower spread because of limited contribution from
half degree grids. In both North-Gonder and Bungoma, observed deviation from the
mean yield is higher than NUT2 05 and NUT2 deviations. Like the observed standard
deviation, the percentage spread of data around OBS (CV) is larger than the sim-
ulated. However the percentages are region dependent with higher CV in Bungoma
(both OBS and simulations) than in North-Gonder irrespective of aggregation level.

The effect of aggregation is that, extremes are evened out when aggregated from
0.5°resolution than when aggregated from SMUs (0.1-degree) resolution. Evening out
of extremes happens in two steps from 0.5° grids: (1) when generating 0.5° grid data
from the SMU grids and (2) when aggregating from 0.5° grid to NUT2 boundary.
This is in contrast to lower averaging of extremes when aggregated directly from 0.1°
to NUT2 boundary. The influence of aggregation is more distinct in a region with
more simulation cells compared to a region of fewer cells (Table 6.2b) and hence a
dependency on geographical region and size of aggregation unit. This is probably
because aggregation from high resolution (SMUs) to low resolution such as county
or country boundaries reduces the variability in simulated yields. It may also result
from heterogeneity of simulated yield patterns and how strongly opposing deviations
compensate each other as explained in Porwollik et al. (2017). Yet still, in assessing
the effect of aggregation of simulation results of national wheat yield in France, it was
demonstrated that aggregation to larger extents affects simulation results and that
better results are obtained when predictions are executed at a regional or sub-regional
level (Supit and Van der Goot, 1999).

6.4.2.2 Comparison of average WFDEI driven reference yields and aver-
age yield forecasts

Figure 6.6a, 6.6b and 6.6c show comparison of WFDEI driven reference yields and
North-Gonder NUT2 ensemble average yield forecasts aggregated from 0.5 degree
resolution (NUT2 05) for lead-times 0-2 respectively before planting. Yield forecasts
show good simulation at lead-0 and lead-1 with (percentage) biases of -72.5Kg ha−1

(-4.4%) and -219.1Kg ha−1 (-13.4%) respectively. Lead-2 bias is high and unaccept-
able -841.9Kg ha−1 (i.e. -51.6%). This is because climate forecasts (lead-2) do not
always span the entire maize growing season when this happens to longer than nor-
mal, resulting in crop failures. There exist good agreement in model simulation of
mean forecasts and reference yields (i.e. d= 0.6 and d = 0.5 for lead-0 and lead-1
respectively). Fair pattern correlations of r = 0.4 is exhibited in lead-0 and lead-1
forecasts.
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Aggregated from 0.1-degree resolution (NUT2), all the three lead-times show good
model simulation and less bias (Figure 6.6d, 6.6e, and 6.6f) for lead-times 0, 1 and 2
respectively. For example the biases range from -56Kg ha−1 (-2.6%) to -88.8Kg ha−1

(-4.2%). Agreement in model simulation and of forecasts is good in all the three
lead-times (i.e. d = 0.6). Good model simulation of inter-annual variability shown

Figure 6.6: Comparison of North Gonder S4 forecast yields, at left aggregated from 0.5° grid resolu-
tion (NUT2 05) and at right aggregated from SMU, compared to the WFDEI reference simulation.
From top to bottom for lead-0, lead-1 and lead-2, respectively. Each dot is one year (n=30 years).
Note the different scales for the vertical axes

by the pattern correlation (i.e. r = 0.4 to 0.5) is exhibited in North-Gonder yields
aggregated from 0.1 degree resolution. Similar behavior is found in assessment of
North-Gonder biomass (TAGP) simulation (Figure 6.7) even though model simula-
tion of biomass variability is poor as seen from the model agreement index (d) and
the pattern correlations (r). The reference WFDEI TAGP simulation is consistently
higher (i.e. percentage bias of -2.1, -7.9 and -30.2% for lead-0, lead-1 and lead-2 re-
spectively) than the forecasts. Aggregation from 0.1° resolution has lower biases in
all the three lead-times compared to aggregation from 0.5° resolution (see Figure 6.7).
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Figure 6.7: Comparison of North Gonder S4 forecast Total above ground biomass (TAGP), at left
aggregated from 0.5° grid resolution (NUT2 05) and at right aggregated from SMU, compared to the
WFDEI reference simulation. From top to bottom for lead-0, lead-1 and lead-2, respectively. Each
dot is one year (n=30 years). Note the different scales for the vertical axes

The fact that (seed) yields are reproduced better than total above ground biomass is
contrary to our expectations since flowering and seed filling are subject to a number
of additional climate controls (or risks), compared to total biomass; this may be a
topic of future research.

Over Bungoma, yield aggregation from 0.5° grid show better model simulation than
aggregation from 0.1° grid (Figure 6.8). Good average simulation quantified by ME
and RMSE is exhibited for lead time 0 and 1; lead-2 biases ( of -38.3%) is high and
unacceptable. In all lead-times, the model agreement (d = 0.4 to 0.6) and pattern
correlation (r = 0.4 to 0.5) are higher for yield aggregation from the half degree
grid. Though aggregated TAGP from half degree resolution (Figure 6.9) show better
model simulation compared to aggregation from 0.1° grids, and average biases are
small, both show rather poor correlations. In general, better model simulation of
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NUT2 North-Gonder yields is observed when yields are aggregated from the higher
resolution, native WOFOST simulation unit. The contrast is exhibited over Bungoma
where aggregation from the half degree grid exhibit better model simulation. These
contrasts may be related to the influence

Figure 6.8: Comparison of Bungoma S4 forecast yields, at left aggregated from 0.5° grid resolution
(NUT2 05) and at right aggregated from SMU, compared to the WFDEI reference simulation. From
top to bottom for lead-0, lead-1 and lead-2, respectively. Each dot is one year (n=30 years). Note
the different scales for the vertical axes.

of climate grids. Because Bungoma has only one climate grid, simulation details
related to crop-soil-climate continuum is lost but relatively represented over North-
Gonder because of its size and the encompassing number of climate grids. Aggregation
is therefore influenced by both the size of NUT2 region and the original resolution
from which data is aggregated.
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Figure 6.9: Comparison of Bungoma S4 forecast Total above ground biomass (TAGP), at left ag-
gregated from 0.5º grid resolution (NUT2 05) and at right aggregated from SMU, compared to the
WFDEI reference simulation. From top to bottom for lead-0, lead-1 and lead-2, respectively. Each
dot is one year (n=30 years). Note the different scales for the vertical axes.

6.4.2.3 Influence of spatial aggregation on predictability

Table 6.3 shows comparison of maize yield and biomass predictability aggregated to
NUT2 boundary from both 0.5° (Table 6.3a and 6.3b) and 0.1° (Table 6.3b and 6.3d)
resolutions. NUT2 yields aggregated from both 0.5-degree and 0.1-degree show com-
parable below normal (BN) and above normal (AN) predictability in North-Gondar
with significant ROCSS of 0.3 to 0.7. Biomass (TAGP) production predictability of
BN (ROCSS = 0.2 to 0.5) and AN (ROCSS = 0.3 to 0.6) aggregated from 0.5° res-
olution is lower than yield prediction. TAGP aggregations from 0.1°resolution show
only above normal predictability (Table 6.3b) while below normal production forecast
show no predictability. Good predictability in yields compared to biomass (TAGP)
may occur because yields are already filtered by only aggregating cells that are har-
vested while biomass aggregation considers all planted cells.
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In Bungoma, yields aggregated from 0.5-degree show higher AN, NN and BN skill
compared to aggregation from 0.1-degree resolution whose prediction has no signifi-
cant skill (Table 6.3c and 6.3d). Above normal yields exhibit higher and significant
ROCSS of 0.4-0.5 over three lead times. No matter the resolution from which biomass
is aggregated, prediction of TAGP lacks skill.

6.4.2.4 Influence of Aggregation by soil type and crop variety on pre-
dictability

Because the study area comprises a diverse climatology and soil types resulting in
a number of cultivars, we assessed the predictability of yields aggregated from 0.1
degree resolution to NUT2 boundary based on particular varieties (i.e. yields and
biomass for particular varieties are aggregated first before skill assessment) . Table
6.4a and 6.4b show predictability of yields and TAGP for North-Gonder while Table
6.4c and 6.4d show predictability of Bungoma yields and biomass at lead time 0-2.
For brevity, we have shown results for only two out of the seven varieties in North-
Gonder (i.e. varieties 9 and 3) and Bungoma (i.e. varieties 6 and 3). Both varieties
in North-Gonder show good predictability of below normal and above normal yields
across all lead times 0 to 2. Below normal forecasts show significant ROCSS = 0.4 to
0.9 while above normal forecasts show significant ROCSS = 0.4 to 0.6 across all fore-
cast lead times. Variety-9 near normal (NN) forecasts only show significant positive
skill (i.e. ROCSS = 0.4) at lead-0 while variety-3 forecast has no skill at lead time
0. TAGP is generally less predictable than yields (Table 6.4b). Variety-9 exhibits
significant predictability of below normal forecasts (ROCSS = 0.5 and ROCSS = 0.6
for lead times 0 and 1 respectively). Variety-3 TAGP show significant skill for above
normal forecasts (ROCSS = 0.4 for lead times 0 only respectively. Below normal and
near normal forecasts show no skill.

It is noteworthy, however, that varieties-6 and variety-3 over Bungoma show little
yield and TAGP forecast skill (Table 6.4c and 6.4d) when aggregated to NUT2 from
0.1 resolution. While variety-3 show above normal and below normal skill for forecast
lead times-0 and -1, but only above normal lead-0 show significant ROCSS = 0.5.
Lack of variety-3; at lead-2 predictability is because the variety requires a longer time
to mature (see Table-6.1 TSUMS) and as a result does not always grow to maturity
with lead-2 climate forecasts. Longer forecasts may perhaps be appropriate. In gen-
eral, predictability of yields depend on region and not the crop variety. For example,
we see good predictability of variety-3 in North-Gonder (Ethiopia) but the same va-
riety has no predictability in Bungoma. Total above ground biomass (TAGP) show
less predictability than the yields.

We further assessed the predictability of each variety aggregated to NUT2 region
from two dominant soil types i.e. loamy sand-to-sandy loam soils (S3) and sandy
loam-to-loamy soils (S4) for North-Gonder and Bungoma (Table 6.5). The ROCSS
reported is averaged to NUT2 region for cells with significant skill at 0.1° grids (i.e.
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SMU skill assessed before aggregation to illustrate predictability at high resolution).
To be useful to farmers, we also report the percentage of 0.1-degree cells within the
NUT2 region that show significant skill (shown in brackets in Tables 6.5 and 6.6). We
consider varieties-9 and -3 from North-Gonder. Variety-9 is more predictable from S3
than from S4 soils with below normal forecasts showing lead-0 and lead-1 significant
ROCSS of 0.5, in addition 30% of the SMUs show significant skill scores. Variety-9
above normal forecast show good predictability in all lead times (ROCSS = 0.4 to
0.5) and 30% grids show significant scores. Aggregated over S4 soils, all categories of
forecasts show insignificant ROCSS (Table 6.5a). Variety-3 has better predictability
in both the S3 and S4 soils; it also shows higher percentages of SMUs having signifi-
cant ROCSS (i.e. ROCSS between 0.5 and 0.7, and percentages of 48% to 100%) in
S3 soils. S4 soils show significant prediction skill score in 22% to 100% of grid cells.

We consider only the dominant S3 soil type which covers over 93% of planted cells in
Bungoma (Table-6.6). Prediction of other varieties with respect to dominant soil types
is shown in table D.12. Aggregations by soils show no predictability in Bungoma.
Predictability differs with soil types irrespective of maize varieties. This suggests
dependence of yield predictability on soil-cultivar-climate interactions and the need
to assess forecast skill at higher resolutions in which high spatial variability in both
soils and climate are captured.

6.4.2.5 Prediction skill upscaling from high resolution grid (i.e. 0.1° grid)

We report above-normal (AN) and below-normal (BN) prediction skill averaged over
cells with significant ROCSS plus their percentages. We show the skill of yield or
biomass aggregated upwards to NUT2 boundary considering all varieties in each re-
gion. In Table 6.6, we report the predictability of dominant crop varieties in each re-
gion for illustration purposes (i.e. varieties-9 and -3 for North-Gonder; and varieties-6
and 3 for Bungoma). In general, North-Gonder exhibits higher predictability than
in Bungoma even for the same crop variety (e.g. variety-3). At this high resolution
there exists almost no predictability in Bungoma. This finding agrees to that in the
section-3, i.e. prediction at the 0.1-degree grid is higher in the larger NUT2 area than
in the smaller one, perhaps related to the lack of detailed, small scale interactions
between crop, climate, and soils.

In North-Gonder, average of skill in grids that show significance for individual varieties
result in higher skill than with all the varieties (NUT2) considered (see Table 6.6a,
and 6.6b). ROCSS is greater than 0.4 except for lead-2 crop production forecasts
and variety-3 TAGP over North-Gonder. Considering individual varieties, lead-times
that possess significant skill are greater than 42%. Even though ROCSS are still
comparable for NUT2 region, the percentages of cells with significant skill are lower.
Averaging over NUT2 boundary acts to degrade prediction information that would
otherwise be useful for near farm-scale prediction.
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6.5 Discussion

6.5.1 Setup

Crop models are basically meant for site based studies; for a regional study, detailed
actual soil characteristics, detailed actual crop (let alone variety) characteristics and
climate observations at field resolution are not available. The method we used in this
study was the best possibility practically with soil and climate data. The setup may
change in future similar studies especially with regard to climate data. For example,
climate predictions from the European Centre of Medium range weather Forecasts
(ECMWF) used in this study have a horizontal grid resolution of 0.75°×0.75° but
future forecasts will be availed at ≈30 km grid resolution. There also exist high reso-
lution gridded climate observations in the East African countries of Tanzania, Kenya
and Ethiopia, such as the Centennial trends precipitation dataset for the Greater
Horn of Africa (CENTRENDS) for the period 1900-2014 at 0.1° horizontal resolu-
tion, produced by the University of California at Santa Barbara, Climate Hazards
Group and Florida State University (Funk et al., 2015); the Climate Hazards Group
InfraRed Precipitation and Stations (CHIRPS) at 5km resolution starting from 1981
to near real-time (Funk et al., 2015) is now operationally used in the region . With
efforts to grid other variables, the observations would replace the pseudo observations
(WFDEI reanalysis) used in this study and hopefully improve simulations of reference
yields. Even so WFDEI has been validated globally and used in many studies over
eastern Africa.

6.5.2 Comparison of observed and simulated yields

The differences between OBS and simulated mean yields and their standard deviations
occur because some yield-limiting factors inherent in OBS are omitted in our model
simulations as they are not incorporated in the WOFOST model. This includes
factors such as effects of weeds and pests. Furthermore, water conserving techniques
that are generally applied in the dryer regions are not considered. This may lead
to an over estimation of dry spells stress in these regions. The fact that a simple
tipping bucket approach is used in our WOFOST version instead of a more detailed
soil moisture module may contribute to this overestimation. The simple bucket soil
moisture balance approach amplifies sensitivity to drought conditions in WOFOST.
Fertilizer application is kept constant in our simulations but in reality, it may vary
from one year or season to another hence influencing the observed yields. Difference
may further be compounded with the fact that only one season is simulated in a single
year yet some regions have double cropping seasons.

6.5.3 Influence of spatial aggregation on predictability

Many large scale crop models simulate yields at resolutions of approximately 0.5°
almost equivalent to climate data resolutions used in this study. WOFOST setup
simulates yields and biomass production at 0.1°×0.1° a resolution that may be useful
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to farmers climate service needs. We assessed maize yield predictability at both half
degree resolution and national boundaries for Eastern Africa in Ogutu et al. (2018).
The assessment is important in forecasting large scale crop performance covering re-
gional, national and sub-national boundaries. Furthermore, official agricultural yield
statistics (observed); crop production forecasts or outlooks are normally issued for na-
tional or sub-national (NUT2) regions. Irrespective of the spatial resolutions of crop
model simulation units, crop production therefore needs to be aggregated to enable
provision of outlooks or a comparison to the observed. In this study, we assessed the
influence of aggregation from 0.1° to 0.5° resolutions and on to NUTS-2 level using
two case-studies over two regions: one in the Northern part of the study area (North-
Gonder) and another in the equatorial regions of East Africa (Bungoma), using a
criterion established in section 6.3. These are regions of good climate predictability
and maize yield predictability. They also exhibit different climate characteristics,
topography, and cropping seasons, but also have good time series of observed data.
For farmers to benefit from this research, we also assessed predictability at WOFOST
simulation unit in this study i.e. FAO soil mapping units (a resolution of approxi-
mately 10 km ×10 km grid). We assessed both simulation skill and predictability of
yields and biomass, predictability from different soil types and different crop varieties.

Poorer predictability in Bungoma compared to North-Gonder may result from the
fact that within its one single climate grid cell a large range of altitudes occur (Fig-
ure6.2) , while many of the 0.5° grid cells in North-Gonder are rather homogeneous in
altitude i.e. Bungoma spans almost 2000m altitude in its single 0.5°cell, in N-Gonder
only 2 cells out of 28 show the same range, all others much less and more than 10
cells show no altitude variation at all. Therefore, fine resolution climate character-
istics that would affect variability in simulation and predictability at the higher 0.1°
resolution are not captured in the crop model WOFOST, especially rainfall that has
higher spatial and temporal variability. Lack of spatial variability in climate variables
over Bungoma are evidenced by the coefficient of variations of rainfall rate, global
radiation, minimum temperature and maximum in the supplementary Figures C.15
to C.18 respectively. In all instances, CV of each ensemble member is nearly equal
to that of reference WFDEI except for maximum temperature CV that is higher but
still no more than 2% above the reference.

It means therefore that higher resolution forcing climate data may improve the pre-
dictability by capturing more realistic climate characteristics and spatio-temporal
variability. In contrast, North-Gonder is a larger area, covered by a number of cli-
mate grids resulting in more spatial details being captured over several grids hence
better simulation. Aggregation over a larger area such as North Gonder may im-
prove predictability over a regional extent. Similar setup of crop simulation studies,
i.e. at modeling units then aggregating to a larger area has been operationally em-
ployed to estimate yields over Europe using the CGMS of the European Union Joint
Research Center (EU-JRC) (Boogaard et al., 2013; Supit and Van der Goot, 1999).
Even though good simulation has been attained when input data is aggregated over
larger area, for example in simulation of crop phenology over Germany using AFR-
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CWHEAT2 decreasing the spatial extent of input data aggregation further improved
simulations (Van Bussel et al., 2011). This demonstrates the value of detailed input
data in crop simulation. The method employed in this study is reasonable especially
in a region of diverse climates (and hence crop calendars), soil characteristics, and
surface topography like eastern Africa.

There is no consistent influence of forecast lead-time on yields or biomass predictabil-
ity aggregated to NUTS-2 boundary. Perhaps because our main focus is predictabil-
ity of anomalies rather than absolute values and the statistics employed may not be
practical to assess the simulation of absolute yields. Biases in simulated yields and
biomass change with forecast lead time, but are still either above or below normal
when aggregated over a larger area.

6.5.4 Aggregation by crop variety and different soil types

Yield responses to climate have been found to vary over different soils due to varying
rooting depths, plant available water capacity, hydrologic conductivity, among other
properties that affect yields . But in this study, we do not get significant variations in
yields over different soil types, irrespective of crop varieties. This is probably because
the dominant soil in the study regions have almost similar available water capacities.
The maximum soil depths are also fixed for all soil types in addition to the simple
soil water balance in WOFOST. These would not allow enough variability in yields
over different soil types. We recommend that including detailed soil water balance
processes may result in variability in yields over the different soils. This could conse-
quently result in better predictability over different soils.

For each variety, simulation and predictability of yields are better than for biomass.
This may be because of the high sensitivity of biomass production to sunshine, solar
radiation. The inter-annual variability in solar radiation during the crop growing sea-
son in the present tropical study region may not be significant compared to variability
in rainfall (see supplementary information in Figure C.15 and Figure C.16 for rainfall
and radiation respectively). In WOFOST, the Harvest Index (HI) is not constant
from one year to another but is rather influenced by weather during certain stages
of the crop growing season. For example, rainfall during grain filling stage results in
higher HI and hence higher yields but will not have a similar influence on biomass.
Rainfall for example is already known to have higher spatio-temporal variability than
other weather variables and would significantly influence HI. The harvest index there-
fore varies annually and differently among the crop forecast ensembles leading to high
variability in yields. This may have contributed to better predictability in yields than
biomass. This is clearly seen in North-Gonder region of Ethiopia as opposed to Bun-
goma where there exist less variability in growing season weather (shown in Figure
C.15 to C.18 in the appendix) resulting in less variability in HI and consequently less
yield variability.
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6.6 Conclusions

This study examines the influence of aggregation on seasonal climate driven maize
production forecast. A field scale crop model (WOFOST) is configured to simulate
maize production over East Africa at a high spatial resolution of 0.1° grid (SMU)
corresponding to input soil data grid. Climate grids are however coarser; implying
that all SMU within a climate grid would have similar climate characteristics. This
resulted in crop simulation missing the detailed small scale crop-soil-climate inter-
actions; especially so in a region with steep rainfall variability such as East Africa.
Crop production forecasts are generally issued over national (country) or sub-national
(NUT2) regions that are larger than most crop model simulation units. Simulations
and predictability at such regional extents are relevant for policy interventions. In this
paper we have assessed the influence of crop model output aggregation over NUTS-2
boundaries by soil types, and by crop varieties over two case study areas (i.e. North-
Gonder in northern Ethiopia, and Bungoma in the equatorial region of Kenya). We
also assessed predictability at the high resolution (0.1° grid) relevant to farmer deci-
sions with respect to soil types and crop varieties. We conclude that:

Influence of aggregation on average yields is region dependent. In this study good
yield simulations from NUTS-2 areas of larger extent (such as North-Gonder) are
close to observed values, compared to larger biases from smaller spatial extents (such
as Bungoma). Mean yields do not vary much with forecast lead-times. Yields ag-
gregated to NUTS-2 regions from 0.5° resolution show good simulation compared to
that aggregated from the fine 0.1° simulation units. Lack of good simulation in for
example Bungoma may be related to climate characteristics, i.e. in smaller areas,
detailed climate characteristics are not captured because of coarse resolution of the
climate inputs. The unit of aggregation influences simulation skill at sub-national
and presumably national boundaries.

Poor simulation of biomass production compared to yields may be related to the
length of growing seasons because yield aggregation is already filtered by harvested
cells (at maturity) while TAGP harvests are not filtered i.e. there will be TAGP as
long as a plant grows.

Yields aggregated from 0.5° grid exhibit higher yield predictability of above-normal
and below-normal forecast than yields aggregated from 0.1-degree grid.

Predictability depends on soil types; this suggests dependence of yield predictabil-
ity on soil-cultivar-climate interactions and the need to assess forecast skill at higher
resolutions in which high spatial variability in both soils and climate are captured.
Further research should use a more detailed climate-soil-moisture data.

Yield and biomass prediction and/or simulation over NUTS-2 region are variety and
region dependent. Prediction of a suitable variety may be good in one region but not
another, for example the predictability of Variety-3.
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Chapter 7

General Discussion

7.1 Research questions

This thesis explored the use of dynamic seasonal climate forecasts and a crop model
to predict water-limited yields in the Greater Horn of African countries of Ethiopia,
Kenya and Tanzania. A region characterized by vulnerability to the year-to-year vari-
ability in climate shocks. The basis of this research is that skillful seasonal climate
forecasts should translate also into skillful yield forecast in the climate-impact mod-
elling chain. The current practice to issue crop performance outlook in the GHA is by
expert opinions depending on climate forecasts issued over broad areas of the study
region. The climate forecasts have been based on established statistical relations be-
tween local climates and global teleconnections (such as SSTs among others) in the
climate system. In the recent past however, developments in dynamically generated
Global Climate Model (GCM) forecast have resulted into improvement in skill sur-
passing the skill in statistical forecasts in some regions of the globe. This provides a
potential for use in providing objective forecast or outlook of crop performance. The
technological requirements, complexity, and huge data requirement in using climate
forecasts and crop models may hinder application of such a system in some regions.
Therefore a simpler relationship between climate characteristics during various stages
of crop growth and final yields is assessed with the aim of providing a means of using
less complex statistical methods to forecast yields based on weather evolution during
crop growth stages. Under usual circumstances, official yield statistics in the GHA
countries are reported at nation administrative boundaries or sub-national level and
even though yield simulation may be at high resolution, there was a need to assess the
impact of aggregation by spatial boundaries, by soils and by cultivars. The results of
this study are arranged in chapters with chapter 1 giving a background to the study,
chapter 2 describes crop model setup for yield simulation, chapter 3 reports on skill
of seasonal climate forecast in the region, chapter 5 reports of crop model simulation
and yield forecasts, chapter 4 reports on the relationship of growing season climate
characteristics and predictability of significant indicators, while chapter 6 assesses the
influence of simulated yield aggregation on forecast skill.
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Four research objectives were formulated to guide this study and research questions
answered in chapters 3 to chapter 6. However in the following paragraphs, we discuss
and summarize findings corresponding to each research objective.

1. Assess the skill of GCM and bias corrected seasonal climate forecasts over East
Africa via comparative analysis of hindcasts with observational data for the pe-
riod 1980 to 2011

This objective addressed issues related to ECMWF system-4 (S4 ) seasonal cli-
mate forecasts by answering four research questions i.e.

� How well does the S4 simulate climatology and seasonality of the variables
relevant to agricultural impacts modelling over East Africa?

� How does climate forecast skill for these variables at various lead-times
compare for each season relevant to the sub-regions?

� Does bias correction either improve or adversely affect skill for lead-times,
seasons and geographical forecast units assessed?

� How well does S4 simulate anomalous wet and dry years associated with
positive or negative ENSO phases?

We answered the questions by comparing climate reforecasts to gridded ob-
servations in seasons that are relevant to cropping seasons in eastern Africa i.e.
March–May, June–August, October–December (MAM, JJA, OND). We focused
on rainfall tp, surface air temperature tas and downwelling short wave radiation
rsds. The primary reference data is the WFDEI which is based on ERA–Interim
reanalysis, but the reanalysis share the same atmospheric model (but different
versions) as the S4 forecast system. This means that there exists an inter-
relationship between the two. To assert the robustness of our results, we used
other independent ”observed” datasets i.e. the 0.1° African Rainfall Climatol-
ogy (Novella and Thiaw, 2013) version–2 (ARC2), the University of Delaware
(UD11) near–surface air temperature (Willmott and Matsuura, 2001), and ra-
diation data from NASA/GEWEX Surface Radiation Budget (Zhang et al.,
2013) release–3 (SRB3). To address the first research question, we used bias
(i.e. difference between mean ensemble forecast and the observed) to asses how
well S4 simulates climatology and pattern correlation to assess seasonality and
interannual variability. The second research question is addressed by use of the
Relative Operating Curve Skill Score (ROCSS) and the Ranked Probability Skill
Score (RPSS) to asses forecast skill as a function of forecast lead time, season
and geographic sub-region of the study area. The same verification metrics are
used for both bias-corrected and raw model simulations. The ROCSS is used to
assess simulation of anomalous years. We answer these four questions starting
with rainfall, temperature and shortwave radiation in the following paragraphs.
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S4 simulated well the interannual variability, spatial patterns and structure of
rainfall in all seasons but bias characteristics depend on season, and the vali-
dating data set. Change in rainfall biases with increasing forecast lead-time in
MAM are unsystematic for example, forecasts initiated in November or Decem-
ber of the previous year (lead months -4 and -3 respectively) show less biases.
We argue here that the status may have resulted from model drift or due to
the stability of ENSO circulation in November–December but noting that no
ENSO influence in MAM rainfall has been evidenced (Camberlin and Philippon,
2002). Same unsystematic change in rainfall biases is also seen in Ethiopia in
JJA season.

Cold biases with a persistent structure dominate temperature forecasts i.e.
colder temperatures in S4 forecasts than the observed. This feature is irrespec-
tive of the verification data use i.e. found whether validated against WFDEI
or UD11. The structure of biases persist over longer forecast lead-times that
may be because local influences such as land-use, changes in soil moisture and
orography are not well represented in the model. Since S4 has a course grid
resolution it may be that the local features are not well represented. We hy-
pothesize that biases may be lowered by higher resolution climate forecasts or
by a prognostic downscaling method that takes care of the relationship between
large scale features and local climate.This may perhaps be improved in future
similar research since ECMWF forecasts have since increased the resolution of
their operational forecast system (SEAS5) (Johnson et al., 2019). Also, there is
also a successor to WFDEI currently available from C3S, the WFDE5 (Cucchi
et al., 2020) produced by aggregation of ERA5 as opposed to interpolation of
ERA-Interim reanalysis to WFDEI grid. It has higher spatial variability and
higher variable correlations to FLUXNET (Baldocchi et al., 2001) observations.
Their performance in crop models would need to be assessed. Temperature bi-
ases seem to follow elevation i.e. warm biases in higher grounds with elevation
≥ 1500m and cold biases in lower elevation areas. Knowledge of region spe-
cific biases in model simulation are important for it then dictates how they can
be applied in impact studies. Temperature forecast show significant anomaly
correlations with the observed irrespective of the verifying data set indicating
good simulation of seasonality or interannual variability. Where biases are high
(up to 3◦ C) in some areas, post processing techniques such as bias correction
are needed to improve their suitability for use in impacts modelling. The best
methods of reducing the biases would have to be investigated.

Conspicuous differences in the magnitude and nature of biases in downwelling
shortwave radiation that is dependent on both verifying data and topography
prevail especially in the June–August season in the Ethiopia highlands. There
exist high positive, and low negative bias against WFDEI and SRB3 respec-
tively. WFDEI is produced from the ERA-Interim reanalysis. In production of
the ERA–Interim, atmospheric part of the model IFS assimilates observed data
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from the World Meteorological Organizations’ (WMOs) ground, sea and upper–
air networks (Dee et al., 2011) and produces a series of constrained daily best
possible historical state of the climate at IFS resolution. Even though the model
is kept as close as possible to assimilated observation, drift and chaotic processes
produce biases. Also, the observational network of ground and especially upper
air network is sparse in the GHA region, also reducing potential accuracy of
the assimilation. Precipitation and temperatures simulations are bias corrected
against in situ observations (CRU–TS3.1 (Harris et al., 2014) in the version of
WFDEI used) to produce the WFDEI but the radiation data is not corrected
against elevation (Weedon et al., 2014). Topographic effects that include terrain
orientation, slope, solar illumination angle are known to determine downwelling
shortwave radiation form space (Zhang et al., 2015)and could also contribute to
the nature of biases in both the low elevation regions and mountainous areas.
This may be accentuated by cloudy conditions in Ethiopian highlands in JJA.
Atmospheric environment that include for example the aerosol load and their
extinction properties may also play a role. However, diagnosing causes of rsds
is not part of this study and may be an area for further research. Significant
anomaly correlations exist in lead-0 against all reference data sets but reduce
with longer lead-times similar to precipitation skill, and sharing perhaps some
causal relationships in common parameterizations.

In assessing predictability, the RPSS is found to be insufficient as a measure
of predictability due to sensitivity to less predictable middle-tercile forecasts
(near normal). We use ROCSS to evaluate forecast skill of either upper or
lower terciles with the result that tas is most predictable followed by tp and
rsds in that order. The pattern of grid cells having significant ROCSS are
nearly similar across all verification data sets. Near–normal forecasts are less
predictable agreeing with other studies in Kharin and Zwiers (2003) and Van
Den Dool and Toth (1991). Lead–times of useful forecast skill however vary with
season and geographical region reiterating the need to verify model simulation
skill at a local level. It is however not known what a suitable spatial scale is
best to verify forecasts, in general though, a single skillful cell surrounded by no-
skill cells has little meaning. Anomalous wet/dry years in the GHA are largely
driven by El-Niño and La Niña conditions, in interaction with amongst others
the IOD (Goddard et al., 2001; Saji and Yamagata, 2003; Black, 2005; Owiti and
Ogallo, 2007; Owiti et al., 2008), and local features such as inland lakes (Song
et al., 2004; Thiery et al., 2015) also exert influence. As such, some historical
anomalous years [i.e. 1982/1983, 1997/1998 (wet years); 1984/1985,1999/2000
(dry years)] are captured by the forecast system and not others. However, the
GCM forecasts offer an advantage over the traditional statistical forecast in
some regions and season. For example, JJA forecasts in northern Ethiopia show
skill beyond two lead-times where as Nicholson (2014); Korecha and Barnston
(2007) found no more than 2-months lead time in prediction of JJA rainfall in
the GHA.
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GCM forecasts have also be found to perform better than statistical forecasts
in other regions of the world (McIntosh et al., 2007).

2. Assess the important growing season climate characteristics or indices that in-
fluence maize yield predictions, and their predictability

This objective was based on the hypothesis that rainfall and temperature are the
main drivers of rainfed crop yields, but in as much as yields are determined by
the amount of rainfall and average temperature during a crops’ growing season,
the behavior and evolution of these climate variables over the growing season
may play an even bigger role especially when favorable or extreme weather
events occur during specific critical stages. This was assessed in two geographical
regions in the study area where both skillful yield and climate forecast have been
obtained in chapter 3 and ??. The ambition was to:

� identify rainfall and temperature characteristics (indicators) that explain
yield variability (from WOFOST WFDEI driven yields)

� Asses their predictability, and uncertainty in prediction as a function of
maize phenological stage and climate forecast lead-time

We used rainfall indicator that describes daily rainfall rate (RR); even rainfall
distribution-evenness parameter (ER); uneven random rainfall events-unevenness
parameter (ER), and time of occurrence (Ad) i.e. whether early, middle or late
in the season. We used temperatures as indicators i.e. daily maximum tem-
perature (TX), daily minimum temperature (TN), average daily temperature
(TG), and derived indicators (GDD and KDD). Two regions of the study area
in northern Ethiopia (North-Gonder) and equatorial Kenya (Bungoma) based
on good climate and yield prediction skill from chapter 3 and chapter 5 skill are
selected for this case study. While we use the mean of climate variables (and
therefore indicators) over each region, yields are aggregated using Equation 4.1.
The relationship between yield and climate indicators are explored consider-
ing the entire growing season, vegatative stage, ±10-days around anthesis and
in the reproductive stage.A range of forecast verification metrics sampling dif-
ferent attributes were used. The general finding in this is that depending on
geographical region or phenological stage under consideration, climate indica-
tor that explain yield variability differ and it cannot be generalized for the two
region. Notable however is that some rainfall and temperature indicators (not
necessarily the same in each phenological stages) explain yields in North-Gonder
(Northern Ethiopia). During anthesis and reproductive stages, temperature in-
dicators explain yield variability in both case study regions. Yield variability is
not explained by rainfall in Bungoma probably because of sufficient soil mois-
ture or rainfall. Water availability during anthesis and in the reproductive
stage are found highly explanatory of grain yields (Armstrong, 1999; Butts-
Wilmsmeyer et al., 2019). Since both water and temperature during anthesis

141



Chapter 7. General Discussion

and reproductive stage are known to affect yields, we conclude that sufficient
water requirements could be the only reason why temperature indicators ex-
plain yields but not rainfall indicators. This agrees to findings in other studies
that maize yields are sensitive to climate variables but with highly geographical
region dependent sensitivities (Ray et al., 2015; Huang et al., 2015, 2017; Zhao
et al., 2015; Karunaratne and Wheeler, 2015; Kamali et al., 2018; Iizumi et al.,
2013). Identification of variables that explain yields in each region and growth
stage makes it possible to forecast yields with the same by statistical methods,
mitigating the need to use complex climate forecast and crop models. Their
predictability (or lack of) allows for probable yield predictions depending on
phenological stages. Predictability in this study is assessed at lead times before
planting. But for application purposes, it is possible to obtain forecasts of the
indicators at shorter lead-times. Mitigation measures against poor yields may
then be developed for shorter periods making them less expensive to farmers.

Thus predictability of the indicators (those that explain yields) during growing
season, phenological stages, and forecast lead-months were assessed for the two
case study regions. Generally, growing season rainfall distribution indicators
(RR, ER) are more predictable than UR, and TN, TX, TG are predictable
than KDD. GDD is however not predictable in both Bungoma and northern
Ethiopia. Noteworthy is that not all variables are predictable with same skill
nor forecast terciles nor forecast lead times, i.e. predictability varies with region,
tercile, crop growth stage and forecast lead-time. For example, RR, ER, TN,
TG, KDD above-normal forecast are predictable in northern Ethiopia three
lead-months before planting but only lead-2 forecast of TN is predictable, also
below-normal forecast of Ad is predictable but not AN forecasts. While in
Bungoma, only temperature indicators are predictable at lead-0 and lead-1.
This is despite skillful rainfall forecasts in (Ogutu et al., 2017) from which the
indicators are derived illustrating the importance of rainfall indicators rather
than the average over a season. Variability of skillful/non-skillful predictions of
indicators varies with the crop phenological stages, regions and forecast lead-
months and should be assessed as such. As does the uncertainty in prediction
of these indicators. Assessing a single attribute with more than one measure
however has challenges, for example we use spread-to-error (SprErr) ratio and
the rank histogram to assess uncertainty but in some instances,they do not
lead to similar conclusions. For example, North-Gonder GDD forecasts show
certainty in some stages when SprErr is used (0.5≤SprErr≤1.5 in our case)
but consistently shows non-uniformity of the rank histogram (uncertainty) in
some stages and lead-times despite GDD terciles being predictable in northern
Ethiopia. This observation is not limited to GDD but also other variables
thus questioning the value of using many measures to evaluate a single forecast
attribute. Predictability of some of the indicators with good forecast lead-times
however offers the potential of early prediction of yields by statistical methods
thus eliminating the need of complex climate-crop model yield simulation.
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Even though with simulation biases, we found potentially useful skill in predic-
tions of rainfall, temperature and shortwave radiation with at least 2-months
lead time before start of cropping seasons in different regions of the study area.
The next was to apply these forecast into a crop model and evaluate how well
yields are simulated. Thus the next objective. The new ECMWF operational
seasonal forecast system (SEAS5) with higher number of ensemble members in
SEAS5 can give better performance statistics but the effect of ensemble mem-
bers need to be ascertained. This is because in assessing the effect of ensemble
size on probabilistic verification, Kumar et al. (2001) found that 10-20-ensemble
members is sufficient to ensure average skill close to the expected from infinite
ensemble size. But the generally higher skill of Multi Model Ensembles may in
future become advantageous since the forecasts have become available in har-
monized fashion on C3S (C3S, 2017). Their use in crop yield forecasting could
be explored in future research.

3. Assess maize yield predictive skill of a crop simulation model through both base-
line and hindcasts validation for the period 1980 to 2011

This objective was addressed in chapter ??. We first evaluated WOFOST sim-
ulated historical maize sowing dates and yields then we assessed skill of prob-
abilistic yield forecasts based on ensemble GCM climate forecasts. The aim of
which was to identify lead times and areas of potential pre-season yield fore-
casting. We assess how well hindcast of maize yield emulates yield anomalies
due to interannual climate variability.

The first step in this part of the thesis was to set up WOFOST (chapter 2) to
simulate yields over a regional scale given that WOFOST is a model meant for a
field scale area. This required a databases with quantitative information on crop,
soil, and climate characteristics. Quantitative because over reliance in expert
knowledge in agro-ecological engineering may result in biased designs (De Ridder
et al., 2000) i.e. ideas that do not correspond to the experts’ perception may
be dismissed. First, the crop varieties identified in this study may differ from
the actual varieties planted in the study region, but the yield simulations are
found to compare well with the observed. Crop calendars have been found to be
in agreement with other large scale calendars such as the FEWSNET calendar
(Figure C.10). Though the planting dates are constant, optimized on maximum
average yields, the dates fall within those in FEWSNET.

This is true for both the simulated sowing and harvest dates. It is noted how-
ever that actual farmer planting dates may differ depending on other factors
that are not climate related. This can be a subject of further research and
may be accomplished by working with farmers and using the actual planting
dates then compare with simulated results. Deviations from planting dates in
this study would however not differ extremely because planting in rain fed agri-
culture is driven by rainfall onset to a larger extent (apart from non-climatic
factors) at the start of a season; and our dates are climatology based and fixed.
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Harvest dates are determined by interactions between crop cultivars, soils and
climate (and depends on TSUMS). Differences between reference harvest dates
and predicted dates do not exceed 10-days illustrating acceptable predictions
(Figure 5.2).

We found good anomaly correlations (r=04 to 0.6) between simulated yield
anomalies and WFDEI rainfall anomalies indicating that climate variability
drives maize production. There is almost nil correlations (i.e. r=0.02-0.2) be-
tween observed yields (both FAO and National statistics) and WFDEI rainfall
anomalies (anomalies are shown in 5.4) indicating climate or rather rainfall is not
the only factor influencing yields (actual yields). Validating observed historical
yields and WOFOST simulation, mean differences of between 600-700Kg ha−1

were found for Kenya and Ethiopia but lower (i.e. ≈ 200Kg ha−1) for Tanzania
between the simulated, FAO and NAT. A challenge however exists in validating
the hindcast yields because of the ”observed”, i.e. official ”observed” yield data
are either the FAO statistics or nationally collected data based on methodolo-
gies that are unique to individual countries. In some instances, national (NAT)
and FAO statistics did not match but the problem was solved by introducing a
lag of one year to NAT yields. In some countries such as Tanzania, NAT and
FAO yields differ remarkably while in some instances, available data were of
short time series (10-years or less in Tanzania and Ethiopia). Yet again, sub-
national statistics from maize producing regions did not add up to the national
reported yields. Further examination of the data sets did not reveal the sources
of discrepancy and can be a point of investigation in further research. As an
alternative to yield statistics, we might have used data from field trial stations
but we did not have access to such. Therefore, to get a good time series for eval-
uating historical yield reforecasts, we had to resort to yield simulation driven
by WFDEI.

We drove WOFOST with 15-ensemble seasonal climate forecasts resulting in 15-
ensemble yield forecasts each corresponding to the climate forecasts. We com-
pared the predicted average national yield anomalies to WFDEI yield anomalies
to assess predictability of anomalies. National yields were aggregated based on
planting dates and forecasts issued upto three months before planting dates
(3-lead months). Standardized anomalies are used with the aim of detrending
the time series. Prediction of annual yield anomalies depend on sowing dates
and hence regions of the study area, for example predictability of maize yields
planted in April in Kenya and Ethiopia are better than than planted in March
and July. But some anomalies are potentially predicted in the entire region at
least two months before planting. This was especially for years corresponding
to extreme El-Niños i.e. 1984, 1989, 1997, 1998. In general, anomalous annual
national yields are predictable at least 3-lead months before planting with the
exception of Tanzania’s.
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This may be due to less variability in simulated yields in Tanzania in the
study period i.e. mean deviation in yields over Tanzania if found to be low
(≈ 200Kg ha−1).

To view spatial variability in predictability, we performed grid point validation
(0.5°× 0.5° grid) based on sowing dates (i.e. all grid cells planted in March,
April, July and December) and forecast lead-time. The AROC and ROCSS
(see Appendix B.1) are used to assess probabilistic skill. More than 15% of grid
cells planted in March (Kenya and Tanzania), April (Kenya and Ethiopia) and
July (Ethiopia) predict above-normal and below-normal yields with significant
ROCSS with three lead times. Near-normal forecast skill is lower but still
predictable in the three lead time. This is not the same with yields planted
in December (Tanzania) where forecast skill is lacking in all lead months. The
proportion of grid cells with significant forecast skill of AN and BN yields change
little with lead time up to lead-month two. A useful finding of yield forecast skill,
with 2-months lead time before planting has the potential to change farmers’
decisions with respect to crop, cultivar and other inputs choice so that the use
of climate information is maximized. This may help reduce the gap between
potential yields and actual farmers’ yields especially in the current dispensation
where actual yields in this region is found to be far below potential yields.
Another measure used to evaluate probabilistic skill is the RPSS (Appendix B.2)
which quantifies the closeness of cumulative probabilities of forecast to that of
the observations. Yield show a significant skill in a larger percentage of cells in
the region; probably because it only considers cumulative distribution (Mason,
2004) of the forecast rather than individual thresholds and cannot therefore
reflect skill in a single tercile threshold when other terciles do not have skill.
In this study therefore, the skill obtained from RPSS may not be useful as we
required information on predictability of yield anomalies.

4. Assess Influence of spatial aggregation from maize yield simulation grid on pre-
dictability

The unit of simulation in this research coincide with the FAO soil data at
0.1°×0.1° grids but can be aggregated to 0.5°×0.5° and further to sub-national
(NUTS) boundaries. Simulated yields can also be aggregated by crop or similar
soil types. This objective, (addressed in chapter 6) had three aims;

� to assess influence of yield aggregation on predictability by comparing the
official observed agricultural statistics to simulated NUTS2 crop yields ag-
gregated upwards from both half-degree and 0.1-degree resolutions

� analyze and compare influence of aggregation on predictability based on 0.5
and 0.1-degree resolutions

� asses predictability by aggregation over similar soils and varieties. In all
cases we want to assess how the original grid before aggregation affects
predictability of both yields and biomass (TAGP).
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To achieve the first aim we compared yields aggregated from 0.5°resolution
(NUT2 05 ) and forecasts (05FCST ); and from 0.1° to a sub-region (°NUT2 01)
and forecasts (FCST ) to case study regions of the study area. These were
compared to observed data (OBS ) to assess difference in average yields and
variability. In North-Gonder, NUT2 05 yields approximate the observed while
NUT2 01 have significant difference to the observed by as much as 500Kg ha−1.
Variance in aggregated yields are quite low (CV=<10%) compared to the ob-
served (CV=33%). Average lead-0 and lead-1 forecasts compare to OBS, but
this forecasts aggregated from 0.1° resolution are quite high all lead-times ass-
esed. The variance in all forecasts are quite low compared to OBS. Significantly
lower yields than the observed is seen in Bungoma irrespective of aggregation.
Forecasted yields are almost half the observed in all lead-times. Variability
in OBS is higher i.e. CV =27%, 19% and 23% for OBS, NUTS2 and NUTS
aggregated yields respectively. The differences between OBS and simulated
mean yields and their CV occur because some yield-limiting factors inherent in
OBS are omitted in our model simulations as they are not incorporated in the
WOFOST model. This includes factors such as effects of weeds and pests. Fur-
thermore, water conserving techniques that are generally applied in the dryer
regions are not considered. This may lead to an over estimation of dry spells
stress. The fact that a simple bucket approach is used in our WOFOST version
instead of a more detailed soil moisture module may contribute to this overesti-
mation. The simple bucket soil moisture balance approach amplifies sensitivity
to drought conditions in WOFOST. Fertilizer application is kept constant in our
simulations but in reality, it may vary from one year or season to another hence
influencing the observed yields. Less spread is obtained from NUT2 01 fore-
casts than NUT2 05, the latter decreases with lead time because perhaps cells
that are not harvested are eliminated before aggregation resulting in reduction
of aggregated cells with lead time. At longer lead times, some cells do not grow
to maturity yet the area cultivated remains the same. Thus this reduced yields
when weighted by cultivated area. Difference may further be compounded with
the fact that only one season is simulated in a single year yet some regions have
double cropping seasons. This may be more true for Bungoma in which we see a
consistent lower simulated yields irrespective of original grid before aggregation.

To achieve the second aim, we used aggregated yield forecasts from 0.5° resolu-
tion (05FCST ) and from 0.1° resolution (FCST to assess influence of aggrega-
tion on predictability in the two study regions. In northern Ethiopia, we found
that aggregation does not influence yield prediction since FCST and 05FCST
AN and BN tercile forecast skill (ROCSS≥0.3 and significant) are comparable.
Below normal yield forecasts posses higher skill in all lead times. Aggregation
however influence predictability of TAGP. Above normal 05FCST forecasts of
TAGP are predictable in all lead times (i.e lead 0-2) but only lead-0 FCST of
the same tercile are predictable. In northern Ethiopia, there is no difference in
yield prediction irrespective of the original grid before aggregation, but aggrega-
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tion affects predictability of above ground biomass and shows less predictability
from FCST i.e. predictability of TAGP is a function of aggregation level and
forecast tercile.

In equatorial Kenya, (Bungoma), we see the effects of aggregation on yields
i.e. some predictability is seen when aggregated from 0.5° resolution i.e AN
forecasts are predictable in all lead-times but not below normal forecasts while
FCST show no predictability in all terciles. TAGP is not predictable irrespec-
tive of original unit before aggregation. We have seen here that influence of
aggregation is region, tercile, product (being assessed e.g. yield/biomass) de-
pendent.

NUT regional dependency could result from the number of simulation units
within each region. More simulation units may capture variability in crop model
inputs such as cultivar properties, soils and weather characteristics that influ-
ence yields. For illustration, we see poor predictability in Bungoma, a region
covered by nearly one 0.5° (WFDEI) (or 0.75° forecasts) climate grid. Variability
in weather conditions and hence weather-climate-soil interactions at simulation
grids are not well captured by WOFOST. It is known that rainfall has a higher
spatial variability than temperature and it grossly affects rainfed yields. A
larger area like North-Gonder, Ethiopia has several of the climate grids within
its boundary and hence spatial variability and more details are better captured
than in the former, resulting in better simulation. Aggregation over large ar-
eas like North-Gonder may improve yield prediction but it also averages spatial
variability due to soil types and climate. meaning it may be good for yield (or
biomass) estimation over a large region such as national or sub-national bound-
aries but may not suffice when more details are required, for example at farm
scales. Good prediction when yields are aggregated in larger areas has been
found in France (Supit and Van der Goot, 1999), in operational application in
the then European CGMS (Boogaard et al., 2013). These simulate at higher
resolution then aggregate output to larger areas. But aggregation of input soil
data has also been found to affect yield simulation more than that of climate
data (Ojeda et al., 2020). Decreasing the spatial extent of input data aggre-
gation has also been found to improve simulations (Van Bussel et al., 2011)
emphasizing the importance of high resolution crop modelling, even though the
requirements for high resolution modelling differs from that of low resolution as
highlighted in Ojeda et al. (2020). Yet in another study, aggregating crop model
input fields has been found to introduce aggregation errors (Hoffmann et al.,
2016) that were compounded in dry years and when soils are also aggregated. In
our study, we aggregated yields to a lower resolution but carried out simulation
at high resolution. Further research could also repeat a similar experiment with
aggregated inputs to assess what works better. Users of skill when aggregated
over large areas may differ from those who require high resolution products.
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For example, early warning systems, relief agencies, governments may benefit
from yield forecasts over large areas but not farmers, crop insurers and scientific
applications.

The third aim was addressed by aggregating yields by crop variety over different
soil types in the two sub-regions i.e. North-Gonder and Ethiopia. Yields are
expected to vary with soil types due to differences in a number of soil parame-
ters such as rooting depth, soil profiles, moisture holding capacity, soil fertility
among others. Soil influences have been found in Olesen et al. (2000). In this
study, we aggregated yields of crop varieties by soil type but found no significant
variations in yield simulations/predictions by different soil types, irrespective of
crop variety. This may be a result of almost similar available water capacities in
the soils. Also, the maximum soil depth is fixed for all types in addition to the
simple water balance in WOFOST. This does not allow influence of ground wa-
ter in our simulation. Perhaps if we had more soil layers then root development
would differ, and result in improved yield simulation and hence differences in
predictability. For each region and crop variety, simulation and predictability of
yields is better than for biomass perhaps because biomass production is sensitive
to sunshine and radiation which do not vary much during a crops growing cycle
in the region resulting in less predictability. In WOFOST, yield is a function
of Harvest Index (HI), it is not constant but is influenced by climate during
certain growth phases for example, rainfall during grain filling results in higher
(HI) but will not have a similar effect on biomass. Harvest Index therefore varies
annually and among the crop ensemble forecasts leading to variability in yields
and possible prediction of anomalous events than in biomass.

7.2 Discussion on study Design, Data and Methods

This study was an exploration of the use of ensemble seasonal climate forecasts to
predict yield in Eastern Africa based on the current tools and technologies available
in both climate forecasting and crop modelling communities. The assumption here
is that when we have good climate forecast (skillful) and use the same to drive an
impact model, then the outcome should similarly have skill.This assumption may not
be true for example, driving a crop model with seasonal climate forecasts may not
guarantee skillful yield forecasts (Baigorria et al., 2007; Semenov and Doblas-Reyes,
2007; Shin et al., 2010). In some instances, impact models have been more skillful
than the driving climate forecasts (McIntosh et al., 2005). Operationally, seasonal
climate forecasts are routinely offered globally through regional climate outlook fo-
rums (COFs) such as the Greater Horn of Africa Climate Outlook Forum (GHACOF)
(Ogallo et al., 2008) in the GHA. They develop consensus forecasts based on statis-
tical methods, and dynamical ensemble climate forecasts from the global producing
centers. We used one such ensemble prediction system system-4 (S4 ) from ECMWF
(Molteni et al., 2011), one of the global forecast producing centers. We started by
evaluating the skill of such a system using a range of forecast verification measures.
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One challenge to forecast validation is the use of a reliable observed dataset. We
therefore used the WFDEI with a resolution of 0.5°× 0.5° as the primary validation
data set against S4 at a resolution of 0.75°×0.75° . Other gridded data sets were also
used to assess robustness of forecasts since the WFDEI and S4 have similarities that
would influence skill i.e. WFDEI is processed from ERA-Interim reanalysis and the
same atmospheric model (IFS) used in production of daily weather forecasts in the
reanalysis is also used in S4. Use of independent data sets was therefore a strength
as it strengthens the robustness of results obtained.

Crop models have been used in agronomic research in many regions of the world and
have been applied to assess climate impacts on crops. They have likewise been used
for crop forecasting. This is the first study to use seasonal climate forecasts and crop
models to forecast maize yields over a large area in eastern Africa. But crop mod-
els are of varied types that may not be universally applied across regions, we used
one model from the Wageningen crop growth simulation models, WOFOST. Unless
calibrated and validated in detail on data-rich experimental plots it is not easy to
asses which model performs best in a given situation, or consequently to objectively
select any particular crop model, or to use an ensemble of crop models. Use of en-
semble of climate models to improve accuracy in simulation has been pioneered in
the climate domain for example, the Climate Model Intercomparison Projects (Meehl
et al., 2016). Similar to the climate domain, also in agronomy model intercompari-
son projects have been undertaken such as AgMIP (Rosenzweig et al., 2013). Again
in analogy to climate models, Bassu et al. (2014) found that for maize crop models
with low level calibration information, a single model may fail to accurately simulate
absolute yield but that an ensemble of models is more likely to approach the correct
absolute yield and better simulates variability. A similar setup with several models
in this study could likely improve results.

Never the less, we used WOFOST. A model originally designed for a single location
with homogeneous weather, soil and crop data; but in this study it was set up for a
regional simulation meaning that input data within a single simulation unit may not
be uniform. Properties occupying more that 50% of the simulation unit is assumed
for the whole cell. Variability of weather may have been lost because of the coarse
resolution of gridded data sets (≈0.5°) for the reference WFDEI. This implies that
several cells of 10km would have similar weather characteristics. Because weather in
this regional has high spatial variability, observed weather may not be representative
though this may be different in the future as there currently exist very high resolution
gridded observations for the region. For example, the 0.05° Climate Hazards group
Infrared Precipitation with Stations (CHIRPS) data (Funk et al., 2015), and daily
maximum and minimum temperature (CHIRTS-daily) data (Funk et al., 2019); the
ECMWF ERA5 reanalysis (C3S, 2017; Hersbach, 2016); among others. Resolutions
of forecasts are also improving and may be useful for similar future research with an
assumption that high resolution climate data could capture well the spatial variability
in weather. For example, the horizontal resolution of the atmosphere has increased
to ≈36km in ECMWF’s seasonal forecasting system (SEAS5 ) (Johnson et al., 2019)
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from ≈80km in S4 climate forecasts (Molteni et al., 2011) in this study. At the
start of this research, we used one of the best data sets available for verification and
also climate forecasts from one of the world leading global forecast producing centers
(Weisheimer and Palmer, 2014).

Results from this study must be used with an understanding of limitations which can
be subject of further research. Many approaches have been used to estimate crop
sowing dates in crop simulation experiments that include the use of observed planting
dates, use of rainfall characteristics at the start of a season, and optimization of dates
on maximum yields and minimum yield variance. Use of observed crop sowing dates
was not available, and if it were, then matching the actual date and a regional crop
model for WLY simulation would be problematic. This is because the choice of a
farmers’ planting dates are influenced by other factors such as availability of labor,
seeds, farm inputs among others. Planting dates adopted in this study are optimized
on maximum yields. The same dates are used every year of the study period hence no
change in planting dates. This may not be true since dates most likely vary from year
to year depending on rainfall and may thus result in yield losses in the model. The
model is set to simulate only the first planting season in the study area, it therefore
means that regions of the study area with two planting season would report lower
yields. This may have contributed to the difference between WFDEI yields, national
reported yields and FAO yield statistics. Though challenges facing agricultural statis-
tics have noted (Keita and Carfagna, 2010). Hopefully, future research would have
better observed yield data. However, because we were interested in prediction of yield
anomalies, the method was just suitable. There exist a mismatch between climate
forecast spatial resolution and crop model input requirements. This calls for post pro-
cessing of climate forecasts by methods that are not limited to downscaling (whether
statistical or dynamical methods), bias correction among others. The effect of bias
correction on crop model simulation has not been assessed in this study. Also known
is that GCM models are prone to producing many rainfall events and little rain per
event (Hansen and Indeje, 2004), the influence of bias correction on these rain events
was not explored.

7.3 Scientific contribution

Rainfall in the GHA is highly variable with frequent extremes and since agriculture is
largely rain fed, climate change is expected to affect crop production. Current climate
change could affect the mean climate, change the frequency of extremes, could change
within season rainfall variability (i.e. rainy days, dry days, summer days, etc). These
changes threaten crop production, but using seasonal climate forecast to predict yields
may be one method of increasing farmers’ resilience by enhancing the use of climate
information. Farmers have always been adapting to climate variability, but current
climate change poses newer threats because probable changes and impacts have not
been observed before (Cairns et al., 2013). This study could make a contribution to
establishing of a regional climate service for farmers, or a crop yield and performance
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monitor tailored towards the same principles as the European Unions’ Crop Growth
Monitoring System (CGMS) explained in Supit et al. (2012). Further assessment of
skill could further our understanding of the robustness of the climate-impact mod-
elling chain or forecasting across regions and lead-times

Predictability of maize yields with lead-times before planting dates would enable en-
able adjustment of farming practices before planting, but there also exist risks of
unforeseen changes in weather during the growing season. We have found that while
climate anomalies also drive yield anomalies over a large area such as the national
level, and that localized sensitivity to yields depends on the variability or distribu-
tion of weather during a crops’ growing cycle. Knowing weather characteristics that
explain yields at each growth phase could be useful in tailoring targeted cheap inter-
ventions by scientists to conserve good yields in each locality without generalization
of the crop management interventions in a large geographical area.

We assessed skill of both seasonal forecasts and yield forecasts over a large area of
varying climatology, covering several agro-ecological zones using a crop model devel-
oped for field scale simulations. Such a design has enabled quick exploratory study
without the need of field experiments and could be replicated elsewhere in the world.

Many references in this manuscript have evaluated yield prediction skill focusing on
several months lead time before harvesting. In this study we evaluate yield predic-
tion prior to sowing. Many in the region have studied pre-season forecasting using
statistical methods but not at a regional scale. To the best of our knowledge, this
is a first attempt to perform such pre-season evaluation over a large area in eastern
Africa using dynamic GCM climate forecast and a crop simulation model. Thus its
added contribution to the body of knowledge in science.

7.4 Societal impacts and outlook

The Greater Horn of Africa is highly vulnerable to climate that often result in food
insecurity. The region is characterized by repeated occurrences of drought and high
variability in precipitation and a combination of other factors has reduced the ability
of many farmers to respond before conditions deteriorate. This situation is gaining
increasing attention of governments, development partners and civil organizations.
Governments in particular have recognized such challenges and have developed poli-
cies and programs aimed at strengthening early warning systems, food security and
agriculture.

Seasonal climate forecasts are operationally issued to users as a probability of exce-
dence of a certain threshold (be it temperature or rainfall) or forecasts being within
certain thresholds and accompanied by information on expected impacts on various
sectors, including agriculture and water resources. Impacts outlook are normally
based on expert opinions. This information must be understandable to the recipients
if expected to influence any change in farm management activities, policy decisions
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either by relief agencies or governments to better manage associated climate risks
(Troccoli et al., 2008; Jones et al., 2000). Forecasts should contain related uncer-
tainty information. According to Jones et al. (2000), uncertainty limits the benefits
of seasonal climate forecasts but Troccoli et al. (2008) notes that climate information
and predictions play an essential role in management of risks associated with climate
variability and change.It is hoped that future research would move this study to ap-
plications, working with farmers to assess performance of the system.

A number of early warning systems and organizations exist in East Africa (described
in Chapter 5). These organizations provide their services largely to governments and
humanitarian agencies and do not target the local farmers. For crop monitoring they
use agrometeorological assessment reports and satellite technologies that monitor con-
ditions of food crops after planting (e.g. NDVI) and rainfall to estimate impending
food security situations. FEWSNET for example uses seasonal climate forecast in
its assessments but does not provide explicit yield forecasts. This study can feed
into the existing EWSs by providing pre-season yield forecasts to farmers in their
locations. Based on yield forecasts, farmers may accordingly adjust their farm man-
agement practices. The forecasts could as well be used by, farm input commodity
traders (for stocking of farm merchandise) besides extending the time horizons of
the existing EWSs by providing forecasts of expected yields before planting. Crop
insurance industry and future markets could also benefit from implementation of this
study i.e. sign contracts for future crop supplies based on current prices.

Even though the results shown in this study are aggregated to half degree grid
(weighted by planted area) and further to national country boundaries, the half degree
provides a resolution presently lacking and may be useful to governments, insurance,
and relief agencies because it captures the sub-national variability. The WOFOST
crop model simulation in this study is done at FAO land use cells (≈0.1-degree grid),
with improved climate data grid resolution, a better product for farmers may be ob-
tained.

The Climate Change Agriculture and Food Security (CCAFS) propose to develop
an Integrated Agricultural Production and Food Security Forecasting System (IN-
APES) for East Africa (Kadi et al., 2011). Though initiatives like INAPES and the
present thesis show promising potential, seasonal crop forecasting systems have not
reached operational maturity yet. With such developments, this study is timely as it
may provide useful insights. We have assessed seasonal climate skill for East Africa
(Ogutu et al., 2017), and have gone ahead to demonstrate its usability in crop yield
forecasting in this study. Our study can directly feed into the development of new sys-
tems envisaged for the future such as INAPES. Such developments could contribute
towards efforts to sustainably intensify agricultural production, reduce poverty and
enhance food security
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Appendix A

Quantile-quantile mapping
(qqmap) bias correction
method

The quantile mapping method transforms modelsimulated distribution through a
transfer function with no priori assumption of the distribution. To implement this
method for a variable X, ranked observed distribution is divided into a number of
discrete quantiles. For each quantile division, a linear correction factor (transfer
function) is calculated by dividing the mean observation in that quantile by the mean
of the simulated variable in the same quantile and applied to simulated data Y, such
that

Y corr
t,i =

1

ecdf(X)t,i
(ecdf(Y )rawt,j (Xt,i)) (A.1)

Where ‘corr ’ implies corrected model simulations while ‘raw ’ implies raw model out-
put. Accuracy is controlled by the number of quantile divisions i.e. fewer quantiles
might smooth out the information contained within the observed record while too
many quantiles might result in over fitting of the data to the model (Jakob Themeßl
et al., 2011; Lafon et al., 2013).
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Probabilistic Validation

B.1 Relative operating characteristic curve (ROC)
skill score (ROCSS)

For probabilistic forecasts, a warning is issued when the forecast probability for a
predefined event exceeds some threshold. A set of hit-rates and false alarm rated are
determined and plotted for these thresholds thus generating a ROC curve. The area
under the ROC curve (AROC) indicates the performance of the forecast. Because
there is skill only when the hit-rates are higher than the false alarm rates, the ROC
curve lies above the 45° line for a skillful forecast (AROC > 0.5), and below (AROC <
0.5) for a forecast that is no better than the climatology. AROC may be transformed
into a skill ROCSS = 2A− 1 where −1.0 ≤ ROCSS ≤ 1.0. A score of 1.0 indicates
a perfect forecast system; -1.0 indicates a perfectly useless forecast system and zero
indicate no skill. The ROCSS expressed as a percentage quantifies the improvement
over climatological forecast. For details, see Buizza and Palmer (1998); Mason and
Graham (1999); Hamill and Juras (2006); Mason and Stephenson (2008); Barnston
et al. (2010); Diro et al. (2012).

B.2 Ranked Probability Skill Score (RPSS)

RPS is a squared measure that compares the cumulative density function (CDF) of
a probabilistic forecast with the CDF of the corresponding observation over a given
number of discrete probability categories (Epstein, 1969; Weigel et al., 2007a). It
measures the accuracy of multi-category probabilistic forecasts. Mathematically,

RPS =
1

K − 1

K∑
K−1

(CDFforecast,K − CDFreference,K)2 (B.1)

In which CDFforecast,K and CDFreference,K are the predicted and observed prob-
abilities for the kth forecast category (we use decile interval). To indicate the im-
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provement of a multi-category probabilistic forecast relative to the reference forecast
or climatology, this measure is converted to a skill score, the RPSS (Diro et al., 2012;
Doblas-Reyes et al., 2003; Müller et al., 2005) measures the relative skill of the prob-
abilistic forecast over that of the reference (climatology) in terms of getting close to
the actual outcome.

RPSS =
RPSSforecast −RPSreference

RPSreference
= 1− RPSforecast

RPSreference
(B.2)

In which RPSforecast (expected value of RPS) is the squared difference between
the forecast and the reference cumulative probabilities, and RPSreference is calcu-
lated by using the reference cumulative probability. A 100% RPSS implies a perfect
probabilistic forecast while a negative value of RPSS means the skill of the forecast
probability is worse than the reference. For details, see Barnston et al. (2010); Diro
et al. (2012); Epstein (1969); Kumar et al. (2001); Manzanas et al. (2014); Mason
(2004); Müller et al. (2005); Tippett and Barnston (2008); Weigel et al. (2007a,b).
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Figure C.1: Ranked probability skill score (RPSS) for bias-corrected [(a), (b), and (c)], and raw
[(d), (e) and (f)] S4 precipitation forecasts (tp) for MAM, JJA and OND seasons validated against
WFDEI and ARC2. Only areas of skill (i.e. RPSS>0) are shown for lead months 0,2 and 4 before
start of season.
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Figure C.2: Ranked probability skill score (RPSS) for bias-corrected [(a), (b), and (c)], and raw
[(d), (e) and (f)] S4 temperature forecasts (tas) for MAM, JJA and OND seasons validated against
WFDEI and UD11. Only areas of skill (i.e. RPSS>0) are shown for lead months 0,2 and 4 before start
of season.Dotted grids show areas where RPSS is significantly larger than zero at 95% significance
level.
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Figure C.3: Ranked probability skill score (RPSS) for bias-corrected [(a), (b), and (c)], and raw [(d),
(e) and (f)] S4 downward shortwave radiation forecasts (rsds) for MAM, JJA and OND seasons
validated against WFDEI and SRB3. Only areas of skill (i.e. RPSS>0) are shown for lead months
0,2 and 4 before start of season.Dotted grids show areas where RPSS is significantly larger than zero
at 95% significance level.
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Figure C.4: Relative operating curve skill score (ROCSS) for lower-tercile (column 1), and upper-
tercile (column 2) raw S4 precipitation forecasts (tp for MAM (row 1), JJA (row 2) and OND (row
3) validated against WFDEI and ARC2. Only areas of skill (i.e. ROCSS>0) are shown for lead
months 0, 2 and 4 before start of season. Dotted grids show areas where ROCSS is significantly
larger than zero at 95% significance level.
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Figure C.5: Relative operating curve skill score (ROCSS) for lower-tercile (column 1), and upper-
tercile (column 2) raw S4 temperature forecasts (tas for MAM (row 1), JJA (row 2) and OND (row
3) validated against WFDEI and UD11. Only areas of skill (i.e. ROCSS>0) are shown for lead
months 0, 2 and 4 before start of season. Dotted grids show areas where ROCSS is significantly
larger than zero at 95% significance level.
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Figure C.6: Relative operating curve skill score (ROCSS) for lower-tercile (column 1), and upper-
tercile (column 2) raw S4 downward shortwave radiation forecasts (rsds for MAM (row 1), JJA (row
2) and OND (row 3) validated against WFDEI and ARC2. Only areas of skill (i.e. ROCSS>0) are
shown for lead months 0, 2 and 4 before start of season. Dotted grids show areas where ROCSS is
significantly larger than zero at 95% significance level.
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Figure C.7: Raw MAM season year-to-year precipitation forecast probabilities (colours), tercile of
occurrence of observations (unfilled circles) and ROCSS for East Africa and sub-regions validated
against WFDEI. Asterik indicate El-Niño years; arrows indicate La-Niña years and black dots indi-
cate significant scores at 95% level.
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Figure C.8: Raw OND season year-to-year precipitation forecast probabilities (colours), tercile of
occurrence of observations (unfilled circles) and ROCSS for East Africa and sub-regions validated
against WFDEI. Asterik indicate El-Niño years; arrows indicate La-Niña years and black dots indi-
cate significant scores at 95% level.
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Figure C.9: Raw JJA season year-to-year precipitation forecast probabilities (colours), tercile of
occurrence of observations (unfilled circles) and ROCSS for East Africa sub-regions in northern
East Africa. Asterik indicate El-Niño years; arrows indicate La-Niña years and black dots indicate
significant scores at 95% level.
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C.2 Chapter-5 supplementary figures
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Figure C.10: Typical publicly available crop calendars, here from FEWSNET, for Ethiopia (a),
Kenya (b), and Tanzania (c). These calendars are free available at https://fews.net/
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Figure C.11: Percentage difference in annual coefficient of variation (CV in percentage) between
WFDEI and S4 yields for different sowing dates and forecast lead-times. Green (brown) colours
imply that an S4 yield has a higher (lower) coefficient of variation than WFDEI yields
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Figure C.12: Same as Figure 6 but for March sowing date in Kenya (a) and Tanzania.
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Figure C.13: Same as Figure 6 but for December sowing date in Tanzania.
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Figure C.14: Ranked probability skill score (RPSS) for yield forecasts for various harvest dates and
forecast lead-times. Blue (red) colours show regions of no skill (skill). Dots indicate cells where
RPSS is significantly greater than zero at 95% confidence level.
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C.3 Chapter-6 supplementary figures

Figure C.15: Coefficient of variation (CV) of the reference precipitation data set (WFDEI) for
Bungoma compared to that of ensemble members (ens1 to ens15). Horizontal dashed line shows CV
of WFDEI for ease of comparison. CV is calculated for the period 1980-2010 and shown for three
different lead times.
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Figure C.16: Coefficient of variation (CV) of the reference global radiation data set (WFDEI) for
Bungoma compared to that of ensemble members (ens1 to ens15). Horizontal dashed line shows CV
of WFDEI for ease of comparison. CV is calculated for the period 1980-2010

176



C.3. Chapter-6 supplementary figures

Figure C.17: Coefficient of variation (CV) of the reference minimum temperature data set (wfdei)
for Bungoma compared to that of ensemble members (ens1 to ens15). Horizontal dashed line shows
CV of wfdei for ease of comparison. CV is calculated for the period 1980-2010.
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Figure C.18: Coefficient of variation (CV) of the reference maximum temperature data set (wfdei)
for Bungoma compared to that of ensemble members (ens1 to ens15). Horizontal dashed line shows
CV of wfdei for ease of comparison. CV is calculated for the period 1980-2010.
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Table D.1: Forecast verification of North-Gonder growing season climate indicators

indicator SprErr GDS(%) r bias pbias(%) MAE RMSE meanfcst meanobs

lead-0

RR 0.94 57 0.2 0.4 7.9 0.7 0.9 5 4.6
UR 0.91 54 0.2 -7.5 -5.1 29.2 37.4 138.8 146.2
ER 0.95 58 0.2 0.4 7.7 0.7 0.9 4.9 4.6
Ad 0.91 54 0.1 -1654.4 -9.4 4206.4 5400.5 15976.4 17630.8
TX 0.72 63 0.4 -0.5 -1.8 0.7 0.9 26.5 27
TN 0.63 62 0.3 -0.2 -1.2 0.5 0.5 14.4 14.6
TG 0.6 70 0.5 -0.3 -1.6 0.4 0.6 20.5 20.8
GDD 0.6 45 -0.2 -154.7 -10.4 156.5 268.2 1339.6 1494.3
KDD 1.54 69 0.6 -0.7 -10.4 4.2 5.7 5.7 6.4

lead-1

RR 0.84 58 0.2 0.3 3.7 0.6 0.9 4.9 4.6
UR 0.9 65 0.5 -1.1 -0.7 25 31.1 145.1 146.2
ER 0.85 60 0.3 0.3 6.5 0.6 0.9 4.9 4.6
Ad 0.97 61 0.2 -1576.9 -8.9 3910.4 5103 16053.9 17630.8
TX 0.8 61 0.3 -0.4 -1.6 0.7 0.9 26.6 27
TN 0.66 59 0.3 -0.2 -1.2 0.5 0.5 14.4 14.6
TG 0.7 67 0.5 -0.3 -1.4 0.4 0.6 20.5 20.8
GDD 0.4 46 -0.2 -123.8 -8.3 128.7 236.9 1370.5 1494.3
KDD 2.1 66 0.8 0.02 0.3 3.3 4.5 6.4 6.4

lead-2

RR 0.74 65 0.4 0.5 9.8 0.7 0.9 5.1 4.6
UR 0.87 58 0.4 -1.1 -0.8 26.3 32.9 145.1 146.2
ER 0.74 66 0.4 0.5 9.8 0.7 0.8 5 4.6
Ad 0.92 53 0.1 -1471.5 -8.3 4138.7 5359 16159.3 17630.8
TX 1 63 0.3 -0.5 -1.7 0.7 0.8 26.6 27
TN 0.7 64 0.4 -0.1 -0.7 0.4 0.5 14.5 14.6
TG 0.9 67 0.5 -0.3 -1.3 0.4 0.5 20.5 20.8
GDD 0.14 40 -0.3 121 -8.1 121 200 1373.3 1494.3
KDD 1.8 63 0.5 -0.2 -3.5 4.7 6.5 6.2 6.4
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Table D.2: Forecast verification of North-Gonder vegetative stage climate indicators

indicators SprErr GDS(%) r bias pbias(%) MAE RMSE meanfcst meanobs

lead-0

RR 0.69 71 0.5 0.1 1 0.8 1.2 7.5 7.5
UR 1 52 0.2 3.1 8 14.4 16.3 45.1 41.2
ER 0.68 71 0.5 0.1 1 0.8 1.2 7.4 7.3
Ad 0.93 53 0.2 102.1 4 1107.5 1299 2730.8 2628.7
TX 0.59 61 0.3 -0.4 -2 0.7 0.9 25.7 26.1
TN 0.47 61 0.4 -0.4 -2 0.6 0.7 15 15.3
TG 0.5 64 0.3 -0.4 -2 0.5 0.7 20.3 20.7
GDD 0.13 39 -0.2 -62.1 -8 64.2 178 759.8 822
KDD 1.04 61 0.2 -0.2 -7.90 2.1 3.1 2 2.2

lead-1

RR 0.72 71 0.5 0.2 2 0.8 1.2 7.6 7.5
UR 1.1 55 0.1 3.6 9 13.7 16.5 45.6 42
ER 0.7 71 0.5 0.2 2 0.8 1.2 7.5 7.3
Ad 1.1 57 0.2 96.8 4 1019.5 1284.7 2725.4 2628.7
TX 0.68 57 0.2 -0.3 -1 0.7 0.9 25.7 26.1
TN 0.58 62 0.4 -0.3 -2 0.5 0.6 15 15.3
TG 0.57 61 0.3 -0.3 -2 0.5 0.7 20.4 20.7
GDD 0.13 33 -0.3 -54.4 -7 59.3 177.2 767.6 822
KDD 1.27 59 0.2 0.5 24 2.4 3.6 2.7 2.2

lead-2

RR 0.7 68 0.4 0.5 7 1 1.3 7.9 4.5
UR 1.1 61 0.3 -3.7 -9 12.3 14.7 38.2 42
ER 0.7 68 0.4 0.5 7 1 1.3 7.8 7.3
Ad 1.1 58 0.2 -740.2 -28 1093.4 1430 1888.5 2628.7
TX 0.92 61 0.2 -0.4 -2 0.7 0.9 25.7 26.1
TN 0.58 62 0.4 -0.3 -2 0.5 0.6 15 15.3
TG 0.8 63 0.3 -0.3 -2 0.5 0.7 20.4 20.7
GDD 0.26 42 -0.2 -54.9 -7 61.2 176.1 767 822
KDD 1.85 62 0.1 0.3 14 2.3 3.4 2.5 2.2
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Table D.3: Forecast verification of North-Gonder climate indicators around anthesis

indicator SprErr GDS(%) r bias pbias MAE RMSE meanfcst meanobs

lead-0

RR 1.2 54 0.1 0.2 5.1 0.8 1 3.1 3
UR 0.4 61 0.1 0.1 0.9 3.6 4.5 10 9.9
ER 0.2 54 0.1 0.1 5.1 0.8 1 2.9 2.8
Ad 1.2 54 -0.02 -24.8 -15.3 96.8 131 137 161.7
TX 0.2 53 0.2 -0.5 -1.7 0.7 0.9 27.2 27.6
TN 0.9 64 0.4 -0.1 -1.0 0.5 0.7 14.3 14.4
TG 1 65 0.4 -0.3 -1.4 0.5 0.6 20.7 21
GDD 0.5 66 0.1 -30.9 -12.1 36.6 103.8 225.8 256.7
KDD 1.3 48 0.1 -0.2 -11.5 1.7 2.4 1.4 1.6

lead-1

RR 1.3 54 0.1 0.2 6.1 0.8 1 3.2 3
UR 1.25 50 -0.04 -0.1 -0.7 3.6 4.7 9.8 9.9
ER 1.24 54 0.1 0.2 5.8 0.8 1 3 2.8
Ad 1.16 43 -0.1 -19.4 -12.0 98.7 132.7 142.3 161.7
TX 0.3 50 0.1 -0.4 -1.3 0.7 0.9 27.2 27.6
TN 0.9 65 0.4 -0.2 -1.3 0.5 0.6 14.3 14.4
TG 1 67 0.5 -0.3 -1.4 0.4 0.6 20.7 21
GDD 0.1 67 0.2 -31.9 -12.4 34.8 103.8 225 256.7
KDD 1.3 50 0.2 -0.1 -8.9 1.5 2.2 1.5 1.6

lead-2

RR 1.1 59 0.2 0.7 22.6 0.9 1.2 3.7 3
UR 1.23 57 0.1 0.3 3.4 3.6 4.6 10.1 9.9
ER 1.05 58 0.2 0.6 22.5 0.8 1.1 3.4 2.8
Ad 1.25 58 0.2 -4.4 -2.7 84.4 117 157.3 161.7
TX 0.94 45 -0.2 -0.8 -2.9 0.9 1.13 26.8 27.6
TN 0.9 65 0.5 -0.1 -0.4 0.5 0.6 14.4 14.4
TG 0.9 61 0.3 -0.4 -2.1 0.6 0.7 20.6 21
GDD 0.1 59 0.1 -34.8 -13.6 37.4 105.3 221.8 256.7
KDD 1 42 -0.1 -0.7 -42.4 1.5 2.4 0.9 1.6
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Table D.4: Forecast verification for North-Gonder reproductive stage climate characteristics

indicator SprErr GDS(%) r bias pbias(%) MAE RMSE meanfcst meanobs

lead-0

RR 1.43 40 -0.2 0.2 13.7 0.6 0.8 1.5 1.3
UR 1 40 -0.2 0.4 2 8.3 10.9 18.1 17.8
ER 1.5 40 -0.2 0.1 11.8 0.6 0.8 1.4 1.2
Ad 1.1 44 -0.1 0.9 0.1 521.9 658.9 868.7 867.8
TX 1.3 66 0.5 -0.4 -1.30 0.6 0.7 27.8 28.2
TN 1 57 0.2 0.02 0.20 0.5 0.6 13.6 13.6
TG 1.1 70 0.6 -0.2 -0.90 0.4 0.5 20.7 20.9
GDD 1 64 0.3 -18.8 -2.90 53.7 93.3 637.8 656.6
KDD 0.5 66 0.6 -0.5 -10.70 3.2 4.6 3.8 4.3

lead-1

RR 1.2 59 0.4 -0.2 -12.00 0.5 0.6 1.1 1.3
UR 1.4 53 0.3 3 16.70 8 9.5 20.8 17.8
ER 1.1 60 0.4 -0.2 -12.30 0.5 0.6 1.1 1.2
Ad 1.5 62 0.4 250.4 28.90 472.9 572.9 1118.2 867.8
TX 1.2 60 0.4 -0.3 -1.10 0.6 0.7 27.8 28.2
TN 0.8 58 0.2 -0.2 -1.50 0.6 0.7 13.4 13.6
TG 1 68 0.5 -0.3 -1.30 0.4 0.6 20.6 20.9
GDD 0.4 54 0.1 39.1 6.00 48 98.6 696 656.6
KDD 2.3 64 0.9 -0.4 -10.40 2.3 3 3.8 4.3

lead-2

RR 1.3 56 0.1 0.1 11.50 0.5 0.6 1.4 1.3
UR 1 42 -0.1 4.1 23.00 9 11.4 21.9 17.8
ER 1.2 56 0.1 0.1 10.90 0.5 0.6 1.4 1.2
Ad 1.1 46 0.1 197.5 22.80 511.6 651.1 1065.3 867.8
TX 1.3 62 0.3 -0.4 -1.50 0.7 0.8 27.7 28.2
TN 0.9 64 0.4 -0.01 -0.10 0.4 0.6 13.6 13.6
TG 1.2 67 0.5 -0.2 -1.10 0.4 0.5 20.7 20.9
GDD 0.5 61 0.1 -17.7 -2.70 51.5 94.5 638.9 656.6
KDD 1.6 59 0.6 -0.7 -16.00 3.3 4.8 3.6 4.3

Table D.5: Forecast verification of Bungoma-Kenya growing season climate indicators

indicator SprErr GDS(%) r bias pbias MAE RMSE meanfcst meanobs

lead-0

RR 0.7 55 0.2 -0.2 -5.1 0.7 1 4.2 4.5
UR 0.5 41 -0.2 -7.6 -16.8 19.6 25.4 37.9 45.5
ER 0.7 54 0.2 -0.2 -5.1 0.7 1 4.2 4.4
Ad 0.6 51 0.1 -421 -16.7 4764.1 6080.5 2100.2 2521.3
TX 1 68 0.5 -0.05 -0.2 0.4 0.5 26.7 26.8
TN 0.5 66 0.4 -0.2 -1.2 0.5 0.6 13.5 13.7
TG 0.8 70 0.6 -0.1 -0.5 0.4 0.5 20.1 20.2
GDD 1.55 54 0.1 -8.2 -0.5 10.9 14.8 1556 1564.2
KDD 1.1 69 0.4 1.1 5.5 10.1 12.8 21.2 20.11

lead-1

RR 0.7 52 0.1 -0.1 -2.2 0.7 1 4.4 4.5
UR 0.7 43 -0.04 -6.3 -13.8 17.8 23.7 39.2 45.5
ER 0.7 52 0.1 -0.1 -2.2 0.7 1 4.3 4.4
Ad 0.7 48 -0.1 -389.4 -15.4 5010.4 6317.5 2131.9 2521.3
TX 0.3 76 0.7 -0.04 -0.1 0.4 0.5 26.7 26.8
TN 0.6 67 0.5 -0.1 -0.9 0.5 0.6 13.6 13.7
TG 1 73 0.7 -0.1 -0.4 0.3 0.4 20.1 20.2
GDD 1.3 66 0.2 -6.7 -0.4 9.1 10.9 1557.5 1564.2
KDD 1.3 63 0.3 1.8 9.1 10.4 12.5 21.9 20.1
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Table D.6: Forecast verification of Bungoma-Kenya vegetative stage climate indicators

indicator SprErr GDS(%) r bias pbias MAE RMSE meanfcst meanobs

lead-0

RR 0.7 53 0.1 -0.3 -6.50 0.8 1.1 4.2 4.5
UR 1 65 0.4 5.4 16.50 13.5 15.9 38.1 32.7
ER 0.7 52 0.1 -0.3 -6.80 0.8 1.1 4.1 4.4
Ad 0.8 65 0.4 710.4 38.90 1418.8 1841.9 2537.1 1826.6
TX 1 65 0.4 0.04 0.20 0.5 0.6 26.4 26.36
TN 0.5 65 0.4 -0.2 -1.50 0.5 0.6 13.7 13.9
TG 0.7 71 0.6 -0.1 -0.70 0.4 0.5 20.1 20.2
GDD 1 51 0.1 -2.7 -0.30 4.7 6.9 841.5 844.2
KDD 1.1 66 0.4 -0.3 -3.10 5.2 6.4 8 8.2

lead-1

RR 0.8 55 0.03 -0.1 -3.00 0.8 1.1 4.4 4.5
UR 1 53 0 5 15.40 15.3 17.9 31.7 32.7
ER 0.8 54 0.02 -0.1 -3.10 0.8 1.1 4.2 4.4
Ad 1 53 0.1 535.1 29.30 1619.8 1939.8 2361.7 1826.6
TX 1.5 70 0.6 0.1 0.30 0.4 0.5 26.4 26.36
TN 0.6 66 0.5 -0.2 -1.10 0.5 0.6 13.8 13.9
TG 1 73 0.7 -0.1 -0.50 0.3 0.5 20.1 20.2
GDD 1 51 0.02 -3.1 -0.40 5 7.2 841.1 844.2
KDD 1.5 66 0.2 0.7 7.90 5.5 6.8 8.9 8.2

lead-2

RR 0.9 55 0.2 -0.1 -2.70 0.8 1 4.4 4.5
UR 1.1 55 0.1 5.6 17.00 15.9 17.6 38.2 32.7
ER 0.8 54 0.2 -0.1 -2.90 0.8 1 4.3 4.4
Ad 1 45 -0.1 653.9 35.80 1685 2067.6 2480.5 1826.6
TX 1.2 66 0.4 0.1 0.20 0.5 0.6 26.4 26.36
TN 0.7 70 0.5 -0.1 -1.00 0.5 0.6 13.8 13.9
TG 1 71 0.6 -0.1 -0.50 0.4 0.5 20.1 20.2
GDD 1 59 0.1 -3 -0.40 4.8 7.2 841.2 844.2
KDD 1.7 61 0.3 0.2 2.20 5.3 6.5 8.4 8.2
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Table D.7: Forecast verification for Bungoma, Kenya anthesis stage climate indicators

Indicator SprErr GDS(%) r bias pbias(%) MAE RMSE meanfcst meanobs

lead-0

RR 1 61 0.2 -1 -25.6 1.2 1.8 2 4.1
UR 1 59 0.2 -0.5 -5.2 4.5 7 10 10.5
ER 0.9 59 0.2 -1 -25.9 1.2 1.8 2.9 3.9
Ad 0.9 50 0.1 21.3 -98.2 166.1 221.2 -0.4 -21.7
TX 1.2 57 0.2 0.4 1.4 0.8 1 26.7 26.3
TN 1 67 0.4 -0.1 -0.6 0.5 0.7 13.56 13.64
TG 1.1 61 0.3 0.2 0.7 0.5 0.7 20.1 20
GDD 1.1 60 0.3 2.7 1.3 10.6 13.8 211.8 209
KDD 1.8 53 0.2 0.9 149.2 1.3 1.5 1.5 0.6

lead-1

RR 1 55 0 -0.7 -17.2 1.2 1.7 3.4 4.1
UR 0.8 46 -0.1 -0.6 -5.5 4.9 7.4 9.9 10.5
ER 0.9 53 0 -0.7 -17.7 1.2 1.7 3.2 3.9
Ad 0.9 51 0.1 19.2 -88.4 165.1 217.5 -2.5 -21.7
TX 1.3 54 0.1 0.3 1.0 0.8 1 26.5 26.3
TN 1 66 0.4 -0.1 -0.7 0.5 0.7 13.54 13.64
TG 1.2 60 0.3 0.1 0.4 0.5 0.6 20 20
GDD 1.2 58 0.2 1.3 0.6 11.1 13.8 210.3 20.9.0
KDD 1.9 49 0.01 0.9 148.8 1.3 1.6 1.5 0.6

lead-2

RR 1 43 -0.2 -1 -23.9 1.4 1.9 3.1 4.1
UR 0.9 51 -0.2 -0.7 -6.6 4.7 7.6 9.8 10.5
ER 0.9 44 -0.2 -1 -24.6 1.4 1.9 3 3.9
Ad 0.9 51 0.1 43.9 -202.0 166.9 222.7 22.2 -21.7
TX 1.3 56 0.1 0.3 1.3 0.8 1 26.6 26.3
TN 1 65 0.4 -0.1 -0.6 0.5 0.7 13.55 13.64
TG 1.2 61 0.3 0.1 0.6 0.5 0.6 20.1 20
GDD 1.3 58 0.3 2.6 1.3 10.7 13.4 211.7 209
KDD 2.7 62 0.1 0.9 156.9 1.3 1.5 1.5 0.6
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Table D.8: Forecast verification of Bungoma-Kenya reproductive stage climate indicators

indicator SprErr GDS(%) r bias pbias(%) MAE RMSE meanfcst meanobs

lead-0

UR 0.8 52 0 2.2 11.20 10 12.6 22.4 20.15
ER 0.6 52 0.2 -0.2 -3.60 1.2 1.5 4.2 4.4
Ad 0.8 54 0.1 -807.4 -168.70 1152.1 1482.2 -328.9 478.6
TX 1.1 59 0.3 0.02 0.10 0.6 0.8 27.1 27.08
TN 0.6 63 0.3 -0.13 -1.00 0.6 0.71 13.3 13.4
TG 0.9 63 0.4 -0.1 -0.30 0.5 0.6 20.2 20.3
GDD 1.4 51 -0.2 -3.6 -0.50 11.3 15.4 726.3 729.8
KDD 1.3 61 0.2 1.4 12.20 7.6 10.1 13.3 11.9

lead-1

RR 0.6 55 0.1 -0.1 -1.70 1.2 1.5 4.4 4.4
UR 0.9 48 0.1 1.7 8.40 9.7 11.8 21.8 20.2
ER 0.6 55 0.1 -0.1 -1.50 1.2 1.5 4.2 4.4
Ad 0.9 54 -0.03 -725.6 -151.60 1105.7 1458.4 -247.1 478.6
TX 1.3 68 0.5 -0.02 -0.10 0.5 0.6 27.06 27.08
TN 0.7 63 0.3 -0.1 -0.90 0.5 0.7 13.3 13.4
TG 1 68 0.5 -0.1 -0.30 0.43 0.5 20.2 20.3
GDD 1.5 48 -0.2 -5.1 -0.70 12.2 17.2 724.7 729.8
KDD 1.4 60 0.2 1.2 10.30 7.2 8.9 13.1 11.9
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Appendix D. Supplementary tables

D.2 Chapter-6 supplementary tables

Table D.11: Bungoma NUT2 Yield and TAGP predictability aggregated by dominant maize variety
and soil type at FAO soil mapping units (0.1° resolution).Predictability is shown using ROCSS
averaged over grid cells with significant skill scores. In brackets are percentage of grid cells with
significant ROCSS. Soil type S3 mean “LOAMY SAND-to-SANDY LOAM” , and S4 means “SANDY
LOAM-to-LOAM soils.

BUNGOMA VARIETY-6; S3-SOILS

YIELDS TAGP
LEAD-0 LEAD-1 LEAD-2 LEAD-0 LEAD-1 LEAD-2

BN 0 0.1 -0.2 0.2 0.2 0
NN 0.3 -0.2 0 0.1 -0.1 0
AN 0 0.2 0.2 -0.1 -0.1 -0.1
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Doblas-Reyes, F. J., J. Garćıa-Serrano, F. Lienert, A. P. Biescas, and L. R. Rodrigues,
2013: Seasonal climate predictability and forecasting: status and prospects. Wiley
Interdisciplinary Reviews: Climate Change, 4(4), 245–268.

Duffy, K. J. and T. P. Masere, 2015: Effect of within-season daily rainfall distribution
on maize crop yields. Outlook on Agriculture, 44(4), 267–271.

Dutra, E., L. Magnusson, F. Wetterhall, H. L. Cloke, G. Balsamo, S. Boussetta, and
F. Pappenberger, 2013: The 2010–2011 drought in the horn of africa in ecmwf
reanalysis and seasonal forecast products. International Journal of Climatology,
33(7), 1720–1729.

195



References

Dutra, E., W. Pozzi, F. Wetterhall, F. Di Giuseppe, L. Magnusson, G. Naumann,
P. Barbosa, J. Vogt, and F. Pappenberger, 2014: Global meteorological drought-
part 2: Seasonal forecasts. Hydrology & Earth System Sciences, 18(7).

Ebert, E., L. Wilson, A. Weigel, M. Mittermaier, P. Nurmi, P. Gill, M. Göber,
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Summary

Climate variability is an important driver for regional anomalous production levels of
especially rainfed crops, with implication for food security of subsistence farmers and
economic performance for market oriented agriculturalists. In large parts of the trop-
ics modern seasonal ensemble forecast systems have useful levels of skill, that open up
the possibility to develop climate services that assist agriculturalist and others in the
food chain (farm suppliers, commodity traders, and aid organizations) to anticipate
on expected anomalous conditions of an approaching season. In this thesis we explore
the forecast skill at various steps in the climate-crop modelling chain for seasonal
maize yield anomalies in East Africa. The first part of the thesis was to set up a crop
model meant for use in farm scales for regional yield simulation (chapter 2). The main
aim was establishing skill of climate forecasts (chapter 3), these provided input to the
rest of thesis chapters (i.e. chapter 4, 5 and 6). Besides climate data, other data sets
that include land use maps, soil data, crop calendars, and crop parameters are re-
quired for the crop model. Some of the data sets are of coarse resolution yet the crop
model (WOFOST) model requires homogeneous inputs for simulation. These were
therefore overlayed with high resolution land use data to derive simulation units at
0.1° grids that met assumptions of homogeneity in each grid cell. Similarly attributed
to the grids are observed and forecast climate data. Planting dates for each grid
cell was fixed to dates that resulted in highest average water-limited yields. Harvest
dates were not fixed, neither in the baseline nor reforecast yields. The baseline and
reforecast harvest dates had a maximum difference of 10-days.

Next, we assessed the skill of ECMWF System-4 seasonal climate forecasts for pri-
mary meteorological variables needed for crop modelling against a number of gridded
observations. A number of observation datasets that had no dependency with each
other were used to ascertain the robustness of the results. We found both poten-
tial and real skill for rainfall and temperature in typical cropping seasons in eastern
Africa. The skill of the three variables (tp, tas and rsds) depends on season, forecast
lead-time and location. Climate forecasts realistically reproduces the spatial patterns
of observed seasonal climatology irrespective of the observation data sets considered
but with biases. Precipitation forecast biases are season dependent and magnitude
depend on the validating observation data for example, precipitation forecasts show
dry bias in March-May season, wet biases on October to December season, but both
dry and wet biases in certain regions in June-August season. Cold biases dominate

213



tas forecasts in all seasons, the spatial patterns have no strong seasonal variation.
Patterns in downward surface shortwave radiation depend on prevailing rain seasons
and the surface topography. The ROCSS reveals that S4 skillfully discriminates
between upper-tercile, middle-tercile and lower-tercile forecasts. Aggregated over ho-
mogeneous rainfall regions of East Africa, upper-tercile and lower-tercile precipitation
forecasts initialized up to at least three lead-months show skill. Temperature fore-
casts initialized up to 4 months before start of season are skillful and useful while
rsds show less skill though still usable. Middle-tercile predictions remain poor for
all variables at all seasons and lead-times. But forecast skill and lead-times of useful
forecasts are season and region specific. We investigate the influence of bias correc-
tion in forecast skill but found no improvement in probabilistic forecast skill. Bias
correction is however still important for climate impact applications. In general, the
forecast fairly captures the inter-annual climate variability of the three variables and
may potentially be used to predict impacts.

Next, we analyze correlations between reported production and anomalous weather
conditions, using a range of climate indicators relevant for arable farming such as grow-
ing and killing degree days, rainfall amount, evenness, random independent events
(unevenness), and timing during consequent maize growth phases in two case study
regions. This was done for two case study regions i.e. northern Ethiopia and an
equatorial region in Kenya. But sensitivities to the weather is not uniform as they af-
fect yields differently. Regionally sensitivity to rainfall is found for northern Ethiopia
while a sensitivity to temperature is found in equatorial west Kenya. Some of the
variables are predictable while others are not. But in general, the predictability de-
pends on region, maize phenological stage, and climate variable. In this part of the
study, significant levels of correlation and skill are revealed that open up the potential
for statistical forecasting. Sensitivities to climate indicators at different stages of crop
growth provide the possibility of developing mitigation measures that are short term
and targeted to particular crop growth phases.

At the next level of complexity we explore the use of full process based crop mod-
els forced by seasonal climate forecasts to forecast anomalous water-limited maize
yield in the region. We generated a 15-member ensemble of yield predictions using
the World Food Studies (WOFOST) crop model implemented for water-limited maize
production and single season simulation. Maize yield predictions are validated against
baseline yield, also simulated from driving the crop model with historical observations.
Focusing on the dominant sowing dates in the northern region (July), equatorial re-
gion (March-April) and in the southern region (December), we find again potentially
useful levels of skill with at least two months lead before planting, in most agricultural
regions. The baseline yield anomalies also showed good anomaly correlations com-
pared to the official FAO and national reported statistics, but the average reference
yield values are lower than those reported in Kenya and Ethiopia, but slightly higher
in Tanzania. Notable differences in magnitude of yields may be attributed to number
of crop seasons i.e. some regions have double crop seasons yet the crop model was
set up to simulate only a single season. Difference in interannual variability between
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the baseline and predicted yields range from from ±40%, but higher interannual vari-
ability in predicted yield dominates. Anomaly correlations between the reference and
predicted yields are largely positive and range from +0.3 to +0.6. Above-normal
and below-normal yield anomalies are predictable with at least 2-months lead-time
in many agricultural regions. In areas where yield forecast skill exist, it is possible to
provide quantitative crop yield outlooks by combining dynamic crop yield forecasts
and crop models.

Finally, we try to attribute skill levels to physiographic characteristics (soils, maize
cultivars, geographical region etc.) and address some issues of scale of aggregation for
two case study regions in Kenya and Ethiopia. Skill in aggregated yields are driven
by physiography, and size of spatial aggregation unit, i.e. better skill when yields
are aggregated over a larger area. This could be related to the scale at which phys-
iographic features of an area are captured in the driving climate data. Comparable
level of skill is observed when yields are aggregated by soil types. Good, significant
prediction skill in individual high resolution grid cells are degraded little when aver-
aged over sub-national boundaries, but then, skill in individual cells are important
only if neighbouring cells also have skill. Observed yield statistics are available at
national or sub-national regions, skill in aggregated data to these boundaries mean
that they could still be useful for regional assessments. But good predictability in
individual high resolution cells could still be useful to farmers. Also, high resolution
climate data may improve simulation. This may be possible in future as resolutions
of climate models increasing get higher.
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Samenvatting

Naar seizoensvoorspellingen van maisopbrengsten in
Oost Afrika: voorspelbaarheid in de modelketen als
basis voor klimaatdiensten voor de landbouw.

Klimaatvariabiliteit speelt een belangrijke rol bij regionale gewas productie
anomalieën van de regenafhankelijke landbouw. Voor de voedselzekerheid van
zelfvoorzienende boeren evenals voor de economische prestaties voor markt
georiënteerde landbouwers kan dit kan gevolgen hebben. In grote delen van de
tropen zijn moderne, op ensembles gebaseerde seizoensvoorspellingen van het klimaat
beschikbaar. Deze systemen zijn voldoende betrouwbaar om klimaatdiensten te on-
twikkelen die landbouwkundigen en anderen in de voedselproductieketen (leveranciers
van landbouwproducten, handelaren in grondstoffen, hulporganisaties) kunnen helpen
om op verwachte productie afwijkingen van een komend seizoen te anticiperen. In
dit proefschrift onderzoeken we de voorspellende kracht in verschillende stappen
van de klimaat-gewas modelketen van een dergelijk systeem voor seizoensgebonden
mäısopbrengsten in Oost-Afrika. Het eerste deel van dit proefschrift behandelt
de opzet van het modelsysteem dat gebruikt is voor opbrengstsimulatie op zowel
veldschaal als ook op regionaal niveau (hoofdstuk 2). Het belangrijkste doel van
het volgend hoofdstuk is het vaststellen van de nauwkeurigheid en betrouwbaarheid
van de klimaatvoorspellingen zelf (hoofdstuk 3). Deze resultaten vormen de basis
voor de volgende hoofdstukken van dit proefschrift, waar geanalyseerd wordt in
welke mate voorspelbaarheid van het klimaat zich vertaald in voorspelbaarheid van
maisopbrengsten, enerzijds op statistische basis (hoofdstuk4), anderzijds met behulp
van het in hoofdstuk 2 beschreven gewasgroeimodel (hoofdstuk 5) en wat de rol is
van aggregatie in die laatste (hoofdstuk 6). Tot slot volgt een synthese en discussie
van de implicaties van de resultaten voor de ontwikkeling van op landbouw gerichte
klimaatdiensten in Oost Afrika (hoofdstuk 7).

Naast klimaatgegevens zijn voor het gewasgroeimodel (WOFOST) ook andere
datasetsets gebruikt, waaronder landgebruikskaarten, bodemgegevens, gewaskalen-
ders en gewasparameters. De resolutie van deze datasets zijn niet gelijk, sommige
hadden een grove resolutie andere een fijnere. Om een homogene invoer voor het
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model te verkrijgen werd met behulp van een landgebruiksraster simulatie-eenheden
met een resolutie van ongeveer 0.1° afgeleid, die voldeden aan de veronderstellingen
van homogeniteit in elke rastercel. De waargenomen en voorspelde klimaatgegevens
zijn op een dezelfde manier aan de rastercellen toegekend. Gewas-, cq mais
variëteiten, gedefinieerd in termen van warmtebehoefte voor bloei en afrijping en
plantdatum, werden geoptimaliseerd naar hoogste gemiddelde (waterbeperkte) op-
brengsten. De oogstdatums in de basis situatie en de voorspellingen zijn niet opgelegd
maar berekend. Deze datums hebben in de basis situatie en in de voorspellingen een
verschil van maximaal 10 dagen.

Vervolgens vergelijken we de meteorologische variabelen die nodig zijn voor simulatie
van gewasgroei van de ECMWF System-4 historische seizoensvoorspellingen, met een
aantal gerasterde waarnemingen en analyseerden we hoe goed deze voorspeld worden.
Om de robuustheid van de resultaten te bepalen zijn een aantal onafhankelijke
observatiegegevenssets gebruikt. Voor regenval en temperatuur vertoont System-4 in
de drie typische teeltseizoenen in Oost-Afrika zowel potentiële als reëel voorspellend
vermogen. Het voorspellend vermogen voor de drie variabelen (neerslag tp, temper-
atuur tas en zonneschijn rsds) hangt af van het seizoen, de voorspeltermijn en de
locatie. Klimaatvoorspellingen reproduceren realistische ruimtelijke patronen van de
geobserveerde seizoensklimatologie, maar er zijn systematische vertekeningen. Zo
vertonen neerslagvoorspellingen een droge bias in de periode maart-mei, een natte
bias in de maanden oktober tot december, maar in bepaalde regio’s komen in de
periode juni-augustus zowel een droge als een natte bias voor. In alle seizoenen
overheerst een koude bias de tas voorspellingen, de ruimtelijke patronen laten geen
sterke seizoensvariatie zien. Patronen in de inkomende kortgolvige straling zijn
afhankelijk van de heersende regenseizoenen en de topografie. De ROCSS test laat
zien dat S4 een goed onderscheid maakt tussen voorspellingen van het bovenste
terciel, middelste terciel en laagste terciel. Geaggregeerd over homogene regenzones
in Oost-Afrika, hebben hoogste terciel en laagste terciel neerslagvoorspellingen die
tot en met drie maanden voorafgaand het seizoen gemaakt zijn voorspellende waarde.
Temperatuurvoorspellingen die tot 4 maanden voor het begin van het seizoen
zijn gemaakt, hebben voorspellende waarde, stralingsvoorspellingen rsds hebben
minder voorspellende waarde maar zijn nog steeds bruikbaar is. De voorspellingen
voor het middelste terciel zijn voor alle variabelen in alle seizoenen en voorspel-
termijnen minder bruikbaar. We onderzochten ook de invloed van bias-correctie
op de voorspellende waarde, maar vonden geen verbetering in de probabilistische
voorspellingen. Bias-correctie is echter nog steeds belangrijk voor toepassingen met
betrekking tot klimaat effecten. Over het algemeen geven de voorspellingen een
betrouwbare weergave van de klimaatvariabiliteit van de drie variabelen en dit biedt
dus mogelijkheden om effecten te voorspellen, op landbouw en/of andere sectoren.

Vervolgens analyseerden we de correlaties tussen de gerapporteerde opbrengsten
en afwijkende weersomstandigheden. Bij deze analyse is gebruik gemaakt van een
reeks klimaatindicatoren die relevant zijn voor akkerbouw, zoals groei en sterfte
graaddagen, eenvoudige temperatuur extremen, de hoeveelheid regen en de temporele
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spreiding daar van over het groeiseizoen (gelijkmatig of niet, vroeg of laat) tijdens
drie opeenvolgende groeifases van mäıs (vegetatieve-, bloei- en reproductie fasen).
Dit is gedaan voor twee casestudyregio’s, namelijk Noord-Ethiopië en een equatoriale
regio in Kenia. Weersinvloeden op het gewas zijn niet uniform en hebben in
verschillende regio’s andere invloeden op de opbrengsten. Regionale gevoeligheid
voor regenval wordt gevonden voor Noord-Ethiopië, terwijl temperatuurgevoeligheid
wordt gevonden in equatoriaal West-Kenia. Sommige variabelen zijn voorspelbaar,
andere niet, maar in het algemeen hangt de voorspelbaarheid af van de regio, groeifase
van mäıs en klimaatvariabele. In dit deel van de studie werden significante correlaties
gevonden die de mogelijkheid voor statistische prognoses openen. Gevoeligheden voor
klimaatindicatoren in verschillende stadia van gewasgroei bieden de mogelijkheid om
op korte termijn mitigerende maatregelen te ontwikkelen die gericht zijn op bepaalde
groeifasen van gewassen.

Op het volgende complexiteit niveau verkenden we het gebruik van een proces
georiënteerd gewasgroeimodel met seizoenprognoses als invoer om afwijkingen in de
normale waterbeperkte mäısproductie in de regio te voorspellen. We gebruikten een
15-ledig ensemble van waterbeperkte mäısproductie opbrengstvoorspellingen. De
opbrengstvoorspellingen zijn gegenereerd met behulp van het World Food Studies
(WOFOST) gewasgroeimodel. De voorspelde mäısopbrengst zijn gevalideerd met
behulp van de opbrengsten die gesimuleerd zijn met het gewasgroeimodel met
historische waarnemingen als input. De afwijkingen in de basis simulatie (historische
gewasproductie) vertoonden goede anomaliecorrelaties vergeleken met de officiële
FAO en nationaal gerapporteerde statistieken, maar de gemiddelde referentieop-
brengsten zijn lager dan die gerapporteerde opbrengsten in Kenia en Ethiopië, maar
iets hoger in Tanzania. Opmerkelijke verschillen in de opbrengst omvang kunnen
worden toegeschreven aan het aantal oogstseizoenen, dat wil zeggen dat sommige
regio’s een dubbel groeiseizoen hebben. In de huidige opzet is maar één, het langste
seizoen, in beschouwing genomen. Het verschil in variabiliteit in opbrengsten tussen
de jaren in de basis simulatie en in de voorspellingen varieert met ±40%. Een hogere
opbrengst variabiliteit tussen de jaren in de voorspellingen komt vaker voor. Ge-
bruikmakend van de dominante zaaidatums in de noordelijke regio (juli), equatoriale
regio (maart-april) en in de zuidelijke regio (december), vinden we opnieuw in de
meeste landbouw regio’s potentieel bruikbare voorspellingen die ten minste twee
maanden voor aanvang van het planten zijn gemaakt. Anomaliecorrelaties tussen de
referentie- en voorspelde opbrengsten zijn grotendeels positief en variëren van +0,3
tot +0,6. Afwijkingen boven de normale en onder de normale opbrengst zijn in veel
landbouwregio’s voorspelbaar met een doorlooptijd van ten minste 2 maanden. In
gebieden waar de seizoen voorspellingen voorspellende kracht hebben, is het mogelijk
om kwantitatieve gewasopbrengst vooruitzichten te geven door seizoensgebonden
klimaatvoorspellingen en een gewasgroeimodel te combineren.

Ten slotte probeerden we de voorspellend vermogen te relateren aan fysiografische
kenmerken (bodem, cultivars van mäıs, geografische regio, enz.) En behandelden
we enkele aggregatie effecten voor twee casestudyregio’s in Kenia en Ethiopië. Het
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voorspellend vermogen van geaggregeerde opbrengst voorspellingen wordt bepaald
door fysiografie en de grootte van de ruimtelijke aggregatie-eenheid, d.w.z. betere
voorspellingen wanneer opbrengsten over een groter gebied worden geaggregeerd.
Dit kan verband houden met de schaal waarop fysiografische kenmerken van een
gebied zijn vastgelegd ten opzichte van die van de klimaatgegevens die als invoer
gebruikt zijn. Vergelijkbaar voorspellend vermogen wordt waargenomen wanneer
opbrengsten naar grondsoorten worden geaggregeerd. Goed, significante voorspellend
vermogen van individuele rastercellen met hoge resolutie vermindert weinig wanneer
ze gemiddeld worden over sub-nationale grenzen, maar de voorspellende kracht
van individuele cellen is dan alleen belangrijk als naburige cellen ook voorspellend
vermogen hebben. Opbrengststatistieken zijn beschikbaar op nationaal en regionaal
niveau, aggregatie tot dit niveau zou nuttig kunnen zijn wanneer er voorspellend
vermogen op dit niveau bestaat. Goede voorspelbaarheid voor individuele hoge
resolutie cellen kan nog steeds nuttig zijn voor boeren. Ook kunnen hoge resolutie
klimaatgegevens simulaties verbeteren. Naarmate de resoluties van toekomstige
klimaatmodellen hoger worden zou dit in de toekomst mogelijk kunnen zijn.

Op basis van voorgaande is aangetoond dat er in de verschillende klimaatzones
van Oost Afrika enerzijds voldoende correlaties bestaan tussen inter-jaarlijkse kli-
maatanomalieën en variaties in maisproductie, en dat er daarnaast voldoende voor-
spelbaarheid gerealiseerd kan worden in de verschillende stappen van de modelketen,
om ruim voor aanvang van het groeiseizoen daarop te kunnen anticiperen met
passende adaptatiemaatregelen. We zien hierin een sterk aanmoediging voor verdere
ontwikkeling van operationele klimaatdiensten gericht op de landbouwsector in deze
regio.
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