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Abstract 

With social interactions, individuals may affect each other’s phenotype. In these 

cases, an individual’s phenotype depends on the direct genetic effect of the 

individual itself (DGE) and the indirect genetic effects of its mates (IGE). This thesis 

focusses on two traits related to cannibalistic interactions among laying hens: 

plumage condition and survival time. This thesis shows that up to 94% of the 

heritable variation in plumage condition and up to 61% of the heritable variation in 

survival time relates to IGE. Thus, genetic selection methods incorporating both 

DGE and IGE offer perspectives to improve both traits. Shortcomings of studies 

using DGE-IGE models that focussed on survival time are that censored records 

were considered as exact lengths of life and models assumed that IGE were 

continuously expressed by all cage members, even after death. This may reduce 

accuracy of estimated breeding values (EBV). This thesis showed that the accuracy 

of EBV for survival time can be improved using models that incorporate censoring. 

This will also contribute to higher rates of genetic gain. Another tool to improve 

EBV accuracy could be to use genomic information instead of pedigree information. 

This thesis showed that using genomic information did not improve the accuracy of 

EBV for survival time. Genomic information is also used in Genome-Wide 

Association Studies (GWAS). Only a handful of studies extended GWAS to include 

IGE. In this thesis, SNPs associated with direct and indirect effects for survival time 

were identified. GWAS results revealed SNPs with large DGE and a link of DGE and 

IGE for survival time in laying hens with the GABAergic system. This supports 

existing evidence for the involvement of GABA in the development of abnormal 

behaviors. SNP effects can differ among crosses due to different levels of linkage 

disequilibrium between the SNP and the QTL in the parental lines. If this matters, 

the power of SNP detection is expected to increase when alleles are mapped 

specific to their allele origin. This thesis aimed to map DGE and IGE for survival 

time, while considering the line origin of the alleles. However, accurately assigning 

the line origin to alleles, appeared to be challenging: new Mendel errors were 

identified after assigning the line of origin to alleles (additional to the identified 

Mendel errors based on SNP genotypes). These errors had a large impact on the 

results of the GWAS analyses. Moreover, it is recommended to repeat the quality 

control based on Mendel errors after allele origin assignment. Finally, it is discussed 

that the topic of this thesis is very relevant in the light of sustainable egg 

production, because i) it addresses important societal concerns, and ii) it 

contributes to sustainable development goal “End hunger” (SDG2) of the Food and 

Agricultural Organization of the United Nations. 
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1.1 Social interactions 

Social interactions are an integral component of life. Interacting individuals may 
affect each other’s characteristics. In both domestic and natural populations, social 
interactions occur. This includes, for example, disease transmission in Eucalyptus 

globulus (Costa e Silva et al., 2017), aggression in mink (Alemu et al., 2014), parental 
care in mice (Ashbrook et al., 2015), cooperation in ants (Linksvayer, 2006), growth 
competition in fungi (Aspergillus nidulan, Rode et al., 2017), and spouse effects in 
human (e.g. Evans et al., 2018). 
 
Socially-affected traits are different from non-social interaction traits. With social 
interaction traits, there are two distinct effects: i) the effect of an individual on its 
own phenotype (direct effect) and ii) the effects of group mates on an individual’s 
phenotype (indirect effect; Moore et al., 1997). Direct and indirect effects can partly 
be genetically determined, where the phenotype of an individual depends on both 
the individual’s own genes (direct genetic effects; DGE) and the genes from its group 
mates (indirect genetic effects; IGE) (e.g. Bijma et al., 2007a; Bijma et al., 2007b; 
Griffing, 1967; Moore et al., 1997; Muir, 2005). 
 
IGE have been quantified for numerous traits and populations, e.g. survival in 
chickens (Ellen et al., 2008; Peeters et al., 2012), aggression in field crickets (Han et 
al., 2018), and reproductive performance in pigs (Ki Hong et al., 2017). Estimates 
show that IGE can have an effect on the total heritable variation available for 
selection response. The total heritable variation is in fact higher or lower than what 
is predicted when DGE are considered alone. For example, the total heritable 
variation was revealed to be 30%-62% higher for survival time in laying hens when 
IGE were considered as well (Ellen et al., 2008; Peeters et al., 2012). An example of 
decrease in total heritable variation due to IGE can be found in Eucalyptus Globulus. 
The total heritable variation was reduced by 85% for growth when IGE were 
considered in the model (Costa e Silva et al., 2013). 
 
This thesis focusses on the genetics of socially-affected traits in laying hens showing 
cannibalism. Cannibalism is one of the major welfare and economic issues occurring 
in the egg production sector. A common practice to prevent cannibalism is beak 
trimming. It has, however, received much criticism because it compromises the 
welfare of laying hens (Riber and Hinrichsen, 2017). Various European countries 
have, therefore, banned the beak trimming practice or plan to ban it in the near 
future. However, cannibalism will increase when hens have intact beaks and 
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solutions are required. Cannibalism is a multi-factorial problem caused by both 
environmental and animal related factors. Management solutions could be related 
to feed (Van Krimpen, 2005), light intensity (Kjaer and Vestergaard, 2009), provision 
of floor litter (Blokhuis, 1986), and group size (Bilčik and Keeling, 2000). However, 
there are no management solutions that can completely prevent cannibalism. 
Genetic selection could contribute to a more permanent solution that will allow to 
keep hens with intact beaks without negative effects of anti-social behaviour. In the 
following, I will identify research questions concerned with laying hens displaying 
cannibalism. I will do this following these relevant topics: 

i) The basic quantitative genetic principles of social interactions 
(Griffing, 1967; Muir, 2005; Bijma et al., 2007a). 

ii) The potential of methods using DNA information when assessing 
socially-affected traits. 

 

1.2 Basic quantitative genetic principles of IGE 

Intuitively, it makes sense to base genetic selection of socially-affected traits on 
behavioural observations. For example, with cannibalistic interactions in laying hens 
one could count the number of times an individual pecks its cage mate. This is, 
however, a time-consuming practice. Moreover, the collection of behavioural 
observations focusses on the individual performing the pecking, and disregards the 
victim of cannibalistic interactions. Previous research clearly showed that genetic 
solutions need to consider both the effect of the victim (direct genetic effect; DGE) 
and actor (indirect genetic effect; IGE) in order to reduce mortality due to 
cannibalism in laying hens (e.g. Ellen et al., 2008; Peeters et al., 2012; Alemu et al., 
2016). Hence, selecting against cannibalistic interactions using behavioural 
observations will disregard part of the genetic variation. 
 
Alternatively, a variance component model considers both DGE and IGE and it is not 
required to have knowledge about the traits underlying cannibalistic behaviour. 
Instead, traits that show the consequences of cannibalistic interactions are analysed. 
In this thesis, two traits that show the consequences of cannibalistic interactions are 
analysed using this variance component model: plumage condition (Chapter 2) and 
survival time (Chapter 3-5). Here, DGE and IGE are added as random effects to the 
model, and their (co-)variances are estimated based on family relationships in the 
dataset. 
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In Figure 1.1, the principle of DGE and IGE is illustrated following chicken 1 and its 
two group mates (chicken 2 and chicken 3). The phenotype of chicken 1 ( �) is 
determined by its own direct effects ( ��

) and indirect effects of its n-1 (in this 

example: 2) group mates ( �� ��
). By substituting these components using the 

basic principles of genetics ( ; see Box 1), one can see that �� ��

��
, and �� �� �� �� �� ��

. Hence, the phenotype of chicken 1 can 

be expressed as the sum of DGE, direct environmental effects, IGE of both its group 
mates, and indirect environmental effects of both its group mates. This theoretically 
shows that the social environment can contain a heritable component (IGE) which 
may be important for selection response. More details are in Box 1.1. 
 

Box 1.1 Phenotype of socially-affected traits 

 
The phenotype of an individual is defined as the combined effects of its genetic 
make-up and an environmental effect (Fisher, 1918).  
 

� � �  ① 

 
where � is the phenotype of individual i, � the genetic effect of individual i, and � 
the environmental effect of individual i. 
 
The environment can be broadly defined, containing everything from weather 
perturbances to consumed feed, but also the social environment. If the social 
environment contains a heritable component (i.e. IGE) the model can be defined as 
follows (Griffing, 1967; Muir, 2005; Bijma et al., 2007a): 
 

� �� �� �	

��
�� �	


��
��   ② 

  

        Direct Effects      Indirect Effects  

 
where ��

 represents the DGE of individual i, ��
 the direct environmental effect of 

individual i, �	
 the IGE of group mate j, �	

 the indirect environmental effect of 

individual j, and n the total number of individuals in a group (Griffing, 1967). Both 
the direct effects part ( �� ��

) and the indirect effects part ( �	

��
�� �	


��
�� ) 

are expressed in the phenotype of individual i. 
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1.2.1 Breeding values 

To improve traits using genetic selection, animals are selected based on their 
estimated breeding values. Such estimated breeding values allow to compare 
individuals and choose the animals that have the best potential as parent to produce 
the next generation. With social interactions, the quantity relevant for selection 
response is the total breeding value. It is the linear combination of DGE and IGE. 
 

Figure 1.2 illustrates the principle of the total breeding value of chicken 1. From the 
illustration it becomes clear that there are two distinct genetic traits expressed by 
chicken 1: the direct breeding value of chicken 1 ( ��

) and two times an indirect 

breeding value ( ��
. Note that the arrows from chicken 1 to its group mates in 

Figure 1.2 are in the opposite direction of the arrows in Figure 1.1. Thus, the origin 
of the IGE differs depending on whether one considers the phenotype or the total 
breeding value, whereas the origin of the DGE is the same in both. More details are 
in Box 1.2. 

Figure 1.2 Total breeding value explained: an example of social 
interactions in a group of three chickens. A is the genetic effect, 
where subscript D refers to the direct effect, subscript I to the 
indirect effect, and subscript T to the total effect. Number 1 
refers to individual 1.  
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Box 1.2. Total Breeding Value 

 
With social interactions, selection should be based on the total breeding value ( ��

): 

 

� �� �
  ③ 

 
where ��

 is the total breeding value (also called total genetic effect) of individual i, 

��
 the direct breeding value of individual i (also called direct genetic effect, DGE), 

and ��
 the indirect breeding value of individual i (also called indirect genetic effect, 

IGE) which is expressed n-1 times, i.e. in each group mate of i. 
 

In order to achieve genetic progress, it is important that the total breeding value 
(Box 1.2, Equation 3) is estimated accurately. This will contribute to higher rates of 
genetic gain. Studies using DGE-IGE models have focussed on the trait survival time 
to reduce mortality due to cannibalism in laying hens. However, shortcomings of 
these DGE-IGE models are that censored records were considered as exact lengths 
of life and models assumed that IGE were continuously expressed by all cage 
members, irrespective of whether they were alive or dead. However, the cage 
composition changes when individuals die and IGE can no longer be expressed by 
this individual. Neglecting censoring and timing of IGE expression may reduce the 
accuracy of estimated breeding values. In Chapter 3, we considered four models to 
predict survival time in laying hens. One model was an analysis of survival time and 
the three other models treated survival in consecutive months as a repeated 
binomial trait. These three models can incorporate censoring and timing of IGE 
expression. The aim was to investigate whether the accuracy of estimated breeding 
values was improved using the repeated measures models compared to the model 
analysing survival time. 
 

1.2.2 T2 and associated parameters. 

In classical genetic theory, the heritability is a measure that indicates which part of 
the phenotypic variation in a population is due to heritable variation. It is an indicator 
of a trait’s potential to respond to selection. As an analogy, the total heritable 
variation ( ��

�  can be expressed relative to the phenotypic variance ( �
�  of a social 

interaction trait, referred to as � (Bergsma et al., 2008). The ��
�  can be larger or 

smaller than expected based on predictions considering DGE only. When the sum of 
�
��
�  and ����

 yields a positive value, the ��
�  will be larger 

compared to considering DGE alone. When this sum yields a negative value (i.e. when 
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����
 is sufficiently negative), the ��

�  will be smaller compared to considering DGE 

alone. Also, the phenotypic variance is affected by IGE (Box 1.3). 
 
Knowledge of these genetic parameters underlying a trait is required in order to 
estimate breeding values. In other words, it requires the separation of phenotypic 
(co-)variances into variance components, e.g. (in-)direct genetic (co-)variances. The 
availability of these parameters will, moreover, provide more insight in the potential 
contribution of IGE to selection response. In this thesis, genetic parameters of 
plumage condition (Chapter 2) and survival time (Chapter 3 and Chapter 4) are 
presented. 
 

Box 1.3. T2 and associated parameters 

 

T2 is an analogy of the heritability and is expressed as to total heritable variation 
relative to the phenotypic variance: 
 

�
���
�

��
�   ④ 

 
with, 
 

��
�

��
�

����
�
��
�   ⑤ 

 
where, ��

�  is the direct genetic variance, ����
 the direct-indirect genetic 

covariance, and ��
�  the indirect genetic variance. The ����

 is a measure for the 

relationship between DGE and IGE. For example, if individuals that have a negative 
effect on their group mates on average have better performance, then the  ����

 will 

be negative. 
 
Also, phenotypic variance is affected by IGE: 
 

�
�

��
�

��
�

��
�

��
�

���� ��
�   ⑥ 

 
where, ��

�  is the direct environmental variance, ��
�  the indirect environmental 

variance, and  the average genetic relatedness in a group. 
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1.3 DNA information (SNP Genotypes) 

Genotyping is the process of determining the DNA base pairs for a certain number 
of locations on the genome. It has become a common practice in animal breeding. 
This technique identifies small variations in the DNA within populations, e.g. single-
nucleotide polymorphisms (SNPs). SNPs are single base-pair changes in the DNA that 
occur at specific places. 
 
Knowledge of SNP genotypes provides: 

i) New opportunities to estimate genetic parameters when traits are affected 
by social interactions. 

ii) Opportunities to perform genomic selection: a form of genetic selection 
where all SNP markers are used to select for a specific trait. It relies on the 
idea that all quantitative trait loci (QTL) are in linkage disequilibrium with at 
least one SNP marker. 

iii) Opportunities to perform Genome-Wide Association Studies (GWAS): 
detect associations between markers across the DNA and traits of interest 
with the possibility to identify causal genes that reveal more about the 
underlying biology of a specific phenotype. This could also be useful in 
genomic selection, e.g. giving more weight to the relevant SNPs. 

 
1.3.1 New opportunities to estimate genetic parameters 

Separate estimation of DGE and IGE is not always possible. Using pedigree 
information, DGE and IGE can only be estimated when hens are housed in groups 
composed of multiple families (Bijma, 2011; Ellen et al., 2008; Muir, 2005). Layer 
breeding organizations, however, often use recurrent testing, where hens are 
housed in sire-family groups and dam pedigree is unknown. In this scenario, DGE and 
IGE are fully confounded. In this case, a sire model can be used to estimate the total 
breeding value of the sire, which is the linear combination of the sire DGE and the 
sire IGE (Peeters, 2015). 
 
Thus, there are two issues: 

- The dam pedigree is unknown. 
- Separate estimation of DGE and IGE is not possible using pedigree 

information.  
 
Genomic information may solve both issues. First, genomic information will provide 
the opportunity to reconstruct the dam pedigree. With this reconstructed pedigree, 
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it is possible to distinguish full-sibs from half-sibs. This, in turn, may allow the 
separate estimation of DGE and IGE, even when a group has the same sire (but not 
the same dam). Second, genomic information provides information on the actual 
genetic relationship between individuals (VanRaden, 2008; Yang et al., 2010). Actual 
genetic relationships between individuals vary around their expected value based on 
pedigree information because of linkage and Mendelian sampling (Hill & Weir, 2011). 
It is expected that total breeding value prediction can be improved using the actual 
genetic relationships calculated from genomic data. (Meuwissen, 2007). 
 
Thus, genomic information may provide new opportunities for estimation of genetic 
parameters when traits are affected by social interactions. In Chapter 4 it was, 
therefore, investigated whether DGE and IGE of survival time can be estimated 
separately for crossbred laying hens housed in sire-family groups using genomic 
information. 
 
1.3.2 Genomic selection 

Many traits have successfully been improved using selection based on phenotypes 
and pedigree information. Genetic progress depends on the selection intensity, the 
accuracy of selection, the genetic variation, and the generation interval. However, 
genetic progress has been limited by a long generation interval or limited accuracy 
for traits that are expressed late in life, are difficult to measure (e.g. behavior), or 
traits that cannot be measured on selection candidates (sex-limited traits like egg 
production; Meuwissen et al., 2001; Muir, 2007). 
 
Increasing the accuracy of selection and selection intensity, and reducing the 
generation interval can enhance genetic progress. Genomic data provides 
opportunities for this because: 

- Genomic data provides information on actual genetic relationships 
between individuals rather than expected genetic relationships using 
pedigree information (Yang et al., 2010). It is, therefore, expected that the 
accuracy of selection will increase compared to using pedigree information. 

- Genomic data is available early in life, which makes it possible to 
differentiate between individuals at young age, regardless of sex or lack of 
phenotypic information. This could reduce the generation interval for traits 
that are difficult to measure or measured late in life. Survival time and 
plumage condition (this thesis) are typical examples of traits that are 
measured late in life. 
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For this reason, using genomic selection is increasingly implemented in laying hen 
breeding. For socially-affected traits like plumage condition and survival time in 
laying hens, it is clear that both DGE and IGE are important (e.g. Ellen et al., 2008; 
Peeters et al., 2012; Alemu et al., 2016). Genomic selection methods should, 
therefore, be extended to include IGE as well. 
 
For genomic selection, a reference population is required. Both phenotypes and 
genotypes are available for individuals in a reference population. In order to perform 
genomic selection on survival time and/or plumage condition in laying hens, a 
specific reference population needs to be established. Namely, purebred hens that 
are kept to collect phenotypes on eggs, are housed in single-bird cages. However, 
cannibalistic interactions only occur in groups. Hence, setting up a reference 
population may be challenging. 
 
Alternatively, family groups could be used to estimate total genomic breeding 
values. In Chapter 4, we used recurrent test data, where crossbred hens are kept in 
sire-family groups. The genotype of the sires was available and we could, therefore, 
fit a genomic selection model that yields sire total genomic breeding values. The aim 
of Chapter 4 was to investigate whether genomic information of the sires increased 
the accuracy of total breeding values compared with using pedigree information. The 
chapter focussed on survival time in laying hens showing cannibalism. 
 
1.3.3 Genome-Wide Association studies 

Genome-Wide Association Studies (GWAS) are widely applied to a variety of traits 
and populations, but have been mainly focussed on DGE. Results from GWAS on DGE 
show that most quantitative traits in livestock are highly polygenic, and that variants 
tend to be associated with more than one trait (pleiotropy; Hill et al., 2008). The 
genetic architecture of IGE may, however, differ from the genetic architecture of 
DGE. With IGE, the phenotype of other individuals are affected rather than the 
phenotype of the individual itself (i.e. DGE). Selection targets such IGE only in the 
presence of feed-back mechanisms, using e.g. group selection or kin selection (Bijma 
and Wade, 2008). IGE may, therefore, be less exposed to natural selection or artificial 
selection when not accounting for social interactions. In other words, selection has 
not exhausted variation due to IGE. It is, therefore, expected that some loci may have 
large IGE (Denison et al., 2013). 
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However, only a handful of studies extended GWAS to include IGE (e.g. Biscarini et 
al., 2010; Mutic and Wolf, 2007; Baud et al., 2018). Biscarini et al. (2010) conducted 
a GWAS using only 1022 SNPs. They identified 81 SNPs for IGE associated with 
plumage condition in laying hens. The number of observations used in Biscarini et al. 
(2010) was also limited; 662 laying hens originating from 9 lines were used for 
analyses. Mutic and Wolf (2007) found 13 QTL for IGE associated with size, 
developmental, and fitness related traits in Arabidopsis. They analysed SNPs for IGE 
that were already associated with DGE to maximize the power of IGE detection, but 
ignored potential other SNPs with IGE. More recently Baud et al. (2018), performed 
a GWAS on 170 different behavioural, physiological, and morphological phenotypes 
in nearly 2000 mice. Among those 170 phenotypes, authors identified 21 SNPs 
associated with IGE for 17 phenotypes. With the exception of Baud et al. (2018), the 
genetic architecture of social interaction traits remains largely unknown. 
 
In Chapter 5, the aim was, therefore, to identify SNPs associated with direct and 
indirect effects for survival time in laying hens that show cannibalism. Moreover, 
GWAS results from analyses of survival time versus using repeated measures models 
(Chapter 3) were compared. 
 

1.4 Summary thesis outline 

This thesis is part of the STW-project entitled “Genomic solutions for socially-
affected traits: Genetic architecture and improvement of survival in cannibalistic 
laying hens”. The aim of the project was to increase our understanding of the genetic 
architecture of socially-affected traits. This thesis focussed on the genetics of 
socially-affected traits in laying hens and  can be separated in roughly three sections 
and two traits (survival and plumage condition): 

1. Genetic parameter estimation (Chapter 2-4) 
2. Breeding value prediction (Chapter 3-4). 
3. Genome Wide Association Study (Chapter 5). 

 
Moreover, in the general discussion (Chapter 6), I address the following three topics: 

1. Scientific relevance: here I discuss the most important findings of this thesis. 
2. Data quality issues: here I discuss the use of phased data in GWAS on 

crossbred layers. 
3. Societal relevance: here I discuss the importance of including DGE and IGE 

in layer breeding programs to reduce mortality due to cannibalism in laying 
hens. 
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Abstract 

Feather pecking is a major welfare issue in the laying hen industry that leads to 
mortality. Due to a ban on conventional cages in the EU and on beak trimming in 
some countries of the EU, feather pecking will become an even bigger problem. Its 
severity depends both on the victim receiving pecking and on its group mates 
inflicting pecking (indirect effects), which together determine plumage condition of 
the victim. Plumage condition may depend, therefore, on both the direct genetic 
effect of an individual itself and on the indirect genetic effects of its group mates. 
Here, we present estimated genetic parameters for direct and indirect effects on 
plumage condition of different body regions in two purebred layer lines, and 
estimates of genetic correlations between body regions. 
 
Feather condition scores (FCS) were recorded at 40 weeks of age for neck, back, 
rump and belly and these four scores were added-up into a total FCS. A classical 
animal model and a direct-indirect effects model were used to estimate genetic 
parameters for FCS. In addition, a bivariate model with mortality (0/1) was used to 
account for mortality before recording FCS. Due to mortality during the first 23 
weeks of laying, 5363 (for W1) and 5089 (for WB) FCS records were available. 
 
Total heritable variance for FCS ranged from 1.5% to 9.8% and from 9.8% to 53.6% 
when estimated respectively with the classical animal and the direct-indirect 
effects model. The direct-indirect effects model had a significantly higher 
likelihood. In both lines, 70% to 94% of the estimated total heritable variation in 
FCS was due to indirect effects. Using bivariate analysis of FCS and mortality did not 
affect estimates of genetic parameters. Genetic correlations were high between 
adjacent regions for FCS on neck, back, and rump but moderate to low for belly 
with other regions. 
 
Our results show that 70% to 94% of the heritable variation in FCS relates to 
indirect effects, indicating that methods of genetic selection that include indirect 
genetic effects offer perspectives to improve plumage condition in laying hens. 
This, in turn could reduce a major welfare problem. 
 
Key words: laying hens, feather score, indirect genetic effects, plumage condition 
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2.1 Introduction 

Feather pecking (FP) is a major welfare issue in commercial laying hens. Depending 
on the severity of the pecking it can result in feather loss or damage, or skin or 
muscle injuries (Savory, 1995). If the latter results in death, FP is referred to as 
cannibalism (Blokhuis and Arkes, 1984). When hens are not beak trimmed, the 
incidence of cannibalistic FP is higher in non-cage systems than in cage systems 
(Fossum, 2009). Since the beginning of 2012, cage systems have been prohibited in 
the European Union and the problem of FP is expected to increase (Rodenburg et 
al., 2012). Therefore, it is necessary to find a solution to prevent or reduce FP, 
especially when beak treatments are banned or will be banned in the future. 
 
FP is a multi-factorial problem caused by both animal-related and environmental 
factors (Hughes and Duncan, 1972). A common procedure to limit the 
consequences of FP is beak trimming. There are plans to ban beak trimming since 
this procedure has welfare implications, such as chronic pain (Gentle et al., 1990). 
In some European countries, beak trimming is already prohibited or regulated (Van 
Horne and Achterbosch, 2008). Other management solutions could be feed-related 
(Van Krimpen et al., 2005). Furthermore, it has been shown that FP behaviour can 
be influenced by light intensity (Kjaer and Vestergaard, 1999), provision of floor 
litter (Blokhuis, 1986), group size (Bilčik and Keeling, 2000), and stocking density 
(Nicol et al., 1999). So far, there are no management solutions that can completely 
prevent FP. An additional measure to reduce FP is genetic selection (Rodenburg et 
al., 2010; Kjaer and Sørensen, 2001). 
 
FP is a social interaction phenomenon, that involves both the victim that receives 
the pecking and its group mates that inflict the pecking (Buitenhuis et al., 2003; 
Biscarini et al., 2010; Keeling et al., 2004; Riber and Forkman, 2007). When traits 
are affected by social interactions among group members, the genetic effects that 
underlie individual phenotypes can be partitioned into a direct genetic effect (DGE) 
of the genotype of the individual itself, and the indirect genetic effects (IGE) of the 
genotypes of its group mates (Griffing, 1967; Moore et al., 1997; Wolf et al., 1998; 
Bijma et al., 2007a; Bijma et al., 2007b; Muir, 2005). IGE can contribute to the 
heritable variation in a trait. For example, in laying hens showing cannibalistic 
behaviour, IGE contribute 33% to 87% of the total heritable variation in survival 
time (Ellen et al., 2008; Peeters et al., 2012). Genetic selection for survival time, 
using a selection method that takes IGE into account, could reduce FP behaviour. 
Unfortunately, survival time is only known at the end of the laying period. 
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Therefore, it is necessary to define a trait that can be collected early in the laying 
period and that is correlated with FP behaviour. 
 
To measure FP, behavioural observations are needed. However, several authors 
have used a feather condition score (FCS) to assess plumage condition as an 
alternative to behavioural observations (Hughes and Duncan, 1972; Allen and 
Perry, 1975; Bilčik and Keeling, 1999). Damage to the plumage is strongly related to 
the incidence of severe FP behaviour (Bilčik and Keeling, 1999). One disadvantage 
of using FCS instead of direct observations of pecking behaviour is that one can 
only detect the victim of FP and not the animal that actually inflicts the pecking. 
However, using methods that take IGE into account allows us to estimate both the 
breeding value for pecker-effect (the IGE) and for the victim-effect (the DGE) in 
group-housed laying hens (Muir, 2005; Bijma, 2010a). Estimating a breeding value 
for the pecker-effect is less accurate than using behavioural observations but, in 
animal breeding, it is not feasible to record a behavioural observation for each 
individual but it is possible to estimate DGE and IGE for each individual. 
 
So far, most studies that focus on the plumage condition of laying hens have 
ignored the effect of group mates. However, it is expected that IGE contribute 
significantly to the heritable variation of plumage condition in laying hens, 
especially in the case of damaging behaviour such as FP. To improve plumage 
condition in laying hens, knowledge of the genetic parameters for both direct and 
indirect effects is required. 
 
In the present study, genetic parameters of plumage condition in laying hens were 
estimated using a classical animal model and a model that combined both direct 
and indirect genetic effects. Plumage condition was measured on four body 
regions; neck, back, rump and belly using the FCS. In addition, genetic correlations 
between the different body regions were estimated. 
 

2.2 Methods 

For this study, data from the experiment that is described in Ellen et al. (2008) were 
used except that FCS were used instead of survival time data. The main 
characteristics are summarized below. Further details are in Ellen et al. (2008). 
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2.2.1 Population and pedigree 

Data were collected under control of Institut de Sélection Animale B.V., the layer 
breeding division of Hendrix Genetics. Hendrix Genetics complies with the Dutch 
law on animal wellbeing. Data on two purebred White Leghorn layer lines were 
provided by the Institut de Sélection Animale B.V.. The two lines were coded W1 
and WB. Data from line WF were not used in this study because fewer observations 
were available for this line and its mortality due to cannibalism was low (in 
comparison with the other two lines), which would lead to inaccurate genetic 
parameters for direct and indirect effects of survival time (Ellen et al., 2008). 
 
Within a line, sires and dams were mated at random. Matings were done in two 
batches with a six-month time period between the two batches. Sires used for both 
batches were largely the same (89% for line W1 and 94% for line WB), while dams 
were all different. For each batch, sires (36 of line W1 and 35 of line WB) were 
mated to approximately eight dams each, and each dam contributed on average 
12.3 female offspring. For both lines, observations from a single generation were 
used. Chickens of both lines were hatched in two batches and each batch consisted 
of four consecutive age groups that differed by a two-week period each. All 12 192 
chickens had intact beaks. 
 
2.2.2 Housing 

When the hens were on average 17 weeks old, they were transported to two laying 
houses with traditional four-bird-battery cages. The two batches were each placed 
in separate laying houses, termed 1 and 2. In both laying houses, the 17-week-old 
hens were randomly allocated to laying cages, with four birds of the same line and 
age in a cage. The individuals making up a cage were combined at random, without 
taking size of the hens into account. In both laying houses, cages were grouped into 
eight double rows. Each row consisted of three levels (top, close to the light; 
middle; and bottom). A feeding trough was in front of the cages, and each pair of 
back-to-back cages shared two drinking nipples. A standard commercial layer diet 
and water were provided ad libitum. 
 
In both laying houses, the hens started with a light period of 9 hours/day. Every 
week the light period was increased by 1 hour until 16 hours/day, when the hens 
were on average 26 weeks of age. 
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2.2.3 Data 

Plumage condition was measured at 40 weeks of age on all hens alive. It was 
measured at eight time points, each separated by a two-week period, starting with 
the oldest hens, so that all birds were measured at the same age. To quantify 
plumage condition, the feather condition score (FCS) described in Bilčik and Keeling 
(1999) was used, as modified by Uitdehaag et al. (2008). The body of the hen was 
divided into four regions: neck, back, rump, and belly. These body regions were 
chosen because they are expected to be the regions to receive the largest number 
of pecks and plumage condition in those regions is less affected by abrasion (Bilčik 
and Keeling, 1999). Each body region was inspected and given a score from 0 
(intact feathers) to 5 (completely denuded area). For further analysis, observations 
with a score 0 or 1 were combined into the score 1 class. FCS were recorded by 
four persons. Before performing the FCS, a single set of 153 birds were scored by 
the four persons to estimate the correlation between scores of different persons 
(between-observer correlation). The between-observer correlation ranged from 
0.84 to 0.94 for neck, back, and rump but from 0.66 to 0.83 for belly (E.D. Ellen, 
unpublished data). 
 
All hens were observed daily. Dead hens were removed, and wing band number, 
cage number, and cause of death were recorded. Cause of death was determined 
subjectively without dissection. Thus for all hens in the dataset, their status alive 
(0) or dead (1) was known at the time of feather scoring. A total of 12 192 hens 
were present in the dataset composed of 5920 hens of line W1 and 6272 hens of 
line WB. Due to mortality during the first 23 weeks of laying, FCS were unavailable 
for 9.4% of the W1 hens and for 18.9% of the WB hens, which resulted in 5363 FCS 
records for line W1 and 5089 for line WB. 
 
2.2.4 Data analysis 

Model 

A preliminary data analysis was performed using the SAS statistical program (SAS, 
2004). The GLM procedure was used to identify significant fixed effects to be 
included in the model for subsequent analysis. Analysis of FCS was done for each 
line and body region separately. The four body regions were summed into a total 
FCS, which was also analysed. The most significant fixed effects identified were the 
interaction between laying house-row-level and the person carrying out the 
scoring. Age and batch were fully confounded with laying house and row, and 
therefore not included in the model. 
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A linear animal model was used in ASReml to estimate genetic parameters for FCS 
(Gilmour et al., 2009). First, genetic parameters were estimated by using a classical 
animal model, 
 

 ① 
 
in which y is a vector of observed FCS; b is a vector of fixed effects, with incidence 
matrix X linking observations to the fixed effects; a is a vector of the breeding 
values, with incidence matrix Z linking the observations on individuals to their 
breeding value; c is a vector of independent random cage effects, with incidence 
matrix V linking the observations to the random cage effect; and e is a vector of 
random residuals. The variance structure of the model terms are: ��  

��  and ��  Matrix A is the matrix of additive genetic 
relationships between individuals based on five generations of pedigree, �� the 
genetic variance, I an identity matrix, �� the cage variance, and �� the residual 
variance. To avoid pedigree errors, hens with an unknown or double identification 
were coded as having an unknown pedigree (n= 63). The observations on these 
hens were included in the analysis to better estimate fixed effects. 
 
Second, genetic parameters were estimated for both the direct and indirect genetic 
effects using a direct-indirect effects model (Muir, 2005; Bijma et al., 2007b), 
 

� � � �  ② 
 
where � is a vector of direct breeding values, with incidence matrix � linking 
observations on individuals to their direct breeding value, � is a vector of indirect 
breeding values, with incidence matrix � linking observations on individuals to the 
indirect breeding values of their group mates (the other three individuals in the 
same cage; see (Muir, 2005)). The covariance structure of the genetic terms is 

�
�  where  is the Kronecker product of matrices, and  

�	
� �	


�	
 �

�  where �	

�  is the direct genetic variance, �

�  is the indirect 

genetic variance, and �	
  is the direct-indirect genetic covariance. 

 
Model comparison 

The classical animal model (Equation 1) and the direct-indirect effects model 
(Equation 2) were statistically compared using a log-likelihood ratio test. The 
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classical animal model was compared with a model without random effects (null 
model) and a model with only a random cage effect to test additive genetic 
variance. The direct-indirect effects model was compared with the classical animal 
model to test indirect genetic (co)variance. 
 
Heritable variation 

In the classical animal model, the heritability is the ratio of heritable variance ( ��) 
and phenotypic variance ( ��): 
 

� �

��
 ③ 

 
In the direct-indirect effects model, the total heritable variance ( ���� ) available for 
response to selection is ���� �	

� �	

� �


�  where n is the 

number of individuals in a group (Bijma et al., 2007a). Phenotypic variance is  

�� �	
� �


� ��  The term  in both expressions refers to the 

 group mates with which the individual interacts. For socially affected traits, 
the ratio of total heritable variance and phenotypic variance ( �) is: 
 

� ����

��
 ④ 

 
A comparison of � and � reflects the impact of IGE on heritable variation. 
 
Selection bias 

Estimates of genetic parameters for single traits such as FCS can be biased when 
the data represent a selected subset of the population (Pollak et al., 1984). In lines 
W1 and WB, the percentage of animals that died before FCS was recorded was 
9.4% and 18.9% respectively. These dead animals can bias the estimated genetic 
parameters, since they are expected to have a higher FCS (more damage). Such 
selection bias can be reduced by using multiple-trait analysis (Pollak et al., 1984). 
For this reason, a bivariate analysis (Equation 5), including both FCS and mortality 
at 40 weeks of age (0/1) was applied to both the classical animal model and the 
direct-indirect effects model. In the bivariate analysis, the model for mortality at 40 
weeks of age (0/1) included only a DGE, since models that included both DGE and 
IGE failed to converge. 
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Genetic correlations 

Genetic correlations between the different body regions were estimated using a 
classical animal and the direct-indirect effects model. To estimate genetic 
correlations using the direct-indirect effects model, the bivariate model of Peeters 
et al. (2012) was used, 
 

,
0

0
0

0

0

0

0

0

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

S

S

S

S

D

D

D

D








+















+















+















+















=









e

e

c

c

V

V

a

a

Z

Z

a

a

Z

Z

b

b

X

X

y

y
⑤ 

 
where subscripts 1 and 2 denote FCS on two different body regions, e.g. neck and 
back. All other terms are the same as for Equation 2. The corresponding covariance 

structure of the genetic terms is 

�	
�	
�

�


 with 

��
� ��� ��� ����
��� ��

� ���� ���
��� ���� ��

� ���
���� ��� ��� ��

�

 

 
Thus there are four genetic variances and six genetic covariances; ���	and ���
  

are the direct and indirect genetic covariances between two body regions, ��	
  

and ��	
  are the genetic covariances between direct and indirect effects of one of 

the body regions, and ��	�
  and ��	�
  are the genetic covariances between the 

direct effect of one body region and the indirect effect of another body region. For 
all body regions and lines, genetic correlations were estimated between the DGE 

��	 , the IGE ��
 , and the TBV (total breeding value) ��� . Correlation ���  

depends on the total heritable variance within body regions ( �����  and ����� ), and 

the total genetic covariance between body regions �����  and is given by  

���
����	�(���)���	�
�(���)���	�
�(���)�����


!"���	
� ��(���)���	
�(���)����


� #"���	
� ��(���)���	
�(���)����


� #
 (Peeters et al., 

2012). 
 
In the bivariate analyses, the random cage effect and residual were also allowed to 
be correlated between body regions. 
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Figure 2.1 FCS of each body region and total FCS for two lines (W1,WB), with corresponding 
SE. 
 

2.3 Results and Discussion 

 
2.3.1 Feather score 

Average plumage condition differed between body regions (Figure 2.1) and 
between the two lines (p < 0.001). Overall, line WB yielded the highest average FCS 
(worst plumage condition), ranging from 1.6 (belly) to 2.3 (neck). Average FCS by 
region for line W1 ranged from 1.1 (rump) to 1.4 (neck). This is in line with results 
of Ellen et al. (2008), who found that average survival was lowest in line WB. 
Overall, the plumage condition was worst for the neck region and best for the back 
region. This is in contradiction with results of Bilčik and Keeling (1999) who used 
the same scoring method, but, in their study, hens were kept in groups of 15 birds. 
They found that plumage condition for the hybrid layer line Hisex white was worst 
for the belly region, and best for the neck and back regions. In addition, they 
showed that, although belly had the worst plumage condition, most peaks were 
targeted at the rump and back. These discrepancies with our results might be due 
to differences in line, age, and housing conditions such as density, size of groups, 
and light intensity. One major difference between the studies is that Bilčik and 
Keeling birds were housed in floor pens, while in the present study birds were 
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housed in conventional cages. In conventional cages, much higher levels of 
abrasion of neck feathers are observed, due to contact with the cage door while 
feeding. The abrasion of neck feathers could stimulate the feather pecking 
behaviour of group mates, which can result in higher levels of neck damage. 
 
The FCS was significantly different between the two laying houses, except for belly 
(p = 0.055). In laying house 2, back and rump had the lowest FCS, whereas in laying 
house 1 neck had the lowest FCS. Line WB had the worst plumage condition in both 
laying houses. Furthermore, significant differences in FCS between the three levels 
of each row and between the corridors were found (Table 2.1), except for the 
effect of level on rump, belly, and total FCS (p > 0.05). Overall, the lowest FCS (best 
plumage condition) were recorded on birds located on the bottom level, whereas 
the highest FCS were recorded on birds on the top and middle levels. Upper levels 
had higher light intensities, which stimulate FP behaviour and thus result in higher 
FCS (worst plumage condition) (Hughes and Duncan, 1972; Ellen et al., 2008). 
Overall, the highest FCS were observed for rows 7 and 8 without any clear 
explanation. 
 
 
Table 2.1 Number of hens (n) and least square means (± SE) for FCS 
 

 n Neck Back Rump Belly Total 

Laying house       
   1 7376 1.80 ± 0.01 1.41 ± 0.01 1.75 ± 0.01 1.44 ± 0.01 6.40 ± 0.03 
   2 4816 1.89 ± 0.02 1.36 ± 0.01 1.50 ± 0.02 1.47 ± 0.01 6.21 ± 0.05 
Level       
   Top1 2400 1.87 ± 0.02 1.39 ± 0.02 1.64 ± 0.02 1.46 ± 0.02 6.36 ± 0.06 
   Middle 4772 1.85 ± 0.01 1.41 ± 0.01 1.64 ± 0.01 1.44 ± 0.01 6.33 ± 0.04 
   Bottom 5020 1.81 ± 0.01 1.36 ± 0.01 1.60 ± 0.01 1.46 ± 0.01 6.23 ± 0.04 
Row       
   1 1096 1.69 ± 0.03 1.19 ± 0.03 1.29 ± 0.03 1.32 ± 0.02 5.49 ± 0.09 
   2 1316 1.57 ± 0.03 1.15 ± 0.02 1.28 ± 0.03 1.41 ± 0.02 5.41 ± 0.08 
   3 1524 1.56 ± 0.02 1.25 ± 0.02 1.41 ± 0.03 1.35 ± 0.03 5.58 ± 0.07 
   4 1648 1.60 ± 0.02 1.23 ± 0.02 1.38 ± 0.02 1.27 ± 0.03 5.48 ± 0.07 
   5 1632 1.83 ± 0.02 1.42 ± 0.02 1.79 ± 0.02 1.52 ± 0.03 6.57 ± 0.07 
   6 1616 1.93 ± 0.02 1.45 ± 0.02 1.79 ± 0.03 1.65 ± 0.03 6.82 ± 0.07 
   7 1700 2.11 ± 0.02 1.63 ± 0.02 2.07 ± 0.02 1.62 ± 0.03 7.44 ± 0.07 
   8 1660 2.43 ± 0.02 1.78 ± 0.02 1.99 ± 0.03 1.49 ± 0.03 7.68 ± 0.07 
 

Least square means are shown for the fixed effect levels in the model for analysis of FCS of 
different body regions (neck, back, rump, belly) and total FCS. FCS is feather condition score, 
for each body region FCS ranges from 1 to 5, and total FCS ranges from 4 to 20; 1only laying 
house 1. 
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2.3.2 Genetic parameters 

Classical animal model 

Table 2.2 shows the results of the likelihood ratio test. For all lines and body 
regions, including a random cage effect or a random animal effect improved the 
goodness of fit significantly (all P-values < 0.001 or < 0.01, respectively). Table 2.3 
and Additional file 2.1: Table S2 show the estimated genetic parameters obtained 
with the classical animal model. Using univariate analysis, heritabilities (h2) for FCS 
of the different regions and for total FCS were low, ranging from 1.5 to 9.8%. In 
previous studies, h2 estimates for total FCS ranged from 22 to 54% (Craig and Muir, 
1989; Damme and Pirchner, 1984; Kjaer and Sørensen, 1997). To our knowledge, 
no h2 estimates for separate body regions have been reported in the literature. 
 
There are several reasons that could explain the difference in heritabilities between 
the present and previous studies. In the present study, FCS were recorded when 
the hens were 40 weeks of age, whereas in previous studies, they were recorded 
when hens were between 51 and 56 weeks of age (Craig and Muir, 1989; Kjaer and 
Sørensen, 1997). Kjaer and Sørensen (1997) reported that h2 of FP behaviour 
(inflicting and receiving FP) increased when hens grew older (69 weeks compared 
to 38 weeks). Using younger birds could explain the lower h2. 
 
A second reason for the lower h2 observed in this study relates to the use of 
individual records vs. records pooled by cage. We used individual records on four 
random hens of the same line kept in one cage, while Craig and Muir (1989) used 
the average FCS of cages of three full sibs, which has two effects. First, it averages 
residuals over cage members, which reduces residual variance �̄� ��  and thus 
increases heritability. Second, as demonstrated by Peeters et al. (2013), the 
analysis of cage averages yields an estimate of the total heritable variation ���� , 
rather than of the ordinary (direct) additive genetic variance �� . Thus, the 
estimate of Craig and Muir (1989) refers to ����  instead of ��.Together, those 
effects may explain the substantially higher h2 found by Craig and Muir (1989). 
 
Direct-Indirect Effects Model 

Statistical comparison of the direct-indirect effects model (Equation 2) and the 
classical animal model (Equation 1), showed a significant improvement of the 
goodness of fit for both lines and for all body regions (Table 2.2; all p-values < 
0.001 except p = 0.13 for belly in line W1), providing evidence for indirect genetic 
effects on FCS for almost all body regions. 
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Table 2.3 and Additional file 2.1: Table S1 show the estimated genetic parameters 
obtained with the direct-indirect effects model. Except for the direct-indirect 
genetic correlations, most of the genetic parameters were significantly different 
from zero for both lines. As expected, the standard deviation of the direct breeding 
value �	  for the different body regions was of similar magnitude as � from the 

classical animal model (see Additional file 2.1: Tables S1 and S2). The magnitude of 

�	  is not affected, because groups are composed of non-relatives (Peeters et al., 

2013). Overall, estimates for �	  and �
  were highest in line WB. For all body 

regions in both lines, the standard deviation of the total breeding value ���  was 
1.3 to 4.0-fold larger than �	, which indicates substantial indirect genetic effects. 

Again, line WB yielded the highest ���. For the body regions with significant IGE, 
non-direct genetic effects explained 70 (neck line W1) to 94% (rump line WB) of the 
total heritable variation in FCS (Table 2.4). In both lines, the contribution of non-
direct genetic effects was highest for the rump region, explaining approximately 
93% of the total heritable variation. Using univariate analysis, the total heritable 
variance expressed as the proportion of phenotypic variance (T2) ranged from 9.8 
to 53.6% (Table 2.3). Line WB yielded the highest T2. 
 
In this study, line WB had the lowest FCS, whereas line W1 had the highest FCS. 
Therefore, it was expected that the contribution of indirect effects would be 
highest in line WB, because FCS depends on the behaviour of group mates. The 
estimates of genetic parameters for direct and indirect effects found here were 
indeed in line with those expectations. Furthermore, estimated genetic parameters 
were in agreement with the results of Ellen et al. (2008), who showed that the total 
heritable variation in survival time was substantially larger than suggested by the 
classical animal model. The estimated breeding values obtained in our analysis also 
provide an elegant way of discriminating between individuals that inflict FP and 
have high EBV for indirect effects, and individuals that are victims of FP and have 
high EBV for direct effects, as was previously suggested by Biscarini et al. (2010). 
 
Bivariate analysis with mortality 

Estimating genetic parameters using the bivariate classical animal model and the 
bivariate direct-indirect effects model, both with mortality (0/1) at 40 weeks of 
age, did not result in significant changes of the estimated genetic parameters 
compared to the univariate analyses (Table 2.3). Comparing log likelihoods of the 
bivariate model with a model in which the variance components were fixed to the 
estimates obtained from the univariate analysis, did not change the log likelihoods 
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Table 2.2 Model comparison for analysis of FCS using a likelihood ratio test 
 

  Cage3 Classical4 Direct-indirect5 

Line Region LR1 P 

(vs null 2) 

LR P 

(vs cage 3) 

LR P  

(vs classical4) 

W1 Neck 604.0 <0.001 64.8 <0.001 16.3 <0.001 
 Back 209.2 <0.001 70.4 <0.001 22.9 <0.001 
 Rump 1025.4 <0.001 8.5 0.004 11.5 <0.001 
 Belly 326.2 <0.001 105.2 <0.001 4.1 0.128 
 Total 862.3 <0.001 83.7 <0.001 29.5 <0.001 
WB Neck 1220.9 <0.001 156.3 <0.001 48.9 <0.001 
 Back 1124.8 <0.001 45.2 <0.001 66.2 <0.001 
 Rump 1698.9 <0.001 57.7 <0.001 66.6 <0.001 
 Belly 401.0 <0.001 55.8 <0.001 15.4 <0.001 
 Total 1565.2 <0.001 132.8 <0.001 90.7 <0.001 
 

Model comparison was done for FCS in different regions of the body and for the total FCS in 
two lines (W1, WB); 1LR is the likelihood ratio test (LR is two times the difference in log 
likelihood between the complex model and the less complex model); 2null is a model 
without random effects; 3Cage is a model with only a random cage effect; 4Classical is a 
model with an additive genetic effect and a random cage effect (Equation 1); 5Direct-indirect 
is a model with both direct and indirect genetic effects (Equation 2). 
 
Table 2.3 Estimates of heritability from classical animal model (h2 ± SE) and direct-indirect 
effects model (T2 ± SE) for FCS 
 

Line Region 2
univariateh  

2
bivariateh  

2
univariateT  

2
bivariateT  

W1    Neck 0.059 ± 0.015 0.056 ± 0.014 0.195 ± 0.077 0.187 ± 0.074 
    Back 0.074 ± 0.018 0.077 ± 0.019 0.257 ± 0.083 0.237 ± 0.077 
    Rump 0.015 ± 0.007 0.015 ± 0.007 0.098 ± 0.066 0.094 ± 0.063 
    Belly 0.079 ± 0.018 0.077 ± 0.017 0.143 ± 0.061 0.134 ± 0.058 
    Total 0.060 ± 0.014 0.060 ± 0.014 0.251 ± 0.089 0.249 ± 0.089 
WB    Neck 0.098 ± 0.018 0.102 ± 0.020 0.371 ± 0.117 0.406 ± 0.121 
    Back 0.052 ± 0.014 0.048 ± 0.013 0.349 ± 0.110 0.397 ± 0.114 
    Rump 0.048 ± 0.012 0.046 ± 0.012 0.456 ± 0.131 0.482 ± 0.133 
    Belly 0.063 ± 0.017 0.068 ± 0.017 0.253 ± 0.091 0.255 ± 0.090 
    Total 0.095 ± 0.018 0.093 ± 0.017 0.536 ± 0.140 0.588 ± 0.145 
 

Estimates are shown for FCS in each body region and for total FCS in two lines (W1, WB); h2 
is the heritability obtained with the classical animal model using an univariate model 

)( 2
univariateh  or a bivariate model with mortality )( 2

bivariateh ;T2 is the total heritable variance 

expressed as a proportion of the phenotypic variance obtained with the direct-indirect 

effects model using an univariate model )( 2
univariateT  or a bivariate model with mortality 

)( 2
bivariateT ; FCS is feather condition score, for each body region FCS ranges from 1 to 5, and 

total FCS ranges from 4 to 20.  
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Table 2.4 Contribution of direct and indirect genetic effects to total heritable variation of FCS 
 

 Contribution to the total heritable variation1 (%) 
Line Region Direct2 Indirect3 Covariance4 Total non-

direct5 
W1    Neck 30.5 56.0 13.5 69.5 
    Back 29.4 57.2 13.4 70.6 
    Rump 8.4 98.4 -6.8 91.6 
    Belly 55.6 34.9 9.4 44.4 
    Total 22.0 68.9 9.1 78.0 
WB    Neck 20.6 94.8 -15.4 79.4 
    Back 7.5 114.7 -22.2 92.5 
    Rump 6.3 96.0 -2.3 93.7 
    Belly 27.5 50.7 21.8 72.5 
    Total 10.1 106.6 -16.7 89.9 
 

Contribution of direct genetic effects (direct), indirect genetic effects (indirect), the 
covariance between direct and indirect genetic effects (covariance), and total non-direct 
genetic effects (total non-direct) to total heritable variation of FCS in different body regions 
for two lines (W1, WB); 1Total heritable variation ���� �	

� �	
� �

� ; 2direct = �	

� ; 3indirect = �

� ; 4covariance = �	
; 5total non-direct 

= �	

� �


� ). 
 
substantially (data not shown). Therefore, for this dataset, it is not necessary to use 
bivariate analyses with mortality to estimate genetic parameters for FCS of the 
different body regions. 
 
Genetic correlations between body regions 

Estimates of genetic correlations from the direct-indirect effects model are in Table 

2.5 and Additional file 2.1: Table S3. In both lines, genetic correlations ���  were 

positive. The highest estimated genetic correlations were found between adjacent 
regions, whereas the lowest estimates were found between any region and belly 
(except for neck-belly in line WB). So far, there are no studies that report genetic 
correlations for FCS between different body regions. In previous studies, FCS of 
different body regions were combined and analyses were done on the total FCS  
(Craig and Muir, 1989; Damme and Pirchner, 1984; Kjaer and Sørensen, 1997). In 
the present study, the high genetic correlations between adjacent regions (neck, 
back, and rump) suggest that these regions could be combined into a single total 
FCS. The on average low genetic correlations with belly damage suggest that belly 
is a distinct trait (except for neck-belly in line WB, which suggests that neck and 
belly could be combined in a single FCS for this line). FP in the belly region may be 
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Table 2.5 Estimates of genetic correlations between total breeding values for FCS 
 

 Region 
Region Neck Back Rump Belly 
Neck   0.81 ± 0.13 NC1 0.52 ± 0.24 
Back NC1  >0.99 0.34 ± 0.25 
Rump 0.87 ± 0.07 0.95 ± 0.04  0.70 ± 0.24 
Belly 0.85 ± 0.13 0.72 ± 0.15 0.46 ± 0.19  
 

Estimates of genetic correlations between total breeding values )( 12T
r  for FCS are shown for 

the four body regions, and for the two lines, line W1 (above diagonal) and line WB (below 
diagonal); 1NC = not converged. 
 
closely related with cannibalistic vent pecking. Vent pecking and FP are caused by 
different internal and external factors (Savory, 1995). Furthermore, FP is thought to 
be a redirected foraging behaviour (Blokhuis, 1986), whereas vent pecking seems 
to be a separate form of damaging behaviour (Savory, 1995; Newberry, 2004). In 
addition, when comparing the contribution of direct effects to the total heritable 
variation (Table 2.4), belly has a larger contribution of direct effects than the other 
body regions, while the contribution of indirect effects is lower for belly. This could 
indicate that a different behaviour is associated with pecking on the belly. 
Therefore, the belly region should be analysed separately and should not be 
included in the total FCS, as also reported by Parmentier et al. (2009). Furthermore, 
Bilčik and Keeling (1999) showed that feathers of the belly were pulled out more 
easily, which might overestimate the FCS due to FP. 
 
2.3.4 Effect of person recording FCS 

FCS was recorded by four persons, which could introduce bias due to incomplete 
correlation of FCS scores. The phenotypic correlation between observers was 
greater than 0.84 for neck, back, and rump, but was as low as 0.64 for belly (data 
not shown). The largest difference in means of the persons recording FCS was 
found for neck (for further details see Additional file 2.1: Table S4). Adams et al. 
(1978) reported a mean correlation of 0.88 between total FCS recorded by three 
persons. 
 
To investigate the effect of the person recording the FCS on genetic parameters:  
(1) heterogeneity of residual variance was evaluated by fitting a separate residual 
variance for person and (2) genetic correlations between persons were estimated 
using the classical animal model (data not shown). Accounting for heterogeneous 
residual variances did not change the estimated genetic parameters. Therefore, 
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homogeneous residual variance was assumed. Genetic correlations of total FCS 
between persons were greater than 0.80 for both lines, which indicates only minor 
differences in FCS between persons at the genetic level. 
 
2.3.5 Future breeding program 

In this study, we showed that a substantial part of the total genetic variation in 
plumage condition of different body regions in two purebred layer lines is due to 
IGE. Accounting for IGE in the genetic analysis showed that total heritable variation 
was up to 9-fold greater than suggested by results of the classical animal model. 
Thus, using breeding programs that exploit the heritable variation due to IGE can 
considerably accelerate response to selection on FCS. In previous studies, FP was 
significantly related with lower FCS (Bilčik and Keeling, 1999; Kjaer and Sørensen, 
2001). Since FP can result in death (referred to as cannibalism) (Blokhuis and Arkes, 
1984), it is worthwhile to investigate whether FCS at 40 weeks of age can be used 
as a predictor for survival at the end of the laying period. In this study, we showed 
that genetic correlations are high between FCS for adjacent body regions, whereas 
FCS for belly can be considered as a distinct trait, which suggests that neck, back, 
and rump can be combined into a total FCS. However, before drawing this 
conclusion, it is important to investigate whether total FCS, total FCS (without 
belly), or separate body regions can be used as predictor for survival at the end of 
the laying period. This could contribute to reducing an important welfare problem 
in laying hens. Regardless, both breeding and management solutions should be 
applied to prevent FP. 
 
Measuring the plumage condition by recording FCS is time-consuming. Moreover, 
laying hens need to be at least 40 weeks before FCS can be recorded, and FCS 
measured on selection candidates is not very useful, because selection candidates 
are housed individually. Hence, selection would have to be based on sib or progeny 
information. These obstacles can be overcome by using genomic selection 
(Meuwissen et al., 2001; Wolc et al., 2011). Our results clearly show that genetic 
improvement of plumage condition cannot rely on DGE only. Therefore, genomic 
selection methods must be extended to accommodate IGE. A challenge is how to 
design a reference population that is suitable for genomic selection on plumage 
condition and survival time in laying hens. 
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2.4 Conclusions 

Social interactions have a substantial effect on plumage condition in laying hens. 
This study shows that, for the different body regions (neck, back, rump, and belly), 
the total heritable variance of FCS, expressed as the proportion of the phenotypic 
variance (T2) ranges from 9.8 (rump line W1) to 53.6% (total FCS). A substantial 
part, 70 to 94%, of the total heritable variation relates to IGE. Thus, it is expected 
that including both direct and indirect effects in a genetic selection program will 
contribute to a reduction in FP behaviour, one of the major welfare issues in the 
laying hen industry. 
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Abstract 

Minimizing bird losses is important in the commercial layer industry. Selection 
against mortality is challenging because heritability is low, censoring is high, and 
individual survival depends on social interactions among cage members. With 
cannibalism, mortality depends not only on an individual’s own genes (direct 
genetic effects; DGE) but also on genes of its cage mates (indirect genetic effects; 
IGE). To date, studies using DGE-IGE models have focussed on survival time but 
their shortcomings are that censored records were considered as exact lengths of 
life and models assumed that IGE were continuously expressed by all cage 
members even after death. However, since dead animals no longer express IGE, IGE 
should ideally be time-dependent in the model. Neglecting censoring and timing of 
IGE expression may reduce accuracy of estimated breeding values (EBV). Thus, our 
aim was to improve prediction of breeding values for survival time in layers that 
present cannibalism. 
 
We considered four DGE-IGE models to predict survival time in layers. One model 
was an analysis of survival time and the three others treated survival in consecutive 
months as a repeated binomial trait (repeated measures models). We also tested 
whether EBV were improved by including timing of IGE expression in the analyses. 
Approximate EBV accuracies were calculated by cross-validation. The models were 
fitted to survival data on two purebred White Leghorn layer lines W1 and WB, each 
having monthly survival records over 13 months. 
 
Including the timing of IGE expression in the DGE-IGE model reduced EBV accuracy 
compared to analysing survival time. EBV accuracy was higher when repeated 
measures models were used. However, there was no universal best model. Using 
repeated measures instead of analysing survival time increased EBV accuracy by 10 
to 21 and 2 to 12% for W1 and WB, respectively. We showed how EBV and variance 
components estimated with repeated measures models can be translated into 
survival time. 
 
Our results suggest that prediction of breeding values for survival time in laying 
hens can be improved using repeated measures models. This is an important result 
since more accurate EBV contribute to higher rates of genetic gain. 
 
Key words: laying hens, repeated measures, survival, indirect genetic effects 
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3.1 Introduction 

Minimizing bird losses in the commercial layer industry is important, both from 
welfare and economic points of view. Thus, selection against mortality has been of 
interest to researchers (Craig and Muir, 1996;Muir, 1996; Ellen et al., 2014) but has 
not always been effective (Preisinger, 1998). Genetic improvement of mortality in 
poultry breeding is challenging for several reasons. In addition to having a low 
heritability, one of the main complications is that the time until death is often not 
observed because most laying hens are still alive at the end of the recording period 
(Lagakos, 1979; Ducrocq et al., 2000). Hence, only a lower bound of the true 
survival time is known for most hens, which is referred to as censoring (Lagakos, 
1979). Excluding censored records from analyses or considering the lower bound as 
the actual record is expected to reduce the accuracy of estimated breeding values 
(EBV). 
 
The fact that commercial laying hens live in groups complicates selection for lower 
mortality even more. Group housing allows social interactions between group 
members, such that survival time in laying hens might be adversely affected by 
harmful social behaviours such as feather pecking (Savory, 1995; Rodenburg et al., 
2013). In these cases, survival time depends on both the genes of the potential 
victim (known as the direct genetic effect; DGE) and on the genes of its cage mates 
(known as the indirect genetic effect; IGE) (Muir, 1996; Moore et al., 1997; Wolf et 
al., 1998; Muir, 2005; Bijma et al., 2007a. Bijma et al., 2007b). In other words, the 
environment that individuals experience contains a heritable component (IGE), 
expressed by the cage mates. Such IGE can affect response to selection 
considerably and neglecting IGE when selecting for lower mortality can even result 
in a negative response to selection (Craig and Muir, 1996; Griffing, 1967). 
 
Ellen et al. (2008) and Peeters et al. (2012) investigated the contribution of IGE to 
heritable variation in survival time of laying hens. These two studies used a DGE-
IGE linear mixed model to estimate genetic parameters. Shortcomings of this 
model are that censored records were considered as exact lengths of life and it 
assumed that IGE were continuously expressed by all individuals in a cage, 
irrespective of whether they were alive or dead. The latter assumption is invalid 
because cage composition changes over time due to death of animals, as dead 
animals no longer express IGE on their cage mates. Thus, to increase the accuracy 
of estimates of DGE and IGE for survival time, methods that can cope with 
censoring and timing of IGE expression should be explored. 
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Ellen et al. (2010) investigated opportunities of survival analysis models with DGE 
and IGE to account for censoring. Survival analysis models exploit information on 
both censored and uncensored records properly by accounting for the non-linearity 
of survival time data and can also include time-dependent effects (Kalbfleisch and 
Prenctice, 1980; Ducrocq and Casella, 1996). Ellen et al. (2010) used a two-step 
approach that combined survival analysis and a DGE-IGE linear mixed animal model 
for survival time because it was not possible to estimate the variance of correlated 
genetic effects with existing survival analysis software. However, Ellen et al. (2010) 
showed that the accuracy of EBV was not improved with the two-step approach 
compared to the DGE-IGE linear mixed animal model for data in which all surviving 
animals were censored at the same time. 
 
Several other statistical techniques for analysing survival data have been proposed 
that can consider censoring and time-dependent effects, including repeated 
measures models (Madgwick and Goddard, 1989; Jairath et al., 1998; Veerkamp et 
al., 2001; Schaeffer, 2004; Jamrozik et al., 2008). In repeated measures models, a 
survival indicator is used to circumvent censoring. Survival is measured as a 
binomial trait (0/1), which indicates that an individual is dead (0) or alive (1) at 
specific time points (Jamrozik et al., 2008), or that an individual has survived or not 
during a specific time period (Veerkamp et al., 2001). In the first case, survival has 
no missing records, whereas in the second case, records for time periods after 
death of an individual are set to missing. The trait definition differs in each 
approach since the method of Jamrozik et al. (2008) approximates the survival 
function of the proportional hazard model, whereas the method of Veerkamp et al. 
(2001) approximates the hazard function of the proportional hazard model. 
Modelling the hazard function enables to estimate covariances between 
independent time intervals whereas modelling the survival function enables to 
estimate covariances between cumulative averages of time intervals (Van Pelt et 
al., 2014). 
 
In a study on survival in dairy cows, Veerkamp et al. (2001) found that the repeated 
measures model was robust to censoring since the correlations between EBV from 
uncensored and randomly censored data were high. Ødegård et al. (2006) 
confirmed this finding in a comparative analysis of different models for survival 
data in Atlantic salmon. They showed that the repeated measures model had a 
greater predictive ability than survival analysis (Ødegård et al., 2006). Thus, 
repeated measures models appear to be an appropriate tool for analysing survival  
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Figure 3.1 Percentage of survival of layer chickens for lines W1 and WB throughout the 
experiment (max = 13 months). 
 

 

Figure 3.2 Hazard function λ(t) of layer chickens for lines W1 and WB throughout the 
experiment (max = 13 months). 
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data since they can account for censoring and timing of IGE expression. However, 
to date, the potential of repeated measures models for estimating DGE and IGE on 
survival time has not been investigated. 
 
The aim of this study was to improve prediction of breeding values for direct and 
indirect effects on survival time in two purebred White Leghorn layer lines in which 
the level of mortality was high due to cannibalism (Ellen et al., 2008). For this 
purpose, we compared EBV for survival (0/1) from repeated measures models to 
EBV for survival time from a linear mixed model. The predictive ability of EBV from 
both models was assessed by cross-validation. 
 

3.2 Methods 

 

3.2.1 Populations and pedigree 

Data were collected under the control of the Institut de Sélection Animale B.V. 
(ISA), the layer breeding division of Hendrix Genetics. Hendrix Genetics complies 
with the Dutch law on animal welfare. ISA provided data on two purebred White 
Leghorn layer lines, denoted W1 and WB (Ellen et al., 2008). 
 
For each line, matings between sires and dams were randomly assigned and 
occurred in two batches with a 6-month interval. For each batch, each sire (36 for 
line W1 and 35 for line WB) was mated to approximately eight dams, resulting in an 
average of 12.3 female offspring per dam. Each batch was partitioned into four age 
groups that differed in age by 2 weeks. Laying hens had intact beaks. 
 
3.2.2 Housing 

Laying hens of the same age were randomly allocated to four-bird battery cages 
approximately 17 weeks after hatching. Each batch was transported to a different 
laying house, coded as 1 and 2. The laying houses had eight double rows of cages 
and each row comprised three levels (top, middle, and bottom). Hens in laying 
house 2 were not placed on the top level. A standard commercial layer diet and 
water were provided ad libitum in the front and back parts of each cage, 
respectively. Light intensity was stronger in laying house 2 than in laying house 1 
(Ellen et al., 2008). Further details are in Ellen et al. (2008). 
 
3.2.3 Data 

Dead hens were removed daily. After death, wing band number, cage number, date 
of death, and cause of death were recorded. The latter was done subjectively by 
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the employees of ISA without dissection. The study was terminated when hens 
were on average 75 weeks old. In total, 59% W1 and 54% WB laying hens survived 
(Figure 3.1). Survival rates of W1 and WB hens differed most during the first 4 
months of the experiment (Figure 3.2). Most hens died because of cannibalism; 
only 37 W1 and 15 WB hens died for other reasons, e.g. some hens were killed by 
mink. Observations on hens that died for other reasons were removed from the 
dataset because the objective was to investigate death from cannibalism. However, 
the identification numbers were retained in their cage mates’ observations for IGE 
modelling. 
 
Survival time was defined as the number of days from entry in the laying house to 
death. Since each batch consisted of four age groups that differed in age by 2 
weeks, the maximum number of survival days differed between age groups. Thus, 
the maximum number of survival days was cut off at 416 days, which is the 
maximum survival time of the youngest age group, which means that all hens that 
were still alive at 416 days of age had censored records on survival time. In the 
statistical analysis of survival time, those hens were given a value of 416 days. In 
total, records on 6276 and 6916 hens were used for statistical analysis of survival 
time for lines W1 and WB, respectively. 
 
To define survival, the laying period was divided into 13 months. For each month, 
survival was coded as 1 if the laying hen was alive at the end of that month, and as 
0 if not. Thus, a survival record (0/1) was available for each month. This resulted in 
a total of 81 588 and 89 908 monthly records for lines W1 and WB, respectively.  
 
3.2.4 Statistical models 

Four statistical models were compared: a linear mixed model for survival time, two 
linear mixed models for survival (0/1), and a generalized linear mixed model for 
survival (0/1). Five generations of pedigree were included in all genetic analyses. All 
models were implemented using ASReml (Gilmour et al., 2014). 
 
Survival time model STM 

DGE and IGE for survival time were estimated using a survival time model (STM) 
(Muir, 2005; Bijma, 2007b) with the following linear mixed model: 
 

��� �� ��

�	


���

� ���  ① 
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where yijk is the observed survival time (days) for individual i, with cage mates j, in 
cage k, the fixed term is the fixed effect of the combination of laying house-row-
level, ��

 is the random DGE of individual i, ��
�	

���  is the sum of the n – 1 random 

IGE of the cage mates j, with n denoting cage size at the start of the experiment  
(n = 4), cagek is the random cage effect, and eijk is the residual. Individuals that 
were still alive at the end of the recording period were assigned a survival time 
record of 416 days. Genetic effects were assumed to follow a normal distribution 

N(0,C A), with 
�

�
��

�� ��

� , the Kronecker product of matrices , a 

relationship matrix A, direct genetic variance �

� , indirect genetic variance ��

� , and 

direct-indirect genetic covariance ��
. 

 
Residuals of cage members may be correlated because of non-heritable indirect 

effects, with: �� ��

�
�
� (Bijma, 2007b). In cases where cage 

members are ‘similar’, i.e. when ρ is positive, a random cage effect can be fitted 
instead of fitting correlated residuals, with ����

�
�� ��

�
�
�. 

Based on a previous study (Ellen et al., 2008), the correlation was estimated to be 
positive, and a random cage effect was therefore fitted in this study. The cage 
effect cannot be fitted as a fixed effect because the indirect genetic variance is not 
statistically identifiable when a fixed cage effect is included (Cantet and Cappa, 
2008). 
 
Repeated measures model RMM.t 

Monthly survival (0/1) was analysed using a repeated measures model that 
included random DGE and IGE regressions on time (hence RMM.t) based on a sire-
dam model. No genetic effects for intercept were fitted, because there is no 
phenotypic variation at the start of the experiment (t = 0), since all hens were alive 
at time 0. After that, phenotypic variance in survival increases over time until it 
reaches a maximum at 50% mortality, and then declines again. In this experiment, 
mortality was less than 50%, so phenotypic variance only increased over time. This 
increase in variance over time is consistent with a model with random regressions 
on time, for which the variance is proportional to the square of time. The model 
with random regressions on time was: 

����� ���
� ����

�	


���

� �� � � � �

�����  
 

② 
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where yijklm is the observed survival (0/1) for individual l, offspring of sire-dam 
combination i, with cage mates from sire-dam combination j, in cage k, at time tm 

measured in months since entry of the experiment, the fixed term is the fixed 
interaction effect of laying house-row-level, which was fitted with a sixth-order 

polynomial of time, 
iDsdA  is the DGE of the sire-dam combination as a function of 

time, ����

�	

���  is the sum of the n-1 IGE of the sire-dam combination of the cage 

mates as a function of time, cagekm is the random effect of cage k at time m, cagek is 
the random effect of cage k as a function of time, PEl is the random permanent 
environmental effect of individual l as a function of time, tm is the time, and eijklm is 
the residual. A separate residual variance was estimated for each month. The DGE 
and IGE were allowed to be correlated. Sire-dam effects were assumed to follow a 

normal distribution N(0,C A), with 
���

�
������

������
����

� , direct genetic sire-

dam variance ���

� , indirect genetic sire-dam variance ����

� , and direct-indirect 

genetic sire-dam covariance ������
. 

 
This model contains two random cage effects: one is a random cage effect at each 
time, cagekm, and the other, � �, is a random regression on time. The cagekm 
effect accounts for covariances among cage members at specific time points. A 
single variance was estimated for this effect. The � � term accounts for 
covariances between records on the same cage at different time points, and for 
increasing variance over time. Both random cage effects were very significant and 
when excluding one or the other, the variance explained by cage was not fully 
covered. 
 
Repeated measures model RMM.p 

The regressions on time in the RMM.t model (Equation 2) imply that variances are 
a quadratic function of time; e.g. � , where a is the genetic 
effect and t is time. However, the true variance for binomial traits equals , 
where p is the probability for an individual to survive until time t. In other words, p 
is the mean survival at time t. A quadratic function of time does not fit a  
function well because the slope of � increases with t, whereas the slope of  

 decreases with p. To better fit the variance, the regression on time was 

replaced by a regression on , so that fitted variances were proportional 

to ; e.g.  In other words, 

monthly survival (0/1) was analysed using a repeated measures model including 
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DGE and IGE regressions on a function of mean survival (RMM.p), rather than on 
time. The model was: 
 

����� ���
� ����

�	


���

� �� � � � �

�����  
 

③ 

where � � � , pm denoting the mean survival at time m. For each 

time m, the pm was calculated separately for each fixed effects class. The other 
terms are the same as for Equation 2. 
 
Generalized linear mixed model GLMM 

To account for the binomial distribution of monthly survival, DGE and IGE for 
survival were estimated using a generalized linear mixed model (GLMM) with a 
logit link function. The GLMM was: 
 

����� ���
����

�	


���

�� �  ④ 

 
where  is the logit link function that links the probability p of surviving to the 
linear predictor, �����  is the probability of survival for individual l, offspring of 

sire-dam combination i, with cage mates from sire-dam combination j, in cage k, at 
time m. The other terms are the same as for Equation 2. 
 
In contrast to the survival models, the GLMM only includes a genetic intercept 
rather than a regression on time. This is because the non-linear link function takes 
the change in variance over time into account. Hence, at the beginning of the 
recording period, the variance of survival probabilities can be (near) zero even 

when �����  is substantially greater than 0. 

 
3.2.5 Time-dependent IGE 

The data structure of the survival models (RMM.t, RMM.p, and GLMM) allows 
inclusion of time-dependent random effects. The composition of the cage changes 
over time because animals die. Thus, we tested if the prediction of breeding values 
could be improved by including timing of IGE expression in the model. For this 
purpose, the cage mates that were alive at the beginning of each month were 
indicated for each monthly survival observation. Hence, in models RMM.t, RMM.p 
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and GLMM, the ����

�	

���  was time-dependent, and included only sires-dam 

combinations of cage mates that were still alive at the beginning of the month. 
Thus, the sires and dams of cage mates that were no longer alive were set to 
missing. For time periods after death of the focal individual, the cage composition 
was kept identical to that at the time of death because these observations were no 
longer impacted by changes in cage composition. 
 
3.2.6 Cross-validation 

The quality of EBV from each model was assessed by cross-validation, which is a 
technique of model validation where the correlation between predicted and 
observed phenotypes serves as a quality measure (Stone, 1974). With this 
procedure, known phenotypes are set to missing, their values are predicted, and 
finally the predicted values are compared to the observed values. In this study, five 
mutually exclusive subsets were created, where survival phenotypes for 
approximately 20% of the cages were removed. Those cages were selected at 
random. These subsets were used to predict the phenotypes of the individuals that 
belonged to the 20% cages that were removed. All fixed effect classes were present 
for each subset. A bivariate analysis in ASReml (Gilmour et al., 2014) of the ranks of 
observed and predicted phenotypes, with a fixed effect for each subset (from 1 to 
5), was used to calculate the Spearman rank correlation and corresponding 
standard error across the five validation sets (Gilmour et al., 2014). We used rank 
correlations because survival phenotypes were unknown for the censored 
individuals (see below). The following sections describe how observed and 
predicted phenotypes were obtained. 
 
Observed and predicted phenotypes 

For the individuals that were not censored, observed phenotypes were the 
observed survival days. First, these were adjusted for fixed effects using a linear 
model with fixed effects only; y=Xb+e with y being a vector of observed survival 
times, X being an incidence matrix linking survival time observations to fixed 
interaction effects of laying house-row-level, b being a vector of the fixed effects, 
and e is the residual term. Hence, the residual of this model represents the 
adjusted phenotypes. For the censored individuals, the observed phenotype is 
unknown but these observations contain important information because they 
correspond to hens with the largest number of survival days. To allow calculation of 
the rank correlation between predicted and observed phenotypes, we followed the 
approach presented in (Ellen et al., 2010), which assumes that censored individuals 
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died in random order after surviving up to 416 days. Under this assumption, 
censored individuals can be given the average rank of all censored individuals. For 
example, when five out of 10 individuals are censored, then the average rank of the 
censored individuals is (6+7+8+9+10)/5 = 8 and all censored individuals are given a 
rank of 8, while uncensored individuals were given their observed rank (after 
correction for fixed effects). 
 
Predicted phenotypes were the rank of predicted survival times of individuals. 

Phenotypes were predicted by combining the estimated DGE ��
 of the 

individual itself and the estimated IGE of its cage mates (n = 3) that were present at 

the start of the experiment ��
 (see Additional file 3.1 for details). 

 
Approximate accuracy 

Based on the method described in Ellen et al. (2010), approximate accuracies of 
EBV were calculated for all models. These were approximations because accuracy 
refers to the ranks rather than to the phenotypic values and EBV themselves. If EBV 
underlying the predicted phenotypes were estimated with an accuracy of 1, the 
expected rank correlation would be: 
 

�
�

�
��

�
�
�  ⑤ 

 
where the numerator is the genetic component of phenotypic variance. The 
approximate accuracy was calculated as: 
 

�� � � �
�  ⑥ 

 

with �  represents the observed phenotype corrected for fixed effects, and � 
represents the predicted phenotype. Genetic parameter estimates from model 

STM were used to calculate � (see Table 3.1). 
 

3.2.7 Genetic parameters 

In addition to EBV, we were interested in estimating genetic parameters for 
survival time, which can, e.g., give an indication of the amount of genetic progress 
that can be made for a trait. To make genetic parameter estimates from the 
different models comparable, they were transformed to the survival time scale, as 
described in the following section for RMM.t. For RMM.p and GLMM, the 
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translation of genetic parameters to the survival time scale involves tedious 
integrals and, thus, genetic parameters from these models are not presented here. 
 
For STM, parameters for survival time follow directly from the estimates. In the 
presence of social interactions, where each individual interacts with n - 1 cage 
mates, the total heritable variance for response to selection is given by (Bijma et 
al., 2007b; Bijma, 2011): 
 

���
�

�

�
��

�
��

�  ⑦ 

 
phenotypic variance equals: 
 

�
�

�

�
��

�
����
�

�
�  ⑧ 

 
and the ratio of heritable variance and phenotypic variance is equal to: 
 

� ���
�

�
�  ⑨ 

 
T2 is an analogy of heritability that expresses the total heritable variance that is 
available for response to selection relative to phenotypic variance (Bijma et al., 
2007a; Bijma, 2011). 
 
To obtain genetic parameters for survival time from the models for monthly 
survival (0/1), survival has to be translated into survival time. Survival time (ST) of 
an individual is the sum of its survival records (S = 0,1) for each day over time, 

� �
 !���
 !� �"    

 
⑩ 

 
where c is a multiplication factor that translates monthly survival (0/1) into days;  
c = 30.4 days. With this relationship it is possible to translate the estimated genetic 
parameters for survival to the survival time scale (See Additional file 3.2). Hence, a 
survival model can be used to estimate genetic parameters and breeding values for 
survival time. 
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3.3 Results and discussion 

 

3.3.1 Cross-validation 

The rank correlations between observed and predicted phenotypes, 

� � �  and the corresponding approximate accuracy ( ��) 

of the four models (STM, RMM.t, RMM.p, and GLMM) are in Table 3.2. Rank 
correlations ranged from 0.135 to 0.162 for line W1, and from 0.170 to 0.190 for 
line WB. Corresponding �� ranged from 0.44 to 0.53 for line W1, and from 0.46 to 
0.52 for line WB. Although rank correlations appear low, they are in fact within our 
range of expectations because if breeding values were predicted with an accuracy 
of 1, the rank correlation would be equal to the square root of the proportion of 

phenotypic variance explained by the genetic variance, i.e. � (Equation 5) (Ellen 

et al., 2010). Using the genetic parameters from STM (Table 3.1), � is equal to 
0.31 and 0.37 for lines W1 and WB, respectively. These values are the upper 
bounds of the rank correlations in Table 3.2. 

 

Model comparison 

Previous studies analysed survival time with an animal model (Ellen et al., 2008; 
Peeters et al., 2012; Ellen et al., 2010). Our objective was to investigate whether 
predictions from such models could be improved, and for this reason, STM was 
analysed with an animal model, while RMM.t, RMM.p, and GLMM were analysed 
with a sire-dam model. Sire-dam models were used because animal models may 
result in biased genetic parameter estimates because of the “extreme category 
problem” when analysing binomial/categorical data (Hoeschele and Tier, 1995). At 
the start of the experiment no variation exists, but as hens start to die the variation 
within classes of fixed effects starts to change. Moreover, for some classes of fixed 
effects, the variation is not apparent until later in the experiment. It is not an 
option to remove these fixed-effect classes because they contain important 
information on survival. Hence, we found sire-dam models more appropriate than 
animal models to predict breeding values and genetic parameters. 
 
To justify these comparisons with STM, we investigated whether analysis of survival 
time using an animal model or a sire-dam model were comparable. Genetic 
parameters of survival time (see STM in Table 3.1) and rank correlations between 
observed and predicted phenotypes (see STM in Table 3.2) were the same for the 
animal model and the sire-dam model. In addition, correlations between EBV that 
were predicted for the cross-validation sets by the animal and sire-dam models 
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were higher than 0.99 for both lines. Thus, sire and animal models for survival time 
gave very similar results. 
 
Comparing EBV from RMM.t, RMM.p, and GLMM with EBV from STM showed that 
accuracies increased for all three models (Table 3.2), by up to 20% for line W1, and 
12% for line WB. Model RMM.p resulted in the highest predictive ability for line W1 
but led to little improvement over STM for line WB. Based on theory, RMM.p was 
expected to improve prediction of breeding values for both lines compared to 
RMM.t because RMM.p fits a variance that better agrees with the true binomial 
variance. However, the results using survival data on line WB were not in line with 
this expectation, which might be caused by differences in survival curves between 
both lines. 
 
A comparison of GLMM with RMM.t indicated that the predictive ability of these 
two models was quite similar, although the GLMM resulted in 1% (line W1) to 3% 
(line WB) greater accuracies than RMM.t. The ranks of predicted phenotypes from 
GLMM and RMM.t were highly correlated: 0.97 for line W1 and 0.98 for line WB 
(Table 3.3), which means that there was almost no re-ranking by using GLMM or  
 
Table 3.1 Estimates of genetic parameters (± SE) for survival time using models STM, RMM.t, 
and RMM.t with time-dependent indirect genetic effects (RMM.t-td) for two layer lines W1 
and WB. 
 

 W1 WB 

 STM RMM.t RMM.t – td STM RMM.t RMM.t – td 

DAσ  28 ± 3 28 ± 3 29 ± 3 41 ± 4 38 ± 4 41 ± 4 

��
 10 ± 2 11 ± 2 33 ± 2 16 ± 3 12 ± 2 20 ± 1 

��
 57 ± 67 57 ± 64 255 ± 129 -158 ± 120 -111 ± 87 -311 ± 112 

��� 45 ± 8 46 ± 7 109 ± 8 55 ± 9 46 ± 8 58 ± 7 

� 107 ± 1 107 ± 1 114 ± 1 135 ± 1 123 ± 1 128 ± 1 
� 0.18 ± 0.06 0.19 ± 0.06 0.93 ± 0.11 0.16 ± 0.05 0.14 ± 0.05 0.21 ± 0.05 

� 0.20 ± 0.22 0.19 ± 0.20 0.26 ± 0.13 -0.24 ± 0.18 -0.24 ± 0.19 -0.38 ± 0.13 
 

Estimates of genetic parameters are provided for survival time in days for both W1 and WB 
lines. �

, ��
, and ��

 are the direct genetic standard deviation, indirect genetic standard 
deviation, and direct-indirect genetic covariance. ��� is the total genetic standard 
deviation, � is the phenotypic standard deviation, T2 is the total heritable variance relative 
to the phenotypic variance, and � is the genetic correlation between direct and indirect 
genetic effects. Additional file 3.1 describes the procedure to translate genetic parameters 
of RMM.t to survival days. 
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RMM.t to predict breeding values. This is in line with other studies that found no 
advantage of analysing binomial/categorical data with binomial/categorical models 
compared to using linear models (Olesen et al., 1994; Vazquez et al., 2009). 
 
Survival analysis is a commonly used method to deal with censoring and time-
dependent effects (Kalbfleisch and Prentice, 1980; Ducrocq and Casella, 1996). 
However, it is not possible to estimate the variance for correlated genetic effects 
with the current software for survival analysis. Veerkamp et al. (2001) used a 
method that approximates survival analyses by analysing survival as dead (0), alive 
(1) or missing (for time periods after the death of an individual) with a repeated 
measures model regressed on time and an intercept. This is different from our 
study, in which we coded survival as either dead (0) or alive (1), without missing 
records, following Jamrozik et al. (2008). The method of Veerkamp et al. (2001) has 
similarities with the hazard function used in survival analysis. For our data, we 
found that rank correlations obtained with the method of Veerkamp et al. (2001) 
were lower than those obtained with RMM.t, RMM.p and GLMM and were similar 
or lower than those obtained with STM. When coding survival as dead (0), alive (1) 
or missing, rank correlations were equal to 0.132 and 0.157 for lines W1 and WB. 
 
Ellen et al. (2010) explored the potential of survival analysis by applying a two-step 
approach that combined survival analysis and STM. Similar to the Veerkamp et al. 
(2001) method, the Ellen et al. (2010) method approximates survival analysis. 
Applying the method of Veerkamp et al. (2001) to our data yielded results that 
were in line with those of Ellen et al. (2010), who observed no improvement in rank 
correlations using the two-step approach compared to STM. 
 
Time-dependent IGE 

Including timing of IGE expression in the repeated measures models had a 
substantial negative effect on rank correlations; compared to the results obtained 
with STM, rank correlations decreased by 12 and 64% for lines WB and W1, 
respectively (Table 3.2). Lipschutz-Powell et al. (2012) performed a simulation 
study to investigate whether DGE-IGE models applied to infectious disease data 
could accommodate the dynamic nature of such data. The non-infected individuals 
in Lipschutz-Powell et al. (2012) are equivalent to dead individuals in our study, 
since both traits do not express the IGE. Lipschutz-Powell et al. (2012) found that 
accounting for timing of IGE expression in the DGE-IGE model inflated the variance 
for IGE, similar to what we observed (Table 3.1). They indicated that the problem 
probably arises from the fact that modification of the incidence matrices that link 
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observations to IGE directly depends on the observations (2012). As a 
consequence, a considerable amount of the phenotypic variance will be explained 
by IGE and IGE variance will be overestimated. Other methods to incorporate 
timing of IGE expression need to be explored. 
 
Censoring 

Our results indicate that it is important to use methods that incorporate censoring 
when analysing survival time. With STM, only a lower bound of the true survival 
time is known for censored records, which results in reduced accuracy. In the 
repeated measures models, this problem was circumvented by using a survival 
indicator, i.e. dead (0) or alive (1) at a given time. In this case, accuracy of 
predictions of breeding values increased by up to 20 and 12% for lines WB and W1, 
respectively, compared to accuracies from STM. In this study, censored records 
were obtained at the same time for all individuals, which is often the case in layer 
breeding programs. Censoring at various times during the laying period will result 
in different accuracies compared to what was presented in this study. We 
investigated the effect on predicted breeding values when 50% of the censored 
individuals were censored half way during the laying period using STM and RMM.t. 
Compared to analyses where all hens were censored at the same time, rank 
correlations using STM decreased by 16 to 25%, while rank correlations using 
RMM.t decreased by only 3 to 6% (results not shown). Thus, RMM.t was more 
robust to censoring at various times than STM. Similar results are expected for 
RMM.p and GLMM compared to STM. Thus, the benefits of RMM.t, RMM.p, and 
GLMM observed here are conservative estimates because all individuals were 
censored at the same time. 
 
3.3.2 Genetic parameters 

Estimates of genetic parameters for DGE and IGE from STM (Equation 1) and 
RMM.t (Equation 2) are in Table 3.1. Genetic parameters were expressed on the 
survival time scale (See Additional file 3.1), which demonstrates that it is possible 
to translate the variance components estimated with RMM.t to STM. Genetic 
parameters of survival time were very similar for the two models but prediction of 
breeding values was improved by using RMM.t compared to STM. 
 
Estimates of genetic parameters for the same data were slightly different than 
those reported in Ellen et al. (2008). The total heritable variance relative to the 
phenotypic variance, T2, was estimated at 19% in Ellen et al. (2008), and 18% in our 
study. In our study, the maximum number of survival days was cut off at 416 days, 
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which was the maximum survival time of the youngest age group. In Ellen et al. 
(2008), the maximum survival time was 447 days. Furthermore, Ellen et al. (2008) 
included the average survival time of the back neighbours as a fixed covariate 
because hens shared drinking nipples. In our study, the fixed effect of survival of 
the back neighbours was excluded because this effect may indirectly result from 
the focal cage itself; if a back neighbour effect exists, then mortality in the focal 
cage will affect mortality of back neighbours, and vice versa, creating a feedback 
loop. Consequently, fitting a fixed effect for mortality of back neighbours might 
indirectly correct for the mortality observed in the focal cage itself, at least partly. 
 
As in the study of Ellen et al. (2008), covariances between direct and indirect 
genetic effects were positive for line W1 and negative for line WB. As described by 
these authors, with death due to cannibalism it is expected that the covariance 
between DGE and IGE will be negative because of strong competition. A positive 
covariance would mean that hens benefit from not harming others (Bijma et al., 
2007b). However, in our study, covariance estimates were not significantly 
different from zero. 
 

3.4 Conclusions 

Our results indicate that including timing of IGE expression in analysis of survival 
reduces the accuracy of EBV for survival. Moreover, our results show that repeated 
measures models improve accuracy of EBV for survival time in laying hens. 
Although there was no universal best method, accuracies of EBV increased by up to 
20 and 12 % for lines WB and W1, respectively. Thus, it is important to use 
methods that can incorporate censoring when analysing survival data, such as using 
a repeated measures model instead of a general linear mixed model to analyse 
survival data. This is an important finding since more accurate EBV contribute to 
increased rates of genetic gain. 
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Abstract 

Mortality of laying hens due to cannibalism is a major problem in the egg-laying 
industry. Survival depends on two genetic effects: the direct genetic effect of the 
individual itself (DGE) and the indirect genetic effects of its group mates (IGE). For 
hens housed in sire-family groups, DGE and IGE cannot be estimated using pedigree 
information, but the combined effect of DGE and IGE is estimated in the total 
breeding value (TBV). Genomic information provides information on actual genetic 
relationships between individuals and might be a tool to improve TBV accuracy. We 
investigated whether genomic information of the sire increased TBV accuracy 
compared with pedigree information, and we estimated genetic parameters for 
survival time. A sire model with pedigree information (BLUP) and a sire model with 
genomic information (ssGBLUP) were used. We used survival time records of 7290 
crossbred offspring with intact beaks from four crosses. Cross-validation was used to 
compare the models. Using ssGBLUP did not improve TBV accuracy compared with 
BLUP which is probably due to the limited number of sires available per cross (~ 50). 
Genetic parameter estimates were similar for BLUP and ssGBLUP. For both BLUP and 
ssGBLUP, total heritable variance (T2), expressed as a proportion of phenotypic 
variance, ranged from 0.03 ± 0.04 to 0.25 ± 0.09. Further research is needed on 
breeding value estimation for socially affected traits measured on individuals kept in 
single-family groups. 
 
Key words: BLUP, laying hens, social interactions, ssGBLUP, total genetic effect 
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4.1 Introduction 

Mortality of laying hens due to cannibalism is one of the major welfare and economic 
problems in the egg-laying industry (Hocking et al., 2004). An increase in mortality is 
expected, because cage systems are banned within the European Union since 2012 
and beak trimming is expected to be banned in 2018. There is therefore an urgent 
need for methods to reduce cannibalism in laying hens. Genetic selection, alongside 
improved management, is a promising tool that can lead to a gradual but permanent 
reduction of cannibalism (Craig and Muir, 1996). 
 
Cannibalism is affected by social interactions among individuals. With social 
interactions, the phenotype of an individual depends on two genetic effects: the 
direct genetic effect (DGE) of the genotype of the individual itself and the indirect 
genetic effect (IGE) of the genotype of its group mates (e.g. Griffing, 1967; Muir, 
2005; Bijma et al., 2007a). An IGE is therefore a heritable effect of an individual on 
phenotypes of its social partners. The use of methods that consider only DGE when 
performing genetic selection on traits affected by social interactions may yield 
unfavourable results and have sometimes even resulted in selection responses in the 
opposite direction (Muir et al., 2013). To improve traits affected by social 
interactions, it is therefore important to consider both DGE and IGE. 
 
Indirect genetic effects contribute 33 - 76% of the heritable variance in survival time 
in purebred and crossbred laying hens (Ellen et al., 2008; Peeters et al., 2012). When 
hens are housed in groups composed of multiple families, then DGE and IGE can be 
estimated from genetic relationships between individuals, using pedigree 
information (Muir, 2005; Ellen et al., 2008). Layer breeding companies, however, 
often use recurrent testing, where hens are housed in sire-family groups and dam 
pedigree is unknown. When hens are housed in sire-family groups, DGE and IGE 
cannot be estimated separately using pedigree information, because DGE and IGE 
are fully confounded. Layer breeding companies use a sire model instead, where the 
total genetic effect of the sire can be estimated. The total genetic effect is the linear 
combination of the sire DGE and the sire IGE and is the quantity relevant for response 
to selection (Peeters, 2015). 
 
Genomic data provide information on the actual genetic relationships between 
individuals (Yang et al., 2010). Actual genetic relationships between individuals vary 
around their expected value based on pedigree information because of linkage and 
Mendelian sampling (Hill and Weir, 2011). It is therefore expected that total genetic 
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effect predictions can be improved using actual genetic relationships calculated from 
genomic information (Meuwissen, 2007). Moreover, in recurrent test data where 
only the sire pedigree is known, the dam pedigree can be reconstructed from 
genomic data. Hence, this reconstructed pedigree distinguishes full-sibs from half-
sibs, which may allow estimation of DGE and IGE even when cage mates all have the 
same sire (but not the same dam). 
 
The aim of this study was to evaluate the potential benefit of using genomic 
information in estimation of genetic parameters and breeding values for total 
genetic effects for survival time of laying hens kept in sire-family groups. We used 
phenotypic data on survival time (days) of four crossbred layer populations with 
intact beaks, and genomic data on both the crossbreds and their parents. First, we 
investigated whether direct and indirect genetic parameters could be estimated 
from the reconstructed dam pedigree or from the actual genomic relationships. 
However, the majority of these analyses did not converge and we therefore used a 
sire model which directly estimates the total breeding value. Estimates from a sire 
model using genomic information were compared to those from a sire model using 
pedigree information. We used cross-validation to assess predictive abilities of both 
models. As a second objective, we present estimates of genetic parameters for 
survival time in crossbred laying hens with intact beaks, for which few estimates are 
available at present. 
 

4.2 Materials and methods 

 

4.2.1 Genetic stock and pedigree 

Data on four crossbred White Leghorn layer lines were provided by Institut de 
Sélection Animale (ISA) B.V., the layer breeding division of Hendrix Genetics. Hendrix 
Genetics complies with the Dutch law on animal well-being. Crossbreds descended 
from one sire line (W1) and four dam lines (WA, WB, WC and WD). The four crosses 
were coded W1*WA, W1*WB, W1*WC and W1*WD. 
 
A total of 209 sires and 4275 dams were used, with 48-57 sires per cross (Table 4.1). 
Each sire was mated to approximately twenty randomly selected dams, resulting in 
approximately two female offspring per dam. The sire pedigree was recorded for all 
offspring. Dam pedigree was unknown. 
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4.2.2 Housing conditions 

Chickens of the four crosses hatched simultaneously in the Netherlands. One-day old 
chickens were vaccinated, wing banded, and transported to Canada. During rearing, 
chickens were kept in seven pens containing approximately 2000 chickens each. 
Chickens of the same cross were placed in the same pen. Chickens had intact beaks. 
Chickens were transported to a laying house at approximately 17 weeks of age. The 
laying house consisted of two wings: wing 1 and wing 2. In each wing, rows were 
grouped into six double rows containing two levels (top and bottom), with a corridor 
between each double row to allow access to cages. In each wing, hens were allocated 
to battery cages. Each cage contained five individuals of the same sire because this 
allows the egg-laying industry to measure the number of eggs per sire. Thus, cage 
mates were either paternal half-sibs or full-sibs. A feeding trough was in front of the 
cages and each cage had its own drinking nipples. Hens were fed a standard 
commercial layer diet. The diet and water were provided ad libitum. The light period 
was 10.5 h/day at 16 weeks of age, and increased every week by 1/2 h, until 15 h/day. 
The light intensity was higher at the top level compared with the bottom level due 
to closer proximity to light sources. 
 
4.2.3 Data 

Individual survival (dead or alive, 1/0) was recorded daily. Dead hens were removed 
and not replaced. The study was terminated when hens were approximately 75 
weeks of age. Survival time was defined as the number of days from the start of the 
laying period until either death or the end of the study, with a maximum of 402 days. 
Hence, hens that were alive at the end of the laying period received a survival time 
of 402 days. Cages with less than five hens and cages with mistakes in composition 
were removed from the dataset. Table 4.1 summarizes the data used for analyses. 
 
4.2.4 Genotyping and SNP quality 

Institut de Sélection Animale genotyped parents using DNA extracted from blood. 
Birds were genotyped using a custom-made Illumina 60 K chicken SNP BeadChip, 
which has 52 232 SNPs across chromosomes 1 through 28, Z, W, two unmapped 
linkage groups and some unassigned. PLINK (Purcell et al., 2007) was used for the 
quality control of genotypes. SNPs with a missing rate > 0.30, MAF < 0.005, SNPs with 
no physical position on the genome, SNPs located on sex chromosomes, and SNPs 
that did not have all genotypes present in the data were removed. Individuals with 
a call rate < 90% were also removed. The number of genotyped sires and number of 
SNPs available after quality control for each cross are shown in Table 4.1. 
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Table 4.1 Breeding scheme of four crossbred layer lines and number of genotypes1 
 

Cross        

Sire 

line 

Dam 

line 

n #Cages #Sires #Dams #Maternal 

grandsires 

#Genotyped 

sires 

#SNP 

W1 WA 1930 386 54 1097 53 51 34 411 
W1 WB 1940 388 57 1146 69 55 35 222 
W1 WC 1670 334 48 993 56 42 34 649 
W1 WD 1750 350 50 1039 80 48 34 942 

 

1Number of sires and dams used and total number of crossbred offspring are shown for 
crosses W1*WA, W1*WB, W1*WC and W1*WD. The number of genotyped sires and number 
of SNPs available are also shown. 
 
4.2.5 Statistical analysis 

Data were analysed separately for each cross, because average mortality differed 
clearly between crosses (see Results). First, we investigated whether direct and 
indirect genetic parameters could be estimated separately. This might be feasible, 
because reconstruction of the dam pedigree or the use of actual genomic 
relationships creates variation in relatedness among cage mates, which is required 
to separate DGE and IGE (Peeters, 2015). Hence, we fitted an animal model with both 
DGE and IGE, using either a pedigree relationship matrix or a genomic relationship 
matrix. However, most ReML analyses failed to converge. We therefore moved to 
sire models, using either genomic or pedigree relationships, which were 
implemented in ASReml (Gilmour et al., 2014). 
 
Pedigree-based sire model (BLUP) 

The model was, 
 

  ① 
 
where  is a vector of individual survival time records (days),  a vector of fixed 
effects of the row, level and wing of the laying house;  a vector of sire breeding 
values,  a vector of random cage effects, and  a vector of residuals. ,  and  are 
design matrices. All random effects, including the residuals, were assumed to be 
normally distributed. The covariance structures for model terms were: 

��  ��  and ��, where  is a pedigree relationship matrix 
including five generations of pedigree, �� is the sire variance,  an identity matrix, 

�� the cage variance, and �� the residual variance. 
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As cage mates had the same sire, the sire effect estimated from this model contains 
both the direct genetic effect (AD) and the indirect genetic effect (AI) of the sire and 
is an estimate of the total breeding value ( �) of the sire (Peeters, 2015), 
 

�
� �

�
� � �   ②

 
where  denotes group size (  = 5 here). Thus, the sire variance is an estimate of one 
quarter of the total genetic variance, 
 

1
4 �

1
4 � �

2
   ③

 
where ���  ( �� ) is the direct (indirect) genetic variance and ��  is the covariance. 

The total genetic variance represents the potential of a population to respond to 
selection (see Bijma et al., 2007b) The random cage effect was fitted to account for 
non-genetic covariance between phenotypes of cage members, and to avoid 
overestimation of the genetic variance. 
 
Single-step sire model (ssGBLUP) 

As genotypes were lacking for 13 sires, data were analysed by combining genomic 
and pedigree information using the single-step procedure (ssGBLUP). The model is 
similar to Equation 1 except that relationship matrix  was replaced by the single-
step relationship matrix  (Aguilar et al., 2010; Christensen and Lund ,2010). �� 
was constructed with calc_grm (Calus, 2015), using the method of Aguilar et al. 
(2010) and Christensen and Lund (2010), 
 

  ④

 

where  is the genomic relationship after regressing it to the pedigree relationship 

matrix, 22, with =0.80 for line W1*WA, =0.95 for lines 

W1*WB, W1*WC, and W1*WD.  was constructed following Yang et al. (2010). 
 
Cross-validation 

Cross-validation was used to validate estimated total breeding values (TBV) of sires 
from the two models. With this procedure, known phenotypes are set to missing, 
their values are predicted, and the correlation between predicted and observed 
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values measures the quality of the predictions. Mutually exclusive subsets were 
created by setting offspring phenotypes of a single sire to missing, resulting in 54 
subsets for W1*WA, 57 for W1*WB, 48 for W1*WC, and 50 for W1*WD (Table 4.1). 
 
For hens still alive at the end of the laying period, true phenotypes were unknown. 
These individuals still provide important information as they had the highest survival 
time. To make as few assumptions as possible on their order of death, we followed 
Ellen et al. (2010). In summary, it was assumed that censored animals died in random 
order after surviving up to 402 days. Under this assumption, censored animals can 
be given the average rank of all censored animals. 
 
Observed phenotypes for uncensored individuals were simply the ranks of observed 
survival time corrected for fixed effects � ), which were estimated using a linear 
model with only fixed effects. Hence, we used ranks instead of phenotypes to 
combine information on both censored and non-censored individuals (Ellen et al., 
2010). Note that the objective was to validate estimated total breeding values (TBV) 
of sires. When cages consist of half-sibs, the sire TBV surfaces in the average 
phenotype of the cage (Ellen et al., 2007; Peeters, 2015). Thus, validation was based 

on the average ranks of cages ( �
�
��

��� � ; � is the 

number of individuals within each cage, �=5), rather than on individual 
phenotypes. Therefore, the final observed phenotype of a sire ( ���) was the average 

of the cage-average ranks of its offspring ( ���
�
��

��� � � is the number 

of cages per sire). The predicted phenotype ( ) of a sire was the rank of half the 
estimated TBV of the sire. 
 
Approximate accuracies of estimated TBV of sires were calculated for both models 
from the Pearson correlation of predicted and observed ranks (hereafter rank 
correlation; Ellen et al., 2010). The expected rank correlation is approximately the 
product of the accuracy of the estimated TBV and the correlation between the true 
TBV and the phenotype. Thus, the approximate accuracy of estimated TBV of sires 
( �� was calculated by dividing the rank correlation by the correlation between the 
true TBV of the sire and the mean phenotype of its offspring ( ), 
 

, ⑤
 
Where 
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�2
�2 �2 ��� �2 �� �⁄ , ⑥

 
where � is the average number of cages per sire ( �=7.2 for WA, 6.8 for WB, 7.0 for 
WC and 7.0 for WD). The numerator of Equation 6 represents the variance in progeny 
averages due to the sire and the denominator the total variance of progeny averages, 
and estimates were taken from BLUP. Note that the latter does not affect model 
comparison, as the same value was used for both models. 
 

4.3 Results and Discussion 

 
4.3.1 Survival and survival time 

Large differences in survival time (days) and survival (%) were found between the 
four crosses (Figure 1, Table 4.2). Cross W1*WC had the lowest survival (63.1 ± 1.2%) 
and lowest mean survival time (324 ± 3 days). Cross W1*WA had the highest survival 
 
Table 4.2 Number of birds (n), average survival time1 (d) with SE and mean survival rate2 (%) 
with SE of four crossbred layer lines and fixed effects 
 

 n Survival time 1 (d) Survival2 (%) 

Cross    
   W1*WA 1930 364.6 ± 2.0 78.3 ± 0.9 
   W1*WB 1940 349.8 ± 2.4 75.1 ± 1.0 
   W1*WC 1670 324.0 ± 3.0 63.1 ± 1.2 
   W1*WD 1750 543.3 ± 2.6 78.0 ± 1.0 
Wing    
   1 2335 353.8 ± 2.1 76.0 ± 0.9 
   2 4955 346.6 ± 1.6 72.9 ± 0.6 
Row    
   1 905 349.7 ± 3.6 74.7 ± 1.4 
   2 1150 360.6 ± 2.8 78.3 ± 1.2 
   3 1100 355.8 ± 2.9 75.7 ± 1.3 
   4 1160 350.9 ± 3.1 73.7 ± 1.3 
   5 1290 338.4 ± 3.3 71.0 ± 1.3 
   6 1285 347.5 ± 3.0 72.8 ± 1.2 
   7 400 327.1 ± 6.5 67.8 ± 2.3 
Level    
   1 2885 337.0 ± 2.2 69.3 ± 0.9 
   2 4405 356.7 ± 1.5 76.9 ± 0.6 

 

1Survival time is the average number of days from the start of the study (on average 17 weeks 
old) till either death or the end of the study. 2Survival rate is the percentage of laying hens still 
alive at the end of the study. 
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 (78.3 ± 0.9%) and highest mean survival time (365 ± 2 days). These results agree with 
previous studies showing that feather pecking differed between strains or breeds 
(Hughes and Duncan, 1972; Hocking et al., 2004) and that layer lines differ in survival 
and survival time (Ellen et al., 2008; Peeters et al. 2012; Alemu et al. 2016). Peeters 
et al. (2012) reported a higher mortality in crossbred lines compared with purebred 
lines. In their study, a higher mortality in crossbred lines was found compared with 
our study. 
 
Differences in survival and survival time were found between wings, levels and rows 
of the laying house (Table 4.2). The top level had a lower survival and survival time 
than the bottom level. Previous studies have shown that light intensity affects 
survival and survival time of laying hens (e.g. Hughes and Duncan, 1972). In our 
study, the top level was in closer proximity to light sources, which might have caused 
the lower survival and survival time compared with the bottom level. 
  

Figure 4.1 Survival curve of four crossbred layer lines, W1*WA, W1*WB, W1*WC and W1*WD 
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Table 4.3 Estimates of genetic parameters with SE for total genetic effect on survival time in 
four crossbred layer lines1 using a pedigree-based sire model (BLUP) 

 Parameters2 W1*WA W1*WB W1*WC W1*WD 

�� 50 ± 74 306 ± 169 925 ± 352 594 ± 245 

���  200 ± 297 1225 ± 676 3700 ± 1408 2377 ± 981 

��  14 ± 10 35 ± 10 61 ± 12 49 ± 10 

�� 750 ± 175 1557 ± 281 1896 ± 389 2005 ± 317 

!� 7665 ± 255 11224 ± 391 15067 ± 601 11081 ± 439 
� 0.03 ± 0.04 0.11 ± 0.06 0.25 ± 0.09 0.21 ± 0.09 

1Estimates of genetic parameters are shown for survival time in four crossbred lines W1*WA, 

W1*WB, W1*WC and W1*WD. 2 �� �� ��� !�  are cage variance, genetic variation due 

to sire, total genetic variation ( ��� ��) and phenotypic variation ( !� �� �� ��), 

respectively. T2
 is total heritable variance relative to phenotypic variance; � "#�$

"%$ . 

 
Table 4.4 Estimates of genetic parameters with SE for total genetic effect on survival time in 
four crossbred layer lines1 using a genomic-and pedigree-based sire model (ssGBLUP) 

 Parameters2 W1*WA W1*WB W1*WC W1*WD 

�� 53 ± 73 247 ± 159 960 ± 365 586 ± 250 

���  213 ± 293 990 ± 636 3838 ± 1460 2346 ± 1000 

��  15 ± 10 31 ± 10 62 ± 12 48 ± 10 

�� 747 ± 175 1610 ± 286 1880 ± 386 2031 ± 320 

!� 7665 ± 255 11218 ± 389 15087 ± 608 11099 ± 441 
� 0.03 ± 0.04 0.09 ± 0.06 0.25 ± 0.09 0.21 ± 0.09 

1Estimates of genetic parameters are shown for survival time in four crossbred lines W1*WA, 

W1*WB, W1*WC and W1*WD. 2 �� �� ��� !�  are cage variance, genetic variation due 

to sire, total genetic variation ( ��� ��) and phenotypic variation ( !� �� �� ��), 

respectively. T2
 is total heritable variance relative to phenotypic variance; � "#�$

"%$ . 

 
4.3.2 Genetic parameters 

Table 4.3 shows estimated genetic parameters from BLUP and Table 4.4 shows 
estimated genetic parameters from ssGBLUP. Results from both methods showed 
that the four crosses differed in ��� . Genetic parameter estimates were similar for 

BLUP and ssGBLUP. Total genetic variance, expressed as a proportion of phenotypic 
variance ( �), ranged from 0.03 for cross W1*WA to 0.25 for cross W1*WC. Because 
our cages were composed of family members, the genetic parameters in Table 4.3 
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and Table 4.4 refer to total genetic effects, including both DGE and IGE (see 
Methods). Total genetic standard deviations ranged from 14 days for W1*WA to 62 
days for W1*WC. Peeters et al. (2012) found values of ~ 60 days in crossbred laying 
hens. Together with the theoretical work of Ellen et al. (2007), Peeters et al. (2013), 
and Muir et al. (2013), these results suggest that mortality due to cannibalism can 
be reduced by selection using a sire model, even though underlying DGE and IGE are 
unknown, because sire models capture the TBV. This is supported by evidence of 
Muir (1996) that showed that hens housed in sire-family groups can successfully be 
selected against mortality. 
 
Because we used a sire model, the estimates refer to genetic variation for crossbred 
performance within the sire line. The sire line was the same for all crosses. 
Nevertheless, variance components differed considerably between crosses (Table 

4.3 and Table 4.4). The large differences in the sire variance between crosses 
correspond, however, reasonably well with the large differences observed in mean 
survival and in phenotypic variance (Table 4.2 and Figure 4.1). When mean survival 
increases, a larger fraction of individuals is censored which reduces phenotypic 
variance (as censored individuals were all given the maximum survival time). This 
reduces phenotypic variance, and also heritabilities. Although we cannot 
mathematically prove it, we think that the latter is similar to the situation with a 0/1 
trait, where heritabilities on the observed scale decrease when prevalence is 
approaching zero (Dempster and Lerner, 1950). 
 
4.3.3 Cross-validation 

Table 4.5 shows the rank correlations between observed and predicted phenotypes, 

��� , for BLUP and ssGBLUP. Most rank correlations were not significantly 

different from zero, except for W1*WD with sire BLUP and for W1*WC with 
ssGBLUP. Results varied between crosses and showed no convincing pattern.  
 
Using data on brown layer lines, Alemu et al. (2016) also compared BLUP to ssGBLUP 
using a sire model. They found ~33 % improved accuracy with ssGBLUP compared 
with BLUP, whereas our study yielded inconsistent results. Alemu et al. (2016) also 
investigated the benefit of ssGBLUP for response to selection and found that 
increases in response were substantially larger (~90%) than those in accuracy. A 
major contribution of this increase originated from higher accuracy of selection in 
females. 
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Table 4.5 Rank correlations between observed phenotype and predicted phenotype with SE 

 Models - sire1 Approximate accuracy 

Cross2 Sire BLUP ssGBLUP Sire BLUP ssGBLUP 

W1*WA 0.162 ± 0.134 0.154 ± 0.134 0.42 0.41 
W1*WB -0.020 ± 0.134 -0.152 ± 0.131 -0.03 -0.25 
W1*WC 0.196 ± 0.140 0.390 ± 0.124 0.25 0.50 
W1*WD 0.412 ± 0.119 0.143 ± 0.140 0.57 0.20 

1Rank correlations between observed and predicted phenotypes using a pedigree-based sire 
model (BLUP) and genomic-and pedigree-based sire model (ssGBLUP). 2Rank correlations are 
shown for four crosses W1*WA, W1*WB, W1*WC and W1*WD. 

 
One of the factors that may have benefited ssGBLUP in the research of Alemu et al. 
(2016) is that multiple generations of phenotypes and sire genotypes were used, five 
for one line and three for the other line. Research of Muir (2007) showed that with 
an increasing number of generations of data, GEBV accuracies increase as well, 
whereas BLUP accuracies plateau. In our research, we had only a single generation 
of phenotypes that have sire genotypes available. We, however, think that the 
difference between results from Alemu et al. (2016) and results from our study is 
mainly due to the large difference in the number of sires between both studies. We 
had ~50 sires per cross, whereas Alemu et al. (2016) had ~500 for one sire line and 
~280 for another sire line. The training population used in Alemu et al. (2016) was 
consequently larger compared with our training populations. The size of the training 
data partly determines the success of genomic prediction (Daetwyler et al., 2008). 
We investigated whether it is theoretically expected to find significant accuracies, 
given the number of sires. First, we calculated the theoretically expected accuracies 
(Daetwyler et al., 2008), 
 

&'&
2

2 (�)*
, ⑦

 
where � is the reliability of sire TBV which is the square of Equation 6, � is the 
effective number of chromosome segments ( � is 565 for W1*WA, 579 for W*WB, 
771 for W1*WC and 415 for W1*WD), and + is the number of sires in the training 

population. Secondly, we calculated the corresponding standard error ( &'& ) 

(Bijma and Bastiaansen, 2014):  
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Theoretically expected accuracies and corresponding SE were 0.12 ± 0.14 for 
W1*WA, 0.19 ± 0.13 for W1*WB, 0.19 ± 0.14 for W1*WC, and 0.24 ± 0.14 for 
W1*WD. Thus, none of the theoretically expected accuracies are expected to be 
significantly different from 0. This corresponds with our cross-validation results 
where most rank correlations were not significantly different from 0. This implies 
that our study would benefit from an increased training population. An option would 
be to combine phenotypic data of all four crosses, which may be feasible because 
the crosses originate from a single sire line resulting in ~ 200 genotyped sires. 
 
4.3.4 Model 

Survival time was analysed using a linear mixed model. Shortcomings of this model 
are that censored records are considered as true survival time records and that the 
non-normality of survival time records violates the normality assumption of the 
linear mixed model. Muranty et al. (2015) observed that genomic prediction 
accuracy is highly influenced by phenotypic distribution. The choice of model may 
therefore have affected the outcome of our results. 
 
Survival analysis, for example, can deal with both censoring and non-normality of 
survival data (Kalbfleisch and Prentice, 1980). Ellen et al. (2010) found, however, no 
benefit of survival analysis compared with analysing survival time using a linear 
mixed model when social interactions are included in the model. Brinker et al. (2015) 
proposed to analyse survival as a repeated binomial trait to account for censoring. 
TBV accuracies improved up to 21% compared with analysing survival time using a 
linear mixed model. We applied this model to our survival data of W1*WB (worst 
ssGBLUP predictions) and W1*WC (best ssGBLUP predictions). We analysed the 
repeated binomial survival records with a logit link function to account for the non-
linearity of the trait. Accuracies from BLUP were 0.018 ± 0.134 for cross W1*WB, and 
0.290 ± 0.134 for cross W1*WC. Accuracies from ssGBLUP were -0.125 ± 0.132 for 
W1*WB, and 0.395 ± 0.123 for W1*WC. Accuracies improved for both BLUP and 
ssGBLUP when analysing repeated binomial survival compared with analysing 
survival time. However, both methods lead to the same conclusion: using ssGBLUP 
did not improve accuracies for W1*WB, but it did for W1*WC. 
 
We have investigated the benefit of genomic information for the prediction of 
breeding values for a socially affected trait. Despite the large number of genotyped 
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and phenotyped individuals, we found little benefit of genomic information. This 
result originated from the difficulty in estimating DGE and IGE when cage mates are 
related, even when genomic data are available. In our data, social groups (i.e. the 
cages) consisted of a mix of full-sibs and half-sibs. All cage mates had the same sire, 
but in most cases a different dam. Genotypes were available on nearly all individuals, 
and on both sires and dams, and dam pedigrees were reconstructed based on the 
genotypes. While this provided some variation in relatedness among cage mates, 
this appeared insufficient to separate DGE from IGE, as illustrated by the 
convergence problems of the DGE-IGE animal models. 
 
An alternative approach would have been to fit an animal model with only the DGE 
of the individuals. However, when cages are composed of a mix of relatives, the 
interpretation of the estimates of a DGE-model is unclear. In an animal model, the 
DGE of an individual will partly pick up the IGE of its group mates when group mates 
are related (Muir et al., 2013; Peeters, 2015). Hence, EBV from such a model are a 
mix of DGE and IGE. It is unclear how an estimate of the TBV can be obtained from 
those estimates, and how cross-validation can be done. Similar issues occur in a sire-
dam model. For those reasons, we used a sire model. The sire model yields an 
estimate of the TBV, because all cage mates descended from the same sire. However, 
with a sire model, only ~50 genotyped individuals (i.e. sires) were available per cross 
as a reference population, which proved insufficient to find a benefit of genomic 
information. In conclusion, because of the close relationships between cage mates 
in our data, we did not manage to utilize the large amount of genotypic data (~7000 
reference individuals) for the genomic prediction of TBV. An option to utilize the data 
better would be to use pooled cage observations for variance components 
estimation and cross-validation. Analyses of pooled cage observations when data are 
housed in half-sib families yield estimates of the TBV and its variance (Peeters et al., 
2013). This approach may better reveal the benefit of genomic selection, because 
we can utilize ~1400 pooled records of phenotypes and genotypes of cage mates. 
Further research is needed on how genomic information can be used for breeding 
value estimation on socially affected traits measured on individuals kept in groups 
composed of a mix of close relatives. 
 
4.4 Conclusion 

The estimated total genetic variation available for selection was similar for BLUP 
compared with ssGBLUP. Cross-validation results showed no improvement in the 
accuracy of breeding value predictions, probably because of the limited number of 
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sires and the use of a sire model. Further research is needed on the estimation of 
breeding values for socially affected traits measured on individuals kept in groups 
composed of a mix of close relatives. 
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Abstract 

Cannibalism is an important welfare problem in the layer industry. Cannibalism is a 
social behaviour where individual survival is affected by direct genetic effects (DGE) 
and indirect genetic effects (IGE). Previous studies analysed repeated binomial 
survival, instead of survival time, which improved accuracies of breeding value 
predictions. Our study aimed at identifying SNPs associated with DGE and IGE for 
survival time, and comparing results from models that analyse survival time and 
repeated binomial survival. 
 
Survival data of three layer crosses (W1*WA, W1*WB, and W1*WC) were used. Each 
individual had one survival time record and 13 monthly survival (0/1) records. 
Approximately 30 000 single nucleotide polymorphisms (SNPs) were included in the 
genome-wide association study (GWAS), using a linear mixed model for survival 
time, a linear missed model and a generalized linear mixed model for repeated 
binomial survival (0/1). Backwards elimination was used to determine phenotypic 
and genetic variance explained by SNPs.  
 
The same quantitative trait loci were identified with all models. A SNP associated 
with DGE was found in cross W1*WA, with an allele substitution effect of 22 days. 
This SNP explained 3% of the phenotypic variance, and 36% of the total genetic 
variance. Four SNPs associated with DGE were found in cross W1*WB, with effects 
ranging from 16 to 35 days. These SNPs explained 1 to 6% of the phenotypic variance 
and 9 to 44% of the total genetic variance. Our results suggest a link of DGE and IGE 
for survival time in layers with the gamma-aminobutyric acid (GABA) system, since a 
SNP located near a gene for a GABA receptor was associated with DGE and with IGE 
(not significant). 
 
This is one of the first large studies investigating the genetic architecture of a socially-
affected trait. The power to detect SNP associations was relatively low and thus we 
expect that many effects on DGE and IGE remained undetected. Yet, GWAS results 
revealed SNPs with large DGE and a link of DGE and IGE for survival time in layers 
with the GABAergic system, which supports existing evidence for the involvement of 
GABA in the development of abnormal behaviours.  
 
Key words: GWAS, laying hens, social interactions  
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5.1 Background 

Mortality due to cannibalism has important welfare and economic implications in 
the commercial laying hen industry. Brinker et al. (2016) reported mortality to be 
between 22 and 37% in crossbred chickens with intact beaks, while beak-trimmed 
hens of the same crosses showed a mortality of 2 to 3% at the end of the laying 
period (personal communication J. Visscher), which indicates that a substantial part 
of the mortality is due to cannibalism. Previous research revealed that survival time 
is affected both by an individual’s own genes (direct genetic effects; DGE) and by 
genes of its group mates (indirect genetic effects; IGE). It was found that IGE 
contribute 33 to 76% of the heritable variation in survival time in purebred and 
crossbred laying hens with intact beaks (Peeters et al., 2012; Ellen et al., 2008). 
However, the genetic architecture of survival time in laying hens that show 
cannibalism remains largely unknown. 
 
The availability of genomic information has increased our understanding of complex 
traits, but studies have mainly focussed on DGE. Results from genome-wide 
association studies (GWAS) on DGE show that most quantitative traits in livestock 
are highly polygenic and that variants tend to be associated with more than one trait 
(Hill et al., 2008). However, the genetic architecture of IGE may differ from the 
genetic architecture of DGE. For example, IGE are less exposed to natural selection 
compared to DGE (Denison et al., 2003), and therefore we expect that some loci may 
have large effects for IGE. A few studies have investigated the genetic architecture 
of IGE. Biscarini et al. (2010) conducted an association study using 1022 single 
nucleotide polymorphisms (SNPs) and identified 81 SNPs that were associated with 
IGE for plumage condition in laying hens. However, the number of observations used 
was limited; 662 laying hens originating from nine lines were used for analyses. Mutic 
and Wolf (2007) identified 13 quantitative trait loci (QTL) for IGE associated with size, 
development, and fitness related traits in Arabidopsis. To increase the power of IGE 
detection, they did not consider loci that did not have DGE in their IGE analyses. 
 
From a statistical point of view, survival time is a difficult trait because many laying 
hens are still alive at the end of the recording period. For these hens, true survival 
time cannot be observed but is known to exceed the length of the recording period 
(censored). Several statistical techniques have been proposed to deal with survival 
data and IGE, including survival time analysis (Ducrocq and Casella, 1996; Ellen et al., 
2011) and the use of repeated binomial survival records (0/1) (Brinker et al., 2015). 
Ellen et al. (2011) showed that survival time analysis did not improve breeding value 
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predictions compared to analysing survival time with an ordinary mixed linear model 
when censoring occurs at the same moment in time. Compared to a linear mixed 
model analysis of survival time, the use of repeated binomial survival records (0/1) 
by Brinker et al. (2015) improved accuracies of breeding value predictions up to 21%. 
Hence, the use of repeated binomial survival records (0/1) may also be beneficial for 
the identification of direct and indirect SNP associations in GWAS.  
 
This study had two aims: (1) to identify SNPs associated with direct and indirect 
effects for survival time in laying hens that show cannibalism; and (2) to compare 
GWAS results from analysis of survival time versus repeated binomial survival (0/1).  
 

5.2 Methods 

 

5.2.1 Genetic stock and pedigree 

Data were collected under the control of Hendrix Genetics. Hendrix Genetics 
complies with the Dutch law on animal welfare. Hendrix Genetics provided data on 
three crossbred White Leghorn layer lines. Crossbreds descended from one sire line 
(W1) and three dam lines (WA, WB, and WC), and were coded W1*WA, W1*WB, and 
W1*WC. In contrast to Brinker et al. (2016), data from cross W1*WD were not used 
in this study because the quality of the genomic data was insufficient. 
 
A total of 159 sires and 3218 dams were used, with 48 to 57 sires per cross. For each 
cross, matings between sires and dams were randomly assigned, which resulted in 
approximately two female offspring per dam. The sire pedigree was recorded for all 
offspring. The dam’s pedigree was initially unknown but a reconstructed pedigree, 
based on genomic information, was provided by Hendrix Genetics. 
 
5.2.2 Housing conditions 

Chickens of the three crosses hatched simultaneously in the Netherlands. One-day 
old chickens were vaccinated, wing-banded, and transported to Canada. Chickens 
had intact beaks. Chickens were transported to a laying house at approximately 17 
weeks of age. The laying house consisted of two wings. In each wing, rows were 
grouped into six double rows that each contained two levels, with a corridor 
between each double row to allow access to cages. Each cage contained five 
individuals of the same sire. Thus, cage mates were either paternal half-sibs or full-
sibs. A standard commercial layer diet and water were provided ad libitum. A feeding 
trough was in front of the cages and each cage had its own drinking nipples. The light  
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Table 5.1 Data description of three crossbred layer lines, number of crossbreds phenotyped 
and genotyped, and number of SNPs after quality control 
 

Sire 

line 

Dam 

line 

Mean survival 

days ± SD 

Number of  

phenotypes 

Number of 

genotyped 

crossbreds 

Number 

of SNPs 

   Survival 

time 

Survival 

(0/1) 

  

W1 WA 364.6 ± 87.9 1920 24 960 1889 27 204 
W1 WB 349.8 ± 107.0 1875 24 375 1816 32 473 
W1 WC 323.9 ± 123.2 1620 21 060 1580 38 588 

 
intensity was stronger at the top level compared to the bottom level, due to closer 
proximity to light sources. Further details are in Brinker et al. (2016). 
 
5.2.3 Data 

Dead hens were removed daily but the cause of death was not determined. The wing 
band number and cage number were recorded after death. The study was 
terminated when hens were approximately 75 weeks old. Survival at the end of the 
study was 78, 75, and 63% for crosses W1*WA, W1*WB, and W1*WC respectively. 
 
Cages with initially less than five hens and cages with mistakes in their composition 
(e.g. with hens descending from multiple sires) were removed from the dataset. 
Cages with hens descending from multiple sires were identified based on genomic 
information. 
 
Survival time was defined as the number of days from the start of the laying period 
until either death or the end of the study, with a maximum of 402 days. Hens that 
were alive at the end of the laying period were given a survival time of 402 days. In 
total, records on 1920, 1875, and 1620 laying hens were used for the statistical 
analyses for crosses W1*WA, W1*WB, and W1*WC respectively (Table 5.1). 
 
To generate repeated binomial survival records (0/1), the laying period was divided 
into 13 months. For each month, survival was coded 1 if the laying hen was alive at 
the end of that month and as 0 if not. Thus, a survival record (0/1) was available for 
each month. In total, 24 960, 24 375, and 21 060 monthly records were available for 
crosses W1*WA, W1*WB, and W1*WC respectively (Table 5.1).  
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5.2.4 Genotyping and SNP quality 

Birds were genotyped based on DNA extracted from blood, using a custom made 
Illumina 60 K chicken SNP BeadChip, which included 52 232 SNPs across 
chromosomes 1 through 28, Z, W, and two unmapped linkage groups, along with 
some unassigned SNPs. PLINK (Chang et al., 2015; Purcell and Chang, 2015) was used 
for the quality control of genotypes. SNPs with a missing rate higher than 0.30 and a 
MAF lower than 0.005 were removed. Individuals with a missing rate higher than 
0.10 were also removed. SNPs that deviated from Hardy-Weinberg Equilibrium 
(p<10-5) in the parental population were removed from the full dataset. SNPs 
contributing more than one Mendelian error and individuals contributing more than 
five Mendelian errors were also removed from the dataset. Remaining Mendelian 
errors were set to missing. 
 
The number of genotyped crossbreds and the number of SNPs available after quality 
control for each cross are in Table 5.1. Some individuals were not genotyped (max. 
4 %) due to death before blood sampling (~1 month after the start of the laying 
period) or due to poor DNA quality. To allow cages that contained individuals without 
genotype information to be included in the statistical analyses, missing genotypes 
were replaced by the “parental mean”, which was the average of the allele count of 
the sire and the average allele count of its mates (~ 20 dams). In case parental 
genotypes were missing, the line average was used. The same procedure was applied 
for missing genotype information, i.e. for genotypes associated with Mendelian 
errors. 
 
5.2.5 Statistical analysis 

Data were analysed separately for each cross. Three statistical models were 
compared: a linear mixed model for survival time (STM), a linear mixed model for 
repeated binomial survival (0/1/; RMM.t), and a generalized linear mixed model for 
repeated binomial survival (0/1; GLMM). All models were implemented using 
ASReml (Gilmour et al., 2014). 
 
First, genetic parameters were estimated without SNP effects in the model (see 
models below). Five generations of (reconstructed) pedigree information on sires 
and dams were included in all genetic analyses. In our data, cages consisted of 
paternal half-sibs, with an occasional full-sib. Therefore, direct and indirect polygenic 
effects were strongly confounded (Brinker et al., 2016; Peeters, 2015). With cages 
composed of families, an animal model with DGE only will also pick up IGE and 
consequently yields genetic parameters estimates that refer to the total breeding 
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value (Peeters, 2015). Thus, an animal model with DGE only was used to account for 
population stratification (i.e. family structure in the population). This animal model 
incorporated the genetic covariance structure across individuals, to avoid spurious 
SNP associations due to relatedness. 
 
Second, SNP effects were estimated one by one, including both the direct SNP effect 
of the individual and the summed indirect SNP effects of its cage mates in the model. 
For all models, variance components were fixed to the estimated values from the 
corresponding model without the SNP effect. Direct and indirect SNP effects were 
fitted simultaneously, because a GWAS with direct SNP effects only would also 
capture part of the indirect effect of the SNP, as the related group mates have an 
above-average probability to carry the same alleles. 
 
Survival time model STM 

Survival time records were analysed using the following linear mixed model: 
 

�� � � � ����
�	

��� � � ���   ① 

 
where �� is the observed survival time (days) for individual i in cage k, with cage 
mates j, n is the number of cage members (n=5), and fixed represents the fixed effect 
of the combination of wing-row-level; � and � are regression coefficients of �� on 
SNP genotypes fitted as fixed effects, where � is the fixed direct effect of the SNP 
of individual i, and � is the fixed indirect effect of the same SNP in cage mates j; 

� is the allele count (0,1,2) for the individual, ����
�	

���  is the summed SNP 

allele counts (0-8) of cage mates j, � is the random polygenic effect of individual i, 

� is the random cage effect, and ��� is the residual. All random effects were 

assumed to be normally distributed. The covariance structures for the model terms 
were: �

  ����
 , and �

, where A is a 

pedigree relationship matrix, �
 is the additive genetic variance, I is an identity 

matrix, ����
  is the cage variance, and �

 is the residual variance. 

 
Repeated measures model RMM.t 

Repeated binomial records on survival (0/1) were analysed using a repeated 
measures model that included random regressions on time (hence RMM.t). 
Following Brinker et al. (2015), the model was: 
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�	

��� � �

�� � � � � ����   
②

 
where ��� is the observed survival (0/1) for individual i in cage k and month m, with 
cage mates j, at time � measured in months since the start of the experiment; fixed 
represents the interaction effect of wing-row-level with time, which was a sixth-
order polynomial of time, fitted as a fixed effect, which was used to model the 
survival curve across time and to allow this curve to depend on location (i.e., on the 
wing-row-level combination); �� is the random effect of cage k at time m, which 
accounts for covariances between cage members at specific time points; � is 
the random permanent effect of cage k, with � � accounting for covariances 
between records on the same cage at different time points, and for increasing 
variance over time. Together, the �� and � effects account for similarity 
of cage mates due to shared environment, which is essential to avoid inflation of 
genetic estimates in the analysis of socially-affected traits (Bijma et al., 2007b). 
Finally, � is the random permanent environmental effect of individual i, � is the 
time, and ���� is the residual. A separate residual variance was estimated for each 

month. Other terms are the same as in STM. More details on this model are in Brinker 
et al. (2015). 
 
Generalized linear mixed model GLMM 

To account for the binomial distribution of survival (0/1), we used a generalized 
linear mixed model with a logit link function. ASReml uses approximate likelihood 
techniques, of which the limitations are discussed in the Results and discussion 
section (Gilmour et al., 2014). The model was: 
 

��� � � � ����
�	

��� � ��

�, 
③

 
Where  is the logit link function that links the probability of surviving to the linear 
predictor, and ���  is the probability of surviving for individual i in cage k, with 
cage mates j, at time m. The other terms are the same as in STM and RMM.t. 
 
The GLMM includes only a genetic intercept and no regression on time because the 
non-linear link function takes the change in variance over time into account. 
Consequently, at the beginning of the recording period, the variance of the survival 
probabilities can be (near) zero even when ���  is greater than zero. 
More details on this model are in Brinker et al. (2015). 
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5.2.6 Model fit 

The three models, STM, RMM.t, and GLMM were compared by reviewing -log10 p 
values of SNP effects and the size of the inflation factor for p values (λ; see below). 
Pearson correlations between -log10 p values were calculated to quantify the 
agreement between the three models. 
 
5.2.7 Genomic control 

A quantile-quantile plot (Q-Q plot) was used to investigate the distribution of the 
observed p values compared to their expected distribution under the null hypothesis 
that the SNP has no association with the trait. The extent of deviation of the 
observed distribution from the expected distribution was expressed as λ, where a λ 
equal to 1 means no deviation (Devlin and Roeder, 1999). In cases where λ was larger 
than 1.10, the so-called “genomic control” was applied to avoid spurious associations 
with the trait by dividing F values by λ before calculating p values (Devlin and Roeder, 
1999). 
 
Multiple testing was accounted for by controlling the false discovery rate (FDR) using 
the q-value package (Storey and Tibshirani, 2003) in R (R Core Team, 2015). The FDR 
is the expected proportion of false-positives among those that were called significant 
under the distribution of the p values. The q-value package calculates an FDR based 
on the distribution of p values, which represents the minimum FDR when the SNP 
effect is called significant, which was set to 0.3. This is a liberal threshold that also 
reveals suggestive SNP associations with survival time and was chosen because little 
is known about the background of DGE and IGE for survival time, this study being 
one of the first large ones. 
 
5.2.8 Phenotypic and genetic variance explained by SNPs 

A backwards elimination method was used to obtain an estimate for phenotypic and 
genetic variance explained by SNPs. Backwards elimination involved including all 
direct and indirect SNP effects below the genome-wide FDR threshold (q<0.3) in the 
model to account for possible linkage disequilibrium (LD) between them, testing 
their model fit, and dropping the least significant SNP effect. This was repeated until 
all SNPs reached the FDR threshold. Then, for each remaining SNP, we calculated the 
genetic variance explained by the SNP following Falconer and Mackay (1996) as 

, with  being the major allele frequency and  is the estimated direct 
allele substitution effect from the model with all remaining SNPs. LD between fitted 
SNP effects was not considered in the calculation of .  
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Table 5.2 Estimates1 of genetic parameters for survival time in three crossbred layer lines 
using STM 

 W1*WA W1*WB W1*WC 

�
  576 ± 326 1415 ± 583 5310 ± 1386 

�
  763 ± 173 1813 ± 287 1832 ± 374 

�
  7645 ± 260 10 781 ± 389 15 102 ± 647 


  0.08 ± 0.04 0.13 ± 0.05 0.35 ± 0.08 
1Estimates of genetic parameters are shown for survival time, �

, �
, �

,  are cage 

variance, genetic variance and phenotypic variance ( �


�


�


�
),  ��

�

��
�  

(Bergsma et al., 2008), respectively. All variances are in days2 
 

Table 5.3 Pearson Correlations* between –log10 p-values of the three models for direct 
and indirect SNP effects for each cross 

Effect Cross STM-RMM.t STM-GLMM RMM.t-
GLMM 

Direct W1*WA 0.98 0.96 0.97 
 W1*WB 0.97 0.93 0.93 
 W1*WC 0.96 0.96 0.93 

Indirect W1*WA 0.98 0.95 0.96 
 W1*WB 0.98 0.97 0.96 
 W1*WC 0.97 0.97 0.96 
* All standard errors were less than 0.01 

 
Table 5.4 Inflation factor λ* for all crosses and models 

Effect Model W1*WA W1*WB W1*WC 

Direct STM 1.09 1.04 0.91 
 RMM.t 1.13 1.18 1.09 
 GLMM 1.13 1.02 0.91 

Indirect STM 0.92 1.26 1.10 
 RMM.t 0.94 1.43 1.32 
 GLMM 0.93 1.22 1.13 
*All standard errors were less than 0.01 

 
The proportions of phenotypic variance ( �

) and of genetic variance ( �
) explained 

by the direct effects of SNPs were calculated as 
�

��
� and 

�

��
�, respectively. The �

 is an 

estimate of the total genetic variance since group members are related (Bijma et al., 
2007b). 
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5.3 Results and Discussion 

 
5.3.1 Model comparison 

Genetic parameters were estimated without SNP effects in the model. For all 
models, variance components were fixed to the estimated values from the 
corrsponding model without SNP effects. The �

 and �
 values are in Table 5.2. 

Variance components from RMM.t and GLMM are not presented in Table 5.2 
because they can be translated to the survival time scale, for which estimates are in 
Table 5.2 (Brinker et al., 2015). The total genetic standard deviation ( �) was 24 days 
for cross W1*WA, 38 days for cross W1*WB, and 73 days for cross W1*WC. 
 
There were no evident differences between GWAS results from STM, RMM.t, and 
GLMM (Tables 5.3, 5.4) and [see Additional files 5.1, 5.2 and 5.3]. The same QTL 
were identified with all three models. Table 5.3 shows that correlations between  
-log10 p values for direct and indirect SNP effects from the three models were higher 
than 0.9, thus similar SNPs were identified as having weak(-er) or strong(-er) 
associations in all models. This is in line with findings of Rönnegård et al. (2016), who 
investigated the benefit of using uncensored repeated measures in GWAS in a 
simulation study with direct effects only. In a design with an equal number of 
observations per individual, as in our study, they found that the correlation between 
-log10 p values between results from a model fitting average phenotypes and a model 
fitting repeated measures was higher than 0.9 (Rönnegård et al., 2016). Rönnegård 
et al. (2016) concluded that a repeated measures model in GWAS was most 
beneficial when individual phenotypes were very different across time or when the 
number of observations varied among individuals. 
 
Table 5.4 shows the inflation factor λ and the corresponding Q-Q plots are in 
Additional files 5.1 and 5.2. There was no clear pattern for λ across models. 
Moreover, there were no large differences in the number of SNPs with p<0.001 
between the three models after genomic control (Note: the aim was to compare 
models here, not to identify SNPs) [see Additional file 5.3]. 
 
In this study, we used a generalized linear mixed model (GLMM) for GWAS, which 
was fitted with ASReml (Gilmour et al., 2014). ASReml uses an approximate 
likelihood technique (the penalized quasi-likelihood), which has not been studied 
well for hypothesis testing. Gilmour et al. (2014) recommend to use GLMM in 
ASReml with caution. However, when comparing p values from the GLMM to those 
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of the other two models, STM and RMM.t, we found that the Q-Q plots from the 
GLMM behaved well and were similar to those for STM and RMM.t [see Additional 

files 5.1 and 5.2], -log10 p values from the GLMM were highly correlated with those 
from STM and RMM.t (Table 5.3), and Manhattan plots from GLMM showed a similar 
pattern as those from STM and RMM.t [see Additional files 5.3 and 5.4]. 
 
Based on these results, we concluded that there was no evidence that RMM.t and 
GLMM outperformed STM. Thus, in the remainder of this paper, we will only show 
results from STM. 
 
5.3.2 GWAS results (STM) 

Figures 5.1 and 5.2 show the Manhattan plots for the direct and indirect SNP effects 
for the three crosses, respectively. Several SNPs were associated with direct effects 
for survival time at q<0.3 in cross W1*WA and W1*WB, but none in cross W1*WC. 
In none of the crosses, SNPs were associated with indirect effects for survival time 
at q<0.3. 
 
In cross W1*WA, 17 SNPs were associated with direct effects for survival time at 
q<0.3. Of these, one SNP was on chromosome 4 at 42 Mb. The remaining 16 SNPs 
were on chromosome 2, with one SNP at 46 Mb, and 15 SNPs in the region between 
87 and 89 Mb. The latter 15 SNPs were in high LD with most pairwise r2 higher than 
0.9. After backwards elimination, one SNP (rs317294317) remained in the model 
(q<0.3, corresponding to p<2.05E−5, Table 5.5). This SNP is an intron variant at 88 
Mb on chromosome 2, had an estimated effect of 22 days, and explained 3% of the 
phenotypic variance ( �

), and 36% of the total genetic variance ( �
). 

 
In cross W1*WB, seven SNPs were associated with direct effects for survival time at 
q<0.3. These were located on chromosome 2 (at 9 and 86 Mb), chromosome 5 (two 
SNPs at 54 Mb), chromosome 7 (at 6 Mb), chromosome 9 (at 17 Mb), and 
chromosome 20 (at 20 Mb). After backwards elimination, four SNPs remained in the 
model (q<0.3, corresponding to p<2.84E−05, Table 5.5). Estimated effect sizes 
ranged from 16 to 35 days, with rs31610924 having the smallest efect size and 
rs312488612 having the biggest efect size. The SNPs explained 1-6% of �

 and 9-44% 
of �

. 
 
Biscarini et al. (2010) was the first to investigate the genetic architecture of both 
direct and indirect genetic effects of plumage condition in laying hens. They found 
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11 direct associations and 81 indirect associations between SNPs and plumage 
condition. Our study did not confirm the large number of indirect SNP associations, 
although it is one of the first large GWAS that includes both DGE and IGE. We 
analyzed survival time, which reflects the final stage of cannibalism, while plumage 
condition is recorded before the end stage. This could partly explain the difference 
in results with Biscarini et al. (2010). 
 
Candidate genes 

Chromosome 2. In cross W1*WA, SNP rs317294317 remained in the model after 
backwards elimiation. This SNP is an intron variant on chromosome 2. The associated 
gene is GABBR2 (88.0-88.4 Mb; Fig. 5.1). A clear peak is visible for direct SNP effects 
in this region for cross W1*WA. Moreover, we observed a clear peak in the same 
region for indirect SNP effects in cross W1*WB – although not significant at q<0.3 
after genomic control (Fig. 5.2). The favorable allele was the same for the direct SNP 
effect in cross W1*WA and the indirect SNP effect in cross W1*WB. This allele has a 
positive effect both on the survival time of the individual itself and on the survival 
time of its group mates. The GABBR2 gene was found to be associated with both 
direct phenotypes and behavioral phenotypes (de Almeida et al., 2005; Poshivalov, 
1981; Takahashi et al., 2010; Takahashi et al., 2012; Zhang et al., 2012). 
 
The GABBR2 gene encodes a receptor for gamma-aminobutyric acid (GABA), which 
plays an important role in the regulation of neurotransmitters in the brain. GABA is 
an inhibitor of neuronal activity and plays an important role in physiological and 
behavioral stress response in many species (de Almeida et al., 2005; Poshivalov, 
1981; Takahashi et al., 2010; Takahashi et al., 2012; Zhang et al., 2012). Zhang et al. 
(2012) for example, found that the level of GABA affects the performance and 
physical condition in Roman laying hens under heat stress. Furthermore, Poshivalov 
(1981) found that the level of GABA was associated with a change in state of 
aggressiveness and sociability towards conspecifics in Mus musculus. 
 
In addition to GABA, serotonin and dopamine are also important neurotransmitters 
and are known to be associated with several behavioral disorders in a variety of 
species. Moreover, several studies have reported a link between the serotonergic, 
dopaminergic, and GABAergic pathways (Ropert and Guy, 1991; Stutzmann and 
LeDoux, 1999; Casey et al., 1980). Biscarini et al. (2010) investigated the genetic 
architecture of direct and indirect genetic effects of plumage condition in laying hens 
and found a SNP in the HTR2C gene, which is involved in the serotonergic system,  
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Figure 5.1 Manhattan plots of direct SNP effects for crosses W1*WA, W1*WB, and 

W1*WC. FDR threshold was 0.30 (solid line). If no SNP reached the FDR-threshold, the 

threshold could not be estimated (Panel 3). Locations of SNPs with q < 0.3 are indicated 

with an arrow. 
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Figure 5.2 Manhattan plots of indirect SNP effects for crosses W1*WA, W1*WB, and 

W1*WC. FDR threshold was 0.30. If no SNP reached the FDR-threshold, the threshold 

could not be estimated (Panels 1, 2, and 3). 
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that was associated with indirect genetic effects. Another study on aggression in 
chickens revealed a role of the dopaminergic system (Li et al., 2016). Moreover, 
Bolhuis et al. (2009) investigated the effects of group selection on survival on 
serotonin levels and suggested that the level of serotonin may be linked to the 
development of cannibalism. Indeed, the study of Flisikowski et al. (2009) concluded 
that genomic regions related to the dopaminergic and serotonergic systems were 
associated with feather pecking behavior in laying hens. Thus, our results support 
those from two other GWAS that focused on a feather pecking related trait in 
chickens. 
 
PTPRN2. In cross W1*WB, SNP  rs313098101 remained in the model after backwards 
selection. This SNP is an intron variant on chromosome 2. The associated gene is 
PTPRN2 (9 Mb; Fig. 5.1), which encodes a receptor for protein tyrosine phosphatase 
and is associated with several disease phenotypes (Hale et al., 2017). However, it is 
likely that the association of SNP rs313098101 with direct effects for survival time is 
a false positive association, given that no clear peak is visible in this region. 
 
Percentage of genetic variance explained 

The contribution of DGE associated SNPs with q<0.3 to the total genetic variance 
after backwards elimination was large and summer up to 36% for cross W1*WA and 
to 81% for cross W1*WB (Table 5.5). These genetic variances explained by the SNPs 
are probably overestimated because of the Beavis effect, i.e., when many effects are 
tested for significance and only those below the defined significance threshold are 
considered, SNP estimates tend to be overestimated (Beavis, 1997). This especially 
occurs when the power of the study is low. 
 
Moreover, the proportion of genetic variance explained by SNPs associated with 

direct effects was calculated as 
�

��
�, where  is the variance explained by the SNPs, 

and �
 is an estimate of the total genetic variance. The latter is the sum of variances 

due to direct and indirect genetic effects, along with a component due to their 
covariance (Bijma et al., 2007b). Previous research reported negative genetic 
correlations between direct and indirect effects for survival time in crossbred layers 
(Peeters et al., 2012). If the correlation between direct and indirect genetic effects is 
strongly negative, the total �

 may be smaller than the variance due to the direct 
effects, which could partly be the reason for the possible over-estimation of the 
proportion of �

 explained by direct SNP effects in this study. We are interested in 
the proportion of direct genetic variance that is explained by DGE associated SNPs. 
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However, with cages composed of families, an animal model with direct genetic 
effects only will also pick up many indirect genetic effects (Peeters, 2015). The 
variance due to direct genetic effects alone was, thus, unknown. 
 
5.3.3 Power 

Statistical power of a GWAS depends on several factors such as the number of 
observations, relatedness among individuals, allele frequency, level of linkage 
disequilibrium, and the statistical model (Rincent et al., 2014). To get an estimation 
of the power of our data for GWAS, we calculated power by assuming a number of 
true direct SNP effects from 1 to 18 days at allele frequencies ranging from 0 to 1, 
given the population specific parameters of the crosses (N and �

; Table 5.2) and 
significane threshold q<0.3 (~4 standard deviations from the mean; [see Additional 

file 5.4]). We assumed a normal distribution. Theoretical findings as presented in 
Additional file 5.4 were supported by the empirical evidence obtained from this 
study. The results suggest that the statistical power of the GWAS was highest for 
cross W1*WA and lowest for cross W1*WC. True direct effects, at an allele frequency 
of 0.5, had to be at least 15 days for W1*WA, 16 days for W1*WB, and 21 days for 
W1*WC in order to be detected with reasonable probability (power ~ 0.8). True 
indirect effects, at an allele frequency of 0.5, had to be at least 3.5 days for W1*WA, 
4 days for W1*WB, and 5 days for W1*WC in order to be detected with reasonable 
probability (power ~ 0.8). The number of observations in cross W1*WC was much 
smaller compared to the other two crosses, which may explain by the power of this 
cross was lowest. 
 
Theoretical power to detect indirect SNP effects was higher than power to detect 
direct SNP effects. This is due to multiplication by the number of group mates for 
indirect SNP effects. It is, therefore, possible that SNP with a lower MAF can be 
detected at q<0.3 as associated with IGE rather than DGE. In addition, the 
contribution of IGE to the total heritable variance of survival time in laying hens is 
often larger than the contribution of DGE (Peeters et al., 2012; Ellen et al., 2008; 
Brinker et al., 2014). Moreover, in absence of kin selection, IGE are less exposed to 
natural selection than DGE (Denison et al., 2003; Bijma, 2010a), and some loci may 
therefore have large effects. Nevertheless, no IGE associated SNPs were found at 
q<0.3. Perhaps the level of mortality in crosses W1*WA and W1*WB (22 and 25%) 
was insufficient for detection of IGE associated SNPs, i.e., with lower mortality, fewer 
individuals will die due to cannibalism and less indirect genetic variance will be 
available for SNP detection. For cross W1*WC, theoretical power for GWAS was 
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lower than for W1*WA and W1*WB and more individuals died before blood 
sampling. These hens were given an average genotype while having an extreme 
phenotype, which may explain why no direct and indirect SNP associations were 
found in cross W1*WC. 
 
5.4 Conclusions 

This is one of the first large studies that investigates the genetic architecture of a 
trait by considering both direct and indirect genetic effects. Our results indicate that 
the same QTL were identified using either a linear mixed model of survival time or 
models of repeated binomial survival (0/1). Although the power was relatively low, 
and many SNP associations may have not been detected, our results revealed a link 
of the GABAergic system with direct and indirect genetic effects for survival time in 
crossbred layers. The associated gene was GABBR2. This supports existing evidence 
of the involvement of GABA in the development of abnormal behaviours. 
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The overarching theme of this thesis is the genetics of socially-affected traits in laying 

hens, where an individual phenotype depends on the genotype of the individual 

itself (direct genetic effect; DGE) and on the genotype of its group members (indirect 

genetic effects; IGE). This thesis focussed on cannibalistic interactions among laying 

hens which is one of the largest welfare problems in the egg production sector. 

Previous research clearly showed that genetic solutions need to consider both DGE 

and IGE in order to reduce mortality due to cannibalism in laying hens (e.g. Ellen et 

al., 2008; Peeters et al., 2012; Alemu et al., 2016). This thesis is a continuation of 

research about the relevance of IGE for mortality due to cannibalism, and as such, 

this thesis contributed to understanding how one of the largest welfare problems in 

the laying hen sector can be reduced using genetic selection. I believe this is 

important because I think that we have the responsibility and obligation to have the 

best practice to our knowledge and to keep on improving animal welfare. Not only 

for the hen itself (e.g. health, welfare) but also to achieve a high level of food security 

(e.g. sufficient production) and safety (e.g. reduced antimicrobial use). In this 

chapter, I will, therefore, not only focus on discussing the results but also reflect on 

the societal relevance of this thesis. 

 

The outline of this chapter is as follows: 

1. Scientific relevance: here I discuss the most important findings of this thesis. 

2. Data quality issues: here I discuss the use of phased data in a Genome-Wide-

Association Study (GWAS) on crossbred layers. 

3. Societal relevance: here I discuss the importance of including DGE and IGE 

in layer breeding programs to reduce mortality due to cannibalism in laying 

hens. 

6.1 Scientific relevance 

 

6.1.1 Statistical model for survival time 

Longevity traits measured in days such as survival time (this thesis) are common in 

any type of animal breeding program. However, such records may still be in progress 

at the time of genetic evaluation and only a lower bound of the record will be known. 

This is referred to as censoring. Using models that do not take this into account may 

reduce accuracies of breeding value estimates. 

 

I contributed a statistical method that improved the accuracy of total breeding 

values (TBV; the quantity relevant for selection response) for survival time in group-

housed laying hens (Chapter 3). This model treated survival in consecutive months 
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as a repeated binomial trait (repeated measures model; RMM) instead of analysing 

survival time in days. It was shown that the TBV accuracy improved up to 21% when 

the RMM was used. This is an important result because increased TBV accuracy 

contributes to higher rates of genetic gain. As mentioned in Chapter 3, the benefit 

of the RMM arises from the fact that this model can better deal with censoring. For 

survival time, only a lower bound of the true survival time is known for censored 

records. With the RMM, this problem is circumvented by using a survival indicator, 

i.e. dead (0) or alive (1) at a given time. Chapter 3, therefore, suggests that prediction 

of TBVs for survival time can be improved using methods that can incorporate 

censoring. 

 

It is important to realize that censored records were obtained at the same time for 

all laying hens in this thesis. This is often the case in layer breeding programs, but 

can be different in other breeding programs. In Chapter 3, we investigated the effect 

on predicted breeding values when 50% of the censored individuals were censored 

half way during the laying period using a model analysing survival time in days and 

the RMM. The RMM appeared to be more robust to censoring. In addition, the RMM 

also produced higher TBV accuracies in genomic predictions (Chapter 4). I, therefore, 

believe that the model presented in Chapter 3 could also be considered to improve 

TBV accuracies for censored traits in other species, such as longevity in dairy cattle. 

 

Time-dependent IGE 

The composition of the cage changes over time because animals die. The RMM 

allowed time-dependent IGE in the model. We tested if the prediction of breeding 

values could be improved by including timing of IGE expression in the model. This 

was, however, not beneficial, and TBV accuracy reduced substantially compared to 

any of the other models in Chapter 3. The problem probably arises from the fact that 

modification of the incidence matrices that link observations to IGE directly depends 

on the observation (Lipschutz-Powell et al. 2012). As a consequence, a considerable 

amount of the phenotypic variance will be explained by IGE and IGE variance will be 

overestimated. Recently, Ragab et al. (2018) presented a method where they 

consider degrees of interaction between each mate pair in the model. Here, the level 

of social interaction was determined based on feeding behaviour variables. It is, 

however, not trivial that this will capture all genetic (co-)variance. First, I think that 

social interactions are not solely based on feeding behaviours. Therefore, using 

feeding behaviours to shape a social interaction indicator is too narrow and probably 

misses out on part of the genetic (co-)variances. Second, both absence and presence 
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may be genetically determined, and it is not clear that all genetic (co)variance will be 

captured when using a model that focusses on interacting pairs. 

 

The RMM in GWAS 

In Chapter 5, we investigated whether the RMM would also be beneficial in GWAS 

analyses. There were, however, no evident differences between GWAS results using 

the RMM or a model analysing survival time. The same Quantitative Trait Loci (QTL) 

were appointed with both models. The aims of Chapter 3 and Chapter 4 were 

obviously different: in the GWAS the purpose is to identify QTL, whereas in Chapter 

3 the purpose was to improve TBV accuracy. 

 

6.1.2 Genetic architecture of survival time in laying hens 

In Chapter 5, we conducted a GWAS to identify SNPs associated with DGE and IGE 

for survival time. Survival time is a complex trait because it can be representative of 

a set of other traits. Still, in two of the three crosses, we found SNPs with large DGE 

(effects ranging from 16 to 35 days). SNPs were detected using a liberal threshold 

(q<0.3). We expect that some DGE and IGE were left undetected because the power 

of the study was relatively low.  

 

Our main results include the following:  

- GWAS results revealed SNPs with large DGE. 

- Within cross, DGE and IGE arose from different SNPs.  

- GWAS results revealed a link of DGE (in cross W1*WA) and IGE (in cross 

W1*WB) between survival time in layers and the GABAergic system. 

- DGE associations explained a small proportion of the phenotypic variance 

(max 6%) and up to 44% of the total genetic variance. 

- The power to detect DGE and IGE was relatively low, despite the large 

number of observations. 

 

6.2 Using phased genotypes in GWAS on crossbreds 

In Chapter 5, mortality due to feather pecking in laying hens was analysed in a single-

SNP GWAS. Survival data of three layer crosses were used of which all originated 

from the same sire line but different dam lines. Results from this GWAS showed no 

consensus between the crosses. A possible reason is that SNP effects can differ 

among crosses due to different levels of linkage disequilibrium (LD) between the SNP 

and the QTL in the dam lines. Additional evidence that the origin of alleles may be 

important arises from the fact that detected SNPs (linking to GABBR2) were fixed or 

nearly fixed for the same allele in the maternal lines (unpublished results). This 
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suggests that only the contribution of the paternal allele is important. Moreover, if 

allele-origin matters, the power for detection of SNPs associated with survival time 

is expected to increase when alleles are mapped specific to their allele origin. 

Simulation studies indeed show that considering breed-specific effects can be 

important (Ibánẽz-Escriche et al., 2009; Sevillano et al., 2017). 

 

I, therefore, aimed to map DGE and IGE for survival time, while considering the line 

origin of the alleles. However, accurately phasing crossbred genotypes, i.e. assigning 

the line origin to alleles, appeared to be challenging. Namely, new Mendel errors 

were identified after phasing (additional to the identified Mendel errors based on 

SNP genotypes). In this section, I will first discuss the method used for phasing, 

followed by a discussion on the background of these errors. The third part of this 

section presents results of a GWAS on phased data for cross W1*WB, and finally I 

will discuss the implications of the Mendel errors on the GWAS results. 

 

6.2.1 Data and phasing approach 

Genotype data, after quality control from Chapter 5 were used in the analyses. 

Quality control encompassed removing SNPs with a missing rate > 0.30 and MAF < 

0.005. Individuals with a missing rate > 0.10 were also removed. SNPs deviating from 

Hardy Weinberg Equilibrium (p<10-5) in the parental population were removed 

across the dataset. Moreover, quality control based on Mendel errors was 

conducted. SNPs contributing to > 1 Mendel error were removed from the dataset. 

Finally, individuals contributing to > 5 Mendel errors were removed from the 

dataset. Remaining genotypes with Mendel errors were set to missing. Ultimately, 

this means that no detectable Mendel errors were present in the data before 

phasing. 

 

As a case study, I assigned the line of origin to alleles using data from cross W1*WB. 

I chose cross W1*WB because the number of initial Mendel errors was limited and, 

therefore, genotypic data of this cross was considered most reliable. Furthermore, I 

focussed on chromosome 2 because this chromosome appears to contain a region 

of interest for mortality due to cannibalism (Chapter 5). In total, 1816 genotypes 

were available for W1*WB crossbreds, with 4717 SNPs (chromosome 2). In total, 

1023 ancestral genotypes were available of which 828 of the WB line, and 195 for 

the W1 line. I assigned the line origin of the alleles using the BOA approach and the 

corresponding software (Vandenplas et al., 2016). The BOA approach consists of: 

i) phasing genotypes using Alphaphase1.1 (Hickey et al., 2011); 

ii) assigning the line origin to the phased haplotypes 
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iii) assigning the line origin to the alleles of the crossbreds based on a 

library of assigned haplotypes, the line composition of crossbred 

animals, and their initial SNP genotypes. 

 

In this way, crossbred genotypes (0/1/2) were split into alleles originating from the 

sire, and alleles originating from the dam (i.e. each individual has two “genotypes” 

(0/1); referred to as “paternal haplotype” and “maternal haplotype”). 

 

6.2.2 Quality checks of phased data 

After assignment, I performed several checks to get an impression of the quality of 

the phased data. First, I checked whether the input genotype based on count data 

(0,1,2) equalled the sum of the “paternal haplotype” and “maternal haplotype”. This 

was true for the full dataset, meaning that the original genotype was maintained 

throughout all three steps of the BOA approach (see 6.2.1). Second, I conducted a 

principal component analysis on the haplotypes (PCA; Figure 6.1) to investigate if the 

allele origins were correctly assigned to the specific lines, either W1 or WB. Figure 

6.1 shows that two separate clusters can be identified; one indicating alleles 

belonging to line W1 and the other indicating alleles belonging to line WB. From this 

Figure 6.1. Principal component analysis of crossbred haplotypes originating from W1 (W1 

haplotype) and from WB (WB haplotype), sire (line W1), and dam (line WB) haplotypes. 

Black dots indicating the haplotypes part of the top 10% Mendel errors. 
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figure, I conclude that the line origin that was assigned to the haplotypes of the 

crossbreds matches the parental lines. 

 

Third, I checked for Mendel errors based on the phased data, i.e. I checked whether 

the “maternal haplotype” and the “paternal haplotype” at a specific locus was 

possible given the parental genotypes. While no Mendel errors were present based 

on the SNP count data before phasing, 191 059 Mendel errors (~2%) were found 

after phasing. Mendel errors are not visible in the data when both parents have 

heterozygous genotypes, and, therefore, more Mendel errors have been left 

undetected. Reconstruction of haplotypes, and thus considering multiple markers 

jointly, may reveal additional Mendel errors. 

 

When using SNP count data to check for Mendel errors, one cannot find all Mendel 

errors. With (correctly) phased data, it is known which allele comes from the sire and 

which from the dam, and it is thus possible to reveal additional Mendel errors 

compared to using count data. Table 6.1 lists 5 scenarios, each describing a 

combination of sire and dam genotype and the occurrence (%) of this scenario in the 

current data. It is also described in which scenarios phased data provides additional 

information to detect Mendel errors and the % detected in the data for a given 

scenario. Phased data will not provide any additional information compared to count 

data for scenario 1 (both parents are homozygous for the same allele) and scenario 

3 (both parents are heterozygous). Phased data provides additional information for 

scenario 2, 4, and 5 for the situation where offspring have heterozygous genotypes. 

For example, when parents have opposing homozygote genotypes (AA and BB), 

offspring with heterozygous genotypes (AB) would always pass the parent-offspring 

trio check based on count data. This is not the case with phased data, where two 

haplotypes will be identified, the “paternal haplotype” and the “maternal 

haplotype”. For example, if the sire genotype would be AA, the dam genotype BB, 

the “paternal haplotype” B, and the “maternal haplotype” A, this would be an error 

which was undetected when using the count data approach. 

 

I listed the number of errors in Table 6.1. No additional errors were revealed based 

on phased data for situation 1 and 3 and a number of additional errors were found 

based on phased data that had not been found using count data for situation 2, 4, 

and 5. Phased data revealed an additional 191 059 of Mendel errors in cross W1*WB 

on chromosome 2. This comprises ~2 % of the complete dataset. This shows that the 

number of actual Mendel errors is higher than detected by comparing offspring and 
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parent genotypes based on count data (0/1/2) and/or that the phasing procedure 

introduces mistakes. 

 

Mendel errors can occur because of genotyping, pedigree mistakes, or may be 

introduced by the phasing program that is used. Such errors may have an impact on 

the power to detect SNP associations. The following was observed: 

- In total, 0.2% Mendel Errors were identified where parents had opposing 

homozygous genotypes (Table 6.1) 

- The maximum % of Mendel errors detected for an individual was 6%. 

- The maximum % of Mendel errors detected for a SNP was 12% 

 

I would argue that the possibility of mistakes in the pedigree is limited because the 

pedigree was reconstructed by Hendrix Genetics based on genotype data. Parents 

were set missing if the parent-offspring match was unconvincing. I, therefore, 

believe that the errors detected in this research are mostly due to genotyping 

mistakes or phasing mistakes. For the remainder of this section, I will therefore only 

consider genotyping errors and phasing errors. 

 

To get a feeling about the source of the Mendel errors (crossbred genotype, sire 

genotype or dam genotype), I looked at the scenario where parent-duos were 

homozygous for the opposite allele (scenario 4 in Table 1). Thus, for each detected 

Mendel error, I identified whether parent-duos were homozygous for the opposite 

allele. To make an inference on the source of the error I looked at the genotype of 

the siblings of the crossbred. First, I identified half-sibs of the crossbred offspring. 

Table 6.1. Five situations indicating whether phased data provides additional information 

compared to count data about Mendel errors. 

Scenario Sire and Dam 

genotypes 

Phased Data Occurrence 

(%) 

Mendel 

errors (%) 

1 Same homozygote No additional information 27 0 

2 Homozygote and 

heterozygote 

Additional information 

for heterozygous 

offspring 

30 1.7 

3 Both heterozygote No additional information 4 0 

4 Opposing 

homozygote 

Additional information 

for heterozygous 

offspring 

28 0.2 

5 One parent 

missing 

Additional information 

for heterozygous 

offspring 

10 0.1 

 Total  100 2 

     



6. General Discussion 

 

 

112 

 

Second, I identified whether parent-duos of the half-sibs also had opposing 

homozygous genotypes, and finally whether this particular trio was identified as a 

mismatch. For 4% of the identified Mendel errors in scenario 4, all half-sibs had 

opposing homozygous parents. 

 

Figure 2 is a frequency plot of the percentage of half-sibs (excluding self) that have 

the same identified Mendel errors. My assumptions were the following: 

- If none of the individual’s half-sibs are implicated in the same Mendel error, 

i.e. the detected Mendel error for a specific SNP was unique to the 

offspring-parent trio, the mistake is due to the offspring haplotype. Since 

we look at heterozygous offspring and opposing homozygote parents, we 

may conclude the paternal and maternal genotype have been swapped 

during phasing analysis. 

- With an increasing number of half-sib haplotypes implicated in the same 

Mendel error, chances increase that the mistake is due to errors in the 

parental genotype. This would be an indication of a genotyping mistake. 

 

The distribution in Figure 6.2 is skewed to the right, and I, therefore, suspect that 

most Mendel errors were introduced by phasing. 

 

Figure 6.2. Frequency plot of the percentage of half-sibs (excluding self) that have the same 

identified Mendel errors 
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Furthermore, I found the following: 

- It was expected that genotyping mistakes may have occurred primarily for 

SNP with low MAF, but this was not the case. There is no correlation 

between MAF and the number of Mendel errors per SNP.  

- There is no correlation between the number of total genotyped relatives 

and the number of mistakes. It was expected that with a higher number of 

genotyped relatives, a better phasing quality would be observed, and less 

Mendel errors. 

 

To summarize, based on the frequency plot of the percentage of half-sibs that have 

the same identified Mendel errors I conclude that most of the Mendel errors have 

been introduced by phasing. However, it must be noted that this was real data and I 

could, therefore, only investigate it for parent-offspring duos with heterozygous 

offspring and opposing homozygous parents. I would, therefore, recommend a 

simulation study to investigate the introduction of Mendel errors due to phasing 

analyses. 

 

6.2.3 GWAS using phased genotypes in W1*WB - Chromosome 2 

To understand the implications of the Mendel errors in GWAS analyses, I compare 

two analyses: GWAS using data including the Mendel errors, and GWAS using data 

where the known Mendel errors were set missing. Finally, I discuss the results from 

the GWAS analyses using phased data and compare it to the results in Chapter 5. 

 

I used a linear mixed model for survival time for the GWAS analysis using phased 

genotypes for cross W1*WB on chromosome 2. First, genetic parameters were 

estimated without SNP effects in the model. Five generations of pedigree 

information were included in the genetic analysis. Second, SNP effects were 

estimated one by one. The origin of the alleles were considered in the model. This 

resulted in four estimated SNP-effects: the paternal and maternal direct allele-

effects, and the paternal and maternal indirect allele-effects, which were both 

modelled as the summed indirect effects of the cage mates. Variance components 

were fixed to the estimated values from the model without the SNP effect. The 

following model was used:  
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where �� is the observed survival time (days) for individual  in cage , with cage 

mates ,  is the number of cage members (  = 5), and fixed represents the fixed 

effect of the combination of wing-row-level; �
����

, �
��	

, 

����

, and 

��	

 are 

regression coefficients of �� on haplotypes for the sire ( �
����

, 

����

) and dam 

population �
��	

, 

��	

), fitted as fixed effects, where � represents the fixed 

direct effect of the SNP of individual  , and 
 is the fixed indirect effect of the same 

SNP in cage mates ; � is the allele count (0, 1) for the individual, �(�)
���
���  

is the summed SNP allele counts (0 - 4) of cage mates , � is the random polygenic 

effect of individual , � is the random cage effect, and ��� is the residual. All 

random effects were assumed to be normally distributed. The covariance structures 

for the model terms were: �
�, ����

� , and 

�
�, where  is a pedigree relationship matrix, �

� is the additive genetic variance,  

is an identity matrix, ����
�  is the cage variance, and �

� is the residual variance. 

 

DGE 

IGE 

Figure 6.3. Correlation plots of log10-p values from the analyses including Mendel errors 

and analyses with Mendel errors set to missing. Correlation plots are for -10log-p values 

of the paternal (♂; left)and maternal (♀; right) direct (DGE; top) allele-effects, and the 

paternal and maternal indirect (IGE; bottom) allele-effects. 
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Implication of Mendel errors in GWAS. 

Figure 6.3 contains four correlation plots of -log10-p values from the analyses 

including Mendel errors and analyses with Mendel errors set to missing. Correlation 

plots are for -10log-p values of the paternal and maternal direct allele-effects, and 

the paternal and maternal indirect allele-effects. The following can be observed: 

- Correlations of -10log-p values are rather low (<0.8), except for the 

correlation between paternal indirect allele-effects (0.9). 

- Correlations of -10log-p values for the paternal allele-effects are higher 

compared to correlations of -10log-p values for the maternal allele-effects. 

- Correlations of -10log-p values for the indirect allele-effects are higher 

compared to correlations of -10log-p values for the direct allele-effects. 

- The ranges of the -10log-p values are similar for the paternal allele-effects. 

- The ranges of the -10log-p values are similar for the maternal allele-effects. 

 

In conclusion, Mendel errors can have a large impact on the results of the analyses, 

even when the fraction of identified Mendel errors is small (2% in this dataset). This 

is supported by findings in other studies, where it was shown that small SNP error 

rates can have large implications in linkage or association studies (e.g. Douglas et al, 

2000; Abecasis et al, 2001). Repeating the quality control based on Mendel errors 

after phasing is, therefore, an important step when conducting GWAS analyses with 

phased data, i.e. two Mendel error checks are required, one based on count data 

and one using phased data. 

 

Results of GWAS analyses based on phased data 

Figure 6.4 shows the Manhattan plots for paternal and maternal direct allele-effects, 

and the paternal and maternal indirect allele-effects. In the plots, I added FDR-

thresholds for q<0.1, q<0.2, and q<0.3. In the discussion, I will only focus on results 

based on q<0.1. If no SNP reached the FDR-threshold, the threshold could not be 

estimated. There were no SNPs associated with direct effects for survival time at 

q<0.1. For paternal indirect allele-effects, 34 SNPs were associated with survival time 

at q<0.1, of which 3 SNPs in the region between 27.8 and 28.4 Mb (region 1), 10 SNPs 

in the region between 62 and 64 Mb (region 2), and the remaining 20 SNPs in the 

region between 87 and 89 Mb (region 3). In Chapter 5, a clear peak for indirect 

effects was also observed in region 3. However, none of the SNP effects in that peak 

were significant at q<0.3 (and, therefore, also none at q<0.1). This peak was 

associated with a gene, GABBR2 (88.00-88.4 Mb). 
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Before the analyses based on phased data, I had two hypotheses: i) I expected that 

the contribution of the paternal allele matters because the identified SNP in the 

GABBR2 region (Chapter 5) was fixed in the maternal line (WB), and ii) If allele-origin 

matters, the power for detection of SNPs associated with survival time is expected 

to increase when alleles are mapped specific to their allele origin. The first 

hypothesis, that the contribution of the sire allele matters, holds. Namely, two clear 

peaks were observed for indirect effects based on the “paternal haplotype”, of which 

one of them was in the GABBR2 region. No associations for indirect effects were 

found based on the “maternal haplotype”. The second assumption holds as well: the 

indirect effects based on the “paternal haplotype” were found significant at q<0.1, 

while based on count data these were not significant at q<0.3. 

IGE 

DGE 

Figure 6.4. Manhattan plots of analyses using phased data where Mendel errors were 

set to missing. These are Manhattan plots of the paternal (♂; left)and maternal (♀; 

right) direct (DGE; top) allele-effects, and the paternal and maternal indirect (IGE; 

bottom) allele-effects. In the plots, FDR-thresholds for q<0.1, q<0.2, and q<0.3 are 

presnted. If no SNP reached the FDR-threshold, the threshold could not be estimated. 

SNP positions chromosome 2 SNP positions chromosome 2 

SNP positions chromosome 2 SNP positions chromosome 2 
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In conclusion, 

- The power of genome-wide association study may increase when alleles are 

mapped specific to their allele origin. 

- In cross W1*WB, the contribution of the paternal alleles are important for 

indirect effects. 

 

6.3 Animal welfare and sustainable egg production 

Sustainable egg production goes beyond the ability to continue to produce enough 

eggs, but comprises all aspects of egg production, including farm economics, animal 

welfare, and acceptance of its modus operandi by society. A growing world 

population and increased prosperity in third world countries contribute to an 

increased demand for eggs. Eggs are very nutritious and are an important ingredient 

of diets worldwide. Eggs represent ~ 6% of the total animal protein consumption 

with approximately 9 kg eggs/capita/year consumed globally (Chambers et al., 

2017). To meet the demand for eggs, there has been a steady increase in egg 

production the past decades, with approximately 1400 billion eggs produced in 2016 

compared to approximately 1000 billion eggs in 2000 (FAOstat, 2016). Laying hen 

breeding has contributed to this increase in egg production, and is as such concerned 

with all aspects of sustainability. 

 

In my opinion, the topic of this thesis is very relevant in the light of sustainable egg 

production, because i) it addresses important societal concerns, and ii) it contributes 

to sustainable development goal “End hunger” (SDG2) of the Food and Agricultural 

Organization of the United Nations (FAO 2015). 

 

6.1.1 Societal concerns 

Animal breeding cannot be sustainable if the modus operandi is not accepted by 

society. Public opinions and attitudes (e.g. consumer behaviour) may drive 

legislation or markets and, as such, affect the way breeding companies operate. The 

society is increasingly interested in animal production of which animal welfare is one 

of the larger concerns. Statements about the animal welfare situations in livestock 

production systems are spreading globally and – perhaps as a result - consumption 

patterns in many (European) countries have changed, adopting diets containing less 

animal products or “animal welfare friendly” products (Amos and Sullivan, 2018). 

Integrating animal welfare in all chains of animal production is, therefore, a growing 

demand of society. Continued efforts to improve animal welfare using genetic 

selection is, therefore, crucial. 
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One practice in the laying hen industry that receives much critical attention is beak 

trimming. Beak trimming is a common practice to prevent cannibalism. It has 

received much critical attention because it compromises the welfare of the laying 

hens (Riber and Hinrichsen, 2017). For this reason, various European countries have 

banned the beak trimming practice or plan to ban it in the near future. In Chapter 4, 

we reported mortality to be between 22% and 37% in crossbred hens with intact 

beaks, while beak-trimmed hens of the same crosses showed a mortality of 2% to 

3% at the end of the laying period (personal communication J. Visscher). Thus, 

cannibalism will increase when hens have intact beaks. 

 

Cannibalism is a multi-factorial problem caused by both environmental and animal 

related factors. Management solutions could be related to feed (Van Krimpen 2005), 

light intensity (Kjaer and Vestergaar 2009), provision of floor litter (Blokhuis, 1986), 

and group size (Bilcik and Keeling 2000). However, there are no management 

solutions that can completely prevent cannibalism. Genetic selection, could 

contribute to a more permanent solution, that will allow to keep hens with intact 

beaks. This thesis contributes to understanding how to improve survival time in 

laying hens with intact beaks. As such, it addresses two, although tightly linked, 

societal issues: the beak trimming problem and the cannibalism problem. 

 

I believe that conducting research and publishing forthcoming results in scientific 

journals alone is not sufficient. For ones work to be societal relevant, it is important 

to communicate results to the right set of stakeholders with the aim to translate the 

research into practice. This work was established through direct involvement of 

Hendrix Genetics B.V, a world leader in laying hen breeding. This direct involvement, 

and the use of their recurrent test data ensured added value of the outcomes of this 

thesis, especially since directions of this work were fit to the questions from industry, 

and results were directly shared with the relevant people to be applied in practice. 

 

In my opinion, improving animal welfare using genetic selection is an acceptable 

approach. However, part of the society will criticize this. Society could question 

whether it is acceptable to use genetic selection to improve animal welfare given 

that these animals are bred to be kept in a production environment. They pose the 

question: should we adapt the animal or change the production environment? 

Worldwide, the demand for eggs and consequently the production of eggs has 

increased (FAOstat, 2016). I believe that we have the obligation to produce these 

eggs in the best way possible, and this includes a high level of welfare. The welfare 

problem discussed in this thesis, cannibalism among laying hens, is a multifactorial 
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problem. Here, both environmental and animal related factors play a role. Thus, 

changing the production environment is not sufficient. In my opinion it is acceptable 

to use genetic selection to ensure the positive interactions among laying hens 

because animal breeders make use of the natural variation that occurs in a 

population. It involves making decisions about the parents for the next generation. 

 

6.1.2 Sustainable development goal: “End hunger” 

The Food and Agricultural Organization of the United Nations (FAO) has defined 17 

global sustainable development goals (SDGs) in 2015 with the aim to achieve them 

within 15 years (in 2030). The SDGs were defined within areas of critical importance 

for both humanity and the planet as a whole. Improved animal welfare contributes 

to SDG2, “End hunger, achieve food security and improved nutrition and promote 

sustainable agriculture” (FAO, 2015). As mentioned earlier, animal proteins comprise 

of an important part of the human diet, and are, therefore, of utmost importance to 

achieve food security and to improve nutrition. Increased animal welfare by reducing 

competitive interactions in laying hens may contribute to increased productivity and 

increased animal health, and consequently increase the availability of animal 

proteins. 

 

Selection for reduced competitive interactions may, however, be at cost of other 

traits in the breeding goal, e.g. productivity. Ellen and Bijma (2019) aimed to quantify 

the prospects for genetic improvement of a socially-affected trait in laying hens in a 

realistic breeding scheme. To this end, authors investigated the response to selection 

of survival time and “other traits” in the breeding goal for two selection schemes: a 

multi-trait recurrent testing scheme and a multi-trait genomic selection scheme. 

Figure 6.5 displays the gain in survival time (y-axis) relative to the reduction in 

response to other traits (x-axis). Responses are shown for breeding goals ranging 

from selection for survival time only to selection for “other traits” only. The following 

can be observed from Figure 6.5: 

- The maximum predicted response to selection for survival time was 

substantially larger in the genomic selection scheme (48 days/year) than for 

the recurrent testing scheme (25 days/year). 

- It is feasible to select for improved survival time with only a small reduction 

in response to selection in other traits when the genetic correlation 

between survival and “other traits” is zero. For example, half of the 

maximum response in survival time can be obtained with only ~13% 

reduction in response in “other traits” in the recurrent testing scheme, and 

~15% in the genomic selection scheme.  
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- With a genetic correlation of -0.3 between survival time and “other traits”, 

costs in “other traits” were substantially larger. For example, half of the 

maximum response in survival time can be obtained with ~42% reduction 

in the recurrent testing scheme and ~52% in the genomic selection scheme. 

 

In conclusion, the weight given to survival time relative to “other traits” will 

determine the achieved genetic gain in survival time. It is, however, clear that it is 

feasible to reduce competitive interactions in laying hens and at the same time 

realize genetic gain in “other traits”. In addition, when more laying hens survive until 

the end of the laying period, more eggs will be produced. Genetic selection for 

reduced competitive interactions will, thus,  contribute to increased animal welfare, 

Figure 6.5. Relation between response to selection for survival time and other traits, for 

a population with 35% mortality. Responses are shown for breeding goals ranging from 

selection for survival time only to selection for other traits only (when going from left to 

right in the figure). The genetic correlation between survival time and other traits was 

either 0 (◊) or -0.3 (●). Solid lines represent the recurrent testing-scheme, while dashed 

lines represent the genomic selection-scheme. (Figure from E. D. Ellen and P. Bijma, 2019) 
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and other traits, e.g. productivity and health, and consequently increase the 

availability of animal proteins. As such, this work contributes to SDG2, “End hunger, 

achieve food security and improved nutrition and promote sustainable agriculture” 

(FAO, 2015). 
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Social interactions are an integral component of life. They occur in both domestic 

and natural populations. Interacting individuals may affect each other’s 

characteristics. Examples are aggression in mink, cooperation in ants, and spouse 

effects in human. With social interaction traits, there are two distinct effects: the 

effect of an individual on its own phenotype (direct effect) and the effects of group 

mates on an individual’s phenotype (indirect effect). Direct and indirect effects can 

partly be genetically determined, where the phenotype of an individual depends on 

both the individual’s own genes (direct genetic effects; DGE) and the genes from its 

group mates (indirect genetic effects; IGE). This thesis focussed on cannibalistic 

interactions among laying hens which is one of the largest welfare problems in the 

egg production sector. Previous research showed that in order to reduce mortality 

due to cannibalism in laying hens, genetic solutions clearly need to consider both 

DGE and IGE. 

 

In this thesis, two traits that show the consequences of cannibalistic interactions are 

analysed using methods that incorporate both DGE and IGE: plumage condition 

(Chapter 2) and survival time (Chapter 3-5). Knowledge of the genetic parameters 

underlying a trait is required in order to estimate breeding values. The availability of 

these parameters will, moreover, provide more insight in the potential contribution 

of IGE to selection response. This thesis shows that up to 94% of the heritable 

variation in plumage condition (Chapter 2) and up to 61% of the heritable variation 

in survival time relates to IGE (Chapter 3). This indicates that methods of genetic 

selection that include IGE offer perspectives to improve plumage condition and 

survival time in laying hens. 

 

It is important that breeding values are estimated accurately because this will 

contribute to higher rates of genetic gain. Studies using DGE-IGE models have mostly 

focused on the trait survival time to reduce mortality due to cannibalism in laying 

hens. However, in these models, censored records were considered as exact lengths 

of life and models assumed that IGE were continuously expressed by all cage 

members, irrespective of whether they were alive or dead. Neglecting censoring and 

timing of IGE expression may reduce the accuracy of estimated breeding values. In 

Chapter 3, four models were considered to predict survival time in laying hens. One 

model was an analysis of survival time and the three other models treated survival 

in consecutive months as a repeated binomial trait. The latter three models can 

incorporate censoring and timing of IGE expression. The aim of this chapter was to 

investigate whether the accuracy of estimated breeding values was improved using 

the repeated measures models instead of using a model analysing survival time. 
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Including the timing of IGE expression in the DGE–IGE model reduced accuracy of 

estimated breeding values compared to analysing survival time. Using repeated 

measures instead of analysing survival time increased accuracy of estimated 

breeding values up to 21%. Results in this thesis, therefore, suggest that prediction 

of breeding values for survival time in laying hens considering methods that can deal 

with censoring. This is an important result since more accurate estimates of breeding 

values contribute to higher rates of genetic gain. 

 

Separate estimation of DGE and IGE is not always possible. DGE and IGE can only be 

estimated based on pedigree information when hens are housed in groups 

composed of multiple families. Layer breeding organizations, however, often use 

recurrent testing, where hens are housed in sire-family groups and dam pedigree is 

unknown. Here, DGE and IGE are fully confounded. A sire model can be used to 

estimate the total breeding value (TBV) of the sire, which is the linear combination 

of the sire DGE and the sire IGE. There are, thus, two issues; the dam pedigree is 

unknown and separate estimation of DGE and IGE is not possible using pedigree 

information. Genomic information may solve both issues. First, genomic information 

provides the opportunity to reconstruct the dam pedigree which makes it possible 

to distinguish full-sibs from half-sibs. In turn, this may allow separate estimation of 

DGE and IGE, even when a group has the same sire (but not the same dam). Second, 

genomic information provides information on the actual genetic relationship 

between individuals. Actual genetic relationships between individuals vary around 

their expected value based on pedigree information because of linkage and 

Mendelian sampling. Thus, genomic information may provide new opportunities for 

estimation of genetic parameters when traits are affected by social interactions. In 

Chapter 4 it was, therefore, investigated whether DGE and IGE of survival time can 

be estimated separately for crossbred laying hens housed in sire-family groups using 

genomic information. However, the majority of these analyses did not converge and 

therefore a sire model which directly estimated the TBV was used. Estimates from a 

sire model using genomic information were compared to those from a sire model 

using pedigree information. In Chapter 4, there was no improvement in the accuracy 

of breeding value predictions using genomic information rather than using pedigree 

information. This was probably because of the limited number of sires and the use 

of a sire model. Moreover, Chapter 4 showed that, the total estimated heritable 

variance expressed as a proportion of phenotypic variance ranged from 3-25%. 

These results suggest that mortality due to cannibalism can be reduced by selection 

using a sire model, even though underlying DGE and IGE are unknown, because sire 

models capture the TBV. 
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Genomic information is also used in Genome-Wide Association Studies (GWAS). 

GWAS are widely applied to a variety of traits and populations, but have been mainly 

focussed on DGE. Results from GWAS on DGE show that most quantitative traits in 

livestock are highly polygenic, and that variants tend to be associated with more than 

one trait (pleiotropy). The genetic architecture of IGE may, however, differ from the 

genetic architecture of DGE. With IGE, the phenotype of other individuals are 

affected rather than the phenotype of the individual itself (i.e. DGE). Selection 

targets such IGE only in the presence of feed-back mechanisms, using e.g. group 

selection or kin selection. IGE may, therefore, be less exposed to natural selection or 

artificial selection when not accounting for social interactions. In other words, 

selection has not exhausted variation due to IGE. It is, therefore, expected that some 

loci may have large IGE. However, only a handful of studies extended GWAS to 

include IGE. In Chapter 5, the aim was, therefore, to identify SNPs associated with 

direct and indirect effects for survival time in laying hens that show cannibalism. 

Moreover, GWAS results from analysis of survival time versus using repeated 

measures models were compared. Chapter 5 showed that the same quantitative 

trait loci were identified with all models. Moreover, GWAS results revealed SNPs with 

large DGE and a link of DGE and IGE for survival time in layers with the GABAergic 

system (GABBR2 gene), which supports existing evidence for the involvement of 

GABA in the development of abnormal behaviours.  

 

In Chapter 5, mortality due to feather pecking in laying hens was analysed in a single-

SNP GWAS. Survival data of three layer crosses were used of which all originated 

from the same sire line but different dam lines. Results from this GWAS showed no 

consensus between the crosses. A possible reason is that SNP effects can differ 

among crosses due to different levels of linkage disequilibrium between the SNP and 

the QTL in the dam lines. Additional evidence that the origin of alleles may be 

important arises from the fact that detected SNPs (linking to GABBR2) were fixed or 

nearly fixed for the same allele in the maternal lines. This suggests that only the 

contribution of the paternal allele is important. Moreover, if allele-origin matters, 

the power for detection of SNPs associated with survival time is expected to increase 

when alleles are mapped specific to their allele origin. Chapter 6, therefore, aimed 

to map DGE and IGE for survival time, while considering the line origin of the alleles. 

However, accurately assigning the line origin to alleles (phasing), appeared to be 

challenging. Namely, new Mendel errors were identified after phasing (additional to 

the identified Mendel errors based on SNP genotypes). In Chapter 6 it is concluded 

that Mendel errors can have a large impact on the results of the analyses, even when 

the fraction of identified Mendel errors is small. Moreover, this thesis shows that 



Summary 

 

128 

 

repeating the quality control based on Mendel errors after phasing is an important 

step when conducting GWAS analyses with phased data, i.e. two Mendel error 

checks are required, one based on count data and one using phased data.  

 

Finally, Chapter 6, shows that the topic of this thesis is very relevant in the light of 

sustainable egg production, because i) it addresses important societal concerns, and 

ii) it contributes to sustainable development goal “End hunger” (SDG2) of the Food 

and Agricultural Organization of the United Nations. 
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Additional file 2.1 

 

Table S1 Estimates of genetic parameters from the univariate classical animal model and 

corresponding SE of FCS 
 

Line Region � �� ��  

W1 Neck  0.134 ± 0.017 0.099 ± 0.006 0.307 ± 0.007 

 Back 0.117 ± 0.015 0.035 ± 0.003 0.186 ± 0.004 

 Rump 0.059 ± 0.014 0.105 ± 0.005 0.243 ± 0.006 

 Belly 0.180 ± 0.021 0.099 ± 0.007 0.414 ± 0.009 

 Total 0.348 ± 0.043 0.805 ± 0.044 2.031 ± 0.048 

WB Neck  0.307 ± 0.029 0.471 ± 0.023 0.956 ± 0.025 

 Back 0.221 ± 0.030 0.435 ± 0.022 0.933 ± 0.023 

 Rump 0.238 ± 0.030 0.680 ± 0.031 1.184 ± 0.032 

 Belly 0.229 ± 0.031 0.235 ± 0.016 0.831 ± 0.019 

 Total 0.949 ± 0.091 5.260 ± 0.241 9.479 ± 0.257 
 

Estimates are shown for FCS in each body region and for total FCS in two lines (W1, WB); � 

is the genetic standard deviation; �� is the cage variance; �� is the phenotypic variance: 

�� �� �� 	�. FCS is feather condition score, for each body region FCS ranges from 1 

to 5, and total FCS ranges from 4 to 20. 
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Table S3 Estimates of genetic correlations between the four body regions from the direct-

indirect-effects model 
 

  Region 

Line Region Neck Back Rump Belly 

W1 Neck   0.84 ± 0.13 NC1 > 0.99 

 Back 0.75 ± 0.11  0.92 ± 0.14 0.75 ± 0.30 

 Rump NC1 0.87 ± 0.20  > 0.99 

 Belly 0.09 ± 0.18 -0.02 ± 0.18 0.48 ± 0.28  

WB Neck   NC1 0.97 ± 0.03 0.92 ± 0.09 

 Back NC1  0.98 ± 0.03 0.85 ± 0.11 

 Rump 0.65 ± 0.14 0.74 ± 0.13  0.74 ± 0.13 

 Belly 0.47 ± 0.15 0.46 ± 0.20 0.25 ± 0.21  
 

Estimates are shown for FCS in each body region in two lines (W1, WB); the estimates below 

the diagonal refer to the direct genetic correlations ( ��� ; the estimates above the diagonal 

refer to the indirect genetic correlations ( ��� ; 1NC = not converged. 
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Additional file 3.1 – Predicting phenotypes using STM, 

RMM.t, RMM.p, and GLMM 

 

In this study, the quality of estimated breeding values was judged using cross 

validation for survival time. Known phenotypes were set to missing, their values 

were predicted, and finally the predicted values were correlated to the observed 

values. Predicted phenotypes were the rank of predicted survival times of 

individuals. Phenotypes were predicted by combining the estimated DGE ��  of 

the individual itself and the estimated IGE of its cage mates (n = 3) that were 

present at the start of the experiment �� . Thus the predicted phenotype of 

individual i was: 

 

� �� ��

���

���
 

 

where estimated breeding values �� and ��
���

���
 refer to survival time. For STM, 

these estimated breeding values follow directly from the analysis, whereas for 

RMM.t, RMM.p, and the GLMM the estimated breeding values have to be 

translated to the survival time scale. 

 

For RMM.t and RMM.p, the sum of all repeated measures of an individual i 

corresponds to the observed survival time in months of individual i. Hence, for 

RMM.t, predicted phenotypes were obtained as: 

 

� �� ��

���

��� 
 

 

and for RMM.p, predicted phenotypes were obtained as: 

 

� �� ��

���

���
 

 
 

 

with xt being a function of mean survival at time t,    , pt denoting 

mean survival at time t. 
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The GLMM gives predictions on the underlying logit scale. Before calculating �, 
these predictions need to be back transformed to the observed scale. Since 

, for any individual i at time t, the predicted survival 

probability is given by: 

 

�, 

"( )%�&��%' �&(�
)*+

�,+

"( )%�&��%' �&(�
)*+

�,+

 

 

where μ(t) represents the fixed effect solution at each period coming from, 

, being a sixth order polynomial of time. The fixed effect was included 

because the transformation from the underlying to the observed scale is non-

linear. By including the mean, the DGE and IGE predictions are scaled to the mean 

population survival for each month. Finally, the predicted phenotype for the GLMM 

is the sum of the predicted survival probabilities at each point in time, 

 

� �-
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Additional file 3.2 – Translating breeding values and 

genetic parameters of RMM.t to survival days 

 

In this study, survival was modelled as being dead (0) or alive (1) each month. More 

interest is however in the number of survival days. This appendix shows how the 

breeding values, estimated genetic parameters, and phenotypic variance for 

survival can be translated to the survival time scale. 

 

Survival time (STi) of an individual i is the sum of its survival records (Si) at each day, 

 

� � 

 .

 +
 

 

with c being a multiplication factor to translate monthly survival into days; c = 30.4, 

t1 is the start of the laying period (in months), and t2 the end of the laying period. 

The continuous time equivalent of this expression is: 

 

� � 

 .

 +
 

 

Substituting STi by Equation 1 and �  by Equation 2, ignoring the fixed effects, and 

using an animal model for survival time yields: 

 

/�,�� /�,��

���

�0�
/�,1 /�,��1 

/,�� 2 /,��

���

�0�
2 /34 /3 2 /� 2 /��34

 .

 +

 

 

where subscript ST denotes survival time, and subscript S denotes survival. This 

expression identifies the following correspondence between the direct and indirect 

breeding values for survival time and survival, 
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/�,�� /,�� 2

 .

 +
 

and 

 

/�,��

���

�0�
/,��

���

�0�
2

 .

 +
 

 

Solving the integrals shows how direct and indirect breeding values for survival are 

related to survival time, 

 

/�,��
�
� �� �� /,��  

 

and 

 

/�,��
�
� �� �� /,��  

 

These two expressions can also be applied to the direct and indirect EBV. Taking 

the (co)variance shows that the relationship between the genetic parameters for 

survival time and survival is given by: 
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These equations are used in Table 3.3 to translate estimated genetic parameters 

for survival to the survival time scale. 

 

The relationship between the phenotype for survival time and the model for 

survival is given by (ignoring fixed effects): 
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/�,��1 /,�� 2 /,��

���

�0�
2 /34 /3 2 /� 2 /��34

 .

 +
 

 

Solving the integral yields: 

 

/�,��1
�
� �� �� /,�� /,��

���

�0�
/3 /� /34 /��34

 �

 �
 

 

The last two terms remain summations because a different effect is fitted at each 

time point. Taking the variance on both sides shows that phenotypic variance for 

survival time is given by: 

 

�,/�� � 	�5� 6 78 � � ��
� �(

� �79	3
� �:�

	�5 6 78 �79	3;
� 	�

 �6 78 

 �	�5
 

 

The last term is kept as a sum because, in the survival model, a separate residual 

variance was fitted for each time point (whereas a variance common to all time 

points was fitted for the cage effect). This expression is used in Table 3 to calculate 

phenotypic variance on the survival time scale from the parameter estimates of the 

survival model. 
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Additional file 5.1 – QQ-plots of direct SNPs for STM, 

RMM.t, and GLMM 
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Additional file 5.2 – QQ-plots of indirect SNPs for STM, 

RMM.t, and GLMM 
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Additional file 5.3 – Number of direct and indirect SNPs 

with p<0.001 for all crosses and models after genomic 

control 

 

Effect Model W1*WA W1*WB W1*WC 

Direct STM 236 278 345 

 RMM.t 226 283 332 

 GLMM 237 245 330 

Indirect STM 226 356 374 

 RMM.t 236 355 376 

 GLMM 213 413 361 
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Additional file 5.4 – Power of direct and indirect SNP 

effects 

 

To get an impression of the power in our data we calculated the power assuming a  

true SNP effect in days at allele frequencies ranging from 0-1, given the population 

specific parameters of the crosses (Table 1), and with an acceptance threshold of 

~4 standard deviations from the mean. 

 

Assuming a simple model for direct SNP effects: � � � �, 
 

The SE of direct SNP effect � is given by: 

 

�
	

 

 

With �  the standard error of direct SNP effect �, 	 being the residual 

standard deviation, N the sample size, and p the allele frequency. 

 

The power was obtained from: 

 

�
�
�

 

 

 

Assuming a simple model for indirect SNP effects: � � �����0� �, 
 

The SE of indirect SNP effect � is given by: 

 

�
	

�  

 

With �  the standard error of indirect SNP effect �, and n the number of 

group members. 

 

The power was obtained from: 

 

�
�
�
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Graphs of power at allele frequencies 0-1.00 for direct SNP effects b 

 

Power of detecting direct SNP effect b (ranging from 0-30 days) for a range of allele 

frequencies (0-1.00) for cross W1*WA. 

 

Power of detecting direct SNP effect b (ranging from 0-30 days) for a range of allele 

frequencies (0-1.00) for cross W1*WB. 
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Power of detecting direct SNP effect b (ranging from 0-20 days) for a range of allele 

frequencies (0-1.00) for cross W1*WC. 

 

Graphs of power at allele frequencies 0-1.00 for indirect SNP effects b 

 
Power of detecting indirect SNP effect b (ranging from 0-10 days) for a range of allele 

frequencies (0-1.00) for cross W1*WA. 

 

 



Additional files 

 

 

164 

 

 
Power of detecting indirect SNP effect b (ranging from 0-10 days) for a range of allele 

frequencies (0-1.00) for cross W1*WB. 

 

 
Power of detecting indirect SNP effect b (ranging from 0-30 days) for a range of allele 

frequencies (0-1.00) for cross W1*WC. 
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