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Abstract
Pasture management is highly dependent on accurate biomass estimation. Usually, such 
activity is neglected as current methods are time-consuming and frequently perceived as 
inaccurate. Conversely, spectral data is a promising technique to automate and improve 
the accuracy and precision of estimates. Historically, spectral vegetation indices have 
been widely adopted and large numbers have been proposed. The selection of the opti-
mal index or satisfactory subset of indices to accurately estimate biomass is not trivial 
and can influence the design of new sensors. This study aimed to compare a canopy-based 
technique (rising plate meter) with spectral vegetation indices. It examined 97 vegetation 
indices and 11,026 combinations of normalized ratio indices paired with different regres-
sion techniques on 900 pasture biomass data points of perennial ryegrass (Lolium perenne) 
collected throughout a 1-year period. The analyses demonstrated that the canopy-based 
technique is superior to the standard normalized difference vegetation index (∆, 115.1 kg 
DM ha−1 RMSE), equivalent to the best performing normalized ratio index and less accu-
rate than four selected vegetation indices deployed with different regression techniques 
(maximum ∆, 231.1 kg DM ha−1). When employing the four selected vegetation indices, 
random forests was the best performing regression technique, followed by support vector 
machines, multivariate adaptive regression splines and linear regression. Estimate preci-
sion was improved through model stacking. In summary, this study demonstrated a series 
of achievable improvements in both accuracy and precision of pasture biomass estimation, 
while comparing different numbers of inputs and regression techniques and providing a 
benchmark against standard techniques of precision agriculture and pasture management.
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Introduction

Efficient pasture production and utilisation is often the most critical component in a pas-
ture-based dairy operation (García et al. 2014). Despite the extensive literature available 
about the constituent factors of pasture production and management, most pasture-based 
grazing systems are not optimally managed due to the costly and time-consuming nature 
of standard methods for pasture measurement and monitoring. In practice, coordinating 
pasture growth rates and grazing events is crucial to optimise yield (Chapman et al. 2012) 
while avoiding nutritional value losses (Turner et al. 2006).

In a farm scenario, such coordination can be achieved through weekly measurements of 
pasture biomass (García et al. 2014). Currently, common methods, such as the rising plate 
meter (RPM), rely on linear relationships between canopy height (Allen et al. 2011) and 
biomass. However, these relationships are limited in their accuracy and biased due to plant-
development stages, canopy architecture (erectophile or plagiophile) or canopy density 
(Nakagami 2016). Finally, such a method requires a trained observer constantly monitoring 
and sampling paddocks, which can lead to inconsistencies due to observer-bias (Thomson 
et al. 1997) and requires extensive time investment (Hall et al. 2019).

Alternatively, remote sensing (RS) techniques can be employed to provide semi- or 
fully-automated monitoring, provided that the ideal temporal-spatial scales are observed. 
This constraint has, historically, prevented widespread adoption, as satellite revisit intervals 
and pixel size are not adequate for on-farm management. Furthermore, persistent cloud 
cover is a pervasive constraint (Kawamura et  al. 2008) during seasons of rapid growth 
rates, hence, decreasing the utility of satellite optical imagery (Ali et al. 2016).

Unmanned aerial vehicles (UAV) and multispectral (MS) cameras (those defined as 
multi-camera 2D imagers in Aasen et al. (2018)), provide a flexible and economical sys-
tem for spectral observation at a time and spatial-scale which are ideal for agricultural 
practices. As an advantage, such multispectral cameras are readily available, producing 
radiometric calibrated imagery which can be easily integrated into agricultural manage-
ment tools. A drawback, however, is that multi-camera 2D imagers are mostly restricted 
to a small number of bands, usually five as per Aasen et al. (2018), within the visible to 
near-infrared range (VIS–NIR) of the spectrum due to their silicon-based sensors. As a 
consequence, end users have focused on vegetation indices (VI) as enhanced predictors for 
biomass estimation.

Vegetation indices have been, to an extent, successfully employed in precision agricul-
ture (PA) and RS to estimate different biophysical and biochemical attributes of vegeta-
tion. Accordingly, a vast number of VIs have been proposed (Xue and Su 2017), surpass-
ing the possibility of optimally or correctly utilizing each one of them without extensive 
domain knowledge. This issue is found in UAV remote sensing, where most commercial 
sensors rely on a broadband VI such as the normalized difference vegetation index (NDVI) 
to estimate a range of different, non-correlated attributes. Notwithstanding its versatility, 
estimations from a multi-purpose VI (e.g. NDVI) are, logically, not optimal for attributes 
different from which the index was originally designed. Issues such as NDVI saturation, 
occurring after a certain biomass threshold, are well-described in the literature (Thenkabail 
et al. 2002).

Despite the saturation drawback with the traditional NDVI, Mutanga and Skidmore 
(2004) have shown that, through systematic generation of normalized ratio indices (NRI) 
for all band pairs of a hyperspectral dataset (acquired at handheld level), certain narrow-
band NRIs can overcome biomass saturation. In parallel, Burkart et al. (2014) demonstrated 
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the equivalence between spectral observations at two different data acquisition scales: 
handheld and low-level flight. In a more recent study, Wang et al. (2019) presented a brief 
review on the difference between reflectance measurements from both acquisition-scales, 
indicating that such differences are negligible. Such findings fulfil a methodological gap 
for data collection, analysis and performance validation for UAV sensors (i.e. low-level 
flight) extrapolated from handheld spectral information.

Presently, these approaches (i.e. filtering and selection of optimal NRIs and known VIs) 
have not been tested and translated to custom-made commercial UAV sensors. Hence, can-
opy based approaches, such as the RPM, are still favoured in pasture-based systems rather 
than spectroscopy methods despite the unique potential, at a low-cost, offered by the adop-
tion of UAVs, multispectral sensors and a satisfactory small set of VIs.

Given this research-gap, current commercial multispectral cameras and data analysis 
(Michez et al. 2019) have reported poor performances for pasture biomass estimation, both 
when employing spectral-based (R2 = 0.35) or canopy based (photogrammetric estimated 
height) techniques (R2 = 0.23). This is in spite of the potential reported in previous research 
(Mutanga and Skidmore 2004) and absence of scaling-up issues (Burkart et al. 2014; Wang 
et al. 2019).

The research objective of this study was to evaluate how many and which VIs (i.e. fea-
tures) should be employed for perennial ryegrass (Lolium perenne) biomass estimation 
while comparing with two traditional techniques: the rising plate meter and broadband 
NDVI. Consequently, accuracy improvements can be quantified based on the nature of 
measurements (canopy height or spectra) and number of indices. Furthermore, different 
regression techniques (parametric and non-parametric algorithms) were analysed, so that 
increments in accuracy and precision of feature(s)-algorithm pairs can be evaluated.

Methods

Experimental design

The trial was undertaken at the Tasmanian Dairy Research Facility in Elliot (TAS, Aus-
tralia—41° 04′ 57.3″ S, 145° 46′ 21.8″ E). The experimental layout was an array of 30 
rainfed perennial ryegrass plots (dimensions of 2.0 × 7.5 m, with 0.35 m border at each side 
of the plot’s longitudinal axis), arranged as two rows by 15 columns (Fig. 1).

Plots were grouped in three main blocks (10 plots per block). Each block was split in 
two different growth intervals: long and short or approximately 30 and 15 days, respec-
tively. Each plot on the split-block was randomly allocated a different nitrogen (N) fertilis-
ing regime (0, 25, 50, 75 or 100 kg N ha−1). The fertiliser was manually applied (i.e. top-
dressing) on each plot at the start of each regrowth cycle, having urea as N source. Prior to 
spring (end of August) and prior to installing the experiment, phosphorus (P), potassium 
(K) and sulphur (S) were broadcast throughout the trial area according to soil analysis to 
ensure that the lack of macronutrients would not impede pasture growth.

Data collection campaigns consisted of three subsequent stages: (1) spectral measure-
ment, (2) canopy height measurement and (3) biomass determination. In each of these 
stages, attention was given to minimize confounding factors and ensure independence 
amongst measures, given that measurements of stages (1) and (2) overlapped spatially 
(Fig. 2). In total, five campaigns were carried out from December 2016 to November 2017 
(as per the dates of spectral measurements).
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Spectral measurements

Spectral data was collected by a field spectroradiometer (ASD Hand- held 2, Colorado, 
USA) on five dates under clear-sky conditions and around solar noon: December 18th, 
2016, February 06th, April 29th, October 22nd and November 28th, 2017. This instrument 
acquires data from 325 to 1075 nm, with a total of 750 bands and field of view (FOV) of 
25°. Total time spent to obtain all spectral measurements (180 data points) was 1.5 to 2 h 
per field campaign with minimum warm-up of 30 min. The instrument setup follows the 
manufacturer’s recommendation: 30 scans for spectrum averaging, 60 scans for dark cur-
rent and white reference. The sequence of measured plots was randomized to minimise 
any systematic effect of solar position across the plots during data collection. In addition, 
after finishing measuring the samples of each plot, a spectral measurement of the white 
reference (Spectralon®) was recorded. The intention of this procedure was twofold: (a) to 
monitor the stability of the instrument and (b) detect any possible change in atmospheric 
conditions. The instrument was recalibrated (against the white reference) after seven min-
utes of continuous usage or whenever the white-reference measurement deviated from 

Fig. 1   Experimental layout employed in each of the five data collection campaigns. Background textures 
refer to regrowth periods. Nitrogen levels are indicated within the plot. Each block (encased by a dashed 
rectangle) comprises all combinations of regrowth periods and nitrogen fertilizing regimes. Plots are num-
bered from left-to-right and bottom to top. Within, each plot, six different sample-sites were measured both 
by the spectroradiometer and the rising plate meter
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100% reflectance, whichever occurred first. Within each plot, six randomly allocated sam-
ple-sites were selected (Fig. 2 (1)) Spectral measurements were taken from approximately 
one-meter height, thus, yielding a circular footprint equal to 0.15 m2 (or 0.44 m diameter). 
Each sample-site was measured five times. Final sample spectral value (referred to as raw 
spectral data) was the average value of these five measurements.

Canopy height measurements

An analogue RPM with 5 mm resolution, described in Earle and McGowan (1979), was 
employed to measure (compressed) canopy height, once per sample-site (Fig. 2 (2)).

Biomass determination

Pasture biomass was mechanically defoliated above a residual height of 50 mm from the 
0.15 m2 footprint used in stage 1 and 2 (Fig. 2 (1) and (2)). Harvested material was dried 
for a minimum of 48 h at 60 °C in a forced-air oven (Fig. 2 (3a)) immediately following 
each harvest for pasture dry-matter (DM) determination. Samples were weighed (Fig.  2 
(3b)) using a digital scale (MassCal, 30 kg ± 0.5 g).

Data analysis

For reproducibility purposes, data analysis operations are introduced by the corresponding 
package::function format (italics typeface and accompanied by the double colon operator, 
i.e. the scope resolution operator).

Fig. 2   Data collection workflow. Stages: (1) spectral measurements (spectroradiometer); (2) canopy height 
measurements (rising plate meter); 3 biomass determination, (a) drying (forced-air oven), (b) weighing 
(digital scale). Plots (1–30) dimensions: 2.0 × 7.5 m. Sample-sites (1–6) were measured both with the spec-
troradiometer and the rising plate meter
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Data analysis was performed in RStudio/R (versions 1.14 and 3.5.1, respectively). Nec-
essary packages for the analysis, besides the base and dependencies packages, are hsdar 
(Lehnert et al. 2018), caret (Kuhn 2008) and caretEnsemble (Mayer and Knowles 2015) 
(Fig. 3).

Feature generation

The raw spectra data were smoothed using the Savitzky–Golay filter (hsdar::smoothSpeclib, 
window size = 9 nm, polynomial-degree = 2). This operation aims to decrease the influence 
of random instrument noise without distorting the original reflectance values. As a conse-
quence, this operation improves the signal-to-noise ratio.

Vegetation indices

The smoothed spectra were transformed into a set of 97 VIs (hsdar::vegindex) available 
in the literature. The full list of VIs can be found in Lehnert et al. (2018) and are listed 
n Table 2. As a baseline approach and as a complementary step for data analysis, all VIs 
were fitted in a univariate (single-index) ordinary linear regression against biomass values.

Normalized ratio indices

The smoothed resampled spectra were used in an exhaustive-search process, testing all 
available bands combinations in a normalized difference equation, as described in Mutanga 
and Skidmore (2004) and shown in Eq.  1. The smoothed spectra were resampled from 
750 to 149 bands given that the necessary computation time to test all band combinations 
would be substantial, and most likely superfluous due to high spectral band correlation. 
Spectra were resampled (hsdar::spectralResampling) applying a gaussian response func-
tion and 10 nm bandwidth, reducing computational load to 4% of all possible combina-
tions. In total, 11,026 combinations were assessed.

Fig. 3   Data analysis workflow. Statistical packages employed are indicated on the top-left of each dashed 
rectangle. Feature generation process is enclosed by the top dashed rectangle while feature filtering, model 
fitting and performance analysis are encased in the lower dashed rectangle. Single and double asterisks 
indicate where train/test and validation dataset were, respectively, employed
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All the NRIs were then fitted in a univariate (single-index) ordinary linear regression 
(stats::lm) against biomass values. From these, the best fitting linear model (hsdar::nri best 
performance, highest R2) was identified and the best performing NRI (λ1,λ2—optimised 
NRI) included in the pool of filtered VIs.

Feature filtering and selection

The framework for data analysis consisted of three steps: (A) filtering of highly correlated 
and non-significant VIs (i.e. features); (B) recursive feature elimination and feature selec-
tion (optimal and satisfactory subsets) and (C) model fitting, stacking and validation. A 
detailed description and rationale of the feature filtering and selection workflow is dis-
cussed in Perez-Riverol et  al. (2017) and a specific case-study for perennial ryegrass is 
available in Alckmin et al. (2019). The training/testing set (n = 630) comprises 70% of the 
entire dataset and was used in a repeated k-fold cross-validation (folds = 10 and repeats = 5).

Filtering

Pearson correlation among all VIs was calculated. A maximum cut-off of |0.95|, based on a 
sensitivity analysis developed in Alckmin et al. (2019), was applied to identify highly cor-
related VIs. Such VIs were evaluated in a pair-wise fashion: the one with the largest mean 
correlation (i.e. correlation with all other features) was removed. A minimum Pearson cor-
relation removal cut-off equal to |0.2| between the remaining filtered VIs and DM values 
was applied.

Recursive feature elimination  After the filtering process, remaining VIs were centred, 
scaled and a recursive feature elimination process (caret::rfe) was performed using the 
training set. Two subsets were identified: optimal (minimal RMSE) and the satisfactory 
subset, which was the smallest group of features that presented results (in training–testing 
stages) which were below a 10% threshold from the minimum RMSE model (optimal sub-
set). This workflow and guidelines were presented in Kuhn and Johnson (2013) and Perez-
Riverol et al. (2017).

Ranking of VIs (variable importance, caret::varImp) for each different VI subset size, 
at each cross- validation fold, was calculated through a random forests routine using Gini 
Importance, introduced in Breiman et al. (2017).

Model fitting, stacking and validation  After the satisfactory feature set was determined 
(i.e. Selected VIs), different regression algorithms were fitted to the data. The following 
models were chosen: “Bagged MARS” (Friedman 1991), “Random Forests” (Breiman 
2001) and “Support Vector Machines with Polynomial Kernels” (Cortes and Vapnik 1995) 
and “Ordinary Linear Regression” (referred to hereafter as MARS, RF, SVM and LM, 
respectively). The rationale for this selection was to test models that do not share the same 
core technique or are simply variations of the same technique. Tuning of hyper-parameters 
was performed automatically at the training-test stage (caret::train) through an embedded 
grid-search algorithm. Model ensemble/stacking consisted of training (caretEnsemble) an 
algorithm to combine the predictions of other previously trained algorithms (Caruana et al. 
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2004). Such an approach was generated through a generalized linear model of the three non-
parametric models (referred to as STACK).

Finally, models were validated against an unseen dataset, corresponding to 30% of 
total observations (n = 270), where it is expected that model performance is similar (or 
superior) to the training-test stage. For benchmarking purposes, RPM, NDVI, optimised 
NRI and the satisfactory subset (i.e. selected VIs) were all fitted using a linear model and 
underwent the Performance Analysis protocol, allowing a comparison between features.

Performance analysis

In this study, the error of each feature(s)-algorithm pair, or the difference between pre-
dicted and observed/true values (sample weight), was assessed using three different 
metrics: root-mean-square error (RMSE), coefficient of determination (R2) and mean 
absolute error (MAE). Ultimately, this analysis aimed to (i) assess the accuracy (Joint 
Committee for Guides in Metrology 2008) for each feature(s)-algorithm pair; (ii) to test 
if the accuracy differences between the feature(s)-algorithm pairs were statistically sig-
nificant (p-value > 0.05); (iii) if the error-distribution (i.e. precision) of these feature(s)-
algorithm pairs were statistically different (Fig. 4).

For items (i) and (ii), the algorithm (caret::diff.resamples) and workflow provided 
in Kuhn and Johnson (2013) was employed, which are descriptions of benchmark stud-
ies mostly based in one sample t-test. To check if the error-distribution was different 
between feature(s)-algorithm pairs, item (iii), the Kolmorogov-Smirnov test (Massey 
1951) was employed. The two-sample Kolmogorov- Smirnov (KS) test is a non-paramet-
ric analysis that compares the cumulative distributions of two datasets. In this context, it 
was employed using error metrics (RMSE) derived from each feature(s)-algorithm pair. 
The error-metrics (n = 50) were generated through a repeated k -fold cross-validation (5 
folds, 10 repeats) on the training set. Feature(s)-algorithm pairs are presented in Fig. 4 
under the “Model Fitting” section. A schematic diagram of this workflow is presented 
in Fig. 4.

Fig. 4   Feature(s)-algorithm pair model fitting (left-side), performance and tests workflow (right-side). 
Selected VIs were used as features on non-parametric models. Non-parametric models were used as fea-
tures on the STACK model
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Results

Experimental setup—biomass and canopy height

Pasture biomasses ranged from 164 kg DM ha−1 (minimum) to 4663 kg DM ha−1 (maxi-
mum) and a mean of 1633  kg DM ha−1. The descriptive statistics data of biomass and 
canopy height values, per campaign, can be found in Table 1.

Feature generation

Vegetation indices

The result of a baseline approach (i.e. single index linear regression), and consequent 
model fit metrics, can be examined in Table 2. The optimised NRI (“Opt NRI”), retrieved 
within this analysis ranks as the best performing VI (Table 2) as found by Mutanga and 
Skidmore (2004).

Optimised normalized ratio indices

Figure 5 presents the R2 value for each NRI (λ1, λ2 combination) and pasture biomass val-
ues. The region with the highest correlation to pasture biomass (delimited by a dashed rec-
tangle) occurred within the far end of the red-edge region (680–730  nm) until the NIR 
shoulder (up to 900 nm). The best performing NRI (λ1 = 745, λ2 = 755 nm) is then added to 
the feature-space in which the feature selection will be performed.

Feature filtering and selection

The filtering selection protocol reduced the number of features from 97 to 19 VIs. Within 
the selection workflow, the optimal (filled circle) and satisfactory (filled triangle) features 
subset were identified in the feature selection protocol (Fig. 6). By this protocol, the num-
ber of VIs necessary to fulfil this constraint (i.e. 10% threshold above minimum RMSE) 
was equal to four and are listed in Table  3 as well as indicated in boldface in Table  2. 
Complementary, the optimal model, or the model with lowest RMSE value, includes all 20 
VIs (i.e. filtered VIs plus the optimized NRI). However, the increments in performance are 
marginal from six features onward (Fig. 6).

Table 1   Descriptive statistics for biophysical characteristics per campaign

Date Canopy height (mm) Biomass (kg DM ha−1)

Average SD Max Min Average SD Max Min

Dec-16 124.2 31.1 225 75 1837.3 677.0 4222.2 322.3
Feb-17 65.2 20.3 115 30 1115.5 829.8 3801.3 164.4
Apr-17 56.8 19.8 115 20 1117.4 471.4 2380.7 269.6
Oct-17 129.8 27.8 205 50 2450.1 943.2 4662.8 559.0
Nov-17 99.2 37.7 210 45 1646.2 877.4 3761.8 401.2
Total 95.1 41.0 225 20 1633.3 923.0 4662.8 164.4
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Table 2   Performance by 
vegetation index in an ordinary 
linear regression

Vegetation Index R2 RMSE Vegetation Index R2 RMSE

Opt NRI 0.64 530.3 PARS 0.46 651.5
RDVI 0.63 538.7 SR2 0.45 654.3
SAVI 0.63 541.9 Datt 0.45 654.6
MSAVI 0.61 553.8 mNDVI 0.45 657.7
OSAVI 0.60 557.0 TCARI2/OSAVI2 0.45 658.7
OSAVI2 0.60 557.3 SR 0.44 660.4
DD 0.60 559.5 Vogelmann3 0.44 661.5
MCARI2/OSAVI2 0.60 562.4 PRI norm 0.43 668.5
Vogelmann2 0.59 564.9 PSRI 0.42 676.9
Vogelmann4 0.59 570.4 PRI 0.41 681.5
MCARI2 0.59 570.7 SIPI 0.40 685.8
Datt2 0.57 578.1 NPCI 0.40 688.4
MTVI 0.57 579.4 SRPI 0.39 694.7
Sum Dr2 0.57 583.2 SR7 0.38 695.1
SPVI 0.56 588.7 Datt5 0.38 698.0
TVI 0.56 588.9 GDVI 2 0.38 698.7
Sum Dr1 0.56 589.9 NDVI3 0.37 704.2
Vogelmann 0.55 591.9 SR5 0.36 707.9
Carter4 0.55 592.5 Datt4 0.35 714.2
Green NDVI 0.55 596.0 DWSI4 0.33 727.9
SR6 0.54 597.8 GI 0.32 729.1
NDVI2 0.54 600.5 SR4 0.32 731.4
mND705 0.54 600.6 Boochs 0.31 733.7
mSR705 0.54 602.9 MCARI 0.31 736.6
Boochs2 0.54 603.9 SR8 0.29 745.3
REP Li 0.53 604.3 Carter5 0.29 745.7
mSR2 0.53 606.8 GDVI 3 0.28 753.0
D1 0.53 607.4 TCARI2 0.28 754.1
EGFR 0.53 607.9 Datt6 0.25 766.4
MTCI 0.53 609.7 MPRI 0.24 770.3
GMI1 0.52 612.0 CI 0.24 773.5
SR3 0.52 612.0 Carter 0.23 777.9
CI2 0.52 613.2 GDVI 4 0.20 790.8
EGFN 0.51 617.7 TGI 0.17 806.6
PWI 0.51 620.4 TCARI 0.17 808.5
GMI2 0.51 621.1 CRI1 0.11 834.2
SR1 0.51 621.1 mSR 0.10 842.7
Carter3 0.50 623.5 MCARI/OSAVI 0.09 843.6
Gitelson2 0.50 625.5 Gitelson 0.09 845.6
Carter2 0.50 626.9 ClAInt 0.07 854.3
DDn 0.49 629.8 CRI2 0.06 860.4
Maccioni 0.49 630.6 DPI 0.05 864.9
PSND 0.49 635.1 TCARI/OSAVI 0.04 867.6
mREIP 0.48 637.8 Carter6 0.03 874.1
Datt3 0.48 638.8 EVI 0.02 876.4
NDVI 0.48 640.3 CRI3 0.01 880.6
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Variable importance

The four selected VIs (satisfactory subset) used as features for different regression tech-
niques are: the optimised NRI, Chlorophyll Index, Simple Ratio 7 and Double Difference 

Table 2   (continued) Vegetation Index R2 RMSE Vegetation Index R2 RMSE

REP LE 0.48 641.6 PRI×CI2 0.01 880.6
PSSR 0.47 645.9 CRI4 0.01 881.0
D2 0.46 649.0 CARI 0.00 886.0

Bold italic indices are selected within the satisfactory subset. Italic 
indices are those remaining after the filtering process
Obs Values corresponding to an ordinary linear regression (stats::lm)

Fig. 5   Normalized Ratio 
Index Correlogram (λ1, λ2 
and biomass). Displaying the 
determination coefficients 
between biomass and narrow 
band NRI values calculated 
from all possible combinations 
spread across λ1 (350–1075 nm) 
and λ2 (350–1075 nm). Dashed 
rectangle limits λ1 700–900 and 
λ2 700–760 nm

Fig. 6   Feature selection protocol. Average RMSE by number of VIs (features). Optimal (filled circle) and 
satisfactory (filled triangle) subsets have 20 and four VIs, respectively. Optimal subset corresponds to the 
lowest average RMSE found through the feature selection process. The satisfactory subset corresponds to 
the minimal number of features (i.e. VIs) below a ten percent tolerance threshold over the minimal RMSE
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near the red-edge. Variable importance, extracted as per the description in Methods, 
respective formulas and bibliographical references are listed in Table 3.

Performance analysis

From the repeated k-fold cross-validation, the error metrics for each feature(s)-algorithm 
pair are summarised in Table 4. It presents, in descending order, the feature(s)-algorithm 
pair performances. Results range from (max) 770.6 to (min) 325.3 kg DM ha−1 (RMSE) 
from NDVI and SVM, respectively. In terms of precision, the standard-deviation (SD) 
ranges from 59.5 to 15.6 kg DM ha−1 (RMSE).

The performance of RF and STACK models are equivalent in terms of average accu-
racy. However, the STACK model is more precise with a standard-deviation of 15.6 kg DM 
ha−1 in contrast to 41.7 kg DM ha−1 of the RF model. Such difference in error-distribution 
is statistically significant (p-value < 0.01) as per the results of a two-sample KS-test results, 
displaying narrower error-distribution for the STACK model (Fig. 7b).

Figure 7 presents the density plot of error-distribution of each feature(s)-algorithm pair, 
from which a visual assessment of accuracy and precision can be extracted. This figure is 
divided into a density plot where only an ordinary linear regression (parametric) model was 
employed (Fig.  7a) and models where different non-parametric models and the selected 
VIs were employed (Fig. 7b).

The visual analysis provided a clear indication of the higher precision of the STACK 
model in comparison with other methods. In the interest of avoiding similar figures, only 

Table 3   Selected vegetation indices (satisfactory subset), variable importance, formulas and references

Vegetation index Importance Formula Author (year)

Optimized NRI 29.7 (λ755 − λ745) / (λ755 + λ745) Mutanga and Skidmore 
(2004)

chlorophyll index 27.5 (λ675 × λ690) /λ2
683 Zarco-Tejada et al. (2003)

Double difference, n 17.2 2 × (λ710 − λ660 − λ760) Lichtenthaler et al. (1996)
Simple ratio 7 14.6 λ440/λ690 Maire et al. (2008)

Table 4   Posterior analysis results for each feature(s)-algorithm pair

Models RMSE R2 MAE

Average SD Max Min Average SD Max Min Average SD Max Min

NDVI 636.9 59.5 770.6 532.1 0.49 0.05 0.61 0.39 495.0 38.1 567.5 430.0
OptNRI 520.3 51.0 692.2 406.2 0.65 0.08 0.77 0.45 412.0 36.2 514.1 311.1
RPM 521.8 58.8 645.5 374.8 0.68 0.07 0.82 0.54 406.6 45.8 511.8 296.8
LM 475.8 46.0 571.9 354.9 0.71 0.06 0.84 0.55 371.5 36.4 442.3 295.7
MARS 453.8 44.8 528.5 338.5 0.74 0.06 0.86 0.56 358.3 36.6 419.2 279.6
SVM 425.7 45.1 513.4 325.3 0.77 0.06 0.88 0.61 332.6 34.5 401.1 259.2
RF 407.6 41.7 493.5 327.6 0.79 0.05 0.88 0.63 312.3 33.1 386.7 248.9
STACK 405.8 15.6 434.2 367.5 0.79 0.02 0.82 0.74 310.7 12.5 337.8 278.3
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the RMSE density plot will be presented as the same information for MAE and R2 are also 
presented in Fig. 8. The ranking and performance (average error metrics and error-distribu-
tion) of each feature(s)-algorithm pair is presented in Fig. 8.

The results of the benchmark methodology developed by Kuhn and Johnson (2013) 
are presented in Table  5. With regard to accuracy differences, the best performing 
feature(s)-algorithm pair is the STACK of models with an average RMSE = 405.8 and 
MAE = 310.7 kg DM ha−1. The lowest performing feature-algorithm pair is NDVI based 
on an ordinary linear model. Likewise, the saturation of NDVI becomes noticeable at 

Fig. 7   Density plot of the error-distribution RMSE for each model a different features fitted to a linear 
model. b Selected VIs (features) fitted using non-parametric methods

Fig. 8   Error distribution presented through boxplots. The four top boxplots refer to non-parametric models. 
Conversely, the four boxplots on the bottom relate to ordinary linear models. The STACK model presents a 
narrower error-distribution
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around 2.500 kg DM ha−1, whereas the optimised NRI does not present the same pattern 
(Fig.  9). As a consequence, the maximum RMSE difference between feature(s)-algo-
rithm pairs is between the STACK models and NDVI (231.1 kg DM ha−1). Addition-
ally, the optimised NRI has, on average, a ∆ (difference) in RMSE of 111.1 kg DM ha−1 
smaller than the NDVI (Table 5).

Concerning error-distribution (precision), most noticeably the results of the t-tests 
(lower diagonal—Table 5), indicate that the average inaccuracy (RMSE and MAE) of 
(i) the STACK and RF models and (ii) RPM and optimised NRI are not statistically 
different (Table 5). Given such, it follows to check if each of these two pairs, (i) RPM/
optimised NRI and (ii) RF/STACK, share equivalent error-distributions.

The p-value (0.717) for the two-sample KS-test indicates that the error-distribution 
between the RPM and the optimised NRI are not statistically different. These results 

Table 5   Posterior Analysis—RMSE, MAE and R2 for feature(s)-algorithm pairs

Upper diagonal: average difference between each feature(s)-algorithm pair (MAE, RMSE are expressed in 
kg DM ha−1). Lower diagonal: t-test p-value for H0: difference = 0.05. p-value adjustment: bonferroni

Models MARS LM SVM RF OptNRI RPM NDVI STACK

MAE
 MARS − 25.10 11.36 31.52 − 69.12 − 59.11 − 147.45 36.83
 LM 0.00 36.46 56.61 − 44.02 − 34.01 − 122.35 61.92
 SVM 0.01 0.00 20.15 − 80.48 − 70.47 − 158.81 25.46
 RF 0.00 0.00 0.00 − 100.63 − 90.63 − 178.96 5.31
 OptN RI 0.00 0.00 0.00 0.00 10.01 − 78.33 105.94
 RPM 0.00 0.00 0.00 0.00 1.00 − 88.34 95.94
 NDVI 0.00 0.00 0.00 0.00 0.00 0.00 184.27
 STACK 0.00 0.00 0.00 1.00 0.00 0.00 0.00

RMSE
 MARS − 38.31 13.31 29.26 − 78.45 − 74.40 − 189.51 41.60
 LM 0.00 51.62 67.57 − 40.15 − 36.09 − 151.21 79.91
 SVM 0.00 0.00 15.95 − 91.76 − 87.71 − 202.82 28.29
 RF 0.00 0.00 0.00 − 107.72 − 103.66 − 218.78 12.34
 OptN RI 0.00 0.00 0.00 0.00 4.05 − 111.06 120.05
 RPM 0.00 0.02 0.00 0.00 1.00 − 115.11 116.00
 NDVI 0.00 0.00 0.00 0.00 0.00 0.00 231.11
 STACK 0.00 0.00 0.00 1.00 0.00 0.00 0.00

R2

 MARS 0.04 − 0.02 − 0.03 0.10 0.06 0.25 − 0.05
 LM 0.00 − 0.06 − 0.08 0.05 0.02 0.21 − 0.09
 SVM 0.00 0.00 − 0.02 0.11 0.08 0.27 − 0.03
 RF 0.00 0.00 0.01 0.13 0.09 0.28 − 0.02
 OptN RI 0.00 0.00 0.00 0.00 − 0.04 0.15 − 0.15
 RPM 0.00 1.00 0.00 0.00 0.24 0.19 − 0.11
 NDVI 0.00 0.00 0.00 0.00 0.00 0.00 − 0.30
 STACK 0.00 0.00 0.01 1.00 0.00 0.00 0.00
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indicates that both accuracy (Table 5—t-test diagonal RMSE) and precision (KS-test) of 
the RPM and optimised NRI are equivalent.

In contrast, for the STACK and the RF algorithm, the KS-test p-value was 0.01. That 
indicates that both (error) distributions are unlikely (p-value < 0.05) to share the same dis-
tribution. In practical terms, these post-hoc tests indicate that the use of the STACK model 
provides more precise estimates, making it a more stable model, given that the standard-
deviation of the error metrics (Table 4) for the STACK model is smaller than any other 
feature(s)-algorithm pair (Fig. 8).

Validation results, in which trained-tested models are applied to an unseen (validation) 
dataset, are presented in Fig. 9. The first row of plots presents predicted vs. observed results 
for different features in ordinary linear regressions (parametric-model). The second row 
presents the performance of selected VIs in different non-parametric regression algorithms.

Discussion

This study successfully selected and validated a subset of (four) VIs and regression tech-
nique (STACK) that largely outperforms the conventional method (RPM) for biomass esti-
mation by an average ∆ RMSE of 116 kg DM ha−1 (Table 5).

This analysis has also shown that, in comparison to the most commonly adopted method 
on precision agriculture (i.e. standard NDVI), the best method substantially decreases 
the average inaccuracy and error-distribution (RMSE ± SD) of biomass estimation from 
637 ± 60 to 406 ± 16 kg DM ha−1 (Table 4), while eliminating its characteristic saturation 
issue (Fig. 9—NDVI). In retrospect, given the worse performance of NDVI in comparison 
with the RPM (∆ RMSE = 115 kg DM ha−1), it is clear why end users have not adopted 
NDVI over RPM measurements.

Fig. 9   Scatterplots of predicted vs observed data of all feature(s)-algorithm pairs on the validation dataset 
(n = 270). The first row presents different features using an ordinary linear regression (parametric-regres-
sion). The second row uses the four selected VIs (i.e. satisfactory subset) in different (non-parametric) 
regression algorithms. Noticeably, the NDVI (top-left) scatterplot illustrates its saturation issue at around 
2.500 kg DM ha−1. Scatterplots have been arranged according to accuracy improvements and follow a left-
to-right and top-to-bottom order
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The approach of an exhaustive-search of an optimised NRI identified a band combina-
tion that, both in terms of accuracy and precision, is equivalent to the RPM (Table 5). The 
performance of this particular VI (optimised NRI λ1 = 745, λ2 = 755  nm) is in-line with 
the results reported by Mutanga and Skidmore (2004). Equivalent performance and sim-
ilar spectral band combinations were also presented in Cho et  al. (2007), who reported 
that such combination overcomes the saturation issue presented by the standard NDVI 
(Fig. 9—optimised NRI).

An additional set of 97 other VIs was tested and compared based on a linear regression 
performance (Table 2): all were suboptimal in performance when compared to the opti-
mised NRI. However, it is important to remark that the performances of these 97 VIs as 
predictors may be handicapped by a poor fit (Table 2), as the best fit function between a VI 
and biomass is not necessarily linear. Yet, the analysis demonstrated that the VIs extracted 
from the literature present a high degree of multicollinearity. The process of filtering elimi-
nated 80.4% (78 out of 97) of features (VIs): a strong indication of redundancy and limita-
tion of VIs. Also, the selection protocol indicated that models with more than four VIs only 
yield marginal accuracy improvements (Fig. 6).

This analysis also quantified the improvement in error-metrics when employing non-
parametric models in comparison to a parametric model (i.e. ordinary linear regression—
LM). On average, the use of ordinary linear regression, with the same selected VIs, pre-
sented an additional 38.3, 51.6, 67.6 and 79.9  kg DM ha−1 error (RMSE) compared to 
MARS, SVM, RF and STACK models, respectively. It is important to highlight that such 
improvement in performance is due exclusively to model selection and tuning, improving 
results without requiring additional features.

While there are accuracy improvements based solely on the choice of employing either 
para- metric or non-parametric models (e.g. STACK − LM = ∆ 79.9  kg DM ha−1), such 
improvements are not so substantial within the group of non-parametric models. The larg-
est difference between non-parametric models (RF − MARS) was equal to 29.3  kg DM 
ha−1. Overall, the largest improvements in performance are due to a better selection of fea-
tures (e.g. LM—NDVI = ∆ − 151.2) rather than a better performing regression algorithm. 
This highlights the importance of feature selection and feature engineering (e.g. optimised 
NRI process).

It was not surprising that both the RF and STACK techniques share the same average 
accuracy. Random forests employs the technique of bootstrapping the dataset and aggregat-
ing results (known as bagging). The same core concept is used in stacked models. How-
ever, STACK models present a better precision level, given that their output is an ensemble 
of other models (not features).

In essence, this analysis has shown that the use of a small feature set of VIs coupled 
with non- parametric methods enhances the accuracy and precision of pasture biomass esti-
mation. Such VIs are located in the region of the red-edge and NIR-shoulder (Fig.  10), 
regions which have been identified as important for chlorophyll and/or leaf area index 
(LAI) assessment (Darvishzadeh et al. 2008; Delegido et al. 2011) as well as for pasture 
biomass estimation (Clevers et al. 2007).

It is reasonable to hypothesize that the selection of VIs around the red-edge could be linked 
with an underlying physiological process as canopies with higher levels of biomass will pre-
sent higher LAI and chlorophyll mass (drivers of shifts on the red-edge). Previous studies 
have reported similar findings: Horler et al. (1983) credits the red-edge shift, centred at around 
740 nm, to leaf stacking, thus, showing a causal link with biomass. Tucker (1977) and Collins 
(1978), indicated the same spectral region (740 nm) and behaviour when estimating attributes 
linked to biomass. Guyot and Baret (1988) examined the effects of higher chlorophyll content 
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and LAI on the spectral behaviour around the red-edge. Finally, Mokvist et  al. (2014) dis-
cussed a wider range of the limits of the far-red spectral absorption, demonstrating a plasticity 
for light absorption at higher biomass levels, indicating a characteristic which might overcome 
saturation.

Given the similar results and the mechanistic link explored by these previous studies, the 
approach and findings become more robust and, most likely, generalisable to other locations 
or contexts.

The plateau of 430 kg DM ha−1 (RMSE) is equivalent to approximately 6.5 g per sam-
ple area (0.15 m2). Thus, a fraction of this error may well be due to the sampling/harvesting 
technique or even a drying process that, despite best efforts, has an inherent random noise. It 
is reasonable, therefore, to assume that this methodology was able to explain most of the vari-
ance which could be mapped by VIs. Further performance improvements in error metrics are 
mostly likely due to overfit or noise-fitting. As illustrated in Fig. 6, the addition of extra VIs 
will only yield marginal improvements. Under normal field-conditions, it seems unlikely that 
measurement error could be decreased further.

The ranges presented in Table  1 are in-line with growth rates, canopy architecture and 
height displayed in different seasons as per the intrinsic ecophysiological characteristics of 
cool-season grasses (Christie et al. 2018). Given the significant duration and number of data 
collection campaigns, coupled with the consequent different plant development stages, this 
dataset should provide an adequate surrogate for on-farm pasture conditions.

As spectral data is highly correlated, it is unlikely that the relationships found would not 
perform equally well whenever employed in perennial ryegrass pastures displaying the same 
range of biophysical and biochemical status to the sample site in this study, granted that no 
major factor which could influence spectral response is introduced (e.g. changing light/atmos-
pheric conditions or soil-background at low biomass levels). This indicates a satisfactory 
approach to estimate a wide range of pasture biomass values throughout the year with a small 
number of VIs, which could be implemented on a UAV mounted sensor.

Fig. 10   Selected VIs through the 
feature selection workflow. In 
the background, the mean (solid 
line), upper and lower boundaries 
(± SD, dashed line) of all spectral 
observations. Different line 
styles identify each selected VI. 
All VIs have at least one band 
within the regions of chlorophyll 
absorption, the red-edge and the 
NIR-shoulder
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Conclusions

In this study, the accuracy and precision of vegetation indices and machine learning meth-
ods for biomass assessment were examined, while featuring the rising plate meter (RPM) 
as benchmark for pasture management. This study was able to present, test and evaluate an 
optimal method to select and employ spectral vegetation indices (VIs) for biomass assess-
ment of perennial ryegrass under different fertilisation, regrowth periods and seasonal 
effects. Findings are in-line with previous results reported in the literature, while the best 
method largely outperforms standard practices (i.e. RPM) as well as known VIs.

The study has shown that the optimised NRI is equivalent to the RPM while providing 
a firm analytical ground for substitution between these techniques. Also, it is clear that 
reflectance can outperform canopy height as a feature for biomass estimation provided that 
the optimal spectral bands and methods are employed. Furthermore, multispectral systems 
can be employed in a multitude of data acquisition platforms, providing estimates at near 
or real-time.

This analysis could lead to the development of a multispectral UAV-mounted sensor 
with known added-value in relation to current on-farm practices and precision agriculture 
methods. Overall, the comparison of achievable accuracies by employing either canopy 
height or reflectance (through VIs) can indicate the most appropriated path when develop-
ing sensors and establishing optimal sensing techniques (either spectral or canopy based) 
for assessing pasture biomass.

Given the agreement of these findings with previous research, the best method (STACK 
and selected VIs, as feature(s)-algorithm pair) and validation results (i.e. assessed against 
an unseen validation set) should be transferable from this study site to other locations. Fur-
thermore, from an end-user perspective, the accuracy and precision achieved is sufficient to 
efficient pasture-management.

Given the high accuracy achieved, further improvements to this methodology will nec-
essarily have to take into account the accuracy of reference measurements and data-col-
lection protocols. However, given the unsatisfactory results of current VI methods, a new 
UAV sensor (with a small number of bands) should benefit from the results and meth-
ods presented here. Finally, this study also indicated that the most well-known VI (NDVI) 
is not optimal for biomass estimation. It also indicated that better performing VIs which 
could be measured from a UAV-mounted multispectral sensor, which would allow map-
ping and monitoring of pasture biomass with high accuracy at very high spatial resolution 
and with complete coverage of management areas.
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