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Abstract

In current practice, broccoli heads are selectively harvested by hand. The goal of our

work is to develop a robot that can selectively harvest broccoli heads, thereby

reducing labor costs. An essential element of such a robot is an image‐processing
algorithm that can detect broccoli heads. In this study, we developed a deep learning

algorithm for this purpose, using the Mask Region‐based Convolutional Neural

Network. To be applied on a robot, the algorithm must detect broccoli heads from

any cultivar, meaning that it can generalize on the broccoli images. We hypothesized

that our algorithm can be generalized through network simplification and data

augmentation. We found that network simplification decreased the generalization

performance, whereas data augmentation increased the generalization perfor-

mance. In data augmentation, the geometric transformations (rotation, cropping,

and scaling) led to a better image generalization than the photometric transfor-

mations (light, color, and texture). Furthermore, the algorithm was generalized on a

broccoli cultivar when 5% of the training images were images of that cultivar. Our

algorithm detected 229 of the 232 harvestable broccoli heads from three cultivars.

We also tested our algorithm on an online broccoli data set, which our algorithm

was not previously trained on. On this data set, our algorithm detected 175 of the

176 harvestable broccoli heads, proving that the algorithm was successfully gen-

eralized. Finally, we performed a cost‐benefit analysis for a robot equipped with our

algorithm. We concluded that the robot was more profitable than the human har-

vest and that our algorithm provided a sufficient basis for robot commercialization.
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1 | INTRODUCTION

In agriculture, numerous tasks depend on human labor. This labor is

getting more expensive and more scarce, which causes problems for

tasks that are done by hand, such as the selective harvest of crops.

Selective hand‐harvest involves the visual assessment of the crop,

followed by the harvest of only those specimens that have reached

the desired size, quality, or maturity. A crop that is selectively har-

vested by hand, is broccoli (Brassica oleracea var. italica). In the

Netherlands, broccoli is usually hand‐harvested three times in one

growing season (Kwin, 2018). Cost studies show that the hand‐
harvest of broccoli can take up to 107 man‐hours per hectare and
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23% of the total production costs (Kwin, 2018). Motivated by the

scarcity and the costs of human labor, broccoli growers search for

alternative ways of selective harvesting. A promising alternative is an

agricultural robot that can selectively harvest broccoli. A critical

factor that hampers the development of a broccoli harvesting robot,

is the lack of an automatic detection system that can replace human

visual perception.

Several studies on the automatic detection of broccoli can be

found in literature. Ramirez (2006) was the first who detected

broccoli heads, using Red–Green–Blue (RGB) color images and

texture‐based analysis. Unfortunately, the data set of Ramirez (2006)

was limited to 13 RGB images, which is too small to draw a

conclusion on the applicability of the algorithm in the open field

conditions. Blok, Barth, and van den Berg (2016) used a Laws'

texture filter on RGB images to detect broccoli heads from two

different cultivars. They included an additional color analysis for the

maturity evaluation. Despite a promising precision of 99.5%, the

researchers observed a recall of 91.2%, which corresponded to

20 false‐negatives on 228 broccoli heads. The false‐negatives were

caused by the fixed thresholds on the texture and the color features

that could not generalize sufficiently on broccoli heads whose texture

or color differed from the chosen thresholds. Generalization is a com-

mon challenge in image analysis, and includes the ability of an algorithm

to perform on new images (Goodfellow, Bengio, & Courville, 2016).

Machine learning can provide better image generalization than

threshold‐based algorithms (Kamilaris & Prenafeta‐Boldú, 2018).

Kusumam, Krajník, Pearson, Duckett, and Cielniak (2017) detected

broccoli heads in RGB‐Depth (RGB‐D) images with three‐
dimensional (3D) vision using a viewpoint feature histogram (VFH), a

support vector machine (SVM) classifier and a temporal filter. The

average precision (AP) was 95.2% on 600 images of the broccoli

cultivar Ironman and the AP was 84.5% on 1169 images of the

broccoli cultivar Titanium, indicating that their algorithm did not

generalize sufficiently on images of different broccoli cultivars. A

limitation of Kusumam et al. (2017) is that their machine‐learning
algorithm was based on a predefined set of image features whose

generalization capability was found to be limited on images of dif-

ferent broccoli cultivars.

Image generalization can be further improved with deep learn-

ing. A deep learning network that is commonly used for image ana-

lysis, is a convolutional neural network (CNN). CNNs internally

optimize the feature extraction during training (LeCun, Bengio, &

Hinton, 2015). Kamilaris and Prenafeta‐Boldú (2018) showed that

CNNs outperformed predefined feature‐engineered machine learn-

ing in all 22 agricultural case studies. Bender, Whelan, and Sukkarieh

(2019) researched broccoli and cauliflower detection with Faster

Region‐based CNN (Faster R‐CNN; Ren, He, Girshick, & Sun, 2017)

and reported a promising 95% mean average precision (mAP).

Unfortunately, this study focused on individual plant detection and

did not investigate the broccoli head detection, which is essential for

the selective harvest. Jiang, Shuang, Li, Paterson, and Robertson

(2018) showed that the detection performance on cabbage and

cauliflower was almost doubled when using a Mask Region‐based CNN

(Mask R‐CNN) instead of a threshold‐based algorithm. Mask R‐CNN
(He, Gkioxari, Dollár, & Girshick, 2017) is an upgrade of Faster R‐CNN
and performs instance segmentation (a combination of object detection

and pixel segmentation). Mask R‐CNN allows the instance‐aware seg-

mentation of distinct objects even if they are overlapping or occluded

by other objects (Romera‐Paredes & Torr, 2016). Instance‐aware
segmentation is a desirable feature for the precise size measurement of

broccoli, because broccoli heads can be partially occluded by leaves.

Therefore, we focused our research on Mask R‐CNN.
To generalize Mask R‐CNN on the broccoli images, the network

must not overfit during training. Network overfitting occurs when an

overly complex model is fitted on the training data set and the model

fails to generalize on new data (Rosebrock, 2018). Network over-

fitting can be resolved with regularization. Regularization involves

any modification to a learning algorithm that reduces the general-

ization error, possibly at the expense of increased training error

(Goodfellow et al., 2016). There are two types of regularization:

explicit and implicit. Explicit regularization involves alterations to the

network architecture that constrain the capacity of the neural net-

work. Common explicit regularization methods are drop‐out (random
disconnection of neurons), weight decay (penalizing large weights),

and network simplification (removal of network layers). Implicit

regularization is applied during the training process without con-

straining the capacity of the neural network. Two examples of

implicit regularization are early stopping and data augmentation.

Early stopping is the termination of the training process whenever

the generalization error increases (the generalization error is the

difference between the training and the validation error). Data

augmentation involves a wide range of image synthesis techniques

that generate new training samples from the original ones by ap-

plying image transformations. With data augmentation, the network

is trained on constantly changing versions of the input images,

allowing the network to learn more robust features.

Most regularization research solely focused on data augmenta-

tion (Perez & Wang, 2017; Shijie, Ping, Peiyi, & Siping, 2017; Zhu,

Aoun, Krijn, Vanschoren, & Campus, 2018). Hernández‐García and

König (2018) studied the combined effect of drop‐out, weight decay,

and data augmentation and found that data augmentation led to the

highest increase in accuracy. However, their research investigated

All‐CNN (Springenberg, Dosovitskiy, Brox, & Riedmiller, 2014) and

wide residual network (WRN; Zagoruyko & Komodakis, 2016) that

have architectures that are less complex than Mask R‐CNN. The

higher complexity of the Mask R‐CNN network might imply the need

for other regularization strategies. In our research, we studied the

effects of network simplification and data augmentation on the im-

age generalization of Mask R‐CNN.

We hypothesized that through network simplification and data

augmentation, Mask R‐CNN can be generalized on images of multiple

broccoli cultivars. The first objective of our study was to test this hy-

pothesis using images of three broccoli cultivars taken with a prototype

broccoli harvesting robot. The primary contribution of our research is a

quantitative analysis of the effect of network simplification and data

augmentation on the image generalization of Mask R‐CNN.
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Eventually, a robot leads to new benefits and new costs. The benefits

derive primarily from the savings on labor costs. The csts derive primarily

from the robot investment. If the benefits are higher than the costs, then

there is a basis for robot commercialization. The second objective of our

study was to perform a cost‐benefit analysis for a selective broccoli

harvesting robot equipped with our Mask R‐CNN algorithm. The

secondary contribution of our research is a cost‐benefit analysis for a

selective broccoli harvesting robot that has to work in the field.

2 | MATERIALS AND METHODS

2.1 | Image data set

This section highlights the image acquisition systems that were used

(Section 2.1.1), the broccoli images that were acquired in the field

(Section 2.1.2), how these images were annotated (Section 2.1.3), the

feature variability between images of different broccoli cultivars

(Section 2.1.4) and how the annotated images were aggregated for

Mask R‐CNN training and testing (Section 2.1.5).

2.1.1 | Image acquisition systems

We used a prototype robot that consisted of an image acquisition

system that acquired top view images of one row of the broccoli

crop. Two different image acquisition systems were used, because

the robot was first tested in the Netherlands (Figure 1a) and then in

the United States (Figure 2a). Although both systems were con-

structed as an enclosed box for uniform illumination, they had a

different RGB color camera and light‐emitting diode (LED) illumina-

tion (Table 1). In both systems, the white balance of the color

F IGURE 1 (a) Overview of the image acquisition system that was attached to the prototype robot to acquire broccoli images in the
Netherlands. (b) The Dutch image acquisition system consisted of one RGB color camera, one stereo‐vision camera, and 40 LED strips for
artificial illumination. LED, light‐emitting diode; RGB, red–green–blue [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 (a) Overview of the image acquisition system that was attached to the prototype robot to acquire broccoli images in the United
States. (b) The U.S. image acquisition system consisted of one RGB color camera, one stereo‐vision camera, and 21 LED strips for artificial
illumination. LED, light‐emitting diode. RGB, red–green–blue [Color figure can be viewed at wileyonlinelibrary.com]
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