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Abstract

In current practice, broccoli heads are selectively harvested by hand. The goal of our

work is to develop a robot that can selectively harvest broccoli heads, thereby

reducing labor costs. An essential element of such a robot is an image‐processing
algorithm that can detect broccoli heads. In this study, we developed a deep learning

algorithm for this purpose, using the Mask Region‐based Convolutional Neural

Network. To be applied on a robot, the algorithm must detect broccoli heads from

any cultivar, meaning that it can generalize on the broccoli images. We hypothesized

that our algorithm can be generalized through network simplification and data

augmentation. We found that network simplification decreased the generalization

performance, whereas data augmentation increased the generalization perfor-

mance. In data augmentation, the geometric transformations (rotation, cropping,

and scaling) led to a better image generalization than the photometric transfor-

mations (light, color, and texture). Furthermore, the algorithm was generalized on a

broccoli cultivar when 5% of the training images were images of that cultivar. Our

algorithm detected 229 of the 232 harvestable broccoli heads from three cultivars.

We also tested our algorithm on an online broccoli data set, which our algorithm

was not previously trained on. On this data set, our algorithm detected 175 of the

176 harvestable broccoli heads, proving that the algorithm was successfully gen-

eralized. Finally, we performed a cost‐benefit analysis for a robot equipped with our

algorithm. We concluded that the robot was more profitable than the human har-

vest and that our algorithm provided a sufficient basis for robot commercialization.

K E YWORD S

agriculture, computer vision, learning, perception, sensors

1 | INTRODUCTION

In agriculture, numerous tasks depend on human labor. This labor is

getting more expensive and more scarce, which causes problems for

tasks that are done by hand, such as the selective harvest of crops.

Selective hand‐harvest involves the visual assessment of the crop,

followed by the harvest of only those specimens that have reached

the desired size, quality, or maturity. A crop that is selectively har-

vested by hand, is broccoli (Brassica oleracea var. italica). In the

Netherlands, broccoli is usually hand‐harvested three times in one

growing season (Kwin, 2018). Cost studies show that the hand‐
harvest of broccoli can take up to 107 man‐hours per hectare and
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23% of the total production costs (Kwin, 2018). Motivated by the

scarcity and the costs of human labor, broccoli growers search for

alternative ways of selective harvesting. A promising alternative is an

agricultural robot that can selectively harvest broccoli. A critical

factor that hampers the development of a broccoli harvesting robot,

is the lack of an automatic detection system that can replace human

visual perception.

Several studies on the automatic detection of broccoli can be

found in literature. Ramirez (2006) was the first who detected

broccoli heads, using Red–Green–Blue (RGB) color images and

texture‐based analysis. Unfortunately, the data set of Ramirez (2006)

was limited to 13 RGB images, which is too small to draw a

conclusion on the applicability of the algorithm in the open field

conditions. Blok, Barth, and van den Berg (2016) used a Laws'

texture filter on RGB images to detect broccoli heads from two

different cultivars. They included an additional color analysis for the

maturity evaluation. Despite a promising precision of 99.5%, the

researchers observed a recall of 91.2%, which corresponded to

20 false‐negatives on 228 broccoli heads. The false‐negatives were

caused by the fixed thresholds on the texture and the color features

that could not generalize sufficiently on broccoli heads whose texture

or color differed from the chosen thresholds. Generalization is a com-

mon challenge in image analysis, and includes the ability of an algorithm

to perform on new images (Goodfellow, Bengio, & Courville, 2016).

Machine learning can provide better image generalization than

threshold‐based algorithms (Kamilaris & Prenafeta‐Boldú, 2018).

Kusumam, Krajník, Pearson, Duckett, and Cielniak (2017) detected

broccoli heads in RGB‐Depth (RGB‐D) images with three‐
dimensional (3D) vision using a viewpoint feature histogram (VFH), a

support vector machine (SVM) classifier and a temporal filter. The

average precision (AP) was 95.2% on 600 images of the broccoli

cultivar Ironman and the AP was 84.5% on 1169 images of the

broccoli cultivar Titanium, indicating that their algorithm did not

generalize sufficiently on images of different broccoli cultivars. A

limitation of Kusumam et al. (2017) is that their machine‐learning
algorithm was based on a predefined set of image features whose

generalization capability was found to be limited on images of dif-

ferent broccoli cultivars.

Image generalization can be further improved with deep learn-

ing. A deep learning network that is commonly used for image ana-

lysis, is a convolutional neural network (CNN). CNNs internally

optimize the feature extraction during training (LeCun, Bengio, &

Hinton, 2015). Kamilaris and Prenafeta‐Boldú (2018) showed that

CNNs outperformed predefined feature‐engineered machine learn-

ing in all 22 agricultural case studies. Bender, Whelan, and Sukkarieh

(2019) researched broccoli and cauliflower detection with Faster

Region‐based CNN (Faster R‐CNN; Ren, He, Girshick, & Sun, 2017)

and reported a promising 95% mean average precision (mAP).

Unfortunately, this study focused on individual plant detection and

did not investigate the broccoli head detection, which is essential for

the selective harvest. Jiang, Shuang, Li, Paterson, and Robertson

(2018) showed that the detection performance on cabbage and

cauliflower was almost doubled when using a Mask Region‐based CNN

(Mask R‐CNN) instead of a threshold‐based algorithm. Mask R‐CNN
(He, Gkioxari, Dollár, & Girshick, 2017) is an upgrade of Faster R‐CNN
and performs instance segmentation (a combination of object detection

and pixel segmentation). Mask R‐CNN allows the instance‐aware seg-

mentation of distinct objects even if they are overlapping or occluded

by other objects (Romera‐Paredes & Torr, 2016). Instance‐aware
segmentation is a desirable feature for the precise size measurement of

broccoli, because broccoli heads can be partially occluded by leaves.

Therefore, we focused our research on Mask R‐CNN.
To generalize Mask R‐CNN on the broccoli images, the network

must not overfit during training. Network overfitting occurs when an

overly complex model is fitted on the training data set and the model

fails to generalize on new data (Rosebrock, 2018). Network over-

fitting can be resolved with regularization. Regularization involves

any modification to a learning algorithm that reduces the general-

ization error, possibly at the expense of increased training error

(Goodfellow et al., 2016). There are two types of regularization:

explicit and implicit. Explicit regularization involves alterations to the

network architecture that constrain the capacity of the neural net-

work. Common explicit regularization methods are drop‐out (random
disconnection of neurons), weight decay (penalizing large weights),

and network simplification (removal of network layers). Implicit

regularization is applied during the training process without con-

straining the capacity of the neural network. Two examples of

implicit regularization are early stopping and data augmentation.

Early stopping is the termination of the training process whenever

the generalization error increases (the generalization error is the

difference between the training and the validation error). Data

augmentation involves a wide range of image synthesis techniques

that generate new training samples from the original ones by ap-

plying image transformations. With data augmentation, the network

is trained on constantly changing versions of the input images,

allowing the network to learn more robust features.

Most regularization research solely focused on data augmenta-

tion (Perez & Wang, 2017; Shijie, Ping, Peiyi, & Siping, 2017; Zhu,

Aoun, Krijn, Vanschoren, & Campus, 2018). Hernández‐García and

König (2018) studied the combined effect of drop‐out, weight decay,

and data augmentation and found that data augmentation led to the

highest increase in accuracy. However, their research investigated

All‐CNN (Springenberg, Dosovitskiy, Brox, & Riedmiller, 2014) and

wide residual network (WRN; Zagoruyko & Komodakis, 2016) that

have architectures that are less complex than Mask R‐CNN. The

higher complexity of the Mask R‐CNN network might imply the need

for other regularization strategies. In our research, we studied the

effects of network simplification and data augmentation on the im-

age generalization of Mask R‐CNN.

We hypothesized that through network simplification and data

augmentation, Mask R‐CNN can be generalized on images of multiple

broccoli cultivars. The first objective of our study was to test this hy-

pothesis using images of three broccoli cultivars taken with a prototype

broccoli harvesting robot. The primary contribution of our research is a

quantitative analysis of the effect of network simplification and data

augmentation on the image generalization of Mask R‐CNN.
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Eventually, a robot leads to new benefits and new costs. The benefits

derive primarily from the savings on labor costs. The csts derive primarily

from the robot investment. If the benefits are higher than the costs, then

there is a basis for robot commercialization. The second objective of our

study was to perform a cost‐benefit analysis for a selective broccoli

harvesting robot equipped with our Mask R‐CNN algorithm. The

secondary contribution of our research is a cost‐benefit analysis for a

selective broccoli harvesting robot that has to work in the field.

2 | MATERIALS AND METHODS

2.1 | Image data set

This section highlights the image acquisition systems that were used

(Section 2.1.1), the broccoli images that were acquired in the field

(Section 2.1.2), how these images were annotated (Section 2.1.3), the

feature variability between images of different broccoli cultivars

(Section 2.1.4) and how the annotated images were aggregated for

Mask R‐CNN training and testing (Section 2.1.5).

2.1.1 | Image acquisition systems

We used a prototype robot that consisted of an image acquisition

system that acquired top view images of one row of the broccoli

crop. Two different image acquisition systems were used, because

the robot was first tested in the Netherlands (Figure 1a) and then in

the United States (Figure 2a). Although both systems were con-

structed as an enclosed box for uniform illumination, they had a

different RGB color camera and light‐emitting diode (LED) illumina-

tion (Table 1). In both systems, the white balance of the color

F IGURE 1 (a) Overview of the image acquisition system that was attached to the prototype robot to acquire broccoli images in the
Netherlands. (b) The Dutch image acquisition system consisted of one RGB color camera, one stereo‐vision camera, and 40 LED strips for
artificial illumination. LED, light‐emitting diode; RGB, red–green–blue [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 (a) Overview of the image acquisition system that was attached to the prototype robot to acquire broccoli images in the United
States. (b) The U.S. image acquisition system consisted of one RGB color camera, one stereo‐vision camera, and 21 LED strips for artificial
illumination. LED, light‐emitting diode. RGB, red–green–blue [Color figure can be viewed at wileyonlinelibrary.com]
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cameras was set and fixed with a color calibration plate (X‐Rite
ColorChecker Classic). A stereo‐vision camera (IDS Ensenso N35)

was installed to acquire depth images to estimate the size of the

broccoli heads (Figures 1b and 2b). In both systems, the color and the

stereo‐vision camera were hardware triggered by an electronic en-

coder wheel that was attached to the front wheel of the robot. This

encoder generated a hardware trigger to the cameras for each

0.15m (±0.01m error) of relative displacement of the robot.

2.1.2 | Broccoli images

With the Dutch image acquisition system (Figure 1a,b), nearly 14,000

broccoli images of the Ironman cultivar and 13,000 broccoli images

of the Steel cultivar were captured on nine different broccoli fields in

the province of Friesland in four consecutive years (2014–2017). On

all fields, the broccoli plants were grown in single rows that were

0.75m apart. The intra‐row spacing was 0.33m. With the American

image acquisition system (Figure 2a,b), 14,000 broccoli images of the

Emerald‐Crown cultivar were acquired in 2018 on one broccoli field

in Washington State. On this field, the broccoli plants were grown in

single rows that were 0.61m apart. The intra‐row spacing

was 0.23m.

2.1.3 | Ground‐truth annotation

From the image data set, 3000 images with broccoli heads were

randomly selected, 1000 images for each cultivar. Two instructed

research assistants annotated all 4706 broccoli heads that were

found in the 3000 images. All broccoli heads were annotated, re-

gardless of their size, to make the annotations suitable for other

computer vision tasks. Overripe broccoli heads, which were visually

distinguishable by yellow‐colored flower buds, were not annotated

because these broccoli heads do not have to be harvested. The

annotation process involved three steps (Figure 3). First, a bounding

box was drawn for each broccoli head using labelImg (T. Lin, 2019).

Second, the bounding box was zoomed to full screen to allow the

precise pixel annotation of the contour of the broccoli head. Third,

the pixel annotations were placed back into the original bigger image

to generate the binary masks for each image. When finished, another

research assistant independently validated and if necessary cor-

rected the bounding boxes and the masks.

2.1.4 | Image feature similarity

To calculate the image feature similarity, we first resized the

3000 images with zero‐padding to a resolution of 1024 × 1024

pixels. This resolution equals to the processing resolution of

Mask R‐CNN (Abdulla, 2017). Then, we quantified the image

feature similarity between the broccoli heads using three color

and four texture features. The color features were hue, satura-

tion, and lightness (HSL), and the texture features were energy,

correlation, homogeneity, and contrast that were all extracted

from the Grey‐Level Co‐occurrence Matrix (GLCM; Haralick,

Shanmugam, & Dinstein, 1973). The three‐color features and four

texture features corresponded to the features that were used in

related research (Blok et al., 2016; Ramirez, 2006). We calcu-

lated the average feature value for each annotated broccoli head.

A normalized histogram with 101 bins was generated for every

feature. As such, seven feature histograms were generated per

broccoli cultivar. Then, we quantified the level of similarity be-

tween the feature histograms of the three cultivars using the

χ2 distance (Equation 1). A low χ2 distance indicates a high

feature‐similarity between the broccoli heads of two cultivars,

and a high chi‐squared distance indicates a low feature‐similarity.

χ ∑=
−

+
=

p i q i

p i q i
1

2

( ( ) ( ))

( ) ( )
,

i

n
2

1

2

(1)

TABLE 1 Overview of the cameras and
LEDs that were used to acquire images in
the Netherlands and the United States

The Netherlands The United States

Camera specifications

Camera AVT Prosilica GC2450 IDS UI‐5280FA‐C‐HQ

Image resolution (pixels) 2448 × 2050 2456 × 2054

Lens Kowa LM12JCM Fujifilm HF8XA‐5M
Focal length (mm) 12 8

Field of view (m) at 0.5m 0.53 × 0.44 0.62 × 0.52

Image scene overlap (%) 66 71

LED specifications

LED Paulmann 70209 YourLED OSRAM VFP2400S‐G3‐865‐03
Number of LED strips 40 21

Color temperature (K) 6000 6500

Luminous flux (lm) 13,500 144,900

Abbreviation: LED, light‐emitting diode.
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where p is the feature histogram of one cultivar and q the feature

histogram of another cultivar. n is the number of histogram bins.

Table 2 shows that the broccoli heads of the Ironman cultivar

and the Steel cultivar were similar in texture, but different in color

(hue; see Figure 4 for some examples). The broccoli heads of Ironman

and Emerald‐Crown were similar in color (hue), but different in

texture. Broccoli heads of Steel and Emerald‐Crown were the least

similar and differed in both texture and color (hue).

2.1.5 | Train, validation, and test sets

After the image feature inspection, we randomly divided each culti-

var subset of 1000 images into one training set of 600 images, one

validation set of 100 images and three test sets of 100 images each.

The training set was used to adjust the network weights of Mask

R‐CNN during training. The validation set was used during training to

control the network's learning rate to minimize the chance of over-

fitting (see Section 2.2.2). The three test sets were completely in-

dependent of the training process and were used in four different

experiments to evaluate the performance of the network. We used

three different test sets, because the outcome of an experiment in-

fluenced the choice of the algorithm in the next experiment (see

Section 2.5).

Besides the three test sets, we extracted an independent test set

of 300 broccoli images from the online data set of Bender et al.

(2019; https://doi.org/10.25910/5c941d0c8bccb). The images of

Bender et al. (2019) were acquired on a weekly basis on one broccoli

field in Australia (New South Wales), where the broccoli plants were

grown in single lines (see Figure 5a,b for two examples). Bender et al.

(2019) did not report the cultivar of the broccoli crop, so we did not

train our algorithm on these images, but only used them to test the

generalization of our trained algorithm. All 399 broccoli heads in the

300 images were annotated, regardless of their size, using the pro-

cedure of Section 2.1.3.

2.2 | Mask R‐CNN

This section highlights the network architecture of Mask R‐CNN
(Section 2.2.1), the Mask R‐CNN software that was used (Section 2.2.2),

and the Mask R‐CNN training methodology (Section 2.2.3).

2.2.1 | Network architecture

Mask R‐CNN (He et al., 2017) is a network that consists of multiple

branches (Figure 6). First, there is a backbone, which is a neural

network that extracts feature maps at various resolution scales from

an image with a feature pyramid network (FPN). Usually, the back-

bone is a variant of the Resnet residual network (He, Zhang, Ren, &

Sun, 2016). After the backbone, there is a region proposal network

F IGURE 3 Ground‐truth pixel annotation of the RGB broccoli images. First, a bounding box (red rectangle) was drawn to encapsulate the
region of each broccoli head. Then, the bounding box was zoomed to full screen to allow precise contour delineation (red line) of the broccoli
head. After contour‐closing, the inner area was automatically filled with pixels and placed back into the original image to generate the binary
masks. The white pixels depict the broccoli head and the black pixels the background. RGB, red–green–blue [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 The χ2 distance of the three color features and the four texture features between the broccoli heads of two cultivars

χ2 distance of the color features χ2 distance of the GLCM‐texture features

Cultivar comparison Hue Saturation Lightness Energy Correlation Homogeneity Contrast

Ironman–Steel 0.91 0.16 0.50 0.01 0.04 0.06 0.03

Ironman–Emerald Crown 0.09 0.68 0.84 0.45 0.48 0.61 0.59

Steel–Emerald Crown 0.92 0.74 0.91 0.47 0.39 0.60 0.60

Note: The bold values represent χ2 distances lower than 0.1, which correspond to a high feature similarity. GLCM, Grey‐Level Co‐occurrence Matrix.
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F IGURE 4 Mosaic of four random broccoli heads for each cultivar (top row: Ironman, middle row: Steel, bottom row: Emerald‐Crown).
The broccoli head images were cropped from a bigger image (see an example in Figure 3). The broccoli heads had different sizes and some were
occluded by leaves. The pixel quality of some of the small‐sized broccoli heads was less than the pixel quality of the harvestable broccoli heads
because the small‐sized heads were deeper into the crop and more remote from the camera (an example is a right image on the bottom row)

[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 (a) An image from a wet broccoli crop taken from the data set of Bender et al. (2019). (b) An image from a dry broccoli crop taken
from the data set of Bender et al. (2019) [Color figure can be viewed at wileyonlinelibrary.com]

6 | BLOK ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


(RPN) that proposes regions of interest (ROI) of distinct objects from

the feature maps. To avoid duplicate ROIs for the same object, non‐
maximum suppression (NMS) is used to discard the ROIs that overlap

with a more confident ROI. The ROIs that remain after the NMS are

realigned with the ROI Align layer. Then, the ROIs are transformed

into fix‐sized feature maps, which are further processed in two

parallel branches in the so‐called network head. The first branch has

two fully connected (FC) layers, of which one performs object clas-

sification and the other bounding box refinement by regression. The

second branch has two fully convolutional layers that segment the

object pixels inside the bounding box, yielding the mask (Figure 6).

2.2.2 | Software

For our research, we used the code of the online Mask R‐CNN

repository of Matterport (version 2.1; Abdulla, 2017). The Mask

R‐CNN code was installed on a computer with an Intel Core i9‐7940X
processor (64GB DDR4 RAM) and two 12GB graphical processing

units (GPU; NVIDIA GeForce RTX 2080 Ti). The operating system of

the computer was Ubuntu Linux (version 16.04). Tensorflow (GPU

version 1.7.0), CUDA (version 9.0), and CUDNN (version 7.0.5) were

used as computational backend. The Mask R‐CNN code was deployed

in Python (version 3.6) using the Keras library (version 2.1.6)

for the deep learning. We added two additional Keras functions to the

code to minimize the network overfitting. Network overfitting occurs

when the network weights are too specifically parametrized on the

images of the train set, making it harder to generalize on the images

of the independent validation set, leading to an increase in the

validation loss (the loss summarizes the classification, localization

and segmentation error). The two Keras functions automatically

detected this increase in validation loss and then tried to resolve the

overfitting. The first function (“ReduceLROnPlateau”; Keras, 2019)

automatically lowered the learning rate by a factor of two whenever

the validation loss increased during five consecutive epochs

(the learning rate was not allowed to become smaller than 10−4).

The second function (“EarlyStopping”; Keras, 2019) was used to

automatically stop the training process when the validation loss

increased during ten consecutive epochs. An epoch is one complete

network training pass through the entire training data set.

Finally, the code was altered so that Mask R‐CNN performed a

binary classification on our required classes (broccoli head and

background).

2.2.3 | Network training

Mask R‐CNN was trained with the stochastic gradient descent

using an image batch size of one. We also used transfer‐learning to

initialize the network weights of Mask R‐CNN with the weights of

another Mask R‐CNN that was trained on a different data set. This

transfer‐learning allowed us to use the learned feature maps from

the other Mask R‐CNN algorithm so that our Mask R‐CNN could

be effectively trained on our broccoli data set. The transfer‐
learning was done with a Mask R‐CNN that was trained on the

Microsoft Common Objects in Context (COCO) data set (T.‐Y. Lin
et al., 2014) that also contained a broccoli class. However, we

could not use this broccoli class directly, because the COCO

images contained broccoli heads in dishes instead of broccoli

heads in the field.

We trained Mask R‐CNN in three stages (Figure 6), similar to

Abdulla (2017). In the first training stage, only the upper layers of

F IGURE 6 Schematic representation of the neural network architecture of Mask R‐CNN (image adapted from Shi, van de Zedde, Jiang, &
Kootstra, 2019). The numbers 1–3 indicate the training stages that were used to train the network (see Section 2.2.3). Mask R‐CNN, Mask
Region‐based convolutional neural network [Color figure can be viewed at wileyonlinelibrary.com]
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Mask R‐CNN (RPN and network head) were trained for a maximum

of 40 epochs (depending on the “EarlyStopping” function). In the

second training stage, the upper layers (RPN and network head)

were trained together with the upper half of the Resnet backbone,

which included the fourth and fifth convolutional Resnet stage

(Figure 6). The second stage was trained for a maximum of 80 epochs

(depending on the “EarlyStopping” function). In the third training

stage, the complete Mask R‐CNN network was trained for a max-

imum of 40 epochs (depending on the “EarlyStopping” function).

With this three‐staged training methodology, we gradually optimized

the feature layers of the COCO transfer‐learned Mask R‐CNN to our

own data set. In each training stage, the initial learning rate was 10−3.

This initial learning rate could be automatically lowered until 10−4

depending on the “ReduceLROnPlateau” function. The weight decay

(L2‐regularization) was set to 10−4.

2.3 | Network simplification and data
augmentation

We focused our research on network simplification (Section 2.3.1)

and data augmentation (Section 2.3.2).

2.3.1 | Network simplification

We investigated network simplification by simplifying a deep re-

sidual backbone with 101 hidden layers (Resnet101) to a shallower

version of the same residual backbone with 50 hidden layers

(Resnet50). For both residual backbones, the transfer learning was

employed with a Resnet50 or a Resnet101 that was trained on the

Microsoft COCO data set.

2.3.2 | Data augmentation

We investigated three different types of data augmentation and com-

pared it to no data augmentation at all. The first data augmentation

consisted of three geometric transformations: image rotation, image

cropping/partitioning and image scaling (Figure 7). These geometric

transformations, hereinafter referred as “G,” were reported as the most

common data augmentation for deep learning in agriculture (Kamilaris

& Prenafeta‐Boldú, 2018). The second data augmentation consisted of

four photometric transformations: light transformations, color trans-

formations, texture enhancement, and texture blur (Figure 7). These

transformations, hereinafter referred as “P,” tried to resolve the dis-

similarity of the color and the texture features between the three

broccoli cultivars (Table 2). The third data augmentation combined the

three geometric transformations and the four photometric transfor-

mations and will be referred as “GP.”

With data augmentation, each training image was transformed

with a randomly chosen transformation from the augmentation set of

G, P, or GP, using the Imgaug software library (version 0.2.8; Jung,

2019). The Imgaug operators were parameterized so that the

transformed images represented visually realistic images (Figure 7).

For each type of data augmentation, 600 transformed images were

randomly created during each training's epoch and these images

were used for training (the original images were not trained). In case

of no data augmentation, then the 600 original images were used

during each training's epoch.

F IGURE 7 Examples of the three geometric (left) and the four photometric (right) image transformations and how these transformations
were parameterized with the Imgaug operators in the data augmentation of Mask R‐CNN. Mask R‐CNN, Mask Region‐based convolutional
neural network [Color figure can be viewed at wileyonlinelibrary.com]
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2.4 | Experimental setup

We have set up four experiments. In the first three experiments, we

studied the effects of network simplification and data augmentation

on the image generalization of Mask R‐CNN. In the fourth experi-

ment, we calculated the costs and the benefits of a selective broccoli

harvesting robot equipped with Mask R‐CNN.

2.4.1 | Experiment 1

The objective of Experiment 1 was to determine the effect of net-

work simplification and data augmentation on the cultivar‐specific
segmentation. Cultivar‐specific means that Mask R‐CNN was trained

and tested on images of the same cultivar. In Experiment 1, Mask

R‐CNN was trained with eight combinations of the two Resnet back-

bones (Resnet50 and Resnet101) and the four data augmentations

(No, G, P, and GP; Figure 8).

2.4.2 | Experiment 2

The objective of Experiment 2 was to determine if network simpli-

fication and data augmentation could help to generalize Mask

R‐CNN on images of broccoli cultivars that were not trained. We used

the trained networks of Experiment 1 and tested them on the images

of the other two broccoli cultivars that were not incorporated in the

training (Figure 8). We called this cultivar‐generic segmentation. We

determined that image generalization was reached when the

segmentation performance did not deviate more than 5% from the

cultivar‐specific segmentation of Experiment 1. We chose the 5%

threshold, because this value allowed us to improve the generalization

error by more than 50% compared to the current broccoli head de-

tection algorithms of Blok et al. (2016) and Kusumam et al. (2017)

(who both experienced a performance loss of 10% when testing their

algorithms on two different broccoli cultivars).

2.4.3 | Experiment 3

The objective of Experiment 3 was to investigate how many cultivar‐
specific training images were needed to generalize Mask R‐CNN on

images of that cultivar. This is useful when Mask R‐CNN has to be

applied on a new cultivar. In Experiment 3, the training was done on

ten mixed data sets of the three cultivars (Table 3). These 10 data

sets represented seven different percentages of cultivar‐specific
images (for each cultivar): 5%, 10%, 25%, 33.3%, 50%, 80%, and 90%.

For the validation sets, we used the same percentages. The re-

maining parts of the data sets contained the images of the other two

cultivars (Table 3). Because Experiments 1 and 2 delivered data

when training on 0% cultivar‐specific images (Experiment 2) and

100% cultivar‐specific images (Experiment 1), we were able to in-

vestigate nine different percentages of cultivar‐specific images (0%,

5%, 10%, 25%, 33.3%, 50%, 80%, 90%, and 100%). Like Experiment 2,

F IGURE 8 In Experiment 1, Mask R‐CNN was trained and tested on images of the same cultivar (cultivar‐specific). In Experiment 2, the
trained networks of Experiment 1 were tested on the images of the two cultivars that were not trained (cultivar‐generic). In total, Mask R‐CNN
was trained with eight different combinations of the two Resnet backbones (Resnet50 and Resnet101) and the four data augmentations (No, G,
P, and GP). G, geometric transformations; GP, geometric and photometric transformations; Mask R‐CNN, Mask Region‐based convolutional
neural network; No, no data augmentation; P, photometric transformations [Color figure can be viewed at wileyonlinelibrary.com]
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we determined that image generalization was reached when the

segmentation performance did not deviate more than 5% from the

cultivar‐specific performance of Experiment 1. In Experiment 3,

Mask R‐CNN was solely trained with the method that had the

highest performance in the first two experiments.

2.4.4 | Experiment 4

The objective of Experiment 4 was to calculate the costs and the

benefits of a robot equipped with Mask R‐CNN. This experiment was

done with harvestable broccoli heads only, because these heads need

to be picked by the robot. The selection criteria for harvestable

broccoli heads was obtained from Seminis (2019) that determined

that a broccoli head is saleable and thus harvestable when its

diameter is between 10 and 15 cm. In this experiment, the Mask

R‐CNN algorithm was used that had the highest performance in

Experiment 3.

2.5 | Evaluation

In the first three experiments, the segmentation performance of

Mask R‐CNN was evaluated on all broccoli heads, regardless of their

size (Section 2.5.1). In the fourth experiment, the Mask R‐CNN de-

tection performance was evaluated on the harvestable broccoli

heads only (Section 2.5.2). The detection metrics of experiment 4

were used in the cost‐benefit analysis (Section 2.5.3).

In all experiments, we used an NMS threshold of 10−3. This

threshold removed all ROIs that overlapped with a more confident

ROI. We chose this threshold, because broccoli heads do not nor-

mally overlap as they grow solitary.

2.5.1 | Evaluation metrics for the broccoli head
segmentation

In the first three experiments, the segmentation performance was

obtained via two metrics: the algorithm's confidence level and the

intersection over union (IoU). A threshold on the confidence level

determined whether there was a segmentation (confidence ≥

threshold) or not (confidence < threshold). A threshold on the IoU

determined whether a segmentation was broccoli (IoU ≥ threshold)

or background (IoU < threshold). The IoU is a measure for the pixel

overlap between the ground truth mask and the predicted mask and

varies between zero (no overlap) and one (full overlap). With both

thresholds on the confidence level and the IoU, we determined the

number of true‐positives (TPs; confidence ≥ threshold and IoU ≥

threshold), false‐positives (FPs; confidence ≥ threshold and IoU <

threshold) and false‐negatives (FNs; confidence < threshold or

IoU < threshold). A TP was a broccoli that was segmented as broccoli.

A FP was background that was segmented as broccoli. A FN was a

broccoli that was not segmented.

The ratio of TPs, FPs, and FNs determined the precision

(Equation 2) and the recall (Equation 3). The precision was the per-

centage of correct segmentations. The recall measured how well

Mask R‐CNN was able to detect and segment all object pixels. Both

the precision and the recall originated from one threshold on the

confidence level and the IoU. With this single set of thresholds, the

precision and recall did not express whether the segmentation was

precisely located or not. Therefore, we used the mAP, which was

calculated by averaging the precision over 101 recall values (0.0–1.0,

in 0.01 steps) and 10 IoU values (0.5–0.95, in 0.05 steps; Coco,

2019). The mAP resulted a value close to zero when the segmenta-

tion was not precisely located, and a value close to one when the

segmentation was precisely located.

=
+

Precision
TP

TP FP
, (2)

=
+

Recall
TP

TP FN
. (3)

In Experiment 1, the mAP was calculated for each test image

of the cultivar that was previously trained. Each cultivar had 100

test images in the first test set, thus 300 cultivar‐specific mAPs

were calculated (Figure 8). A pairwise Wilcoxon's test (Wilcoxon,

1992) with a significance level of 5% was employed for these

300 mAPs to test whether there were statistical differences be-

tween the eight training methods. We used the Wilcoxon's test,

because it can deal with non‐normal distributed data, like

the mAP.

In Experiment 2, the mAP was calculated for each test image of

the two cultivars that were not trained upon. Again, the test images

of first test set were used, resulting in 600 cultivar‐generic mAPs

(Figure 8). A pairwise Wilcoxon's test with a significance level of

5% was employed for these 600mAPs to check for significant

differences.

TABLE 3 In Experiment 3, Mask R‐CNN was trained on 10 mixed
data sets of the three broccoli cultivars (Emerald‐Crown, Ironman,
and Steel)

Number and percentage of cultivar‐specific
training images

Mixed

data set

Emerald‐
Crown Ironman Steel

Total

images

1 30 (5%) 30 (5%) 540 (90%) 600

2 60 (10%) 60 (10%) 480 (80%) 600

3 150 (25%) 150 (25%) 300 (50%) 600

4 200 (33.3%) 200 (33.3%) 200 (33.3%) 600

5 300 (50%) 150 (25%) 150 (25%) 600

6 480 (80%) 60 (10%) 60 (10%) 600

7 540 (90%) 30 (5%) 30 (5%) 600

8 30 (5%) 540 (90%) 30 (5%) 600

9 60 (10%) 480 (80%) 60 (10%) 600

10 150 (25%) 300 (50%) 150 (25%) 600
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In Experiment 3, we used the images of the second test set that

were independent of the images of the first test set. This was done,

because the results on the first test set determined the choice for the

training method in Experiment 3. We calculated the mAPs for each

percentage of cultivar‐specific images. The cultivar‐specific images

between 5% and 25% resulted in twice as many mAPs, because these

percentages had two differently trained Mask R‐CNNs. For example,

the 5% mix of cultivar X had one Mask R‐CNN trained with the

5%–90%–5% mix and one with the 5%–5%–90% mix (Table 3). These

two Mask R‐CNNs resulted in 200mAPs when tested on the test

images of cultivar X. For the percentages higher than 25%, only one

Mask R‐CNN was trained (Table 3), resulting in 100mAPs per cul-

tivar. Because each cultivar was tested, there were 600mAPs for the

cultivar‐specific images between 0% and 25%, and 300mAPs for the

cultivar‐specific images between 33.3% and 100%. Due to the dif-

ference in calculated mAPs, we employed a summary statistics

analysis instead of a Wilcoxon's test.

2.5.2 | Evaluation metrics for the detection of
harvestable broccoli heads

In Experiment 4, two different data sets were used to test the Mask

R‐CNN detection performance on the harvestable broccoli heads.

The first data set consisted of 300 images from the third test set.

These images were independent of the images of the second test set,

because the results on the second test set determined the choice for

the Mask R‐CNN algorithm in Experiment 4. The second data set

consisted of the 300 images that were taken from the online data set

of Bender et al. (2019).

From both data sets, we selected the harvestable broccoli heads

based on their estimated size. The size was estimated from the world

coordinates of the depth images that were obtained from the stereo‐
vision images (both our data set and Bender's data set contained

image pairs from stereo‐vision cameras). Because 54% of the broc-

coli heads (482 from the 892) were partially occluded by leaves, we

used the biggest side of the annotated bounding‐box (in world co-

ordinates) as a measure for the diameter. Broccoli heads with a

diameter between 100 and 150mm were classified as harvestable.

Mask R‐CNN was evaluated on its ability to detect the 408

harvestable broccoli heads that were found in both datasets. The

number of TPs, FPs, and FNs were obtained by using a confidence

threshold of 0.99 and an IoU threshold of 0.5. The IoU threshold

value was considered as the minimum pixel overlap to allow the end‐
effector to successfully cut a harvestable broccoli head. With the

number of TPs, FPs, and FNs, we calculated the precision (Equation 2)

and the recall (Equation 3).

2.5.3 | Cost‐benefit analysis

With the detection metrics on the 408 harvestable broccoli heads

(Experiment 4), we estimated the tentative costs and benefits of the

robot, using Equation (A1) till Equation (A6) (appendix). We per-

formed the cost‐benefit analysis with the assumption that the robot

could harvest four single‐line rows of broccoli in one pass (under

Dutch growing conditions). The cost parameters are summarized in

Table A1 (appendix). We extracted the cost parameters from three

cost studies (AgriConnect, 2019; Edwards, 2019; Kwin, 2018) and an

analogous research on a lettuce harvesting robot (Birrell, Hughes,

Cai, & Iida, 2019). The cost parameters that could not be found in the

literature were extracted from an informal panel interview with five

broccoli growers from the Netherlands and the United States.

3 | RESULTS

3.1 | The effect of network simplification and data
augmentation on the cultivar‐specific segmentation
(Experiment 1)

Figure 9a,b summarize the effects of network simplification and

data augmentation on the cultivar‐specific mAP. Network simpli-

fication from Resnet101 to Resnet50 resulted in a decrease in

mAP for all data augmentations (vertical comparison Figure 9a).

For both Resnet backbones, the three types of data augmentation

resulted in an increase in mAP compared to no data augmentation

(horizontal comparison Figure 9a). For both Resnet50 and

Resnet101, the highest increase in mAP was reached with the

geometric data augmentation (G). The overall highest mAP of 0.77

was reached with Resnet101 and geometric data augmentation

(R101/G). Figure 9b summarizes the p values of the pairwise

Wilcoxon test in a mirrored matrix. The completely green‐colored
horizontal cells of R101/G indicate that the mAP of R101/G was

significantly higher than the mAP of the other seven training

methods.

3.2 | The effect of network simplification and data
augmentation on the cultivar‐generic segmentation
(Experiment 2)

Figure 10a,b show the results of Experiment 2. The cultivar‐
generic mAP decreased when the network was simplified from

Resnet101 to Resnet50 (vertical comparison Figure 10a). All data

augmentations resulted in an increase in mAP compared to no

data augmentation (horizontal comparison Figure 10a). The high-

est mAP of 0.71 was reached with R101/G and R101/GP. The

percentages in Figure 10a show that the cultivar‐generic mAPs of

all training methods deviated more than 5% from the cultivar‐
specific mAP of Experiment 1. This indicates that none of the

cultivar‐generic training methods reached image generalization on

the untrained cultivars. In Figure 10b, the six green‐colored hor-

izontal cells of R101/G and R101/GP indicate that these training

methods had an mAP that was significantly higher than the six

other training methods.
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3.3 | Number of cultivar‐specific training images
to generalize Mask R‐CNN on a broccoli cultivar
(Experiment 3)

In Experiment 3, the training was solely done with R101/G, because

this training method had the highest mAP in both Experiment 1 and 2.

Figure 11 summarizes the mAP as a function of the number of

cultivar‐specific images added to the training set of 600 images. With

zero cultivar‐specific training images, the mAP was 0.71 (this was the

mAP of R101/G in Experiment 2). This mAP was 9% lower than the

mAP of 600 cultivar‐specific training images (the mAP of R101/G in

Experiment 1). With 30 cultivar‐specific training images (5%) the mAP

was 0.77, which was 1% lower than the mAP of 600 cultivar‐specific
training images (Figure 11). Thus, training on 5% cultivar‐specific

F IGURE 9 (a) The mAP for the cultivar‐specific segmentation is summarized for the three broccoli cultivars. The green‐colored cells indicate
an increase in mAP compared to R101/No, which was the training method without any network simplification and data augmentation. The red‐
colored cells indicate a decrease in mAP compared to R101/No. (b) The mirrored matrix summarizes the p values of the pairwise Wilcoxon test.
The green‐colored cells indicate that the mAP of the training method in the row is significantly higher than the mAP of the training method in
the column (p ≤ .05). When the cell is red, then the mAP of the training method in the column is significantly higher than the one in the row
(p ≤ .05). mAP, mean average precision [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 10 (a) The mAP for the cultivar‐generic segmentation is summarized for the three broccoli cultivars. The percentages indicate the
generalization performance compared to the cultivar‐specific segmentation of Experiment 1. Like Figure 9a, the green‐colored cells indicate an
increase in mAP compared to R101/No and the red‐colored cells indicate a decrease in mAP compared to R101/No. (b) Like Figure 9b, the
mirrored matrix summarizes the p values of the pairwise Wilcoxon test (p ≤ .05). mAP, mean average precision [Color figure can be viewed at
wileyonlinelibrary.com]
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images resulted in image generalization. With 200 (33.3%), 300 (50%),

480 (80%), and 540 (90%) cultivar‐specific training images, the

mAP was 2% higher than the mAP of 600 cultivar‐specific training

images (100%).

3.4 | Detection of harvestable broccoli heads
(Experiment 4)

In Experiment 3, the highest mAP was reached when Mask R‐CNN

was trained on 200, 300, 480, and 540 cultivar‐specific training

images. In Experiment 4, we tested the Mask R‐CNN that was

trained on 200 cultivar‐specific images, meaning that we used the

Mask R‐CNN that was optimized on the lowest number of cultivar‐
specific training images in this algorithm subset.

On our data set (the third test set), Mask R‐CNN detected

229 of the 232 harvestable broccoli heads (see Figure 12a–c for

some successful detections). The recall was 98.7% (Table 4).

Three FNs were observed. One FN was observed on a broccoli

head that was in the shadow of a big leaf (Figure 13a). Two FNs

were found on broccoli heads that were (heavily) occluded by a

leaf (Figure 13b,c). The leaf occlusion caused that the broccoli

head was split into two distant parts, of which one part was

detected as an individual (smaller) broccoli head, causing the IoU

F IGURE 11 The green solid line depicts the
mAP as a function of the cultivar‐specific images
in the mixed training set of 600 images. The green
area represents the 95% confidence interval
around the mean. The percentages indicate the
generalization performance compared to the
mAP of R101/G in Experiment 1 (which is the
mAP of 600 cultivar‐specific training images at
the far right of the graph). The black‐dashed line
indicates the minimum mAP for image
generalization. The mAP of zero cultivar‐specific
training images is equal to the mAP of R101/G in
Experiment 2. mAP, mean average precision
[Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 12 (a) True‐positive detections on harvestable broccoli heads of the Ironman cultivar. (b) True‐positive detections on harvestable
broccoli heads of the Steel cultivar. (c) True‐positive detections on harvestable broccoli heads of the Emerald‐Crown cultivar. The red rectangle
is the bounding box from the ground truth and the red pixels visualize the ground truth mask. The green rectangle is the bounding box
prediction of Mask R‐CNN and the green pixels visualize the predicted mask of Mask R‐CNN. All detections in the images (a)–(c) were true‐
positives, because the values for the confidence level and the IoU exceeded the thresholds (Conf ≥ 0.99 and IoU ≥ 0.5). Size indicates the ground
truth size. IoU, IoU, intersection over union; Mask R‐CNN, Mask Region‐based convolutional neural network [Color figure can be viewed at
wileyonlinelibrary.com]
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to be lower than the threshold (Figure 13b,c). As a consequence,

the two detections on the smaller broccoli parts were also false

positives (because the IoU was lower than the threshold). There

were two false positives in total (Figure 13b,c), resulting in a

precision of 99.1% (Table 4).

On the images of the data set of Bender et al. (2019), Mask

R‐CNN detected 175 of the 176 harvestable broccoli heads (see

Figure 14a–c, for some successful detections). There was one FN on

a broccoli head that was only partially in the image (Figure 15a).

There was one FP on a yellow leaf (Figure 15b). Both the recall and

the precision were 99.4% (Table 4).

Mask R‐CNN was also tested on the remaining broccoli heads

that were either too small (<10 cm) or too big (>15 cm; Table 4).

When detecting small‐sized broccoli heads in both data sets, there

were 50 FNs and 8 FPs (Table 4). There were no errors on the big‐
sized broccoli heads. When evaluating the object detection on both

data sets on broccoli heads of all sizes, 838 of the 892 broccoli heads

were successfully detected, resulting in a recall of 93.9%. On both

TABLE 4 Mask R‐CNN detection performance on the broccoli heads of our own data set and the data set of Bender et al. (2019)

Data set Harvest specification

Detection metrics

Recall (%) Precision (%)#TP #FN #FP

Own (third

test set)

Harvestable

(10–15 cm)

229 3 2 98.7 99.1

Too small (<10 cm) 183 46 6 79.9 96.8

Too big (>15 cm) 27 0 0 100.0 100.0

All sizes 439 49 8 90.0 98.2

Bender

et al. (2019)

Harvestable

(10–15 cm)

175 1 1 99.4 99.4

Too small (<10 cm) 108 4 2 96.4 98.2

Too big (>15 cm) 116 0 0 100.0 100.0

All sizes 399 5 3 98.8 99.3

Both data sets Harvestable

(10–15 cm)

404 4 3 99.0 99.3

Too small (<10 cm) 291 50 8 85.3 97.3

Too big (>15 cm) 143 0 0 100.0 100.0

All sizes 838 54 11 93.9 98.7

Abbreviations: #FN, the number of false negatives; #FP, the number of false positives; #TP, the number of true positives.

F IGURE 13 (a) On our own data set (the third test set), Mask R‐CNN had one false‐negative on a broccoli head (Emerald‐Crown cultivar)
that was in the shadow of a big leaf. (b) One false‐positive (green bounding box) and one false‐negative (red bounding box) were observed on a
leaf‐occluded broccoli head (Ironman cultivar). (c) One false‐positive (green bounding box on the left) and one false‐negative (red bounding box)
were observed on a leaf‐occluded broccoli head (Emerald‐Crown cultivar). The leaf separated the broccoli head into two distant parts of which
one part was detected as one (smaller) individual broccoli head instead of the complete broccoli head, causing the IoU to be lower than the
threshold. Mask R‐CNN, Mask Region‐based convolutional neural network [Color figure can be viewed at wileyonlinelibrary.com]
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data sets, there were 11 FPs on the 849 broccoli detections, re-

sulting in a precision of 98.7%. For all broccoli segmentations, the

average IoU with the ground‐truth mask was 0.87. The median was

0.90 (Figure 16).

3.5 | Cost‐benefit analysis

On both data sets, the detection recall on the harvestable broccoli

heads was 99.0% (Table 4). This recall was used to predict the

harvest performance of a selective harvesting robot. With the

prognosed harvest performance, we estimated the tentative benefits

of the robot at €16,059 per hectare (using Equation A2 and Table A1

in the appendix).

The fixed costs of the robot were €385 per hectare (Equation A3

and Table A1 in the appendix). To calculate the variable costs of the

robot, we first had to calculate the operating speed of the robot. We

found that the robot's operating speed was not limited by the image

analysis time (the maximum time was 0.27 s; Figure 17) but by

the time that was needed to cut broccoli (2.0 s, Table A1 in the

appendix). The cycle time of 2.0 s resulted in an operating speed of

0.17m/s (Equation A6 in the appendix), which was, according to the

F IGURE 14 (a) True‐positive detections on two harvestable broccoli heads on a test image taken from Bender et al. (2019). (b) A true‐
positive detection on a harvestable broccoli head on another test image taken from Bender et al. (2019). (c) A true‐positive detection on a
harvestable broccoli head and the absence of a detection on an overripe broccoli head (this head should not be harvested) [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 15 (a) On the test set taken from Bender et al. (2019), Mask R‐CNN had one false‐negative (red bounding box) on a broccoli head
that was partially in the image. (b) Mask R‐CNN had one false‐positive (green bounding box on the left) on a yellow leaf. Mask R‐CNN, Mask
Region‐based convolutional neural network [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 16 The boxplot visualizes the intersection over union between the ground‐truth mask and the predicted mask for all 849 broccoli
detections (of all sizes) on both data sets [Color figure can be viewed at wileyonlinelibrary.com]
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informal panel interview, comparable to the speed of a human har-

vest crew. With the machine speed of 0.17m/s, a robot operator

would need 19.2 h to harvest one hectare of broccoli (Equation A5 in

the appendix). The variable costs of the robot were €4310 per

hectare (Equation A4 in the appendix). With the robot, the income

per hectare was €11,365 (Equation A1 in the appendix).

For the hand‐harvest, we calculated a benefit of €16,387 per

hectare (Equation A2 and Table A1 in the appendix). This benefit was

€328 higher than the benefit of the robot. The fixed costs of the

hand‐harvest were €77 per hectare (Equation A3 and Table A1 in the

appendix), which was €308 lower than the fixed costs of the robot.

The variable costs of the hand‐harvest were €5654 per hectare

(Equation A4 and Table A1 in the appendix). These variable costs

were €1344 higher than the variable costs of the robot. The higher

variable costs of the hand‐harvest were caused by the additional

87.8 manhours that were needed to hand‐harvest one hectare of

broccoli. With the hand‐harvest, the income per hectare was

€10,657, which was €708 lower than the income of the robot.

4 | DISCUSSION

In Experiments 1 and 2, we observed a decrease in mAP when the

network was simplified from Resnet101 to Resnet50. This result is

consistent with Yu, Zhang, Yang, and Zhang (2019), who found that

Mask R‐CNN had better performance with Resnet101 compared to

Resnet50 when detecting strawberry fruits. Resnet is a neural net-

work that is designed to limit the loss of information during back-

propagation (it solves the vanishing gradient problem). With this

feature, a deeper residual network can learn more and potentially

better image features without losing information, which can even-

tually increase the performance (He et al., 2016). Our results support

the idea of training a deeper residual network to boost performance.

In Experiments 1 and 2, training with any type of data aug-

mentation resulted in a higher mAP than training without data

augmentation. Data augmentation with geometric transformations

led to the largest increase in mAP. This finding is consistent with

Taylor and Nitschke (2018), although they used different transfor-

mations (flipping instead of scaling and principal component analysis

instead of light transformations). With the geometric transforma-

tions, the network was trained on images that had a transformed

orientation, position, and scale compared to the original images.

These geometrically transformed images are likely to resemble

broccoli heads from our test set because the test images also con-

tained broccoli heads of different sizes, scales, and positions. As a

result, the geometrically transformed images allowed the neural

network to learn robust features to detect the broccoli heads in the

test images, resulting in a higher mAP. With the photometric trans-

formations, we expect that the transformed images were less similar

to the broccoli heads of the test set. For example, the light trans-

formations could have transformed the broccoli pixels into un-

realistically dark or bright pixels, especially when the input images

were already dark or bright. Also, the texture transformations had

the risk of changing the textural pattern of the broccoli head so that

the network has learned textural patterns that did not resemble to

the textural pattern of the broccoli heads in the test set, resulting in

a lower mAP.

In Experiment 3, we found that Mask R‐CNN reached image

generalization on a broccoli cultivar when 5% of the training data set

consisted of images of that cultivar. This means that a Mask R‐CNN

algorithm can be applied on a new crop cultivar, when it is retrained

on only a few images of that cultivar.

In Experiment 4, we observed that Mask R‐CNN had a higher

detection performance on the Bender et al. (2019) data set, which

our algorithm was not previously trained on. In total, Mask R‐CNN

detected 404 of the 408 harvestable broccoli heads. These broccoli

heads were from three cultivars, five growing seasons and 11

broccoli fields that were located in three different countries. Our

results imply that Mask R‐CNN was successfully generalized on the

images of multiple broccoli cultivars that differed in color and tex-

ture. This is an improvement compared to the algorithms of Blok

et al. (2016) and Kusumam et al. (2017) that could not generalize

sufficiently on images of two broccoli cultivars.

The higher number of FNs and FPs on the small‐sized broccoli

heads, indicates that Mask R‐CNN can still be improved, especially

for the purpose of measuring the size of the broccoli head. For the

selective harvest, these FNs and FPs do not affect the performance,

because the FNs correspond to small‐sized broccoli heads that do

not need to be harvested and the FPs will be filtered out by size.

Moreover, the selective harvesting robot offers several opportunities

to detect the previously FNs, because these small‐sized broccoli

heads will outgrow to a harvestable size when the robot returns in

another field pass.

The maximum image analysis time of Mask R‐CNN was only one‐
seventh of the cycle time of the robotic arm. This has two positive

consequences. First, a maximum of seven image frames can be

F IGURE 17 The boxplot visualizes the image analysis time of Mask Region‐based convolutional neural network on all 600 images from both
data sets. The maximum image analysis time was 0.27 s [Color figure can be viewed at wileyonlinelibrary.com]
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processed for each broccoli head that must be cut. This multiple

image analysis increases the chance of detecting the broccoli head.

Second, there can be downgrade of the computing hardware without

affecting the robot's operating speed. This hardware downgrade

decreases the fixed costs of the robot.

A robot equipped with Mask R‐CNN had higher benefits than

costs. The robot was also more profitable than hand‐harvest. The
cost‐benefit analysis was performed with two costs assumptions. The

first assumption was a complete financial loss of a broccoli head

when there was a FN. This financial loss is perhaps too pessimistic as

the selective harvesting robot offers several opportunities to detect

and harvest the previously FNs in another field pass. The second

assumption was that humans could detect and cut broccoli with a

success rate of 0.99 (both metrics were obtained from the informal

panel interview). For an equal comparison with the robot, we also

need to obtain the detection recall and the cut success of humans. In

future research, we want to evaluate the robot in the field.

5 | CONCLUSIONS

Network simplification did not improve the image generalization of

Mask R‐CNN on multiple broccoli cultivars. Data augmentation did

improve the image generalization of Mask R‐CNN. In data augmen-

tation, the geometric transformations led to a better image gen-

eralization than the photometric transformations. Furthermore,

Mask R‐CNN was generalized on a broccoli cultivar when only 5% of

the training data set consisted of images of that cultivar. Our algo-

rithm successfully detected 229 of the 232 harvestable broccoli

heads from three cultivars that differed in texture and color. Ad-

ditionally, our algorithm detected 175 of the 176 harvestable broc-

coli heads from an online data set, which our algorithm was not

previously trained on. We conclude that our Mask R‐CNN algorithm

achieved better image generalization on multiple broccoli cultivars

than existing broccoli detection algorithms from the literature. A

robot equipped with Mask R‐CNN had higher benefits than costs.

Also, the robot was more profitable than human harvest. We con-

clude that Mask R‐CNN provides sufficient basis for the commer-

cialization of a selective broccoli harvesting robot.
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APPENDIX A: COST‐BENEFIT ANALYSIS

The following section summarizes the equations and the cost para-

meters that were used in the cost‐benefit analysis. Refer to Table A1

for the values and the description of the cost parameters that were

used in Equation (A1) till Equation (A6).

With Equation (A1), we calculated the income per hectare of

broccoli when using a robot equipped with Mask R‐CNN (i )r . The income

per hectare was the difference between the benefits (b )r and the costs,

which was the sum of the fixed costs (c )fr and the variable costs (c )vr .

= − −i b c c .r r fr vr (A1)

The benefits of the robot (b )r depended on the revenue of the

broccoli heads that were successfully harvested per hectare

(Equation A2). The revenue was derived from the number of broccoli

heads per hectare (bh )ha , the sale value per broccoli head (s )v and the

harvest success of the robot. The harvest success depended on the

recall of the detection system (r; using Table 4), and the broccoli cut

success of the end‐effector (s).

=b bh s r s· ·( · ).r ha v (A2)

The fixed costs of the robot per hectare (c )fr were calculated

from the robot's price (pr), its salvage value (vr), its economic life (tr)

and the hectares that are harvested per year (ha )y (Equation A3).

=
−

c
p v
t ha·

.fr
r r

r y
(A3)

The variable costs of the robot (c )vr were the sum of the costs for

crop production (cc) and the costs for labor (Equation A4). The costs

for labor were derived from the hourly wage (cl) and the total labor

requirement per hectare. The total labor requirement was the sum of

the labor for crop care (lc), harvest (lh) and postharvest (lph). The labor

for harvest (lh; Equation A5) depended on the number of people

needed to operate the robot (p), the number of broccoli cuts per year

(cuy) and the harvest capacity of the robot. The harvest capacity

depended on the robot's operating width (wr) and its operating speed

(v ). The operating speed was influenced by the intra‐row spacing

between the broccoli heads (dbh) and the maximum time that was

needed to either analyze an image (ti) or cut a broccoli (ta;

Equation A6).

We also calculated the labor that was needed for the headland

maneuver (assuming a reversed turn). This labor depended on the

field width (wf ), the robot's turning radius (rt) and the distance

between the camera and the robotic arm (dca). This distance is the

distance that the robot had to travel to complete the harvest

operation before it could start the turning procedure. In Equation

(A5) we accounted for the conversion between m2 and hectare

(10,000 m2 = 1 ha) and the conversion between seconds and hour

(3600 s = 1 h).

= + + +c c c l l l· ( ),vr c l c h ph (A4)

=
+ −

+ +( )( )
l

p cu· · 1 ·

3600
,h

y w v

w

w
d π r

v
10, 000

·

2 · ( 1) ·

r

f

r

ca t

(A5)

=v
d

t tmax ( , )
,bh

i a
(A6)

To determine the profitability of the robot compared to the

hand‐harvest, we also calculated the costs and the benefits for the

hand‐harvest, using Equation (A1) to Equation (A4). All cost para-

meters can be found in Table A1.
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