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Abstract Radar rainfall nowcasting, the process of statistically extrapolating the most recent rainfall
observation, is increasingly used for very short range rainfall forecasting (less than 6 hr ahead). We
performed a large‐sample analysis of 1,533 events, systematically selected for 4 event durations and 12
lowland catchments (6.5–957 km2), to determine the predictive skill of nowcasting. Four algorithms are
tested and compared with Eulerian Persistence: Rainymotion Sparse, Rainymotion DenseRotation, Pysteps
deterministic, and Pysteps probabilistic with 20 ensemble members. We focus on the dependency of nowcast
skill on event duration, season, catchment size, and location. Maximum skillful lead times increase for
longer event durations, due to the more persistent character of these events. For all four event durations,
Pysteps deterministic attains the longest average decorrelation times, with 25 min for 1‐hr durations, 40 min
for 3 hr, 56 min for 6 hr, and 116min for 24 hr. During winter, with more persistent stratiform precipitation,
we find three times lower mean absolute errors than for convective summer precipitation. Higher skill is
also found after spatially upscaling the forecast. Catchment location matters too: Given the prevailing storm
movement, two times higher skillful lead times are found downwind than upwind toward the edge of the
domain. In most cases, Pysteps algorithms outperform the Rainymotion benchmark algorithms. We
speculate that most errors originate from growth and dissipation processes which are not or only partially
(stochastically) accounted for.

Plain Language Summary Early warning systems are a key instrument for timely responses to
flood risk. These warnings depend on accurate weather forecasts. Most numerical weather prediction
models have trouble to accurately forecast the timing and especially the location of rainfall on time scales of
less than 6 hr. This time frame is important for decisions in small, mountainous, polder, and urban basins,
where river discharge responds quickly to rainfall. Radar rainfall nowcasting, the process of statistically
extrapolating the most recent rainfall observations, has the potential to provide forecasts up to 6 hr. We
considered 1,533 rainfall events to evaluate the quality of five nowcasting methods. Nowcasts are better for
longer‐lasting rain storms with relatively low intensity, which typically occur in winter, than for short,
intensive storms, which typically occur in summer. Forecasts are useful up to 2 hr ahead for events of 1 day,
while this is only 25min for 1‐hr events. Moreover, nowcasts are better for larger basins and in the
downwind direction with respect to the prevailing storm movement. Hence, nowcasts are useful, but
improvements are needed to be able to forecast longer ahead.

1. Introduction

The frequency and severity of intense precipitation events are likely to increase in a changing climate (with,
e.g., a 12% increase in high‐intensity precipitation per degree of warming in the Netherlands), which can
lead to more severe floods and present a danger to livability and economy (e.g., IPCC, 2012, 2013, 2014;
KNMI, 2015). Well‐established early warning systems (e.g., Delft‐FEWSWerner et al., 2013) make it possible
to act accordingly and in time, expectedly resulting in a lower risk and less damage (Pappenberger et al.,
2015). Most early warning systems, if present at all, use a combination of short‐range (12–72 hr) and
medium‐range (up to 10 days) numerical weather prediction (NWP) in combination with hydrological
and hydraulic models to predict river discharges and water levels. However, the quantitative precipitation
forecasts (QPFs) provided by the employed NWP systems are often not sufficient for reliable early warnings
on the short term, that is, up to 6 hr, due to (1) a too coarse temporal resolution and a too low update
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frequency (i.e., the lead time becomes already quite long, making the forecast less reliable) and (2) the mis-
location of rainfall events (e.g., Berenguer et al., 2012; Pierce et al., 2012).

In addition to the increasing availability of NWP models that focus on short‐term precipitation forecasting
(<12 hr ahead), there has been a significant improvement of the spatial and temporal resolution of radar
rainfall products over the last decades, typically to 1 km and 5min (e.g., Overeem, Holleman, & Buishand,
2009; Serafin &Wilson, 2000). These radar products have high potential for very short term rainfall forecasts
(Germann & Zawadzki, 2002, 2004; Turner et al., 2004) and can therefore be a valuable addition to early
warning systems. Very short term forecasting with QPE from, for example, operational weather radars is
called nowcasting. Essentially, nowcasting is the process of extrapolating real‐time remotely sensed observa-
tions (often radar) by estimating the advection of the precipitation fields. Increasingly, the spatial and tem-
poral properties of these fields and the statistical properties of the available QPE are taken into account as
well. However, in the current nowcasting models, physical processes governing the growth and dissipation
of precipitation cells are not accounted for.

Nowcasts can be applied up to several hours ahead (Germann et al., 2006; Lin et al., 2005) and approximately
30min for convective cells (e.g., Ayzel et al., 2019; Foresti et al., 2016; Liguori & Rico‐Ramirez, 2012). In this
time frame, it is thought to fill the gap for very short term forecasts up to 3 hr ahead or even 6 hr on a con-
tinental scale (e.g., Berenguer & Sempere Torres, 2013), after which short‐range andmid‐range NWPmodels
should take over.

Nowcasts can be made in a deterministic sense, with, for example, TITAN (Dixon &Wiener, 1993), S‐PROG
(Seed, 2003), and Com‐SWIRLS (Wong et al., 2016), or in a probabilistic sense by accounting for uncertainty
in precipitation forecasts by means of ensembles. Examples of probabilistic algorithms are STEPS (Bowler
et al., 2006; Seed, 2003; Seed et al., 2013), SBMcast (Berenguer et al., 2011), the stochastic‐ and
analogue‐based models by Atencia and Zawadzki (2014, 2015), ENS (Sokol et al., 2017), and Pysteps
(Pulkkinen et al., 2019). The ensemble QPF can be directly applied to hydrological ensemble forecasts
(e.g., Berenguer et al., 2005; Heuvelink et al., 2020; Vivoni et al., 2006).

As operational nowcasting for hydrological purposes is still in an early stage of development, advice is
needed on the skill of radar nowcasting in general and differences between the performance of algorithms
in particular. Most studies so far have focused on the development of nowcasting algorithms in combination
with a quantification of the rainfall prediction quality and errors in either deterministic or probabilistic
nowcasting algorithms (e.g., Foresti et al., 2016; Germann & Zawadzki, 2002, 2004; Germann et al., 2006;
Lin et al., 2005; Turner et al., 2004). The results generally follow from studies with analyses based on
relatively small samples of 2–15 precipitation events. The studies by Berenguer and Sempere Torres
(2013), Foresti and Seed (2015), and Mejsnar et al. (2018) are exceptions to this. Foresti and Seed (2015)
use a data set of 20 months of operational nowcasts in order to analyze the spatial distribution of radar rain-
fall nowcasting errors in a mountainous region in south‐east Australia.

In order to draw statistically meaningful conclusions about the rainfall forecasting skill in a lowland area
with a temperate climate such as the Netherlands, a study with a large number of precipitation events
should take place. Accordingly, the objective of this study is to quantify the skill of radar rainfall
nowcasting algorithms for the short‐term predictability of rainfall for different catchments in the
Netherlands. Earlier studies suggest that forecast skill and uncertainty of nowcasting algorithms depend
on factors such as climate, geography, and orography (Foresti & Seed, 2015; Foresti et al., 2016; Germann
et al., 2009), with a higher variability in forecast errors for smaller regions (Vivoni et al., 2007).
Therefore, a particular focus will be on the dependency of the forecast skill on event type and duration,
seasonality, catchment size, and location for 12 catchments. The objective excludes blending with NWP,
which will be the next stage in improving the short‐term predictability of rainfall for lead times of more
than 3 hr.

In this study, 1,533 events spread over 12 catchments with sizes varying from 6.5 to 957 km2 are analyzed.
For this analysis, four open‐source (Python) nowcasting algorithms are used: two benchmarking advection
algorithms of Rainymotion (Ayzel et al., 2019) and deterministic and probabilistic versions of Pysteps
(Pulkkinen et al., 2019). To the authors' knowledge, this is the first radar rainfall nowcasting study with a
combination of this variety of algorithms and such a large sample of events.
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The outline of this paper is as follows: Section 2 contains descriptions of the study area, radar data, event
selection, nowcasting algorithms, verification metrics, and experimental setup. This is followed by the
results (section 3), discussion (section 4), and conclusions (section 5).

2. Materials and Methods
2.1. Study Area

In this study, we analyze rainfall over 12 Dutch catchments and polder areas with different sizes and loca-
tions (Figure 1). We focus on catchments instead of the entire radar domain, because we want to assess
the usefulness of nowcasting for the involved water authorities. Incidentally, this highly reduces the storage
requirement for this large‐sample analysis (compared to nowcasts for the full domain). The catchments were
chosen in close collaboration with involved water authorities and are spread over the country, as we
expected a dependency of the nowcast skill on the location with regard to the prevailing storm movement.
With south‐westerlies as the predominant wind direction in the Netherlands, catchments in the northeast-
ern part of the country are expected to have skillful rainfall predictions up to longer lead times than catch-
ments in the southwest.

2.2. Data and Event Selection
2.2.1. Radar Rainfall Product
The Royal Netherlands Meteorological Institute (KNMI) operates two C‐band weather radars, indicated
together with the composite extent for the employed data sets in Figure 1. The two radars in De Bilt and
Den Helder were replaced by two new radars between September 2016 and January 2017. The current opera-
tional radars at Den Helder and Herwijnen are dual‐polarized, which was not the case before September
2016. See Beekhuis and Holleman (2008) and Beekhuis and Mathijssen (2018) for more information.

In the data processing, Doppler filtering is used, and since 2013 also a cloud‐mask from satellite data is
applied to remove non‐meteorological echoes. Subsequently, horizontal cross‐sections of reflectivity at con-
stant altitude, called pseudo‐constant plan position indicators (pseudo‐CAPPI), are constructed from the
volumetric reflectivity data per radar. For the final composite, 1,500 m pseudo‐CAPPIs are employed, and
the reflectivities from both radars are combined using range‐weighted compositing (Overeem, Holleman,
& Buishand, 2009). Rainfall is then estimated with a fixed Z‐R relationship (Marshall et al., 1955):

Zh ¼ 200R1:6; (1)

with Zh the reflectivity at horizontal polarization (mm6m−3) and R the rainfall rate (mm hr−1). The con-
version from mm6m−3 to dBZ, often the unit of the measured reflectivities, is performed with 10 ×
log10(Zh). Reflectivities below 7 dBZh (≈0.1 mm hr−1) are ignored to prevent noise accumulation, and
reflectivities above 55 dBZh (≈100 mmhr−1) are fixed at 55 dBZh to suppress hail or strong residual
clutter‐induced reflection. Isolated pixels with reflectivities above 7 dBZh are discarded. The resulting radar
rainfall composite has a 1‐km2 spatial and 5‐min temporal resolution and has been archived since 2008.

In this study, the quantitative precipitation estimation (QPE) is assumed to be the true rainfall intensity for
the verification of the rainfall forecasts, that is, the output of the nowcasting algorithms. Provided that radar
QPE comes with substantial uncertainty and bias (e.g., Foresti & Seed, 2015; Germann et al., 2006;
Hazenberg et al., 2011; Van de Beek et al., 2016), a good verification result in this study does not necessarily
mean that the true rainfall amounts are well predicted by the algorithms.

Note that KNMI produces another, more accurate radar product which includes corrections with rain gauge
data. This gauge‐adjusted data set has the same coverage, spatial and temporal resolution as the operational
data (used for nowcasting). However, the QPE is adjusted with two rain gauge networks (consisting of 31
automatic and 325 manual gauges), and it is therefore considered as an accurate rainfall reference product.
As this product is not available in real time, we have only used this “reference” data set for the event selec-
tion. For more details regarding this data set, we refer to Beekhuis and Holleman (2008), Overeem,
Holleman, and Buishand (2009), Overeem, Buishand, and Holleman (2009), Overeem et al. (2011), and
Beekhuis and Mathijssen (2018).
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2.2.2. Event Selection Procedure
A large number of events were selected systematically from the 5‐min gauge‐adjusted radar rainfall compo-
sites for the period 2008–2018. Only large rainfall accumulations were selected, as these are most interesting
to study for both the assessment of precipitation predictability and the hydrological application. The
gauge‐adjusted data set is employed for event selection instead of the operational product employed for the
nowcasting analysis (section 2.2.1), because this yields the events with the actual highest rainfall volumes.

In the Dutch climate, the highest rainfall rates originate from convective precipitation events during sum-
mer and early autumn. Since one of the aims of this study is to find the seasonal dependence of the nowcast-
ing skill, events in other seasons, which include stratiform events, should be present as well (see Table 1 for
seasonal statistics of the Dutch weather). The adopted event selection procedure guarantees that an even

spread of strong precipitation events is obtained over all seasons per event
duration.

The events are selected as follows (Figure 2): Per catchment and for each
season, eight events are selected per event duration (1, 3, 6, and 24 hr).
Note that an “event” is not defined by the start and end of rainfall, but
instead periods with a certain duration are used in which it does not have
to rain continuously. Hence, the full duration is considered as an event.
With this description of an event, the highest rainfall sums per duration,
catchment, and season are ranked from high to low, in which the next
“event” cannot occur within the time span of a previously selected “event”
with a higher rainfall sum. The eight events, for that duration, consist of
the events with the four highest catchment‐averaged rainfall sums and
the four highest rainfall sums for any grid cell in the catchment. If one
of the four events of the grid maxima is the same event as already present
in the four maxima from the catchment‐averaged list, the next maximum
in the list of grid maxima is used to avoid overlapping events. Summed
over all durations (4), seasons (4), and catchments (12), this selection pro-
cedure leads to 4 × 4 × 12 × 8 = 1,536 events (see Table 1 for the statistics
of these events).

Figure 1. Map of the Netherlands with the 12 catchments (green areas) and 3 radars (red triangles). The large circle indicates the extent of the radar rainfall
composite. The catchment sizes are indicated in the table next to the figure.

Table 1
Rainfall and Wind Statistics for the Selected Events and Seasonal Averages
for KNMI Station De Bilt

Mean rainfall intensity
(mm hr−1)

Aggregation interval DJF MAM JJA SON
Daily mean

wind direction

1 hr 8.5 17.1 27.1 15.4 223° (SW)
3 hr 4.6 7.7 12.1 7.5 227° (SW)
6 hr 3.0 4.5 7.0 4.6 228° (SW)
24 hr 1.2 1.5 2.2 1.7 222° (SW)
Climatology 0.09 0.08 0.10 0.11 SW

Note. For the event statistics, rainfall intensities are catchment averages
over the duration and all events in that duration. The mean daily wind
direction for the events is obtained frommeasured wind directions during
these events at KNMI station De Bilt. For the climatology, the seasonal
accumulations for station De Bilt are averaged over the period 1981–
2010 (KNMI, 2011). Mean climatological wind directions have been
determined over periods with rainfall by Buishand and Velds (1980).
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2.3. Nowcasting Algorithms

The following paragraphs give a brief description of the main characteristics of the employed algorithms and
the way they are set up in this study. For brevity, the algorithm names are abbreviated from here on
(Table 2). The following algorithms were chosen because they are open source and because they allow for
a comparison between different methods, namely, a global optical flow method compared to a corner detec-
tion method, and purely advection‐based nowcasting compared to methods that incorporate the spatial and
temporal scales of rainfall for rainfall field evolution (either with or without uncertainties taken into
account).
2.3.1. Rainymotion
Rainymotion (Ayzel et al., 2019) was introduced as a benchmark to test and develop other nowcasting algo-
rithms and as such to replace the commonly used benchmark Eulerian Persistence, which is the procedure
of using the most recent QPE as forecast. It is a set of four models based on widely used optical flow algo-
rithms to determine advection of rainfall fields. Two models (from Rainymotion v0.1) are used in this study
and briefly described below.

The first model, called Sparse (RM‐S), tracks the corners of precipitation fields (which are scaled to bright-
ness integer values ranging from 0 to 255), as these locations have sharp rainfall intensity gradients which
are relatively easy to find and track. The Sparse method identifies these corners from time t− 23 (e.g.,
5‐min steps) to t with the Shi‐Tomasi corner detector (Shi & Tomasi, 1994). With the Lucas‐Kanade optical
flow algorithm (window size is 20 × 20 cells) (Lucas & Kanade, 1981), the identified features are tracked. The
obtained motion is then linearly extrapolated to the future. Subsequently, a transformation matrix is calcu-
lated per lead time and is used to extrapolate the most recent radar image by warping using an affine trans-
formation matrix (Ayzel et al., 2019).

The second model, DenseRotation (RM‐DR), uses a global optical flow algorithm to estimate a velocity for
each grid cell (with rainfall scaled to brightness integers) in the composite. The default method (also used
here) for this is the Dense Inverse Search algorithm introduced by Kroeger et al. (2016). It uses the QPE from
time t− 1 to t. Rainymotion offers the opportunity to change this optical flow algorithm to a variety of other
algorithms. The velocity field is extrapolated with the semi‐Lagrangian advection scheme as introduced by
Germann and Zawadzki (2002). A forward semi‐Lagrangian advection scheme is used here. This methodol-
ogy allows for rotational movement, which is not the case with, for example, a constant‐vector advection
scheme. After these steps, the resulting pixel values are interpolated with Inverse Distance Weighting to

Figure 2. Schematization of the employed event selection procedure. Per catchment, season, and event duration, eight
events are selected.
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project them on the original grid. This is different than in Germann and Zawadzki (2002), who used a
bilinear interpolation technique.
2.3.2. Pysteps
Pysteps (Pulkkinen et al., 2019) is a modular framework for the development of nowcasting methods. With a
wide variety of configurations, it is a platform for deterministic and probabilistic nowcasting applications.
The core of Pysteps is based on S‐PROG (Seed, 2003) and STEPS (Bowler et al., 2006; Seed et al., 2013).
The main steps toward an ensemble nowcast in Pysteps are as follows:

1. Read radar composites and determine the motion field.
2. Use an advection method for the extrapolation of the radar images into the future. Generally, a backward

semi‐Lagrangian method, allowing for rotational movement, is used (Germann & Zawadzki, 2002).
3. Apply cascade decomposition, generally fast Fourier transform (FFT), to decompose the rainfall field into

a multiplicative cascade (Seed, 2003). The levels of this cascade represent different spatial scales, which
are assumed to represent different precipitation lifetimes (Germann et al., 2006; Seed, 2003; Venugopal
et al., 1999).

4. Estimate the autoregressive (AR) model parameters and apply the AR model in time. Together with the
cascade model used in space, this methodology handles the temporal evolution of and correlation within
the precipitation structure.

5. Add stochastic perturbations to the AR models and to the advection field as a way to take into account
uncertainty in rainfall intensities and the motion field for the ensemble forecast.

6. Perform the actual extrapolation after recomposing the cascade with the iterated AR model and the
stochastic perturbations. This will give the raw nowcast ensemble.

7. Apply post‐processing operations to ensure that the nowcast has the same statistical properties as the
latest available observations.

Pysteps (v0.2 was used) is flexible in the choice for, for example, optical flow methods, advection methods,
noise methods, and spatial/temporal decomposition methods. In this study, two setups of Pysteps are used:
one for deterministic nowcasts and one for probabilistic nowcasts. The deterministic setup, from here on
referred to as Pysteps deterministic (PS‐D), resembles the S‐PROG algorithm (Seed, 2003) and has the follow-
ing configuration: a Lucas‐Kanade optical flowmethod using the QPE from time t− 3 to t (Lucas & Kanade,
1981), a backward semi‐Lagrangian advection method (Germann & Zawadzki, 2002), an AR model of order
2, the S‐PROG masking method (threshold is 0.1 mm hr−1), a probability matching method to match the
forecast statistics with the observations based on the mean observed rainfall fields, and eight cascade levels
(instead of six in the original S‐PROG). PS‐D follows most of the aforementioned seven steps, except for Step
5 (stochastic perturbations).

The probabilistic setup, from here on referred to as Pysteps probabilistic (PS‐P), follows the aforementioned
seven steps, with the following configuration: a Lucas‐Kanade optical flowmethod using the QPE from time
t− 3 to t (Lucas & Kanade, 1981), a backward semi‐Lagrangian advection method (Germann & Zawadzki,
2002), the STEPS nowcasting method (Bowler et al., 2006), a non‐parametric noise method (Seed et al.,
2013), FFT for the spatial decomposition with eight cascade levels, an AR model of order 2, a lead
time‐dependent masking method, the cumulative distribution function (cdf) used as probability matching
method, and 20 ensemble members. For both PS‐D and PS‐P, the rainfall fields are transformed to dB prior
to nowcasting.

Pulkkinen et al. (2019) found that the optimum ensemble size for Pysteps depends on the rainfall intensity
threshold that is assessed. For low‐intensity thresholds, there was only a marginal improvement between 24

Table 2
Overview of the Radar Rainfall Nowcasting Methods Used in This Study

Name Abbreviation Reference

Eulerian Persistence EP —

Rainymotion Sparse RM‐S Ayzel et al. (2019)
Rainymotion DenseRotation RM‐DR Ayzel et al. (2019)
Pysteps deterministic (S‐PROG) PS‐D Seed (2003) and Pulkkinen et al. (2019)
Pysteps probabilistic PS‐P Bowler et al. (2006), Seed et al. (2013), and Pulkkinen et al. (2019)
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and 48 ensemble members. This indicates that for these thresholds, the chosen ensemble size of 20 is prob-
ably sufficient. However, for higher thresholds (e.g., 5 mm hr−1), there was even significant improvement in
model performance when increasing the ensemble size to as much as 96 members (Figures 13 and 14 in
Pulkkinen et al., 2019). Hence, when the nowcasting algorithm is used to forecast high‐intensity rainfall
events, a larger ensemble size is desirable. The downside of this choice would be that this might not be com-
putationally feasible in an operational setting when a new set of nowcasts has to be made every 5 min, which
is why an ensemble size of 20 members was chosen.

2.4. Verification Metrics
2.4.1. Pearson's Correlation
For every event per lead time t, Pearson's correlation coefficient (ρ) is calculated as

ρ¼ 1
Nf

∑
Nf

i ¼ 1

ðFi − μFÞðOi − μOÞ
σFσO

; (2)

where Fi and Oi are the forecast and observed rainfall amounts at a given grid cell, Nf corresponds to the
number of forecasts with lead time t in the event, μ is the mean of the forecasts (μF) and observations
(μO), and σ is the standard deviation of the forecasts (σF) and observations (σO) at a given grid cell. If this
is calculated in a distributed manner, that is, per grid cell, it will result in a two‐dimensional field with the
correlation per grid cell. These numbers are then averaged over all grid cells, to obtain one averaged cor-
relation per event.

As it is useful for an end‐user to have an idea of the maximum lead time for which a forecast is still skillful,
the 1/e‐line (ρ≈ 0.37) is used as threshold (e.g., Berenguer et al., 2011; Germann & Zawadzki, 2002). Once
the correlation drops below this line, generally referred to as the decorrelation time, the forecast is no longer
seen as skillful. The lead time at which this occurs is the so‐called decorrelation time of the forecast.
2.4.2. MAE and CRPS
For deterministic runs and per event, the mean absolute error (MAE) is calculated per lead time as

MAE¼∑Nf

i ¼ 1jFi − Oij
Nf

: (3)

In the case of a probabilistic forecast, for example, for PS‐P, the entire forecast distribution is available for
comparison with the observations. In order to do this, the cdfs of forecast and observation are used. While
the cdf of the observation is a single step‐function, that is, there is only one value, the cdf of the probabilistic
forecast is a curve. The area between these two cdfs is a measure for the continuous rank probability score
(CRPS), which is formulated as

CRPS¼ 1
Nf

∑
Nf

i ¼ 1

Z þ∞

−∞
PFiðxÞ−POiðxÞð Þ2d x: (4)

Here, PFiðxÞ and POiðxÞ are the forecast and observed non‐exceedance probability, for the ith forecast with
lead time t. x is the forecast/observed rainfall sum, which is approximated numerically as interval with a step
dx that is variable and depends on the rainfall sum per ensemble member. This decomposition to a stepwise
function is explained in Hersbach (2000).

The advantage of using the CRPS is that it reduces to the MAE for deterministic forecasts, which enables the
comparison between the MAE of the deterministic forecasts and the CRPS of the probabilistic forecasts.
2.4.3. Brier Score
When a forecast gives a 20% probability of rainfall, then ideally, it rains in 20% of the cases for which this
forecast is issued. This gives a reliable forecast, whereas unreliable forecasts significantly deviate from this
optimum.With a reliability diagram, this characteristic is tested by counting the number of observations that
actually exceed a given threshold per forecast probability.

Simultaneously, this approach can be used to obtain an indication of the ensemble skill, as compared to a
benchmark. Below the climatological frequency of exceeding a given rainfall threshold, the forecast is
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unable to distinguish situations with different frequencies of occurrence: the point of no resolution.
Additionally, there is a point of no skill, where the probabilistic forecast is not able to predict better than
a reference (e.g., the climatology) whether an event will occur or not. This is tested with the Brier Skill
Score (BSS), which is based on the Brier Score (BS) (Jolliffe & Stephenson, 2012):

BS¼ 1
Nf

∑
Nf

i ¼ 1
ðPFi−POiÞ2; (5)

BSS¼ 1 −
BS
BSref

: (6)

The BS is similar to the CRPS (Equation 4), but with the difference that the CRPS is the BS integrated over all
thresholds. Thus, Equation 5 verifies whether for forecast i, a predefined threshold is exceeded by forecastPFi

(given as a probability between 0 and 1) and by observationPOi (0 or 1). To put this in perspective, a reference
(BSref) is used to determine the BSS. This reference can be the climatology, but also persistence, deterministic
forecasts or probabilistic forecasts.
2.4.4. Fractions Skill Score
The Fractions Skill Score (FSS) is a spatial verification score which uses a fractions‐based BS (see
section 2.4.3) over successively larger cell lengths (Roberts & Lean, 2008). By increasing the length scale n
(e.g., in km), the area used for verification increases, generally leading to a higher FSS value. n can increase
up to 2N− 1, with N the longest length scale in the extent. The FSS ranges from 0 to 1, with 1 corresponding
to a perfect forecast. With this metric, a minimum length scale to reach a required skill can be found, which
is the target upscaling resolution of the data. For a predefined threshold and one forecast, it is calculated as

FSSðnÞ ¼ 1 −
MSEðnÞ
MSErefðnÞ; (7)

where MSE(n) is the mean squared error between observed and forecast fractions for length scale n.
MSEref (n) is defined as a reference MSE for length scale n, which is the largest MSE that can be obtained
from the observed and forecast fractions. It is formulated as

MSErefðnÞ ¼ 1
NxNy

∑
Nx

i ¼ 1
∑
Ny

j ¼ 1
O2
i; jðnÞþ ∑

Nx

i ¼ 1
∑
Ny

j ¼ 1
F2
i; jðnÞ

" #
; (8)

where Nx and Ny are the number of columns (x) and rows (y) in the radar composite, respectively. O2
i; jðnÞ

and F2
i; jðnÞ are the observed and forecast fractions, per grid cell, of surrounding points up to length scale n

that exceed a given rainfall intensity threshold. O2
i; jðnÞ is calculated as

O2
i; jðnÞ ¼

1
n2

∑
n

k ¼ 1
∑
n

l ¼ 1
IO iþ k − 1 −

n − 1
2

; jþ l − 1 −
n − 1
2

� �
: (9)

Here, IO is the binary field of exceedances of a given rainfall intensity threshold for the observations. k and l
are integer values ranging from 1 to length scale n, used to count the threshold exceedances for every cell

within the window around cell (i, j). The equation for F2
i; jðnÞ is the same, with the only difference that

not IO, but IF is used. See also Figure 2 in Roberts and Lean (2008) for a schematic example of the method.

Generally, the FSS value above which the forecast is considered useful lies in between the perfect and the

random forecast skill ( = 0.5 +
f 0
2
). The random forecast skill, indicated with fo, is defined as the domain

average observed rainfall fraction above the threshold (Mittermaier & Roberts, 2010; Roberts & Lean, 2008).
2.4.5. Receiver Operating Characteristic
The receiver operating characteristic (ROC) curve analyses the predictive ability of exceeding a certain
threshold with probabilistic forecasts. In essence, the curve plots the hit rate (HR) versus the false alarm rate
(FAR) for predefined probability thresholds. HR is calculated as
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HR¼ TP
TPþ FN

; (10)

where TP is the number of true positives, the “hits”: Both the forecast and observation exceed the thresh-
old. FN is the number of false negatives, the “misses”: The observation exceeds the threshold, but the fore-
cast does not. The FAR is calculated as

FAR¼ FP
FPþ TN

; (11)

where FP is the number of false positives, the “false alarms”: The forecast exceeds the threshold, but the
observation does not. TN is the number of true negatives: Neither the forecast nor the observation exceeds
the threshold.

On or below the 1:1 line between HR and FAR, the forecast is not better than a random forecast (no skill).
A higher skill leads to a larger area under the curve, which has a maximum value of 1.0 and a minimum tar-
get value of 0.5 (the 1:1 line).

2.5. Experimental and Forecast Verification Setup

The nowcasts for the 1,536 events were run (equally spread) on two high‐performance clusters with Intel
Xeon processors with 2.2 GHz and 8 GB memory per core and Intel Xeon processors with 3.6 GHz and 8
GB memory per core. Run times on these clusters for 5‐min forecasts with a 6‐hr lead time were on average
(for one core): 40 s for RM‐S, 130 s for RM‐DR, 40 s for PS‐D, and 1,250 s for PS‐P (for 20 ensemble members).
Hence, the run time for one PS‐P nowcast took longer than the update frequency. From an operational per-
spective, this would require either reducing the forecast horizon (e.g., forecasts with a 3‐hr lead time) or
reducing the update frequency. Another option would be to run PS‐P on multiple cores.

During 3 out of the 1,536 events, one algorithm did not finish successfully, leaving 1,533 events available
for analysis. In these three cases (two failures for PS‐D and one for PS‐P), the initialization of the output file
failed. After analyzing the log files, we concluded that this error was likely caused by the high‐performance
cluster rather than caused by the algorithm.

The nowcasts were produced with a lead time of 6 hr and a temporal resolution of 5 min (hence 72 lead
times). Nowcasts were already initiated for the 6 hr prior to the onset of each event in order to have a 6‐hr
forecast for every time step within the event. Note that only forecasts for times within the actual event dura-
tion were analyzed. The durations are thus the time windows during which the nowcasts were analyzed,
while nowcasts are made for a longer time frame around the events. In total, over 940,000 separate 5‐min
forecasts have been analyzed per algorithm. In the following paragraphs, the verification procedures for
these analyses are briefly introduced.
2.5.1. Event Type and Duration Dependency
The events selected for the four durations contain different types of rainfall, generally from convective and
small‐scale for the shortest event durations (1 hr) to more stratiform, larger‐scale systems for the longer
event durations (e.g., 24 hr). As a result of the differences in rainfall types for these event durations, the mean
decorrelation distance increases with almost a factor 2.5 from 1 to 24 hr in the Netherlands (Van de Beek
et al., 2012). Based on this, we expected that this would lead to a difference in predictive skill of the nowcasts
for the event durations. For the purpose of finding, per algorithm, the dependency of forecasting skill on the
event type and duration, Pearson's correlation coefficient was calculated per lead time t and for every event
(averaged over all grid cells within a catchment). As PS‐P is a probabilistic run, Pearson's correlation was cal-
culated for every ensemble member separately. As such, all separate model runs within the ensemble were
taken into account. The average skillful lead time per algorithm and event duration could be estimated from
the 1/e‐line.
2.5.2. Seasonal Dependency
Rainfall characteristics and seasonal differences vary considerably between and within event durations
(Van de Beek et al., 2012). Whereas winters in the Netherlands generally have widespread frontal, stratiform
rainfall fields of low to intermediate intensity, summer rainfall also consists of more localized convective
showers with higher rainfall intensities. We expected that this also impacts the nowcasts for the 12 catch-
ments. To verify the nowcasts for the different seasons, we focused on one event duration: 6 hr. Within
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this interval, the MAE and CRPS were calculated per catchment to estimate the error between forecasts and
observations per event in a season.
2.5.3. Dependency on Catchment Size and Location
Vivoni et al. (2006) found that flood forecast skill increases with increasing catchment area. This may also be
the case for the precipitation predictability of nowcasts. Within the field of NWP, it is common practice to
upscale forecasts to a coarser resolution, as this gives a better representation of the rainfall fields when fore-
cast rainfall fields are mislocated (e.g., Mittermaier, 2006). It is possible that the spatial resolution necessary
for a minimum forecast skill is larger than the smallest catchments in this study (Figure 1). Hence, it is useful
to find a minimum scale on which forecasts are still skillful in order to draw conclusions about the depen-
dency of nowcast skill on catchment size.

For this analysis, the FSS was estimated for the two largest catchments (Aa and Regge), with a maximum
length scale of 49 km (given a rectangular box around the catchments). The FSS was calculated for every
odd number from 1 to 97 km for events with a 6‐hr event duration. At 97 km (2N−1, with N the longest
length scale in the Aa catchment, because of its elongated shape), the skill approaches an asymptote where
FSS = 1, when the forecast is unbiased; that is, the fraction of observed rainfall exceeding the threshold over
the entire domain is the same as the fraction of forecast rainfall exceeding this threshold. If not, asymptotic
behavior will take place at a value lower than 1 (Mittermaier & Roberts, 2010; Roberts & Lean, 2008).

In addition to the catchment area, the location with regard to the radar location(s) and stormmovement may
influence the nowcast skill. To determine whether or not this relationship between location and skill is

Figure 3. Example of a set of nowcasts for the Regge. The illustrated event took place on 20‐06‐2013 and resulted in an
average of 29.4 mm over the area in 3 hr (between 12:05 and 15:05 UTC), with local maxima around 45mm.
For PS‐P, only ensemble member 10 is shown.
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present, the maximum skillful lead time (similar to section 2.5.1) was used for the 6‐hr event duration. Since
differences in catchment size would affect the results, the correlation and maximum skillful lead time are
calculated for 5 × 5 cells in the center of the catchment, as this fits in the output extent of all 12 catchments.
For the Hupsel Brook catchment (6.5 km2), cells surrounding the catchment are used as well. Similar to
section 2.5.1, both metrics are calculated for each ensemble member in the nowcasts of PS‐P.
2.5.4. Ensemble Forecast Verification
Ensemble predictions are used to account for the uncertainty in predictions. As such, the ensemble spread
gives the forecaster an indication of the uncertainty in the forecast. The ensemble mean often shows a better
skill than a purely deterministic forecast (e.g., Richardson, 2000). An ensemble, however, is only useful
when the ensemble has a representative spread, ideally with a minimal bias. In addition, an end‐user needs
to know how trustworthy a resulting forecast probability to exceed a certain rainfall threshold is. For this
purpose, the reliability diagram and ROC curve were employed in this study for events with a 6‐hr duration.
Only PS‐P is used for the ensemble forecast verification, since this is the only probabilistic nowcasting algo-
rithm in this study.

3. Results

An example nowcast for an event (from the 24‐hr duration) in the Regge catchment at 12:30 UTC on 20 June
2013 is shown in Figure 3. Although the event in Figure 3 is just one event out of the large sample, it gives a
good example of the difficulty of forecasting convective precipitation affected by storm movement, growth,
and dissipation, and merging and splitting of the precipitation systems. All algorithms have difficulties cap-
turing these processes well. Whereas RM‐DR, PS‐D, and PS‐P (ensemble member 10 is shown) seem to cap-
ture the movement to a certain extent, RM‐S has the right direction, but almost no movement. Naturally,
there is no movement for EP either. PS‐D has, for this particular case, the disadvantage that there is too
much dissipation, leading to the loss of the high‐intensity rainfall centers while a mean large‐scale field of
rainfall persists. This is likely due to the short lifetime and small extent of the rain structures, which are
decomposed into more quickly dissipating fields in PS‐D. Between RM‐DR and PS‐P, which both capture
the high‐intensity rainfall cells, the main differences are the size and location of the rainfall systems.
Based on visual inspection of this example, RM‐DR approximates the observations for longer lead times best.

In the remainder of this section, the full sample of events is used for the verification of the forecasting skill of
these nowcasting algorithms, but only the results for the 6‐hr event duration are shown (except for
section 3.1, as this section focuses on the different durations). Note that only the forecasts for times within
the predefined events are analyzed here.

3.1. Event Type and Duration Dependency

With increasing event duration, the decorrelation time increases (Figure 4). Maximum skillful lead times,
seen as the mean of the intersections between the 1/e‐line and the mean correlation of an event, increase
from 25min for 1‐hr durations, to 40min for 3‐hr durations, 56 min for 6‐hr durations, and 116 min for
24‐hr durations. In all cases, PS‐D attains the longest skillful lead times.

The type of rainfall system determines the difference between these event durations. Whereas the shortest
durations generally consist of short‐lifetime high‐intensity convective precipitation events, the longer dura-
tions consist of larger, more persistent systems that generally have a higher predictability.

The correlation varies between events, and this variability decreases with increasing event duration, as indi-
cated with the colored error bars in Figure 4. This indicates that small‐scale systems with shorter lifetimes
vary more between events, leading to more variability in the nowcasting results. This sometimes leads to sig-
nificant negative correlations for EP and RM‐S, meaning that forecast and observed rainfall in cells have the
opposite tendency, for example, decreasing rainfall amounts in the forecast while the observations have
increasing amounts.

Although the correlations of PS‐D and PS‐P are quite similar for the shorter event durations, the attained
correlations for the 6‐ and 24‐hr durations are 15–25% lower for PS‐P than for PS‐D. Note that comparing
a deterministic with a probabilistic run is not entirely fair, because the main advantages of a probabilistic
run are not weighed. Between those two algorithms and RM‐DR, the difference is considerable, with max-
imum skillful lead times that are generally 35–60% lower than the Pysteps algorithms. This suggests that
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taking spatial and temporal scales into account, as done in the Pysteps algorithms, adds value to only
rotation‐permitting advection. However, we have run Pysteps with only advection (similar to RM‐DR),
and it performs slightly better than RM‐DR according to some metrics (see Figures S1 and S2 in the
supporting information), indicating that spatial and temporal scale decomposition in Pysteps is not the
only explanation for this difference.

Compared to the other three algorithms, RM‐S attains lower correlations, with values closer to EP than to
the other algorithms. Compared to RM‐DR, maximum skillful lead times are generally a factor 2 smaller.
Based on these results, it seems that using a corner tracking method for the optical flow leads to lower cor-
relations than using global optical flow algorithms. It was expected that EP performs worse than the other

Figure 4. Pearson's correlation as a function of lead time (5‐min steps), averaged over all cells within the catchment and events (in that order), for event durations
of 1‐hr (a), 3‐hr (b), 6‐hr (c), and 24‐hr (d). The dotted line indicates a correlation of 1/e, the minimum correlation for a skillful nowcast. The boxes indicate
the variability in results per event, with the median in white, the interquartile (25th to 75th percentile) range (IQR) in colored boxes, 1.5 × IQR starting
outside the boxes in gray bars, and the outliers in gray dots. The horizontal gray band around a correlation of 0.0 indicates correlations that
do not differ significantly from 0.0, based on a two‐tailed T‐test with α = 5%.
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nowcasting algorithms. However, skillful lead times still reach 25min for events with long durations. For the
event duration of, for example, 1 hr, on the other hand, skillful lead times are generally close to 5 min.

3.2. Seasonal Dependency

There are considerable differences in forecast errors between the seasons (Figure 5). The forecast errors are
lowest during winter with event‐ and catchment‐averaged MAE and CRPS values between 0.2 and 0.5 mm
hr−1 (Figure 5a). Summers have the highest forecast errors with MAE and CRPS values on average between
0.8 and 1.7 mm hr−1. This difference is caused by the variation in precipitation types between seasons in the
Netherlands, leading to higher rainfall intensities during summer (Table 1), and an increase in the spatial
and temporal variability of the rainfall fields. Generally, frontal systems cause the rainfall in the Dutch win-
ter, whereas scattered convective rain showers are more dominant during summer, especially for situations
with high rainfall sums. With more persistent rainfall fields in frontal systems than in convective systems,
the predictability of these systems is higher, undoubtedly leading to lower forecast errors.

Spring has relatively high errors as well, with MAE and CRPS values on average only 22% lower than during
summer, caused by the increasing contribution of convective showers during this season. MAE and CRPS
during fall are in between winter and summer, when high rainfall sums are often caused by storms that ori-
ginate from frontal zones with additional convective input from the relatively warm seawater.

For longer lead times, that is, 35–60min (Figure 5b), the relative difference between the seasons remains the
same. However, the errors increase for longer lead times with approximately 45% for all seasons, which is
caused by the decreasing skill of the nowcasting algorithms for longer lead times (see, e.g., Figure 4).

The difference between the algorithms is consistent over all seasons and lead times, with EP having the high-
est MAE values and PS‐P always having the lowest CRPS values. This difference between highest (EP) and
lowest (PS‐P) errors is generally a factor 2 or more. It is remarkable that the performance of PS‐P is better
than PS‐D here, while this was the opposite in Figure 4. This may be caused by the bias insensitivity of
the correlation metric, which is accounted for by the MAE and CRPS (for a quantification of the biases,
see Figure S5 in the supporting information).

3.3. Dependency on Catchment Size and Location
3.3.1. Catchment Size
Corresponding to Roberts and Lean (2008) and Mittermaier and Roberts (2010), the FSS increases with
increasing length scale, that is, after upscaling of the model simulations to a coarser resolution (Figure 6).
Additionally, FSS decreases with increasing lead time. These relationships together give an indication of

the minimum length scale required to reach a skillful forecast, that is, FSS≥ 0.5 +
f 0
2
, for lead time t.

Figure 5. CRPS and MAE per season for all events and catchments for the 6‐hr event duration, averaged over lead times
of 5–30min (a) and 35–60min (b). The MAE is shown for all deterministic runs and the CRPS for PS‐P. The thick
lines with a marker indicate the mean CRPS or MAE for all runs and catchments in that season. The scattered
points are the mean CRPS or MAE per event.
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With the FSS metric in Figure 6, we focus on the absolute differences, that is, biases, between forecast and
observations, and, due to the upscaling procedure, the FSS is less sensitive to spatial differences caused by
the mislocation of forecast rainfall fields. It returns the minimum length scale for upscaling in order to reach

a required skill (e.g., FSS≥ 0.5 +
f 0
2
), which has a hydrological relevance as this directly links to catchment

sizes. Therefore, it is of interest to find out whether an FSS≥ 0.5 +
f 0
2
is actually achievable for the range of

catchment sizes in this study given a desired skillful forecast horizon (i.e., lead time t).

For instance, for a skillful forecast horizon of 60min, Figure 6c shows that the event‐averaged minimum

length scale, indicated with a black line at FSS = 0.5 +
f 0
2
, is approximately 36 km for RM‐DR. Hence, to still

have a skillful nowcast for this lead time, the nowcast has to be upscaled to 36 × 36 km2. Upscaling to this
length scale is only possible for the two largest catchments in this study, although the total area is already
larger than the catchment areas (Figure 1). For the other catchments, this means that the upscaling require-
ment is considerably larger than taking the catchment‐averaged rainfall, thus making it (on average) impos-

sible to reach skillful forecasts of 60 min for those catchments. Note that an FSS of 0.5 +
f 0
2

(for a skillful

forecast horizonof 60 min) is not attainedwith theother algorithms for anyupscaling length scaleup to 50 km.

Table 3 indicates the lead time for which an FSS of at least 0.5 +
f 0
2

is attained for a set of length scales

(as shown in Figure 6). After upscaling to 10 × 10 km2, which is already larger than the catchment size of
seven of the studied catchments, the maximum skillful lead times range from 21min for EP to 37min for
RM‐DR and PS‐D. Above a length scale of 10 km, RM‐DR outperforms all other methods. This is clearly a
different perspective than found in Figures 4 and 5 and caused by the stronger bias in the nowcasts of the
Pysteps algorithms (not shown here, see Figure S5).

Figure 6. Fractions Skill Score (FSS) as a function of lead time and catchment length scale (mean of all events). Plots are
made for the 6‐hr durations and for a threshold of 1.0 mmhr−1 for the five algorithms (a–e), based on the nowcasts

for the catchments Aa and Regge. The black contour line (at FSS = 0.5 +
f 0
2
) indicates the minimum FSS to

derive a skillful spatial scale. In panel (f), the contour lines of the algorithms are combined to facilitate
comparison. In (d), the longest length scale present in all catchments is indicated with the catchment
number (same as in Figure 1).
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Despite the increase of FSS with increasing length scale, a maximum FSS
of 1.0 will not be attained when the forecast is biased (Mittermaier &
Roberts, 2010; Roberts & Lean, 2008). All algorithms underestimate the
rainfall in the forecast rainfall fields for a threshold of 1.0 mm hr−1 (as
used in Figure 6), especially in the presence of growth and dissipation pro-
cesses during the event. However, the underestimations of the rainfall
volumes for lead times exceeding 20 min are considerably higher for
PS‐D (see Figure S5). To a lesser extent, this is also the case for PS‐P.
This effect is partly caused by the dissipation of the smaller‐scale rainfall
fields; that is, these fields have a shorter lifetime in the Pysteps algorithms.
Especially PS‐D tends to end up with lower rainfall volumes due to an
excess of smoothing in the forecasts. In addition, both PS‐D and PS‐P use
probability matching, which fixes the number of wet pixels in the forecast

to the number of wet pixels in the latest available observation. The rainfall pixels that have left the domain are
subtracted from this number.

Because of this bias, PS‐D generally has the highest FSS values on a length scale smaller than 5 km, due to
the smallest displacement error in the forecasts, but for larger length scales, RM‐DR starts to outperform the
Pysteps algorithms. RM‐DR has a smaller bias and therefore a steeper increase in the FSS with increasing
length scale (due to the effective correction for mislocation with increasing length scale).

For a length scale of 30 km, which corresponds to approximately upscaling to the largest catchment in this
study (Regge), a maximum skillful lead time of 55min can be attained with the best performing algorithm
(RM‐DR), whereas this is approximately 30 min when the nowcast is upscaled to the area of the Hupsel
Brook catchment (6.5 km2; the best performing algorithm is PS‐D in this case). Hence, higher skill can be
reached for the larger catchments in this study when the forecasts are upscaled.
3.3.2. Catchment Location
The catchment location with regard to the prevailing wind direction and the proximity to the upwind edge of
the radar domain matters in most cases (Figure 7). For the 6‐hr event duration, the prevailing wind direction
is southwest (Figure 7a). This directly affects the average maximum skillful lead time of the four algorithms
considered, with mean skillful lead times increasing from 20–30 min to more than 45min in the downwind
direction (sizes of the circles in Figure 7b), and for the northwest (Beemster) and southeast (Roggelsebeek) of
the country (Figure 7b). The catchments located upwind are closer to the edge of the radar domain. This
means that some rainfall fields are not yet present in the radar mosaic when the nowcast is issued. The avail-
able rainfall fields generally also have biased rainfall amounts, as the QPE quality deteriorates toward the
edge of the domain. This inevitably leads to less skill of the nowcast with increasing lead times.

The four quarters in the circles in Figure 7b indicate the maximum skillful lead time for the algorithms RM‐S,
RM‐DR, PS‐D, and PS‐P, based on the mean of all events. Per algorithm, a similar tendency of increasing skill
in the downwind direction is present. For none of the catchments, however, RM‐S has a skillful forecast
beyond 30min. On the other hand, the nowcasts of PS‐D and PS‐P are in most cases skillful up to more than
50min toward the (north)east of the Netherlands. The average maximum skillful lead times are higher for
PS‐D than for PS‐P (based on 5 × 5 center cells instead of the entire catchment), which corresponds to Figure 4.

3.4. Ensemble Forecast Verification

The reliability diagram in Figure 8a illustrates that all four 30‐min intervals, up to a lead time of 120min,
have a positive BSS. This means that compared to the climatological frequency of exceeding the threshold
of 1.0 mm hr−1, all forecasts with PS‐P have skill up to at least 2 hr ahead. However, note that the sharpness
of the forecasts, the tendency to forecast with probabilities near 0% or 100%, decreases with increasing lead
time (Figure 8b). This is especially the case for forecasts with high probabilities of exceeding the threshold, as
the number of forecasts with a probability close to or at 100% reduces.

For probabilities less than 50%, the forecast probability is smaller than the observed frequency. Contrarily,
the observed frequency is generally smaller than the forecast probability for probabilities exceeding 50%
(70% for 5–30 min). This particular shape of the curve reveals that the ensemble is under‐dispersive, meaning
that the observed rainfall amount falls outside the ensemble spread of PS‐P in many forecasts (see also

Table 3
Indication of the Maximum Lead Time for Which an FSS of at Least

0.5 +
f 0
2

Can Be Attained for a Set of Length Scales, That Is, Upscaling

Resolutions

Max. skillful lead time (min)

Algorithm 1 km 10 km 20 km 30 km 40 km 50 km

EP 8 21 30 37 43 51
RM‐S 10 24 34 43 51 58
RM‐DR 20 37 45 55 62 70
PS‐D 25 37 41 43 45 48
PS‐P 20 35 38 43 46 50
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supporting information Figure S6). To overcome this, the ensemble should be either wider, that is, the
standard deviation of the probabilistic forecast should be larger by including more members or more noise
per member, or, in case of a systematic bias, the error between ensemble mean and the observation should

reduce.

The ROC curve in Figure 9 also indicates skillful probabilistic forecasts,
with an area under the curve ranging from 0.95 (5–30min) to 0.81 (95–
120min) for the analyzed events, indicating a good discrimination skill
of the ensemble for cells that exceed the threshold of 1.0 mm hr−1.

The largest distance between the HR and FAR, seen as the optimal fore-
cast of exceeding the threshold, lies around a forecast probability (the cir-
cles in the graph) of 10% to 20%. Although that is an unconfident forecast,
the FAR of these forecasts is generally low (smaller 0.2), and HR is always
larger than 0.6 (often larger than 0.8). Forecasts with higher probabilities,
that is, more confidence, have a lower HR and FAR. Toward these higher
probabilities, the difference between the shorter lead times (5–30 min)
and the longest (95–120min) is that the HR exceeds 0.5 for all forecast
probabilities (the dots in Figure 9) for shorter lead times. However, for
the longest lead times (95–120min), the HR reduces to 0 for the highest
forecast probabilities. Hence, whereas a confident forecast with a forecast
probability of 100% can still be useful for a forecaster for lead times
between 5 and 30min, it becomes worthless toward 2 hr ahead, as the
HR is almost zero. Note, however, that hardly any nowcast has a probabil-
ity larger than 50% for longer lead times.

4. Discussion
4.1. Relation to Previous Work

With 1,536 events in this study (of which 1,533 are analyzed), a statistical
foundation is available which allows for testing the hypothesized depen-
dencies of nowcast skill on event duration, season, catchment location,
and catchment size. In this section, we explore how the findings in this
study relate to other studies.

Figure 7. (a) Wind rose indicating the most frequent wind directions at KNMI station De Bilt during the events with the
6‐hr duration. The length of the bars is an indication of the number of events with that wind direction. The hue is an
indication of the mean wind speed. (b) The mean maximum skillful lead time of all 6‐hr events for the 5 × 5 center
cells per catchment (size of the circles indicating the average of the four algorithms) and per algorithm (hue in the
quarters). EP is left out of this analysis. The red triangles indicate the locations of the radars.

Figure 8. (a) Reliability diagram of exceeding a threshold of 1.0 mmhr−1

for events within the 6‐hr event duration for PS‐P. The reference is the
climatological frequency of exceeding this threshold in the studied events.
The mean probabilities for lead times of 30min are shown. (b) Histogram
indicating the number of times a probability was forecast by an
ensemble member.
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The maximum skillful lead times found for the event durations of 1 and 3
hr (25 and 40min) show similarities with the approximately 30‐min
applicability of nowcasts found for convective systems in, for example,
Liguori and Rico‐Ramirez (2012), Foresti et al. (2016), Mejsnar et al.
(2018), and Ayzel et al. (2019). For longer event durations, maximum
skillful lead times are somewhat lower than previously found for
large‐scale persistent systems in the continental United States (skillful
lead times ranged from approximately 4 to 8 hr Germann & Zawadzki,
2002) and for stratiform events in Barcelona (approximately 3 to 4 hr
Berenguer et al., 2011). In the first case, the radar mosaic extent is much
larger (continental United States) than in this study, inevitably leading
to longer skillful lead times. However, the convective events in
Berenguer et al. (2011) resulted in skillful lead times of 30–90 min, which
is quite similar to the results in this study. Also note that the maximum
skillful lead times in the aforementioned papers are based on
Zawadzki's (1973) correlation, which is the correlation without subtrac-
tion of the mean (instead of Pearson's correlation as used in this study)
and yields on average 13% higher correlations (Mejsnar et al., 2018).

In addition, the maximum skillful lead times are based on Pearson's cor-
relation and the intersection with the 1/e‐line in this study. While this
approach makes a comparison with the aforementioned literature possi-
ble, it should be noted that these maximum skillful lead times depend
on the chosen metric (and the somewhat arbitrary 1/e‐line). Both the ana-
lysis with the FSS (Figure 6) and the use of the Critical Success Index (CSI;
Figures S3 and S4 in the supporting information) lead to different maxi-
mum skillful lead times and smaller differences between the algorithms,

although the ranking between the algorithms remains the same when the CSI is considered. Hence, with
the employed metric (Pearson's correlation), we are only able to provide an indication of the differences
between the event durations. The actual skillful lead times are indicative and depend on the focus of the
reader.

The probabilistic runs with Pysteps have resulted in lower skillful lead times than with the deterministic
runs. We have to note that comparing a probabilistic run with a deterministic one is not a fair comparison,
because it neglects the major advantage of probabilistic forecasts, that is, the uncertainty estimate. When the
ensemble mean is used (not shown), the probabilistic runs give similar skillful lead times and even higher
skillful lead times for durations of 6 hr or more. This effect of using the ensemble mean is in agreement with,
for example, Richardson (2000) and is in the advantage of using probabilistic forecasts, as they also contain
information about the uncertainty of the forecast.

On a seasonal scale, we find more skill during winter than during summer, which is expected seeing the
increasing decorrelation distance from summer to winter in Van de Beek et al. (2012). For regions with a
temperate climate and a similar difference between winter and summer precipitation types, we expect simi-
lar results.

With regard to the catchment size dependency, the nowcasts have to be upscaled to better represent the rain-
fall fields, as is the case for high‐resolution NWP forecasts (e.g., Mittermaier, 2006). This means that the
smallest catchments in this study can become smaller than the cell size of the upscaled rainfall fields, while
upscaling is still possible for larger catchments. Similar behavior was found for flood forecast skill with
increasing catchment area by Vivoni et al. (2006). Earlier studies have also suggested that forecast skill
and uncertainty of nowcasting algorithms depend on location (Foresti et al., 2016; Germann et al., 2009).
We find this in this study too, with increasing forecast skill in the downwind direction of the operational
radars with south‐westerlies as the main wind direction. Hence, whereas the application of nowcasting in
flood forecasting is likely to be beneficial (e.g., Berenguer et al., 2005; Liguori et al., 2012; Moreno et al.,
2013; Pierce et al., 2005; Poletti et al., 2019; Vivoni et al., 2006, 2007), the catchment properties will influence
the eventual skill.

Figure 9. ROC curve of exceeding a threshold of 1.0 mmhr−1 with the
nowcasts of PS‐P for the events within the 6‐hr event duration. The
numbers indicate the forecast probabilities of exceeding this threshold
(‐). auc indicates the area under the curve: an indication of the skill
of the probabilistic forecast. Shown are the mean rates for lead
times of half an hour.
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4.2. The Catchment Perspective and Resulting Event Selection

The focus on catchments instead of the full radar domain is interesting from a hydrological perspective as the
statistics are directly tailored to the involved catchments, including the dependency on their sizes and loca-
tions. Additionally, the event selection procedure and the resulting rainfall forecasts can be directly applied
in a follow‐up hydrological analysis for the same basins.

The chosen approach, however, limits the analysis of the size and location dependency to amore exploratory
phase, solely indicating the presence of relations between catchment size and location, and forecast skill
(section 3.3). It is recommended to continue with the focus on these relationships, as was also done by
Foresti and Seed (2015) for a mountainous area near Melbourne in Australia. This requires using the full
radar domain to find the statistics and identify these relationships on a larger domain. Understanding these
relationships on this domain will make it possible to correct the nowcasts in real time (via, e.g., bias correc-
tions or machine learning techniques) and to better take uncertainties into account. Note that such a proce-
dure would change the event selection procedure to, for example, a national level and it would substantially
increase the storage requirements for this number of events.

The systematic event selection procedure ensures reproducibility, and it allows for an equal number of
events in all event durations and seasons. However, within the selected event durations, continuous rainfall
was not a requirement. This means that not the full nowcasting time is used for forecasting and analysis of
periods with rainfall, although this has the advantage that it allows for testing whether false positives occur
(rain forecast, but not observed). Ideally, only the actual event, that is, from the start until the end of rainfall,
is part of the nowcast and thus analyzed. This, however, also has as disadvantage that the classification in
durations (1 hr, 3 hr, etc.) becomes less clear.

Moreover, the choice to select the events based on both catchment‐averaged maxima and grid cell maxima
has merely to do with the subsequent step in this project: the hydrological application of these nowcasts. The
involved water authorities that manage the studied catchments have different hydrological models and
water management systems, which require either lumped or gridded rainfall input. It would have been pos-
sible to conduct this study with events based on either catchment‐averaged or pixel maxima as input.

4.3. Transferability of Results to Other Regions

Although this study focuses on the Netherlands, the results should be transferable to other regions with a
temperate climate and with similar radar products. It is noteworthy that the Netherlands is a lowland coun-
try and that the results from this study will likely not hold for mountainous regions. Inmountainous regions,
growth and decay processes dominate over the advection of rainfall fields (e.g., Foresti & Seed, 2015; Foresti
et al., 2018). Hence, larger errors are expected for nowcasts in these regions, which affects the skillfulness of
the forecasts.

4.4. Dependency on Radar QPE Product

The QPE product in this study consists of two radars with a radial extent of approximately 320 km (of which
only the first 200 km is used in the composite). At this moment, an improved operational product is available
(but not yet archived for a longer period), which also includes two Belgian and one German radar located
relatively close to the Dutch border. The expectation is that this will increase skillful lead times, especially
for catchments that are located further away in the upstream direction of the radar. In the Netherlands, that
is most often toward the southwest (see section 3.3.2), but the expected results are of course non‐exclusive to
this region. Hence, the location dependency is expected to change due to this improvement.

A second potential improvement is that this product has an automatic bias correction based on measured
precipitation amounts from 32 KNMI automatic rain gauges at WMO weather stations. This will not make
any difference for the results of this study, because the QPE is used as reference. Nevertheless, for a hydro-
logical application, obtaining the true precipitation volumes does matter. Most radar products underesti-
mate the precipitation volumes, so we expect that a bias‐corrected QPE product leads to larger discharge
volumes and therefore better hydrological simulations than with the QPE in this study.
4.4.1. Three‐Dimensional Data Input
All algorithms in this study make use of two‐dimensional rainfall fields. There are also nowcasting algo-
rithms that make use of the entire volumetric radar scan. TITAN is an example of such an algorithm
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(Dixon & Wiener, 1993). The advantage of three‐dimensional data is that also the heterogeneity in the ver-
tical direction, that is, on different elevations, can be used. This would allow for physically based corrections
for, for example, the vertical profile of reflectivity. In most cases, however, the volumetric data are not or
only marginally corrected for the often substantial errors. From that perspective, the post‐processed two‐
dimensional fields have an advantage, too. It is also noteworthy that nowcasting with two‐dimensional fields
comes with lower computational requirements. Ideally, corrections (e.g., clutter‐ and bias‐correction)
already take place on the original volumetric radar scans. This would allow for a better use of all information
present in the radar scans, and it would allow for a fair comparison between centroid tracking algorithms
such as TITAN and the cross‐correlation algorithms that are used in this study.

5. Conclusion and Future Perspectives

In this study, the skill of radar rainfall nowcasting in predicting rainfall up to 6 hr ahead was tested with a
large‐sample analysis. In total, 1,536 events were run (of which 1,533 successfully completed and thus were
analyzed) spread over 4 event durations (1, 3, 6, and 24 hr) and 4 seasons for 12 lowland catchments in the
Netherlands, a country with a temperate maritime climate. Four algorithms were tested and compared to
Eulerian Persistence (EP), which is the “poor man's” approach of using the most recent radar QPE as fore-
cast. The tested algorithms were Rainymotion Sparse (RM‐S), Rainymotion DenseRotation (RM‐DR),
Pysteps deterministic (PS‐D; similar to S‐PROG), and Pysteps probabilistic (PS‐P) with 20 ensemble mem-
bers. Model performance was assessed by a verification with the radar QPE, which was assumed to be the
observed rainfall amount. The focus in this study was on finding the relationship between nowcast skill
and dependencies on event duration, season, catchment size, and location with regard to the radar location
and prevailing wind direction. In addition, the ensemble forecasts with PS‐P were analyzed.

Pearson's correlation is used to study the maximum skillful lead time up to which the forecast is still seen as
useful. This average maximum skillful lead time increases with increasing event duration (in an absolute
sense), with 25 min for events with a 1‐hr duration, 40 min for 3‐hr, 56 min for 6‐hr, and 116min for
24‐hr event durations. The reason for this increase in maximum skillful lead time is the increasing persis-
tence, that is, the increasing spatial extent and temporal scale of the rainfall fields, of events with longer
durations. These maxima are in all cases found for PS‐D, although PS‐P shows similar performance for
the 1‐hr event duration. For longer event durations, the average maximum skillful lead times of PS‐P are
generally 15–25% lower. Compared to RM‐DR, which still outperforms RM‐S by a factor 2 and EP by more
than a factor 2, the average maximum skillful lead time of forecasts with Pysteps algorithms is generally
35–60% higher. Given these maximum skillful lead times, improvements such as blending with NWP (for
lead times shorter than 3 hr) are clearly necessary to bridge the gap with the 3‐ to 6‐hr skillful lead time
desired for these very short range forecasts.

Both the event duration and the season are found to affect the skill of the nowcasts. During winter, when
more persistent frontal, stratiform rainfall is present, averageMAEs and CRPSs are a factor 3 lower than dur-
ing summers, with generally more convective rainfall with higher intensities. The rainfall predictability dur-
ing spring, when the number of convective showers increases, is relatively low, with MAE and CRPS values
closer to summer (a 22% difference) than to winter. Forecast errors during autumn are more in between win-
ter and summer and thus lower (by 26%) than during spring. This is due to more persistent autumn storms
originating from frontal zones with additional convection due to the relatively warm seawater. The nowcast
results indicate a consistent performance difference between the algorithms, with from high to low perfor-
mance the following ranking: PS‐P, PS‐D, RM‐DR, RM‐S, and EP.

Although PS‐P and PS‐D have shown the longest skillful lead times and the lowest forecasts errors over the
seasons, most forecasts have to be upscaled for optimal use, which affects the minimal spatial scale on which
the forecasts can be properly used. For all algorithms in this study, the forecast generally has to be upscaled

in order to reach an FSS of at least 0.5 +
f 0
2
(with f0 the random forecast skill), the minimal FSS for a skillful

forecast. The maximum skillful lead time that we have found after upscaling to a cell size comparable to the
catchment area of the smallest catchment (Hupsel Brook, 6.5 km2) is 30 min, while this is 55min after
upscaling to a cell size comparable to the largest catchment (Regge, 957 km2). Thus, if upscaling is possible,
higher skill can be attained for larger catchments than for smaller ones. For upscaling resolutions of more
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than 10 × 10 km2, RM‐DR has outperformed all other algorithms. This effect results from the stronger bias
present in the Pysteps forecasts for increasing lead times, which has a pronounced influence on the FSS.
It is noteworthy that all algorithms have a bias toward lower rainfall volumes, which is not necessarily
higher for Pysteps than for the other algorithms for small thresholds. However, for a threshold of 1.0 mm
hr−1 or higher, especially PS‐D has (for lead times of ≥20min) a considerably stronger underestimation of
the rainfall volumes than the other algorithms.

Besides the catchment area, the catchment location with regard to the proximity to the upwind edge of the
radar domain and the prevailing wind direction (SW) also matters. The prevailing south‐westerlies affect the
mean skillful lead times of the nowcasts with skillful lead times of 20–30 min in the southwest of the
Netherlands to more than 45min in the (north)east. For water managers in the southwest of the country,
it is therefore recommended to work with a radar mosaic that incorporates the radar in Jabbeke, in the
northwest of Belgium (e.g., used in Foresti et al., 2016). Note that with respect to the catchment size and loca-
tion dependency, this study is limited to a focus on catchments and polders. A more complete statistical ana-
lysis of these spatial dependencies requires the usage of the full radar domain in the analysis.

As for the ensemble predictions, PS‐P has been the only probabilistic nowcasting algorithm in this study. The
ensemble of this algorithm turns out to be reliable up to at least 120min ahead for rainfall amounts of ≥1.0
mm hr−1. However, for all tested 30‐min intervals the ensemble is under‐dispersive, which indicates that the
ensemble spread should be wider if the error between observation and ensemble does not change. After 60
min, the ensemble looses its sharpness regarding the higher probabilities: Forecast probabilities of exceeding
1.0 mm hr−1 are rarely (close to) 100%. Moreover, optimal forecasts, that is, with the largest HR to FAR
ratios, are found around forecast probabilities of 10% to 20%.

This study has shown that there is a clear advantage in using a global optical flow algorithm (RM‐DR) over a
corner detecting method (RM‐S). In most cases, PS‐D and PS‐P are able to outperform the “benchmark”
algorithms RM‐S and RM‐DR.Most errors present in the nowcasts are a result of growth and dissipation pro-
cesses, which are not or only stochastically (e.g., PS‐D and PS‐P) taken into account in the algorithms.
Although PS‐Pmakes a good step toward accounting for many of the uncertainties in the current nowcasting
procedures, there is still much to gain with the ensemble. An increasing focus on nowcast uncertainties is
therefore recommended in order to further improve probabilistic radar rainfall nowcasts.

Data Availability Statement

The used radar data in this study are available via https://dataplatform.knmi.nl/catalog/datasets/index.
html?x-dataset=rad_nl25_rac_mfbs_em_5min&x-dataset-version=2.0 (gauge‐adjusted QPE archive) and
https://doi.org/10.4121/uuid:05a7abc4-8f74-43f4-b8b1- 7ed7f5629a01(unadjusted, operational, radar data).
The daily quality controlled observations of KNMI can be obtained online (via https://dataplatform.knmi.
nl/catalog/datasets/index.html?x-dataset=etmaalgegevensKNMIstations&x-dataset-version=1).
Rainymotion and Pysteps are available online (at https://www.doi.org/10.5281/zenodo.2561582 and https://
www.doi.org/10.5281/zenodo.2631910). Model configurations and run scripts (Python) can be found online
(at https://www.doi.org/10.5281/zenodo.3826582).
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