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GRAPHICAL ABSTRACT

Process optimization of fucoxanthin production.
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ARTICLE INFO ABSTRACT

Keywords: To optimize fucoxanthin production in Tisochrysis lutea, the effect of different process parameters on fucoxanthin
Fucoxanthin productivity (Pfx) were evaluated using batch and continuous experiments. In batch, the highest Pfx was found
Tisochrysis lutea at 30 °C and 300 pymol m~? s~ !, allowing to design continuous experiments to optimize the dilution rate. The
Temperature highest ever reported Pfx (9.43-9.81 mg L™! d~') was achieved at dilution rates of 0.53 and 0.80 d .

Dilution rate
Absorbed light

Irradiance was varied (50-500 pmol m~2 s~ 1) to result in a range of absorbed light between 2.23 and

25.80 mol m~2 d ™! at a fixed dilution rate (0.53 d~'). These experiments validated the hypothesis that light
absorbed can be used to predict fucoxanthin content, resulting in 2.23 mol m~2 d~?! triggering the highest
fucoxanthin content (16.39 mg/g). The highest Pfx was found with 18.38 mol m~2 d~ . These results can be
used to achieve high Pfx or fucoxanthin content during cultivation of Tisochrysis lutea.

1. Introduction

Fucoxanthin (Fx) is the main carotenoid in marine brown algae
(seaweeds and microalgae) (Miyashita et al., 2011), playing a key role
in photosynthesis (Kita et al., 2015; Wang et al., 2019). Industrial
production of Fx-rich algal species focuses on niche markets as aqua-
culture feed due to its biological activity in marine organism re-
production (Kawakami et al., 1998), and in cosmetics because of
functions in skin photoaging protection and antiaging (Kang et al.,
2020; Urikura et al., 2011). However, its market potential is larger and
Fx has gained more attention in the last years due to its biological
properties, such as antioxidant, anti-obesity, and antidiabetic (Fung

et al., 2013; Maeda et al., 2018). Furthermore, the demand for micro-
algal functional compounds are becoming increasingly urgent with the
fast growing markets of aquaculture and healthy products.

The global Fx production was approximately 500 t in 2016 and was
projected to grow at an annual rate of 5.3% between 2016 and 2021
(Joel, 2016). The current Fx production uses edible brown seaweed as
feedstock, despite their low concentration in Fx (0.01 to 3.7 mg/g dry
weight (DW)) (Terasaki et al., 2012; Verma et al., 2017; Zailanie and
Sukoso, 2014). Microalgae have up to 100 times more Fx than seaweeds
(Lu et al., 2018). For example, Fx content was reported up to 18.23 mg/
g dry weight (DW) in Isochrysis aff. galbana (Kim et al., 2012). In ad-
dition, a novel isolated strain of Mallomonas sp. can produce 26.6 mg/g
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DW Fx (Petrushkina et al., 2017), while Phaeodactylum tricornutum can
reach up to 59.2 mg/g (McClure et al., 2018). Therefore, microalgae
can be a more promising commercial source of Fx compared with
current feedstocks.

Tisochrysis lutea (also named as Isochrysis galbana T-Iso) (Bendif
et al., 2013), with cellular Fx contents ranging from 2.24 to 18.23 mg/g
DW (Delbrut et al., 2018; Kim et al., 2012; Mohamadnia et al., 2020), is
considered a promising microbial cell factory for the production of Fx.
The highest Fx content and productivity reported are 23.29 mg/g at
40 pmol m~2 57!, and 2.94 mg L' d™! at 120 pmol m~2 57!, re-
spectively, measured in Isochrysis zhangjiangensis cultivated in 700 mL
bubble column photobioreactors under batch mode (Li et al., 2019). Fx
productivity in a screened Isochrysis strain can reach up to
7.96 mg L™ d~! in semi-continuous mode in bubble column photo-
bioreactors (Sun et al., 2019). The Fx content and productivity in Ti-
sochrysis lutea can be improved by process optimization (Gémez-Loredo
et al., 2016). Process optimization is a critical factor for the industry to
overcome the bottlenecks of low yields and high production cost.

Process parameters, such as light and temperature, are key factors
for growth and can affect Fx content and productivity. Increasing light
intensity negatively affected Fx content of Isochrysis galbana (Gémez-
Loredo et al., 2016). Fx content at light intensity of 9.1 pmol m~2 s~ !
was 10.9 times higher than that at 62.0 pmol m~2 s~ ', In addition to
the light intensity, temperature can affect biomass productivity hence
affect Fx productivity. The maximum growth rate of Isochrysis galbana
Parke was reported to be nearly double at 18 °C as at 26 °C (Durmaz
et al., 2008). Ippoliti et al. (2016) developed a model for growth pre-
diction of Isochrysis galbana, demonstrating that this strain tolerates
temperatures up to 35 °C, but it is highly sensitive to irradiances higher
than 500 pumol m~2 s~ . Therefore, both light and temperature are
important parameters for biomass and fucoxanthin production. While
many previous studies have reported the production of Fx by Tisochrysis
(Isochrysis), few systematic studies have been done on the influence of
process parameters on Fx production. The Fx content in Tisochrysis lutea
varies widely in literature and no specific strategy has been reported to
improve productivity. Process parameters (light and temperature) and
cultivation mode (batch and continuous) should be combined to opti-
mize Fx content and productivity.

In this study, batch experiments were conducted in flat panel pho-
tobioreactors to obtain the optimum growth conditions (light intensity
and temperature) for Tisochrysis lutea. Following, continuous experi-
ments were done to determine the optimum dilution rate for Pfx. Using
this dilution rate, irradiance was varied to assess the effect of absorbed
light on Fx content and productivity.

2. Materials and methods
2.1. Microalgal strain and culture conditions

Tisochrysis lutea (originally isolated from a tropical region of the
Pacific) (Bendif et al., 2013) and commercial culture medium stock
NutriBloom Plus (Fernandes et al., 2016) were obtained from NECTON,
S.A. (Olhéo, Portugal). Mineral composition of nutribloom: NaNO3 2 M,
KH,PO4 100 mM, ZnCl, 1 mM, ZnSO4 1 mM, MnCl 1 mM, Na,MoO,4
0.1 mM, CoCl 0.1 mM, CuSO4 0.1 mM, EDTA 26.4 mM, MgSO,4 2 mM,
FeCl; 20 mM, Tiamina 35 mM, Biotina 5 mg/L, vitamin B;, 3 mg/L. The
cultivation medium was prepared with natural seawater from the North
Sea (The Netherlands) enriched with 2 mL/L of the NutriBloom Plus
stock with a final pH = 8.0 (containing 20 mM HEPES). The strain was
cultured in 250 mL flasks containing 100 mL medium at 25 °C, light
intensity 140 umol m~2 s~ ! and 2% CO,. In the present study, 18:6
day:night photoperiod was applied for cultivation under phototrophic
conditions, which has been reported to lead to higher biomass pro-
ductivities than photoperiods of 12:12 and 24:0 (Babuskin et al., 2014;
Che et al., 2019).
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2.2. Batch experiments

2.2.1. Batch experiments with different light intensities

Tisochrysis lutea cultures were inoculated into flat panel photo-
bioreactors (Algaemist, light path 14 mm) (Breuer et al., 2012) con-
taining 400 mL NutriBloom medium, at 25 °C. The aeration rate was
400 L min~?! for all experiments performed in the Algaemists. The pH
was kept constant at 8.0 by CO,, injection. The incident light intensities
studied were 50, 150, 300, and 500 ymol m ~%s™*!, with an 18:6 day:-
night cycle. The biomass was harvested by centrifugation (4255 x g
5 min) at the end of the batch and washed twice with 0.5 M ammonium
formate. The supernatant was removed, and the biomass was flushed
with N, gas and stored at —20 °C. The microalgal biomass was grinded
after freeze drying for 13 h and posteriorly used for Fx analyses.

2.2.2. Batch experiments at different temperatures

Tisochrysis lutea was cultivated in Algaemists at 16.5, 20, 25, and
30 °C. The incident light intensity was 300 umol m 2 s~ ! with an 18:6
day:night cycle, for all experiments. The biomass was harvested, wa-
shed, and freeze-dried according to the methods mentioned above.
Biomass concentration and Fx content were analyzed at the end of each
run.

2.3. Continuous experiments

2.3.1. Chemostat experiments at different dilution rates

NutriBloom medium was enriched with extra nitrogen (NaNO3) to a
final concentration 40 mM for all continuous experiments in present
research. Tisochrysis lutea was inoculated into five Algaemists at a light
intensity of 300 pmol m~2 s™! with an 18:6 day:night cycle and at
30 °C. Tisochrysis lutea was grown under batch mode for 3 days to reach
the desired cell density (optical density at 750 nm (OD750) > 4), then
the chemostat started. The cultures were diluted at different specific
dilution rates: 0.16, 0.29, 0.35, 0.45, 0.53 d~' (chemostat experi-
ments). The dilution rate of the Algaemist at 0.53 d ! was increased at
the end of the experiment to investigate a higher dilution rate
(0.8 d™1). The growth at 0.8 d~! was combined with the other groups
for comparison. The dilution rates were selected based on the growth
rates obtained in batch experiments. Since steady state cannot be
reached when dilution rate is higher than the maximum growth rate,
dilution rates higher than 0.8 d~! were not tested. The overflow cul-
tures from the Algaemists were harvested every day and washed and
freeze-dried based on the methods mentioned above.

2.3.2. Chemostat experiments with different light intensities

Tisochrysis lutea were inoculated into Algaemists with 400 mL
medium. For the first four days, the microalgae were grown in batch
mode with an incident light intensity of 300 umol m~2 s™! under an
18:6 day:night cycle. When biomass concentrations reached an
OD750 > 4, the light intensities were changed to 50, 100, 150, 300,
and 500 pmol m~? s~ . The chemostat experiments were started with a
dilution rate of 0.53 d ™! at the same time when the light changing. The
biomass was harvested every day for Fx measurement.

2.4. Fucoxanthin extraction and measurement

Small samples of biomass (~1 mg) were extracted with 1 mL of
ethanol using bead beater tubes (MP Biomedicals, REF 6914-500) in a
beater (Bertin Technologies). The beating procedure was 3 x 60 s with
a 2-min pause between each beating. The first 3 beatings were done at
2500 rpm, followed by a round of 2 x 60 s at 2500 rpm, with a 2-min
pause. The supernatant was pelleted by centrifugation (10 000 X g
2 min) and transferred into an empty glass tube. The bead beater tubes
were washed with 1 mL ethanol and the supernatants were transferred
into the glass tubes after vortexing for 5 s and centrifugation (10
000 x g 2 min). The washing step was repeated three times. The
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Table 1
Cell diameter, final cell concentration, and biomass productivity at different light intensities and a temperature of 25 °C.
Light (umol m~2s™1) 50
Growth rate (d™1) 0.21
Diameter (um) 4.67 = 0.08
Final biomass concentration DW (g/L) 0.62 * 0.03¢
Biomass Productivity (g L™ d™1) 0.09 * 0.02¢

150 300 500
0.61 0.74 0.72
4.90 *+ 0.05 4.82 + 0.07 4.88 + 0.07
1.62 + 0.08° 1.91 = 0.10% 1.80 + 0.09°
0.29 * 0.01° 0.35 £ 0.01° 0.32 + 0.01°

Note: values are the means + SD. Means with different letters are significantly different from each other (comparisons were made between groups for each variable)

(» < 0.05).

samples were dried by evaporation under nitrogen gas and resuspended
with 2 mL of methanol. The samples were filtered through a 0.2 pm
filter (SPARTAN™ 13/0.2 RC) into glass vials (2 mL, Agilent
Technologies) using 1 mL syringe. To quantify the concentration of Fx,
samples were run in a high-performance liquid chromatography (HPLC)
(Shimadzu, Nexera UHPLC) according to Grant (2011). The injected
sample volume was 20 pL, the stationary phase was a C18 column
(Kinetex C18 5 pm 100 A 150 x 4.6 mm). The standard of Fx was
bought from Sigma-Aldrich and were diluted with methanol to different
concentration of 0, 2, 4, 6, 8, 10 pg/mL for concentration calibration.

2.5. Growth measurement

The optical density of culture was measured at 750 nm with a
1.0 cm light path cuvette in a HACH LANGE DR600 spectrophotometer.
Cell size was measured using a Beckman Coulter Multisizer 3. To
measure the dry weight (DW), 2 mL of culture was diluted with 50 mL
0.5 M ammonium formate and filtered through a pre-dried Whatman
GF/F filter (0.7 um pore size) and washed twice with 50 mL 0.5 M
ammonium formate. Cells on the filters were dried at 100 °C in the oven
until constant weight and were subsequently cooled to room tempera-
ture in a desiccator for 2 h before weighting. The DW is the difference
value between the filter weight with and without microalgae.

2.6. Calculations

The growth rate (u; d™') in batch was calculated according to Eq.
(1);

u(d?) = In(OD,/0ODy)/(t; — t) (€D)]

where OD, is the OD;5, value at the end of the exponential growth
phase and OD; is the OD;5q value at the start of exponential growth
phase. The time of exponential growth is represented by t, and t;.

The volumetric biomass productivity (Px; mg/L/d) in batch ex-
periments was calculated using Eq. (2);

Px = (DW, — DW)/(t — to) 2

where DW, and DW;were the biomass DW concentrations (g L™ Y on
days t (end-point of cultivation) and t, (start-point of cultivation), re-
spectively.

The volumetric biomass productivity (Px; mg/L/d) in continuous
experiments was calculated using Eq. (3);

Py=CxxD 3

where Cx was the biomass concentration (g L~ 1y and D was the dilution
rate (d~ 1) at steady state. The growth rate in continuous experiments
during steady state is equal as the dilution rate D (d~') which was
calculated by the ratio between the overflow culture volume and total
cultivation volume (400 mL).

In addition, at steady-state, the daily absorbed light intensity (Iyps;
mol m~2 d~ 1) was calculated as Eq. (4);

Lvs = Z; (& — By) 4

where [; is the incident light intensity (umol m~2s™ 1), B; is the back-
light intensity (umol m~2 s~') measured by light meter (LI-COR,

LI250A). The illumination time (t) was 18 h (translated to second in I,
calculation) for all the experiments in the present study.

2.7. Statistical analyses

The results were analyzed based on the data from at least three
different cultivation points during steady state. Experimental results
were expressed as mean value + SD. Differences between groups were
tested for significance by the least significant difference mean com-
parison using the IBM® SPSS® Statistics software program (version 25).
The relationship between variables was determined by one-way
ANOVA at a significance level of 0.05 using a Duncan Post-Hoc test.

3. Results & discussion
3.1. Effect of light and temperature on batch fucoxanthin production
3.1.1. Effect of light on growth and fucoxanthin production

This section shows the effect of different light intensities (50, 150,
300, and 500 pmol m~2 s~ 1) on Tisochrysis lutea grown in batch mode

for 5 days.
The highest growth rate (0.74 d~') was observed at
300 pmol m ™2 s~ ! while the lowest was obtained at 50 ymol m ™2 s~ !

(0.41 d~1) (Table 1). Similar to growth rate, the highest biomass pro-
ductivity (0.35 g L™ d ') was observed at 300 umol m 25~ and the
lowest (0.09 g L~ 1 d™ 1 at 50 pmol m~2 s~ (Table 1). Microalgae
growth is closely related to the light intensity experienced by the cells
inside a reactor. An increase (from ~0.4 to ~1.1 d ') of growth rate in
Isochrysis galbana was reported with increasing light intensity from 30
to 300 pmol m~2 s~ !, and a slight decrease at 500 ymol m~2 s~ ?,
possibly due to photoinhibition, in a continuous turbidostat experiment
(Sukenik et al., 1993). Similar results were reported where the specific
growth rate decreased with increasing light intensity from 300 to
600 pmol m~2s tat30°C (Kurpan Nogueira et al., 2015). However,
no difference was found in growth rate between 300 and
600 pumol m ™2 s~ ! at 20 °C (Kurpan Nogueira et al., 2015), indicating
combined effects of light and temperature.

Regarding Fx content, batch experiments showed a 3.0-fold increase
(p < 0.05) with decreasing light from 500 to 50 pmol m~2 s™!
(Fig. 1a), from 1.74 mg/g to 5.24 mg/g. To optimize Pfx, both biomass
production and Fx content need to be considered. The highest Pfx was
found at 150 pmol m~2 s~ ! and the lowest at 500 ymol m~2 s~ !
(Fig. 1a). Similar to our results, Li et al. (2019) reported that the Fx
content in Isochrysis zhangjiangensis cultivated in 700 mL bubble column
photobioreactors increased as the light decreased from 300 to
40 pmol m 2571,

These experiments show the optimum conditions for biomass and
Pfx, i.e. the balance between high pigment and biomass production.

3.1.2. Effect of temperature on growth and fucoxanthin production
Results from the different batches done under different tempera-
tures (16.5, 20, 25, and 30 °C) and a constant light intensity of
300 pmol m~2 s~ ! show that Tisochrysis lutea grew faster (0.78 d=Y at
30 °C than at lower temperatures (Table 2). The biomass productivity
increased from 0.06 to 0.42 g L™ d~! with increasing temperature



F. Gao, et al.

Bioresource Technology 315 (2020) 123894

a b P
6.0 a u Content ™ Productivity (l)g o 60 m Content ™ Productivity 5 1.0 '_:U
= a 1% 49 = | —
40t 1% 2 g40 t z
g c {1062 B ¢ 1062
g c 2 3 =
830 10535 230 ¢ 3}
s 5 £ S
§- 0473 5 b b a a 10458
=20 | & 520 a
g 0.3 = é K=
5 = _ =
S1.0 | 022 510 [Bd 02
- 0.1 ¥ 5
Q

0.0 : : : 0.0 8 00 002

50 150 300 500 16.5 20 25 30

Light intensity (umol m2 s!)

Temperature (°C)

Fig. 1. Fucoxanthin contents and productivities of Tisochrysis lutea at different light intensities (a) and different temperatures (b). Note: values are the means *+ SD;
Bars with different letters are significantly different from each other (comparisons were made between bars with the same color only) (p < 0.05).

from 16.5 to 30 °C (Table 2). The final biomass at 30 °C was 5.2-fold
higher than at 16.5 °C. In literature, the cultivation temperature of
Isochrysis ranges from 5 to 35 °C (Araie et al., 2018; Ippoliti et al., 2016;
Li et al., 2016), with the most commonly used temperatures between 25
and 30 °C (Abu-Rezq et al., 1999; All et al., 2012; Renaud et al., 2002).
The optimum temperature varies for different strains of Isochrysis spe-
cies; for example, Kaplan et al. (1986) reported a reduced biomass yield
in Isochrysis galbana at temperatures higher than 32 °C or lower than
19 °C. Likewise, the cell density of Isochrysis galbana Parke was reported
to be 5 times higher at 20 °C than at 35 °C (Su et al., 2017). These
differences are strain-specific and are usually associated with the origin
of the strains. Tisochrysis lutea strain was originally isolated from a
tropical region of the Pacific (Bendif et al., 2013), which explains its
adaptation to higher temperatures. In addition, the growth rate of Iso-
chrysis sp. decreased from 0.89 to 0.04 d ~* with increasing temperature
from 30 to 35 °C (Renaud et al., 2002). Hence, temperatures higher
than 30 °C were not studied in the present study.

Fx contents were similar at 30 °C and 25 °C (p > 0.05) and sig-
nificantly higher than at 20 °C and 16.5 °C (p < 0.05; Fig. 1b). Pfx was
higher (p < 0.05) with increasing temperatures due to higher biomass
productivities. The Pfx at 30 °C was 7.9-, 1.6-, and 1.2-fold higher than
at 16.5, 20, 25 °C, respectively. The optimal temperature was 30 °C for
both biomass and Pfx. The same optimum temperature was obtained
from a prediction model in a previous study (Marchetti et al., 2013).

In our results, Pfx improved at higher temperatures due to higher
biomass productivity. Moreover, the cellular diameter was larger at
16.5 °C (p < 0.05) (Table 2), which is a known response to low tem-
peratures due to intracellular lipid accumulation (Skau et al., 2017).
Lipid bodies can be seen under microscope at 16.5 °C. This alteration in
cell diameter, associated with lower growth, indicates that lower tem-
peratures are not lethal but lead to cellular stress in Tisochrysis lutea. A
similar phenomenon was reported before where negative growth rates
(~0.1 d™1) and increased lipid contents in Isochrysis galbana were ob-
served at 10 °C (Roleda et al., 2013).

Overall, the batch experiments provided the optimum parameters,

supplied evidence for the effect of light on Fx production, which were
used when designing the continuous experiments, described in the
following sections.

3.2. Continuous fucoxanthin production

Continuous experiments were performed to determine the dilution
rate resulting in the highest biomass productivity; and therefore, the
highest Pfx. Following, the dilution rate was fixed, and light was varied,
leading to a range of absorbed light values. These second experiments
were used to investigate the influence of absorbed light on Fx content.
Together, these data were used to indicate the conditions to increase Fx
content (achievable at lab scale), and productivities (applicable to
pilot/outdoor conditions).

3.2.1. Chemostat experiments with different dilution rates

Steady state was kept for at least 7 consecutive days (Fig. 2a). The
biomass concentration decreased from 3.04 to 1.23 g/L with increasing
the dilution rate from 0.16 to 0.80 d~! (Table 3) while biomass pro-
ductivity increased from 0.49 to 1.01 g L™ d~! (Table 3), showing a
linear relation between both variables (Fig. 2b; R? 0.96) at an incident
light of 300 umol m~2 s~*. A different relation has been found for
Dunaliella tertiolecta at an incident light intensity of approximately
1000 pmol m~2 s™! (Barbosa et al., 2005); a plateau of volumetric
biomass productivity was reported over a range of dilution rates (0.03
to 0.05 h™1). In the present work, 94.5-99.8% of the incident light
(300 pmol m~2 s~ 1) was absorbed by the culture, meaning that light
limitation may have taken place, specially at low dilution rates (i.e.
high biomass concentrations). In addition, the relation between ab-
sorbed light and biomass productivity may differ per strain. Experi-
ments with varying light intensity were designed in the next section to
further study the effect of light on fucoxanthin productivity.

The lowest biomass productivity (0.49 g L™! d™') in continuous
chemostat experiments was higher than the highest biomass pro-
ductivity in batch experiments (0.42 g L~ d~!). The biomass pro-
ductivity of Isochrysis galbana was reported up to 0.51 g L™' d~! at

300 umol m~2 s~ ! and 30 °C, for growth and biomass production, and
Table 2
Cell diameters and biomass productions at different temperatures and an incident light intensity of 300 umol m~2 s~ 1.
Temperature (°C) 16.5
Growth rate (d~—1) 0.38
Diameter (um) 6.05 + 0.31*
Final Biomass Concentration DW (g/L) 0.35 + 0.02¢
Biomass Productivity (g L' d™") 0.06 + 0.01¢

20 25 30

0.74 0.76 0.78

4.89 * 0.16" 4.30 = 0.22¢ 457 + 0.22"
1.36 = 0.07° 1.54 = 0.08° 1.81 + 0.09°
0.32 + 0.02° 0.36 + 0.02° 0.42 + 0.02°

Note: values are the means + SD. Means with different letters are significantly different from each other (comparisons were made between groups for each variable)

( < 0.05).
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Fig. 2. Continuous growth (a), correlation between biomass productivity and
dilution rate (b) and correlation between fucoxanthin productivity and dilution
rate (c) of Tisochrysis lutea at different dilution rates and an incident light in-
tensity of 300 pmol m~2 571, 30 °C. Note: values are the means + SD; Bars
with different letters are significantly different from each other (comparisons
were made between bars with the same color only) (p < 0.05).

semi-continuous mode, which was higher than in batch and inter-
mittent fed batch modes (Picardo et al., 2013). In the present study, the
biomass productivity obtained with continuous chemostats was the
double of the productivity obtained with semi-continuous operation.
Chemostat cultivation showed the highest biomass production among
different cultivation modes.

The Fx content ranged from 9.16 to 12.02 mg/g without obvious
trends (Table 3). The cells were observed with similar dark brownish

Bioresource Technology 315 (2020) 123894

colors under microscope, indicating high pigments contents. In litera-
ture, the carotenoid content per cell in Isochrysis increased with in-
creasing growth rate from 0.33 to 1.0 d! in continuous chemostat
mode (Saoudi-Helis et al., 1994). High growth rate leads to more in-
tracellular Fx. However, we didn’t find a higher Fx content at higher
growth rate in the present study. This could be explained by the small
variation of the total daily light absorbed among the different experi-
ments (18.38-19.40 mol m~2d~1), leading to a similar Fx content in
all groups.

The Pfx increased from 5.40 to 9.81 mg L~ ' d ! as the dilution rate
increased from 0.16 to 0.80 d ™!, which was mainly affected by biomass
productivity (Fig. 2¢). The Pfx at dilution rate of 0.53 d ™! was similar
to that at 0.80 d~ ! without significant differences (p > 0.05). To our
knowledge, 9.81 mg L™ ' d ! is the highest Pfx in Tisochrysis/Isochrysis
in literature (2.94-7.96 mg L~1d™Y) (Liet al., 2019; Sun et al., 2019).
Li et al. (2019) reported a higher Fx content (23.29 mg/g) in Isochrysis
zhangjiangensis at 40 ymol m~2 s~ in batch; however a lower Pfx
(2.94 mg L~ ! d™!) was obtained in their studies. Moreover, 7.96 and
6.43 mg L~! d~! Pfx were obtained at day 3-5 and day 5-7, respec-
tively, in a screened Isochrysis strain at semi-continuous cultivation
mode with a light intensity of 60 pmol m~2s7! (Sun et al., 2019). No
significant differences were found between the dilutions of 0.53 and
0.80 d~! in Pfx. Hence, 0.53 d ! was selected as the fixed dilution rate
to investitive the effect of light on Fx production in next section.

3.2.2. Chemostat experiments with different light intensities

To investigate the effect of absorbed light on Fx production, dif-
ferent light intensities (50, 100, 150, 300, 500 pmol m~2 s™ 1) were
tested under the dilution rate of 0.53 d~! to investigate the effect of
absorbed light on Fx production in Tisochrysis lutea.

The chemostat experiments started after day 4 of batch (Fig. 3a).
Biomass concentration increased from 0.31 to 1.50 g/L with increasing
light intensity from 50 to 300 pmol m~2 s~' (Table 4). At
500 pmol m~2 s~ steady state could not be reached, the biomass
concentration decreased during the entire chemostat period, which
indicated photoinhibition. ~The culture was yellowish at
500 pumol m 2 s~ ! whereas brownish at low light intensities. Moreover,
visible (under the microscope) lipid bodies can only be observed in cells
exposed to 500 pmol m~2 s~ . The cell dimeter at 500 pmol m~2 s~ !
was significantly larger (p < 0.05) than other groups (Table 4). Bio-
mass productivity also increased as light intensity increased from 50 to
300 pmol m~2 s~ ! and decreased at 500 ymol m 2 s~ !. These results
were in line with the results from the batch experiments at different
light intensities.

The Fx content increased from 3.68 to 16.39 mg/g as the light in-
tensity decreased from 500 to 50 pmol m ™2 s~ ! (Table 4). The highest
Fx content at 50 pmol m~2 s~! was 4.5-fold higher than at
500 pmol m~2 s~ Light intensity affected Fx content in Tisochrysis
lutea. Previous studies also showed that Fx content was decreased by
high light intensities, and increased with low light intensities in Iso-
chrysis (Gomez-Loredo et al., 2016; Li et al., 2019). In the present study,
the Fx content ranged from 1.73 to 16.39 mg/g in batch and continuous
experiments. The maximum Fx content obtained at 50 pmol m~2s~ ! is
comparable to the results from Kim et al. (2012), who reported a
18.23 mg/g Fx content by optimization of extraction solvent; this is the
highest content in Tisochrysis found in literature. However, they did not
report the cultivation conditions of the biomass they used in their study.

The Pfx at 150 and 300 umol m ™2 s~ ! were significantly higher
(p < 0.05; Fig. 3b) than those at 50, 100, and 500 pmol m 2 s~ !; Pfx
at 50, 150, 300, and 500 pmol m 2 s~ ! was 3.1-fold, 6.0-fold, 8.9-fold,
and 7.8-fold higher than those in batch experiments at the same light
intensity (respectively). Continuous cultivation mode showed clear
advantages in Fx production. The light intensity of 300 pmol m~2 s~ !
was considered optimum for both highest biomass and Fx productiv-
ities.

The continuous chemostat at different light intensities were
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Table 3

Growth details of continuous experiments at different dilution rates.
Dilution rate (d™1) 0.16 0.29
pdh 0.16 = 0.0 0.29 * 0.01°
Diameter (um) 5.40 + 0.05° 5.28 + 0.02¢
Biomass Concentration DW (g/L) 3.04 = 0.01* 2.18 * 0.01°
Biomass Productivity (g L™ d™1) 0.49 + 0.03° 0.64 * 0.03¢
Absorbed light (mol m~2d ™) 19.40 = 0.01* 19.32 + 0.02%°
Fx content (mg/g) 11.10 + 0.49%® 12.02 + 0.26%
Pfx (mg L™1d™1) 5.40 + 0.24¢ 7.60 + 0.16°

0.35 0.45 0.53 0.80
0.35 = 0.04¢ 0.45 = 0.02° 0.53 = 0.02° 0.80 + 0.02°
531 = 0.02° 5.25 + 0.02° 5.55 + 0.02° 559 + 0.03°
1.86 + 0.01° 1.74 + 0.03 < 1.67 + 0.01¢ 1.23 + 0.09°
0.66 = 0.07¢ 0.79 * 0.04° 0.89 * 0.03° 1.01 * 0.01*
19.25 + 0.02° 18.97 + 0.09° 19.02 + 0.05° 18.38 + 0.20¢
10.34 + 0.20" 9.16 = 0.42° 10.69 + 0.28% 10.01 + 0.35%
6.73 = 0.13° 717 + 0.33° 9.43 + 0.25° 9.81 + 0.34°

Note: values are the means + SD. Means with different letters are significantly different from each other (comparisons were made between groups for each variable)

(» < 0.05).
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Fig. 3. Biomass concentration (a) and correlation between absorbed light and
Fx content (c) of Tisochrysis lutea grown under chemostat operation at different
light intensities with dilution rate of 0.46-0.54 d~'. Note: values are the
means = SD; Bars with different letters are significantly different from each
other (comparisons were made between bars with the same color only)
(@ < 0.05).

operated at similar dilution rates, hence light is the main factor that
affected Fx production. The absorbed light increased from 2.23 to
25.80 mol m ™2 d ™! with increasing light from 50 to 500 ymol m~%s~!
(Table 4). A lower absorbed light resulted in a higher Fx content, but
not necessarily higher Fx productivity (Table 4). These results tested the
hypothesis that absorbed light could predict Fx content (R? 0.98), re-
sulting in an absorbed light of 2.23 (mol m~2 d ') causing the highest
Fx content (16.39 mg/g) (Fig. 3c). The correlation between absorbed
light and Fx content obtained in the present study provided an idea to
estimate the Fx content in pilot/outdoor conditions by measuring ab-
sorbed light. Many factors such as light, growth, and nutrient can affect
Fx content. Based on our findings in the present study, absorbed light is
the most direct parameter that affects Fx content, which should be
considered as the main assessment criteria in industrial Fx production.
This study showed how the process affects Fx content and pro-
ductivities in Tisochrysis lutea. First, batch experiments were used to
obtain the optimum temperature (30 °C) and light intensity
(300 pmol m~2 s~ 1) for biomass production. Second, continuous che-
mostat experiments were designed to investigate the effect of dilution
rate (0.16-0.80 d™') on Fx content and productivity, obtaining the
highest ever reported Pfx (9.81 mg L™! d~1). Finally, continuous che-
mostat at a fixed dilution rate (0.53 d~!) at different light intensities
were conducted to analyze the effect of absorbed light
(2.23-25.80 mol m~2 s~ 1) on Fx production. Fx content and Pfx were
improved by using different cultivation parameters. An increasing di-
lution rate increased Pfx and an increasing absorbed light decreased Fx
content. Dilution rate and absorbed light should be considered in
combination to achieve the optimum Pfx in Tisochrysis lutea.

4. Conclusions

This study optimized the process parameters for Fx production in
Tisochrysis lutea at batch and continuous modes. The maximum Fx content
(16.39 mg/g) was found at 50 pmol m~2 s, dilution rate 0.47 d~1,
30 °C; and the maximum Pfx (9.81 mg L™! d™1) was found at
300 pmol m~2 s, dilution rate 0.80 d™*, 30 °C. Pfx was positively af-
fected by dilution rate and Fx content was negatively corrected to light
absorbed (R? 0.98). Therefore, one should combine absorbed light and
dilution to achieve optimal Pfx. Process parameters optimization improved
Fx production, which could be translated to industrial applications.

Table 4

Growth details of continuous experiment at different light intensities.
Light (umol m~2 s~ 1) 50 100 150 300 500
pdh 0.47 + 0.04> 0.54 = 0.02° 0.50 + 0.03° 0.46 = 0.06° 0.54 + 0.03°
Diameter (um) 5.43 + 0.04° 521 + 0.01° 5.42 + 0.01° 5.24 + 0.03° 5.65 + 0.01°
Biomass Concentration DW (g/L) 0.31 = 0.04° 0.44 = 0.05¢ 0.82 = 0.02° 1.50 + 0.03* 1.29 + 0.05°
Biomass Productivity (g L' d™") 0.15 = 0.02¢ 0.24 + 0.02¢ 0.41 = 0.01° 0.69 + 0.01° 0.69 + 0.03°
Absorbed light (mol m~2d™") 2.23 + 0.07° 5.05 = 0.11¢ 8.87 + 0.12° 18.10 + 0.15" 25.80 + 0.55°
Fx content (mg/g) 16.39 + 0.69* 12.87 + 0.91° 12.19 + 1.55° 7.27 + 4.99° 3.68 + 0.59¢
Pfx (mg L™'d™h) 2.39 + 0.32° 3.05 = 0.32° 4.99 + 0.12* 4.99 + 0.11* 2,55 + 0.11°

Note: values are the means + SD. Means with different letters are significantly different from each other (comparisons were made between groups for each variable)

( < 0.05).
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