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Metabolism is essential for life. The metabolism of an organism defines its capabilities to take 
up nutrients from the environment and to convert these into its essential building blocks, 
such as nucleic acids and amino acids (Lazar and Birnbaum, 2012). Cellular metabolism can be 
described as a system of biochemical conversions (reactions), most of which are catalyzed by 
metabolic enzymes. Typically, a genome encodes a few thousand metabolic enzymes (Yilmaz 
and Walhout, 2017). Each enzyme acts on a selection of substrates and converts these into 
products, typically by adding or removing reactive groups. Reactions that share substrates or 
products can be considered functionally connected. Consequently, the collection of biochemical 
reactions within a cell forms a large interconnected network, representing the routes by which 
the organism converts simple nutrients into complex metabolites and vice-versa. This network 
is distributed over different subcellular compartments (organelles). Transporter proteins and 
channels facilitate the transport of metabolites across the lipid bilayers that surround the cell 
and the organelles (Sahoo et al., 2014). The overall system is subject to many parameters, such 
as variability in substrates, temperature, or the pH, not only between cells and the extracellular 
space but also within cells. Cells regulate this system to maintain homeostasis, i.e. the ability 
to perform important cellular functions despite variations (perturbations), and this provides 
robustness (Eberl, 2018; Nijhout et al., 2019). The ability to sense environmental variations and 
metabolic cues and to adapt metabolism accordingly, depends on a tightly interlinked regulatory 
system (Watson et al., 2015). This involves regulatory feedback loops embedded in interaction 
networks crossing metabolic, protein, transcript, and (epi)genetic levels (Figure 1). 
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FIGURE 1 | The molecular layers of a cell are all interconnected, and form a complex and integrated system. In the 
symbiosis of a pathogen and a host, their systems are connected, and interactions occur between all molecular layers.

As such, the phenotype of the cell is an emergent property of the system’s complexity (Aderem, 
2005). The rates of individual metabolic reactions are a direct consequence of the overall state 
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of cellular metabolism, and therefore understanding a small part of the system (e.g. a single 
enzyme or pathway) provides only limited insight into the complete system. Thus, a more 
holistic view is essential to understand how the state of a system can lead to the complex 
phenotype of an organism.

Systems biology

The rise of computational biology and high-throughput measurement technologies in the 
early 21st century enabled biologists to measure the presence, quantity, and/or interactions 
between molecules in the cell at genome-scale (Reed et al., 2006). Today, numerous 
species have their genome sequenced, and transcriptome sequencing has become routine. 
Additionally, high-throughput methods such as mass spectrometry allow the analyses of the 
proteome and metabolome. Data analyses typically focus on the differential abundances of 
these molecules (transcripts, proteins, or metabolites) between samples. Alternatively, omics 
data can be used to construct models of molecular systems, as part of a scientific discipline 
that is known as systems biology (Bordbar et al., 2014), a relatively young scientific discipline 
that integrates — among others — bioinformatics, mathematics, biochemistry, molecular 
biology, physics and engineering (Breitling, 2010). In systems biology, omics data is integrated 
with prior experimental knowledge into models of molecular interactions at genome-scale, 
aiming to capture the complete molecular systems that result in the phenotype of an organism 
(Yurkovich and Palsson, 2016). This includes models of protein-protein interactions, metabolic 
fluxes, regulatory interactions, or signaling pathways (Albert, 2007). Interaction networks 
can be investigated for topological features, for instance to identify critical connectors or 
central elements, or can be analyzed for potential biological functions, such as the presence of 
particular molecular pathways (Winterbach et al., 2013). Importantly, these types of molecular 
networks are typically static and do not provide insights into the dynamics of these interactions. 
In contrast, systems modelling involves the mathematical abstraction of a system’s behavior to 
study its dynamic properties. Many different types of models exist, such as ordinary differential 
equation (ODE) based models for enzyme kinetics, Bayesian, Boolean, or rule-based models for 
signaling and regulatory networks, or constraint-based models of metabolism (genome-scale 
metabolic models or GEMs) (Box 1) (Bartocci and Lió, 2016; Bordbar et al., 2014). In particular 
GEMs are nowadays popular tools to simulate the cellular metabolism of a species, and have 
shown remarkable successes in modelling metabolic fluxes within an organism (Gu et al., 2019). 
GEMs are based on the predicted enzyme repertoire based on the genome sequence, and 
the associated network of biochemical reactions with substrates and products. This property 
enables the integration of miscellaneous omics data and prior knowledge about the metabolic 
properties of an organism (Zhang and Hua, 2015). It also allows the in silico identification of the 
essential genes/reactions/metabolites of the cell, by means of predicting the effect of enzyme 
knockouts on the functioning of the system (Chavali et al., 2012). As such GEMs can serve as a 
knowledge base and guide future research.
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Box 1 – Genome-scale metabolic models
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Basic principles of GEMs. A: GEMs are reconstructed from a genome sequence, and connect enzymes to reactions. 
B: A GEM is a network that simulates fluxes from nutrient uptake to the production of biomass precursors. C: 
The mathematical representation of a GEM. Reactions are stored in a stoichiometric matrix, that is multiplied by a 
vector of fluxes. The solution space is limited by constraints. Here only two fluxes are shown, but the optimization 
is of n dimensions.

Metabolism is a complex system of thousands of biochemical reactions, most of which are catalyzed by metabolic 
enzymes. Genome-scale metabolic models (GEMs) have been developed as an effective way to generate hypotheses 
about cellular metabolism (Yurkovich and Palsson, 2016). A GEM is based on the repertoire of metabolic enzymes 
encoded in the genome, which are cross-referenced with biochemical databases or template models to obtain 
a set of biochemical reactions that can transform substrate metabolites into products. These reactions are 
interconnected by shared substrates or products, forming a complex network that is typically divided over several 
subcellular compartments, such as the mitochondria and the cytosol. The metabolic network can be represented 
by a sparse integer matrix, denoting the stoichiometry of substrate and product metabolites of each reaction. 
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Box 1 – Genome-scale metabolic models (Continued)
GEMs are assumed to be in steady-state, which means the net uptake of nutrient mass is equal to the net 
production of biomass, implying there is no accumulation of metabolites. This simplifies the model to a system 
of linear equations. Each reaction in the GEM is considered to have a flux, i.e. a steady-state reaction rate. The 
most popular method to model metabolism in this framework is called flux balance analysis (FBA) (Orth et al., 
2010). An assumption is that cells have a specific objective, often maximization of growth (production of biomass) 
or minimal usage of energy (García Sánchez and Torres Sáez, 2014). Linear optimization can find values for all 
fluxes that attain the specified objective, for instance maximal flux towards biomass precursors. The production 
of biomass is modelled as a pseudo-reaction that consumes all biomass precursors (e.g. amino acids for proteins) 
with appropriate stoichiometry, often manually implemented based on experimental data (Feist and Palsson, 2010). 
As there is an infinite number of solutions that allow biomass production, constraints need to be implemented to 
find a single set of fluxes.

Thermodynamic constraints can implement an upper and lower bound on each flux, specifying that reactions 
are either bidirectional (flux can be either negative or positive) or irreversible (either the upper or lower bound 
is zero). These constraints significantly limit the number of possible outcomes of the optimization problem. The 
flux values that yield a maximal value for the specified objective, within the constraints, are then selected as an 
optimal solution.

The integration of omics data can be used to impose additional model constraints or objective functions (Bordbar 
et al., 2014). Since most reactions of a GEM are associated with one or more genes, optimization can take into 
account gene expression and calculate the fluxes that concur with underly ing gene expression. For instance, 
the INIT algorithm (Agren et al., 2012) maximizes a global score, which increases when “expressed” reactions 
have a flux and decreases when “non-expressed” reactions have a flux. As a result, the optimal solution depends 
on the expression of genes (i.e. context-specific submodels), which enables the comparison of fluxes between 
transcriptome conditions. Similarly, metabolomics data can be used to calculate fluxes that attain the presence of 
measured metabolites. Note that these are only two specific examples of omics integration into GEMs, in a rapidly 
expanding field of methods (Lewis et al., 2012).

The linear program of a GEM can often be solved in a matter of seconds on modern computers, making it a 
powerful computational tool to predict the effect of perturbations to GEMs (Peyraud et al., 2018). For instance, the 
impact of a different growth medium can be analyzed (i.e. change of nutrient uptake reactions), or genes/reactions 
can be iteratively removed from the model to investigate the effect on the metabolic fluxes. Reactions that have 
large effects on the flux distribution or biomass production upon removal suggest biological relevance (Chavali 
et al., 2012). Essential genes or reactions can be predicted when their elimination yields an infeasible problem, i.e. 
no solutions respecting the implemented constraints (e.g. no biomass flux possible after removal) (Pratapa et al., 
2015). Similarly, synthetic lethal gene or reaction pairs can be identified that will only impair biomass production 
upon simultaneous deletion.

Systems biology on pathogens

Systems biology offers a powerful toolbox to study pathogens and their relation with their 
hosts (Cesur et al., 2018; Dix et al., 2016; Durmus et al., 2015; Horn et al., 2012; Peyraud et al., 
2017). Pathogens and hosts often interact extensively on all molecular levels, i.e. metabolic, 
protein and DNA/RNA (Figure 1). Co-evolution shapes a host’s immune system to be able 
to recognize the presence or action of a pathogen and to activate immune responses (Cook 
et al., 2015). To counter these processes and to facilitate infection, a pathogen secretes 
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virulence factors in the form of proteins (effectors), small RNAs, or (secondary) metabolites 
(Frantzeskakis et al., 2020). The symbiosis between pathogen and host can be regarded 
as a single intertwined system that is merely separated into different compartments and 
connected by their interactions (Olive and Sassetti, 2016). The reconstruction of a model for 
such a system can help to characterize the pathogen-host interactions by generating testable 
hypotheses. Systems biology has been used in the study of various pathogens or pathogen-
host interactions to identify drug targets or key factors that allow pathogens to interact with 
their host (Durmus et al., 2015). In pathogen-host interactions, protein-protein or small RNA 
interaction networks have been investigated using graph theory to identify pathogen effectors 
and their host interactors, in which network centrality or degree is considered a proxy for 
functional importance (Tekir and Ülgen, 2013). Additionally, GEMs can be used to simulate 
the system-wide metabolic fluxes of a pathogen, and are therefore useful tools to predict the 
important genes/reactions/metabolites of the cell, which can inspire control strategies (Chavali 
et al., 2012). Not surprisingly, the first GEM ever generated was for a microbial pathogen, i.e. 
the bacterium Haemophilus influenzae that causes disease in humans (Edwards and Palsson, 
1999). Since then, GEMs have been reconstructed for many more pathogens, such as the 
tuberculosis bacterium Mycobacterium tuberculosis (Kavvas et al., 2018; Rienksma et al., 2018) 
and the human and animal parasites of the genera Plasmodium (Plata et al., 2010; Stanway et 
al., 2019) and Leishmania (Chauhan and Singh, 2019; Sharma et al., 2017; Subramanian et al., 
2015). Some GEMs integrated pathogen and host, thereby providing insight into the metabolic 
fluxes throughout infection (Bazzani et al., 2012; Bordbar et al., 2010; Huthmacher et al., 2010).

In contrast to human pathogens, plant pathogens have hardly been studied taking a systems 
biology approach (Peyraud et al., 2017). Yet, similar to human pathogens, plant pathogens 
have a major negative impact on the well being of their hosts. Plants are crucial for generating 
the oxygen (O2) we breathe, for sequestering CO2 and maintaining the balance in the global 
ecosystem, and for the production of food and feed. However, plants are under constant threat 
of pathogens, such as fungi, oomycetes, bacteria, and viruses. In agriculture, the resulting yield 
losses can be substantial, reaching up to 30% (Savary et al., 2019). To combat plant diseases, a 
better understanding of plant-pathogen interactions is important. There are however only a few 
examples where a systems biology approach was applied to provide insight into the molecular 
mechanisms underlying plant-pathogen interactions. In one study a protein-protein interaction 
network of Arabidopsis thaliana and various pathogens of different kingdoms uncovered that 
effectors from different pathogens convergently target the same host proteins (Weßling et 
al., 2014). In other studies, GEMs have been reconstructed for the bacterial plant pathogens 
Ralstonia solanacearum, Xanthomonas oryzae, and Pectobacterium parmentieri (Koduru et al., 
2020; Peyraud et al., 2016; Zoledowska et al., 2019), and for the fungus Sclerotinia sclerotiorum 
(Peyraud et al., 2019). However, despite the abundance of omics data for many pathogens, 
very few have been analyzed from a systems biology perspective.
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Oomycete-host interactions

Oomycetes are filamentous eukaryotes that resemble fungi in terms of morphology but 
evolved independently from fungi (McGowan and Fitzpatrick, 2020). In the tree of life, 
oomycetes group together with the brown algae and diatoms in the Stramenopile lineage 
(Beakes et al., 2012). Many oomycetes are plant pathogens, but some can infect animals or 
other microbes, or live as saprophytes (Derevnina, Petre, et al., 2016). Their lifestyles vary. 
Some are necrotrophic pathogens that swiftly kill their host plant and feed off dead plant 
material (Fawke et al., 2015). Others are biotrophs that need living host tissue to infect, feed 
and proliferate. Hemibiotrophs such as the members of the genus Phytophthora have a 
biotrophic phase followed by a necrotrophic phase. Most of the biotrophic oomycetes, such 
as the white rusts and downy mildews, are obligate pathogens implying that they cannot grow 
outside a living host (Baxter et al., 2010). One of the best studied oomycetes is Phytophthora 
infestans that causes late blight disease on potato and tomato (Kamoun et al., 2015). Shortly 
after the first genome sequences of oomycetes were published and high-throughput omics 
data for oomycetes became more abundant (Ali et al., 2017; Tyler et al., 2006), it was already 
proposed to reconstruct predictive models for P. infestans to reveal its mechanisms of host 
interaction (Pinzón et al., 2009; Pinzón et al., 2011).

Biotrophic plant pathogens typically adhere to leaves or roots, break physical barriers and 
scavenge nutrients from their host, while suppressing the host’s immune system (McDowell, 
2011). They achieve this by secreting a large variety of enzymes and effector proteins that 
end up in the apoplast or inside the plant cell and pave the way for a successful infection. In 
biotrophic oomycetes such as Phytophthora spp. and downy mildews, typically hundreds of 
effector genes are identified in a genome (McGowan and Fitzpatrick, 2017; Whisson et al., 
2016). During infection, these biotrophs grow as filamentous hyphae inside their hosts. They 
colonize the apoplastic space in the leaf mesophyll and form feeding structures, so called 
haustoria, inside host cells. At the site of the haustoria and the apoplastic hyphae, there is 
a close interface between pathogen and host, through which effectors, enzymes and small 
molecules can be exchanged (Judelson and Ah-Fong, 2018). Oomycetes typically reproduce by 
forming sporangia on hyphae that emerge from stomata a few days after infection (Judelson 
and Blanco, 2005). These are dispersed by wind or water and after landing on a host surface 
they germinate directly or release zoospores that encyst and germinate. The tip of the germ 
tube then develops into an appressorium, an infection structure that the pathogen uses to 
penetrate host cells.

The ability of oomycetes to live in close symbiosis with a host drives continuous adaptations 
of both, pathogen and host. Oomycetes have dynamic genomes that allow swift adaptation 
(Leesutthiphonchai et al., 2018). Comparative genomics has revealed that obligate biotrophic 
pathogens have suffered extensive gene loss as a result of their biotrophic lifestyle (Fletcher 
et al., 2018; Kemen and Jones, 2012). This adaptive capacity facilitates the evolutionary 
“arms race” between oomycete effectors and host resistance genes (Y. Wang et al., 2019), 
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but also allows adaptation of their core cellular machinery including metabolism and signal 
transduction, leading to various unique properties (Judelson, 2017). For instance, oomycetes 
have several genes encoding unique proteins with novel domain combinations (Seidl et 
al., 2011), as well as a number of horizontally transferred genes that encode proteins with 
functions in metabolism (Richards et al., 2011). Oomycetes are osmotrophs, which means they 
secrete enzymes to digest large molecules (polymers) extracellularly and import the resulting 
small molecules as nutrients (Richards and Talbot, 2013). This process is facilitated by a broad 
array of transporter proteins suggesting that a plethora of host compounds can be taken 
up during infection (Abrahamian et al., 2016). However, some nutrients are indispensable 
for oomycetes. Many oomycetes lost the ability to synthesize sterols and therefore secrete 
elicitin proteins that are thought to be sterol carriers (Dahlin et al., 2017; Derevnina, Dagdas, 
et al., 2016). Moreover, most oomycetes are auxotrophic for thiamine, a vitamin that acts as 
a cofactor in carbohydrate catabolism (Hohl, 1991). Culturable oomycetes can be grown in 
vitro and seem to prefer amino acids as a substrate (Ah-Fong et al., 2017b; Hodgson, 1958), but 
can utilize a wide variety of substances. Due to the complex nature of cellular metabolism, it 
is currently unclear which nutrients are more important than others, and how the differential 
usage of nutrients influences infection. Their adaptive capacity makes oomycete pathogens 
very challenging to control. It is therefore of importance to reconstruct holistic models that 
provide mechanistic insight into the molecular systems that allow oomycetes to proliferate 
and infect their hosts. Ultimately, a system-wide understanding of oomycete-host interactions 
might provide novel leads for control (Dunphy and Papin, 2018).

Scope of this thesis

The overall aim of this thesis is to investigate how the available omics data of oomycetes can be 
exploited to unravel the molecular mechanisms that allow oomycetes to proliferate and infect 
their hosts. We take a systems biology approach, integrating these data into holistic models of cell 
metabolism and putative factors for host interaction (Figure 2).

To address the question to what extent metabolic networks are representative for lifestyle we 
compare the metabolic gene content and evolutionary patterns of animal and plant pathogenic 
oomycetes with various trophic lifestyles (Chapter 2). The metabolic networks of obligate 
biotrophic oomycetes are compared with those of other plant pathogenic oomycetes, showing 
nonrandom patterns of gene loss related to obligate biotrophy from a network topological aspect.

To gain more insight into the metabolism of oomycetes, we choose P. infestans as a 
representative to reconstruct a GEM. We reconstruct the GEM using available biochemical 
information on P. infestans and modern model reconstruction techniques (Chapter 3). 
We then simulate the metabolic fluxes of P. infestans and those throughout its life cycle, by 
integration of transcriptome data. We also pinpoint several essential reactions and study the 
pathways involved.
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As a pathogen P. infestans lives in close association with its host. To investigate the dynamics 
of its metabolism in symbiosis we take the P. infestans GEM one step further, and integrate 
it with a GEM of tomato (Chapter 4). This leads to a multi-compartment model of the P. 
infestans-tomato interaction. We employ various model-based methods to investigate the 
topology, connectivity and metabolic fluxes of the model, to reveal host-pathogen metabolic 
dependencies. We also integrate infection time-course transcriptome data to simulate the 
differential usage of nutrients by P. infestans throughout infection.

For pathogenesis oomycetes produce a large variety of effectors and other putative virulence 
factors among which enzymes. In Chapter 5 we focus on a specific class of enzymes, the 
metalloproteases (MPs), We screen Stramenopile genomes for the presence of MP genes, 
create orthology groups, compare the MP repertoire in oomycete and non oomycete species, 
and  analyse MP domain compositions.  For the P. infestans MPs we perform gene model 
curations and select the ones that have a signal peptide for an in planta assay, to reveal 
potential virulence functions. 

In Chapter 6 we provide an outlook on how systems biology can be applied to study 
pathogens, and how models can be used as a driver of innovation. We discuss the limitations 
we encountered and the prospects of the models presented in this thesis, and reflect on the 
interpretation of the models. Finally, we propose a framework for improving the models to 
establish a high-quality model for P. infestans and late blight disease.

Chapter 5
metalloproteases

Chapter 2
comparing oomycete metabolism

Chapter 3
P. infestans model

Chapter 4
P. infestans - tomato model

Phytophthora infestans

Solanum lycopersicum

FIGURE 2 | Graphical abstract of this thesis.

tomato model

model
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Abstract
The selection pressure of a pathogen-host symbiosis drives adaptations. Animal and plant 
pathogenic oomycetes are thought to adapt their metabolism to facilitate interactions 
with their hosts. Here, we performed a large-scale comparison of oomycete metabolism to 
relate metabolic adaptations to lifestyle differences. We uncovered considerable variation in 
oomycete metabolism that could be linked to lifestyle differences. Comparisons of metabolic 
gene content revealed that plant pathogenic oomycetes have a bipartite metabolism; a 
conserved part and an accessory part. The accessory part could be associated with the 
degradation of plant compounds produced during defence responses. Obligate biotrophic 
oomycetes in particular have smaller metabolic networks, and taxonomically distantly 
related biotrophic lineages display converged evolution by repeated gene losses in both the 
conserved as well as the accessory parts of metabolism. We investigated differences between 
the metabolic networks of obligate biotrophic oomycetes and those of hemibiotrophic 
oomycetes, and revealed that the losses of metabolic enzymes in biotrophs are not random 
and that the networks contract from the periphery inwards. Our analyses represent the first 
metabolism-focused comparison of oomycetes at this scale and will contribute to a better 
understanding of the evolution and relationship between oomycete metabolism and lifestyle 
adaptation.
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Introduction

To grow, organisms need to assimilate nutrients from the environment and assemble these into 
the building blocks of life – i.e. polymers such as proteins, DNA, carbohydrates and lipids. This is 
known as cellular metabolism, a process encompassing a network of thousands of biochemical 
reactions, many of which are catalyzed by metabolic enzymes (J. Nielsen, 2017). The repertoire of 
metabolic enzymes encoded in the genome of a specific species is indicative for its biochemical 
capabilities. Autotrophic organisms have the capability to assimilate inorganic compounds from 
the environment and to assimilate these into organic compounds. In contrast, heterotrophic 
organisms need organic nutrients to generate complex compounds and rely on other organisms 
for nutrition (Nelson and Cox, 2017). Parasitism is typically a heterotrophic lifestyle; the parasite 
lives in symbiosis with a host and takes up nutrients from it (Poulin, 2007). This symbiosis, which 
requires a close interface between parasite and host, is the result of a co-evolutionary process 
that has led to adaptations in the metabolism of both symbionts (Divon and Fluhr, 2007; Poulin 
and Randhawa, 2015). Many obligate parasites show an evolutionary pattern called reductive 
evolution (Casadevall, 2008), which manifests in the losses of primary metabolic enzymes and 
pathways (Corradi, 2015). This results in a dependency of the parasite on the host for nutrition 
(Kemen and Jones, 2012). Many other parasites evolved a more offensive strategy and have 
selectively expanded and diversified specific gene families to degrade host compounds, either 
for defence or for nutrition (Carere et al., 2016; Lowe-Power et al., 2016; Morales-Cruz et al., 
2015; Richards and Talbot, 2013). Together, these processes shape the metabolic network of a 
parasite such that it is optimized for symbiosis with its host(s) and for utilizing host nutrients to 
achieve maximal growth and reproduction.

Oomycetes form a diverse group of successful parasites (Kamoun et al., 2015), many of which 
are serious pathogens of plants or animals (Fawke et al., 2015; van West and Beakes, 2014). 
Even though oomycetes share many morphological and lifestyle characteristics with fungi 
(Judelson and Blanco, 2005), they evolved independently. Oomycetes are phylogenetically 
related to diatoms and brown algae, and united with these organisms in the Stramenopile 
lineage. It has been proposed that approximately 400-800 million years ago oomycetes 
evolved from an autotrophic algae-like marine ancestor, and subsequently lost the capacity 
to perform photosynthetic metabolism in adaptation to a heterotrophic lifestyle (Beakes 
et al., 2012; Matari and Blair, 2014). Most oomycetes described so far are plant pathogens. 
Based on their lifestyle, they can be divided into different groups (Fawke et al., 2015). Obligate 
biotrophs fully depend on a living host to proliferate. By contrast, necrotrophs kill their host 
upon infection and feed saprophytically on the decaying tissue. Lastly, hemibiotrophs have an 
initial biotrophic phase followed by a necrotrophic phase.

Sequencing and comparative analyses of oomycete genomes have revealed large differences 
in genome sizes and gene content, suggesting highly dynamic genomes (McGowan et al., 
2019; Raffaele and Kamoun, 2012; Seidl et al., 2011; Seidl et al., 2012). Apparently, oomycetes 
rapidly evolved into highly divergent species that vary in growth substrates and lifestyle 
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(Danies et al., 2013; Hodgson, 1958; Leesutthiphonchai et al., 2018) and they have the capacity 
to readily adapt to the environment, to overcome host resistance, or to develop fungicide 
resistance (Derevnina, Petre, et al., 2016; Matson et al., 2015). It is conceivable that many of 
these adaptations are driven by a pathogenic lifestyle (Ah-Fong et al., 2019). The genome 
dynamics also translate into fundamental differences in metabolism (Judelson, 2017). Notably, 
oomycetes acquired several metabolic enzymes from bacteria and fungi by horizontal gene 
transfer to support the breakdown and uptake of host nutrients (Richards et al., 2011; Richards 
and Talbot, 2013; Savory et al., 2015; Savory et al., 2018). Furthermore, oomycetes classified as 
obligate biotrophs, such as downy mildews and white rusts (e.g. Hyaloperonospora, Albugo, 
Peronospora, Plasmopara), have lost various enzymes of assimilation pathways (e.g. for nitrate 
and sulfate). Such losses are generally regarded as characteristic of an obligate parasitic lifestyle 
(Dean et al., 2012; Fletcher et al., 2018; McDowell, 2011; Spanu, 2012; Thines et al., 2020). An 
understanding of pathogen metabolism in relation to lifestyle can yield important information 
about the growth conditions and preferred substrates and, ultimately, might point to novel 
leads for disease control (Garavito et al., 2019; Peyraud et al., 2017; Warrilow et al., 2014).

In this study we performed large-scale analyses of the metabolism of oomycetes and closely 
related Stramenopiles, with the aim to shed light on lifestyle- and lineage-specific adaptations 
in metabolism in oomycetes during diversification from their last common ancestor. We 
analyzed the conservation of metabolic enzymes through pan- and core-genome analyses 
and translated the metabolic enzyme content into metabolic networks. Comparison of these 
networks revealed the impact of gene losses on the metabolism of obligate biotrophs.

Results & Discussion 

Metabolic gene content in Stramenopiles
Metabolic enzymes catalyze most of the biochemical reactions in the cell, collectively 
orchestrating cellular metabolism (J. Nielsen, 2017). To compare the metabolism of oomycetes 
and related sister-species, we identified the metabolic enzyme repertoires in the complete 
predicted proteomes of 54 species, encompassing nearly all Stramenopiles for which a publicly 
available genome sequence with associated gene annotation was available (as of early 2019). 
This collection included 42 oomycetes, six diatoms, four brown algae, a Labyrinthulomycete 
(Hondaea fermentalgiana), and a hyphochytrid (Hypochytrium catenoides) (Table S1; Figure 
1A). The latter two species are members of two sister clades to the oomycetes (Leonard et 
al., 2018). The oomycetes in our species selection have a variety of lifestyles: one mycoparasite 
(Pythium oligandrum), two saprotrophs (Thraustrotheca clavata, Aphanomyces stellatus) 
(Misner et al., 2014), six animal pathogens (two Saprolegnia spp., Achlya hypogyna, Pythium 
insidiosum, two Aphanomyces spp.) and 33 plant pathogens including 19 hemibiotrophic 
Phytophthora spp., eight necrotrophs (Aphanomyces euteiches and seven Pythium spp.), 
and six biotrophs (Albugo laibachii, two Peronospora spp., two Plasmopara spp. and 
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Hyaloperonospora arabidopsis) (Figure 1A). The obligate biotrophic plant pathogens in the 
genera Hyaloperonospora, Plasmopara and Peronospora are nested within the Phytophthora 
genus (Thines and Choi, 2015), a genus which exclusively contains hemibiotrophic plant 
pathogens. In contrast, the genera Pythium and Aphanomyces are more diverse with respect 
to lifestyle; apart from necrotrophic plant pathogens, they also contain saprotrophs and 
animal pathogens, and even a mycoparasite (P. oligandrum) (Adhikari et al., 2013; Benhamou 
et al., 2012; Diéguez-Uribeondo et al., 2009; Marano et al., 2016). The Stramenopiles analyzed 
here have on average 16,345 predicted protein-coding genes, but display considerate variations 
between individual species (standard deviation of 5,586 annotated genes). Phytophthora 
megakarya has the highest number of predicted genes (34,804), likely driven by extreme gene 
family expansions in particular in virulence-related genes (Ali et al., 2017). In contrast, the two 
Peronospora spp., P. effusa and P. belbahrii, have the lowest number of genes (8,603 and 
9,049, respectively).

To learn about the gene content of each genome, we selected one representative protein 
sequence for each gene, and annotated all proteins with KofamScan (Aramaki et al., 2019), 
using profile hidden Markov models of the KEGG Orthology (KO) database (Mao et al., 2005). 
The KO database contains manually defined clusters of protein families with a validated 
enzymatic function. KofamScan uses an adaptive score threshold for assigning proteins 
to a KO, determined by the minimal F1-measure (a measure for accuracy) when matching 
positive and negative training data (Aramaki et al., 2019). KofamScan thus aims to find an 
optimal trade-off between incorrectly assigning proteins to a KO (false positives) and missing 
putative orthologs (false negatives). To evaluate the performance of KofamScan for ortholog 
detection, we randomly selected 100 KOs and matched all associated proteins in KEGG to 
their respective HMMs (Figure S1). The majority of the HMMs (82%) picked up at least 80% 
of its orthologs, although we also noted that some KO HMMs were far less sensitive, likely as 
a result of a higher score threshold. As we assume that these biases affect our analyses in a 
uniform manner, we considered KofamScan a suitable method to provide a global overview of 
gene content.

On average, 25% of the proteins for each species could be assigned a KO identifier (referred 
to as KO), ranging from 11% to 36% (2,633 to 5,815 proteins, respectively). The total number 
of genes and the number of KOs per species were correlated (Pearson correlation r=0.49; 
P=1.3×10-4), yet with considerable variation. The majority of the proteins do not show homology 
to any KO, i.e. their specific function is largely unknown. However, the differences in number of 
KOs between species reflect expansions and reductions of gene families within the oomycetes 
(McGowan et al., 2019; Seidl et al., 2012). For example, it is known that oomycete genomes 
have large variations in the number of genes encoding secreted virulence-related proteins 
(effectors), many of which show little to no homology to known proteins or domains outside 
the oomycetes (McGowan and Fitzpatrick, 2017).

To investigate to which extent differences in total gene numbers influence the metabolic 
capacity of oomycetes, we selected all KOs representing a metabolic enzyme, which we define 
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as enzymes associated with a biochemical conversion of small molecules (Figure 1A). With 
respect to the correlation between KO numbers and total gene numbers that we observed 
earlier, the numbers of metabolic enzymes showed even less correlation with the total gene 
numbers (Pearson correlation r=0.39; P=0.0031), suggesting that the metabolic gene content 
is more stable than other genes. On average, the species in our collection contained 981 
metabolic enzymes. An outlier is the diatom Fistulifera solaris (1637 metabolic enzymes), which 
underwent a whole-genome duplication (Tanaka et al., 2015). In contrast, obligate biotrophic 
species of the genera Peronospora, Plasmopara, Hyaloperonospora, and Albugo have a 
reduced number of metabolic enzymes (on average 787) (one-tailed rank-sum test P=2.4×10-

4). For the other oomycetes however, we could not relate the metabolic enzyme numbers to 
lifestyle; the pathogenic oomycete species appear to have a similar proportion of metabolic 
enzymes as free-living autotrophic species, such as the diatoms and algae. This suggests a 
similar magnitude of expansions/contractions of gene families encoding metabolic enzymes 
(metabolic gene families) for most species, resulting in similar-sized sets of metabolic enzymes 
in the proteomes. It should be noted, however, that these numbers do not provide insight into 
the metabolic capacity of each species, as the size of a metabolic gene family is just one of the 
many factors that determine the metabolic fluxes of an organism (Ah-Fong et al., 2019). Factors 
such as (post-)transcriptional/translational regulation, reaction stoichiometry, enzyme activity, 
pH, and temperature all contribute to the physiological state of an organism (Wegner et al., 
2015). To compare metabolic capacity among species it is therefore more relevant to compare 
the number of metabolic gene families, i.e the number of unique metabolic enzymes, without 
taking into account copy number variation. This analysis revealed a similar number of metabolic 
gene families for each species (622±51) (Figure 1A). Yet, obligate biotrophs have a consistently 
lower number of metabolic gene families than the other species in our collection (on average 
566 versus 629, respectively; one-tailed rank-sum test; P=1.8×10-3), which reflects the metabolic 
gene losses in their adaptation to an obligate biotrophic lifestyle (Thines et al., 2020).

Dynamics of metabolic gene content
To uncover the evolutionary patterns causing the differences in metabolic gene content, we 
used a maximum-likelihood approach to reconstruct gains and losses of metabolic genes 
families for each branch in the phylogenetic tree (Figure S2). This reconstruction revealed that 
novel gains and losses of metabolic gene families occurred frequently throughout the evolution 
of oomycetes. Especially within the Phytophthora lineage evolutionary events are numerous, 
which is striking considering their close evolutionary relationship. This clearly reflects the 
dynamics of oomycete metabolic gene content, potentially leading to differences in metabolic 
capacity among these species (Seidl et al., 2012). The numbers of gene family losses are higher 
than the numbers of gene family gains (on average 61 and 42 respectively; paired samples rank-
sum test; P=1.4×10-6). This pattern is especially prevalent for the obligate biotrophs, which have 
lost on average 101 metabolic gene families. Albugo laibachii is the most extreme example, with 
8 family gains and 168 losses, but Phytophthora ramorum, Phytophthora lateralis and Pythium 
iwayamai also displayed extensive losses (179, 110 and 113, respectively). Taken together, these 
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results highlight the highly variable metabolic gene content in oomycetes that likely evolved in 
relation to lifestyle and/or (host) environment.

Next to these dynamics, it is anticipated that certain metabolic functions that are essential 
for viability (e.g. TCA cycle or glycolysis) are shared as a core set of metabolic enzymes. 
To investigate the degree of conservation of metabolic capacity between oomycetes, we 
calculated the core sets (intersection, present in all species) and pan sets (union, present 
in any species) for metabolic gene families (Figure 1B). To obtain the overall set of gene 
families for reference, we clustered the 882,655 proteins predicted in the 42 oomycete species 
into 28,463 gene families, which contained 89% of the proteins (Table S2). We calculated 
accumulation curves that show the pan/core size as a function of a random sample of 
oomycete genomes. As expected, the core size decreases when the sample contains more 
genomes and the pan size increases. Consequently, the metabolic core in all 42 oomycetes 
comprises only 146 metabolic gene families (6% of the pan). We observed that the core and 
pan curves of metabolic gene families flatten later than the curves of the overall gene families, 
and the core/pan ratio of metabolic gene families is also consistently higher (Figure 1C). Thus, 
even though we observed frequent gains and losses of metabolic gene families, metabolic gene 
families are generally more conserved within oomycete genomes than gene families overall. 
Since metabolic enzymes can have a broad range of substrates (i.e. enzyme promiscuity) and 
non-homologous enzymes can catalyze the same reactions (i.e. isozymes), it is anticipated 
that biochemical function is generally better conserved than metabolic genes (Carbonell et 
al., 2011). To validate this, we also calculated the core and pan of the reaction sets (i.e. all 
biochemical reactions associated with the metabolic enzymes). Indeed, the core/pan ratio was 
consistently higher for reactions than for metabolic enzymes (Figure 1C), corroborating that 
non-essential (redundant) enzymes are generally less conserved than those playing a central 
role in metabolic pathways.

To investigate whether oomycetes of the same lineage or with a similar lifestyle have a 
different degree of conservation of metabolic capacity, we calculated the core and pan sets 
for subsets of species grouped by their respective taxonomic lineage and lifestyle (Figure S3). 
The Saprolegniales have a core of 549 metabolic genes, which is significantly larger than that 
of eight randomly selected genomes (Figure 1B) (average 397±46; P(X≥549)=4.6×10-4). It is 
conceivable that a closely related subset of genomes has a larger core than a random selection 
of genomes. However, to our surprise the core sets of metabolic genes in the Pythiaceae and 
Peronosporaceae (445 and 222 respectively) were not significantly larger than the core sets of 
randomly selected species (P(X≥445)=0.089 and P(X≥222)=0.63 respectively). Even though the 
overrepresentation of Peronosporaceae in our species selection may influence the random 
genome selection (i.e. the background distribution), our results suggest that metabolic gene 
content even within a lineage varies considerably. We did not observe a significant difference 
in core size for any of the lifestyle-groups compared with that of a random sample. For all 
groups the overall core sets were highly enriched for metabolic enzymes (hypergeometric 
test; P-values ranging from 3.6×10-49 for Saprolegniales to 7.0×10-13 for Pythiaceae), in line with 
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our earlier observation that between species metabolic gene families are more conserved than 
overall gene families, regardless of lineage or lifestyle (Table S3). In addition, all subgroups 
have a consistently higher core/pan ratio for reactions than for metabolic gene families (two-
tailed paired T-test; P=1.0×10-4), in line with the previously observed oomycete-wide pattern 
(Figure 1C). These results make it plausible that oomycetes have a variable metabolism that 
reflects adaptations to their host and environment (Klein et al., 2012).
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FIGURE 2 | Stramenopiles with a similar lifestyle cluster based on their metabolic reactions. Principal 
component analysis (PCA) of metabolic reaction sets (i.e. metabolic networks) predicted for each species. The first 
two principal components are shown, and the percentage of explained variance is indicated. The individual species are 
colored according to lifestyle (key: top left). Thalassiosira oceanica was a strong outlier and is therefore not displayed. 
Genus names are abbreviated; Achlya: Ac, Albugo: Al, Aphanomyces: Ap, Aureococcus: Au, Ectocarpus: Ec, Fistulifera: 
Fi, Fragilariopsis: Fr, Hondaea: Ho, Hyaloperonospora: Hy, Hypochytrium: Hyp, Nannochloropsis: Na, Peronospora: 
Pe, Phaeodactylum: Pha, Phytophthora: Ph, Phytopythium: Ppy, Plasmopara: Pl, Pseudo-nitzschia: Psn, Pythium: Py, 
Saprolegnia: Sa, Thalassiosira: Tha, Thraustrotheca: Thr.

Metabolic networks reflect differences in lifestyle and host adaptations
To investigate whether or not the metabolic capacity of oomycetes relates to lifestyle, 
we performed a principal component analysis (PCA) on the metabolic reaction sets of 
all species (hereinafter referred to as their metabolic networks) (Figure 2). The first two 
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principal components, which accounted for 66.4% of the variance in the data, revealed a clear 
separation between species with different lifestyles while species with similar lifestyles typically 
cluster together. Clustering is most prominent for pathogens with an obligate biotrophic 
lifestyle, even though this lifestyle has evolved several times independently within oomycetes 
(Thines and Choi, 2015). In the PCA Pythium and Phytophthora species are more spread, which 
corroborates the small set of core metabolic genes (Figure S2). In addition, most necrotrophic 
plant pathogenic Pythium species cluster, yet the animal pathogen Pythium insidiosum is 
separated and co-localizes with other animal pathogens of the genera Aphanomyces and 
Achlya. The sole mycoparasite in our collection, Pythium oligandrum is localized distantly from 
all other (Pythium) species. Similarly, the Aphanomyces species are clearly separated according 
to their lifestyle. Collectively, these results highlight that species with similar lifestyles have 
similar metabolic networks, irrespective of their taxonomic association.

To gain more insight into the conserved and accessory metabolic processes related to 
specific lineages and lifestyles, we divided the metabolic networks into 91 pathways, based 
on the classification of reactions by KEGG (Table S4). Subsequently, we calculated the 
pathway coverage, i.e. the proportion of reactions present in a species relative to the set of 
reactions present in at least one species (Figure 3). Visualisation of the pathway coverage 
revealed a core set of conserved pathways present in all species and accessory pathways 
with a substantial number of reactions only occurring in few species. The most conserved 
pathways by average coverage are ‘lipoic acid metabolism’ (7 reactions), for which 50 out of 
54 species have 100% coverage; and ‘valine, leucine and isoleucine biosynthesis’ (19 reactions), 
for which 40 species have 100% coverage. Additionally, ‘fatty acid degradation’ and ‘fatty acid 
elongation’ are among the pathways with highest average coverage (95% and 91% respectively). 
Pathways that have on average the least coverage include among others ‘glycosaminoglycan 
degradation’, ‘cutin, suberine and wax biosynthesis’ and ‘retinol biosynthesis’. In general, in 
the pattern of pathway coverage the oomycetes can be clearly distinguished from the non-
oomycetes. This is reflected in a reduced coverage of photosynthesis-related pathways 
(‘carotenoid biosynthesis’, ‘porphyrin, and chlorophyll metabolism’) (Nisar et al., 2015), cell wall 
(degradation) related pathways (‘galactose metabolism’), and pathways related to secondary 
metabolism and pathogen defense (‘glucosinolate biosynthesis’, ‘terpenoid biosynthesis’) (Li 
et al., 2015). By contrast, pathways that have higher coverage in oomycetes include many lipid-
related pathways, such as ‘sphingolipid’, ‘glycerolipid’, ‘glycerophospholipid’, and ‘ether lipid’ 
metabolism (63-78% coverage), emphasizing that lipids and fatty acids play a central role in 
oomycetes (Fernandes et al., 2019; Griffiths et al., 2003b; Rodenburg et al., 2018a; Rodenburg 
et al., 2019). The Saprolegniales differ from other oomycetes as they have a higher coverage 
for various pathways including thiamine and vitamin B6 metabolism. The most prominent 
difference is the relatively high coverage of the steroid biosynthesis pathway, which is almost 
completely absent in other oomycetes (Dahlin et al., 2017). The conservation of various 
enzymes in these pathways is unique to Saprolegniales and contributes to the relatively large 
core set of metabolic genes in Saprolegnia spp. (Figure S3). Phytophthora and Pythium show 
a higher coverage for the tyrosine, phenylalanine, and phenylpropanoid pathways than other 
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species. The phenylpropanoids are derivatives of phenylalanine and tyrosine, and in plants 
phenylpropanoids are strongly associated with pathogen defense and cell-wall formation 
(Miedes et al., 2014). Recently it has been observed that even the most ancient oomycete-plant 
interaction triggers a phenylpropanoid defense response, indicating that phenylpropanoids 
are conserved and involved with the prime defenses against pathogens (Carella et al., 2019). 
Phytophthora spp. have a high coverage of the ‘naphthalene degradation’ pathway, and this 
includes an enzyme with salicylate hydroxylase activity (EC 1.14.13.1) that degrades salicylic 
acid, a compound strongly associated with defense in plants against Phytophthora (Halim et 
al., 2007). Moreover, salicylate precursors in plants were found to interact with oomycete 
effectors (Liu et al., 2014). These results support our hypothesis that the metabolism of 
oomycetes, especially Phytophthora, is highly adapted to their interaction with plant hosts.

Another distinguishing pattern is observed for the obligate biotrophs, which show reduced 
coverage of the same or similar metabolic networks despite their evolutionary distance. 
Hierarchical clustering (UPGMA on pairwise Spearman correlation distances) revealed that 
metabolic networks of obligate biotrophs have converged by losing the same sets of metabolic 
enzymes multiple times during adaptation to a biotrophic lifestyle (Figure 3). This is reflected 
in the patterns of 78 of the 91 pathways for which the obligate biotrophs have a lower coverage 
compared to other oomycetes (one-tailed paired T-test; P=4.7×10-14). We observed the largest 
differences for steroid biosynthesis and arachidonic acid (ARA) metabolism. Whereas most 
Phytophthora and Pythium spp., despite many gene losses retained 10 reactions (27% coverage) 
(Figure 3), obligate biotrophs have lost all but one reaction for sterol biosynthesis and that is 
phospholipase A2 (EC 3.1.1.4). This enzyme also plays a role in ARA production by desaturation 
of phosphatidylcholine, a membrane phospholipid that can facilitate energy storage in lipid 
droplets to fuel sporulation (Chen et al., 2013). It has been proposed that obligate biotrophs have 
lost the capacity to synthesize ARA because it elicits defense responses in the host (Judelson, 
2017; Robinson and Bostock, 2015). The detection of ARA in the biotroph Plasmopara viticola 
suggests that obligate biotrophs derive this compound from host membranes (Negrel et al., 
2018; Shanab et al., 2018). Reactions in this pathway downstream of ARA for the conversion 
into fatty acids were lost by all obligate biotrophs. In summary, obligate biotrophs have lost 
metabolic enzymes in almost all pathways, yet seem to converge on similar metabolic traits, 
which suggests a selection pressure on particular metabolic properties.
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FIGURE 3 | Core and accessory metabolic pathways in Stramenopiles relate to lifestyle and phylogeny. 
Heatmap showing pathway coverage per species. The colors of the boxes (key: top left) scale with pathway coverage 
(percentage of reactions present of the pan-pathway) for each metabolic pathway and in each species in the dataset. 
The bar plot (right) shows the number of reactions present in at least one species. Heatmap columns are ordered 
according to a hierarchical clustering of reaction frequency in the full metabolic networks (UPGMA on pairwise 
Spearman correlation distances). The species tree on top is drawn according to Figure 1A. The lines that are colored 
according to lifestyle (key: top right), connect the tips of the phylogeny with the corresponding column in the 
heatmap. Species names are abbreviated as described for Figure 2.
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Metabolic network analyses highlight the differences that characterize biotrophs 
To investigate how losses of metabolic enzymes in biotrophs influence the structure of 
the metabolic network, we transformed each network into a directed graph in which 
nodes represent compounds and edges represent reactions (see Methods). Thus, central 
nodes (hubs) represent metabolites that likely play an important role in metabolism as 
the substrate or product of an array of different reactions. As expected, the most central 
nodes (by betweenness-centrality) involved primary metabolites such as pyruvate, adenosine 
monophosphate (AMP), amino acids, and acetyl-CoA, the crucial precursor for the synthesis of 
fatty acids (Fernandes et al., 2019). By contrasting the networks of obligate biotrophs to those 
of other plant pathogenic oomycetes in our collection we were unable to detect substantial 
differences in overall network properties such as average node degree or betweenness-
centrality (Table S5). However, we observed that networks of obligate biotrophs were 
generally smaller and thus contain fewer nodes and edges (one-tailed rank-sum test; P=9.9×10-

5 and P=2.8×10-4 respectively). To investigate whether these reduced networks have a different 
capacity to take up nutrients, we calculated for each network the “seed” (Borenstein and 
Feldman, 2009), which is defined as the minimal set of compounds that organisms need to 
import to produce (i.e. have a path to) all other compounds in the metabolic network (see 
Methods). The size of the reduced metabolic networks of biotrophs strongly correlated with 
the network seed size (Spearman correlation ρ=0.77; P=7.2×10-12) (Figure S4), which implies a 
smaller pool of substrates. This is in line with an overall lower number of transporters encoded 
in the genomes of obligate pathogens compared to free-living organisms, which may relate to 
highly specialized metabolism (Baxter et al., 2010; Blume and Seeber, 2018; Dean et al., 2014). To 
identify the specific differences that distinguish metabolic networks of biotrophs from those 
of other plant pathogenic oomycetes, we collapsed the metabolic networks of both groups 
to derive a pan-pathogen metabolic network (the union of the necrotroph, hemibiotroph, 
and biotroph networks) and a pan-biotroph metabolic network (the union of the biotroph 
networks), which is a subset of the former. We then compared these two networks to visualize 
the differences, indicating which nodes (compounds) occur in the overall plant pathogen 
network, but have been lost in the biotrophs (Figure 4). The plant pathogen network consists 
of 1,484 nodes (compounds), of which 931 (63%) are part of the largest graph component (i.e. 
the largest connected subnetwork). It also contains 205 additional small network components, 
often composed of only a few compounds and reactions (Figure S4). These components 
predominantly contained pathways that could be associated with plant compounds such as 
‘drug metabolism’, ‘naphthalene degradation’, and ‘terpenoid biosynthesis’. It is therefore 
conceivable that these components originate from secreted enzymes involved in interactions 
with the host or the environment (Judelson and Ah-Fong, 2018). In comparison to the plant-
pathogen network, the obligate biotroph network lacks 209 compounds, of which 65 are seed 
compounds and 65 are part of the primary component. The nodes missing in the primary 
component comprise 18 seeds, including nitrate, nitrite, and 4-methyl-5-(2-phosphooxyethyl)
thiazole (a thiamine precursor). This is in line with the type of genes that are lost in obligate 
biotrophs, as many of these encode proteins with a role in the assimilation pathways for 
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these compounds (Figure 3) (Spanu, 2012). As these compounds are missing from the 
biotroph metabolic network, an alternative set of seed compounds is introduced, including 
thiamine monophosphate, fructose, pseudouridine (a nucleoside), and two lysine catabolites, 
2-oxoadipic and L-2-aminoadipic acid. It is possible that the (partial) loss of an assimilation 
pathway drives adaptations to allow the import of alternative compounds to compensate, 
e.g. through the diversification of transporter substrates (Dean et al., 2018). In addition to 
the losses in the primary component, the large majority (144/209; 69%) of compound losses 
were part of the small network components, indicating that enzyme losses of biotrophs have 
largely occurred in the accessory parts of metabolism (hypergeometric test; P=1.1×10-23). These 
losses involve many plant-related compounds such as p-coumaric and pipecolic acid, both 
strongly associated with plant defense (Table S5) (Chen et al., 2019; Hartmann et al., 2018). A 
successful biotrophic infection suppresses host defense responses (Asai et al., 2014), thereby 
making the degradation of these compounds obsolete. Interestingly, the average betweenness 
of the lost compounds was almost eight-fold lower than that of all nodes (two-tailed rank-
sum test; P=2.2×10-16). Moreover, terminal nodes in the network (i.e. with a degree of 1) were 
highly enriched for lost compounds (hypergeometric test; P=1.63×10-20) and often co-occurred 
with other lost compounds (Figure 4). Thus, lost compounds in biotrophs are not randomly 
distributed in the network but are predominantly located at the terminal branches of the 
network. We suggest that the prolonged symbiosis of obligate pathogens with their host leads 
to the evolution of ‘metabolic shortcuts’ as a result of redundant, parallel pathways with the 
host, leading to a loss of enzymes in the initial steps of the pathway (Albalat and Cañestro, 2016).

Conclusions

The co-evolution of a parasite with its host drives adaptations in the metabolism of both 
species. Here, we predicted and compared the metabolic capacity of oomycetes, a class 
mainly consisting of plant and animal pathogens, and with distinct lifestyles. We found that 
the metabolic gene repertoire among oomycetes varies widely, especially among the plant-
pathogenic species within the Peronosporacaea lineage, and this indicates strong dynamics 
and selection pressure on metabolic gene content. When the metabolic networks of these 
species were divided into a core and an accessory part, the latter showed associations with 
plant compounds. This raises the hypothesis that the pathogens produce enzymes that 
use host components as substrate. A way to test this would be to grow axenic cultures on 
minimal medium enriched with particular host substrates and analyze the culture filtrate for 
the presence of the respective enzymes and/or metabolites (Meijer et al., 2014). However, for 
obligate biotrophs such an approach is not feasible as they can not be cultured. The obligate 
biotrophs showed a profound reduction of coverage of almost all pathways, and in particular 
in their accessory metabolism. These reductions were most prominent at terminal branches 
in the network, suggesting that the metabolic networks of obligate biotrophs contract from 
the periphery to the core. It would be of interest to compare these networks to those of their
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FIGURE 4 | Lost reactions in biotrophs are mainly located at terminal branches of the metabolic network. 
A graph representation of the main component of the metabolic network of plant pathogenic oomycetes, overlaid 
with the metabolic network of solely biotrophs. Nodes are compounds, edges are (partial) reactions. Larger nodes 
highlight nodes absent (lost) in the pan-network of biotrophs. Red nodes represent the network seed nodes, and 
green nodes network seed nodes that are gained in biotrophs. For the complete pan-metabolic network, including 
smaller components, see Figure S5.
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hosts to investigate to what extent gene losses in obligate biotrophs are compensated via 
the metabolic networks of their hosts, and whether the lost enzymes are indeed dispensable 
(Duan et al., 2013; Levy et al., 2015). The detailed dissection of metabolic gene content, pathway 
coverage, and network topology presented in this study, will serve as a knowledge base to 
better understand metabolic adaptations in oomycetes in relation to lifestyle, host, and 
environment.

Methods

Species selection and proteome annotation
Genomes and annotation files were selected from literature and downloaded from FungiDB, 
NCBI Genome, Ensembl, aphanoDB or https://github.com/oomycetes/oomycetes.github.
io (Table S1) (McGowan and Fitzpatrick, 2017). We only included genomes for which gene 
annotation was publicly available (early 2019). We excluded Albugo candida and Phytophthora 
rubi as we considered their genome assemblies and annotations of insufficient quality, 
showing patterns of contamination. Since available gene annotations varied in levels of detail 
(e.g. inclusion of UTRs or transcript isoforms), we only retained the longest coding sequences 
per gene. Predicted protein sequences were clustered into ortholog clusters (orthogroups) 
using OrthoFinder (v2.3.3) (Emms and Kelly, 2019) with DIAMOND (v0.9.24.125) for homology 
searches (Buchfink et al., 2015), MAFFT v7.310 (Katoh and Standley, 2013) for multiple sequence 
alignments, and FastTree (v2.1.10) (Price et al., 2010) to infer the maximum likelihood gene tree 
for each orthogroup. The species tree was inferred as part of the Orthofinder pipeline using 
the STAG algorithm and rooted by STRIDE (Emms and Kelly, 2017; Emms and Kelly, 2019).

The predicted protein sequences were annotated based on their orthology with metabolic 
enzymes using KofamScan (v1.0.0) (Aramaki et al., 2019), which matches query protein 
sequences to pre-computed profile-hidden Markov models of KEGG Ortholog clusters. 
KofamScan uses an adaptive score threshold, heuristically determined by matching positive 
and negative training data to the KO HMM, and selecting the threshold with maximal F1-
measure (accuracy).

Since our analyses depend on the completeness of the genome annotations, we performed 
additional screenings to identify missing gene annotations in the genomes. In brief, we 
identified missing KOs based on the presence of these KOs in neighboring species, and 
subsequently queried the genome for these missing KOs. We extracted all possible subtrees 
from the species tree and selected those containing three or more species. Subsequently, we 
iterated over all subtrees from small to large, and identified ‘annotation gaps’, i.e. KOs that were 
missing in at least one species and present in more than 50% of the remaining species (thus 
at least 2/3 for a minimal subtree of three species). For each annotation gap, we considered a 
target species (which contains the annotation gap), and a source species (its closest relative 
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having the KO). The protein sequence of the KO in the source species was then aligned to the 
target genome, masked for its original genome annotations. Alignments were performed using 
Exonerate (v2.2.0) (Slater and Birney, 2005) with the protein2genome model (default settings; 
maximum intron size of 20 kb) and only considering the (single) best alignment as candidate 
KO. To prevent spurious additions of KOs, various filters were applied. First of all, alignments 
were filtered for those containing internal stop codons. Secondly, we removed alignments 
that matched the query protein for less than 90% (query coverage). Thirdly, only alignments 
were used for which the sequence identity and alignment length was above the HSSP-curve 
(offset +5), which relates sequence identity to alignment length (Figure S6) (Rost, 1999). 
Singletons, i.e. KOs present in only a single species, were removed from the dataset to prevent 
the influence of contamination.

Evolutionary analyses
To reconstruct a phylogenetic tree from the predicted species tree, we synchronized the nodes 
of the species tree with the estimated divergence times of Stramenopiles, as predicted from 
a relaxed molecular clock model (Matari and Blair, 2014) accounting for variable evolutionary 
rates on different branches of the tree. Calibration was performed using the chronos function 
of the Ape (v5.3) package in R (Kim and Sanderson, 2008; Paradis and Schliep, 2019), which 
uses penalized likelihood to calculate the divergence times of all nodes in a tree based on 
given branch lengths and calibration points. We used the estimated confidence intervals of 
the calibration points as minimum and maximum bounds for the likelihood function (Matari 
and Blair, 2014). Subsequently, we used the ace function of the Ape package to reconstruct the 
ancestral states of the metabolic KOs using maximum likelihood, and subsequently inferred 
gene family gains or losses for each branch when either parent or child node had a gene family 
size of 0.

Pan and core genomes
The pan and core accumulation curves were determined for oomycetes using a custom R 
script, iteratively sampling n species in 1,000 permutations, where n ranged from 1 to 42. 
Subsequently, for all associated genes/reactions, the core sets (present in all species) and pan 
sets (present in any species) were determined.

Pathway analyses
To quantify pathway completeness for each species, we mapped reactions on KEGG pathway 
maps (https://www.kegg.jp/). Pathway coverage was calculated as the set of uniquely mapping 
reactions for a species, expressed as a fraction of the union reaction set of all species. We 
pruned 44 pathways with five or less reactions in the pan-pathway to reduce noise and 
emphasize larger pathways. The metabolic networks were clustered according to the pairwise 
Spearman correlation distance (1-ρ) of the reaction frequency table using UPGMA (Table S4).
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Graph analyses
Graph analyses were performed using the R package igraph (v1.2.4.2) (Csardi and Nepusz, 2006). 
Metabolic networks were converted into directed graphs using the KEGG RCLASS database. 
This database contains for each reaction in KEGG the pairs of substrates and products that form 
the metabolic reaction. Reactions with multiple products or substrates are decomposed into 
sub-reactions, which helps to eliminate redundant edges. For instance, a graph representation 
of the reaction (S)-Lactate + NAD+ <=> Pyruvate + NADH + H+ would connect all substrates 
with all products, introducing 6 edges. Since many reactions use NADH, this metabolite will 
be hyper-connected in the graph, leading to connections of many unrelated reactions. Using 
RCLASS annotation, we can subdivide this reaction into (S)-Lactate <=> Pyruvate and NAD+ 
<=> NADH. Many other reactions have the same sub-reaction of NAD+ to NADH conversion, 
for which we do not introduce new edges in the graph. Graphs were visualized using Gephi 
(v0.9.2) (Bastian et al., 2009). The network seeds were calculated using the NetSeed algorithm 
(Borenstein and Feldman, 2009), and only network seeds with a confidence score of 1 were 
used.
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FIGURE S2 | Phylogenetic tree synchronized according to the molecular clock model (Matari and Blair, 2014). Each 
branch displays the metabolic gene family gains and losses as inferred by maximum likelihood analyses (see Methods).
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TABLE S1A | Species selected for this study, with data sources and literature references.

Species Lifestyle/Lineage References Download source

Achlya hypogyna saprotroph 1 NCBI Genome

Albugo laibachii biotroph 2 Ensembl protists

Aphanomyces astaci animal pathogen 3 Ensembl protists

Aphanomyces euteiches nectroph aphanoDB

Aphanomyces invadans animal pathogen 3 Ensembl protists

Aphanomyces stellatus saprotroph 3 aphanoDB

Aureococcus anophagefferens alga 4 NCBI Genome

Ectocarpus siliculosus alga 5 NCBI Genome

Fistulifera solaris diatom 6 NCBI Genome

Fragilariopsis cylindrus diatom 7 NCBI Genome

Hondaea fermentalgiana chytrid NCBI Genome

Hyaloperonospora arabidopsis biotroph 8 Ensembl protists

Hyphochytrium catenoides chytrid 9 https://github.com/guyleonard/hyphochytrium

Nannochloropsis gaditana alga 10 NCBI Genome

Nannochloropsis oceanica alga 11 NCBI Genome

Peronospora effusa biotroph 12 NCBI Genome

Peronospora belbahrii biotroph 13 NCBI Genome

Phaeodactylum tricornutum diatom 14 NCBI Genome

Phytophthora agathidicida hemibiotroph 15 NCBI Genome

Phytophthora capsici hemibiotroph 16 FungiDB

Phytophthora cinnamomi hemibiotroph FungiDB

Phytophthora cryptogea hemibiotroph 17, 18 NCBI Genome*

Phytophthora fragariae hemibiotroph 19, 18 NCBI Genome*

Phytophthora infestans hemibiotroph 20 Ensembl protists

Phytophthora kernoviae hemibiotroph 21 Ensembl protists

Phytophthora lateralis hemibiotroph 22 Ensembl protists

Phytophthora megakarya hemibiotroph 23 NCBI Genome

Phytophthora multivora hemibiotroph 15, 18 NCBI Genome*

Phytophthora nicotianae hemibiotroph 24 Ensembl protists

Phytophthora palmivora hemibiotroph 23 NCBI Genome

Phytophthora parasitica hemibiotroph Ensembl protists

Phytophthora pinifolia hemibiotroph 17, 18 NCBI Genome*

Phytophthora pisi hemibiotroph 18 NCBI Genome

Phytophthora pluvialis hemibiotroph 15, 18 NCBI Genome*

Phytophthora ramorum hemibiotroph 25 Ensembl protists

Phytophthora sojae hemibiotroph 25 Ensembl protists

Phytophthora taxon totara hemibiotroph 15, 18 NCBI Genome*

Phytopythium vexans necrotroph 26 FungiDB

Plasmopara viticola biotroph 27 NCBI Genome

Plasmopara halstedii biotroph 28 Ensembl protists

Pseudo-nitzschia multistriata diatom 29 http://bioinfo.szn.it/pmultistriata/
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Species Lifestyle/Lineage References Download source

Pythium apinafurcum necrotroph 30, 18 NCBI Genome*

Pythium aphanidermatum necrotroph 26, 18 NCBI Genome*

Pythium arrhenomanes necrotroph 26 Ensembl protists

Pythium insidiosum animal pathogen 31 NCBI Genome

Pythium irregulare necrotroph 26 FungiDB

Pythium iwayami necrotroph 26 FungiDB

Pythium oligandrum mycoparasite 32, 18 NCBI Genome*

Pythium ultimum necrotroph 33 FungiDB

Saprolegnia diclina animal pathogen Ensembl genomes

Saprolegnia parasitica animal pathogen 34 Ensembl genomes

Thalassiosira oceanica diatom 35 NCBI Genome

Thalassiosira pseudonana diatom 36 NCBI Genome

Thraustrotheca clavata saprotroph 1 NCBI Genome

* Gene annotations derived from https://github.com/oomycetes/oomycetes.github.io (ref 18)

TABLE S1B | Bibliography for the data used in this study.

Key Citation

1
Misner I, Blouin N, Leonard G, Richards TA, Lane CE. 2014. The secreted proteins of Achlya hypogyna and 
Thraustotheca clavata identify the ancestral oomycete secretome and reveal gene acquisitions by horizontal 
gene transfer. Genome Biol Evol 7:120–135.

2
Kemen E, Gardiner A, Schultz-Larsen T, Kemen AC, Balmuth AL, Robert-Seilaniantz A, Bailey K, Holub E, Stud-
holme DJ, Maclean D, Jones JDG. 2011. Gene gain and loss during evolution of obligate parasitism in the white 
rust pathogen of Arabidopsis thaliana. PLoS Biol 9:e1001094.

3

Gaulin E, Pel MJC, Camborde L, San-Clemente H, Courbier S, Dupouy MA, Lengellé J, Veyssiere M, Le Ru A, 
Grandjean F, Cordaux R, Moumen B, Gilbert C, Cano LM, Aury JM, Guy J, Wincker P, Bouchez O, Klopp C, Du-
mas B. 2018. Genomics analysis of Aphanomyces spp. identifies a new class of oomycete effector associated 
with host adaptation. BMC Biol 16:43.

4
Frischkorn KR, Harke MJ, Gobler CJ, Dyhrman ST. 2014. De novo assembly of Aureococcus anophagefferens 
transcriptomes reveals diverse responses to the low nutrient and low light conditions present during blooms. 
Front Microbiol 5:375.

5

Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury J-M, Badger 
JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho 
GY, Coelho SM, Collén J, Corre E, Silva CD, Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham 
G, Gachon CMM, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Küpper FC, Lang D, 
Bail AL, Leblanc C, Lerouge P, Lohr M, Lopez PJ, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales 
J, Moreau H, Motomura T, Nagasato C, Napoli CA, Nelson DR, Nyvall-Collén P, Peters AF, Pommier C, Potin 
P, Poulain J, Quesneville H, Read B, Rensing SA, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder DC, 
Ségurens B, Strittmatter M, Tonon T, Tregear JW, Valentin K, Dassow P von, Yamagishi T, Peer YV de, Wincker 
P. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 
465:617–621.

6

Tanaka T, Maeda Y, Veluchamy A, Tanaka M, Abida H, Maréchal E, Bowler C, Muto M, Sunaga Y, Tanaka M, 
Yoshino T, Taniguchi T, Fukuda Y, Nemoto M, Matsumoto M, Wong PS, Aburatani S, Fujibuchi W. 2015. Oil 
accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome. Plant 
Cell 27:162–176.
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Key Citation
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Leonard G, Labarre A, Milner DS, Monier A, Soanes D, Wideman JG, Maguire F, Stevens S, Sain D, Grau-Bové 
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10
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11
Wang D, Ning K, Li J, Hu J, Han D, Wang H, Zeng X, Jing X, Zhou Q, Su X, Chang X, Wang A, Wang W, Jia J, Wei 
L, Xin Y, Qiao Y, Huang R, Chen J, Han B, Yoon K, Hill RT, Zohar Y, Chen F, Hu Q, Xu J. 2014. Nannochloropsis 
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12
Feng C, Lamour KH, Bluhm BH, Sharma S, Shrestha S, Dhillon BDS, Correll JC. 2018. Genome sequences of 
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13
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moters. bioRxiv 721027.

14
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TABLE S5 | Graph properties of metabolic networks and seed compounds with seed scores.
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Thalassiosira oceanica 1159 1480 247 2.55 1.28 1.28 1153.13 189

Thalassiosira pseudonana 1221 1631 241 2.67 1.34 1.34 1739.42 182

Pseudo-nitzschia multistriata 1094 1420 207 2.60 1.30 1.30 1191.44 158

Fragilariopsis cylindrus 1220 1631 231 2.67 1.34 1.34 1216.17 180

Phaeodactylum tricornutum 1221 1687 221 2.76 1.38 1.38 1531.29 162

Fistulifera solaris 1244 1683 240 2.71 1.35 1.35 1670.03 177

Aureococcus anophagefferens 1246 1616 241 2.59 1.30 1.30 811.20 188

Ectocarpus siliculosus 1224 1622 245 2.65 1.33 1.33 1788.25 185

Nannochloropsis oceanica 1312 1767 266 2.69 1.35 1.35 1676.67 191

Nannochloropsis gaditana 1324 1773 267 2.68 1.34 1.34 1421.51 200

Hondaea fermentalgiana 1250 1723 259 2.76 1.38 1.38 1844.75 171

Hyphochytrium catenoides 1297 1742 275 2.69 1.34 1.34 2134.67 200

Aphanomyces euteiches 1287 1806 257 2.81 1.40 1.40 2166.47 168

Aphanomyces invadans 1257 1765 255 2.81 1.40 1.40 2033.27 166

Aphanomyces astaci 1230 1721 258 2.80 1.40 1.40 1901.25 157

Aphanomyces stellatus 1302 1812 262 2.78 1.39 1.39 2026.90 172

Thraustotheca clavata 1288 1776 261 2.76 1.38 1.38 1682.13 176

Achlya hypogyna 1305 1832 258 2.81 1.40 1.40 2245.35 174

Saprolegnia parasitica 1287 1813 254 2.82 1.41 1.41 1966.62 171

Saprolegnia diclina 1291 1812 255 2.81 1.40 1.40 2139.75 171

Albugo laibachii 1076 1504 216 2.80 1.40 1.40 1788.82 151

Pythium insidiosum 1198 1655 242 2.76 1.38 1.38 1827.09 174

Pythium oligandrum 1297 1813 270 2.80 1.40 1.40 2084.31 186

Pythium arrhenomanes 1202 1646 245 2.74 1.37 1.37 1846.30 169

Pythium aphanidermatum 1250 1730 256 2.77 1.38 1.38 1746.09 182

Pythium apinafurcum 1300 1848 252 2.84 1.42 1.42 2048.66 172

Pythium ultimum 1239 1740 253 2.81 1.40 1.40 1803.71 170

Pythium irregulare 1279 1808 256 2.83 1.41 1.41 1765.37 176

Pythium iwayamai 1142 1586 228 2.78 1.39 1.39 1463.16 153

Phytopythium vexans 1291 1772 275 2.75 1.37 1.37 1806.21 193

Phytophthora kernoviae 1261 1744 259 2.77 1.38 1.38 1923.95 184

Phytophthora cinnamomi 1280 1769 268 2.76 1.38 1.38 1547.28 186

Phytophthora fragariae 1247 1726 253 2.77 1.38 1.38 1908.28 182
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Phytophthora sojae 1287 1798 262 2.79 1.40 1.40 1975.53 184

Phytophthora pisi 1276 1765 266 2.77 1.38 1.38 1789.70 185

Phytophthora pinifolia 1264 1739 267 2.75 1.38 1.38 1673.65 188

Phytophthora cryptogea 1223 1685 255 2.76 1.38 1.38 1740.67 179

Phytophthora ramorum 1203 1669 254 2.77 1.39 1.39 1732.25 174

Phytophthora lateralis 1145 1503 249 2.63 1.31 1.31 999.60 180

Phytophthora agathidicida 1301 1833 261 2.82 1.41 1.41 1996.28 181

Phytophthora taxon totara 1303 1839 257 2.82 1.41 1.41 2077.57 183

Hyaloperonospora arabidopsidis 1095 1557 218 2.84 1.42 1.42 1797.96 140

Peronospora belbahrii 1135 1594 224 2.81 1.40 1.40 1913.98 156

Peronospora effusa 1123 1601 225 2.85 1.43 1.43 1973.27 154

Phytophthora palmivora 1219 1683 260 2.76 1.38 1.38 1627.77 179

Phytophthora megakarya 1267 1735 270 2.74 1.37 1.37 1762.26 195

Phytophthora multivora 1299 1827 258 2.81 1.41 1.41 2081.83 184

Phytophthora capsici 1257 1723 260 2.74 1.37 1.37 1686.96 176

Phytophthora pluvialis 1305 1828 261 2.80 1.40 1.40 2064.81 187

Plasmopara halstedii 1178 1656 232 2.81 1.41 1.41 1867.29 162

Plasmopara viticola 1168 1653 234 2.83 1.42 1.42 1858.31 151

Phytophthora infestans 1255 1754 258 2.80 1.40 1.40 1960.77 178

Phytophthora parasitica 1300 1806 261 2.78 1.39 1.39 1872.44 186

Phytophthora nicotianae 1282 1782 258 2.78 1.39 1.39 1793.28 179
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Abstract

Genome-scale metabolic models (GEMs) provide a functional view of the complex network of 
biochemical reactions in the living cell. Initially mainly applied to reconstruct the metabolism 
of model organisms, the availability of increasingly sophisticated reconstruction methods and 
more extensive biochemical databases now make it possible to reconstruct GEMs for less 
characterized organisms as well, and have the potential to unravel the metabolism in pathogen-
host systems. Here we present a GEM for the oomycete plant pathogen Phytophthora infestans 
as a first step towards an integrative model with its host. We predict the biochemical reactions 
in different cellular compartments and investigate the gene-protein-reaction associations in 
this model to get an impression of the biochemical capabilities of P. infestans. Furthermore, 
we generate life stage-specific models to place the transcriptomic changes of genes encoding 
metabolic enzymes into a functional context. In sporangia and zoospores there is an overall 
downregulation, most strikingly reflected in the fatty acid biosynthesis pathway. To investigate 
the robustness of the GEM, we simulate gene deletions to predict which enzymes are essential 
for in vitro growth. This model is an essential first step towards an understanding of P. infestans 
and its interactions with plants as a system, which will help to formulate new hypotheses on 
infection mechanisms and disease prevention.
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Introduction

The growth and functioning of any living cell is governed by a complex, interconnected set 
of biochemical reactions, comprehensively referred to as its metabolism (J. Nielsen, 2017). It 
is essential for cells to consume and break down nutrients taken from the environment, and 
to use the resulting basic building blocks to construct the molecules needed for life (nucleic 
acids, amino acids, lipids etc.) and for survival (secondary metabolites). However, the many 
molecules in this system and the many parameters that govern the biochemical reactions make 
metabolism hard to study. Systems biology was introduced as a method to study a biological 
system as a whole by capturing its behaviour in a mathematical abstraction, i.e. a model (Ideker 
et al., 2001). A model can provide insights into the response of a biological system to certain 
perturbations or stimuli (Bordbar et al., 2014). A widely studied class of models is that of genome-
scale metabolic models (GEMs), which simulate and predict the metabolic behaviour of a cell 
(Lewis et al., 2012), such as the nutrients it can assimilate and the molecules it can synthesize.

The foundation of a GEM is the set of biochemical reactions that may occur in a cell, often 
catalyzed by enzymes. Hence, the identification of enzyme encoding genes in the genome of 
an organism can help to reconstruct an overview of its biochemical capabilities (O’Brien et 
al., 2015; Yilmaz and Walhout, 2016). In a metabolic model, every reaction is considered as a 
conversion of substrate metabolites into product metabolites that takes place at a specific rate. 
The stoichiometry represents the balance of metabolites within the reaction. In steady state, 
i.e. a situation in which the net metabolite concentrations do not change, the reaction rates are 
called fluxes. A class of methods called constraint-based modelling can be used to simulate the 
distribution of these fluxes in certain conditions (Orth et al., 2010). A well-known constraint-
based method is flux balance analysis (FBA), which calculates the optimal set of flux values 
for the entire GEM to attain a specific metabolic objective. Typically, this metabolic objective 
is maximization of biomass production, a synonym for growth, but can also entail different 
objectives, for instance, minimization of energy consumption or redox potential (García 
Sánchez and Torres Sáez, 2014).

To date several semi-automated GEM reconstruction methods and protocols have been 
proposed (Agren et al., 2013; Karp et al., 2009; Schellenberger et al., 2011; Thiele et al., 2014; 
Thiele and Palsson, 2010), and the development of central databases for metabolic pathways 
and models has made biochemical information widely available (Caspi et al., 2014; Kanehisa et 
al., 2015; King et al., 2016). While initially GEM reconstruction was mainly limited to microbes 
(prokaryotes and simple eukaryotes), the available resources now allow for reconstruction of 
genome-scale metabolic models for complex organisms such as mammals and higher plants 
(Dharmawardhana et al., 2013; Thiele et al., 2013; Yuan et al., 2016). Such models have also already 
been applied to understand the metabolic interactions between pathogen and host (Duan et al., 
2013; Huthmacher et al., 2010; Peyraud et al., 2016). This can provide new hypotheses about a 
pathogen’s infection strategy and may suggest novel control targets (Chavali et al., 2012; Sharma 
et al., 2017).
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Phytophthora infestans is the causal agent of the devastating disease late blight on tomato and 
potato, posing an important threat to global food production. It belongs to the oomycetes, a 
class in the eukaryotic Stramenopile lineage that comprises many plant and animal pathogens. 
P. infestans is considered as one of the model species for oomycetes (Haas et al., 2009). In the 
asexual life cycle of P. infestans different stages can be distinguished (Judelson, 2017). When 
the mycelium starts to sporulate it forms sporangia that are dispersed by wind and water. 
Sporangia either germinate directly starting new infections or develop into zoosporangia that 
release zoospores. The latter encyst upon plant contact and germinate, thereby forming an 
appressorium at the tip from which a penetration peg emerges that mediates entry into the 
epidermal cells of the host plant. Cell wall degrading enzymes are secreted that may facilitate 
the penetration process (Brouwer et al., 2014; Meijer et al., 2014). After penetration, hyphae 
colonize the mesophyll where they grow intracellularly and form haustoria inside the host cells 
(Whisson et al., 2016). These feeding structures provide a large contact area with the host 
cytosol, enabling efficient exchange of molecules, to mediate further infection. Apart from 
the pathogen-host interactions at the protein level, it can be anticipated that an unknown 
combination of metabolites is taken up from the plant by the pathogen as nutrients.

P. infestans is able to assimilate a wide range of compounds (Hohl, 1991). In vitro, P. infestans is 
for example able to grow on pea, rye or Henninger medium which contains an undetermined 
mixture of various nutrients, such as amino acids, organic acids and lipids (Griffiths et 
al., 2003; Meijer et al., 2014). Many of the Peronosporales, the lineage that comprises the 
Phytophthora genus, are sterol and thiamine auxotrophs, which implies that these compounds 
must be acquired from the host (Dahlin et al., 2017; Gaulin et al., 2010; Judelson, 2012). 
Although sterols are highly beneficial for mycelial growth, they are not essential (Hohl, 1991). 
Conversely, thiamine is essential for growth. The nutrients that are taken up by the pathogen 
are converted into biomass and secondary metabolites. P. infestans forms various long-chain 
polyunsaturated fatty acids, predominantly arachidonic- and eicosapentaenoic acid (Griffiths 
et al., 2003; Sun et al., 2013). The oomycete cell wall is composed of various sugar polymers, 
mainly 1,3- and 1,6-β-glucans and cellulose (Grenville-Briggs et al., 2008). Notably, both the 
long-chain polyunsaturated fatty acids and the cell wall glucans can elicit plant immune 
responses (Robinson and Bostock, 2015), but it is likely that during infection such responses 
are suppressed by secreted effector proteins.

Large transcriptional changes of genes encoding metabolic enzymes were observed during 
the asexual lifecycle of P. infestans (Ah-Fong et al., 2017a), suggesting profound changes at the 
metabolic level. Notably, metabolic enzymes in general were downregulated in the sporangia 
and zoospores, and many metabolic processes (e.g. biosynthesis of various amino acids) were 
upregulated in cysts, and during mycelial growth (Ah-Fong et al., 2017a; Grenville-Briggs et al., 
2005). Moreover, elevated expression in planta of various nutrient transporter genes suggest 
a rich influx of nutrients during infection (Abrahamian et al., 2016). Transcriptome studies have 
analysed the metabolism of P. infestans from a regulatory point of view. However, these studies 
do not consider post-transcriptional regulation and metabolic reaction fluxes. A genome-scale 
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metabolic model can provide an overview of the P. infestans metabolism, and at the same 
time predict the functioning of the primary metabolism as a system. Here we propose a first 
genome-scale metabolic model for P. infestans.

Results & Discussion

Draft model reconstruction
We identified all putative enzymes encoded in the Phytophthora infestans genome (Haas et 
al., 2009) by matching all predicted protein sequences to hidden Markov models (HMMs), 
trained on groups of orthologous proteins from the KEGG Orthology (KO) database (Agren 
et al., 2013; Kanehisa et al., 2015). This is a particularly suitable method for detection of distant 
orthologs, since conserved domains have a strong influence on the alignment score and thus 
this method is sensitive to conserved catalytic domains (Pearson, 2013). Roughly 32% (5,856) 
of the 18,140 predicted P. infestans proteins matched a KO group, yet not every KO group 
represents a metabolic enzyme catalyzing a biochemical reaction. In total, 1,408 P. infestans 
genes were associated with 1,569 different biochemical reactions, involving 1,663 different 
metabolites (Table S1).

P. infestans  is able to assimilate a range of nitrogen compounds, preferably amino acids but also 
inorganic forms such as nitrate (Hohl, 1991). As a carbon source, P. infestans prefers glucose or 
sucrose, but can also utilize many mono- and disaccharides (Judelson, 2017). Early experiments 
determined that P. infestans can utilize a range of organic sulphur and phosphorus compounds, 
although more optimal growth rates were observed with inorganic sulphate and phosphate 
sources (Fothergill and Child, 1964). We added uptake reactions to the model for the minimal 
synthetic growth medium from literature (Hohl, 1991), the simplest nutrient combination 
shown to yield in vitro growth: glucose, ammonia, phosphate, sulphate and thiamine. Next, 
we composed a pool of biomass precursor metabolites that must be produced to sustain 
life: all nucleotides, all 20 L-type amino acids, energy carriers (ATP, GTP), and the cofactors 
Coenzyme-A, NADH, NADPH and FADH2, that are generally essential for a eukaryotic cell (J. 
Nielsen, 2017). The exact relative abundance of biomass components has never been quantified 
for P. infestans, therefore the aforementioned biomass metabolites were added to the model 
as substrates of a single artificial biomass reaction with equal stoichiometry. Additionally, for 
the phospholipids and fatty acids detected in P. infestans (Griffiths et al., 2003b) excretion 
reactions were included. The known cell wall components 1,3- and 1,6-β-glucan and cellulose 
are all polysaccharides for which glucose is the precursor metabolite.

We used flux balance analysis (FBA) to calculate the flux through each reaction, optimizing for 
biomass production (Orth et al., 2010). To predict quantitative fluxes using FBA, it is required 
to provide: an accurate biomass composition, maintenance ATP requirements, growth rates 
and species-specific reaction constraints (Thiele and Palsson, 2010). While the lack of detailed 
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data on P. infestans metabolism currently impairs reliable quantitative flux predictions, we can 
nevertheless deploy FBA to interrogate the model for its connectivity and topology.

Metabolic enzymes are located in various organelles, causing specific metabolic processes to 
take place in different parts of the cell. For example, the TCA cycle typically occurs in the 
mitochondria (Zimorski et al., 2017). There is an extensive exchange of metabolites between 
subcellular compartments (Wanders et al., 2016). Obviously, the compartmentalization 
influences the connectivity of the reactions and the global behaviour of the model. Based 
on localization predictions by LocTree 3 (Goldberg et al., 2014), we expanded the model by 
dividing P. infestans proteins over seven subcellular compartments (Figure 1). Reactions in 
the model were assigned to a particular compartment if at least one of the associated enzymes 
was predicted to localize there. LocTree has been trained on general eukaryotic sequences, 
which could influence the accuracy of our enzyme localization predictions. However, previous 
analyses using similar localization predictors showed that proteins predicted to co-localize are 
often also co-expressed in P. infestans (Seidl et al., 2013). The cytosol contained 1138 reactions 
while the mitochondria contained 359, which is approximately 15% of the total number of 
reactions in the model (Table 1). Of these 359, 160 (45%) were shared with the cytosol (Figure 
S1). Notably, these shared reactions are part of various metabolic pathways, but a relatively 
large number (42) is linked to the fatty acid biosynthesis (FAB) pathway. The elongation of 
fatty acids can be governed by a single fatty acid synthase enzyme (EC 2.3.1.86). P. infestans has 
three gene copies for this enzyme, one of which is predicted to encode a mitochondrial isoform 
(PITG_18025). It was reported that many eukaryotes have a highly conserved, independent 
mitochondrial FAB pathway that is crucial for development (Hiltunen et al., 2009; Kastaniotis 
et al., 2017). Phytophthora spp. are thought to store energy in fatty acid molecules to facilitate 
movement of zoospore flagella (Judelson, 2017).
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FIGURE 1 | Schematic representation of a Phytophthora infestans cell with the number of reactions and metabolites 
per subcellular compartment and the number of transport reactions deduced from the model presented in this study. 
In this model the nucleus (N) is not included as a separate subcellular compartment. C: cytosol, M: mitochondrion, P: 
peroxisome, G: Golgi complex, V: vacuole, EX: extracellular space, ER: endoplasmic reticulum.



A metabolic model for Phytophthora infestans

3

53

In our model, the TCA cycle shares five reactions with the cytosol. One of these is catalyzed 
by malate dehydrogenase (MDH, EC 1.1.1.37). P. infestans has two genes encoding MDH, one 
encoding an isoform of MDH shown to be active in mitochondria in P. infestans and the other 
encoding a cytoplasmic isoform (López-Calcagno et al., 2009). Other mitochondrial reactions 
are part of various metabolic pathways, including fatty acid biosynthesis, fatty acid degradation 
(β-oxidation) and even three glycolytic reactions, involving seven enzymes. The mitochondrial 
localization of these latter enzymes is likely a remnant of a secondary endosymbiosis event 
(Judelson, 2017).

Model correction enables flux simulation
After initial reconstruction of the model, 153 invalid reactions (e.g. polymer reactions, see 
Methods) and 107 associated genes were removed from the model. The reconstructed 
metabolic model of P. infestans was initially unable to simulate growth (flux towards all 
biomass components), due to missing reactions or invalid reaction directionality constraints. 
This can be the result of an incomplete genome sequence or missannotations. We therefore 
performed a model gap-filling optimization to find the minimal set of reactions in KEGG that 
must be added to the model to correct this (Table S2). This method proposed 16 additional 
reactions, and highlighted three reactions that must be reversed to allow for production of all 
biomass precursors. Next, eight extra drain reactions were added to the model to satisfy the 
steady-state constraint. Notably, no gap-filling solutions were found for production of the fatty 
acids eicosapentaenoic acid (EPA) and behenic acid (A.K.A. docosanoate), both of which are 
produced by P. infestans (Griffiths et al., 2003b; Robinson and Bostock, 2015; Sun et al., 2013). 
This is caused by the lack of fatty acid reactions in KEGG, leaving multiple fatty acid reactions 
unconnected to other reactions (see KEGG map 01040).

To simulate the metabolite exchange between subcellular compartments, the model must also 
include intracellular transport reactions. Although nutrient transporters in P. infestans have 
been studied (Abrahamian et al., 2016; Grenville-Briggs et al., 2010), hardly anything is known 
about the metabolites that are exchanged between the cytosol and subcellular compartments. 
The annotated substrates for transporter proteins are not specific, and are therefore hard 
to integrate into the metabolic model. Moreover, transporter substrates such as those from 
the Transporter Classification Database (Saier et al., 2016) are not cross linked with other 
databases. To overcome these limitations, we performed an optimization to identify the most 
likely set of intracellular transport reactions to be added to the model to allow production 
of all possible metabolites. We determined what metabolites could ultimately be produced 
by the model, after which we selected the minimal set of transport reactions between the 
cytosol and any compartment to allow for this (Figure 1). The extracellular space (regarded 
as a subcellular compartment) was excluded from this optimization. The metabolism in this 
compartment is largely governed by cell wall degrading enzymes. Since it is not possible to 
distinguish the origin of the metabolites, the pathogen or the host plant, we had to exclude the 
extracellular space in these analyses.
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After all correction steps, 928 of the 2,394 (39%) reactions in the model were able to carry flux 
based on the defined growth medium, 377 of which carried a nonzero flux when we calculated 
the optimal fluxes for maximal biomass production (Table S1). Of the 2,685 metabolites in the 
model, 809 could not be produced based on our defined growth medium, and may require 
additional nutrient uptake. By iteratively adding uptake reactions to the model for each of these 
metabolites, we can simulate if the import of a specific metabolite would allow the production of 
additional metabolites (Table S2). This reveals unresolved gaps in the model that could have a 
technical cause, but may also hint at biological properties. For example, episterol was proposed 
as a compound that would enable production of four other metabolites. This is striking since 
Phytophthora spp. lack sterol biosynthesis enzymes and depend on sterol acquisition from the 
host plant (Dahlin et al., 2017). Another proposed metabolite is tyramine which would, upon 
import in the model, enable the production of six other metabolites. Tyramine is a product 
of decarboxylation of tyrosine, and based on the genome annotation P. infestans seems to 
lack the enzyme that catalyzes this reaction i.e. tyrosine decarboxylase (EC 4.1.1.25). However, 
a more precise examination of the genome sequence revealed an unannotated open reading 
frame (on supercontig 1.18, position 2365580 to 2367055) that likely encodes this enzyme.

The metabolic model connects genomic and metabolic properties
We compared the properties of the P. infestans GEM (designated iSR1301, File S1) to GEMs of 
other eukaryotic microbes (Table 1). The size of our P. infestans model, in terms of integrated 
reactions and genes, is in the same order of magnitude as that of a recent GEM of Phaeodactylum 
tricornutum, a closely related diatom (Levering et al., 2016), although our model involves more 
metabolites. The sizes of the GEMs of the malaria parasite Plasmodium falciparum (Plata et 
al., 2010) and the Leishmaniasis parasite Leishmania donovani (Sharma et al., 2017) is much 
smaller, but the proportion of genes in the model is similar to that of the P. infestans model 
(~7% of total gene number of genes). Although these numbers might be smaller because of 
genome annotation quality and the level of model curation, it could also be due to the loss of 
primary metabolic pathways, for which these parasites rely on nutrient import from their hosts 
(Dean et al., 2014; Gardner et al., 2002). Despite the fact that P. infestans has a similar parasitic 
lifestyle, a pattern of pathway loss is not reflected in the size of our model.

The relation of a gene to an enzyme and its associated reactions is called the gene-protein-
reaction (GPR) association (Machado et al., 2016; Thiele and Palsson, 2010). A reaction can 
be associated with multiple enzymes (isozymes) and genes (paralogs). Conversely, one 
enzyme may present multiple catalytic domains, or it can have a broad substrate specificity, 
which associates it to multiple reactions. This “many-to-many-to-many” relationship holds 
information about redundancy of enzyme encoding genes in a genome, but also about gene 
essentiality, and the metabolic robustness of an organism to perturbations and fluctuations in 
nutrient availability (Belda et al., 2012). In our model, 40.4% of the genes are associated with just 
a single reaction, and 44.9% of the reactions in the model are associated with a single gene, which 
makes the respective genes essential for specific metabolic tasks (Figure S2). In comparison, for 
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the P. tricornutum GEM these numbers are higher (68.6% and 54.5% respectively). The diatom 
model is presumably of higher quality, since most reactions are manually curated. However, it 
might also hint at less redundancy of metabolic enzymes.

TABLE 1 | Statistics of the Phytophthora infestans GEM iSR1301 and GEMs of other eukaryotic microbes.
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Reactions 2394 2156 1001 1135 1882

Transport 373 308 233 358 N/A

Cytosolic 1138 942 503 363 N/A

Mitochondrial 359 409 49 197 N/A

Metabolites 2685 1704 616 1135 1454

Genes 1301 1025 366 604 901

% of total 7.17% 9.85% 6.91% 7.30% 13.64%

Model name iSR1301 iLB1025 iTH366 iMS604 Yeast 7

Reference This study Levering et al. 2016 Plata et al. 2010 Sharma et al. 2017 Aung et al. 2013

Stage-specific models reflect reduced metabolic activity in sporangia and zoospores
It has been demonstrated that integration of transcriptomics data into a metabolic model has 
the potential to unveil condition- or tissue specific metabolic activity (Agren et al., 2012; Becker 
and Palsson, 2008; Gatto et al., 2014; Huthmacher et al., 2010). We had access to transcriptome 
data of four asexual life stages, i.e. mycelium, sporangia, zoospores and germinating cysts (C. 
Schoina et al., unpublished; Chapter 5), and deployed the iMAT algorithm (Shlomi et al., 2008) 
to predict stage-specific metabolic models for these life stages. This algorithm considers binary 
gene expression, i.e. a gene can either be expressed or not. Subsequently, it finds the fluxes 
through the model, supported by the maximum number of expressed genes, independent 
of defined medium and biomass composition. This results in sub-models for which all 
included reactions can carry flux. However, not all underlying genes have to be expressed. 
In other words, the resulting stage-specific models are sets of reactions that correlate best 
to the expression of the underlying genes. These reactions are therefore most likely to be 
metabolically active. If a reaction is absent from a stage-specific model, it is either absent 
because the expression of the associated genes is low, or because upstream reactions are 
absent. Comparing the sets of reactions in each stage-specific model might reveal highly active 
life-stage specific metabolic activity. The distribution of stage-wise expression values for the 
genes in the model form a slimmer distribution (with slightly higher mean) than that of the 
total set of genes, indicating that genes in the model are more uniformly expressed (Figure 
3A). To generate a sufficiently large contrast between the stage-specific models we set the 
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binary gene expression threshold at 7.04 TPM, the median of all expression values. Based on 
this threshold, genes were called expressed/not expressed, and life stage-specific models were 
calculated. Fewer genes were considered expressed in the sporangium and zoospore stages 
than in mycelium and germinating cyst stages (Figure 3B).

The stage-specific models for sporangium and zoospore stages contain fewer reactions in 
total (Figure 2A), concordant with the observed general downregulation of many metabolic 
pathways in these stages (Ah-Fong et al., 2017a). The mycelium and germinating cysts models 
contain 1,021 and 1,017 reactions, respectively. Of these, 997 are shared, indicating that these 
models are highly similar. Although the majority of the reactions, i.e. a core set of 901 reactions, 
are shared between all four stage-specific models there are also obvious differences; 55 
reactions are specifically absent from the zoospore model (hence present in the other three), 
21 reactions are only absent from the sporangium model while 20 reactions are absent from 
the sporangium and zoospore models, but present in mycelium and germinating cyst models. A 
principal component analysis of stage-wise reaction presence/absence (Figure 2B) shows that 
the mycelium and germinating cyst models cluster relatively close, whereas the sporangium and 
the zoospore models are more isolated. In summary, our data reflects the regulatory changes 
that reroute the metabolism of P. infestans during each life stage, especially the transitions 
between mycelium/germinating cyst and sporangium/zoospore stages (Ah-Fong et al., 2017a).
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FIGURE 2 | Stage-specific models of Phytophthora infestans mycelium (MY), sporangia (SP), zoospores (ZO) and 
germinating cysts (GC) A: Overlap of reaction content between the four stage-specific models. The bars on the 
bottom-left show the total numbers of reactions in each stage-specific model. The connected bullets indicate the 
models that are compared, and the bars in the graph represent the number of reactions (intersection size, Y-axis) 
that overlap between the stage-specific models. B: PCA on the stage-wise presence/absence (1/0) of a reaction in the 
stage-specific models.
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To further interpret the presence/absence of reactions in the stage-specific models, we looked 
at the associated metabolic pathways (Figure S4). For instance, the mycelium model contains 
two unique reactions of the “Vitamin B6 metabolism” pathway (KEGG R00173 and R00174), 
which represent the interconversion of pyridoxal (vitamin B6) to pyridoxal phosphate, an 
important cofactor for a large number of reactions, especially for the synthesis of amino acids 
(Percudani and Peracchi, 2003). The nitrogen metabolism pathway is represented by a core 
set of nine reactions, but the zoospore model lacks two reactions compared to mycelium 
and sporangia. Interestingly, these are reactions that contribute to glutamine and glutamate 
synthesis. Recently, the upregulation of nitrate transporters in zoospores has been reported 
(Ah-Fong et al., 2017a), which suggests an active nitrogen flux during this life stage. However, a 
reduced concentration of all amino acids was found in zoospores compared to other life stages 
(Grenville-Briggs et al., 2005). As pointed out earlier the expression of enzymes in the nitrogen 
metabolism pathway is highly dynamic and depends on available nutrients (Abrahamian et al., 
2016). Possibly the nitrogen imported during the zoospore stage is stored and converted to 
amino acids at later life stages.

We observe the largest contrast of stage-wise reaction presence/absence in the fatty acid 
biosynthesis (FAB) pathway (Figure 3). A set of 10 reactions is present in the mycelium and 
germinating cyst models, and absent in the sporangium and zoospore models. Eight reactions 
are specifically absent in the zoospore model, but three other reactions are specifically 
present. The latter are all mediated by two cytosolic fatty acid synthases (PITG_10922 and 
PITG_10926), seemingly downregulated in other stages. Instead, the mitochondrial fatty acid 
synthase (PITG_18025) seems active in the mycelium and germinating cyst stages. It is likely 
that fatty acids are synthesized during hyphal stages, since zoospores are thought to use stored 
fatty acids as nutrient source (Grant et al., 1988; Yousef et al., 2012). These data emphasize 
that fatty acids likely have an important role in Phytophthora zoospores. The three fatty acid 
synthase enzymes in P. infestans play a major role in the FAB process. Intriguingly, there could 
be a switch between cytosolic and mitochondrial FAB in zoospores. An unanticipated finding, 
both reported by Ah-Fong and colleagues (2017) and based on our model, is that fatty acid 
degradation (β-oxidation) is not pronounced in the zoospore stage, despite the predicted role 
of fatty acids in zoospore motility (Judelson, 2017).
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R04969 − PITG_18025
R04568 − PITG_18025; PITG_11976
R04428 − PITG_18025; PITG_11976
R04537 − PITG_18025; PITG_11976
R07765 − PITG_18025
R04970 − PITG_18025
R04965 − PITG_18025; PITG_11976
R04964 − PITG_18025; PITG_05939
R04962 − PITG_18025
R04724 − PITG_18025
R04534 − PITG_18025; PITG_05939
R04535 − PITG_18025; PITG_11976

Reaction Genes

FIGURE 3 | Fatty acid biosynthesis reactions in the stage-specific models of Phytophthora infestans mycelium (MY), 
sporangia (SP), zoospores (ZO) and germinating cysts (GC). Presence/absence of a KEGG reaction (indicated by its 
ID followed by associated gene IDs) is shown by filled/empty tiles, respectively while mitochondrial and cytosolic 
reactions are shown in orange and purple, respectively.

Gene deletion simulations propose metabolic vulnerabilities
We investigated what effect gene deletions could have on the primary metabolism of P. 
infestans. By removing single genes from the model, one or more of the associated reactions 
in the model may be disabled. If such reactions are essential for production of any of the 
biomass precursors, these deletions disable growth i.e. the mathematical solution of the model 
becomes infeasible (O’Brien et al., 2015), making such genes interesting candidates for further 
study. We performed single gene deletion (SGD) simulations of all genes in the model, which 
suggested 72 genes that would disable growth by disabling production of one of the essential 
biomass precursors (Table S2). These genes were associated with 285 reactions in various 
metabolic pathways (Figure 4). The pathways “phenylalanine, tyrosine and tryptophan 
biosynthesis” (17 out of 26 reactions vulnerable to SGD) and “valine, leucine and isoleucine” 
(11/17) are by far the most vulnerable pathways. Notably, the fatty acid degradation pathway is 
also delicate (17/111). In contrast, the most robust pathways are “tyrosine metabolism” (1/39), 
and “amino sugar and nucleotide sugar metabolism” (1/27).

There are numerous examples of the application of this method to suggest drug targets in 
pathogens (Hartman et al., 2014; Kaltdorf et al., 2016; Plata et al., 2010; Sharma et al., 2017; 
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Yizhak et al., 2013), thus suggesting that identified enzymes in P. infestans represent interesting 
candidates for further study. To confirm that these enzymes are essential for viability, 
ideally the encoding genes have to be deleted or targeted by site-directed mutagenesis. 
However, P. infestans is a diploid or polyploid organism and making gene knock-outs is not 
(yet) a straightforward procedure. Gene silencing though is feasible and has been applied 
to study the function of several genes involved in pathogenesis or signal transduction. The 
first functional study dealing with genes involved in primary metabolism was published only 
recently. Abrahamian and colleagues (2016) silenced the genes encoding nitrate and nitrite 
reductase and their results suggested a role of these genes in virulence. Although both genes 
are included in our model, they were not marked as essential based on the SGD simulations 
suggesting alternative routes for nitrogen metabolism. Our simulations are of course based on 
in vitro growth conditions, while in its natural habitat P. infestans mainly resides in planta. It is 
thought that P. infestans imports larger, organic nutrients such as amino acids during infection 
(Abrahamian et al., 2016).

Concluding remarks
Here we present, to our knowledge, the first genome-scale metabolic model for the oomycete 
Phytophthora infestans, reconstructed mostly in silico, based on reactions found in KEGG. 
The aim of this study was not to provide a fully quantitative model, but rather to provide 
a broad overview of cellular metabolism, related to its genome. We optimized the model 
to be able to convert a minimal pool of nutrients into a set of minimal biomass precursors 
established from literature. Our model contributes to an understanding of the metabolism of 
P. infestans. However, even after gap filling, the fatty acids EPA and behenic acid could not be 
generated from the model, due to missing reactions in KEGG. This underscores the limitations 
of using solely KEGG as a resource, which may be overcome by manual refinement of fatty 
acid biosynthesis pathways from different databases, such as MetaCyc or BRENDA (Caspi et 
al., 2014; Placzek et al., 2017). In fact, the BRENDA database holds information on an omega-3 
desaturase able to convert arachidonic acid into EPA (EC 1.14.19.25). This exact enzyme of P. 
infestans was recently proven capable of catalyzing this reaction in yeast (Yilmaz et al., 2017). 
We also revealed one unannotated tyrosine decarboxylase gene in the P. infestans genome, 
emphasizing the fact that the genome annotation of the reference genome published in 2009 
by Haas et al. needs to be revisited. On the other hand, it demonstrates this model can be used 
to aid the discovery of unannotated genes. Obviously the model will improve when a more 
accurate genome annotation becomes available, and future versions of the model should help 
us to address the shortcomings encountered in this study. Additionally, an experimentally 
assessed biomass composition, transporter integration, inclusion of species-specific reaction 
constraints and growth rates may be used to improve the accuracy of this model. The absence 
of these data restrains us from making quantitative predictions, such as growth rates or 
influence of different nutrients.
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FIGURE 4 | Gene deletion simulations in the Phytophthora infestans model. Percentage of essential reactions in each 
KEGG pathway that can be knocked out by a single gene deletion, thereby disabling production of at least one biomass 
precursor (i.e. essential). The colors of the bars scale with the absolute numbers of reactions found in our model in a 
particular KEGG pathway (inset top right).

The life stage-specific models provide a direct functional context for the transcriptome 
data, by predicting the behavior of P. infestans metabolism under influence of stage-wise 
gene expression and are an alternative for the enrichment methods typically employed 
in metabolic pathway analyses. Approaching transcriptomic data from a functional point 
of view may emphasize certain features that are otherwise easily overlooked (e.g. the fatty 
acid biosynthesis). By building this model we can identify genes that have an essential role 
when converting simple nutrients to the building blocks of life. The metabolic model we 
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reconstructed provides a scaffold for future genome-wide systems biology approaches to 
characterize the metabolism of P. infestans, and is an essential first step towards an integrative 
model of P. infestans–host interactions.

Methods

Draft reconstruction
We reimplemented the getModelFromKEGG getKEGGModelForOrganism method from 
the RAVEN Toolbox (Agren et al., 2013) to improve performance and to incorporate minor 
adaptations. Briefly, Hidden Markov Models (HMMs) were trained on orthologous enzyme 
sequences derived from the KEGG Orthology (KO) database, Release 2015-11-23. We 
constructed multiple sequence alignments (MSA) of all eukaryotic protein sequences in every 
KEGG orthologous group using MAFFT version 7.273 (Katoh and Standley, 2013), using the 
“localpair” mode for local alignments. For performance reasons, the number of sequences 
used in an MSA was capped at 100, in which case we selected a random subset of sequences 
in the KO group. If fewer than 20 eukaryotic sequences were included in a KO group we 
constructed MSAs for prokaryotic sequences in respective KO group, maintaining the same 
rules. We used hmmbuild from the HMMER package version 3.1b (Eddy, 1998) to train HMMs 
on the MSAs. By using hmmsearch, we matched the HMMs to the protein sequences of P. 
infestans strain T30-4 (Haas et al., 2009), downloaded on the 25th of July, 2015 from the BROAD 
Institute website (https://www.broadinstitute.org), currently hosted at NCBI (bioproject 
17665). Default parameters were maintained for hmmbuild and hmmsearch, and an E-value 
threshold of 10-20

 was applied for hmmsearch. Similar to the getKEGGModelForOrganism 

function of the RAVEN Toolbox (Agren et al., 2013), we performed two pruning steps, but 

we applied slightly stricter thresholds. First, any protein match to a KO group was removed 

if ( )  
0.9

 ( ) 
<

bestKO

log E
log E

, where E represents the E-value of respective protein to a KO group, and 

EbestKO represents the E-value of the best-matching KO group for that protein. In other words, 

protein hits are often removed if they have a better match to another KO group. Second, any 

protein match to a KO group was removed if ( )
( )

  
0.5

  
<

bestProt

log E
log E

, where E again represents the 

E-value of respective protein match to a KO group, and EbestProt represents the lowest E-value 
of any protein to this KO group. This reduces the number of matches per KO group to reduce 
the number of false positives, since there is clearly a better matching protein. Subsequently, 
we retrieved all KO annotations of P. infestans from KEGG (organism ID “pif”). The combined 
set of matched KO groups was used to retrieve all associated reactions and metabolites from 
KEGG. Consequently, each reaction in the model was associated with a number of P. infestans 
genes. We hypothesized that each of the genes associated with a reaction is able to catalyze 
it. We did not consider enzyme complexes, which together would fulfil a single enzymatic task. 
Reactions were removed automatically if their stoichiometry was undefined (e.g. “1,3-beta-D-
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Glucan(n) + UDP-D-glucose <=> 1,3-beta-D-Glucan(n+1) + UDP”), and if the same metabolite 
ID occurred at both sides of the reaction arrow, which implies a polymer reaction (e.g. “UTP 
+ RNA <=> Diphosphate + RNA”). Additionally, reactions that were associated to metabolites 
containing the substrings “acceptor”, “donor”, “tRNA”, “enzyme”, “aglycon” and “fatty acid” 
were removed.

Model correction
We predicted the subcellular location of P. infestans proteins using  LocTree 3 (Goldberg 
et al., 2014), and subsequently distributed the associated reactions of the model over the 
cellular compartments. We selected seven compartments for our model: cytosol, extracellular 
space, mitochondria, endoplasmic reticulum, Golgi complex, peroxisome and vacuole. 
Reactions associated to enzymes with transmembrane predictions (plasma or intracellular 
membranes) were assigned to respective compartments on both sides of the membrane, 
since it is unclear where the catalytic domain is localized. Proteins assigned to any other than 
our seven compartments, were assigned to the cytosol. Next, all proteins that were predicted 
to be secreted by Raffaele and colleagues (2010) were assigned to the extracellular space 
compartment.

The initially reconstructed model was exported to SBML and Microsoft Excel format using 
CobraPy v0.4.1 (Ebrahim et al., 2013). For the next steps we imported the model into MATLAB 
(R2015b) using the RAVEN Toolbox v1.8 (Agren et al., 2013). We used Gurobi v7.0.1 (http://www.
gurobi.com/) to solve the (mixed-integer) linear programs.

Nutrient uptake and biomass reactions were added to the model by applying the fillGaps 
function from the RAVEN Toolbox to propose gap solutions from KEGG, by constraining 
biomass production to a positive flux. This method implements the SMILEY algorithm 
(Rolfsson et al., 2011), including all reactions from a universal set of reactions (in this case 
KEGG), and subsequently minimizing the flux through these. Prior to this, we temporarily 
removed the extracellular space compartment to prevent gap solutions here, and added all 
possible transport and excretion reactions to the model. During gap filling, we allowed the 
net production of metabolites, whereafter we added drain reactions (allowing excretion) for 
unbalanced metabolites, to enable steady-state solutions of the model at this point. To predict 
the set of transport reactions between compartments, we assessed which metabolites can 
ultimately be produced by the model. Then, we constrained a positive flux for the production 
of these metabolites, and we removed the transport reactions that did not carry flux.

After these correction steps, we used the function solveLP from the RAVEN Toolbox to solve 
the linear programs of flux balance analysis (FBA), and to get the flux distribution for maximal 
biomass production. We applied the function checkProduction to detect metabolite gaps 
in the model. This method checks which metabolites are not producible (blocked) from the 
model, and then iteratively adds uptake reactions for these metabolites, to see whether the 
uptake of these metabolites unblocks metabolites elsewhere in the model.
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Stage-specific models
We used RNA sequencing data (C. Schoina et al., unpublished; Chapter 5) to quantify gene 
expression in four in vitro life stages of P. infestans, i.e. mycelium, sporangia, zoospores 
and germinating cysts. Gene expression of P. infestans strain T30-4 (Haas et al., 2009) was 
quantified using Kallisto v0.42.4 (Bray et al., 2016), which expresses mRNA abundance in 
transcripts-per-million (TPM). This unit represents the number of reads aligned to transcript 
sequences, normalized for transcript length and sequencing depth, scaled by a million. We 
determined a binary expression threshold to define if a gene is expressed or not, for which we 
used the median of all expression values over the four life stages. We decomposed the biomass 
and other excreted compounds (lipids etc.) into separate excretion reactions, and used the 
iMAT algorithm (implemented in the function createTissueSpecificModel) incorporated in 
the COBRA Toolbox (Schellenberger et al., 2011; Shlomi et al., 2008) to derive stage-specific 
models.

Gene knockout simulations
We used the function findGeneDeletions from the RAVEN Toolbox to predict the genes 
that would, upon deletion, disable biomass flux. This method first selects reactions that are 
supported by a single gene, and then iteratively constrains the flux of these reactions to zero. 
A gene is marked as essential if the linear program of FBA becomes infeasible after deletion, 
i.e. when no flux through the biomass reaction is possible.
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Supplemental Information

TABLE S2A | Reactions added to the model as gap-filling solutions.

Reaction ID Compartment

Added R00383 ER
R00665 Cytosol
R00728 Mitochondria
R00915 Cytosol
R00965 Cytosol
R02251 Cytosol
R02325 Cytosol
R03013 Cytosol
R03028 Mitochondria
R07280 Cytosol
R08176 Cytosol
R09375 Cytosol
R09675 Cytosol
R10170 Cytosol
R10404 Mitochondria
R10706 Cytosol

Reversed R01213 Cytosol
R01933 Mitochondria
R03348 Cytosol

TABLE S2B | Drain/sink Reactions added to the model.

Reaction ID metabolite

EXC_DRAIN_C00042 Succinate
EXC_DRAIN_C00054 Adenosine 3’,5’-bisphosphate
EXC_DRAIN_C00060 Carboxylate
EXC_DRAIN_C00080 H+
EXC_DRAIN_C00229 Acyl-carrier protein
EXC_DRAIN_C00996 Ferricytochrome b5
EXC_DRAIN_C01134 Pantetheine 4’-phosphate
EXC_DRAIN_C01267 3-(Imidazol-4-yl)-2-oxopropyl phosphate
EXC_DRAIN_C03373 Aminoimidazole ribotide
EXC_DRAIN_C03688 Apo-[acyl-carrier-protein]
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TABLE S2C | Candidate metabolites to be added to the model, and how many reactions their addition would unblock. 
Only those unblocking >5 reactions are shown, full table can be found online.

Metabolite Connects

(S)-3-Hydroxy-3-methylglutaryl-CoA[c] 12
S-Adenosyl-L-homocysteine[c] 9
1-(beta-D-Galactosyl)-2-(2-hydroxyacyl)sphingosine[c] 9
5-Methyltetrahydrofolate[c] 8
Retinyl palmitate[c] 8
Estrone[c] 7
1D-myo-Inositol 1,3,4-trisphosphate[c] 7
L-Selenocysteine[c] 7
m7G(5’)pppR-mRNA[c] 7
7,8-Dihydroneopterin 3’-triphosphate[c] 7
Gibberellin A12[c] 7
Tyramine[c] 6

TABLE S2D: Essential genes in the model.
Essential genes

PITG_18374 PITG_05374 PITG_17925 PITG_02221
PITG_18185 PITG_02925 PITG_15045 PITG_11013
PITG_09954 PITG_15449 PITG_06969 PITG_01411
PITG_00127 PITG_02503 PITG_03410 PITG_05245
PITG_03620 PITG_01245 PITG_17262 PITG_14699
PITG_08445 PITG_01769 PITG_01742 PITG_09271
PITG_01752 PITG_17786 PITG_03530 PITG_16024
PITG_04441 PITG_17983 PITG_17003 PITG_05520
PITG_08061 PITG_06604 PITG_22928 PITG_14831
PITG_09848 PITG_13399 PITG_13402 PITG_07027
PITG_04010 PITG_01049 PITG_04601 PITG_12232
PITG_02087 PITG_09566 PITG_03404 PITG_09726
PITG_20559 PITG_02750 PITG_00765 PITG_01103
PITG_00221 PITG_09536 PITG_01783 PITG_14966
PITG_10595 PITG_02594 PITG_00034 PITG_10026
PITG_17032 PITG_01235 PITG_19174 PITG_01700
PITG_05318 PITG_18048 PITG_06749 PITG_01913
PITG_06352 PITG_16102 PITG_14634
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Abstract

The oomycete pathogen Phytophthora infestans causes potato and tomato late blight, a disease 
that is a serious threat to agriculture. P. infestans is a hemibiotrophic pathogen and during 
infection it scavenges nutrients from living host cells for its own proliferation. To date, the 
nutrient flux from host to pathogen during infection has hardly been studied and the interlinked 
metabolism of pathogen and host remains poorly understood. Here, we reconstructed an 
integrated metabolic model of P. infestans and tomato (Solanum lycopersicum) by integrating 
two previously published models for both species. We used this integrated model to simulate 
metabolic fluxes from host to pathogen and explored the topology of the model to study 
dependencies of the metabolism of P. infestans on that of tomato. This showed for example, 
that P. infestans, a thiamine auxotroph, depends on certain metabolic reactions of the tomato 
thiamine biosynthesis. We also exploited dual-transcriptome data of a time course of a full late 
blight infection cycle on tomato leaves and integrated the expression of metabolic enzymes in 
the model. This revealed profound changes of pathogen-host metabolism during infection. As 
infection progresses, P. infestans performs less de novo synthesis of metabolites and scavenges 
more metabolites from tomato. This integrated metabolic model for the P. infestans-tomato 
interaction provides a framework to integrate data and generate hypotheses about in planta 
nutrition of P. infestans throughout its infection cycle.

Importance

Late blight disease caused by the oomycete pathogen Phytophthora infestans, leads to 
extensive yield losses in tomato and potato cultivation worldwide. To effectively control this 
pathogen, a thorough understanding of the mechanisms shaping the interaction with its hosts 
is paramount. While considerable work has focused at exploring host defense mechanisms and 
identifying P. infestans proteins contributing to virulence and pathogenicity, the nutritional 
strategies of the pathogen are mostly unresolved. Genome-scale metabolic models (GEMs) can 
be used to simulate metabolic fluxes and help in unravelling the complex nature of metabolism. 
We integrated a GEM of tomato with a GEM of P. infestans, to simulate the metabolic fluxes 
that occur during infection. This yields insights in the nutrients that P. infestans obtains during 
different phases of the infection cycle and helps in generating hypotheses about nutrition in 
planta.
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Introduction

Plants and pathogens maintain a complex relationship that generally involves the secretion of 
effector proteins by the pathogen to manipulate plant cell processes and the scavenging of 
nutrients from the host by the pathogen to support its growth and proliferation (Rovenich et 
al., 2014). While increasing knowledge is gained on secreted effectors proteins that facilitate 
host colonization (Whisson et al., 2016), understanding of pathogen nutrition remains 
underexplored. A class of organisms comprising important plant and animal pathogens are 
the oomycetes (Derevnina, Petre, et al., 2016). These share morphological characteristics 
with fungi, yet belong to the Stramenopiles, a eukaryotic lineage that besides oomycetes also 
includes diatoms and brown algae (McCarthy and Fitzpatrick, 2017). The most well-known 
oomycete is Phytophthora infestans, the causal agent of late blight disease on tomato and 
potato, which leads to significant yield losses worldwide (Kamoun et al., 2015). P. infestans is 
challenging to control. The pathogen has a highly flexible genome facilitating rapid adaptation 
to control strategies, be it resistant cultivars or chemical agents (Fry, 2016), and its profuse 
sporulation causes P. infestans to spread extremely fast (Leesutthiphonchai et al., 2018). 
Hence, there is a continuous quest for novel, more durable control strategies.

P. infestans sporangia are aerially dispersed and after landing on a plant surface these can 
release flagellate zoospores (Judelson, 2017). These encyst and germinate to form a germ 
tube with an appressorium to penetrate epidermal cells of the plant. From there, P. infestans 
colonizes the mesophyll; hyphae grow in the apoplast while forming intracellular feeding 
structures, called haustoria. Both the apoplastic hyphae and haustoria provide close contact 
with the plant, facilitating the exchange of effectors and nutrients (Judelson and Ah-Fong, 2018). 
Oomycetes are considered osmotrophs that extracellularly catabolize complex host polymers 
such as proteins, sugars, and fatty acids using an arsenal of secreted enzymes, followed by the 
import of degraded nutrients into the cell (Richards and Talbot, 2013). Moreover, P. infestans 
is a hemibiotrophic pathogen that requires viable host cells during the initial stages of the 
infection cycle, the so-called biotrophic stage with minimal symptoms. Typically after three 
to six days, this is followed by a necrotrophic stage during which the lesion becomes necrotic 
and new sporangia emerge (Van West et al., 1998; Zuluaga et al., 2016). This implies that the 
physiology of the host tissue changes throughout the infection cycle, and consequently also 
the nutrients available for the pathogen (Ah-Fong et al., 2017b). Conceivably, P. infestans 
fine-tunes its metabolism to available nutrients, for example by regulating the expression of 
enzyme-encoding genes through catabolite repression and/or substrate induction (Divon and 
Fluhr, 2007; Judelson et al., 2009b).

The P. infestans metabolism is remarkably dynamic. Transcriptome-based studies revealed 
significant differences in transcript abundance of enzyme-encoding genes throughout the 
asexual and sexual lifecycles and during plant infection (Abrahamian et al., 2016; Abrahamian 
et al., 2017; Ah-Fong, Kim, et al., 2017; Niu et al., 2018). While these studies provide detailed 
insight into the potential dynamics of metabolic enzymes, insight gained into the overall 
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characteristics of the cell metabolism is very limited. Importantly, cell metabolism is not a 
static framework of reactions and pathways but adapts to different environments to allow 
for uptake of metabolites or the production of required compounds. These dynamics are 
facilitated by the regulation of the rates of individual reactions within the pathways. However, 
as many intrinsic (e.g. enzyme activity) or extrinsic (e.g. pH or temperature) factors influence 
these reaction rates, studying cell metabolism remains challenging.

Genome-scale metabolic models (GEMs) can help to understand cell metabolism. GEMs 
represent cell metabolism as a cell-scale network of biochemical reactions, typically distributed 
over several cellular compartments, that connects the uptake of nutrients to the production 
of biomass precursors (J. Nielsen, 2017; O’Brien et al., 2015). Assuming metabolism to be in 
steady-state allows the derivation of possible rates (called metabolic fluxes) for each reaction 
in the network (File S1). A GEM can be used to predict putative nutrients and essential 
enzymes/reactions in the cell, thereby generating hypotheses about the responses of the cell 
metabolism to perturbations (Chavali et al., 2012). Therefore, metabolic models have great 
potential to aid in the development of novel control strategies against pathogens (Cesur et 
al., 2018; Peyraud et al., 2017). The metabolism of a pathogen is tightly interconnected with 
that of its host, and can be regarded as a single system (Olive and Sassetti, 2016). Moreover, 
the relationship of a pathogen with its host shapes its metabolism through evolution, leading 
to enzyme gene loss, which makes the pathogen dependent on its host (Spanu, 2012). An 
integrated host-pathogen metabolic model can yield insights into the system-wide metabolic 
fluxes that shape an infection. Thus far only few models exist that describe the joint metabolism 
of beneficial or pathogenic microbes and their hosts (Aller et al., 2018; Ankrah et al., 2018; 
Bordbar et al., 2010; Huthmacher et al., 2010; Magnúsdóttir et al., 2016; Raghunathan et al., 
2009; Raghunathan et al., 2010).

Recently, we published the first GEM for P. infestans (Rodenburg et al., 2018a). We used this 
model to simulate the growth of P. infestans on minimal culture medium, and predicted the 
essential genes and corresponding reactions that are required to convert its nutrients into 
biomass components (Rodenburg et al., 2018a). Here, we integrated the P. infestans GEM 
with a tomato GEM (Yuan et al., 2016). Using these models, we developed a host-pathogen 
interaction metabolic model that allowed us to identify and study hallmarks of the P. infestans-
tomato interaction. Exploiting gene expression data of late blight infections on tomato enabled 
us to dissect the changes in pathogen and host metabolism, providing novel insights into this 
host-pathogen interaction.
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Results & Discussion

A metabolic model for the tomato-P. infestans pathosystem
To reconstruct an integrated tomato-P. infestans metabolic model, we exploited a recently 
constructed tomato GEM (Yuan et al., 2016). This tomato model comprised 2143 reactions and 
3410 genes, whereas the previously constructed P. infestans GEM comprised 2394 reactions 
and 1301 genes, suggesting that P. infestans has less genetic redundancy for metabolic 
enzymes than tomato (Table 1). Our original P. infestans GEM was based on a framework 
reconstructed by annotation of enzyme orthologs in the P. infestans genome, linking those 
the biochemical reactions in KEGG (Kanehisa et al., 2015; Rodenburg et al., 2018a). Based on 
literature we added a minimal growth medium, a set of known biomass precursors and cellular 
compartments, and simulated in vitro growth. The tomato GEM we used was originally used 
to simulate photorespiratory fluxes under different conditions, and was reconstructed from 
LycoCyc (Caspi et al., 2014). We manually improved the P. infestans and the tomato GEMs 
(see Methods). For example, according to recent insights into the mitochondrial localization 
of glycolytic enzymes (Abrahamian et al., 2017), we curated the gene-reaction association of 
P. infestans in this pathway. In the tomato GEM we curated the thiamine biosynthesis, since P. 
infestans is a thiamine auxotroph (Judelson, 2017). The two GEMs were connected by so-called 
transport reactions, representing the nutrient flux from tomato to P. infestans. Although the 
transporter repertoire of P. infestans has been predicted (Abrahamian et al., 2016), we could 
not attribute specific substrates to transporters. Most functional annotations lack specificity, 
and even between oomycete species transporter substrate specificity can vary (Savory et al., 
2018). Therefore, we chose for an unbiased approach, connecting the two GEMs by addition 
of a hypothetical unidirectional transport reaction for each for the 520 metabolites that were 



 Chapter 4

4

76

found shared between the cytosol compartments, each one representing the flux of a single 
metabolite from the tomato cytosol to the P. infestans cytosol (Figure 1). We realized that 
fluxes may occur in both directions (i.e. from host to pathogen and vice versa) for a pathogen 
to maintain homeostasis during infection, but the absent knowledge of this process only 
allowed us to model host-to-pathogen nutrient fluxes. The 520 shared cytosol metabolites for 
which transport reactions were added to the model predominantly include metabolites taking 
part of primary metabolic subsystems (from KEGG). These include the subsystems amino acid 
biosynthesis (n=75), carbon metabolism (n=61), purine- and pyrimidine biosynthesis (n=51 and 
n=37 resp.), and the subsystem ‘ABC transporters’ (n=42). The latter indicates that at least 42 
metabolites are known ABC transporter substrates. Of the 520 introduced transport reactions, 
179 could carry a flux, meaning that the respective metabolites can both be produced by tomato 
and assimilated by P. infestans. The integration of the two GEMs resulted in an integrated 
metabolic model of P. infestans-tomato interaction, comprising a total of 4695 reactions, 4303 
metabolites and 4578 genes (Table 1).

Table 1: Properties of the genome-scale metabolic models of P. infestans and tomato (S. lycopersicum), and of the 
integrated metabolic model.

System P. infestansa S. lycopersicumb P. infestans + S. lycopersicumc,d

Model name iSR1301 iHY3410 iSR4578

Reactions 2394 2143 4695

Metabolites 2685 1998 4303

Genes 1301 3240 4578

Compartments 7 5 12

a Rodenburg et al. (2018a)
b Yuan et al. (2016)
c This study
d The numbers in this column are not the exact sum of the two independent models, since several adaptations were 
made (Methods).

Flux simulations pinpoint nutrients utilized by P. infestans
Given a metabolic model and a metabolic objective for the cell, optimal values for the fluxes 
through all reactions can be calculated to simulate production of P. infestans biomass 
precursors through the import of nutrients from the tomato cytosol (Orth et al., 2010). An 
objective could be, for instance, to maximize the production of biomass or to produce biomass 
at minimal enzyme expense. To study the versatility of the model, we composed four scenarios 
based on different cellular objectives (Table S2). In Scenario I, we calculated the minimal set 
of nutrients P. infestans needs to import from tomato to form all its biomass precursors. This 
was already possible by importing three compounds: thiamine, L-gamma-glutamyl phosphate 
and cysteine. While this scenario is unlikely to occur in planta, it does illustrate that P. infestans 
has a comprehensive enzyme repertoire, enabling it to form its biomass precursors based on 
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a very small pool of nutrients. In Scenario II we calculated P. infestans biomass production 
using the minimum number of P. infestans reactions possible, to simulate growth with minimal 
enzyme cost for P. infestans. In this scenario, 48 nutrients were used, including ammonium, 
a known growth substrate (Hodgson, 1958). However, ammonium is an unfavored nitrogen 
source compared to amino acids (Abrahamian et al., 2016). Among other imported nutrients 
in this scenario are the tricarboxylic acid (TCA) cycle intermediates malic and succinic acid, 
for which P. infestans has an experimentally verified transporter (Savory et al., 2018). Organic 
acids such as succinic and malic acid strongly promote P. infestans growth in vitro, especially 
in combination with ammonium as nitrogen source (Hohl, 1991). Notably, 29 of the nutrients in 
this scenario are direct biomass precursors for P. infestans, including 19 amino acids (aspartate 
being the sole exception) (Figure S1). In Scenario III, we maximized the usage of P. infestans 
reactions, to simulate a scenario in which the pathogen maximally exploits its metabolism. This 
simulation predicted a pool of 29 nutrients, including the inorganic compounds nitrite and 
hydrogen sulfide. Interestingly, Phytophthora spp. retained the complete assimilation pathways 
for these compounds (Abrahamian et al., 2016), in contrast to multiple obligate biotrophic 
oomycetes which lost multiple genes throughout evolution (Judelson, 2017). In Scenario IV 
we combined scenarios I and II: we calculated the minimal nutrient uptake combined with 
minimal usage of P. infestans reactions to produce biomass. Since both nutrient import and 
assimilation into biomass require energy, these processes likely require a tradeoff, and hence 
we anticipate that this is a more realistic scenario. Here, 38 nutrients were used, 16 of which 
were amino acids.

The four scenarios described above have opposite objectives (minimize/maximize the fluxes 
of P. infestans) and simulate extreme circumstances not likely found in nature. The true pool 
of imported nutrients will likely be a combination of the pools predicted in each individual 
scenario. A comparison of the nutrients imported in all four scenarios revealed sets of 
nutrients in common between scenarios. There are 14 nutrients found in three out of four 
scenarios, i.e. II, III and IV (Figure S1), including several amino acids, nucleotide precursors, 
and glycerol 3-phosphate as lipid precursor. Surprisingly, aspartate is not imported in any of 
the scenarios, even though it is a biomass precursor of P. infestans and serves as a precursor 
to a variety of other amino acids (Azevedo et al., 2006; Jander and Joshi, 2009). An oomycete-
specific form of aspartate aminotransferase (EC 2.6.1.1) was found that seems to play a key 
role in pathogenicity in P. sojae, possibly by balancing nitrogen and carbon metabolism and 
facilitating the interconversion between amino acids (Wang et al., 2018). The presence of this 
enzyme in our model explains why aspartic acid import may not be necessary. Interestingly, 
thiamine is only imported in scenario III (maximizing the P. infestans fluxes), while thiamine 
pyrophosphate (TPP) is imported in scenarios II and IV (minimizing fluxes). It is assumed 
that many oomycetes import thiamine to form TPP (Judelson, 2017), an essential cofactor in 
carbohydrate metabolism (Chan et al., 2013) and in TPP-responsive riboswitches (Mukherjee 
et al., 2018). However, related Stramenopiles were found to also grow on thiamine alternatives 
(McRose et al., 2014), and possibly P. infestans can import up- or downstream compounds 
instead. Taken together, these simulations suggest a range of nutrients from tomato that 
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can be effectively assimilated by P. infestans. Nutrients in common between the simulated 
scenarios suggest that these are likely more versatile than others and hence most useful for P. 
infestans to import.

Network analysis identifies dependencies of P. infestans to tomato metabolism
To identify dependencies of P. infestans on tomato, we investigated the topology of the 
integrated model by looking for essential reactions (i.e. reactions that are indispensable in the 
model to form all biomass precursors) and (inter-)dependencies of reactions (i.e. the flux of 
a particular reaction relies on the flux of another), also known as coupled reactions. Coupled 
reactions within a metabolic model can be identified using a method called Flux Coupling Analysis 
(FCA) (File S1) (Burgard et al., 2004). FCA of the model identified 77 coupled P. infestans-
tomato reaction pairs (Figure 2), involving 53 unique P. infestans reactions and 49 unique 
tomato reactions (Table S3). One of these P. infestans-tomato reaction couplings comprises 
the biomass reaction of TPP in P. infestans, which is coupled to 17 tomato reactions, illustrating 
that P. infestans TPP is dependent on the thiamine biosynthesis pathway in tomato. In addition, 
of the 4695 reactions in the model, 112 P. infestans reactions and 35 tomato reactions were 
found to be essential for P. infestans (Figure 2A). Some reactions are essential and coupled 
to many other reactions at the same time (appearing as hubs in the graph), implying that these 
play a central role in the model with potentially large biological implications. For instance, 
there is a tomato transport reaction of aspartate into the plastid compartment, supplying 
aspartate as an amino-group donor for the synthesis of a thiamine precursor (aminoimidazole 
ribotide) (Goyer, 2010; Nelson and Cox, 2017), thus indirectly making this tomato reaction 
essential for P. infestans. Similarly, ATP and phosphate transport between P. infestans cytosol 
and mitochondria is essential and seems to play an important role in the model. Phosphate and 
sulphate uptake by tomato are part of the defined growth medium, hence coupled to reactions 
in both species. FCA also revealed several clusters of tightly interconnected, coupled essential 
reactions (Figure 2A). One of these represents the P. infestans fatty acid biosynthesis. In the 
model this comprises a mostly linear pathway, and consequently most reactions are coupled 
(interdependent). Fatty acid biosynthesis in oomycetes is associated to fungicide resistance 
(Maridueña-Zavala et al., 2017) and energy storage for sporangia (Judelson, 2017).

Couplings to the host-pathogen transport reactions in particular can provide information about 
the importance of transported metabolites; the more P. infestans reactions are coupled to a 
transport reaction, the more likely that the associated substrate is important for P. infestans. 
We selected the most frequently coupled transport reactions from the model and assessed 
their couplings to other tomato and P. infestans reactions (Figure 2B). The substrates of these 
transport reactions were associated to a diverse range of metabolic processes in P. infestans, 
i.e. pantothenate/CoA biosynthesis (2-dehydropantoate), de novo pyrimidine biosynthesis 
(S-dihydroorotate) (García-Bayona et al., 2014), riboflavin metabolism (2,5-diamino-4-hydroxy-
6-(5-phosphoribosylamino)pyrimidine), and inositol phosphate metabolism (myo-inositol 
3-phosphate). Notably, three transporter substrates were associated with glycerophospholipid
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FIGURE 2 | Flux coupling between reactions in the P. infestans-tomato model. A: Graph showing the coupled reactions 
in the model. Nodes represent reactions in tomato (red) or P. infestans (blue) and host-pathogen transport (green), 
edges represent coupling between those reactions. Node size reflects essentiality for P. infestans biomass production. 
Stars represent transport reactions listed in panel B. Highly connected nodes (1-5) and clusters (I-V) are indicated and 
listed in the boxes on the right (see also main text). B: The nutrients associated to the 12 most frequently coupled 
host-pathogen transport reactions. The bars are stacked and indicate the number of coupled reactions per species.

metabolism (phosphodimethylethanolamine N−methylethanolamine phosphate and choline). 
It is conceivable P. infestans can take up glycerophospholipid precursors to facilitate the 
formation of membrane lipids (Griffiths et al., 2003). Seven P. infestans reactions were coupled 
to the reaction importing fructose, an efficient growth substrate (Hodgson, 1958). Among the 
most frequently coupled host-pathogen transport reactions are also those transporting dTTP, 
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histidine and leucine. Since these are mainly coupled to tomato reactions, the import of these 
nutrients seems to depend on their biosynthesis pathways in tomato. FCA can identify coupled 
reactions in metabolic models that are not necessarily directly connected in the network 
and can thus derive functionally related modules of (pathogen-host) metabolism that may 
otherwise be overlooked.

Transcriptome-based submodels provide insight into the dynamics of P. infestans-
tomato metabolism
To obtain insight into the metabolism at subsequent developmental stages of the P. infestans-
tomato interaction, we integrated the model with dual-transcriptome data of P. infestans strain 
1306 on tomato leaf infection (2 to 6 days post-inoculation, sampled every 4 hours). This strain 
did not exhibit a strong necrotic phenotype and shows strong profuse sporulation around 4 
days post-inoculation (dpi). Previous studies on this P. infestans strain have shown marker 
genes for biotrophic growth peak at 2/3 dpi, those for necrotrophic growth peak at 4/5 dpi 
(Abrahamian et al., 2016), and those for sporulation are increasingly expressed from 3 days on, 
and peak at 4 dpi. Expectedly, the amount of reads mapping to the P. infestans genome steadily 
increased over time (7-84%), the amount of reads mapping to the tomato genome decreased 
accordingly (87-8%) (Figure S2). The transcriptome data was used to generate time point-
specific submodels, which are subsets of the full model according to the expression of the 
genes in the model. Since gene expression and metabolic activity are not directly related, we 
used the INIT algorithm (Agren et al., 2012) that calculates a submodel with maximal agreement 
to the expression of genes in the model, such that biomass can be produced (see Methods). 
This resulted in 25 submodels containing 32-44% of the reactions of the full model (Figure 3), 
indicating that only a subset of reactions is required to form all defined biomass precursors. 
Over time, the total number of reactions per submodel decreases (Figure 3), mostly due to a 
reduction of P. infestans reactions. The number of tomato reactions is relatively stable across 
the submodels, while the number of transport reactions increases slightly over time. These 
results suggest that as the infection progresses, P. infestans relies less on its own metabolism 
but increasingly imports metabolites from the necrotic tomato lesion. Conceivably, once P. 
infestans switches to its necrotrophic lifestyle, nutrients can be more easily obtained from the 
decaying leaf tissue (Divon and Fluhr, 2007). To get an impression of the metabolic changes 
in the infection over time, we calculated all pairwise distances of the reaction content of the 
submodels (Figure 3). This revealed a gradient of similarity scores, clearly reflecting metabolic 
changes over time, possibly as a response to changing nutrient availability in the tomato leaf 
tissue. A relatively large distance can be observed between groups of submodels, suggesting 
two more profound switches in metabolism at roughly 3d/8h and 4d/12h, possibly reflecting 
a transition from the pathogens biotrophic growth to necrotrophic growth and sporulation 
(Abrahamian et al., 2016; Judelson et al., 2009a; van West et al., 1998; Zuluaga et al., 2016).
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FIGURE 3 | Submodels based on dual-transcriptome data from a time course covering a full infection cycle of P. 
infestans on tomato leaf. Submodels are representative for the sampling time post inoculation shown in days (d) and 
hours on the Y-axis (middle) and X-axis (left panel). Left panel: Stacked bar chart indicating the number of reactions 
per species and number of host-pathogen transport reactions (not part of either species). Right panel: Jaccard 
similarity (intersection divided by union) between the reaction content of the submodels.

To get more insight into the metabolic processes of each submodel, we performed Fisher’s 
exact tests on the KEGG pathways in the submodels. A variety of metabolic pathways were 
overrepresented in submodels compared to the full model (Figure 4). Consistent with the 
previously observed gradient of similarity scores (Figure 3), groups of overrepresented 
pathways can be distinguished before and after 3d/8h. Notably, in the early submodels prior to 
the first transition, P. infestans reactions are enriched for several primary metabolic pathways 
such as amino acid biosynthesis, glycolysis and the TCA cycle. This could be a response to 
sugars in the apoplast that are still produced by photosynthesizing tomato leaf cells during 
the biotrophic phase of infection (Chen, 2014; Fatima and Senthil-Kumar, 2015). In contrast, 
late submodels and in particular after the second transition (4d/12h) show that in tomato 
several amino acid biosynthesis pathways are enriched, suggesting that during early infection 
amino acids are mostly synthesized de novo by P. infestans but later scavenged from tomato. 
In addition, early submodels are enriched in folate-related pathways on both sides, suggesting 
that folate plays an important role in early infection, which is in line with the finding that P. 
infestans has an unusually large repertoire of putative folate-biopterin transporters (Ah-Fong 
et al., 2017a). Arachidonic acid metabolism is enriched in mid-infection submodels, which is a 
characteristic fatty acid in P. infestans known to elicit plant defense, and to act as a signaling 
molecule in plants (Robinson and Bostock, 2015; Savchenko et al., 2010). In summary, our 
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analyses reveal profound changes in metabolic processes during infection of tomato by P. 
infestans and suggest that P. infestans reduces its metabolism at the expense of tomato.
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FIGURE 4 | Enriched KEGG pathways in transcriptome-based submodels from a time course covering a full infection 
cycle of P. infestans on tomato. Submodels are representative for the sampling time post inoculation shown on 
the X-axis in days (d) and hours. Enrichment is calculated based on the reaction content of each of the submodels 
compared to the full model. Colors scale to the adjusted P-value.

Import of specific nutrients becomes increasingly essential to P. infestans
The ability of a model to maintain its functionality (biomass production) under perturbations 
(e.g. simulated reaction deletions) is often referred to as robustness (Peyraud et al., 2018). 
We can express the robustness of each submodel as the fraction of reaction deletions that 
do not disturb P. infestans biomass production (Peyraud et al., 2018). This revealed that 
early infection submodels have higher robustness to reaction deletions than late infection 
submodels (Figure 5). This suggests that as infection progresses, P. infestans largely shuts 
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down accessory/alternative pathways to synthesize its biomass precursors, rendering the 
remaining reactions essential. The number of essential genes for P. infestans remained stable 
over time, with an average of 84±5 essential genes (Table S1).

To evaluate the importance of nutrient transport for P. infestans while colonizing tomato, we 
assessed the essentiality of the host-pathogen transport reactions in each submodel (Zhang 
et al., 2018). A host-pathogen transport reaction is essential when its deletion disables biomass 
production, and partially essential when deletion in combination with deletions of other 
reactions disables biomass production. We found no essential nutrients for P. infestans when 
considering the full model, yet the submodels display varying patterns of nutrient essentiality 
(Figure S3). Early infection submodels have just a few essential nutrients, while mid and 
late infection submodels, after the first transition point, show various essential amino acid 
transport reactions. This corroborates our previous observations (Figure 4) where the first 
transition point marks the switch from de novo synthesis of amino acids in P. infestans to an 
increased uptake from tomato.

FIGURE 5 | Robustness of transcriptome-based submodels from a time course covering a full infection cycle of P. 
infestans on tomato. The Y-axis shows the robustness as the fraction of single reaction deletions that do not disable 
the biomass flux for P. infestans. Submodels are representative for the sampling time post inoculation shown on the 
X-axis in days and hours.

Metabolomics can be used to refine transcriptome-based submodels
To assess to what extent the transcriptome-based submodels are coherent with metabolome 
data, we utilized untargeted metabolome data of tomato leaves colonized by P. infestans at 
2d/12h and 5d/12h post-inoculation. To relate the detected metabolites to metabolic fluxes, 
we hypothesized that metabolites strongly decreasing in abundance (log2-fold change < −2) 
between these two time points are produced in the submodel of 2d/12h, and metabolites 
that increase (log2-fold change > 2) are produced in the submodel of 5d/12h (Figure S4). 
Subsequently, we generated two additional submodels using INIT (Agren et al., 2012) based 
on the transcriptome data at 2d/12h and 5d/12h, while enforcing the presence of the detected 
metabolites in the respective submodels. The submodels of the transcriptome-only (T) and 
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the metabolome-guided (T+M) submodels differed in 4% (2d/12h) and 11% (5d/12h) of reactions 
and 3% and 7% of metabolites, respectively (Figure 6). Overall, the addition of metabolomics 
data lead to a net increase of reactions and metabolites in particular at the late submodels, 
suggesting that the T submodels are slightly too conservative; there may be more active 
metabolism than suggested by mRNA levels of enzyme encoding genes. It should be emphasized 
that GEMs and metabolomics data only provide a partial description of the cell metabolism 
at the different infection time points. Discrepancies may arise since transcriptome-based 
submodels do not take account of any post-transcriptional regulation or post-translational 
modification of enzymes, and miss-annotations and missing/blocked reactions potentially 
increases uncertainty in submodels. Moreover, since detected metabolites are not necessarily 
continuously metabolized, steady-state fluxes are not directly linked to measured metabolite 
abundances (Jang et al., 2018). Vice versa, metabolic fluxes do not necessarily yield detectable 
metabolites, for example when reaction products are immediately consumed in downstream 
reactions. For predicting metabolic fluxes more reliably, higher resolution metabolome data 
and sufficient data points over time are prerequisites which could provide sufficient data 
points in time to calculate metabolite coefficients (Kleessen et al., 2015). Nonetheless, our 
initial results suggest that the integration of high-resolution metabolome data of tomato 
infection has the potential to refine stage-specific patterns that are embedded in the joint 
metabolism of the P. infestans–tomato interaction.

627 1918 8036 1464

6227 1921 10682 1439

2d, 12h 5d, 12h

reactions

metabolites

T
T+M

FIGURE 6 | Overlap of reaction and metabolite content of submodels, based on transcriptome data only (T) or 
transcriptome data and metabolome data (T+M). Data used to generate these submodels were obtained from P. 
infestans-infected tomato leaves at 2d/12h and 5d/12h post inoculation.

Conclusions
Pathogens scavenge metabolites from their hosts to support their growth and proliferation. 
Here, we took a systems biology approach and modelled the joint metabolism of tomato and 
P. infestans to generate hypotheses about their relationship. Our metabolic model of the P. 
infestans-tomato interaction represents one of the few integrated pathogen-host metabolic 
models published to date (Cesur et al., 2018). Regarding pathogen and host as one entity 
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can yield hypotheses about the combined metabolism at a single metabolic equilibrium. The 
modeling allowed us to infer a conceivable pool of nutrients mainly consisting of amino acids, 
lipid precursors, and a TPP precursor, that is likely exploited by P. infestans while infecting 
tomato. The model also helped us to further characterize host-pathogen dependencies, such 
as the long known thiamine dependency of Phytophthora (Robbins, 1938). Modification of 
the thiamine biosynthesis pathway in tomato might be an interesting strategy for controlling 
late blight. Other interesting candidate pathways for pathogen intervention are its lipid 
metabolism, as our model predicts P. infestans takes up lipids as a membrane precursor, 
coherent with previous experiments (Griffiths et al., 2003a). Alternatively, the fatty acid 
biosynthesis likely serves an important role to synthesize fuel reserves for its spores (Judelson, 
2017), and our analyses showed that the fatty acid biosynthesis is a largely linear pathway with 
high interdependency of participating reactions (Rodenburg et al., 2018a).

Clearly, many parameters that can further improve this model are still unknown. For example, 
the biomass composition of P. infestans growing in planta, and different metabolic processes 
in different zones of a lesion and during the infection cycle (Peyraud et al., 2019). As such the 
model would benefit from more extensive and in depth metabolomics analyses (Galeano Garcia 
et al., 2018). There is also a need to extend our knowledge on the potential role of transporters 
in this system, as these play a key role in infection and  are potential control targets (Blume and 
Seeber, 2018; Meier et al., 2018). This could be done for example, by 13C-flux spectral analyses 
to monitor nutrient fluxes and to validate transporter functions in the pathogen (Beste et al., 
2013; Savory et al., 2018). Altogether, this model provides insights into P. infestans-tomato 
metabolism and serves as a stepping stone for the design of novel control strategies for this 
devastating pathogen.

Materials & Methods

Model reconstruction
To improve the predictive capabilities of the previously constructed P. infestans iSR1301 GEM 
(Rodenburg et al., 2018a), we performed several literature- and protocol-based curations (Thiele 
and Palsson, 2010). As starting point we used our published genome-scale metabolic model 
(GEM) of P. infestans iSR1301 (Rodenburg et al., 2018a). We removed the sink- and gap-filling 
reactions that were previously added (Rodenburg et al., 2018a). The sink reactions of the general 
metabolites ‘fatty acid’, ‘holo-acyl-carrier protein’, and ‘apoprotein’ have no mass or formula, 
but still play a role in flux of the fatty acid biosynthesis and were therefore retained. Recently it 
was found that some metabolic enzymes of the glycolysis and serine biosynthesis P. infestans 
occur in the mitochondria (Abrahamian et al., 2017). We manually corrected the gene-reaction 
associations accordingly and corrected their localization in the appropriate compartment. 
The KEGG reaction identifiers of the P. infestans GEM were matched to MetaNetX  identifiers 
(Moretti et al., 2016), and the associated reaction formula was retrieved. MetaNetX indicates 
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for each reaction whether it is mass-balanced or not. Accordingly, all reactions that were not 
mass-balanced in the model were removed from the model. Conversion of arachidonic acid to 
eicosapentaenoic acid was manually added according to literature, and added to the biomass 
precursors (Robinson and Bostock, 2015; Yilmaz et al., 2017). Thiamine diphosphate was added 
to the set of P. infestans biomass precursors, to represent the thiamine auxotrophy of P. 
infestans. Water and proton metabolites were removed from the model, as they do not fulfill a 
meaningful function in the P. infestans GEM, but do in the tomato GEM where these simulate 
proton-pumps (Yuan et al., 2016). The thermodynamic constraints of other reactions were 
by default inferred from KEGG maps. Reaction thermodynamic constraints were manually 
adjusted according to standard model reconstruction protocol (Thiele and Palsson, 2010), 
such that ATP/GTP-consuming reactions were unidirectional, except for ATP synthase (EC 
3.6.3.14), nucleotide diphosphate kinase (EC 2.7.4.6) and succinate coenzyme A synthase (EC 
6.2.1.4).

To identify possible missing enzymes for P. infestans in the model, we annotated KEGG enzyme 
orthologs (KOs) in 19 oomycete proteomes which were downloaded from FungiDB (June 02, 
2018) (Basenko et al., 2018) (Table S1), as previously described (Rodenburg et al., 2018a). We 
selected enzymes present in at least two oomycetes and not yet in the model. The encoding 
protein sequences were aligned to the P. infestans T30-4 genome sequence (Haas et al., 2009), 
masked for its annotated open reading frames, using tblastn (v2.2.31+). Sequences with E-value 
<= 1e−50 and query coverage > 90% were submitted to the LocTree3 webserver (Goldberg et 
al., 2014) to predict their subcellular localization, and the associated reactions were added to 
the model. Additionally, P. infestans gene models were manually corrected and re-annotated 
for enzyme orthologs (Rodenburg et al., 2018a). To avoid spurious addition of reactions, any 
of the added reactions described above were removed if they were eventually found unable 
to carry flux in the model.

The tomato GEM was inferred from supplementary files of the associated publication (Yuan 
et al., 2016). Since the tomato GEM iHY3510 was built by a different lab using different 
reconstruction methodology, we tried to keep adaptations to a minimal level. Like the method 
applied to the P. infestans model, the reaction identifiers of the tomato model were matched 
to MetaNetX reaction identifiers for which the associated formula was retrieved. According 
to knowledge of thiamine biosynthesis in plants (Goyer, 2010), the thiamine biosynthesis 
was manually curated, such that thiamine is formed in the tomato cytosol from a plastidial 
thiazole and pyrimidine precursor (Guan et al., 2014). The P. infestans and tomato GEMs 
were connected by unidirectional transport reactions for all metabolites shared between the 
tomato cytosol and the P. infestans cytosol compartments (Table S1).

Constraint-based modelling and optimization
Modelling was performed in MATLAB (R2017b) using the RAVEN (v2) (H. Wang et al., 2018) 
and COBRA (v3) toolboxes (Heirendt et al., 2017). Flux Coupling Analysis (FCA) was performed 
using F2C2 (v0.91) (Larhlimi et al., 2012). Optimization was performed using Gurobi (v8.0) for 
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Flux Balance Analysis (FBA) and Integrative Network Inference for Tissues (INIT) (Agren et al., 
2012). GLPK (v2.8) was used for FCA. Essential genes/reactions and essentiality scores of the 
transport reactions were calculated using ESS (Zhang et al., 2018), which implements Fast-SL 
(Pratapa et al., 2015), constraining the total flux of P. infestans biomass production to > 5%. 
The global robustness statistic was calculated according to Peyraud et al. (2018) defined as the 
fraction of reaction deletions that did not render the biomass flux of P. infestans < 5%.

RNA sequencing and mass spectrometry
RNA and metabolites were isolated from tomato leaflets (cultivar New Yorker) inoculated with 
P. infestans isolate 1306. For the plant infection assays a zoospore suspension was prepared 
as described previously (Ah-Fong et al., 2017a) and adjusted to a concentration of 5×104 per 
ml, applied to detached leaves placed on 1.5% water agar. The zoospores were sprayed on the 
leaves with a hand sprayer until run-off. The leaves were then incubated at 18°C under high 
humidity in plastic bags containing wet paper towels with a 12-hour light/dark cycle. Between 
two to six days post-inoculation leaves were harvested every four hours and flash-frozen until 
further use. After library construction, single-end 75 nt sequence reads were then obtained 
using an Illumina Nextseq 500, and quality was assured using FastQC (v0.11.8) (Figure S2) 
(Andrews, 2010). The reads were independently mapped to the P. infestans T30-4 (Haas et 
al., 2009) and the tomato ITAG2.3 (Sato et al., 2012) genomes using HiSat2 (v2.1.0) (Kim et 
al., 2015), and mapping efficiencies were retrieved using samtools flagstat (v0.1.19) (Li et al., 
2009). Transcript abundance was quantified and normalized using cuffnorm (v2.2.1) (Trapnell 
et al., 2010), which implements the DESeq2 normalization procedure (Robinson and Oshlack, 
2010). This method divides the read counts by a factor that is calculated from the median of 
geometric means across samples, accounting for differences in sequencing depth and RNA 
composition.

For the metabolome analyses the flash-frozen leaves were lyophilized, weighed, and provided 
to Metabolon Inc. for further handling. After tissue grinding, proteins were removed by 
methanol precipitation. After eliminating the solvent, the samples were analyzed by reverse 
phase (RP) ultraperformance liquid chromatography (UPLC)-tandem mass spectrometry (MS/
MS) using positive ion mode electrospray ionization (ESI), RP/UPLC-MS/MS with negative ion 
mode ESI, and hydrophilic interaction/UPLC-MS/MS with negative ion mode ESI. The area-
under-the-curve method was used to quantify peaks. For each time point four biological 
replicates were analyzed. Differential abundance of metabolites was determined using t-tests, 
selecting metabolites with a log2 fold change of > 2 or < -2 with a Benjamini-Hochberg adjusted 
P-value of < 0.05 (Hochberg, 1995). We imputed missing values among replicates using the 
minimal value across other replicates.

Submodel generation
The transcriptome-based submodels were generated using the INIT algorithm (Agren et al., 
2012), which poses a mixed integer linear optimization problem (MILP) that aims to optimize 
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a global score based on reaction weights in the model. Reaction weights were calculated 
according to an adapted version of the formula described in Agren et al. (Agren et al., 2012):
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where wij is a weight for each reaction  and condition j in the full model, Eij is the 
transcript abundance value summarized per reaction (i.e. the maximum expression 
value of the genes associated to each reaction), and 
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x  is the mean expression of 
that reaction across samples. An inflation factor (+1) was added in the denominator 
to prevent inflated weights for extremely low expression values. According to Agren 
et al. (Agren et al., 2012), we maintained the same minimum and maximum cutoff for  

5   1 0− ≤ ≤ijw w . Reactions with an expression lower than the average (thus negative weight) will 
be less likely to be included in the submodels, and reactions expressed above average (thus a 
positive weight) will be more likely to be included. Transport reactions were assigned a weight 
of −0.1, based on the hypothesis that these should not be ‘free’ to include (weight 0), but 
should only have a minimal influence on the submodel solution. Reactions without associated 
genes were given a weight of 0. For the MILP optimization, the flux of all biomass precursors 
of both tomato and P. infestans was constrained to be > 1.

Data availability
Transcriptome data are deposited in the NCBI Short Read Archive under BioProject 
PRJNA516028.
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Supplemental Information

FILE S1

Basic principles of metabolic modelling

The reconstruction of genome-scale metabolic models (GEM) yields large networks of interconnected 
biochemical reactions, typically inferred from homology with known metabolic enzymes in biochemical databases 
such as KEGG (Kanehisa et al., 2015), MetaCyc (Caspi et al., 2014) or BRENDA (Placzek et al., 2017). This may be 
complemented with general or species-specific biological knowledge of metabolism. Reactions in a GEM have 
a certain stoichiometry, i.e. the balance of metabolites that are consumed and produced in the reaction. For 
instance, in the reaction of acetyl-CoA C-acetyltransferase (EC 2.3.1.9):

1 CoA + 1 acetoacetyl-CoA ⇄ 2 acetyl-CoA

one CoA and one acetoacetyl-CoA are consumed and converted into two acetyl-CoA molecules or vice versa. 
A downstream reaction may again consume acetyl-CoA and convert it into another metabolite. In a GEM, 
the stoichiometry of each reaction is stored in a stoichiometric matrix S, which is sparse and has dimensions 
m x n, where m is the number of metabolites and n is the number of reactions . The value of each entry Sij is 
the stoichiometry of metabolite i in reaction j. When j is consumed in j, Sij  is given a negative value, when it is 
produced a positive value.
Each reaction  in a GEM has a flux value νj , which is defined as the rate of that reaction in steady-state. Steady-state 
is (often) the central assumption in a GEM, based on the idea that in the long run, metabolites in a cell cannot 
accumulate or deplete, since cells must maintain homeostasis to proliferate (J. Nielsen, 2017). In a GEM, the steady-
state assumption implies that the net production and consumption of all metabolites in the model is zero. In other 
words, the net uptake of nutrient mass into the system must also be produced in the form of biomass.
In mathematical terms, the steady-state of a GEM is described as:

0⋅ =S v

where ν is the vector of all flux values. Generally, solving this system of equations yields a large number of solutions; 
that is, it does not result in a single, unique set of fluxes ν. Therefore, it is often additionally assumed that the cell 
attempts to optimize a certain objective, such as maximize growth, minimize energy consumption etc. (Lewis et 
al., 2012). Given a GEM, one can then find the set of fluxes that optimize the selected objective. This can be posed 
as a linear optimization program:

Maximize: νbiomass

Subject to:  0⋅ =S v

Here νbiomass specifies the flux of one or more biomass reactions that consume the precursor metabolites for all 
main cell components. The optimal flux values in the solution are limited by the steady-state constraint explained 
earlier, and thermodynamic constraints that specify for each flux upper- and lower bounds, lb and ub respectively. 
lbj can be less than zero, indicating a reverse flux is allowed, representing bidirectional or reverse reactions. 
Thermodynamic constraints are usually applied for certain reactions by specifying that a reaction may only occur 
in one direction, thus setting lb or  to zero.
Linear optimization can be performed by specialized software, such as Gurobi, CPLEX, Mosek or GLPK, that can 
optimize a GEM consisting of thousands of reactions in a matter of seconds.

≤ ≤j j jlb v ub
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FILE S1 | Continued.

Flux coupling 
Flux coupling analysis (FCA) is a method that finds coupled fluxes in a GEM. Three basic types of flux coupling were 
developed (Burgard et al., 2004; Larhlimi et al., 2012). FCA finds for each pair of unblocked fluxes in the model νa 
and νb whether they are:

I) Directionally coupled:   0   0≠ → ≠a bv v . In general terms, any nonzero flux for νa implies nonzero flux for νb 
but not necessarily the reverse. This coupling can hold independently for the other direction: 0   0≠ → ≠b av v .

II) Partially coupled:   0   0≠ ↔ ≠a bv v , but not at a constant ratio /   ≠a bv v c .
III) Fully coupled:   0   0≠ ↔ ≠a bv v  and in a constant ratio /   =a bv v c .

In any case, a coupling between two fluxes in a steady-state GEM indicates that flux of one reaction at least partially 
relies on another, indicating a functional relationship between the associated reactions.

Min vpinf

Max vpinf Min vpinf ∪ vtransport 
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FIGURE S1 | Overlap in imported nutrients in three flux scenarios of different objective functions. Biomasspinf: 
maximization of flux of P. infestans biomass precursors; Min vpinf: scenario II, minimization of P. infestans flux; Max 
vpinf: scenario III, maximization of P. infestans flux; Min vpinf ∪ vtransport: scenario IV, minimize both P. infestans and host-
pathogen transport flux. The biomass precursors and imported nutrients in each scenario are listed in Table S2.
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FIGURE S2 | Statistics of the RNA-Seq read mapping. A: Per-base-quality values for the Illumina reads (all samples 
combined), derived from the FastQC software B: Mapping efficiency per sample for P. infestans and tomato.
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Abstract

Pathogens deploy a wide range of pathogenicity factors to modify host tissue or manipulate 
host defenses, among which a plethora of proteases. Metalloproteases (MPs) have been 
implicated in virulence in several animal and plant pathogens. Here we investigated the 
repertoire of MPs in 47 stramenopile species including 37 oomycetes, five diatoms and four 
brown algae. Screening of their proteomes using hidden Markov models (HMMs) trained 
for MP detection resulted in over 4000 MPs, with most species having between 65 and 100 
putative MPs. Classification in clans and families according to the MEROPS database showed 
a highly diverse MP repertoire in each species. Analyses of domain composition, orthogroup 
clusters, and distribution and abundance within the oomycete and stramenopile lineage 
revealed a few oomycete specific MPs and others potentially related to lifestyle. In-depth 
analyses of MPs in the plant pathogen Phytophthora infestans revealed 91 MPs, divided over 21 
families, including 25 MPs with a predicted signal peptide or signal anchor. Expression profiling 
showed different patterns of MP gene expression during pre-infection and infection stages. Of 
27 MPs tested in plant assays, three inhibited and eight promoted lesion growth of P. infestans. 
To our knowledge, this is the first systematic inventory of MPs in oomycetes and the first study 
pinpointing MPs as potential pathogenicity factors in Phytophthora.
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Introduction

Proteases are enzymes that catalyze the breakdown of proteins into smaller polypeptides 
or single amino acids and play important roles in numerous biochemical processes. They 
are crucial components of the molecular and cellular machinery in all organisms, not only 
within the organism itself but also in symbiotic interactions with other organisms. Pathogenic 
microbes, for example, often produce a variety of proteases that they use for degrading or 
modifying host tissue, or for disrupting the basic cellular machinery in the host to create 
suitable conditions for successful colonization (Bellincampi et al., 2014; Miyoshi and Shinoda, 
2000; Monod et al., 2002).

Proteases, also referred to as proteinases, peptidases or proteolytic enzymes, can be divided 
in seven major groups according to their catalytic types: namely aspartic-, cysteine-, glutamic-, 
metallo-, asparagine lyase, serine and threonine proteases. In addition, there are proteases of 
mixed or unknown catalytic type. MEROPS is a peptidase database currently containing over 
4000 entries that groups proteases into families based on amino acid sequence similarity. At 
a higher hierarchical level, homologous protein families are grouped into clans (Rawlings et 
al., 2016; Rawlings et al., 2018; Rawlings and Morton, 2008). As such, the MEROPS classification 
is an excellent tool for categorizing proteases resulting from genome annotations and for 
predicting potential functions of validated proteases.

Metalloproteases (MPs) function by virtue of a divalent metal cation positioned at their 
catalytic site. The majority is zinc-dependent and this is accommodated by two zinc-binding 
histidine residues in the HEXXH motif that is conserved in over 50% of the MPs (Rawlings 
and Barrett, 1995). In animals, MPs are implicated to play a role in receptor modification, by 
a process referred to as ectodomain shedding. These so-called sheddases include several 
members of the A Disintegrin And Metalloproteases (ADAMs) and Matrix MetalloProteases 
(MMPs) families (Hayashida et al., 2010; Higashiyama et al., 2011). They shed the extracellular 
part of membrane proteins resulting in a truncated receptor and an extracellular protein, 
leading to loss of function of the receptor or alteration of downstream signaling mediated by 
the receptor or the extracellular protein (Sanderson et al., 2006).

Pathogenic microbes may exploit MPs as pathogenicity factors (Deu, 2017; Miyoshi and Shinoda, 
2000). For example, leishmanolysin GP63, a zinc-binding MP in protozoan Leishmania species, 
was shown to have proteolytic activity on protein-tyrosine phosphatases of macrophages 
during infection and to enhance migration of the pathogen through the extracellular matrix 
(Gomez et al., 2009; McGwire et al., 2003). Deletion of leishmanolysins in Leishmania major 
resulted in reduced lesion formation in mice, thereby identifying GP63 as a virulence factor 
(Joshi et al., 2002). In the mammalian pathogen Vibrio cholerae, the extracellular Zn-
dependent MP hemagglutinin, also known as vibriolysin, is involved in the modification of 
toxins, degradation of mucus barriers, and disruption of host intestinal junctions (Benitez and 
Silva, 2016), and in a nematicidal strain of Bacillus thuringiensis the MP ColB was found to 



 Chapter 5

5

98

play a role the colonization of nematodes (Peng et al., 2015). The fungal pathogen Aspergillus 
fumigatus uses its MP Mep1p to cleave major complement proteins and pattern recognition 
molecules that function in defense. Mep1p thus facilitates early immune evasion by disarming 
defense in the human host (Shende et al., 2018).

Also in plant pathogens MPs have been implicated in pathogenicity (Franceschetti et al., 2017). 
For example, the rice blast fungus Pyricularia oryzae (Magnaporthe oryzae) has a MP-like 
protein that directly interacts with the rice resistance protein Pi-ta and is recognized as the 
avirulence factor AVR-Pita (Jia et al., 2000; Jia et al., 2016; Orbach et al., 2000). More recently, 
comparative genome analyses of blast fungi revealed a novel Pyricularia-specific MP family 
that is expanded in several Pyricularia species and includes potential effector proteins (Gómez 
Luciano et al., 2019). The fungus Fusarium oxysporum f. sp. lycopersici produces the MP Mep1 
that acts in concert with the serine protease Sep1 to cleave chitinases produced by the host 
as part of the defense machinery. Both, FoMep1 and FoSep1 are required for full virulence of 
F. oxysporum on tomato (Jashni et al., 2015). In the fire blight bacterium Erwinia amylovora 
(renamed Pectobacterium) the lack of PrtA, a secreted extracellular zinc-binding MP, as well 
as inhibition of PrtA activity with EDTA, results in reduced host-plant colonization (Zhang et 
al., 1999). Similarly, PrtA mutants of Burkholderia glumea, a bacterial pathogen on rice, show 
significantly reduced virulence (Lelis et al., 2019).

Here we focus on MPs in oomycetes, a diverse class of eukaryotic microbes that belong to 
the Stramenopiles, a lineage also comprising diatoms and brown algae. Most oomycetes 
described so far are plant pathogens among which Phytophthora spp., Pythium spp. and the 
downy mildews (Kamoun et al., 2015). The latter are obligate biotrophs that entirely depend 
on their hosts to survive while Pythium spp. and Phytophthora spp. have a (hemi)biotrophic 
or necrotrophic lifestyle and can be cultured in vitro. Some Pythium species are pathogens 
of animals or parasitize on other microbes (mycoparasites) while Saprolegnia is a genus that 
mainly comprises animal pathogens (Jiang et al., 2013).

The most (in)famous oomycete is Phytophthora infestans, the late blight pathogen that made 
its first appearance in Europe in the mid 19th century and ravaged the potato crop, culminating 
in a famine, in particular in Ireland. Even to this date P. infestans causes large economic losses 
in potato and tomato production worldwide. Farmers heavily invest in chemical spraying to 
protect the canopy against late blight (Haverkort et al., 2008). P. infestans is a hemibiotrophic 
pathogen that depends on living host tissue during the first stages of infection. Therefore, 
avoidance of recognition by the host is important for successful penetration of host cells 
and subsequent colonization. Genome sequencing has revealed that P. infestans has over 
500 genes encoding cytoplasmic effectors and around 200 encoding apoplastic effectors 
(Haas et al., 2009), several of which are now known to function in virulence by suppressing 
host defense responses (Whisson et al., 2016). Apart from these effector genes, P. infestans 
has many other putative pathogenicity genes including genes encoding hydrolases, lipases, 
proteases and protease inhibitors (Haas et al., 2009). Examples are the carbohydrate-active 
enzymes (CAZymes) (Ospina-Giraldo et al., 2010), phospholipase D’s (Meijer et al., 2011; Meijer 
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and Govers, 2006), and aspartic proteases (APs) (Kay et al., 2011; Schoina et al., 2019). The 
latter is a family with twelve members including one, PiAP5, that is a fusion of the AP domain 
and a G-protein coupled receptor domain, preceded by a signal peptide (SP) (Kay et al., 2011). 
Such a peculiar combination of two subsequent protein domains is a typical example of a 
Phytophthora- or oomycete-specific bigram that is not found outside the oomycete lineage 
(van den Hoogen et al., 2018; van den Hoogen and Govers, 2018). A comprehensive study of 
the protein domain organization in 67 eukaryotes revealed that especially Phytophthora spp. 
possess a relatively high proportion of multidomain proteins with unique bigrams, a feature 
that presumably provides novel functionality to proteins (Seidl et al., 2011). In P. infestans, 259 
genes coding for bigrams were found to be differentially regulated during infection, with the 
majority of those bigrams predicted to be secreted (Seidl et al., 2011). Moreover, proteomic 
analyses of the P. infestans secretome revealed that besides effectors, several proteases 
were detected in the extracellular medium, including cysteine, aspartic and metalloproteases, 
confirming that these enzymes are secreted by the pathogen and could potentially play a role 
in the host-pathogen interplay (Meijer et al., 2014).

While MPs have been shown to play various roles in cellular processes and in pathogenicity, 
they have hardly been studied in oomycetes. The aim of this study was to make an inventory 
of the full repertoire of MPs present in Stramenopiles, and to investigate the potential role 
of MPs in the virulence of P. infestans. With a bioinformatic search we identified over 4000 
stramenopile MPs. We divided those in clans and families according to the MEROPS classification 
and studied their distribution and abundance within the oomycete and stramenopile lineage. 
Further analyses included orthogroup clustering aimed at identifying features potentially 
related to pathogenicity or lifestyle. We then zoomed in on the MP repertoire of P. infestans 
and consulted transcriptome data to determine the expression profiles of MP genes during 
the entire asexual life cycle, from sporulation on free-living hyphae to in planta growth. Finally, 
we selected P. infestans MPs predicted to be secreted and tested these for their ability to 
promote or inhibit the virulence. Taken together this research reveals the diverse repertoire 
of MPs in oomycetes and points to a few MPs that seem to play a role in pathogenicity of the 
late blight pathogen P. infestans.

Results

Oomycetes have a large diversity of metalloproteases
To gain insight into the metalloprotease (MP) repertoire and diversity in oomycetes, we used 
the MEROPS database as a starting point. This database divides proteases into families based 
on the amino acid similarity of the peptidase domain and groups homologous protein families 
into clans. The current release of the MEROPS database (release 12.1) recognizes 76 MP 
families, of which 70 families are grouped into a total of 16 clans whereas six are not assigned 
to a clan (Rawlings et al., 2018). Families are coded by a prefix M followed by a number while 
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clans have a two-letter code, i.e., M followed by a second capital letter.

Putative MPs in oomycetes and other stramenopile species were identified using a 
bioinformatics procedure (Figure 1). We used all peptidase sequences retrieved from the 
MEROPS database to train profile hidden Markov models (HMMs) per MEROPS (sub)family. 
The HMMs were used to scan the predicted proteomes of 46 Stramenopiles, including 37 
oomycetes, five diatoms and four algae (Table S1). Matching protein domains were realigned 
and used to train stramenopile-specific MP HMMs. In addition, Pfam peptidase domain HMMs 
were retrieved (Finn et al., 2016) and all proteins matching these Pfam and/or MEROPS 
HMMs were considered putative MPs. A total of 4,178 MPs was identified in the entire set 
of stramenopile proteins ranging from 265 to 50 MPs per species (Figure 2; Table S1). On 
average, 91 MPs occur per species which corresponds to 0.60% of the total proteome, with 
the majority of the species (70%) having between 65 and 100 putative MPs (Figure S1). 
Outliers with vastly higher numbers are the crayfish pathogen Aphanomyces astaci (n=265, 
1.39% of its proteome) and the diatom Fistulifera solaris (n=190, 0.94%), followed by the 
plant pathogen Phytophthora parasitica (n=134, 0.48%) and the animal and human pathogen 
Pythium insidiosum (n=127, 0.66%). Species with slightly lower MP numbers than average are 
the white rust Albugo candida (n=50, 0.38%), the alga Nannochloropsis gaditana (n=60, 0.55%) 
and a few plant pathogenic species in the genera Phytophthora and Plasmopara. In summary, 
we observe differences among species in the absolute number of MPs, also when accounting 
for differences in proteome size.

PfamproteomesMEROPS

matchtrain HMMs

HMMs

putative
metalloproteases

annotate

retrain

HMMs

FIGURE 1 | Pipeline for the identification of putative metalloproteases in Stramenopiles.

The MPs identified in the 46 stramenopile species can be assigned to 37 families (out of 76 
families in MEROPS) and 11 clans (out of 16) (Figure 2). Of the 37 families, more than half (21 
or 57%) belong to the MA clan with the characteristic catalytic HEXXH motif. The other 10 
clans are represented by one up to four families while families M79 and M82 are among the six 
families not assigned to a clan. When focusing on the oomycetes the overall presence/absence 
pattern of the MP families is similar for all species with a few remarkable exceptions. For 
instance, the M64 family seems to be specific for Pythiales and the two Aphanomyces species, 
whereas M97 is present in nearly all Pythiales species and most Peronosporales species but 
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is absent in the Albuginales and Saprolegniales. In contrast, M50 is a family that, within the 
oomycetes, is restricted to the Saprolegniales with one outlier. Albugo laibachii and A. astaci 
both have an exceptionally high number of MPs categorized as M14 while P. parasitica has a 
relatively large repertoire of M48, M80 and M67 family members. Phytophthora rubi seems to 
have a relatively high number of MPs in the M20 family and is the outlier for M50. One should 
be cautious though with this species. At first sight it seems to have four unique MP families 
(i.e., M61, M90, M55 and M23), but closer inspection revealed 100% identity to proteins of the 
bacterium Pandoraea sputorum suggesting potential contamination of the genome assembly 
(Table S1).

When comparing oomycetes with non-oomycete species we observed a similar diversity in MP 
families. However, three families show up that are specific for the diatoms and algae included 
in this study (i.e. M06, M11 and M32) and one that is specific only for the diatoms (i.e. M43). 
Moreover, the M50 family is clearly not limited to the saprolegniales but more widely distributed 
within the Stramenopiles. The few families that were only found in a single species (M09, M19, 
M36 and M42) or limited to two species (M49) were subjected to a closer inspection. Unlike 
the situation in P. rubi, there were no indications for contaminations in the genome assemblies. 
However, to what extent these MPs are truly species-specific is questionable given the limited 
number of diatom, algae and Aphanomyces species included in this study.

Clustering of stramenopile metalloproteases in 85 orthogroups
To investigate the sequence similarity between the MPs in the dataset, we aligned and 
clustered the 4,178 MP sequences resulting in 85 orthogroups, which are defined as clusters 
of sequence-similar MPs (Figure 3; Table S1). The orthogroups contain on average 49 MPs, 
with a minimum of two MPs per orthogroup and a maximum of 287 suggesting that some MP 
families are rather large and often have multiple copies per species. The average number of 
species per orthogroup is 28. Two orthogroups contain MPs of just one species and thus are 
species-specific, while five orthogroups span all 46 species and thus contain one or more MPs 
from each species. Another nine orthogroups contain MPs derived from 45 out of a total of 
46 species. Anticipating that a poorly assembled or miss-annotated genome can readily lead to 
the absence of just a single species in an orthogroup, we define the 14 orthogroups containing 
MPs from at least 45 species as the core MP repertoire of the Stramenopiles included in this 
study. This core comprises MPs from ten distinct MEROPS families, including five orthogroups 
from the M24 family (aminopeptidases). Overall, each of the 85 orthogroups contains a 
single MEROPS family but, as is the case with M24, some families are divided over multiple 
orthogroups. The more orthogroups are linked to a single family, the more sequence divergence 
there is within this family. The families M16 (MPP β-subunit) and M24 are each divided over 8 
orthogroups. The largest MP family present in the dataset is M13 with 287 members divided 
over 42 species. They all cluster in one orthogroup, the largest one (#0), implying that there 
are only relatively small differences between the sequences. The M13 family mainly consists of 
single-domain proteins that are homologous to the human peptidase neprilysin, an MP that 
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cleaves peptides and is known to inactivate several peptide hormones (Rawlings and Salvesen, 
2013). MP13 is present in all 37 oomycetes analyzed in this study, in most species in up to 5 
copies. Strikingly, this MP is relatively more abundant in animal pathogens including A. astaci 
(91 copies), Pythium insidiosum (20), and Saprolegnia parasitica (11). Of the 4,187 MPs, 24 
were not included in any orthogroup, among which the MPs from P. rubi that were mentioned 
earlier as likely contaminants.

0 10 20 30 40 50 60 70 80
orthogroup

genes in orthogroup

1 5 10 15 20 ≥25
Phytophthora sojae

Phytophthora pisi
Phytophthora rubi

Phytophthora fragariae
Phytophthora cinnamomi

Phytophthora multivora
Phytophthora capsici

Phytophthora parasitica
Phytophthora nicotianae

Phytophthora infestans
Phytophthora agathidicida

Phytophthora lateralis
Phytophthora ramorum
Phytophthora pluvialis

Phytophthora taxon totara
Phytophthora pinifolia

Phytophthora kernoviae
Phytophthora cryptogea

Plasmopara viticola
Plasmopara halstedii

Hyaloperonospora arabidopsis
Phytopythium vexans
Pythium apinafurcum

Pythium ultimum var. sporangiiferum
Pythium irregulare

Pythium iwayami
Pythium oligandrum
Pythium insidiosum

Pythium arrhenomanes
Pythium aphanidermatum

Albugo laibachii
Albugo candida

Saprolegnia diclina
Saprolegnia parasitica

Aphanomyces astaci
Aphanomyces invadans

Phaeodactylum tricornutum
Fistulifera solaris

Fragilariopsis cylindrus
Thalassiosira oceanica

Thalassiosira pseudonana
Aureococcus anophagefferens

Ectocarpus siliculosus
Nannochloropsis gaditana
Hondaea fermentalgiana

FIGURE 3 | Clustering of stramenopile MPs in orthogroups. Orthogroup distribution per species (left) and the 
approximate number of MPs per orthogroup in each species depicted by the sizes of the blue circles. Othogroup 
numbering starts with ‘0’ (OG0000000) for the largest group with 287 MPs. The smallest orthogroups are 
OG0000082, OG0000083 and OG0000084 with just two MPs. For the gene IDs clustered in each orthogroup see 
Table S1.

Oomycete MPs have diverse domain architectures and N-terminal targeting 
sequences
To gain insight into the structural diversity of the Stramenopile MPs, we analysed their domain 
composition and more specially searched for the occurrence of MPs with distinct domain 
combinations or bigrams. These analyses showed that 38% of the 4,178 stramenopile MPs 
in our dataset contain at least one additional domain next to the protease domain. In those 
multidomain MPs we detected 217 different Pfam domains in addition to the MP domains 
(Figure S2; Table S1), and more than 250 bigrams, of which a vast majority occurs in only 
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one or a few species (Figure S3; Table S1). There is a small proportion of bigrams that is 
more common (around 10%) and present in over 80% of the 46 analysed Stramenopiles. 
The three most ubiquitous bigrams, occurring in nearly all species, consist of (I) the ‘CAAX-
prenyl protease N terminal, five transmembrane helices’ domain (Pfam ID PF16491) and a M48 
peptidase domain; (II) the ‘ATPase associated with various cellular activities (AAA)’ domain 
(PF00004) and a M41 peptidase; and (III) the ‘mitochondrial processing peptidase (MPP) 
β-subunit’ domain of family M16B combined with a ‘Middle or third domain of peptidase_M16’ 
(PF16187).

The average number of MPs with distinct domain combinations per stramenopile species is 
34 and no clear differences were observed between taxonomic lineages (Figure S4). The 
highest number was identified in Phytophthora lateralis (58 bigrams) and the lowest in 
Hyaloperonospora arabidopsidis (21 bigrams). All Phytophthora and Pythium species have a 
relatively large number of M28 aminopeptidases with two flanking domains, a N-terminal ‘PA 
(protein associated) domain’ (PF02225) and a C-terminal ‘transferrin receptor-like dimerization 
domain’ (PF04253). The human ortholog of these proteins is the transferrin receptor (TfR), a 
cell surface receptor that assists in iron uptake into cells through a cycle of exo- and endocytosis 
of the iron transport protein transferrin (Lawrence, 1999). Ten bigrams were found exclusively 
in Phytophthora spp. The most frequent one, present in seven species is the ‘mitochondrial 
processing peptidase (MPP) β-subunit’ domain of family M16B combined with an N-terminal 
‘glycosyl hydrolase 10’ domain (PF00331). An additional Phytophthora-specific bigram is a 
‘peptidase dimerisation’ domain (PF07687) combined with either a ‘Peptidase family M20/M25/
M40’ domain or a M20F domain. In Pythium species we found three lineage-specific bigrams. 
This included a M67C peptidase flanked by a PhoD-like phosphatase domain (PF09423) and a 
high number of ‘MORN (membrane occupation and recognition nexus) repeats’ (PF02493), 13 
in the Pythium aphanidermatum MP and 17 in the Pythium arrhenomanes MP.

Metalloproteases can play a role in different compartments in the cell, for example in 
mitochondria or plastids, but they can also be embedded in membranes or secreted to the 
extracellular environment (Majsec et al., 2017). To gain insight into their subcellular distribution 
we assessed all MPs for N-terminal targeting sequences using HECTAR, a method that was 
specifically developed for predicting the subcellular localization of proteins in Stramenopiles 
(Gschloessl et al., 2008). Notably, in A. astaci and the diatom F. solaris - the two species in this 
study with the largest MP catalog - a strikingly large proportion of the MPs was predicted to 
have a signal peptide; 52% and 53% respectively, while the average among species is only 16% 
(Figure S5). The SP containing proteins were almost exclusively single-domain MPs belonging 
to several families (Figure S6). Additionally, few Phytophthora species seem to have slightly 
more MPs with a signal anchor, whereas other species have (almost) none. Conceivably, 
most of the diatoms and algae included in this study possess MPs predicted to be targeted 
to plastids. Remarkably, also some of the oomycetes have MPs with plastid targeting signals, 
possibly remnants indicative of photosynthetic endosymbionts that were lost during evolution 
(Wang et al., 2017).
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In summary, our analyses reveal remarkable diversity in stramenopile MPs not only with 
respect to the subcellular targeting but also in terms of domain composition.  Many species 
have MPs containing unique bigrams next to MPs with common bigrams (Figure S3). Unique 
bigrams might have specific functions related to the lifestyle of a particular species. Testing 
this hypothesis warrants a more in-depth study of the MP repertoire at the single species level.

The MP repertoire in Phytophthora infestans
For further analyses at the single species level we choose to focus on P. infestans. The MP 
mining (Figure 1) resulted in the identification of 91 P. infestans genes encoding putative MPs 
(Table S2), equal to the average number per Stramenopile species. By carefully examining 
the predicted gene models in the genome browser, and inspecting the alignments with ESTs 
and RNA-Seq data, the majority of the 91 predicted gene models were found to be correct. 
The remaining ones were manually corrected. Based on the predicted peptidase domains we 
categorized the 91 MPs in 21 MP families and eight clans. More than one-third belongs to clan 
MA (36 MPs divided over ten families) and 15 group in clan MH (divided over three families; 
M18, M20 and M28). Three MPs from two families (M78 and M82) are not assigned to a clan (U: 
unassigned) and the remaining 37 are divided over six clans with only one MP family per clan 
but always more than one MP per family. Family sizes range from two (M17-clan MF) to nine 
(M24-clan MG) with intermediates of five (M38-clan MJ and M67-clan MP) and eight (M14-clan 
MC and M16-clan ME) (Figure 2; Table S2).

Consistent with the observations described above for the entire set of Stramenopile MPs, the 
P. infestans MPs are diverse with respect to their protease domains and domain architecture, 
even among MPs of the same family. An example is the M01 family with eight members, all having 
accessory domains. Of the 91 P. infestans MPs, 54 MPs only have the protease domain and no 
other protein domain, such as all M13 and M14 family members. The other 37 (41%) contain at 
least one accessory domain next to the protease domain. This can be another MP domain, as is 
the case in the M16 family with five out of eight members having one or two additional M16-like 
peptidase domains, or accessory domains not directly implicated in MP activity. The diversity 
in domain architecture among related MPs is nicely demonstrated in the M24 family in which 
two out of nine members have an additional M24-like domain (‘aminopeptidase P, N-terminal 
domain’; PF05195), another two have a C-terminal ‘zf-MYND-like zinc finger, mRNA binding 
domain’ (PF15801), one has a C-terminal ‘Creatinase/Prolidase N-terminal domain’ (PF01321) 
and one (PITG_08392) even has three accessory domains. The three remaining M24 members 
are single domain proteins (Figure 4; Table S2).



 Chapter 5

5

106

PITG_13014

PITG_09504
92

PITG_13658

PITG_12220

PITG_12211
93

99

98

PITG_08392

PITG_04875

PITG_01206

PITG_07955
68

83

98

M24 (PF00577) 

Creatinase/Prolidase (PF01321) 
Aminopeptidase P (PF05195) 

zf-MYND-like zinc finger (PF15801) 

FACT complex subunit (SPT16/CDC68 (PF08644)) 
Histone chaperone Rttp106-like (PF08512) 

200 AA

FACT complex subunit SPT16 N-terminal lobe (PF14826) 

FIGURE 4 | Phylogenetic tree and domain composition of members of the M24 family in Phytophthora 
infestans. Multiple sequence alignment of M24 MP domains (lime colored) was performed with MAFFT v7 using the 
Mafft-homologs option and a gap opening penalty of 2.0. The phylogenetic tree was constructed with W-IQ-TREE 
using the WAG model and 1000 bootstraps. Bootstrap values are indicated at nodes.

Previously it was shown that Phytophthora spp. have proteins with unique, oomycete specific 
or even Phytophthora specific bigrams (van den Hoogen and Govers, 2018; Meijer and Govers, 
2006; Seidl et al., 2011), and also in the current study the analyses of all Stramenopile MPs 
revealed a few bigrams that might be lineage specific (Figure S3; Table S1). For P. infestans, 
most MPs with a similar domain architecture are present in metazoans, plants, fungi and/or 
bacteria, some of the multidomain MPs seem to be unique. Two examples are family M20 
MPs (PITG_00577 and PITG_06978) in which the MP domain is preceded by a ‘Amidohydro_1’ 
domain (PF01979) or a ‘CENP-B N-terminal DNA-binding domain’ (PF04218), respectively. 
Proteins with these domain architectures are limited to oomycete species in the Pythiaceae 
and Peronosporaceae families. Another example is a family M67 MP (PITG_16722) that has a 
N-terminal ‘PWWP’ domain (PF00855). MPs with this domain architecture are also found in 
Albugo spp. and Saprolegnia spp. but not in non-oomycete lineages.

Expression profiling of Phytophthora infestans MP genes
To determine the expression profiles of the MP genes during the P. infestans life cycle we 
exploited transcriptome data from four in vitro life stages, i.e. zoospores, germinating cysts, 
mycelium and sporangia, and three infection stages, i.e. early, mid and late infection. The 
mean transcripts-per-million mapped reads (TPM) values were highly variable; eight genes 
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stand out with a mean TPM value above 500 pointing to a relatively high expression in one 
or more stages (Figure 5). Genes were empirically clustered into eight clusters with distinct 
expression profiles. More than one-third of the MP genes shows the highest transcript levels 
in the late infection stage (cluster 3 with 35 genes). Four clusters, i.e. clusters 1, 5, 6 and 8, 
show a clear peak in germinating cysts pointing to a relatively high expression in this pre-
infection stage. In cluster 8 (eight genes) this coincides with a relatively high expression in 
sporangia and an overall lower expression in all other stages resulting in two peaks in the 
overall pattern. Cluster 6 also shows two peaks but in contrast to cluster 8, the genes in 
cluster 6 (17 genes) show lower expression in sporangia and higher expression in zoospores. 

C

n=17

n=11

n=35

n=7

n=7

n=8

n=2

∑TPM
S MY SP ZO GC EI MI LI MY SP ZO GC EI MI LI
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8

FIGURE 5 | Clustering of MP genes based on expression patterns during the P.  infestans life cycle 
and during in planta growth. The dendrogram on the left shows the hierarchical clustering of the expression 
patterns. The bars in column S mark the MPs with a predicted signal peptide (dark gray) or signal anchor (light 
gray). The color-coded bars in column C indicate the clan in MEROPS comprising the MP. The heatmap 
shows the relative expression of each gene based on the stage-wise, z-score transformed expression values 
in mycelium (MY), sporangia (SP), zoospores (ZP), germinating cysts (GC), and early, mid and late infection 
stage (EI, MI, LI, respectively). The adjacent bar plot shows the mean TPM value for each gene. The line plots 
on the right display the expression profiles of the eight clusters and the number (n) of genes in each cluster.
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Also, the seven genes in cluster 5 have higher transcript levels in zoospores and germinating 
cysts when compared to sporangia but here expression is also induced in mycelium and in the 
late infection stage. The expression of the four genes in cluster 1 peaks in germinating cysts 
and no other in vitro life stage or infection stage. Similar to the four cluster 1 genes the eleven  
genes in cluster 2 are clearly upregulated in germinating cysts but here the higher expression is 
maintained or even further boosted during early and mid infection stages. This cluster comprises 
the three genes with the highest average TPM value pointing to relatively high transcript levels.

The cluster analyses did not reveal any apparent correlation between expression pattern 
and specific features of the MPs. Each cluster contains MPs from various clans and families, 
and also MP genes that are predicted to encode potentially secreted MPs (designated sMPs) 
are randomly distributed over the clusters (Figure 5). Several of these sMP genes show 
relatively high expression levels in pre-infection stages such as (zoo)spores and germinating 
cysts, or during early, mid or late infection stages, expression profiles reminiscent of a role in 
pathogenicity.

MPs affecting lesion growth of P. infestans
To investigate a potential role for P. infestans MPs in causing late blight disease we selected 
a subset of the 91 MPs and tested their capacity to modulate the virulence of P. infestans. 
The selection was based on the presence of a N-terminal SP or SA in the predicted protein 
which initially resulted in a subset of 27 sMPs. A subsequent analysis using HECTAR (Gschloessl 
et al., 2008) revealed three additional sMPs but discarded five of the initial 27 as likely not 
secreted (Figure 6). The vast majority are single domain proteins with only the protease 
domain preceded by a SP or SA. In planta activity was tested by monitoring lesion growth of 
P. infestans on Nicotiana benthamiana leaves in which full-length cDNAs of the MP genes were 
transiently expressed by means of agroinfiltration. Measurements of lesion sizes at five days 
post inoculation showed significantly larger lesions in nine cases pointing to a positive effect 
of these MPs on P. infestans growth. In three cases we recorded smaller lesions suggesting an 
inhibitory effect of these three MPs on growth.

The twelve MPs affecting lesion growth belong to only six families out of the 21 identified in 
P.  infestans, and 8 out of the 12 belong to clan MA families. All members of family M12 and 
M79 (three and two, respectively) promoted lesion growth while two out of three M3 family 
members caused growth inhibition. Of the four tested M08 family members, only the one 
that has an EGF-like domain (PF07974) C-terminal of the protease domain showed a growth 
promoting effect (PITG_08874). It should however be noted that our initial analysis on this 
sequence predicted a N-terminal SA but HECTAR did not confirm this. The same discrepancy in 
predicted subcellular localization holds for one of the M03 MPs inhibiting growth (PITG_02711) 
and one of the M48 MPs (PITG_11607) promoting growth. The other M48 MP tested in 
planta (PITG_12517) and also showing a growth promoting effect, does have a SA but unlike 
PITG_11607 it is not a single domain protein. It comprises one of the three most ubiquitous 
bigrams, occurring in nearly all stramenopile species namely a M48 peptidase domain followed 
by the ‘CAAX-prenyl protease N terminal, five transmembrane helices’ domain (PF16491).
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In the M14 family, opposing effects were found with one M14 MP (i.e., PITG_00756) hampering, 
and the other one (PITG_11126) promoting lesion growth. Both are single domain proteins but 
the latter is much larger in size and has signatures of transmembrane regions. Moreover, they 
are assigned to different subfamilies, M14B and M14C, respectively, and belong to different 
orthogroups (Table S2). P. infestans has eight M14 MPs, four of which are predicted to be 
secreted including three tested in planta. The third tested M14 MP (M14B; PITG_06850) 
showed no significant effect.
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FIGURE 6 | Phytophthora infestans genes encoding putative secreted MPs and their capacity to promote 
or inhibit lesion growth. P. infestans genes encoding MPs that are predicted to be secreted based on the presence 
of a signal peptide (▷) or signal anchor (◻︎). Five MPs listed here were initially predicted to have a SP or SA but this 
was not confirmed in a re-analysis. Two of these possess a mitochondrion transit peptide (O). Family and expression 
profiles are indicated in colours and gray squares with cluster numbers, respectively, with cross reference to Figure 
5. Five MPs (marked by *) have additional domains. PITG_08774 has a ‘EGF-like domain’ (PF07974), PITG_12517 
has a ‘CAAX prenyl protease N-terminal, five membrane helices’ (PF16491), PITG_07955 has an ‘Aminopeptidase P, 
N-terminal domain’ (PF16491), and PITG_12818 and PITG_12824) both have a ‘PA domain’ (PF02225) and a ‘Transferrin 
receptor-like dimerisation domain’ (PF04253). The bars on the right show the lesion sizes on Nicotiana benthamiana 
leaves transiently expressing MP genes. One day after agroinfiltration, inoculations were performed with zoospores 
of P. infestans strain 14-3-GFP. Lesions were measured at 5 days post inoculation. Bars represent the average lesion 
sizes from three biological repeats (n=20). The bar colors indicate smaller (red) or larger (green) lesions or no effect 
(gray) when compared to empty vector control (black). Three MPs (n.d.) were not tested in planta. Error bars indicate 
SD and bar colors indicate significantly smaller (red) or significantly larger (green) lesions or no effect (gray) when 
compared to empty vector (EV) control (black) (ANOVA, p<0.05).
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There is no significant association between expression profile and in planta activity. The twelve 
MP genes that show in planta activity are divided over seven of the eight expression clusters 
with a slight preference for cluster 3. This is not surprising considering that cluster 3 comprises 
more than one third of all MP genes. It is reassuring though that the cluster 3 expression profile, 
i.e. upregulation in mid and late infection stages, complies with a putative function in virulence. 
In MP families with two members showing in planta activity, the expression profiles vary for 
each of the two members and often show complementarity. For example, one M03 MP peaks 
in germinating cysts (cluster 1) and the other in mid and late infection stages (cluster 3). In the 
M12 family with three members showing in planta activity, one is in cluster 3 and two in the 
complementary cluster 6 with relatively high expression in zoospores and germinating cysts.

Taken together, these results strongly suggest a role in virulence for a selected set of MPs. As 
yet there is no data confirming proteolytic activity of these particular MPs in P. infestans and 
also the question whether proteolytic activity as such is required for virulence remains to be 
answered.

Discussion

Although several studies highlight a direct or indirect role of MPs in microbial pathogenicity 
(Fernandes et al., 2019; Joshi et al., 2002; Sanz-Martín et al., 2016), the roles of MPs in pathogenic 
oomycetes have not yet been explored. Here we aimed to identify and characterize the MP 
repertoire in Stramenopiles, with a specific focus on oomycetes, and in particular the late 
blight pathogen P. infestans.

Mining of stramenopile proteomes showed a diverse catalog of MPs in each species with a 
core of 19 MP families present in over 82% of the 46 Stramenopiles analyzed and with some 
families showing striking species-specific expansions. This is for example the case in A. astaci, 
a pathogen on crustaceans that has several large MP families, mostly comprising single-
domain MPs with a SP. These observations are coherent with recent reports showing that 
the secretome of A. astaci is enriched for small secreted proteins with peptidase activities, 
many of which are indeed MPs (Gaulin et al., 2018). One of the expanded families in A. astaci as 
well as in other animal oomycete pathogens, is M13, a family comprising peptidases known as 
neprilysins, zinc-metalloenzymes that play a regulatory role in peptide signaling in mammalians 
(Bland et al., 2008). In bacterial pathogens it was shown that neprilysins have a role a virulence, 
for example PepO in the human pathogen Streptococcus pyogenes (Brouwer et al., 2018) and 
PtrA in pathogen Erwinia amylovora (Zhang et al., 1999). In our plant assays however, we found 
no indications for a virulence function for any of the five P. infestans M13 MPs, suggesting that 
in oomycetes M13 is relevant for animal pathogens but less so for plant pathogens.

While the majority (62%) of the 4,178 stramenopile MPs are single-domain proteins, a substantial 
number are multi-domain proteins with accessory domains that might be required for example, 
for dimerization, substrate binding, or targeting to membranes or subcellular compartments. 
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The remarkable versatility in the accessory domains implies a broad functionality of MPs. 
In our analyses we specifically focused on the domain composition of these multidomain 
MPs and searched for unique bigrams. Most oomycete proteins with unique bigrams seem 
to be involved in signal transduction (van den Hoogen and Govers, 2018), but there are also 
examples of a structural proteins, i.e. myosin (Seidl et al., 2011), and an aspartic protease (van 
den Hoogen et al., 2018). In general, diversity among MP family members and in between 
MP families and clans is well documented (Rawlings and Barrett, 1995) and in most cases 
the domain composition of the multi-domain Stramenopile MPs complies with that of MPs 
in other organisms. Still, we identified three MPs in P. infestans that have oomycete specific 
bigrams. One is a M67 MP with a N-terminal ‘PWWP’ domain, named after a conserved motif 
that binds to methylated histone-4 proteins. The other two are M20 MPs that are even more 
specific as they are limited to two sub-lineages within the oomycetes namely Pythiaceae and 
Peronosporaceae. One of the M20 MPs has a ‘CENP-B N-terminal DNA-binding domain’ that, 
similar to the ‘PWWP’ domain, points to a function in the nucleus. There is ample evidence that 
Phytophthora species exploit epigenetic modifications for tailoring their virulence (Wang et 
al., 2020) and it would be worth investigating whether or not the oomycete specific MPs play 
a role in that process.

In the entire set of Stramenopile MPs we identified a few other intriguing bigrams. One is 
present in a M67 MP that is found in just two species, Pythium aphanidermatum and Pythium 
arrhenomanes, and not in any of the Phytophthora species. In this multi-domain protein the 
MP domain is followed by a PhoD-like phosphatase and a high number of MORN repeats that 
function as protein-protein interaction modules (Li et al., 2019). MORN1, a protein in the 
parasite Toxoplasma gondii with 14 MORN repeats, appears to play a role in cell division and to 
act as a linker protein between membranes and the cytoskeleton (Gubbels, 2006).

One of the three most widespread bigrams that were found in this study is a M48 MP 
combined with a second M48 domain known as CAAX-prenyl-M48 peptidase (PITG_12517). 
In planta assays, revealed that the presence of this MP in leaves leads to an increase in lesion 
size suggesting a role in virulence of P. infestans. Whether or not both M48 domains in the 
bigram are essential for its virulence function is questionable especially since a second single 
domain M48 MP (PITG_11607) also showed a growth promoting effect. Furthermore, it is 
unclear where the M48 MPs are localized. Although the predicted SA might facilitate secretion, 
it is unlikely that the CAAX-prenyl-M48 part with seven transmembrane spanning regions is 
secreted. Conceivably, the first M48 domain could be cleaved off and secreted while the 
CAAX-prenyl-M48 part remains in the ER to exert other functions. CAAX-prenyl-M48 MPs 
are widespread in eukaryotes and play a role in posttranslational modification of proteins 
in particular in cleavage of the CAAX moiety of farnesylated proteins. A well-studied CAAX-
prenyl–M48 MP is Ste24 in Saccharomyces cerevisae, that has a dual role in mating pheromone 
maturation, namely CAAX cleavage and removal of the N-terminal extension (Pryor et al., 2013; 
Rawlings and Salvesen, 2013). Knocking-out an ortholog of Ste24 in the parasite Leishmania 
donovani resulted in reduced infectivity and growth (Bhardwaj et al., 2017).
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The second P. infestans MP that comprises a bigram and showed a growth promoting effect 
in the in planta assays is the M8 MP PITG_08774, that has an additional EGF-like domain. Since 
none of the four single domain M8 MPs showed a growth promoting effect, it is conceivable 
that the EGF-like domain is relevant for the virulence function of this M8 MP. It is known that 
in mammalians the extracellular epidermal growth factor (EGF) binds to the EGF receptor 
thereby stimulating growth and development. One could speculate that the EGF-like domain 
in the PITG_08774 protein acts as ligand of a receptor on the host cell membrane, to bring 
the M8 MP in the proximity of its substrate. Proteolysis of the substrate could then result in 
suppression of defense. Another example of a M8 MP acting in virulence is leishmanolysin 
GP63 in Leishmania parasites but unlike the PITG_08774 protein this is a single domain MP 
(Gomez et al., 2009; Hallé et al., 2009).

The other P. infestans MPs that showed growth promoting or inhibiting effects in plant assays 
are all single domain MPs divided over four families, i.e., M03, M12, M14 and M79. Two of the 
three P. infestans M03 MPs showed an inhibitory effect on lesion growth. All three have a SP 
while in the entire set of Stramenopile MPs only 22% (43/193) of the M03 MPs are predicted to 
be secreted. Inhibition of lesion growth is remarkable, especially because the expression seems 
to be relatively high in germinating cysts and/or mid and late infection stages. Presumably 
there is a mechanism in place that inhibits the activity of these MPs. One could imagine that 
the host induces expression of the M03 encoding genes as part of its defence machinery but 
that P. infestans in turn produces an effector to suppress M03 activity. To our knowledge this 
is the first report showing that a M03 MP plays a role in a host-pathogen interaction. The same 
holds for M79, a family with relatively few known members. Similar to M48 MPs, M79 MPs 
are endopeptidases that release the CAAX moiety from farnesylated proteins (Rawlings and 
Salvesen, 2013) and both M48 and M79 MPs show the capacity to promote lesion growth in 
our plant assays.

M12 MPs, also known as astacins, have been intensively studied due to their implications in 
Alzheimer’s disease and breast cancer (Edwards et al., 2008; Hartmann et al., 2013). They can 
function as sheddases and as such modify the activity of membrane spanning receptors. This 
ectodomain shedding has also been observed in plant pattern recognition receptors acting in 
immunity against pathogens (Petutschnig et al., 2014). As yet, the proteases involved have not 
been identified but it is conceivable that such proteases are part of the pathogen’s weaponry 
when attacking plants. P. infestans has three astacin-like MPs that might have such a role. All 
three have a SP and showed a consistent growth promoting effect in planta. Over 80% of 
the stramenopile M12 MPs is predicted to be secreted and one of the P. infestans M12 MPs 
(i.e. PITG_09851) was indeed detected in the extracellular proteome (Meijer et al., 2014). The 
increased expression of PITG_09851 in zoospores and germinated cysts suggests that astacin 
is present in the pre-infection stage when encountering the plant surface. The last MP family to 
consider in relation to virulence is M14, with two out of three tested members affecting lesion 
growth albeit opposite. The one inhibiting lesion growth is a M14C type, the one promoting 
lesion growth is a M14B type. M14 MPs are carboxypeptidases that hydrolyze single C-terminal 
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amino acids from polypeptide chains with each subtype having a specificity for certain amino 
acids. Possibly the released amino acids act as signal molecules triggering certain responses, 
either in the host or in the pathogen. Four of the eight P. infestans M14 MPs are secreted, while 
the other four presumably function intracellular. Alternatively, modification of the substrate 
by removal of one amino acid at the C-terminus could also trigger a cascade of new events 
affecting the host-pathogen interaction. As yet, literature searches did not reveal examples in 
which M14 MPs have been implicated in microbial pathogenicity.

This study presents an overview of the MP repertoire in Stramenopiles and provides new 
insights into the immense diversity of MPs in individual species as well the dynamics of genes 
and gene families related to lifestyle or taxonomic lineage. The lack of MPs or MP families 
could be due to gene losses, with the acquisition of novel unique MPs through gene gains as 
counterbalance. Previous studies showed that the evolutionary history of oomycetes is shaped 
by massive gene gains, duplications and losses and likely this has been a drive for speciation 
(Seidl et al., 2012). The more in-depth analyses were limited to just one species, P. infestans, 
and were preceded by manual curation of the predicted gene models. During the analyses 
we encountered the pitfalls of poorly assembled and annotated genomes, and of unexpected 
patterns in the genome assemblies (Denton et al., 2014). For comparative analyses of gene 
families one should strive for high quality genome assembly and annotation, and it should 
be emphasized that manual curation of predicted gene models is paramount for an accurate 
ortholog inference and family classification of genes and proteins (Vaattovaara et al., 2019).

This study allowed us to pinpoint twelve MPs that affect the virulence of P. infestans. These 
data provide a foundation for further studies on the biochemistry and function of these MPs 
in Phytophthora and in other pathogenic oomycetes. By making use of the broad knowledge 
gained on MPs in a wide range of organisms including microbial pathogens, it should be 
feasible to unravel the mechanisms underlying the growth promoting or inhibiting activity of 
these MPs and to identify compounds that interfere with MP activity. Exploitation of this type 
of compounds is currently pursued for controlling alveolate parasites such as Plasmodium and 
Toxoplasma species (Deu, 2017; Escotte-Binet et al., 2018) and might also be applicable for 
controlling oomycete diseases.

Experimental procedures

Annotation of putative metalloproteases
Complete proteomes of 37 oomycete species were retrieved from https://github.com/
oomycetes/oomycetes.github.io (McGowan and Fitzpatrick, 2017). This included 14 de novo 
generated proteomes and 23 downloaded (Table S1). The most recent complete proteomes 
for four algae species (Aureococcus anaphagefferens, Ectocarpus siliculosus, Hondaea 
fermentalgiana, Nannochloropsis gaditana,) and five diatoms (Fistulifera solaris, Fragilariopsis 



 Chapter 5

5

114

cylindrus, Phaedactylum tricornutum, Thalassiosira pseudonana, Thalassiosira oceanica) 
were downloaded from Uniprot (Table S1). Since not all proteomes were annotated with 
equal detail, we used only the longest isoform per gene. To start the annotation (Figure 1) 
the MEROPS database (release 12.0) (Rawlings et al., 2018) was downloaded for extracting 
aligned peptidase sequences per (sub)family. These were used to train profile HMMs with 
hmmbuild (HMMER package v3.1b2; http://hmmer.org), generating one HMM per MEROPS 
(sub)family. We matched these HMMs to the proteomes and selected matches maintaining 
an empirical E-value threshold of 1e-10. All matching subsequences were extracted and used 
to train Stramenopile-specific HMMs. Again, the complete proteomes were matched to these 
HMMs, this time maintaining a lower E-value threshold of 1e-25. For both iterations of HMM 
searches, all proteins were assigned to their respective best matching MEROPS family. Apart 
from using solely MEROPS as a data source for MP searches, we extracted domain HMMs 
from the Pfam database (release 31.0) (Finn et al., 2016). The HMMs of all peptidase domains 
that were cross-referenced with MEROPS were extracted, and HMM searches were performed 
using the complete proteomes (E-value 1e-20). Proteins that either matched a MEROPS MP 
HMM, or a Pfam MP HMM were considered putative MPs. Classification was done according 
to MEROPS families and clans.

Sequence analyses
All putative MP protein sequences were subjected to feature annotation using Interproscan 
(version 5.30-69.0) (Jones et al., 2014). The Interproscan pipeline includes, among others, the 
predictors SignalP version 4.1 (H. Nielsen, 2017) and Phobius version 1.01 (Käll et al., 2004) for 
signal peptide predictions, and Pfam version 31.0 for domain annotation. We used HECTAR 
(Gschloessl et al., 2008) at the Galaxy Webserver of Station Biologique de Roscoff (https://
webtools.sb-roscoff.fr/) to assign the MPs to five different categories of subcellular targeting: 
i.e. signal peptide (SP), signal anchor (SA), chloroplast or mitochondrion transit peptides, 
and other. To annotate protein domains, we exploited the HMM search results of Pfam and 
MEROPS. Notably, HMMER only reports significant local alignments, yet the full peptidase 
domains may be larger. To derive the coordinates of the full peptidase domains, we merged 
consecutive local alignments in the HMM alignments. All non-intersecting Pfam domains 
reported by Interproscan were considered accessory domains. To assess the sequence 
similarity between all identified putative MPs, we constructed clusters of ortholog sequences 
using Orthofinder version 2.2.6 (Emms and Kelly, 2015).

The gene models of all putative MPs for P. infestans were manually curated using the WebApollo 
genome browser (Lee et al., 2013), loaded with the P. infestans T30-4 genome sequence (Haas 
et al., 2009). RNA sequencing reads of various strains and life stages of P. infestans (see below) 
were aligned using HiSat2 (v2.1.0) spliced aligner (Kim et al., 2015) and alignments were used 
as a guide to determine the correct exons. P. infestans MPs were blasted against the NCBI 
non-redundant database using the BLAST web server to check for their occurrence in other 
species. Significant hits (E-value <1e-5 and 50% identity) were selected for manual in-depth 
domain composition analyses, using the web servers of InterPro and Pfam.
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Gene expression analyses
P. infestans strain T20-2 was grown on rye sucrose medium at 18°C and 10-days old mycelium 
was collected for RNA extraction. Sporangia were isolated from 10-days old mycelium growing 
on rye agar medium flooded with 10 ml water. To isolate zoospores, 10-days old mycelium was 
flooded with ice-cold water for 3 hours. Zoospores were collected after filtration with a 50 μm 
mesh. Germinating cysts were obtained from collected zoospores that were left to germinate 
at room temperature for 3 hours. RNA was extracted using NucleoSpin RNA II extraction kit 
(Macherey-Nagel) according to manufacturer’s instructions. RNA sequencing was performed 
using an Illumina HiSeq™ 2000, producing 90 bp paired-end reads. For in planta expression 
data, we downloaded P. infestans RNA-Seq libraries from NCBI BioProject PRJNA361417 (Ah-
Fong et al., 2017b) representing the transcription in infected tuber during early, mid and late 
infection. RNA abundance in all samples was quantified using Kallisto version 0.43.1 (Bray et al., 
2016), resulting in transcripts-per-million values (TPM). These were Z-score transformed and 
hierarchically clustered using Pearson correlation distance and average linkage. The optimal 
number of clusters was determined using the gap statistic implemented in the R package 
NbClust (Charrad et al., 2014).

Transient expression in Nicotiana benthamiana and infection assays
Full length coding sequences of MP genes were amplified from cDNA of P. infestans strain 88069 
using primers listed in Table S2. The amplified fragments were introduced by TOPO cloning in 
plasmid pENTR/D-TOPO and subsequently in the binary vector pGWB5 by LR recombination. 
The resulting constructs were transformed into Agrobacterium tumefaciens strain Agl1 
and transformants were used for agroinfiltration in N. benthamiana leaves. Agroinfiltration, 
inoculation with P. infestans zoospores from strain 14-3-GFP and measurements of lesion sizes 
were performed as described previously (Meijer et al., 2019).
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FIGURE S1 | The number of MPs per stramenopile species.
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PF13671 AAA domain

PF08546 Ketopantoate reductase PanE/ApbA C terminal

PF07647 SAM domain (Sterile alpha motif)

PF13857 Ankyrin repeats (many copies)

PF05572 Pregnancy−associated plasma protein−A

PF03473 MOSC domain

PF03476 MOSC N−terminal beta barrel domain

PF03221 Tc5 transposase DNA−binding domain

PF03092 BT1 family

PF02628 Cytochrome oxidase assembly protein

PF04366 Las17−binding protein actin regulator

PF10994 Protein of unknown function (DUF2817)

PF08811 Protein of unknown function (DUF1800)

PF02008 CXXC zinc finger domain

PF07394 Protein of unknown function (DUF1501)

PF01752 Collagenase

PF08453 Peptidase family M9 N−terminal

PF01457 Leishmanolysin

PF01344 Kelch motif

PF07646 Kelch motif

PF01083 Cutinase

PF00932 Lamin Tail Domain

PF00722 Glycosyl hydrolases family 16

PF03215 Rad17 cell cycle checkpoint protein

PF03619 Organic solute transporter Ostalpha

PF14306 PUA−like domain

PF09751 Nuclear protein Es2

PF01747 ATP−sulfurylase

PF00719 Inorganic pyrophosphatase

PF01583 Adenylylsulphate kinase

PF16313 Met−zincin

PF00749 tRNA synthetases class I (E and Q), catalytic domain

PF14226 non−haem dioxygenase in morphine synthesis N−terminal

PF13401 AAA domain

PF06041 Bacterial protein of unknown function (DUF924)

PF03171 2OG−Fe(II) oxygenase superfamily

PF00664 ABC transporter transmembrane region

PF01171 PP−loop family

PF17210 SdrD B−like domain

PF00641 Zn−finger in Ran binding protein and others

PF13417 Glutathione S−transferase, N−terminal domain

PF07298 NnrU protein

PF01170 Putative RNA methylase family UPF0020

PF03442 Carbohydrate binding domain X2

PF00622 SPRY domain

PF01593 Flavin containing amine oxidoreductase

PF01764 Lipase (class 3)

PF13472 GDSL−like Lipase/Acylhydrolase family

PF00642 Zinc finger C−x8−C−x5−C−x3−H type (and similar)

PF04389 Peptidase family M28

PF12432 Protein of unknown function (DUF3677)

PF13181 Tetratricopeptide repeat

PF00542 Ribosomal protein L7/L12 C−terminal domain

PF16320 Ribosomal protein L7/L12 dimerisation domain

PF00566 Rab−GTPase−TBC domain

PF04749 PLAC8 family

PF00431 CUB domain

PF01431 Peptidase family M13

PF05649 Peptidase family M13

PF13637 Ankyrin repeats (many copies)

PF10505 NMDA receptor−regulated gene protein 2 C−terminus

PF00251 Glycosyl hydrolases family 32 N−terminal domain

PF08244 Glycosyl hydrolases family 32 C terminal

PF01400 Astacin (Peptidase family M12A)

PF14844 PH domain associated with Beige/BEACH

PF13833 EF−hand domain pair

PF00179 Ubiquitin−conjugating enzyme

PF01248 Ribosomal protein L7Ae/L30e/S12e/Gadd45 family

PF06916 Protein of unknown function (DUF1279)

PF00270 DEAD/DEAH box helicase

PF00271 Helicase conserved C−terminal domain

PF05729 NACHT domain

PF00557 Metallopeptidase family M24

PF08620 RPAP1−like, C−terminal

PF04408 Helicase associated domain (HA2)

PF01433 Peptidase family M1 domain

PF00173 Cytochrome b5−like Heme/Steroid binding domain

PF00867 XPG I−region

PF14108 Domain of unknown function (DUF4281)

PF13621 Cupin−like domain

PF13370 4Fe−4S single cluster domain of Ferredoxin I

PF12706 Beta−lactamase superfamily domain

PF10602 26S proteasome subunit RPN7

PF06325 Ribosomal protein L11 methyltransferase (PrmA)

PF01490 Transmembrane amino acid transporter protein

PF01399 PCI domain

PF00970 Oxidoreductase FAD−binding domain

PF00569 Zinc finger, ZZ type

PF00564 PB1 domain

PF00535 Glycosyl transferase family 2

PF00249 Myb−like DNA−binding domain

PF00153 Mitochondrial carrier protein

PF00175 Oxidoreductase NAD−binding domain

PF00134 Cyclin, N−terminal domain

PF04762 IKI3 family

PF04515 Plasma−membrane choline transporter

PF02558 Ketopantoate reductase PanE/ApbA

PF00106 short chain dehydrogenase

PF01920 Prefoldin subunit

PF04005 Hus1−like protein

PF03481 Putative GTP−binding controlling metal−binding

PF01753 MYND finger

PF01300 Telomere recombination

PF01067 Calpain large subunit, domain III

PF01039 Carboxyl transferase domain

PF00648 Calpain family cysteine protease

PF00096 Zinc finger, C2H2 type

PF00520 Ion transport protein

PF02493 MORN repeat

PF09423 PhoD−like phosphatase

PF13639 Ring finger domain

PF02263 Guanylate−binding protein, N−terminal domain

PF00092 von Willebrand factor type A domain

PF00246 Zinc carboxypeptidase

PF01182 Glucosamine−6−phosphate isomerases/6−phosphogluconolactonase

PF07974 EGF−like domain

PF00675 Insulinase (Peptidase family M16)

PF14559 Tetratricopeptide repeat

PF13288 DXP reductoisomerase C−terminal domain

PF13180 PDZ domain

PF08436 1−deoxy−D−xylulose 5−phosphate reductoisomerase C−terminal

PF03193 RsgA GTPase

PF00083 Sugar (and other) transporter

PF01476 LysM domain

PF16413 DNA mismatch repair protein Mlh1 C−terminus

PF13589 Histidine kinase−, DNA gyrase B−, and HSP90−like ATPase

PF02900 Catalytic LigB subunit of aromatic ring−opening dioxygenase

PF01119 DNA mismatch repair protein, C−terminal domain

PF00989 PAS fold

PF00041 Fibronectin type III domain

PF00069 Protein kinase domain

PF00089 Trypsin

PF00454 Phosphatidylinositol 3− and 4−kinase

PF01597 Glycine cleavage H−protein

PF13499 EF−hand domain pair

PF00168 C2 domain

PF13772 AIG2−like family

PF13230 Glutamine amidotransferases class−II

PF10187 N−terminal domain of NEFA−interacting nuclear protein NIP30

PF09468 Ydr279p protein family (RNase H2 complex component)

PF08801 Nup133 N terminal like

PF03177 Non−repetitive/WGA−negative nucleoporin C−terminal

PF03133 Tubulin−tyrosine ligase family

PF01588 Putative tRNA binding domain

PF01471 Putative peptidoglycan binding domain

PF01048 Phosphorylase superfamily

PF00817 impB/mucB/samB family

PF00027 Cyclic nucleotide−binding domain

PF00200 Disintegrin

PF00627 UBA/TS−N domain

PF01822 WSC domain

PF00188 Cysteine−rich secretory protein family

PF00307 Calponin homology (CH) domain

PF00008 EGF−like domain

PF00240 Ubiquitin family

PF01341 Glycosyl hydrolases family 6

PF00612 IQ calmodulin−binding motif

PF12796 Ankyrin repeats (3 copies)

PF00536 SAM domain (Sterile alpha motif)

PF07942 N2227−like protein

PF13091 PLD−like domain

PF00264 Common central domain of tyrosinase

PF00005 ABC transporter

PF02515 CoA−transferase family III

PF01061 ABC−2 type transporter

PF00964 Elicitin

PF00221 Aromatic amino acid lyase

PF00225 Kinesin motor domain

PF05652 Scavenger mRNA decapping enzyme (DcpS) N−terminal

PF11969 Scavenger mRNA decapping enzyme C−term binding

PF00331 Glycosyl hydrolase family 10

PF01546 Peptidase family M20/M25/M40

PF07687 Peptidase dimerisation domain

PF00400 WD domain, G−beta repeat

PF02138 Beige/BEACH domain

PF00855 PWWP domain

PF08969 USP8 dimerisation domain

PF09409 PUB domain

PF17432 Domain of unknown function (DUF3458_C) ARM repeats

PF02789 Cytosol aminopeptidase family, N−terminal domain

PF02225 PA domain

PF04253 Transferrin receptor−like dimerisation domain

PF06480 FtsH Extracellular

PF08367 Peptidase M16C associated

PF15801 zf−MYND−like zinc finger, mRNA−binding

PF14826 FACT complex subunit SPT16 N−terminal lobe domain

PF08512 Histone chaperone Rttp106−like

PF08644 FACT complex subunit (SPT16/CDC68)

PF11940 Domain of unknown function (DUF3458) Ig−like fold

PF01321 Creatinase/Prolidase N−terminal domain

PF16491 CAAX prenyl protease N−terminal, five membrane helices

PF13012 Maintenance of mitochondrial structure and function

PF16187 Middle or third domain of peptidase_M16

PF00004 ATPase family associated with various cellular activities (AAA)

PF05193 Peptidase M16 inactive domain

PF05195 Aminopeptidase P, N−terminal domain

PF09127 Leukotriene A4 hydrolase, C−terminal

PF11838 ERAP1−like C−terminal domain

PF00449 Urease alpha−subunit, N−terminal domain

PF00547 Urease, gamma subunit

PF00699 Urease beta subunit

PF17148 Domain of unknown function (DUF5117)

PF01979 Amidohydrolase family

PF04218 CENP−B N−terminal DNA−binding domain
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FIGURE S2 | The diversity of accessory domains in stramenopile MPs and their frequency of occurrence in MPs in 
the different species.
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FIGURE S3 | The diversity of bigrams in stramenopile MPs and their frequency of occurrence in MPs in the different species..
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FIGURE S4 | The number of bigrams in MPs in each stramenopile species. 
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FIGURE S5 | The percentage of potentially secreted MPs per species based on SP prediction. For each species the 
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TABLE S2A | Overview of the 91 MPs identified in Phytophthora infestans. Gene IDs, protein length, MEROPS 
classification, predicted localization, domain composition, number of accessory domains and orthogroup membership. 
Full version can be found online.

gene length family clan source signalP TM signalP no TM Phobius TM Phobius SP TMHMM TM HECTAR localisation domain composition orthogroup

PITG_01616 980 M01 MA merops no no no no no other localisation M1 (M01) [357-517] | Domain of unknown function (DUF3458) Ig-like fold [544-
632] | Domain of unknown function (DUF3458_C) ARM repeats [644-960]

OG0000023

PITG_01619 1008 M01 MA merops no no no no no other localisation M1 (M01) [384-544] | Domain of unknown function (DUF3458) Ig-like fold [571-
659] | Domain of unknown function (DUF3458_C) ARM repeats [671-987]

OG0000023

PITG_02917 884 M01 MA merops no no no no no other localisation M1 (M01) [284-449] | ERAP1-like C-terminal domain [553-864] OG0000011
PITG_03837 639 M01 MA merops no no no no no other localisation M1 (M01) [280-435] | Leukotriene A4 hydrolase, C-terminal [519-631] OG0000009
PITG_08804 899 M01 MA merops no no no no no other localisation M1 (M01) [287-450] | ERAP1-like C-terminal domain [563-877] OG0000011
PITG_15392 670 M01 MA merops no no yes no yes other localisation M1 (M01) [267-426] | Leukotriene A4 hydrolase, C-terminal [498-614] OG0000009
PITG_15413 677 M01 MA merops no no yes no yes other localisation M1 (M01) [269-427] | Leukotriene A4 hydrolase, C-terminal [500-618] OG0000009
PITG_21860 505 M01 MA merops no no yes no yes other localisation M1 (M01) [97-255] | Leukotriene A4 hydrolase, C-terminal [328-446] OG0000009
PITG_02711 728 M03 MA merops no no no no no mitochondrion M3A (M03) [100-721] OG0000016
PITG_08197 704 M03 MA merops no no no no no mitochondrion M3A (M03) [105-700] OG0000033
PITG_08599 712 M03 MA merops no no no yes yes signal peptide M3A (M03) [102-695] OG0000039
PITG_08774 1018 M08 MA merops no no yes no no other localisation M8 (M08) [192-507] | EGF-like domain [687-713] OG0000010
PITG_09118 738 M08 MA merops no yes no yes no signal peptide M8 (M08) [113-490] OG0000010
PITG_09119 681 M08 MA merops no yes yes yes no signal peptide M8 (M08) [117-496] OG0000010
PITG_13513 144 M08 MA merops no no no no no other localisation M8 (M08) [1-122] OG0000010
PITG_14228 652 M08 MA merops no yes no yes no signal peptide M8 (M08) [104-481] OG0000010
PITG_09824 409 M12 MA merops no yes no yes no signal peptide M12A (M12) [98-248] OG0000007
PITG_09851 393 M12 MA merops no yes no yes no signal peptide M12 (M12) [160-316] OG0000007
PITG_13752 910 M12 MA merops no yes yes yes yes signal peptide M12A (M12) [594-757] OG0000054
PITG_07643 463 M13 MA merops no yes no yes no signal peptide M13 (M13) [35-453] OG0000000
PITG_08425 1223 M13 MA merops no no yes no no other localisation M13 (M13) [87-1223] OG0000000
PITG_09870 677 M13 MA merops no yes no yes no signal peptide M13 (M13) [33-677] OG0000000
PITG_10317 773 M13 MA merops no no yes no yes signal anchor M13 (M13) [111-773] OG0000000
PITG_18701 607 M13 MA merops no yes no yes no signal peptide M13 (M13) [35-607] OG0000000
PITG_01087 658 M41 MA merops no no yes no no mitochondrion ATPase family associated with various cellular activities (AAA) [257-386] | 

M41 (M41) [428-650]
OG0000006

PITG_10147 874 M41 MA merops no no no no no other localisation FtsH Extracellular [160-310] | ATPase family associated with various cellular 
activities (AAA) [420-552] | M41 (M41) [596-821]

OG0000006

PITG_02177 415 M48 MA merops no no no no no mitochondrion M48C (M48) [143-314] OG0000050
PITG_06937 300 M48 MA merops no no no no no other localisation M48A (M48) [81-275] OG0000055
PITG_11607 217 M48 MA merops no no no no no other localisation M48C (M48) [1-116] OG0000050
PITG_12517 485 M48 MA merops no no yes no yes signal anchor CAAX prenyl protease N-terminal, five membrane helices [48-268] | M48A 

(M48) [280-477]
OG0000026

PITG_13164 290 M48 MA merops no no yes no yes signal anchor M48C (M48) [97-251] OG0000022
PITG_08420 188 M76 MA merops no no no no no other localisation M76 (M76) [22-186] OG0000044
PITG_18055 196 M76 MA merops no no no no no other localisation M76 (M76) [31-193] OG0000034
PITG_13744 283 M80 MA merops no no no no no mitochondrion M80 (M80) [14-206] OG0000047
PITG_15925 478 M80 MA merops no no no no no other localisation M80 (M80) [134-279] | PUB domain [391-457] OG0000038
PITG_05650 905 M97 MA merops no no yes no yes other localisation Domain of unknown function (DUF5117) [280-329] | M97 (M97) [351-569] OG0000056
PITG_00756 482 M14 MC merops no yes no yes no signal peptide M14C (M14) [197-444] OG0000003
PITG_05548 1687 M14 MC merops no no no no no other localisation M14D (M14) [1079-1215] OG0000002
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TABLE S2A | Overview of the 91 MPs identified in Phytophthora infestans. Gene IDs, protein length, MEROPS 
classification, predicted localization, domain composition, number of accessory domains and orthogroup membership. 
Full version can be found online.

gene length family clan source signalP TM signalP no TM Phobius TM Phobius SP TMHMM TM HECTAR localisation domain composition orthogroup

PITG_01616 980 M01 MA merops no no no no no other localisation M1 (M01) [357-517] | Domain of unknown function (DUF3458) Ig-like fold [544-
632] | Domain of unknown function (DUF3458_C) ARM repeats [644-960]

OG0000023

PITG_01619 1008 M01 MA merops no no no no no other localisation M1 (M01) [384-544] | Domain of unknown function (DUF3458) Ig-like fold [571-
659] | Domain of unknown function (DUF3458_C) ARM repeats [671-987]

OG0000023

PITG_02917 884 M01 MA merops no no no no no other localisation M1 (M01) [284-449] | ERAP1-like C-terminal domain [553-864] OG0000011
PITG_03837 639 M01 MA merops no no no no no other localisation M1 (M01) [280-435] | Leukotriene A4 hydrolase, C-terminal [519-631] OG0000009
PITG_08804 899 M01 MA merops no no no no no other localisation M1 (M01) [287-450] | ERAP1-like C-terminal domain [563-877] OG0000011
PITG_15392 670 M01 MA merops no no yes no yes other localisation M1 (M01) [267-426] | Leukotriene A4 hydrolase, C-terminal [498-614] OG0000009
PITG_15413 677 M01 MA merops no no yes no yes other localisation M1 (M01) [269-427] | Leukotriene A4 hydrolase, C-terminal [500-618] OG0000009
PITG_21860 505 M01 MA merops no no yes no yes other localisation M1 (M01) [97-255] | Leukotriene A4 hydrolase, C-terminal [328-446] OG0000009
PITG_02711 728 M03 MA merops no no no no no mitochondrion M3A (M03) [100-721] OG0000016
PITG_08197 704 M03 MA merops no no no no no mitochondrion M3A (M03) [105-700] OG0000033
PITG_08599 712 M03 MA merops no no no yes yes signal peptide M3A (M03) [102-695] OG0000039
PITG_08774 1018 M08 MA merops no no yes no no other localisation M8 (M08) [192-507] | EGF-like domain [687-713] OG0000010
PITG_09118 738 M08 MA merops no yes no yes no signal peptide M8 (M08) [113-490] OG0000010
PITG_09119 681 M08 MA merops no yes yes yes no signal peptide M8 (M08) [117-496] OG0000010
PITG_13513 144 M08 MA merops no no no no no other localisation M8 (M08) [1-122] OG0000010
PITG_14228 652 M08 MA merops no yes no yes no signal peptide M8 (M08) [104-481] OG0000010
PITG_09824 409 M12 MA merops no yes no yes no signal peptide M12A (M12) [98-248] OG0000007
PITG_09851 393 M12 MA merops no yes no yes no signal peptide M12 (M12) [160-316] OG0000007
PITG_13752 910 M12 MA merops no yes yes yes yes signal peptide M12A (M12) [594-757] OG0000054
PITG_07643 463 M13 MA merops no yes no yes no signal peptide M13 (M13) [35-453] OG0000000
PITG_08425 1223 M13 MA merops no no yes no no other localisation M13 (M13) [87-1223] OG0000000
PITG_09870 677 M13 MA merops no yes no yes no signal peptide M13 (M13) [33-677] OG0000000
PITG_10317 773 M13 MA merops no no yes no yes signal anchor M13 (M13) [111-773] OG0000000
PITG_18701 607 M13 MA merops no yes no yes no signal peptide M13 (M13) [35-607] OG0000000
PITG_01087 658 M41 MA merops no no yes no no mitochondrion ATPase family associated with various cellular activities (AAA) [257-386] | 

M41 (M41) [428-650]
OG0000006

PITG_10147 874 M41 MA merops no no no no no other localisation FtsH Extracellular [160-310] | ATPase family associated with various cellular 
activities (AAA) [420-552] | M41 (M41) [596-821]

OG0000006

PITG_02177 415 M48 MA merops no no no no no mitochondrion M48C (M48) [143-314] OG0000050
PITG_06937 300 M48 MA merops no no no no no other localisation M48A (M48) [81-275] OG0000055
PITG_11607 217 M48 MA merops no no no no no other localisation M48C (M48) [1-116] OG0000050
PITG_12517 485 M48 MA merops no no yes no yes signal anchor CAAX prenyl protease N-terminal, five membrane helices [48-268] | M48A 

(M48) [280-477]
OG0000026

PITG_13164 290 M48 MA merops no no yes no yes signal anchor M48C (M48) [97-251] OG0000022
PITG_08420 188 M76 MA merops no no no no no other localisation M76 (M76) [22-186] OG0000044
PITG_18055 196 M76 MA merops no no no no no other localisation M76 (M76) [31-193] OG0000034
PITG_13744 283 M80 MA merops no no no no no mitochondrion M80 (M80) [14-206] OG0000047
PITG_15925 478 M80 MA merops no no no no no other localisation M80 (M80) [134-279] | PUB domain [391-457] OG0000038
PITG_05650 905 M97 MA merops no no yes no yes other localisation Domain of unknown function (DUF5117) [280-329] | M97 (M97) [351-569] OG0000056
PITG_00756 482 M14 MC merops no yes no yes no signal peptide M14C (M14) [197-444] OG0000003
PITG_05548 1687 M14 MC merops no no no no no other localisation M14D (M14) [1079-1215] OG0000002
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gene length family clan source signalP TM signalP no TM Phobius TM Phobius SP TMHMM TM HECTAR localisation domain composition orthogroup

PITG_06195 654 M14 MC merops no no no no no other localisation M14D (M14) [266-428] OG0000002
PITG_06850 531 M14 MC merops no yes no yes no signal peptide M14B (M14) [35-285] OG0000013
PITG_09251 863 M14 MC merops no no yes no yes other localisation M14C (M14) [239-494] OG0000035
PITG_11126 828 M14 MC merops no yes yes yes yes signal peptide M14B (M14) [33-299] OG0000013
PITG_13564 277 M14 MC merops no yes no yes yes signal peptide M14B (M14) [32-277] OG0000013
PITG_23044 916 M14 MC merops no no no no no other localisation M14D (M14) [294-430] OG0000002
PITG_00203 466 M16 ME merops no no no yes no mitochondrion M16B (M16) [43-238] OG0000028
PITG_01569 1047 M16 ME merops no no no no no other localisation M16A (M16) [23-257] | Middle or third domain of peptidase_M16 [437-721] | 

Peptidase M16 inactive domain [748-880]
OG0000001

PITG_04726 447 M16 ME merops no no no no no mitochondrion M16B (M16) [57-250] OG0000058
PITG_08991 1008 M16 ME merops no no no no no other localisation M16B (M16) [27-231] | Middle or third domain of peptidase_M16 [380-672] | 

Peptidase M16 inactive domain [689-865]
OG0000001

PITG_13437 1048 M16 ME merops no no no no no other localisation M16B (M16) [99-281] | Peptidase M16C associated [518-771] OG0000024
PITG_16759 1078 M16 ME merops no no no no no other localisation M16A (M16) [29-252] | Middle or third domain of peptidase_M16 [439-737] OG0000001
PITG_17056 1000 M16 ME merops no no no no no other localisation M16B (M16) [30-234] | Middle or third domain of peptidase_M16 [384-667] | 

Peptidase M16 inactive domain [679-842]
OG0000001

PITG_20378 531 M16 ME merops no no no no no mitochondrion M16B (M16) [97-291] OG0000031
PITG_04838 519 M17 MF merops no no no no no mitochondrion Cytosol aminopeptidase family, N-terminal domain [60-161] | M17 (M17) [196-513] OG0000020
PITG_11569 534 M17 MF merops no no no no no mitochondrion M17 (M17) [204-526] OG0000021
PITG_01206 481 M24 MG merops no no no no no mitochondrion Aminopeptidase P, N-terminal domain [57-174] | M24A (M24) [213-465] OG0000046
PITG_04875 630 M24 MG merops no no no no no mitochondrion Creatinase/Prolidase N-terminal domain [44-169] | M24B (M24) [328-585] OG0000027
PITG_07955 553 M24 MG merops no no no yes no signal peptide Aminopeptidase P, N-terminal domain [93-212] | M24B (M24) [254-546] OG0000018
PITG_08392 1077 M24 MG pfam no no no no no other localisation FACT complex subunit SPT16 N-terminal lobe domain [32-190] | PF00557.23 

(M24) [206-438] | FACT complex subunit (SPT16/CDC68) [572-727] | Histone 
chaperone Rttp106-like [856-934]

OG0000040

PITG_09504 453 M24 MG merops no no no no no other localisation M24A (M24) [125-449] OG0000017
PITG_12211 394 M24 MG merops no no no no no other localisation zf-MYND-like zinc finger, mRNA-binding [18-64] | M24A (M24) [136-375] OG0000005
PITG_12220 378 M24 MG merops no no no no no other localisation zf-MYND-like zinc finger, mRNA-binding [6-52] | M24A (M24) [121-360] OG0000005
PITG_13014 393 M24 MG merops no no no no no other localisation M24A (M24) [31-353] OG0000030
PITG_13658 291 M24 MG merops no no no no no mitochondrion M24A (M24) [54-291] OG0000005
PITG_02114 462 M18 MH merops no no no no no other localisation M18 (M18) [17-449] OG0000025
PITG_00028 422 M20 MH merops no no no no no other localisation M20F (M20) [7-412] OG0000008
PITG_00029 416 M20 MH merops no no no no no other localisation M20F (M20) [4-409] OG0000008
PITG_00577 865 M20 MH merops no no no no no mitochondrion Amidohydrolase family [96-481] | M20 (M20) [522-786] OG0000052
PITG_02852 407 M20 MH merops no no no no no other localisation M20F (M20) [6-402] OG0000008
PITG_05858 419 M20 MH merops no no no no no other localisation M20F (M20) [15-400] OG0000012
PITG_05861 437 M20 MH merops no no no no no other localisation M20F (M20) [13-428] OG0000012
PITG_05866 192 M20 MH merops no no no no no other localisation M20F (M20) [20-181] OG0000012
PITG_06978 682 M20 MH merops no no no no no other localisation CENP-B N-terminal DNA-binding domain [30-72] | M20D (M20) [190-652] OG0000015
PITG_00273 869 M28 MH merops no no yes no yes other localisation PA domain [222-306] | M28B (M28) [355-700] | Transferrin receptor-like 

dimerisation domain [753-862]
OG0000051

PITG_00289 776 M28 MH merops no no yes no yes other localisation PA domain [207-270] | M28B (M28) [330-612] | Transferrin receptor-like 
dimerisation domain [658-775]

OG0000004

PITG_10813 875 M28 MH merops no no yes no yes signal anchor M28B (M28) [113-339] OG0000043
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gene length family clan source signalP TM signalP no TM Phobius TM Phobius SP TMHMM TM HECTAR localisation domain composition orthogroup

PITG_06195 654 M14 MC merops no no no no no other localisation M14D (M14) [266-428] OG0000002
PITG_06850 531 M14 MC merops no yes no yes no signal peptide M14B (M14) [35-285] OG0000013
PITG_09251 863 M14 MC merops no no yes no yes other localisation M14C (M14) [239-494] OG0000035
PITG_11126 828 M14 MC merops no yes yes yes yes signal peptide M14B (M14) [33-299] OG0000013
PITG_13564 277 M14 MC merops no yes no yes yes signal peptide M14B (M14) [32-277] OG0000013
PITG_23044 916 M14 MC merops no no no no no other localisation M14D (M14) [294-430] OG0000002
PITG_00203 466 M16 ME merops no no no yes no mitochondrion M16B (M16) [43-238] OG0000028
PITG_01569 1047 M16 ME merops no no no no no other localisation M16A (M16) [23-257] | Middle or third domain of peptidase_M16 [437-721] | 

Peptidase M16 inactive domain [748-880]
OG0000001

PITG_04726 447 M16 ME merops no no no no no mitochondrion M16B (M16) [57-250] OG0000058
PITG_08991 1008 M16 ME merops no no no no no other localisation M16B (M16) [27-231] | Middle or third domain of peptidase_M16 [380-672] | 

Peptidase M16 inactive domain [689-865]
OG0000001

PITG_13437 1048 M16 ME merops no no no no no other localisation M16B (M16) [99-281] | Peptidase M16C associated [518-771] OG0000024
PITG_16759 1078 M16 ME merops no no no no no other localisation M16A (M16) [29-252] | Middle or third domain of peptidase_M16 [439-737] OG0000001
PITG_17056 1000 M16 ME merops no no no no no other localisation M16B (M16) [30-234] | Middle or third domain of peptidase_M16 [384-667] | 

Peptidase M16 inactive domain [679-842]
OG0000001

PITG_20378 531 M16 ME merops no no no no no mitochondrion M16B (M16) [97-291] OG0000031
PITG_04838 519 M17 MF merops no no no no no mitochondrion Cytosol aminopeptidase family, N-terminal domain [60-161] | M17 (M17) [196-513] OG0000020
PITG_11569 534 M17 MF merops no no no no no mitochondrion M17 (M17) [204-526] OG0000021
PITG_01206 481 M24 MG merops no no no no no mitochondrion Aminopeptidase P, N-terminal domain [57-174] | M24A (M24) [213-465] OG0000046
PITG_04875 630 M24 MG merops no no no no no mitochondrion Creatinase/Prolidase N-terminal domain [44-169] | M24B (M24) [328-585] OG0000027
PITG_07955 553 M24 MG merops no no no yes no signal peptide Aminopeptidase P, N-terminal domain [93-212] | M24B (M24) [254-546] OG0000018
PITG_08392 1077 M24 MG pfam no no no no no other localisation FACT complex subunit SPT16 N-terminal lobe domain [32-190] | PF00557.23 

(M24) [206-438] | FACT complex subunit (SPT16/CDC68) [572-727] | Histone 
chaperone Rttp106-like [856-934]

OG0000040

PITG_09504 453 M24 MG merops no no no no no other localisation M24A (M24) [125-449] OG0000017
PITG_12211 394 M24 MG merops no no no no no other localisation zf-MYND-like zinc finger, mRNA-binding [18-64] | M24A (M24) [136-375] OG0000005
PITG_12220 378 M24 MG merops no no no no no other localisation zf-MYND-like zinc finger, mRNA-binding [6-52] | M24A (M24) [121-360] OG0000005
PITG_13014 393 M24 MG merops no no no no no other localisation M24A (M24) [31-353] OG0000030
PITG_13658 291 M24 MG merops no no no no no mitochondrion M24A (M24) [54-291] OG0000005
PITG_02114 462 M18 MH merops no no no no no other localisation M18 (M18) [17-449] OG0000025
PITG_00028 422 M20 MH merops no no no no no other localisation M20F (M20) [7-412] OG0000008
PITG_00029 416 M20 MH merops no no no no no other localisation M20F (M20) [4-409] OG0000008
PITG_00577 865 M20 MH merops no no no no no mitochondrion Amidohydrolase family [96-481] | M20 (M20) [522-786] OG0000052
PITG_02852 407 M20 MH merops no no no no no other localisation M20F (M20) [6-402] OG0000008
PITG_05858 419 M20 MH merops no no no no no other localisation M20F (M20) [15-400] OG0000012
PITG_05861 437 M20 MH merops no no no no no other localisation M20F (M20) [13-428] OG0000012
PITG_05866 192 M20 MH merops no no no no no other localisation M20F (M20) [20-181] OG0000012
PITG_06978 682 M20 MH merops no no no no no other localisation CENP-B N-terminal DNA-binding domain [30-72] | M20D (M20) [190-652] OG0000015
PITG_00273 869 M28 MH merops no no yes no yes other localisation PA domain [222-306] | M28B (M28) [355-700] | Transferrin receptor-like 

dimerisation domain [753-862]
OG0000051

PITG_00289 776 M28 MH merops no no yes no yes other localisation PA domain [207-270] | M28B (M28) [330-612] | Transferrin receptor-like 
dimerisation domain [658-775]

OG0000004

PITG_10813 875 M28 MH merops no no yes no yes signal anchor M28B (M28) [113-339] OG0000043
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gene length family clan source signalP TM signalP no TM Phobius TM Phobius SP TMHMM TM HECTAR localisation domain composition orthogroup

PITG_12818 816 M28 MH merops no no yes no no signal anchor PA domain [236-299] | M28B (M28) [359-644] | Transferrin receptor-like 
dimerisation domain [691-813]

OG0000004

PITG_12824 757 M28 MH merops no no yes no no signal anchor PA domain [183-263] | M28B (M28) [306-593] | Transferrin receptor-like 
dimerisation domain [641-754]

OG0000004

PITG_14835 719 M28 MH merops no yes yes yes yes signal peptide M28A (M28) [235-459] OG0000061
PITG_00636 842 M38 MJ pfam no no no no no other localisation Urease, gamma subunit [1-99] | Urease beta subunit [134-230] | Urease 

alpha-subunit, N-terminal domain [272-391] | PF01979.19 (M38) [397-726]
OG0000029

PITG_03605 459 M38 MJ pfam no no no no no other localisation PF01979.19 (M38) [62-399] OG0000019
PITG_05263 481 M38 MJ pfam no no no no no other localisation PF01979.19 (M38) [63-447] OG0000014
PITG_07820 444 M38 MJ pfam no no no no no other localisation PF01979.19 (M38) [66-438] OG0000014
PITG_08142 474 M38 MJ pfam no no no no no other localisation PF01979.19 (M38) [75-436] OG0000019
PITG_03561 362 M67 MP merops no no no no no other localisation M67A (M67) [44-201] OG0000037
PITG_05600 451 M67 MP merops no no no no no other localisation USP8 dimerisation domain [38-103] | M67C (M67) [276-394] OG0000041
PITG_08676 311 M67 MP merops no no no no no other localisation M67A (M67) [35-163] | Maintenance of mitochondrial structure and function 

[175-291]
OG0000032

PITG_11063 319 M67 MP pfam no no yes no no other localisation PF01398.20 (M67) [13-122] | Maintenance of mitochondrial structure and 
function [170-281]

OG0000036

PITG_16722 1368 M67 MP merops no no no no no other localisation PWWP domain [36-167] | M67A (M67) [506-638] OG0000053
PITG_04001 315 M79 none merops no no yes no yes signal peptide M79 (M79) [124-247] OG0000045
PITG_17962 269 M79 none merops yes no yes yes yes signal peptide M79 (M79) [106-220] OG0000063
PITG_11862 446 M82 none merops no no yes no yes signal anchor M82 (M82) [69-344] OG0000059
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gene length family clan source signalP TM signalP no TM Phobius TM Phobius SP TMHMM TM HECTAR localisation domain composition orthogroup

PITG_12818 816 M28 MH merops no no yes no no signal anchor PA domain [236-299] | M28B (M28) [359-644] | Transferrin receptor-like 
dimerisation domain [691-813]

OG0000004

PITG_12824 757 M28 MH merops no no yes no no signal anchor PA domain [183-263] | M28B (M28) [306-593] | Transferrin receptor-like 
dimerisation domain [641-754]

OG0000004

PITG_14835 719 M28 MH merops no yes yes yes yes signal peptide M28A (M28) [235-459] OG0000061
PITG_00636 842 M38 MJ pfam no no no no no other localisation Urease, gamma subunit [1-99] | Urease beta subunit [134-230] | Urease 

alpha-subunit, N-terminal domain [272-391] | PF01979.19 (M38) [397-726]
OG0000029

PITG_03605 459 M38 MJ pfam no no no no no other localisation PF01979.19 (M38) [62-399] OG0000019
PITG_05263 481 M38 MJ pfam no no no no no other localisation PF01979.19 (M38) [63-447] OG0000014
PITG_07820 444 M38 MJ pfam no no no no no other localisation PF01979.19 (M38) [66-438] OG0000014
PITG_08142 474 M38 MJ pfam no no no no no other localisation PF01979.19 (M38) [75-436] OG0000019
PITG_03561 362 M67 MP merops no no no no no other localisation M67A (M67) [44-201] OG0000037
PITG_05600 451 M67 MP merops no no no no no other localisation USP8 dimerisation domain [38-103] | M67C (M67) [276-394] OG0000041
PITG_08676 311 M67 MP merops no no no no no other localisation M67A (M67) [35-163] | Maintenance of mitochondrial structure and function 

[175-291]
OG0000032

PITG_11063 319 M67 MP pfam no no yes no no other localisation PF01398.20 (M67) [13-122] | Maintenance of mitochondrial structure and 
function [170-281]

OG0000036

PITG_16722 1368 M67 MP merops no no no no no other localisation PWWP domain [36-167] | M67A (M67) [506-638] OG0000053
PITG_04001 315 M79 none merops no no yes no yes signal peptide M79 (M79) [124-247] OG0000045
PITG_17962 269 M79 none merops yes no yes yes yes signal peptide M79 (M79) [106-220] OG0000063
PITG_11862 446 M82 none merops no no yes no yes signal anchor M82 (M82) [69-344] OG0000059
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Oomycetes are filamentous pathogens that pose serious threats to agriculture, animals, and 
ecosystems, and are challenging to control. Their dynamic genomes provide oomycetes 
remarkable adaptive capacity (Leesutthiphonchai et al., 2018). Systems biology can provide 
insight into the mechanisms that allow oomycetes to proliferate and infect their host (Peyraud 
et al., 2017). The chapters in this thesis describe the reconstruction, modelling, and comparison 
of oomycete metabolism to provide insight into the mechanisms related to life cycle and host 
interactions. In this chapter, I first discuss the process to reconstruct a computational model 
from the genome sequence of a species, and how we applied these steps to reconstruct the 
metabolic networks for oomycetes. I then elaborate on metabolic modelling of Phytophthora 
infestans-host interactions in particular, and how the results of our P. infestans metabolic model 
can be interpreted to provide insight into possible modes of host interaction. Finally, I present 
an outlook, and discuss a strategy to improve the P. infestans model in the coming years.

From genome sequence to genome-scale metabolic model

Genome-scale models (GEMs) are reconstructions of cellular systems that consider all genes 
encoded in the genome and allow to relate an emerging phenotype to the properties of the 
models (Yurkovich and Palsson, 2016). In other words, GEMs are used to investigate the 
genotype-phenotype relationship: how do the genes encoded by the genome result in the 
complex biological system that we observe? To answer this question, one needs to mine the 
available information within the genome, and integrate this information into genome-scale 
networks of interactions. Quality and insights derived from genome-scale models therefore 
critically depend on the quality of the genome sequence and gene annotation.

Obtaining a high-quality representation of the genome sequence (the genome assembly) 
is still challenging. Especially eukaryotic genomes are often hard to assemble because they 
are typically more complex than prokaryotic genomes. This complexity is mainly caused by a 
high abundance of repetitive elements and the fact that most eukaryotes are typically diploid 
and sometimes polyploid (or even aneuploid). The sequencing and comparative analyses of 
the first oomycete genomes in 2006 (Phytophthora sojae and Phytophthora ramorum) and 
2009 (Phytophthora infestans) revealed that these Phytophthora species profoundly differ 
in genome size and content (Haas et al., 2009; Tyler et al., 2006). In particular P. infestans 
has a large genome compared to its close relatives, which is largely caused by the increased 
abundance of transposable elements, constituting roughly 74% of its genome. Transposable 
elements, in combination with a diploid, polyploid, or aneuploid genome, still hamper present-
day genome assembly strategies (Nagarajan and Pop, 2013). Consequently, oomycete genome 
assemblies are still rather fragmented (Figure 1A) (McGowan et al., 2019), in particular 
compared to fungal plant pathogens for which genome assemblies are nowadays often near-
complete (Faino et al., 2015). Only over the last few years, near-complete genome assemblies 
for a few oomycetes have been published (Fletcher et al., 2019). In our own experience, 160-
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fold genome coverage of PacBio long reads combined with 10x Genomics Chromium barcoded 
linked-reads were not sufficient to assemble the genome sequence of a P. infestans strain to 
an acceptable number of contigs (Rodenburg et al. unpublished). Later we learned that we 
had sequenced a (partially) triploid strain. It can be anticipated that the combined use of long 
and short reads, and novel techniques such as trio-binning (parental sequencing to enable 
phasing), Hi-C (spatial genome conformation) and optical mapping (comparing restriction 
sites of long DNA stretches) will yield better results (Burton et al., 2013; Du and Liang, 2019; 
Koren et al., 2018). 

Despite the fragmented genome assemblies, the majority of oomycete genome sequences 
comprises most of the near-universal single-copy conserved orthologs, as determined by 
BUSCO (Figure 1B) (Seppey et al., 2019), suggesting that a significant proportion of the coding 
genome is captured. Another major challenge is to correctly identify the open reading frames 
with associated exon boundaries (gene models) within the assembled genome sequences 
(Salzberg, 2019), and this is even more of a problem for fragmented genome assemblies 
(Denton et al., 2014). Eukaryotic genomes are typically annotated using gene predictors 
trained on the parameters of high-quality gene models from closely related species and 
aligned transcriptome data (Yandell and Ence, 2012). Annotation of the first two sequenced 
Phytophthora genomes was performed using a gene predictor trained on expressed sequence 
tags (Tyler et al., 2006). Many subsequent oomycete genome annotations were performed 
by gene predictors trained on the gene models in other oomycete genomes (McGowan and 
Fitzpatrick, 2017). However, the error rate in predicted gene models is still high (Salzberg, 
2019), as was also demonstrated in Chapter 5, in which we manually corrected several putative 
metalloprotease genes predicted in the genome of Phytophthora infestans. Moreover, in 
Chapters 2-4 we specifically searched for potentially missing gene models in the genome 
sequences of oomycetes, and identified several in each genome. Consequently, the field would 
benefit greatly from a manual curation effort of genome annotations. This would be valuable 
even when applied to only a single species, preferably one with a near-complete genome, 
which can then be used as a template to re-evaluate gene models of other oomycetes and 
train gene predictors. Especially community-based annotation would be a powerful resource 
(Rödelsperger et al., 2019).
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FIGURE 1 | Statistics for 56 published Stramenopile genome sequences including 42 oomycetes. A: Genome 
accumulation curves derived from Quast (Gurevich et al., 2013), showing cumulative genome size when contigs are 
ordered from large to small. X-axis represents the number of contigs, Y-axis represents genome size. B: Presence of 
near-universal single copy orthologs in the genomes, as determined by BUSCO. Species are in alphabetical  order. 
Colors indicate the completeness of the detected BUSCO genes.

Reliable functional annotation of the predicted proteome is an additional prerequisite for 
identifying the fundamental components of genome-scale models. In Chapter 2, we performed 
an automated proteome annotation for 42 oomycete species, which revealed that the large 
majority of predicted proteins could not be assigned to a KEGG orthologous group (KO), 
which are protein ortholog clusters with validated functions (Mao et al., 2005). These findings 
illustrate that the large majority of Stramenopile and oomycete genes cannot be associated 
with any function. Many effector genes in oomycetes (e.g. those encoding RxLR effectors) lack 
functional associations (McGowan and Fitzpatrick, 2017). One should consider that distantly 
related protein orthologs are inherently harder to detect than closely related ones, which 
posed a problem in our homology-based annotations. However, even in the best studied 
eukaryotic model organism, the yeast Saccharomyces cerevisiae, about 20% of all genes 
lack any functional association (Wood et al., 2019). Lineages that are evolutionary distant to 
model organisms — such as the oomycetes — have an even less functionally characterized 
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proteome, partly because of limitations of homology-based inference of protein functions, 
but most importantly, because of lack of experimental characterization. As an effective way to 
predict protein functions by homology, we primarily used hidden Markov models (HMMs) for 
protein annotation (Chapter 2-5). HMMs are trained on a multiple sequence alignment of a 
predefined cluster of homologous protein sequences, and weigh conserved sequence regions 
heavier than variable regions. Therefore, HMMs are particularly suitable for detecting protein 
domains, as these are often highly conserved to retain their biological function (Pearson, 2013). 
KOs are predefined ortholog clusters and are powerful resources to train HMMs (Aramaki et 
al., 2019). In Chapter 2, 3, and 4 we used KO-based HMMs to identify orthologs of metabolic 
enzymes in oomycetes and their close relatives. In Chapter 2 we made use of KofamScan 
(Aramaki et al., 2019), which employs an adaptive threshold on the probability assigned by a 
KO HMM to decide whether a sequence is orthologous or not. This threshold was determined 
by a heuristic method that aimed to minimize the F1 measure, balancing precision and recall, 
when positive and negative training samples are analyzed. However, we noted that this method 
missed putative orthologs, as could later be determined by manual BLAST confirmation of 
missing KOs. We chose to apply a more suitable thresholding method in Chapter 3 and 4, 
in which we combined a static threshold with a relative threshold, depending on the E-values 
of all proteins matching the respective HMM. This method was adopted from the RAVEN 
toolbox (Agren et al., 2013; Thines et al., 2020), but we empirically optimized the thresholds 
for the predicted proteomes used in our studies. Previously, oomycetes genomes have been 
shown to be enriched for novel domain combinations (Seidl et al., 2011). In some cases this 
results in two enzymatic domains in one protein, possibly to facilitate substrate channeling 
(Judelson et al., 2009b). In other cases an enzymatic domain is combined with a characteristic 
signal transduction module (Chapter 5) (van den Hoogen et al., 2018; Meijer and Govers, 
2006). The thresholding method we applied enabled the assignment of multiple KOs to a 
single protein, though with a strict threshold, and thus is more suitable to capture proteomic 
complexity in oomycetes. In summary, genome/proteome annotation has been and likely will 
remain a challenging task for oomycetes, as incomplete genomes and a lack of lineage-specific 
knowledge trouble homology-based inference. Future genome assemblies and revisited 
annotations will likely give a more accurate view of the oomycete proteome. Nevertheless, the 
use of adapted algorithms and approaches enabled us to chart a genome-scale repertoire of 
enzymes for each of the oomycetes (Chapters 3-5).

In omics-based bioinformatics studies, it is conventional to look for overrepresentation 
(enrichment) of functional annotations in differentially abundant molecules such as mRNA or 
proteins (Bordbar et al., 2014; Reed et al., 2006). These data provide insight into the biological 
systems that are active during the specific sampling conditions (e.g. time, developmental 
stage or tissue) of an organism (Rodenburg et al., 2018b). In the last decade, there has been a 
continuous flow of published genome sequences for oomycetes, accompanied by numerous 
studies publishing comparative genomics, transcriptomics, proteomics, and metabolomics 
research (McGowan and Fitzpatrick, 2020). These large-scale omics datasets are analyzed to 
understand how oomycetes evolve, reproduce and interact with their hosts. Despite omics 
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studies being indispensable to investigate the transcriptional/translational responses of both 
pathogen and host during infection, these studies are often biased, as usually only a subset 
of functions is investigated and these are not necessarily representative or causative for the 
complex phenotype. Moreover, proteomic and metabolomic samples typically only capture 
the most ubiquitous molecules. In fact, the differential abundance of any molecule may be 
influenced by subtle changes in the environmental or experimental conditions, and therefore 
the biological implications remain rather speculative.

In systems biology, high-throughput data can be integrated into computational models that 
describe the state of the whole system. Cellular metabolism is arguably the best described 
cellular system and the availability of reaction information (i.e. the conversions catalyzed 
by metabolic enzymes) makes GEMs particularly powerful tools to investigate this system 
(DeBerardinis and Thompson, 2012). Metabolism is profoundly connected to all other systems 
in the cell. A computational model of cell metabolism can therefore be used as a proxy to 
describe the phenotypic state of an organism (McKnight, 2010). A GEM is based on a metabolic 
network, assuming that enzymatic activity and substrate specificity of orthologs is conserved. 
The known metabolism of model organisms serve as Rosetta Stones for other organisms 
(Ideker et al., 2001). Investigation of the static metabolic network can already provide insights 
into the biology of an organism that could be easily overlooked when only smaller subsets of 
the data would be considered. For instance, in Chapter 2 we showed that oomycetes with an 
obligate parasitic lifestyle tend to lose genes coding for enzymes that predominantly function 
at the periphery of their metabolic network. More detailed insights into the metabolism of 
a species can be derived by reconstructing a full GEM (Orth et al., 2010). Because of their 
integrative nature (relating genes with reactions and metabolites), GEMs serve two main 
purposes:

The first purpose of GEMs is to serve as a knowledge base for species-specific information 
about an organism’s biochemical capacity, deduced from its genome and prior knowledge, and 
to provide a scaffold for the integration of additional omics data (O’Brien et al., 2015). Prior 
knowledge typically integrated in a GEM includes, for instance, the nutrients taken up and the 
metabolites produced in the form of biomass or secondary metabolites. Importantly, prior 
knowledge should be used to correct the model where automated methods are limited, such 
as the inference of species-specific enzymatic substrates, gene-protein-reaction associations 
(i.e. which genes catalyze what reactions, including subunits and isozymes), enzyme subcellular 
localization, and reaction directionality and transporter substrates (Thiele and Palsson, 2010). 
Unfortunately, we found that prior knowledge and literature about the biochemical capacity of 
Phytophthora infestans are rather limited (Chapter 3 and 4). Note that GEMs can and should 
be updated when new data and information become available, which is an essential aspect of 
systems biology (see below).

The second main purpose of GEMs is enabling flux simulations that can be used to investigate 
system complexity and dynamics (Orth et al., 2010). For instance, this can help unravel which 
fluxes are thermodynamically optimal for growth (biomass production) – sometimes in 
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various transcriptomic contexts. Moreover, these simulations can be used to investigate the 
system’s robustness to induced perturbations (e.g. gene deletions). The testable hypotheses 
forthcoming from simulations are called model-driven hypotheses. This process is key for the 
cyclic process in which model predictions are experimentally validated, driving technological 
advance, allowing for the integration of new data, and again enabling generation of new 
hypotheses (Kitano, 2002). 

In summary, GEMs are knowledge bases that can be used to calculate the metabolic fluxes 
of an organism. A continuous cycle of improvements with additional data and knowledge 
can eventually lead to a highly predictive model to provide a deeper understanding of the 
molecular systems of an organism.

Modelling P. infestans metabolism to predict pathogen-host 
interactions

The primary motivation for building a GEM for a pathogen – in this thesis Phytophthora 
infestans – is to understand its parasitic lifestyle. The infection of a plant by a parasite, such 
as a fungus or an oomycete, often involves a prolonged symbiosis in which the parasite 
feeds off the plant for growth and reproduction. Oomycetes have a similar morphology and 
ecological niche as fungi (Judelson and Blanco, 2005). However, compared to fungi there is a 
knowledge gap in oomycetes and many fundamental properties of their biochemical capacity 
and physiology are still unknown. For instance, the cytosol of P. infestans seems to contract to 
the tips of germ tubes (Kots et al., 2017), suggesting that metabolism occurs predominantly at 
specific subcellular locations. This knowledge gap has multiple causes, one of which concerns 
the amenability to experimentation; many oomycetes are hard to culture and require complex 
media for in vitro growth, such as rye or pea broth. This limitation obviously complicates 
biochemical assays to investigate their metabolism, for which knowledge of the precise growth 
substrates is essential. Several oomycete pathogens are obligate biotrophs that exclusively 
grow inside their living host and are thus unculturable in vitro (McDowell, 2011). Another 
challenge is targeted mutagenesis for functional gene analyses. DNA transformation is feasible 
in several Phytophthora and Pythium species, but in most species transformation efficiencies 
are relatively low. Until recently, gene silencing or overexpression were the only methods 
available to manipulate the expression of a target gene in oomycetes. Because of the variability 
in silencing or overexpression levels the phenotypic characterisation of the transformants is 
not always straightforward. The first successful application of CRISPR-Cas9 mediated gene 
editing in oomycetes was published in 2016 (Fang and Tyler, 2016). This was a leap forward and 
nowadays it is applied in a few Phytophthora species (Pettongkhao et al., 2020; W. Wang et al., 
2019). However, for still unknown reasons CRISPR-Cas mediated gene editing in P. infestans 
seems problematic (van den Hoogen and Govers, 2018) and so far successful employment in 
this species has not been reported.
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The availability of knock-out mutants and information about their growth phenotypes on 
defined substrates greatly contributes to the acquisition of novel biochemical knowledge 
(Nakahigashi et al., 2009), and is therefore pivotal for the reconstruction of GEMs and the 
validation of their predictions (Monk et al., 2014). Unfortunately, due to  the challenges 
described above with respect to targeted mutagenesis, experimental data on metabolism in 
P. infestans are very limited. The information that we found in publications included data of 
minimal in vitro growth substrates (Chapter 3) (Hohl, 1991), verified subcellular localizations 
of enzymes (Abrahamian et al., 2017; López-Calcagno et al., 2009), and capacity to produce 
a mixture of long-chain polyunsaturated fatty acids (Griffiths et al., 2003c; Sun et al., 2013). 
Perhaps the most important limitation to our work was the lack of knowledge on biomass 
composition, i.e. the stoichiometry of P. infestans biomass precursors (Feist and Palsson, 
2010). The biomass composition relates the fluxes in the model to a hypothetical growth rate, 
and as such it can be used as a proxy for metabolic fitness. Because a precise description of P. 
infestans biomass composition was not available, we estimated it from literature, but ignored 
relative abundance (stoichiometry) (Chapter 3). This disabled quantitative flux predictions, but 
still allowed us to investigate the model for connectivity and importance of different nutrients 
(Chapter 4). Similar challenges were faced by others modelling pathogens. Tymoshenko et 
al. (2015) who published a GEM for human parasite Toxoplasma gondii also reconstructed 
a biomass composition from literature, ignoring stoichiometry. For a GEM of Leishmania 
donovani, Sharma et al. (2017) chose to infer the biomass composition from a Plasmodium 
GEM. In retrospect, we could have adopted the biomass composition from curated GEMs of 
closely related organisms such as the brown algae Phaeodactylum tricornutum (Levering et 
al., 2016) or Ectocarpus siliculosus (Prigent et al., 2014), although this would have introduced 
new biases and uncertainties. After all the similarity of biomass composition between closely 
related organisms and P. infestans is unknown and, to make it even more complicated,, the 
biomass composition of P. infestans in different life stages is radically different (Grenville-
Briggs et al., 2008).

In oomycetes the sporangia, which are asexual spores, likely rely on stored nutrient reserves, 
such as glucans and fatty acids, that are catabolized for energy production (Judelson, 2017). 
When sporangia disperse and reach a suitable plant surface, zoospores are released and encyst. 
The cysts then germinate and form an appressorium at the tip of the germ tube to penetrate 
the epidermal cells of the plant, likely mediated by secreted cell wall degrading enzymes 
(Ospina-Giraldo et al., 2010). Haustoria (vesicle-like structures) emerge from hyphae that 
colonize the apoplast and enter the mesophyll cells (Judelson, 2017). It is often assumed that 
these haustoria are the main site of nutrient uptake, as is the case for various plant pathogenic 
fungi (Wang et al., 2018b). However, many oomycetes do not form haustoria (Fawke et al., 
2015), and haustoria make up only a very small proportion of the total hyphal biomass (~2%), 
raising the question whether haustoria are truly the main site of nutrient uptake (Judelson 
and Ah-Fong, 2018). The plant apoplast is a nutrient-rich environment, and might be the main 
site of nutrient uptake (Chen, 2014). Haustoria are nonetheless very important for the host-
pathogen interaction. It is the site from where the pathogen deposits so-called cytoplasmic 
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effectors into the plant cell for suppression of immune responses (Boevink et al., 2020). The 
host recognizes the intracellular host-pathogen interface created by the haustorium as the site 
where defence responses have to be activated and for example, relocates the nucleus to the 
interface (Wang et al., 2017). Next to cytoplasmic effectors the pathogen secretes apoplastic 
effectors, so also in the apoplast host and pathogen interact and likely this involves exchange 
of signals and compounds.

Because of the specialized tasks of the haustorium and hyphae in the apoplast, hyphal cells 
likely have a “division of labour”, which implies that the biological processes are tailored for 
the specific region of infection. This phenomenon was recently modelled for the fungal plant 
pathogen Sclerotium sclerotiorum, by mapping the transcriptome of the apex and the center 
of infection to a multi-cell GEM (Peyraud et al., 2019). During reconstruction of the P. infestans 
GEMs (Chapter 3 and 4), we did not explicitly discriminate between the different sites of 
infection. Novel approaches, such as the integration of single-cell RNA-Seq into our GEM could 
provide insight into the metabolic processes delegated throughout the hyphae (Penaranda 
and Hung, 2019; Rohlenova et al., 2020).

Our models demonstrated how they can be used to integrate the current knowledge of an 
organism (or pathosystem), and how to analyze transcriptome data in a system-wide context. 
In concordance with related transcriptome studies (Abrahamian et al., 2016; Ah-Fong, Kim, 
et al., 2017), the transcriptome-based submodels reflected reduced metabolic activity in the 
sporangial stages of P. infestans, and nutritional changes in the transition from a biotrophic 
to a necrotrophic stage of infection on tomato leaves. Importantly, because we analyzed 
these transcriptomic changes in the context of a GEM, results were subject to the imposed 
model constraints (steady-state, reaction thermodynamics) and thereby to the topology of 
the metabolic network (Hyduke et al., 2013). Clearly, any model-based hypotheses remain to 
be tested, but we do demonstrate a transcriptome analysis from an alternative angle. The 
transcriptomic changes are interpreted in terms of ensuing differences of metabolic fluxes, 
and this system-wide approach may give more insight than the differential expression analysis 
of individual genes. 

The models for P. infestans we reconstructed were subdivided to represent the spatial 
distribution of metabolic pathways in different subcellular compartments. The transporters 
and channels that transport metabolic substrates across membranes are modelled by 
introduction of transport reactions (Thiele and Palsson, 2010). Unfortunately, transporters 
typically have a wide substrate range, which cannot be reliably predicted from their protein 
sequence, and are therefore often manually added to a GEM based on prior knowledge. This 
was particularly challenging when creating the pathogen-host interaction model (Chapter 4), 
considering that membrane transport is pivotal to pathogen nutrition. Little is known about 
P. infestans nutrition in planta, and manual addition of host-pathogen transport reactions 
would bias fluxes towards a predefined set of nutrient transporters. Since one of our goals 
was to predict the nutrient pool of P. infestans during tomato infection, we chose not to 
manually add transport reactions, and based our conclusions on the optimal fluxes in the 
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model. In other words, the transport reactions in our models were largely based on network 
topology. Depending on the objective function, the most optimal set of transporters had a 
nonzero flux. The downside of this approach was that we could not consider bidirectional 
transport, because this would also imply unrestricted metabolite exchange between host and 
pathogen. This could lead to scenarios where the host would utilize P. infestans metabolism 
for profit, which, from a biological point of view, is not plausible. In reality, however, pathogen-
host metabolite exchange is likely to occur both ways, e.g. to secrete metabolites as waste 
products or virulence factors. There is a clear knowledge gap on the metabolic exchanges 
that P. infestans maintains with its environment, and this should be addressed by a broad 
substrate screening. For instance, mass spectrometry could be used to perform comparative 
metabolomics on a growth medium, at different time points of mycelial growth.

Outlook

Systems biology has been recognized years ago as a suitable method to study plant pathogens 
in general and P. infestans specifically (Pinzón et al., 2009; Pritchard and Birch, 2011). In the last 
few years, the  potato and tomato late blight pathosystem with P. infestans as pathogen was 
subject of several systems biology studies (D. Botero et al., 2018; K. Botero et al., 2018; Castro 
et al., 2019; Rodenburg et al., 2018a; Rodenburg et al., 2019; Seidl et al., 2013; Thines et al., 2020). 
However, systems biology of this pathosystem – as goes for many – is still in its infancy, and 
many fundamental factors are still unknown. The success of a systems biology approach is 
subject to the level of knowledge on the organism to be modelled. Thus, in order to arrive at 
highly predictive models for P. infestans, in vitro experiments need to be performed to gain 
basal knowledge. Valuable information would be, for instance, the substrates P. infestans can 
assimilate from its environment, as well as its biomass composition and how this changes 
throughout its lifecycle. There is a lot we can learn from the more advanced metabolic 
research in other pathosystems. For instance, there are now several GEMs for Plasmodium 
spp. –  some of which are also integrated with GEMs of the host, the red blood cell (Abdel-
Haleem et al., 2018; Huthmacher et al., 2010; Plata et al., 2010). Initially, these GEMs were 
reconstructed based on metabolomics, identifying growth substrates (Olszewski et al., 2009). 
Later, Plasmodium GEMs were further curated, refined and integrated with new omics data 
and novel biochemical knowledge (Bazzani et al., 2012; Carey et al., 2017; Stanway et al., 2019). 
Interestingly, these models have pinpointed several essential reactions, some of which turned 
out to be leads for promising drug targets (O’Hara et al., 2014). For protozoan parasites, 
isotope-labelled growth experiments have been successful to dissect their metabolism during 
parasitic growth (Kloehn et al., 2016).  For P. infestans, similar analyses would provide intriguing 
novel avenues. Considering the current advances in oomycete research, we can speculate on 
the achievements that are attainable in the coming ten years.
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In the future, several steps are needed to create a higher-quality GEM for P. infestans (Thiele 
and Palsson, 2010). Obviously, a complete functional characterization of the substrates and 
characteristics of each individual P. infestans metabolic enzyme would be ideal, but this seems 
infeasible in the near future. Nevertheless, significant achievements could be gained from in 
silico and in vitro procedures, designed specifically for the purpose of building a high-quality 
GEM. Below we summarize the points discussed above in a stepwise protocol (Figure 2):

The first prerequisite is a (near-)complete, gapless genome sequence of P. infestans. 
The genome needs to be resequenced and assembled using novel technologies and more 
advanced assembly methods to attain the complete coding information (Thomma et al., 2016). 
Gene prediction should be guided by RNA sequencing and homology-based evidence, and 
predicted protein sequences need to be functionally annotated using sequence information 
from the available biochemical databases. Manual gene model curation of the predicted 
metabolic enzymes should be performed to yield accurate insight into its biochemical capacity 
(Fernandes et al., 2019). Such manual curation is a time- and labour- intensive process, but will 
ultimately lead to more accurate hypotheses.

The identified putative enzymes lead to a reconstruction of a draft metabolic network, which 
should be separated over several cellular compartments. We consider at least the cytosol, 
extracellular space and the mitochondria essential, since these are the main metabolic hotspots. 
Enzyme annotation and subcellular localization should be curated according to literature. The 
associated reactions and metabolites should be curated according to the established protocol 
(Thiele and Palsson, 2010) and protein subunits of metabolic enzymes should be annotated to 
correctly consider the gene-protein-reaction associations. The constructed metabolic network 
can be inspected to identify potentially missing enzymes by comparing the reconstructed 
pathway to reference pathways in model organisms, and the annotations should be revisited 
for missing enzymes. In addition, intracellular transport reactions should be included according 
to common biochemical knowledge (e.g. textbooks), GEMs of other species, and network 
topology. It is unlikely that many more transporters are to be characterized, given the labour-
intensive process (Savory et al., 2018).

In vitro growth assays should be performed to characterize P. infestans growth, using the same 
strain as the one sequenced. The ideal growth medium is similar in composition to a potato or 
tomato leaf, to mimic natural growth. The growth medium should be analyzed by untargeted 
metabolomics (mass spectrometry and/or nuclear magnetic resonance) over multiple time 
points to provide insight into the presence and abundance of specific substances. Metabolites 
that strongly change in abundance during P. infestans growth and between subsequent sampling 
stages are likely assimilated or secreted. This can be indicative for a nutrient transporter on 
the plasma membrane that is capable of transporting the respective metabolite. In addition, 
radioactively labelled metabolites can be added to the medium to test the assimilation of 
specific nutrients (Ah-Fong et al., 2019), such as carbohydrates and lipids. For metabolites for 
which changes in abundance are measured, uptake and demand (transport) reactions should 
be added to the model.
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The relative P. infestans biomass composition and growth rates should be measured. A 
promising approach for this is Fourier-Transform Infrared Spectroscopy (FTIR) (Mayers et 
al., 2013). This method was optimized for analyses of brown algae, and was successfully used 
in the reconstruction of a GEM for the diatom Phaeodactylum tricornutum to quantify the 
percentages of carbohydrate, protein, DNA/RNA, and fatty acids per gram of cellular dry weight 
(Levering et al., 2016). Once the main classes of biomass components are quantified and are 
related to growth rate, more specific metabolites can be calculated based on traditional 
metabolomics methods.

Predicted phenotypes, e.g. by specific nutrient starvation, should be validated by growth 
experiments and gene/reaction essentiality should be validated in knock-out or knock-down 
mutants, for instance as was done for the nitrate assimilation cluster (Abrahamian et al., 2016). 
We anticipate that CRISPR-Cas9 gene editing will be successfully employed in the coming 
years, but as an alternative, gene silencing mutants can be generated to investigate metabolic 
perturbations. The model should be updated with novel findings, and discrepancies should lead 
to corrections of the model. For instance, when the knock-out of a predicted essential gene is 
not lethal in vitro, there are likely alternative enzymes or metabolic routes that compensate for 
this mutation. The model should be inspected on incorrect annotations or missing reactions 
accordingly.

The refined GEM for P. infestans could also be integrated with a similarly refined GEM for 
tomato or potato. More sophisticated constraints and objective functions could be deployed 
to simulate a more realistic symbiosis for this pathosystem, such as multi-objective simulations 
to address the competition for nutrients (Jamshidi and Raghunathan, 2015).

In addition to these steps, there is a large and rapidly increasing number of methods and 
algorithms that can be applied to GEMs to gain insights into the complex system of pathogen-
host interactions (Lewis et al., 2012). For instance, regulatory networks could be inferred from 
(anti-)correlated expression patterns in dual RNA-Seq data and other experimental data, and 
integrated into GEMs to further constrain the fluxes, in order to learn how metabolism is 
regulated during infection (Peyraud et al., 2018). Collectively, we anticipate that these steps 
will lead to a high-quality GEM of P. infestans, that can be used to identify novel targets for late 
blight control, and help understand how oomycetes in general interact with plants.
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FIGURE 2 | A proposed workflow (including  possible methods and analyses) for reconstructing a high-quality genome 
scale metabolic model (GEM) for P. infestans and and, potentially, an integrated GEM for a P. infestans/host interaction. 
Model reconstruction is an iterative process of simulation and model improvement.

Conclusions

Systems biology approaches are relatively new in plant pathology, yet models are promising 
tools to study plant-pathogen interactions. Here we discussed the interpretation of a GEM for 
P. infestans, reconstructed from its genome sequence and available information in literature. 
There is still much to gain from basal metabolic/biochemical knowledge, which should be 
exploited and integrated to build higher-quality models in the future. This will contribute to an 
increased understanding of oomycetes in general
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Summary

Metabolism is the set of biochemical reactions of an organism that enables it to assimilate 
nutrients from its environment, and to generate building blocks for growth and proliferation. 
It is a complex network that is intertwined with the many molecular and cellular processes 
in cells, the fundamental units of life. Systems biology is a rapidly developing discipline that 
aims at capturing the complexity of cells, organisms or communities by reconstructing models 
based on information gathered by high-throughput analyses (omics data) and from literature 
(Chapter 1). One type of model is a genome-scale metabolic model (GEM) that simulates 
metabolism as a framework of metabolic fluxes, i.e. the “mass-flow” through a network of 
biochemical reactions. GEMs are nowadays widely applied and have been reconstructed for 
various microbial pathogens, with the aim to get insight into mechanisms of pathogenicity.

Oomycetes are filamentous organisms that belong to the stramenopile lineage in the SAR 
supergroup. They include many devastating plant and animal pathogens that are a continuous 
threat to agriculture, aquaculture, and natural ecosystems. Comparative genomics has 
revealed several intruiging characteristics, such as dynamic genomes with large differences 
in gene repertoires and proteins with novel and unique domain combinations.  We identified 
and compared the metabolic enzymes of a broad range of oomycetes that differ in lifestyle 
and host preference, and investigated their metabolic networks from an evolutionary 
perspective (Chapter 2). We observed lineage-specific pathway loss, and convergent loss 
of metabolic enzymes in obligate biotrophs, pathogens that are entirely dependent on their 
host for survival. This biotrophic lifestyle has led to extreme gene loss also in metabolic genes 
and consequently, obligate biotrophs have a reduced metabolic capacity and greater host 
dependency.  The network-based analysis that we performed showed that those gene losses 
predominantly affected the periphery of the metabolic network, something that could not be 
shown when solely comparing genomes.

Metabolism is dynamic with a continuous flow of nutrient uptake, processing and biosynthesis.  
To gain insight into this dynamics, we constructed a GEM of the oomycete Phytophthora 
infestans, the causal agent of potato and tomato late-blight (Chapter 3). We extracted 
information on its metabolism from literature, and used homology-based enzyme annotation 
to arrive at a draft metabolic model, divided reactions over several subcellular compartments. 
We inspected the model topology to gain insight into the biochemical processes in each 
compartment. Integration of transcriptome data of different P. infestans life stages revealed 
a sharp contrast in metabolic activity between sporangia and hyphae. This GEM allows us to 
simulate growth (biomass production) on a minimal defined growth medium and to predict 
the essential metabolic genes and reactions. As such, the model has the potential to contribute 
to the discovery of novel targets for disease control.

Conceivably, the metabolism of P. infestans growing in a minimal growth medium differs from 
that during in planta growth. To investigate how the metabolism of the pathogen and the host 
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are intertwined we integrated our P. infestans GEM with a GEM of tomato, that we adopted  
from literature (Chapter 4). Using modelling techniques such as flux coupling analysis we 
identified several metabolic reactions in tomato that were of importance to the fluxes in P. 
infestans metabolism, including thiamine biosynthesis to supply the thiamine auxotrophic 
pathogen with this essential vitamin. Integration of dual-transcriptome data of a time course 
of a full infection cycle revealed various switches in metabolism and differential nutrient usage 
over time. The integrated model predicts that during late infection, P. infestans switches to the 
import of amino acids rather than inorganic nutrients. However, this goes at the cost of system 
robustness, i.e. the ability to function under perturbations.

Next to metabolic enzymes, an organism exploits many other classes of enzymes for 
maintenance of the basic cellular and molecular processes. Pathogens often utilize enzymes to 
break physical barriers for gaining entry to their hosts or for modifying the host cell machinery 
to suppress defense. One class of enzymes that has been implicated in pathogenicity comprises 
metalloproteases (MPs). To gain insight into the MP repertoire of oomycete pathogens we 
screened the proteomes of 47  Stramenopile species (Chapter 5) and found a miscellaneous 
set of MPs, with some MP families being expanded in oomycetes with a particular lifestyle. 
We then investigated the expression profiles of P. infestans MPs, and selected those with a 
predicted secretion signal for a role in virulence in in planta assays. Three MPs had a negative 
effect on virulence, while eight had a positive effect, suggesting that MPs play a role in host-
pathogen interactions.

The interactions that oomycetes have with their host are part of complex molecular systems. 
Models can be used to study these systems. which are based on the available genomic 
information and integrated with experimental data and prior knowledge (Chapter 6). The 
current state of oomycete genomes and annotations begs for improvement. However, despite 
these limitations we were able to build a model for P. infestans-tomato metabolism, which 
demonstrated that models of plant pathogens are feasible and can be used to study their 
mechanisms of host interaction. Our model should be further curated when more knowledge 
is obtained from experimental work. Therefore, we propose a framework of in silico and in 
vitro steps that would yield useful data for future model improvements.
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Samenvatting

Metabolisme is de collectie van biochemische reacties in een organisme dat het gebruikt om 
voedingsstoffen op te nemen uit zijn omgeving, en deze om te zetten naar bouwstenen voor 
groei en voortplanting. Het is een complex netwerk dat samenhangt met vele moleculaire 
en cellulaire systemen in de cel, de fundamentele elementen van het leven. Systeembiologie 
is een wetenschappelijk veld waarin geprobeerd wordt om door middel van modellen de 
complexiteit van de cel, een organisme of een ecosysteem na te bootsen. Hiervoor worden 
grote biologische datasets gebruikt in combinatie met kennis uit de literatuur (Hoofdstuk 
1). Een specifiek type model is het metabolische model (GEM), dat het metabolisme van de 
cel nabootst en dit beschouwt als een systeem van fluxen, de massa-doorvoer in het netwerk 
van biochemische reacties. GEMs worden tegenwoordig veel gebruikt, en zijn gebouwd voor 
verschillende microben, waaronder pathogenen, om te begrijpen hoe deze ziekte veroorzaken 
in plant of dier.

Oömyceten zijn draadvormige organismes die toebehoren aan het rijk van de Stramenopila. 
Hieronder vallen vele pathogenen voor plant en dier, en vormen een belangrijk risico voor 
de agricultuur, aquacultuur en ecosystemen. Door het vergelijken van de genomen zijn er 
verschillende interessante factoren ontdekt, zoals dat deze genomen erg dynamisch zijn en 
verschillen in grootte, en voor eiwitten coderen die uit unieke domein combinaties bestaan. 
We hebben we de metabole enzymen geïdentificeerd en vergeleken in een brede selectie van 
oömyceten, die verschillen in levensstijl en gastheer, om zo inzicht te krijgen in hun metabole 
systemen in evolutionaire context (Hoofdstuk 2). We hebben zo geobserveerd dat er in 
bepaalde evolutionaire takken specifieke metabole routes verloren zijn gegaan. Obligate 
biotrofe oömyceten, volledig afhankelijk van hun gastheer, hebben ondanks hun evolutionaire 
afstand dezelfde enzymen verloren. Dit patroon was ook zichtbaar in metabole enzymen, 
waardoor obligate biotrofen een verminderde metabole capaciteit hebben en een grotere 
afhankelijkheid van hun gastheer. We hebben toen deze enzymen beschouwd in context van 
een metabool netwerk, en observeerden dat deze verloren enzymen voornamelijk aan de rand 
van het netwerk lagen, iets wat niet had kunnen worden gezien op basis van de genomen alleen.

Metabolisme is dynamisch, en er wordt een constante stroom van nutriënten omgezet in 
bouwstenen. Om inzicht te krijgen in deze dynamiek, hebben we een GEM gereconstrueerd 
voor de oömyceet Phytophthora infestans, de veroorzaker van tomaat- en aardappelrot 
(Hoofdstuk 3). Op basis van de literatuur en door middel van homologie tussen enzymen 
hebben we een model gebouwd, onderverdeeld in verschillende cellulaire compartimenten. 
Door de topologie van het model te bestuderen hebben we inzicht gekregen in de 
biochemische processen in elk van deze compartimenten. De integratie van transcriptoom 
data van de verschillende levensstadia van P. infestans legde een scherp contrast bloot in 
metabole activiteit tussen sporangia en hyfen. Dit GEM hielp ons verder om groei te simuleren 
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(de productie van biomassa) op een minimaal groeimedium, en om de essentiële genen en 
reacties te voorspellen. Daarmee heeft dit model veel potentie in de zoektocht naar nieuwe 
strategieën voor bestrijdingsmiddelen.

De groei van P. infestans op een minimaal groeimedium is natuurlijk anders dan in de plant. 
Om te onderzoeken hoe het metabolisme van de pathogeen en zijn gastheer met elkaar zijn 
verweven, hebben we ons P. infestans GEM geïntegreerd met een GEM van tomaat, dat we uit 
de literatuur hebben overgenomen (Hoofdstuk 4). Door middel van methodes zoals flux-
koppeling analyse hebben we verschillende reacties geïdentificeerd in tomaat, die van belang zijn 
voor het metabolisme van P. infestans. Bijvoorbeeld de thiamine biosynthese, om de auxotrofe 
pathogeen te voorzien van dit vitamine. Door het integreren van duaal-transcriptoom data van 
een infectie cyclus ontdekten we dat er verschillende schakelpunten zijn in het metabolisme 
waarin andere nutriënten worden gebruikt. Het model voorspelde dat laat in de infectiecyclus 
aminozuren worden geïmporteerd in plaats van anorganische stoffen. Dit ging ten koste van de 
robuustheid van het systeem, de capaciteit om normaal te functioneren tijdens perturbaties.

Naast metabole enzymen, heeft een organisme ook vele andere enzymen voor onderhoud 
of regulatie van cellulaire en moleculaire processen. Pathogenen gebruiken vaak enzymen 
om fysieke barrières af te breken, om toegang te krijgen tot de gastheer of om de zijn 
afweersystemen te onderdrukken. Een specifieke groep van enzymen die waarschijnlijk een 
rol spelen in pathogeniciteit, zijn de metalloproteases (MPs). Om inzicht te krijgen in het 
repertoire van MPs in oömyceten, hebben we de proteomen gescreend van 47 Stramenopila 
soorten (Hoofdstuk 5), waarbij we een veelzijdige set van MPs vonden. Sommige MP families 
kwamen vaker voor in oömyceten van een specifieke levensstijl. We onderzochten ook de 
expressiepatronen van P. infestans MPs, en keken specifiek naar MPs met een voorspeld 
secretie signaal voor een mogelijke rol in virulentie, in een studie in planten. Drie MPs hadden 
een negatief effect op virulentie, en acht een positief effect, wat suggereert dat MPs inderdaad 
een rol spelen in de interactie tussen pathogeen en gastheer.

De interacties die oömyceten hebben met hun gastheer zijn onderdeel van een complex 
moleculair systeem. Modellen kunnen gebruikt worden om deze systemen te bestuderen, 
gebaseerd op de beschikbare informatie uit genomen en experimentele data uit literatuur 
(Hoofdstuk 6). De huidige staat van de genoomsequenties van oömyceten genomen vraagt 
om verbetering. Ondanks deze belemmering waren we in staat een model te maken van P. 
infestans-tomaat metabolisme, wat demonstreerde dat modellen van plantpathogenen 
haalbaar zijn en gebruikt kunnen worden om de interactie tussen pathogenen en hun gastheer 
te bestuderen. Ons model moet verder worden gecureerd wanneer er meer experimentele 
data beschikbaar is. Daarom stellen we een plan voor met computationele en experimentele 
stappen die nuttige data zullen produceren, en kunnen worden gebruikt om het model te 
verbeteren.
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