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Abstract

Soils are indispensable for the provision of several functions. Agricultural intensifi-

cation and its focus on increasing primary productivity (PP) poses a threat to soil

quality, due to increases in nutrient loads, greenhouse gas emissions and declining

biodiversity. The EU Horizon 2020 Landmark project has developed multi-criteria

decision models to assess five soil functions: PP, nutrient cycling (NC), soil biodi-

versity and habitat provision (B-HP), climate mitigation and water regulation,

simultaneously in agricultural fields. Using these algorithms, we evaluated the

supply of PP, NC and B-HP of 31 grasslands and 21 croplands as low, medium or

high. The multi-criteria decision models showed that 38% of the farms had a

medium to high supply of all three soil functions, whereas only one cropland had

a high supply for all three. Forty-eight per cent of the farms were characterized by

a high supply of PP and NC. We observed a clear trade-off between these two

functions and B-HP. Multivariate statistical analyses indicated that higher organic

inputs combined with a lower mineral fertilization concur with higher biodiversity

scores while maintaining a medium delivery of PP and NC. Additionally, we com-

pared the outputs of the model predictions to independent variables that served as

proxies for the soil functions and found: (a) croplands (but not grasslands) with

high PP had a higher standardized yield than those with medium PP; (b) grass-

lands (but not croplands) with high NC had a significantly lower fungal to bacte-

rial biomass ratio, suggesting faster decomposition channels; and (c) a positive

though non-significant trend between B-HP score and rank according to soil inver-

tebrate biodiversity. These comparisons suggest a successful upscaling of the

models from field to farm level. Our study highlights the need for systematic col-

lection of management-related data for the assessment of soil functions. Multi-

functionality can be achieved in agricultural soils; however, without specifically

managing for it, biodiversity might come at a loss.
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Highlights:

• We study how well soils can provide primary productivity, nutrient cycling

and biodiversity.

• We study trade-offs and synergies among soil functions, as well as the

drivers of these relationships.

• Soil biodiversity is largely sacrificed for primary productivity and nutrient

cycling

• Changes in pesticide and fertilizer management can increase soil

multifunctionality.
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1 | INTRODUCTION

Humans derive multiple benefits from the soil system.
Soils provide us with feed, fibre and fuel, cycle and mobi-
lize nutrients, control diseases, regulate the climate,
maintain water quality and provide a habitat to support
biodiversity, amongst other things (Dominati, Patterson,
& Mackay, 2010). The continued delivery of these soil
functions is at risk, due to the effects of economic growth,
population growth and climate change (Montanarella
et al., 2016). These threats result not only in the loss of
functional soils, but also reduce the capacity of the soils
to function optimally. To face this challenge we need to
change land management and extend our focus away
from the delivery of only primary productivity (PP; Clay,
Garnett, & Lorimer, 2019; Rutgers et al., 2012; Schulte
et al., 2014; Tilman, Balzer, Hill, & Befort, 2011).

Agricultural soils are particularly complex to manage.
Farmers face a continuous challenge to maintain high
productivity whilst considering the resilience of their soil
to ensure that the land can support continued productiv-
ity for future generations. Additionally, maintaining or
even increasing agricultural yield is imperative to sustain
a growing population, but to do so, farmers have relied
heavily on external inputs and intensive crop rotations,
which result in increased greenhouse gas emissions,
eutrophication, pollution, loss of organic carbon and
loss of above- and belowground biodiversity (Foley
et al., 2005; Foley et al., 2011; Matson, Parton, Power,
& Swift, 1997; Tilman et al., 2001; Tsiafouli et al., 2015).
These effects clash with societal goals regarding nature
conservation and climate change (e.g., the Common
European Agricultural Policy, which intends to contrib-
ute to sustainability and climate change mitigation;
https://ec.europa.eu/info/food-farming-fisheries/key-policies/
common-agricultural-policy).

Since the introduction of the ecosystem service con-
cept (Costanza et al., 1997), many studies have attempted
to quantify ecosystem services, but only a few have stud-
ied several simultaneously, and even less have explored
the synergies and trade-offs therein (Seppelt, Dormann,
Eppink, Lautenbach, & Schmidt, 2011). Understanding
the trade-offs and synergies between soil functions as
well as recognizing which variables might be important
in swaying the system, is a step forward in providing
management solutions to farmers and policymakers alike
(O'Sullivan et al., 2015). Schulte et al. (2014) proposed
such a framework (the functional land management
framework) to assess the supply of soil functions in order
to simultaneously meet agronomic and environmental
objectives. It is based upon the principle that the suitabil-
ity of soils to provide a given function, for example PP,
depends on soil composition and environmental condi-
tions, as well as the choices made by the land manager,
and it has steered the development of tools to aid land
management, from farmers’ decision making (Soil Navi-
gator; http://soilnavigator.eu) to European policy assess-
ment (Schulte et al., 2019) and monitoring (Zwetsloot
et al., this issue).

The functional land management framework allows
for the simultaneous assessment of five predominant soil
functions related to agricultural soils (Schulte et al., 2015).
These are: (a) PP, defined as the capacity of a soil to sup-
ply nutrients and water and to produce plant biomass for
human use, providing food, feed, fibre and fuel (Sandén
et al., 2019); (b) water purification and regulation, as the
capacity of a soil to remove harmful compounds from the
water that it holds and to receive, store and conduct
water for subsequent use and the prevention of both pro-
longed droughts and flooding and erosion; (c) climate
mitigation, as the capacity of a soil to reduce the negative
impact of increased greenhouse gas emissions on the
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climate; (d) nutrient cycling (NC), as the capacity of a soil
to receive nutrients in the form of by-products, to provide
nutrients from intrinsic resources or to support the acqui-
sition of nutrients from air or water, and to effectively
carry over these nutrients into harvested crops (Schröder
et al., 2016; Schulte et al., 2015); and (e) soil biodiversity
and habitat provision (B-HP), as the multitude of soil
organisms and processes, interacting in an ecosystem,
providing society with a rich biodiversity source and con-
tributing to a habitat for aboveground organisms (van
Leeuwen et al., 2019).

In this study, we evaluated the performance of three
out of the five soil functions (PP, NC and B-HP) in 52
Dutch farms using the multi-criteria decision models
(MCDMs) developed by Debeljak et al. (2019) after
adjustment for use at the farm level. We explore the syn-
ergies and trade-offs between these three functions as
well as the drivers of high functionality. The following
research questions were answered:
1. Were the soils under study capable of delivering a

medium to high supply of more than one function
simultaneously?

2. Do synergies and trade-offs exist between the soil
functions?

3. Which input variables in the model lead to high
supply of soil functions and soil multifunctionality?

2 | METHODS

2.1 | Assessing soil functions

To answer all the research questions, we first calculated
soil function scores. In order to do this, we first (a) gath-
ered the necessary data to calculate soil functions using
(b) a decision support system. Because the data we
obtained were mostly at the farm level, but the decision
support system was designed to be used at the field level,
we (c) had to adjust the model from field to farm level.
We checked the success of this adjustment to the model
by selecting proxy indicators of each soil function and
comparing them to the scores obtained using the adjusted
decision support system. All statistical analyses were car-
ried out using R version 3.6.1 (R Core Team, 2017).

2.1.1 | Data acquisition

The first step to answer all research questions was gather-
ing farm data on soil quality and management. Through-
out the years 1993 and 2014, biotic and abiotic
measurements of soil quality were assessed as part of the
Netherlands Soil Monitoring Network (Rutgers

et al., 2009a). The assessment included new sites over the
years, covering a range of agricultural and natural ecosys-
tems. Simultaneously, data were collected by
Wageningen Economic Research from commercial farms
through the Minerals Policy Monitoring Programme
(RIVM 2019-0026, 2019), aimed at monitoring the effec-
tiveness of the Nitrates Directive (EU, 1991) and the
National Minerals Policy (MANFQ & MIWM, 2017).
These data provide data on farm nutrient balances,
including information on the type and amount of manure
and mineral fertilization as well as the yield and area
cover for each crop (Tables S1 and S2). We used these
sources of information to find farms that had been sam-
pled by both institutions in the same year, leading to a
total of 52 farms: 31 dairy farms (referred to as grasslands
from here onwards, although they often reserve some
land for maize) and 21 arable farms (or croplands) sam-
pled between 2006 and 2014. Weather variables (Table
S3) were extracted from the weather station closest to
each farm and are specific to the year that samples were
taken from said farm using data from the Royal Dutch
Meteorological Agency. Bulk density, cation exchange
capacity, groundwater depth and salinity were not mea-
sured in the field but were calculated using published
transfer functions or extracted from local maps (Tables
S2 and S3; De Vries, 2007; Dufour, 2000; Helling,
Chesters, & Corey, 1964; Rawls, 1983; RIZA, 2004).

2.1.2 | Decision support system

In order to calculate the performance of soil functions in
the selected farms, we used MCDMs designed by the Land-
mark project as part of the EU Horizon 2020 (Debeljak
et al., 2019). The initial models were developed by experts
in each of the soil functions and were further evaluated and
validated (Sanden et al., 2019; Trajanov, Spiegel, Debeljak,
& Sandén, 2019; Van de Broek et al., 2019; van Leeuwen
et al., 2019). The experts established a hierarchical model
that builds up to a final function score (low, medium or
high supply) starting from qualitative input variables related
to the management, environment and soil properties. Dis-
cretization of these variables is carried out prior to running
the model in accordance with a set of thresholds suited to
different land uses and climatic zones. The input variables
aggregate to the upper level of the model structure through
if–then functions and aggregation continues until the top
node is reached and an assessment of the performance of a
specific function is made. For example, in order to assess B-
HP (top node), the model is fitted with input variables such
as “Soil pH” and “Liming” at the lowest nodes. These two
variables aggregate through if–then functions: if they are
both low, then “pH condition” is also low. “pH condition”
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when aggregated with “Nutrient content” and “Nutrient
input” (which each are assessed by their own input vari-
ables) leads to a score in the super-attribute “Nutrients”.
Lastly four super-attributes (nutrients, biology, structure and
hydrology) are aggregated to a final B-HP score. The Deci-
sion Expert integrative methodology was used to build these
decision models (Bohanec, 2008; Bohanec & Rajkovič, 1990;
Bohanec, Žnidaršič, Rajkovič, Bratko, & Zupan, 2013).

The combination of the two datasets did not include
all of the variables necessary to compute the five main
soil functions, even after we complemented the dataset
by analysing dried soil samples taken by the Netherlands
Soil Monitoring Network (Rutgers et al., 2009b) for total
nitrogen, carbon to nitrogen ratio, pH, organic carbon
(%), organic matter content (%), clay content (%), phos-
phorus and magnesium (Tables S2 and S3). We therefore
chose to focus on PP, NC and B-HP. Additionally, we had
to make some assumptions about the farms. Slope was
considered low (<3�) for all farms. Because organic ara-
ble farms did not use chemical pesticides, we assumed
they used some form of biological pest management.
Crop failure risk, defined as the number of times in the
past 20 years that a field provided no yield in the MCDMs
(http://landmark2020.eu/landmark-glossary/), was
assumed to be low in all farms. In the Netherlands,
drought can have a strong effect on crop yield, but it
rarely leads to complete crop failure. A study into the
most extreme droughts since 1970 found that the most
affected crop (onions) can experience up to a 50%
decrease in yield when compared to years with average
precipitation. Such a drop in yield was documented only
once since 1976 (Prins, Jager, Stokkers, & van
Asseldonk, 2018). Soil phosphorus status was assessed
according to the Dutch Nitrates Directive (2014–2017;
Table S3). Due to a number of missing variables while
calculating PP and NC (biological-pest management,
rooting depth, grass cutting frequency and share of
legumes), some of the farms did not receive a full score,
but rather were classified between two performance
scores. In such cases, we downgraded the farm to the
lower of the two suggested scores. In total, this measure
affected three grasslands, which scored medium to high
in NC and were downgraded to medium NC; one crop-
land that was reclassified as having medium PP; and all
the grasslands performing at medium PP, which were ini-
tially performing at medium to high PP.

2.1.3 | From field to farm level

The MCDMs were intended to be used at the field scale;
however, the data within the Netherlands Soil Monitor-
ing Network on soil quality as well as some of the

information collected in the Minerals Policy Monitoring
Programme, were collected at the farm level. Conse-
quently, parts of the models had to be adjusted to account
for farm-level variability. The input variable “number of
crops in rotation” was changed to “crop diversity” to
reflect the spatial variability in crops within a farm using
the Shannon-Weaver index, calculated using the “diver-
sity” function of the “vegan” package for R (Oksanen
et al., 2019). The threshold values for low or high crop
diversity were the lower and higher quartiles of the calcu-
lated indices: 1.10 and 1.52, respectively, with an average
crop diversity of 1.35. The input variable “loss of ammo-
nia” from manure per farm was calculated within the
Minerals Policy Monitoring Programme (RIVM 2019-
0026, 2019; Appendix 2), and as with crop diversity, the
thresholds for low, medium and high were derived from
the distribution of the data, such that losses below 11 kg
of nitrogen per hectare were considered low, between 11
and 30.3 kg they were considered medium, and above
30.3 kg they were considered high.

To assess the success of upscaling the MCDMs from
field to farm level, we compared the results obtained
from the farm-level MCDMs with selected proxies for soil
functionality. Choosing appropriate proxies was compli-
cated because the chosen variables had to be independent
from those required by the MCDMs (Tables S2 and S3)
and the MCDMs encompass many aspects of each soil
function.

We compared the results from the PP MCDM with
standardized yield. The Minerals Policy Monitoring Pro-
gramme contains information on the crop, the area
devoted to said crop, and the crop's yield for each farm.
Using this information, we calculated standardized yield
using the following formula:

SY =
Xn

i=1

100×MYi

PY i

� �
×PAi,

where n is the number of crops in farm i, MYi is the mea-
sured yield for crop i, PYi is the countrywide potential
yield for that crop (Silva et al., 2020) and PAi is the pro-
portional area that that crop occupies in the farm. This
approach had three limitations: (i) potential yield was
only known for the most common crops grown in the
Netherlands, which means fields with uncommon crops
were not included in the calculation; (ii) the grass yield
was not measured, but rather calculated from informa-
tion on the farm's overall performance using the amount
of external feed bought, the number of cows in each dairy
farm, the energetic requirements of cows, and the total
milk production of the farm (RIVM 2019-0026, 2019;
Appendix 2); and (iii) there was no potential yield esti-
mate for grass, therefore, we used the distribution of
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grass yield to establish the low, medium and high catego-
ries, using the first and third quartiles as the threshold
values. Although potential yield is likely to be different
for different soil types, we chose to use a national level
potential yield to be able to compare the standardized
yield with the result from the PP MCDM, which includes
soil type in the calculation of the PP score.

Due to the fact that there are two distinct decomposi-
tion paths in the soil (fungal and bacterial) we compared
the NC MCDM scores with two biological indicators: the
fungal to bacterial (F:B) biomass ratio and the ratio
between the maturity of the plant parasitic nematode
community (PPI; Bongers, 1990) and the maturity of the
free-living nematode community (MI; Bongers, 1990).
Sites with readily decomposable materials tend to be bac-
terial dominated (Bloem & Breure, 2003). Nematode
composition can also provide insight into the efficiency
of the nutrient cycle. Bongers, van der Meulen, and
Korthals (1997), based on empirical observations, pro-
posed that the PPI:MI ratio can indicate a nutrient
enrichment effect. With increasing fertilization, an
increase in opportunistic species causes the MI to
decrease and the PPI to increase due to an increase in
carrying capacity for plant parasitic nematodes. The
microbial and nematode communities were sampled as
part of the Netherlands Soil Monitoring Network. The MI
and PPI were calculated using the online tool Ninja
(Sieriebriennikov, Ferris, and de Goede (2014); accessed on
May 2019). Neither of the two selected proxy indicators
(PPI:MI ratio and F:B biomass ratio) can fully compare to
the full NC model because both proxy indicators can only
represent variations in the capacity of a soil to mineralize
materials (“Mineralization” in the NC MCDM) and, to a
certain degree, the ability of a soil to make nutrients avail-
able to plants (“Nutrient recovery” in the NC MCDM), but
neither can capture the variation within the Harvest index,
the third upper node in the NC model.

Lastly, we compared the results from the B-HP model
with the farms’ biodiversity rank, calculated by using
principal component analyses (PCAs; Legendre & Legen-
dre, 2012; Ter Braak, 1986). The PCAs explained the vari-
ation in the invertebrate diversity, including earthworm,
micro-arthropod and enchytraeid species and nematode
genera. As input variables for the PCA we used the Shan-
non-Weaver diversity, H 0 =

Pn
i=1pi × lnðpi ), where pi is

the proportional abundance of species i, and Pielou's
evenness indices, J

0
= H 0 /H0

max, where H0
max is the Shan-

non-Weaver diversity if all species present in a site were
present with equal proportional abundance (Pielou, 1966;
Shannon, 1948) of the aforementioned faunal groups,
scaling the input variables to unit variance.

We performed either one-way ANOVAs or a Kruskal–
Wallis test (when the assumptions of homogeneity of

variance and normality of the residuals were not met)
using each of the selected indicators as the dependent
variable and the MCDM scores for each soil function as
the grouping variable (Chambers & Hastie, 1992; Hol-
lander & Wolfe, 1999). PCA was calculated with the
“rda” function in the “vegan” package (Oksanen
et al., 2019).

2.2 | Soil multifunctionality

To answer our first research question, we created fre-
quency plots for the low, medium and high scores in each
soil function (PP, NC and B-HP) and assessed the num-
ber of farms with a high and low supply of all three, two,
one or none of the studied functions.

2.3 | Synergies and trade-offs

To understand the synergies and trade-offs that occurred
between PP, NC and B-HP, we used frequency plots and
observed the overlap between sites with low, medium or
high supply scores. We also studied how often functions
tended to be supplied at a high or low level together.

2.4 | Variables associated with soil
multifunctionality

Studying the variables that associate with multi-
functionality was a two-step process. Firstly, we looked
into the scores of the highest tier of each of the MCDMs.
Each of these super-attributes is a result of several aggre-
gations of discretized input variables into several layers
of tiers. The upper tiers represent distinct parts of each
soil function. They are “Soil”, “Management”, “Land use-
related management”, and “Environment” for PP; “Nutri-
ent recovery”, “Mineralization” and “Harvest index” for
NC; and “Structure”, “Nutrients”, “Hydrology” and “Biol-
ogy” for B-HP. The distribution of high, medium and low
scores for these super-attributes can help us understand
the drivers behind the MCDM scores. Secondly, we per-
formed redundancy analyses (RDA; Legendre & Legen-
dre, 2012; Ter Braak, 1986) to understand which
variables better explained the capacity of grasslands and
croplands to provide high PP, NC and B-HP. We calcu-
lated six separate RDAs, specifically three for grasslands
and three for croplands, using either the soil, the environ-
mental or the management-related variables that served
as inputs for the MCDMs. To reduce the number of
explanatory variables and avoid over-parameterization,
we eliminated redundant variables, variables with very
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little variation and those that were co-linear when they
had a variation inflation factor higher than 10 (Green-
acre, 1984; Gross, 2003). Cation exchange capacity and
bulk density were not independent from soil organic mat-
ter and clay content; hence, these parameters were not
included in the RDA models. Yearly average temperature
and precipitation correlated strongly with the number of
days with an average temperature above 5�C and precipi-
tation during the first month of the growing season,
respectively. Only the latter two were included into the
RDA models. Soil pH, phosphorus and potassium content
had high variation inflation factors and were excluded
from the RDA model. We used the “ordistep” function
for variable selection. We calculated the adjusted R2 of
each model using the Peres-Neto, Legendre, Dray, and
Borcard (2006) permutation approach and an ANOVA-
like permutation test for redundancy analysis of principal
coordinates for each of the covariates, axes and for the
whole RDA model (Legendre, Oksanen, & ter
Braak, 2011). All calculations were performed using the
“vegan” package for R (Oksanen et al., 2019).

3 | RESULTS

3.1 | From field to farm level

There was a significantly lower standardized yield in crop-
lands with medium PP than in those with high PP
(Kruskal–Wallis χ2 = 4.9, p-value = .03). For the grassland
farms we found no significant differences between the stan-
dardized yield for farms categorized into the low, medium
or high supply of PP (ANOVA, F = 2.13, p-value = .15).

We observed no significant differences in the PPI:MI
ratio of grasslands (Kruskal–Wallis χ2 = 0.39, p-
value = .22, with a mean PPI:MI of 1.54) or croplands
(Kruskal Wallis χ2 = 1.79, p-value = .23, with a mean
PPI:MI ratio of 1.57) with low, medium or high NC. The
F:B ratio was significantly lower in grasslands with high
NC compared to those farms with medium NC, but nei-
ther differed significantly from the low NC supply
(Kruskal Wallis χ2 = 8.31, p-value = .02). There was no
significant relationship in the croplands, where overall
the F:B ratio was very low (Kruskal Wallis χ2 = 2.95, p-
value = .23, with an average value of .56).

The first two axes of the PCAs explaining the varia-
tion in diversity indicators in grasslands and croplands
explained 54% and 56% of the total variation for grassland
and cropland farms, respectively (Figure S1). In both
cases, enchytraeid evenness was strongly positively corre-
lated with the first axis and nematode diversity with the
second, as can be observed from the direction of increase
of both indices along the axes of the biplot (Figure S1).

General positive trends were apparent between the
scores of the first PCA axes and the B-HP scores, but
none of the differences were statistically significant
(ANOVA, F = 2.34, p-value = .12 for grasslands and
ANOVA, F = 1.57, p-value = .23 for the croplands). The
rank of the sites along the second RDA was also not sig-
nificantly related to the score received by the MCDM
(ANOVA, F = 0.04, p-value = .96 for grasslands and
ANOVA, F = 0.95, p-value = .41 for the croplands).

3.2 | Soil multifunctionality

Only two grasslands performed poorly in two functions
simultaneously (Figure 1c), in other words from the 31
grasslands included in our study, 29 of them delivered
two or more functions at a medium or high level simulta-
neously, whereas all the croplands delivered two or more
functions (Figure 1d). Additionally, none of the farms
had a low supply of all three functions (Figure 1c,d). The
MCDM, however, predicted that only one cropland soil
could score high in all three functions (Figure 1b). PP
was high in 18 grasslands and 18 croplands (58% and
86%, respectively; Figure 1a,b), and only three out of the
52 farms (6%) had a low supply of PP. Seven out of the 52
sites (13%) showed a low NC, whereas 46% of the farms
had a low B-HP (Figure 1c,d). The proportion of farms
with low, medium and high NC was similar in both
grasslands and croplands (Figure 2a,b).

3.3 | Synergies and trade-offs

As the MCDM model provided the supply of the three
functions for any given farm, it enabled further assess-
ment of potential synergies and trade-offs between the
soil functions. High PP scores co-occurred with high NC
in 12 grasslands (39%) and 13 croplands (62%), but only
one grassland and three croplands had both high B-HP
and high PP simultaneously (Figure 1a,b). Twenty farms
did not receive a low score for any of the functions and
sites with medium PP did not necessarily get a medium
B-HP score, which implies that the relationship between
the provision of PP and B-HP is not strictly linear
(Figure 3).

3.4 | Variables associated with soil
multifunctionality

The analysis of the top tier of the MCDM (or super-attri-
butes) that adds up to the PP score gave us insight into
which parts of the soil system might be driving the score.
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Out of the four super-attributes related to PP, “Environ-
ment” always scored high (Figure 4a,b), because the
input variables related to “Environment” (slope, annual
precipitation and annual temperature) were considered
suitable for high PP by the MCDM. “Soil”, which is an
aggregate of input variables such as pH, soil organic
matter, carbon to nitrogen ratio, abundance of macro-
elements, cation exchange capacity or salinity, was
often either medium or low (Figure 4a,b). “Grassland
management” (which results from the evaluation of
variables such as stocking rate and legume presence;
Figure 4a) showed a lower score than “cropland man-
agement” (crop diversity, legume cover and type of
crops; Figure 4b).

The super-attributes determining the NC supply all
indicate mostly medium to high supply capacity (Fig-
ure 4c,d). The “Harvest index” was high on all farms,
which is the result of a combination of an assumption of
low residues left in the field and low crop failure risk
(both input variables into the MCDM). “Mineralization”,
which in the MCDM is a result of the aggregation of tem-
perature, precipitation and pH, was medium on only 13%
of the farms, and for the remainder was either high or
low. No croplands scored low in terms of nutrient recov-
ery (Figure 4d).

According to the scores of the B-HP super-attributes,
the soil “Structure” is more suited to B-HP in croplands
than grasslands. “Nutrient status” and “Hydrology” of the

FIGURE 1 Number of grasslands

(left panels) and croplands (right

panels) with a high (a,b) or low (c,d)

supply of none, one, two or three soil

functions. Scores were obtained from

multi-criteria decision models for

primary productivity, nutrient cycling

and biodiversity and habitat provision.

Colours denote which soil functions/s

had a high or low score. B-HP,

biodiversity and habitat provision; NC,

nutrient cycling; PP, primary

productivity

FIGURE 2 Frequency of

functionality scores derived from multi-

criteria decision models for primary

productivity (grey), nutrient cycling

(pink) and biodiversity and habitat

provision (green) on grasslands (a) or

croplands (b) in the Netherlands
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studied soils, however, show a higher potential for high
B-HP in grasslands than croplands (Figure 4e,f). The “Biol-
ogy” super-attribute, however, received either a medium or
a low score in all sites, except one cropland (Figure 4f). The
variables that determine the “Biology” super-attribute were
the use of pesticides, the presence of grassland in the arable
rotation, crop diversity and legume presence, variables that
were low in most of the studied farms.

According to the results from the RDAs, management
variables (Figure 5a) and environmental variables (Fig-
ure 5c) explained an important part of the variation in the
distribution of high supply scores for different soil functions
in grasslands (with an adjusted R2 of 0.52 and 0.28, respec-
tively; Table 1). Grasslands with a high capacity to support
NC and PP tended to have a low groundwater table and
high clay content (above 25%; Figure 5c) and were mea-
sured in years where the number of days with an average
temperature above 5�C was medium (i.e., 180–230 days). In
grasslands, clay content was positively correlated with mag-
nesium content (Pearson ρ = 0.7). According to the RDA,
these sites also show a positive correlation with high min-
eral nitrogen fertilization (more than 150 kg N/ha per year)
combined with cows spending a high amount of time in the
fields. High mineral nitrogen fertilization showed collinear-
ity with the use of pesticides and only the first was included
in the models. In contrast, grasslands with a high capacity
to provide B-HP tended to have a high groundwater table

and were sampled in years with a higher number of days
with an average temperature above 5�C (above 230 days;
Figure 5c) as well as a mineral nitrogen fertilization below
50 kg N/ha per year (Figure 5a).

For croplands, important parts of the variation in the
high supply of PP, NC and B-HP were explained by soil
and management variables (Table 1). Croplands with
high PP and NC scores were characterized by very low
soil organic matter (below 2%; Figure 5d), and high levels
of mineral nitrogen fertilization (>150 kg N/ha per year)
combined with low levels of organic nitrogen fertilization
(Figure 5b; <50 kg N/ha per year). Soil organic matter
was strongly and negatively correlated with bulk density
(Pearson, ρ = −0.75), but high fertilization rates were not
strongly correlated with any of the variables not included
in the RDAs, that is with a correlation coefficient equal
to or larger than 0.7. High B-HP scores were correlated
with a medium to high nitrogen to phosphorus ratio
(above 20) and a high carbon to nitrogen ratio, and more
than 8% soil organic matter, but correlated negatively
with the use of cover crops and crop diversity. The nitro-
gen to phosphorus ratio was negatively correlated with
pH (Pearson, ρ = −0.71), meaning that this observation
could in fact be a result of lower pH values in sites with
high B-HP than in those with a low score. Similarly, the
carbon to nitrogen ratio of croplands was negatively cor-
related with clay content, bulk density and pH (Pearson,
ρ = −0.73, ρ = −0.74 and ρ = −0.97, respectively) and
positively with the phosphorus and potassium load (Pear-
son, ρ = 0.82 and ρ = 0.73, respectively).

4 | DISCUSSION

We upscaled the MCDMs developed by the Landmark
project from field to farm scale to assess the soil's ability
to provide PP, NC and B-HP in 31 grasslands and 21
croplands in the Netherlands. The soils often delivered
more than one function at a time with a medium or high
score, but it was often a combination of PP and NC. B-HP
received a low score on 24 out of 53 farms (46%), whereas
NC and PP were low on seven (13%) and three (6%) of
the farms, respectively. Management variables, namely
the source of nitrogen fertilization and the type of crops
in rotation, play an important role in explaining the
trade-offs and synergies between B-HP, NC and PP.

4.1 | Multi-criteria decision models: The
issue of data collection

The MCDMs were originally created as a tool for farmers
or advisors to assess the multifunctionality of their soils.

FIGURE 3 Frequency of grasslands (left panels) and

croplands (right panels) with low (L), medium (M) or high (H)

capacity to provide primary productivity and nutrient cycling (a,b)

and primary productivity and biodiversity and habitat provision (c,

d). Soil function scores were obtained using multi-criteria decision

models
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As such, they were designed to utilize soil management
information alongside basic soil property and environ-
ment data to derive the multifunctionality of soils at field
scale. These models have provided a framework for the
assessment of soil functions across Europe and they are
being utilized to support scientific assessment of multi-
functionality, but in this context the models often suffer
from the lack of management data, which are essential
for each model (Schröder et al., 2016; van Leeuwen
et al., 2019). This proved a disadvantage in our research.
The soil data and environment data were readily avail-
able at a farm level, and when not directly measured we
could access soil maps that helped fill in the gaps. But
overall, few existing research projects or organizations
have field or farm-level information that includes details
about soil/land management. This resulted in 20% of the
input variables, particularly management-related

variable, being based on either proxy values derived from
literature research (such as the depth of the organic mat-
ter layer) or on expert assumptions of common agricul-
tural practices in the Netherlands (such as a low amount
of crop residues left in the fields). We accept that these
assumptions could introduce a potential error into the
calculation of the final function score within the model
and reduce the precision of the predictions, but the final
effect of this on our results is difficult to assess without
comparing them to results gathered with a full set of
input variables. More importantly, because not one single
variable is solely responsible for the score obtained but
rather a result of a tiered aggregation process, we do not
expect the resulting score to be inaccurate. We suggest
that future studies that use these MCDMs carry out a sen-
sitivity analysis. The importance of soil management var-
iables within this study emphasizes the need for future

FIGURE 4 Frequency of scores for

the top tier of multi-criteria decision

models for primary productivity (grey),

nutrient cycling (pink) and biodiversity

and habitat provision (green) on

grasslands (a) or croplands (b) in the

Netherlands. Each tier represents the

suitability of part of the system to

sustain a high, medium or low supply of

each function. ‘‘Soil’’ stands for soil
properties in primary productivity. In

biodiversity and habitat provision

“structure” stands for soil structure and
“nutrients” for nutrient status
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research projects to collect data additional to soil-based
measurements to really be able to define the functional
capacity of a soil. We suggest, specifically, that studies
exploring soil quality in European systems collect at least
the information on farm management collected by the
Landmark project, or a variation of this that includes
more categories for each variable (Creamer et al., 2019).

4.2 | From field to farm level: Challenges
and opportunities

Comparison of the MCDM with proxy variables was per-
formed to see if the upscaling from the field to farm level

had been successful. We did not, however, expect a per-
fect relationship between the proxy variables and the
functioning scores according to the MCDM. The proxy
variables serve as a representation of one part of a soil
function, whereas the MCDMs attempt to encompass all
the main processes that affect the same soil function.

We observed a clear difference between the average
standardized yield observed in croplands with medium
and high PP scores. These results are in line with those
obtained during the model's validation process (Trajanov
et al., 2019). However, comparison of the standardized
yield with the functional capacity of PP in the grassland
sites did not result in a significant relationship. The grass-
land PP model had not previously been validated (unlike

FIGURE 5 Redundancy analyses of the effect of management- (a and b), environmental- (c) and soil-related variables (d) on the high (H)

capacity of the soil to provide primary productivity (PP), nutrient cycling (NC) and biodiversity and habitat provision (B-HP) in grasslands (left

panel) and croplands (right panels). Circles denote the position of the farms and the colour the number of farms in that position. Only RDAs where

variables (indicated by crosses) explained a significant variation in distribution of the farms’ high scores have been included in this figure, leaving

out soil variables in grasslands and environmental variables in croplands. SOM stands for soil organic matter and GWT for ground water table

10 VAZQUEZ ET AL.



the PP crop model) and might require adjustment to bet-
ter represent potential PP. The processes underlying the
PP MCDM, however, are very similar in grasslands and
croplands and should represent the relationship between
soil properties and PP even after being adjusted to the
farm level. In our dataset, an average 18% of a dairy farm
was dedicated to maize. The upscaling to the farm scale
led us to include these areas in the calculation of stan-
dardized yield but the PP MCDM, even after adjustment
for farm level, did not include these maize fields.
Although this could have meant a small overestimation
of standardized yield in farms with a successful crop
maize it should affect farms with a medium and high PP
equally. More importantly, all the grasslands with a
medium score were in fact scored between a high and a
medium PP by the MCDM. We believe that the difference
in grass yield between farms with medium to high PP
and farms with high PP is simply not large enough to be
detected within our dataset. Either a larger sample size or
a more diverse set of grasslands (with a broader PP spec-
trum) could shed further light on the relationship
between standardized yield and the PP MCDM. Another
approach would be to increase the number of final scores
from three to five and increase the overall precision of
the model without compromising interpretability.

Selecting proxy variables for NC was difficult due to
the holistic nature of the NC MDCM model, which
encompasses the process of NC and recovery from the
application of residues/manure to the off-take of nutri-
ents in the plant yield. The F:B ratio provided some
assessment of the NC MDCM potentially representing
the mineralization process within the model, which also
contributes to the nutrient recovery (Schröder et al., 2016).
We found a lower F:B biomass ratio in grasslands with
high NC when compared to those with medium NC
(although neither group was significantly different than
grasslands with low NC capacity, which was probably
because one of the four grasslands with low NC had an
F:B ratio of 0.46, a value close to the mean F:B ratio of
sites with high NC). Lower F:B ratios are typical in more
intensively managed systems, with higher nitrogen
inputs, and readily decomposable materials (Ruess & Fer-
ris, 2004). We observed similarly low F:B values in all the
cropland farms, regardless of their capacity to supply NC
according to the MCDM, indicating a bacterial-domi-
nated decomposition pathway for all the croplands.

The comparison of the B-HP function with the diver-
sity of soil invertebrates resulted in promising trends that
were, however, not significant, indicating a high level of
overlap and variability. A significant but weak correlation

TABLE 1 Statistics from six redundancy analyses of the distribution of the high supply of primary productivity, nutrient cycling and

biodiversity and habitat provision in grasslands and croplands, as explained by either environmental (Env), soil or management (Mng)

variables. In bold are values with an adjusted R2 avobe 0.3 or P-values below 0.05. Df stands for degrees of freedom.

Grasslands Croplands

Env Soil Mng Env Soil Mng

RDA results Total inertia (=3) Constrained (%) 47.7 57.7 72.7 47.7 54.3 75.7

Eigenvalues for constrained axes (%) RDA1 55.9 61.3 72.9 76.9 69.9 77.5

RDA2 38.5 30.6 21.6 22.4 26.4 15.9

RDA3 5.6 8.1 5.5 1.4 3.7 7.0

RDA - diagnostics Adjusted R2 0.28 0.16 0.52 0.20 0.35 0.45

ANOVA Df - model 7 15 10 7 6 10

Df – Res 19 15 13 13 14 8

Variance - model 1.43 1.73 2.18 1.43 1.63 2.27

Variance - residual 1.57 1.27 0.82 1.57 1.37 0.73

F 2.48 1.37 3.46 1.69 2.79 2.48

P-value 0.004 0.18 0.001 0.12 0.01 0.03

ANOVA – RDA axes RDA1 Variance 0.8 1.06 1.53 1.1 1.14 1.76

F 11.73 22.62 65.98 11.88 14.24 36.07

P-value 0.03 0.15 0.008 0.11 0.03 0.03

RDA2 Variance 0.55 0.53 0.53 0.32 0.43 0.36

F 8.13 11.26 22.77 3.46 5.3 7.29

P-value 0.07 0.71 0.72 0.75 0.22 0.77

Residual Variance 1.57 1.27 0.82 1.57 1.37 0.73
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was observed when the B-HP MCDM scores were com-
pared with those assigned by experts in the soil biodiver-
sity field (van Leeuwen et al., 2019). Due to the discrete
nature of the MCDMs, much of the variation in the data
is discarded. The use of pesticides, irrigation or the use of
drainage are all variables that can be either positive or
negative as input data in the MCDMs, yet we know that
pesticide load or the duration and timing of droughts
(and therefore the resilience to water shortages) can both
have an effect on the belowground biodiversity (Chelinho
et al., 2011; Cyco�n & Piotrowska-Seget, 2009; Korthals
et al., 1996). We recommend either increasing the num-
ber of categories or using a continuous scale for these
variables to further refine the B-HP MCDM, and
although it can be costly, we recommend the inclusion of
at least some of the soil fauna in the assessment of this
soil function.

4.3 | Drivers of soil multifunctionality

The MCDMs indicated that up to 38% of the farms in our
study had either a medium or a high supply of all three
soil functions, which answers our first research question:
a proportion of the farms under study were delivering
three functions at a medium or high level simulta-
neously. Similar patterns have been observed recently in
Europe, where more than a third of the visited fields
achieved a supply of five functions at either medium or
high levels (Zwetsloot et al., this issue). Only one farm in
our study (a cropland) had high levels of all three func-
tions. What is also significant is that only two farms (both
grasslands) had a medium to high supply of only one soil
function, which was PP in both cases, indicating that a
vast majority of sites could supply at least two functions
at a higher level simultaneously.

In answer to our second research question, the
MCDM predicted clear synergies between PP and NC,
but a trade-off between the two functions and B-HP was
clearly evident (Figure 3). Only 27% of the farms in the
study were expected to have a high level for B-HP. These
results are in line with many previous studies that have
found strong negative relationships between agricultural
intensification and biodiversity losses (Geisen, Wall, &
van der Putten, 2019; Tilman et al., 2001; Tsiafouli
et al., 2015). Soil fauna are paramount for the delivery of
soil functions and insuring the delivery of adequate B-HP
should be a priority (Brussaard, 2012; Kibblewhite, Ritz,
& Swift, 2008). Increases in organic fertilization, over
time, increase the organic matter content in the soil and
provide a more suitable habitat for soil biota by providing
food for the microbial community and more stable soil
moisture conditions (Birkhofer et al., 2008; Zsolnay &

Görlitz, 1994). In our study, high soil organic matter was
a common attribute amongst the croplands with a high
B-HP. Additionally, lack of chemical pest management
and high input of organic fertilizers were highlighted in
our results as common input variables in farms with high
B-HP. In fact, 80% of the farms with a high B-HP supply
were organic farms. The use of insecticides and pesticides
has been linked to a widespread loss of biodiversity in
European farmland (Geiger et al., 2010). Conversion to
organic farming can lead to more erratic yields, but mea-
sures such as the use of green manure or increased fertili-
zation can be taken to reduce the variation (Knapp & van
der Heijden, 2018). In fact, a meta-analysis showed that
biodiversity increases on average by 30% under organic
farming management, and this effect is larger in inten-
sively managed landscapes (Tuck et al., 2014).

The type and amount of fertilizer were important var-
iables in explaining multifunctionality: moderate values
of each could lead to multifunctionality of grasslands and
croplands. In grasslands, weather variables explained a
significant proportion of the prevalence of high function-
ing. In croplands, however, moderate values of soil vari-
ables, such as soil organic matter, nitrogen to phosphorus
ratio, carbon to nitrogen ratio and soil salinity, could lead
to improvements in multifunctionality. Our results sug-
gest that implementing changes in fertilization and pest
management practices could have a big impact on the
multifunctionality of soils even without a complete
switch to organic management. Specifically, we found
the type and amount of fertilizer to be an important vari-
able explaining soil multifunctionality. Farms with a high
capacity for B-HP were characterized by low mineral
nitrogen fertilization and high organic fertilization, and
in the case of croplands a soil organic matter content
above 8%. The effects of mineral nitrogen fertilization on
soil biota are often not direct. Their application can lead
to shifts in the microbial composition by inducing
changes in the PP, crop residue and soil organic matter
content, but can also lead to soil acidification, which in
turn has a negative effect on earthworms and nematodes
(Bünemann, Schwenke, & Van Zwieten, 2006; Chen,
Lan, Hu, & Bai, 2015; Eisenhauer, Cesarz, Koller, Worm,
& Reich, 2012; Treseder, 2008); in fact, in our study, sites
with the highest carbon to nitrogen ratio (which corre-
lated strongly with low pH values) had the highest B-HP
scores. There are measures to improve biodiversity that
we have not tackled through the redundancy analysis
(Figure 5). The amount of residues left in the field, which
we assumed to be low in our study sites, can positively
impact the abundance and increase the functional diver-
sity of the earthworm community (Fraz~ao et al., 2019).
Reduced tillage practices can lead to an increase in the
richness and abundance of soil organisms
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(Kladivko, 2001; Sapkota, 2012). Moreover, these two
practices combined can have a larger positive impact on
the soil biodiversity than organic management (Hen-
neron et al., 2015). The number and identity of crops in
rotation can also have a positive impact on total organic
carbon and microbial biomass, particularly when com-
bined with the use of cover crops (McDaniel, Tiemann, &
Grandy, 2014).

Although our results have uncovered important rela-
tionships between PP, NC and B-HP, we could not
include water or climate regulation functions, thus, some
of the synergies and trade-offs that occur in these soils
remain unknown. High nitrogen fertilization rates are
associated with increases in productivity, but also to
increased residual soil nitrate and increasing the risk of
nitrous oxide (N2O) emissions (Snyder, Bruulsema,
Jensen, & Fixen, 2009). In fact, Zwetsloot et al. (this
issue) found a trade-off between PP and climate regula-
tion in their study into European farms. The use of
organic fertilizers has been linked with increased soil car-
bon stocks (Kukal, Rehana, & Benbi, 2009) and might
therefore indicate a positive link between B-HP and cli-
mate mitigation. Although such a relationship was
observed by Zwetsloot et al. (this issue) in Pannonian cli-
matic soils, it became negative in the Atlantic climate
zone, showing that there is still much to learn regarding
how these soil functions interact with one another.

The functional land management framework was
designed to promote soil multifunctionality by addressing
soil function needs and delivery at different scales, such
that local, regional and national objectives for multi-
functionality can co-exist (Schulte et al., 2014; Schulte
et al., 2015). Our results reflect a need to include the
improvement of B-HP as a regional and national goal, to
partially offset the effects of agricultural land manage-
ment, but at the local scale sustainable agricultural prac-
tices should also be introduced to safeguard soil
biodiversity. It is a step in the right direction that the
Common Agricultural Policy in the European Union
now includes “Effective Soil Management” as an objec-
tive, with specific recommendations regarding soil biodi-
versity, its role in soil functions, and management
practices that are less impactful or even beneficial to the
soil system. However, each member state can implement
these measures at a different level and there is evidence
to suggest that including environmental concerns in the
Common Agricultural Policy is not enough to protect the
environment (Alons, 2017; Pe'er et al., 2019). Better
incentives for sustainable farming practices could lead to
decreases in biodiversity loss, particularly because some
of these practices are not without risk and farmers might
not want to make changes that put their income at risk
(Lefebvre et al.; Rotches-Ribalta et al.).

5 | CONCLUSIONS

Our study shows the potential for multifunctionality in soils
in farms of the Netherlands, with most farms having a mod-
erate or high capacity in two of three functions. The models
predict trade-offs between biodiversity and habitat provision
and both primary productivity and nutrient cycling. Man-
agement-related variables regarding the use of pesticides
and the amounts of mineral and organic nitrogen fertiliza-
tion were considered very important within the model pre-
dictions and explained part of the synergies and trade-offs
in both croplands and grasslands, and soil parameters that
can be changed via improved soil management (such as soil
organic matter) are also important to increase the delivery
of B-HP. Providing incentives that make the adoption of
sustainable practices less risky to farmers might be a step
forward in providing multiple soil functions simultaneously
while maintaining the provision of B-HP.
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