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Abstract
Bans on the use of synthetic herbicides require innovative management
approaches tomaintain the attractiveness and usability of turfgrass swards. Such
measures should include the use of locally adapted cultivars that germinate and
establish quickly, resulting in the densest possible stands. Additionally, a num-
ber of turfgrasses have been reported to produce allelopathic substances that
inhibit common turfgrass weeds. Mowing heights should be set to achieve max-
imum weed suppression while still providing acceptable quality for desired use.
Sustainable turfgrass management programs have led to a reduction in fertil-
izer inputs; however, without the availability of herbicides, fertilization regimes
need to be re-examined. The literature suggests that broadleaf weeds are reduced
but never fully controlled when more N is applied; therefore, finding a bal-
ance between what is needed and what is environmentally safe and sustainable
is critical. Organic herbicides include plant pathogens from the fungus Phoma
and strains of the bacterium Pseudomonas fluorescens. Both can be used to con-
trol several weeds common to turfgrasses. Acetic acid has also been shown to
have herbicidal activity; however, it has limited residual activity, and its efficacy
remains questionable on mature weeds. Thermal weed control can be used to
sterilize a seedbank or spot treat existing weeds. Future turfgrass breeding pro-
grams could focus on understanding and enhancing the allelopathic potential of
turfgrasses to outcompete weeds more effectively. Furthermore, more research
should be directed at assessing the competitiveness of certain turfgrasses against
weedswithin the limitations of producing turfgrass areas of acceptable aesthetics
and playing quality.

1 INTRODUCTION

Weeds are plants that are defined as undesirable in a
specified area because of their ability to compete with
native or desirable plant species (McCarty, Murphy, &
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Turgeon, 1994). Turfgrasses compete with weeds for nutri-
ents, water and space below ground (Snaydon, 1971), and
for light above ground (Holt, 1995). Moreover, the pres-
ence of weed species in turfgrasses reduces playing qual-
ity, aesthetic value, and usability (Larsen, Kristoffersen, &
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Fischer, 2004; McCarty et al., 1994; McElroy & Martins,
2013; Stewart-Wade, Neumann, Collins, & Boland, 2002).
Weed species rapidly germinate in exposed soil (McElroy
& Martins, 2013) caused by abiotic factors, such as vehic-
ular or human wear, drought, shade, cold, as well as by
biotic factors affecting turfgrasses such as pest and disease
damage (Brodie & Burton, 1967; Busey, Broschat, & Center,
1982; Waddington, T.R., J.M., &Moberg, 1978). Established
weed species have a lower wear tolerance compared with
turfgrasses, which increases the risk of soil exposure on
weed infested turfgrass areas (McElroy&Martins, 2013). In
terms of their aesthetic appearance, weeds often stand out
because of enhanced floral production or color differences
vs. turfgrass (McCarty et al., 1994). Additionally, some tur-
fgrass weed species, such as dandelion (Taraxacum offici-
nale F. H.Wigg) and white clover (Trifolium repens L.), are
too close to the soil to be removed by mowing and produce
patches that disrupt uniformity and affect ball roll and lie
in sports scenarios (Larsen et al., 2004).
Turfgrass areas infestedwithweeds are often considered

a sign of mismanagement (Masin, Zuin, Archer, Forcella,
& Zanin, 2005); however, weeds can establish even under
optimal management (Busey, 2003). Nevertheless, weeds
establish opportunistically if managers fail to reduce over-
all weed densities to aminimum andmaintain a dense tur-
fgrass sward.
Herbicides are the predominant method to control

weeds in turfgrass management particularly in large
areas such as golf course fairways (Dahl-Jensen, Norman
Petersen, & Aamlid, 2014). No new herbicide mechanism
of action (MOA) has been discovered since the 1980s, and
an ever-increasing risk of herbicidal resistance could lead
to virtually complete resistance to all conventional mech-
anisms of action by 2050 (Westwood et al., 2018). In 2017,
the Weed Science Society of America listed >300 commer-
cially sold modes of action to control weeds in agricul-
ture and turfgrass (Weed Science Society of America, 2017).
The use of herbicides in the United States golf industry
increased by an average of ∼2% between 2007 and 2015
(Golf Course Superintendents Association of America,
2017) with regional differences; for example, golf courses
located in transition zones increased herbicide use by 13%
whereas north–central regions reduced use by 8% (Golf
Course Superintendents Association of America, 2017).
In the European Union, much stricter bans on herbi-

cides have been established. The risk of herbicide resis-
tance (De Prado & Franco, 2004; Heap, 1997), health risks
associated with herbicide exposure (Karabelas, Plakas,
Solomou, Drossou, & Sarigiannis, 2009), and environmen-
tal concerns (Stoate et al., 2009) have led to a restriction
of synthetic herbicide products (Barzman & Dachbrodt-
Saaydeh, 2011). Today, only 123 herbicides are approved
for commercial use (European Commission, 2017), and

strict bans have been introduced in the turfgrass sector. For
example, in Germany, only two herbicides, namely Ban-
vel M and Nasalt (active ingredients Dicamba and MCPA,
respectively), can be used on golf courses (German Golf
Association, 2017). In Great Britain, the maximum allow-
able overall load of herbicide active ingredients that may
be applied to amenity turfgrass (public areas, residential
lawns, sports field, golf courses, etc.) was reduced from
1837 t in 2006 to 671 t in 2012, a 64% reduction (Depart-
ment for Environment, Food and Rural Affairs, 2015).
Denmark has set maximum permitted levels of pesticide
use for designated areas on golf courses (European Com-
mission, 2017). This has resulted in an 82.7% decrease in
annual pesticide use on golf courses from 1998 to 2014 (T. K.
Petersen, personal communication, 2018). In Holland, the
turfgrass industry has agreed to accept a complete ban of all
pesticides by 2020 (Government of the Netherlands, 2017).
It is clear that the future of weed control in European

turfgrass landscapes will be limited to nonchemical her-
bicide strategies. Few studies, other than those of Dahl-
Jensen et al. (2014) and Silvertown et al. (2006), have
investigated nonchemical management practices for weed
suppression in amenity turfgrasses. In Scandinavia, most
golf courses can cope with herbicide-free management but
Dahl-Jensen et al. (2014) found thatweed densities severely
increased after a period of∼3 yr.Weed control ismost effec-
tive under such circumstances when a variety of meth-
ods are used to support the growth of desirable species
and reduce the fitness of unwanted weed species (Marble,
Koeser, & Hasing, 2015).
Weeds are early colonizers and their persistence is

dependent on their competitive ability against turfgrasses
(Watschke, Dernoeden, & Shetlar, 1995). Nonchemical
approaches to control weeds must therefore focus on
reducing the availability of ecological niches in a turfgrass
sward for weed colonization, germination, and establish-
ment (Larsen et al., 2004). Maintaining dense turfgrass
swards is primarily dependent on the genetic ability of tur-
fgrasses to resist local abiotic and biotic stresses (Watschke
& Engel, 1994). Secondly, maintenance practices aimed at
promoting turfgrass growth favor the competitive ability of
turfgrasses to outcompete weeds (Dahl-Jensen et al., 2014).
The following sections provide a perspective on amenity
turfgrass management approaches focused on weed con-
trol without the use of herbicides.

2 TURFGRASS SELECTION

Cultivars that germinate and establish quickly should be
selected in newly seeded areas to reduce the chances
of weed germination. The selected cultivars need to be
adapted to the local climate to provide the densest turfgrass
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sward possible. Every year, the British Society of Plant
Breeders (https://www.bspb.co.uk/#) Turfgrass Seedman-
ual (British Society of Plant Breeders, 2020) and the
National Turfgrass Evaluation Program (https://www.
ntep.org) rank the majority of turfgrass cultivars for differ-
ent characteristics such as visual merit, shoot density, live
ground cover, resistance to abiotic and biotic stress, fine-
ness of leaf, cleanness of cutting, disease resistance, color,
and recovery. This allows turfgrass managers to select turf-
grass cultivars that establish and become dense quickly for
outcompeting weeds in seeded areas.
Selecting turfgrasses for resistance against local biotic

(e.g. insects, diseases etc.) stresses can have a secondary
effect on weed establishment over time (Busey, 2003).
Davis (1958) recorded an outbreak of leaf blight [Dreschlera
poae (Baudys) Shoemaker] in Kentucky bluegrass (Poa
pratensis L.) that caused an outbreak of broadleaf weeds
infestation. Waddington et al. (1978) attributed annual
bluegrass (Poa annua L.) invasion in creeping bent-
grass [Agrostis stolonifera L. var. palustris (Huds.) Farw.]
swards to injury after dollar spot (Sclerotinia homoeocarpa)
outbreaks. Brodie and Burton (1967) found a reduction
in density of ‘Tifgreen’ [Cynodon dactylon (L.) Pers. ×
C. transvaalensis Burtt-Davy] under nematodes (Belono-
laimus longicaudatus Rau) infestation and increased
establishment of spotted spurge {Euphorbia maculata
L. [≡ Chamaesyce maculata (L.) Small]} (Brodie &
Burton, 1967).
Besides biotic stresses, abiotic stresses (e.g. drought,

infertility etc.) can also increase weed densities in turfgrass
swards. Perennial ryegrass (Lolium perenne L.) showed
susceptibility to colonization by spotted spurge under
reduced irrigation (Gibeault, Meyer, & Youngner, 1985). In
a trial for which ‘Big Horn’ blue fescue {Festuca glauca
Vill. [≡ F. ovina var. glauca (Vill.) W. D. J. Koch]) and
‘Aurora’ hard fescue [F. trachyphylla (Hack.) R. P. Murray]
were kept without fertilizer and irrigation, the turfgrasses
showed superior resistance to smooth crabgrass [Digitaria
ischaemum (Schreb.) Schreb. ex Muhl.] and white clover
infestation vs. tall fescue (Lolium arundinaceum (Schreb.)
S.J. Darbyshire) cultivars (Dernoeden, Carroll, & Krouse,
1994). The authors also found that tall fescue cultivars
were poorer competitors against weeds under low cutting
regimes vs. blue fescue and hard fescue.
Competitive growth studies between monocultures and

cultivars in mixtures may provide insight into poten-
tial weed suppressing characteristics. In cool-season turf-
grasses, a mixture of turfgrasses under low-maintenance
regimes is generally more effective in controlling weeds
than a single species sward (McKernan, Ross, & Tompkins,
2001). Mixtures of Kentucky bluegrass and perennial rye-
grass achieved 8% higher leaf area index than monocul-
tures of each single species, which may explain the supe-

rior weed suppression characteristics of such mixtures
(Brede & Duich, 1984). Moreover, cultural management
practices can be adjusted to favor certain species; however,
dominance is a combination of the genotype and the envi-
ronment. For example, long-leafed perennial ryegrass is
dominant over short-leafed perennial ryegrass genotypes
under infrequent cutting because long-leafed genotypes
are better competitors for light (Hazard & Ghesquiere,
1995). Kentucky bluegrass can dominate over creeping red
fescue (F. rubra L. subsp. rubra) at high levels of nitrogen
(N) input, whereas creeping red fescue dominates at low
levels of N (Juska, Tyson, & Harrison, 1955). At low tem-
peratures, mixtures of red fescue [Festuca rubra L. subsp.
litoralis (G. Mey.) Auquier] and perennial ryegrass are
capable of germinating more quickly than other species,
potentially increasing their competitive ability over weeds
(Larsen & Bibby, 2005). In mixtures of creeping bentgrass,
red fescue, andKentucky bluegrass, the creeping bentgrass
dominated when the turfgrass was maintained at close
mowing heights (Davis, 1958).
A common approach in turfgrass management is to

encourage the growth of turfgrasses requiring less inputs
of valuable resources, which is critical for a sustainable
management approach (Cisar, 2004). However, encourag-
ing the use of low-input species is only one aspect of sus-
tainability. Themost sustainable turfgrass species are those
that provide the best performance for desired use year-
round as well as being adapted to local pest, disease, and
weed problems.

3 SEEDING AND OVERSEEDING
STRATEGIES

The choice of a proper seeding rate as well as the use of
overseeding to increase turfgrass densities can provide a
competitive edge over weeds (Parr, 1985). The benefits of
planting newly constructed areas with higher than rec-
ommended seeding rates to suppress weeds have been
reported. For example, Beard, Martin, and Mercer (1980)
showed that seeding Kentucky bluegrass at 90 kg ha−1,
instead of 45 kg ha−1, reduced weed cover on average by
21% 2 mo after seeding.
Overseeding strategies can successfully reduce weed

populations if sufficient seed germination is achieved
(Aamlid, 1992; Begon, Harper, & Townshend, 1996;
Larsen & Fischer, 2005; Larsen et al., 2004). Harris (2008)
found that overseeding at seeding rates ranging between
12.5 g m−2 and 100 g m−2 all provided denser swards with
fewer weeds than not overseeding if seeds successfully
germinated. Overseeding can be integrated as a regular
practice to increase the competitiveness of turfgrasses.
Best practices to increase germination after overseeding
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and reduced weed pressure include overseeding during
reduced weed growth, providing good seed–soil contact,
and following a fertilizer regime (Vargas &Turgeon, 2004).
During germination, sufficient phosphorous (P) must be
present, whereas after establishment, N is required to facil-
itate shoot and root growth (Christians, 2016;McVey, 1968).
Proper species selection for overseeding purposes is also

crucial. Perennial ryegrass showed good germination rates
regardless of whether or not water and fertilizer were
applied (Dahl-Jensen, Bühler, Kvalbein, & Aamlid, 2017;
Elford, Tardif, Robinson, & Lyons, 2008). Additionally,
perennial ryegrass germinates quickly and has good root
and shoot competition against weeds (Haugland & Froud-
Williams, 1999). Quick and successful establishment is
important to outcompete weed seedlings for light and fer-
tilizer (Jeangros & Noesberger, 1990; Snaydon and Howe,
1986). Frequent overseeding with high rates of perennial
ryegrass appears to provide competition against peren-
nial weeds over the short term when weed cover is high
and should be considered an important part of a weed
management program for municipal turfgrass managers
(Elford et al., 2008). Increasing overseeding rates in exist-
ing swards could be a long-term weed management strat-
egy. The effect of overseeding might be especially notice-
able on sparse turfgrass swards (Dahl-Jensen et al., 2014;
Nyholt, 2010).
Another approach to aid turfgrass establishment in

newly constructed and seeded areas is to use amend-
ments. Products include Turfiber, alfalfa hay, oat straw,
straw mulch, mat seeding, hydro mulch, and other mate-
rials. These products increase moisture retention in the
soil and suppress weed germination (Barkley, Blaser, &
Schmidt, 1965; Hansford, 1981; Hensler, Baldwin, & Goat-
ley, 2001; Shearman, Steinegger, Kinbacher, & Riordan,
1979; Sowers & Welterlen, 1988). Emphasis must be placed
on increasing germination success after overseeding using
adequate machinery to place seeds at the right soil depth,
provide uniform irrigation coverage, and provide adequate
fertilization.

4 ALLELOPATHIC POTENTIAL

The biological phenomenon of allelopathy has been effec-
tively used in agriculture by producers to suppress weeds
(Jabran, Mahajan, Sardana, & Chauhan, 2015). The capac-
ity of turfgrasses to produce allelopathic substances that
influence weed invasion has been reported for a vari-
ety of turfgrasses. Turfgrass roots are capable of prevent-
ing root invasion from competitor plants by producing
leachates that can modify the soil matrix or lead to toxi-
city after absorption by competitor plants (Seigler, 2006).
Thus, allelopathy can be described as a competition mech-

anism that could provide some control of weed species in
turfgrass areas.
The application of aqueous leachates derived from

perennial ryegrass, red fescue, and Kentucky bluegrass to
rooted cuttings of forsythia (Forsythia ×intermedia Zabel)
reduced top growth of thiswoody plant (Fales&Wakefield,
1981). Perennial ryegrass showed allelopathic potential on
clover, which was enhanced by crown rust (Puccinia coro-
nate Corda f. sp. lolii Brown) infection of perennial rye-
grass (Mattner & Parbery, 2001). Understanding the mech-
anisms of such interactions could lead to their improved
effectiveness in the field and to the isolation of allelopathic
compounds for biological herbicide formulations.
Peters and Luu (1985) observed tall fescue pastures free

of other plant species and attributed the absence of other
plants to the allelopathic potential of tall fescue. In bioas-
say trials, tall fescue exudates reduced seedling growth of
rape (Brassica napus L.), birdsfoot trefoil (Lotus cornicu-
latus L.), red clover (Trifolium pratense L.), and several
other common turfgrass weeds (Luu, Matches, & Peters,
1982; Peters & Zam, 1981; Rice, 1987). Clippings of creep-
ing red fescue and colonial bentgrass (Agrostis capillaris L.,
[= Agrostis tenuis Sibth.]) reduced germination and early
growth of white clover in container studies conducted by
Norrington-Davies and Buckeridge (1994). Bertin, Senesac,
Rossi, DiTommaso, and Weston (2009) showed that weed
suppression varied greatly among fescue cultivars. They
found strong creeping red fescue cultivars and Chewings
fescue cultivars to be most effective at weed suppression.
Allelopathy based breeding programs could be devel-

oped to select for allelopathic turfgrass varieties. A future
approach might be to develop biological plant protection
products from phytotoxic exudates. Putative compounds
could be isolated from a methanol extract of root material,
and the chemical structure could be determined by high-
resolution mass spectrometry, infrared spectroscopy, and
hydrogen-1 nuclear magnetic resonance (Kato-Noguchi,
2003). Once allelopathic cultivars or species demonstrating
strong competitiveness against weeds are identified, turf-
grass managers should consider establishing these species
over time.

5 ADJUSTINGMOWING PRACTICES
AND FERTILIZATION TO INCREASE
COMPETITIVENESS OF TURFGRASS
SPECIES

Mowing heights should be adjusted to a point where
the turfgrass canopy becomes dense enough to suppress
weed populations and short enough to provide good
playing conditions. Cutting heights of turfgrasses can be
adjusted throughout the year to stimulate either above- or
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belowground growth. The same applies to fertilization
applications. Fertilization can lead to quick or slow growth
depending on the type of fertilizer being used. Fertilization
can encourage above- or belowground growth, depending
on the application method, timing, and type of fertilizer.
Practices such as aeration can generally increase infiltra-
tion rates, rooting depth, and turfgrass health.

5.1 Mowing practices

Increasing mowing frequency of turfgrasses results in less
root mass, rhizome, and stolon production but increased
shoot density (Hull, 2000). The effect of mowing height
on turfgrass weeds, such as crabgrass (Digitaria spp.), is
well documented (Busey, 2003). Raising cutting heights
has been found to reduce crabgrass densities over time
in Chewings fescue (F. rubra spp.) (Jagschitz & Ebdon,
1985), Kentucky bluegrass (Dunn, Nelson, &Winfrey, 1981;
Niehaus, 1974), tall fescue (Dernoeden, Carroll, & Krouse,
1993; Hall, 1980; Voigt, Fermanian, & Haley, 2001), and
fine fescue species (Dernoeden, Fidanza, & Krouse, 1998).
Using variable mowing heights throughout the season had
no effect on controlling crabgrass in tall fescue (Cropper,
Munshaw, & Barrett, 2017). Therefore, using a consistently
high mowing height might be most effective to increase
competitiveness of turfgrasses against crabgrass.
Adams (1980) showed that annual bluegrass cover, in a

perennial ryegrass dominated sward, decreased from 34 to
9% when the cutting height was raised from 1.25 to 7.5 cm.
However, few studies exist that have investigated the rela-
tionship between mowing height and broadleaf weed den-
sities. Fine fescuewas reported to bemore competitive over
a mixture of broadleaf weeds (e.g. dandelion, white clover,
crabgrass) when the mowing height was raised from 1.9 to
5.1 cm (Davis, 1958). Gray and Call (1993) found that raising
the mowing height to 6 cm in tall fescue dominated turf-
grasswas successful in reducing commonblue violet (Viola
sororiaWilld).
Studies suggest that weed densities can generally be

reduced but never fully controlled with only mowing and
fertilization (Busey, 2003). The extent to which overall
weed densities can be lowered is also dependent on the
competitive ability of the turfgrass species composition.
In a trial with different mowing heights, fertilizer rates,
and turfgrass species, DeBels, Griffith, Kreuser, Melby,
and Soldat (2012) found ‘Kenblue’ Kentucky bluegrass had
the highest weed encroachment regardless of fertilizer or
mowing treatment.
Raising cutting heights usually increases competitive-

ness of desirable turfgrasses; however, it is unclear if small
changes within the limitations of usability has an effect
on weed pressure. For example, golf fairways are usually

maintained at heights ranging from 8 to 25 mm, but there
are no studies that have examined whether a high over a
low cutting height provides superior weed control. Com-
mon sense suggests that turfgrass should be kept as dense
as possible throughout the year, hence, cutting heights
should be increased if turfgrass is sparse but can be lowered
if turfgrass remains sufficiently dense. Furthermore, mow-
ing height and frequency are dependent on the growth
rate of the turfgrass. Factors that influence growth rates
include genotype, climate, the growth medium, and the
management input of water and fertilizer. Therefore, it
seems unlikely that weed pressurewill be reduced by small
changes in cutting height alone.

5.2 Handling of clippings

Returning clippings to turfgrasses is thought to increase
soil levels of carbon and N if microbial activity is suf-
ficient to mineralize N (Haley, Wehner, Fermanian, &
Turgeon, 1985; Law, Trappe, Jiang, Turco, & Patton, 2017;
Macdonald, Powlson, Poulton, & Jenkinson, 1989; Qian
et al., 2003; Shepherd, Stockdale, Powlson, & Jarvis, 1996;
Starr & DeRoo, 1981). Knot et al. (2017) and Qian et al.
(2003) applied the century model and calculated that
returning clippings can reduce a turfgrasses N require-
ment by 25% if it is 1–10 yr old, by 33% if it is 11–25 yr
old, and >50% if it is older than 25 yr. However, since
additional nutrients can also be provided by increasing
fertilizer rates, the decision to remove clippings is based
more on aesthetic or financial considerations. The positive
effects of returning nutrients derived from clippings to
the system can be offset by the addition of weed seeds
(Heckman, Liu, Hill, DeMilia, & Anastasia, 2000). Weed-
related negative effects of returning clippings have been
especially observed with annual weeds, which survive by
producing large numbers of seeds. Clipping removal led
to a 60% reduction of viable annual bluegrass seeds in a
bentgrass dominated turfgrass sward (Gaussoin & Bran-
ham, 1989). Therefore, if the turfgrass sward is dominated
by unwanted annual bluegrass, clippings removal should
be considered to reduce the seedbank build up.
In contrast, clippings can contain allelochemical com-

pounds, which have herbicidal activity (Akbari, Sajedi,
Gomarian, & Akbari, 2015). Bertin, Yang, and Weston
(2003) andWu,Harivandi, andGuo (2002) conducted stud-
ies in which these compounds were isolated and tested in
pot and petri dish experiments. Allelopathic compounds
isolated from a mixture of perennial ryegrass, Kentucky
bluegrass, and particularly red fescue inhibited germi-
nation and seedling growth of prostrate pigweed (Ama-
ranthus blitoides S. Watson) (Akbari et al., 2015). It is
unclear if simply returning clippings after mowing has
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an allelopathic-based inhibitory effect on weeds, as allelo-
pathic compounds interact with soil physical and chemical
parameters, climate, and other biotic factors such asmicro-
bial activity (Wu et al., 2002), all of which can influence
allelopathic efficacy.

5.3 Fertilization

Fertilization changes botanical composition and reduces
species richness through competitive exclusion but
increases biomass in plant communities (DiTommaso &
Aarssen, 1989; Gough, Osenberg, Gross, & Collins, 2000,
Grime, 1973; Templeton & Taylor, 1966). For example, tees,
fairways, and greens are ideally dominated by only a few
desirable turfgrass species to produce high quality surfaces
(Bridges, 1994). Consequently, fertilization is a powerful
tool to encourage dominance of desirable turfgrass species.
In the absence of herbicides, turfgrass managers may need
to re-examine some traditional cultural practices that
have fallen out of favor in recent times because of budget
constraints and environmental concerns. In particular,
increased fertilization rates that have been shown to
provide competitive edges to turfgrasses over weeds
are now discouraged because of fertilizer costs, risk of
groundwater leaching of nitrate, as well as surface runoff
of excess fertilizer into receiving water bodies that lead to
algal blooms among other things.
Nitrogen is the most limiting nutrient for plant growth

(Bowman, Theodose, Schardt, & Conant, 1993). In aerated
soils, plants acquire N mainly through inorganic forms
of nitrate (NO3−) and ammonium (NH4+). Availability
of N is subject to biotic and abiotic processes affecting
the total pool of soil N. Minor portions of N are uti-
lized in organic forms, that is, amines and amino acids
(Devienne-Barret, Justes, Machet, & Mary, 2000; Lipson,
Raab, Schmidt, & Monson, 2001). Application of N to
grassland systems changes the competitive ability of tur-
fgrasses against weeds (Silvertown, 1987; Silvertown et al.,
2006). Calhoun, Rinehart, Hathaway, and Buhler (2005)
reported that applying N to a mixture of Kentucky blue-
grass, perennial ryegrass, and red fescue at a rate of 150
kg ha−1 yr−1 reduced white clover density by 61–88% in a
4-yr study period. White clover was significantly reduced
in tall fescue pastures when 135 kg N ha−1 yr−1 was
applied (Rajaniemi, 2002). A turfgrass sward dominated
by Kentucky bluegrass maintained with 196 kg ha−1 yr−1
of N exhibited better visual turfgrass quality with lower
weed densities than plots receiving no fertilizer (DeBels
et al., 2012). Studies of Kentucky bluegrass, tall fescue,
and Chewings fescue turfgrass swards showed that higher
rates of N fertilizer reduced crabgrass densities signifi-
cantly but did not result in full weed control (Dernoeden

et al., 1993; Dunn et al., 1981; Jagschitz & Ebdon, 1985;
Johnson, 1981; Johnson & Bowyer, 1982; Murray, Kling-
man, Nash, & Woolson, 1983; Voigt et al., 2001). Johnson
and Bowyer (1982) reported that Kentucky bluegrass plots
receiving 300 and 600 kg N ha−1 yr−1 had lower dandelion
densities (∼30 and<10%, respectively) than plots that were
not fertilized (40% dandelions). Other studies in which
broadleaf weed composition was not given reported min-
imal weed densities when 300 kg N ha−1 yr−1 was applied
to Kentucky bluegrass- or tall fescue–dominated turfgrass
swards (Haley et al., 1985; Voigt et al., 2001). The litera-
ture suggests that broadleaf weeds are reduced whenmore
N is applied, therefore, finding a balance between what is
needed and what is environmentally safe and sustainable
is critical.
Established turfgrass that is not over irrigated loses on

average <5% of the N applied when rates of 200–300 kg
N ha−1 yr−1 are used (Barton & Colmer, 2006). Therefore,
maintaining annual application rates of total N to turfgrass
below the upper threshold of 300 kg N ha−1 yr−1 could be
recommended. Such a high rate of N is rarely applied to
any turfgrass area, hence, if sensible turfgrassmanagement
approaches are used, such as frequent, low doses of N, the
risk of environmental pollution of surface and groundwa-
ter is minimized, and the benefits of outcompeting weeds
are maximized.
Unfortunately, N fertilization has also been shown to

increase production of annual bluegrass, which outcom-
petes desirable turfgrass species (Dest & Guillard, 1987;
Lodge & Lawson, 1993). Such a transition is a concern
for turfgrass managers. Nam-Il, Ogsasawara, Yoneyama,
and Takeuchi (2001) reported that annual bluegrass only
requires 300mg kg–1 N compared with bentgrass (1000mg
kg–1 N) to produce maximum shoot and root growth in a
greenhouse study. Growth of both species, particularly root
growth, is very responsive to N and to a lesser extent to P
and potassium (K) levels (Nam-Il et al., 2001). However,
the competitive advantage of annual bluegrass over other
turfgrass species in N fertilizer trials is not conclusive.
A minimal increase of 12–17% in annual bluegrass cover
was observed in perennial ryegrass dominated turfgrass
when N rates were increased from 0 to 352 kg N ha−1 yr−1
(Adams, 1980). Gaussoin and Branham (1989) observed an
increase in annual bluegrass cover in 1 yr out of threewhen
293 kgN ha−1 yr−1 was applied to amixture of annual blue-
grass and creeping bentgrass instead of 98 kg N ha−1 yr−1.
In contrast, Calvache et al. (2017) reported that changing
N or P fertilizer rates had no effect on annual bluegrass
densities in bentgrass- and fescue-dominated golf greens.
The effect of N rates on the competitive ability of annual
bluegrass might differ because of differences in soil type,
category of fertilizer, method of application, or soil pH.
For example, in a bentgrass and annual bluegrass mixture,
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foliar application of N favors annual bluegrass growth,
whereas granular applications increase bentgrass growth
(O’Connor, Hébert, Powers, Jordan, & Lyons, 2018). More-
over, Lodge and Lawson (1993) reported that a stepwise
increase in pH from 4.5 to 5.5, through the application of
lime for 1 yr, considerably increased annual bluegrass cover
from 0 to 30% in a fescue–bentgrass dominated golf green.
For turfgrass managers, it is often difficult to esti-

mate minimum levels of N required to provide a turf-
grass with a competitive edge over weeds. The approach
used by agricultural producers could be followed in such
cases. The critical N amount in agriculture is defined
as the minimum concentration needed to achieve maxi-
mum plant growth. As plants mature, critical N concen-
trations decrease (Gastal & Lemaire, 2002). Turfgrassman-
agers should focus on limiting N applications to minimum
amounts needed to produce an acceptable level of playing
quality or aesthetic appeal. Acceptable playing quality or
aesthetic appeal can be measured objectively or defined by
a combination of factors such as human expectations, bud-
get limitations, and ecological considerations.
As the addition of N influences the competitive ability

of turfgrasses over weeds, the dose and type of other
nutrients added to a turfgrass area also influence turfgrass
species composition. In a long-term parkland study,
legumes established better in plots fertilized with P
and K (>30% of ground cover), while turfgrasses domi-
nated in plots fertilized with N (∼90% of ground cover)
(Silvertown, 1987; Silvertown et al., 2006). Phosphorous
and K fertilizer applied consistently at high rates favored
annual bluegrass invasion into bentgrass swards (Goss,
Brauen, & Orton, 1975; Kuo, 1993a; Waddington et al.,
1978). In low-P soils that are acidic, bentgrass was found to
outcompete annual bluegrass because it wasmore efficient
at absorbing P under those conditions (Kuo, Brauen, & Jel-
lum, 1992). Consequently,macronutrients, such as P andK,
should only be applied if soil levels are low because annual
bluegrass and broadleaf weeds such as dandelion are better
competitors when soil levels of these minerals are high.
Other strategies to outcompete annual bluegrass include

the application of sulfur to acidify the soil and the reduc-
tion of N applications (Dest & Guillard, 1987; Goss et al.,
1975). High levels of sulfur (168 kg S ha−1 yr−1) lowered
the pH of the soil, which in turn reduced P availability and
annual bluegrass densities in creeping bentgrass swards
(Goss, 1974). Broadleaf weeds become somewhat less com-
petitive when soil pH is lowered; this could potentially be
achieved by the application of iron. Also, lowering the soil
pH with long-term applications of ammonium sulfate led
to reduced broadleaf weed populations and in some cases
to weed-free turfgrass (Escrit & Lidgate, 1964; Thompson,
Clarke, & Heckman, 1995). In acidic soils, the application
of calcium favors bentgrass growth over annual bluegrass

(Kuo, 1993b). Furthermore, applying 1.68 kg ha−1 yr−1 of
both iron and magnesium to bentgrass has been shown
to suppress annual bluegrass by 65% (Bell, Odorizzi, &
Danneberger, 1999); however, the pH must be maintained
at an optimum level for turfgrass growth to maintain
competitiveness.
Fertilization may not only affect growth of desired turf-

grasses but can also benefit broadleaf weeds in a stand.
Dodd, Silvertown, McConway, Potts, and Crawley (1994)
and Tilman, Tilman, Crawley, and Johnston (1999) docu-
mented that dandelion growth responded positively to K
fertilization and increased 17- to 20-fold vs. nonfertilized
controls in a mesotrophic grassland.
The timing of fertilizer applications is crucial to increase

the ability of turfgrasses to outcompete weeds. For exam-
ple, Kentucky bluegrass fertilized in spring and fall had
significantly lower crabgrass densities thanwhen fertilized
in fall or summer (Dunn et al., 1981). Tall fescue fertilized
in fall with two split applications each of 73 kg N ha−1
was more competitive against weeds than a single spring
application of 73 kg N ha−1 (Hall, 1980). Fertilizer aids
turfgrass growth and competitiveness but neither fall nor
spring fertilization had an effect on crabgrass germination
levels (Turner & van Acker, 2014).
Placement of fertilizer may also be important in weed

suppression. The application of fertilizer close to the roots
has been shown to suppress weed growth in agronomic
studies (Chauhan & Ahugho, 2013; Kirkland & Beckie,
1998; Mashingaidze et al., 2010). This weed suppressing
effect of fertilizer placement has not been observed in land-
scape planting systems because of the ample availability of
nutrients in the soil (Marble et al., 2015) but might have
implications for turfgrass areas that are constructed on
sand-based soil.

6 BIOHERBICIDES

6.1 Fungi based herbicides

Phoma herbarum is a fungal plant pathogen that causes
leaf spot on a wide range of host plants (Gilardi, Matic,
Gullino, & Garibaldi, 2017). The fungus produces the
toxic metabolite 3-nitro-1,2-benzenedicarboxylic acid (3-
nitrophthalic acid), which has herbicidal activity (Vikrant,
Verma, Rajak, & Pandey, 2006). The efficacy ofP. herbarum
was tested on dandelion transplanted into an existing
Kentucky bluegrass sward (Neumann & Boland, 1999).
Significantly higher rates of dandelion foliage infection
were observed in plants inoculated with P. herbarum
strains formulated with potato dextrose broth together
with either 5% durum semolina, 1% guar gum, or 5%
gluten flour vs. a potato dextrose broth control 3 wk
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postinoculation. Field conditions reduce the efficacy of P.
herbarum to infect dandelion (Schnick & Boland, 2004).
The authors observed that in the spring trial, foliage infec-
tion rates were lower because dandelion was able to out-
grow the disease. Therefore, it is unclear if P. herbarum is
capable of imposing a long-term fitness cost on dandelion.
Phoma macrostoma was isolated from Canada thistle

[Cirsium arvense (L.) Scop.] and caused chlorosis and
bleaching of young leaves in broadleaf weeds by producing
phytotoxic macrocidins (Graupner et al., 2003, 2006). Dif-
ferences in efficacy of P. macrostoma on broadleaf weeds
were reported by Smith et al. (2013, 2015) with dandelion
being most effectively controlled. Weeds have a very low
risk of developing resistance to macrocidins isolated from
P. macrostoma because of their diverse modes of action
(Hubbard, Taylor, Bailey, & Hynes, 2016). According to
Boerema, de Gruyter, Noordeloos, and Hamers (2004), P.
macrostoma is a weak and opportunistic pathogen, which
enters host plants through wounds. Phoma macrostoma
94-44B was granted full registration in Canada to be sold
and used for the control of a broad spectrum of broadleaf
weeds found in turfgrass (Hynes, 2018).Mycelial fragments
of P. macrostoma applied to soil caused photobleaching
and death to dandelion but had no effect on monocotyle-
donous weeds (Bailey & Derby, 2001). For broadleaf weed
control in turfgrass the P. macrostoma isolate 94-44B was
formulated into a granule for soil applications to act as a
pre- and postemergence biological herbicide (Bailey, Pitt,
Leggett, Sheedy, & Derby, 2011). Field trials conducted at
three locations (silt-loam, pH 7.1; sandy loam, pH 7.8; and
silt loam pH 7) in Canada, with high dandelion densities
reported an average reductions of dandelion ranging from
70–90% in summer and late fall. Product efficiencywas fur-
ther increased by 10–20% when N treatments were added
(Bailey, Falk, Derby, Melzer, & Boland, 2013). Year-to-year
efficiency of P. macrostoma was influenced by environ-
mental conditions, soil type, and organic matter content.
Negative interactions between P. macrostoma and sulfate
applications were observed, which reduced efficiency of
dandelion control (Bailey et al., 2013). Currently no data
are available on the efficiency of P. macrostoma to control
other common turfgrass weeds.
Sclerotinia minor is the causal agent of lettuce drop

(Wymore & Lorbeer, 1987). The fungus produces sclero-
tia that survives in the soil. Sclerotinia minor can infest
a wide range of host plants including common turfgrass
weeds such as dandelion, white clover, and broadleaf plan-
tain (Plantago major L.) (Harding & Raizada, 2015). The
isolate IMI344141 was identified as suitable candidate for
the production of bioherbicides (Briere, Watson, &Hallett,
2000). During pathogenesis oxalic acid accumulates in
the host plant and synergistically enhances the effect of
pectolytic enzymes (Marciano, Di Lenna, & Magro, 1983).

Mycelia of S. minor require a susceptible host to per-
sist in the environment, otherwise they decay after 10 d
when applied to turfgrass areas (Watson, 2007). A Ken-
tucky bluegrass sward treated with an inoculum of a
S. minor strain six times during the first year and four
times during the following year resulted in a reduction
of 80.7% of dandelion (Riddle, Burpee, & Boland, 1991).
A subsequent 3-yr field study showed that S. minor was
as effective at controlling white clover, broadleaved plan-
tain, birdsfoot trefoil, and common ragweed (Ambrosia
artemisiifolia L.) as the herbicide Killex (active ingre-
dients: 2,4 D; mecoprop and dicamba) (Abu-Dieyeh &
Waston, 2007).

6.2 Bacterial based herbicides

Propagation of bacteria is less dependent on environmen-
tal influences than to fungi (Li et al., 2003) and is there-
fore more rapid and more suitable for potential genetic
modifications (Harding & Raizada, 2015; Johnson, Wyse,
& Jones, 1996; Li et al., 2003). Several bacterial strains of
P. fluorescens were identified as agents to control annual
bluegrass and certain graminaceous plants (Banowetz,
Azevedo, Armstrong, & Mills, 2009; Kennedy, 2016). Soil-
applied bacteria, such as P. fluorescens strain D7, pro-
duce a complex of a lipopolysaccharide and extracellular
peptides, which inhibit root and shoot growth of annual
bluegrass but no other turfgrass species (Gurusiddaiah,
Gealy, Kennedy, & Ogg, 1994; Kennedy, 2016). Further-
more, the P. fluorescens strain WH6 produces oxyvinyl-
glycines and therefore inhibits germination of a broad
range of plants (Banowetz et al., 2009). Fall applications
of the bacterium led to establishment in the soil and prop-
agation during cool temperatures similar to annual blue-
grass root growth. Therefore, P. fluorescens has potential
to be developed into a selective postemergence soil spray
to reduce the annual bluegrass seed bank in turfgrass
swards (Kennedy, 2016). Johnston and Golob (2017) found
that P. fluorescens applications to an annual bluegrass and
Kentucky bluegrass golf fairway made in fall 2015 and
spring 2016 were ineffective at controlling annual blue-
grass. Currently P. fluorescens strain D7 is registered for
the control of agricultural weeds but not annual bluegrass
(USEPA, 2014).
Strains of the Gram-negative bacterium Xanthomonas

campestris cause bacterial wilt on susceptible plants
(Imaizumi, Nishino, Miyabe, Fujimori, & Yamada, 1997).
Bacteria of X. campestris enter host plants through
natural openings such as stomata or wounds and mul-
tiply in intercellular spaces or the xylem. Pathogenicity
is caused by the injection of effector proteins or the
manipulation of the plant transcriptome by mimicking
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transcriptional activators (Kay & Bonas, 2009). In Japan,
X. campestris pv. poannua was formulated into a com-
mercially available product (Nishino & Tateno, 2000).
The bacterium is host specific for annual bluegrass and
does not affect other turfgrasses (Fujimori, 1999; Zhou
& Neal, 1995). In field tests, annual bluegrass abundance
was reduced by 40% when X. campestris pv. poannua for-
mulated as a spray was repeatedly applied (Zhou & Neal,
1995). However, 2–5 wk after discontinuing applications
recovery occurred. Johnson et al. (1996) found that infec-
tion of annual bluegrass in bermudagrass golf greens only
occurredwhenX. campestris pv. poannuawas appliedwith
a surfactant and during mowing. Six monthly applications
resulted in 70% control of annual bluegrass (Johnson
et al., 1996).

6.3 Organic products with herbicidal
mechanisms

Corn gluten meal derived from maize (Zea mays L.)
produces allelopathic chemicals such as benzoxazinoids,
which inhibit root growth, enzyme activity, and germina-
tion of annual grassy weeds and agricultural weed plant
species such as okra [Abelmoschus esculentus (L.)Moench]
(Ayeni & Kayode, 2013; Christians, 1991; Jabran & Farooq,
2013). Other herbicidal activity is likely to be caused by
multiple dipeptides, which have an inhibitory effect on
weed seed germination (Baker & Grant, 2018; Unruh,
Christians, & Horner, 1997).
In greenhouse studies, corn gluten meal showed effec-

tive herbicidal activity on black medic (Medicago lupulina
L.), buckhorn plantain (Plantago lanceolataL.), dandelion,
crabgrass, and other common turfgrass weeds (Baker &
Grant, 2018). However, other studies question the claims
of herbicidal activity and suggest that theN concentrations
in corn gluten meal simply give turfgrasses a competitive
advantage over weeds that allows them to reduce dande-
lion, crabgrass, and clover densities (Christians & Dant,
2005; John & DeMuro, 2013; Patton & Weisberger, 2012).
In another study, liquid corn gluten meal showed no her-
bicidal effect on weeds in turfgrass trials (Lyons, Jordan, &
Carey, 2015). The conclusion that can be drawn from these
studies is that corn glutenmeal can be used as an organicN
source but not as an herbicidal alternative to control weeds
in turfgrass settings.
Acetic acid is produced by aerobic bacteria, during the

fermentation of ethanol containing plant material (Web-
ber, Harris, Sherefler, Durnova, & Christopher, 2005).
Acetic acid applied to turfgrass causes the nonselective
breakdown of foliage (Webber & Shrefler, 2006). In the
United States, acetic acid products with <8% concentra-
tion do not have to be registered and are effective in con-

trolling young weeds with one to two leaves (Webber &
Shrefler, 2006). Improved control can be achieved by using
higher rates of 20% acetic acid and increasing applica-
tion volumes (Webber & Shrefler, 2006). The effectiveness
of acetic acid in controlling weeds is also dependent on
maximizing the area of contact with the foliage, which
will be determined by the growth habit of the weed and
the method of product application (Evans, Bellinder, &
Goffinet, 2009).

7 THERMALWEED CONTROL

Thermal weed control can be used to sterilize a seedbank
or spot spray or burn existing weeds. Hoyle, McElroy, and
Rose (2012) documented good broadleaf and grassy weed
but less yellow nutsedge (Cyperus esculentus L.) control
before tall fescue establishment when using an enclosed
flaming system. The authors reported that 6 wk after seed-
ing, tall fescue reached>60% establishment when flaming
was applied in fall vs. summer. In agriculture, steaming
soil with 70–100 ◦C water steam to a depth of 10 cm
for 3–8 min is used to kill weed seeds in soil (Bond, Turner,
& Grundy, 2003). During such a sterilization process,
microorganism abundance is reduced for at least 2 mo
and the community function might change after recovery
(Roux-Michollet et al., 2008). Steaming soil could be an
alternative to pre-emergence herbicides to treat newly
constructed turfgrass areas. For spot treatments, hot water
was successfully used to reduce common broadleaf dock
(Rumex obtusifolius L.) by 80% without causing damage to
the soil structure (Latsch, Anken, Herzog, & Sauter, 2017).
Large patches of weeds can also be treated with solar-
ization. Solarization requires covering patches of weed
with plastic covers during favorable conditions. After
some time, heat and solar radiation injures weeds but also
dries out the seedbank (Horowitz, Regev, & Herzlinger,
1983). However, this method might only be appropriate
for small turfgrass areas because installing covers is labor
intensive and covers need to be in place for several days.
Other thermal weed control methods include freezing,
electric currents, irradiation, microwave radiation, and
ultraviolet light.
Targeted mechanical or thermal weed control in

large turfgrass areas would require high-resolution
field scouting systems to initially detect weeds (Bell,
Kurse, & Krum, 2013). In a next step, automated sys-
tems could be developed to remove the weed. Weeds
can be removed by laser treatment (Mathiassen, Bak,
Christensen, & Kudsk, 2006) or hot water (95 ◦C), which
was more effective to spot treat weeds than flaming,
steam, hot air, and steel brushing (Kristoffersen, Rask, &
Larsen, 2008).
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8 PERSPECTIVE ON NONCHEMICAL
WEED CONTROL

A complete ban of herbicides will most likely require a
change in perception of weeds and playing quality expec-
tations. In cases where herbicides are banned, weeds may
have to be treated only if they interferewith playing quality.
In such occasions, threshold levels need to be established
to determine which types of weeds need to be treated, in
which playing areas, and at what infestation level (e.g.
percentage of playing area covered by weeds). Treating
weeds solely for aesthetic reasonswillmost likely no longer
be an acceptable justification for legislators. If users of
turfgrass areas still object to the presence of weeds for
mainly aesthetic reasons, a stronger effort needs to be
placed on convincing legislators as to why weeds inter-
fere with the purpose of the area and why they need to
be removed.
Future research should focus on assessing the competi-

tiveness of certain turfgrass species and cultivars against
weeds under different maintenance regimes and within
the limitations of producing turfgrass areas of accept-
able playing quality. The literature suggests that broadleaf
weeds are reducedwhenmoreN is applied; therefore, find-
ing a balance between what is needed and what is envi-
ronmentally safe and sustainable is critical. In the con-
text of achieving sustainability, increased attention has
been placed on fertilization needed by turfgrass areas. The
prevailing opinion of the public in general and legisla-
tors in particular has been that turfgrass in general and
golf courses in particular are overfertilized (May, Hall,
Chalmers, & Carry, 2009), and for this reason, minimum
levels for sustainable nutrition could be used as guidelines
(Woods, Stowell, &Gelernter, 2014). These guidelines were
developed and published from a data set of over 16,000
soil samples that were collected on turfgrass that was of
acceptable quality (PACE Turf, 2014). However, since most
of these soil samples were collected in the United States,
it might be fair to assume that herbicides were applied as
part of themaintenance. Consequently, cautionneeds to be
used when minimum levels for sustainable nutrition stan-
dards are applied but herbicides are not available for weed
control.
In the future, the best approach for turfgrass man-

agers might be to use remote sensing technology to detect
deficiencies such as poor irrigation uniformity, soil com-
paction, and nutrient deficiencies. Improving overall plant
health will encourage dense growth of turfgrasses and
increases the competitive ability of turfgrasses to suppress
weeds. Precision turfgrass management might be a use-
ful tool to address these issues. Unmanned aerial vehicles
or autonomous ground-based sensing vehicles equipped
with cameras, multispectral sensors, remote sensors, or

other equipment can be used to collect data about turfgrass
health such as monitoring water stress, nutrient deficien-
cies, pest pressure, and salinity (Carrow, Krum, Flitcroft,
& Cline, 2010; Caturegli et al., 2016; Krum, Carrow,
& Karnok, 2010; Stowell & Gelernter, 2006). Spectral
reflectance can provide information about leaf-area index,
chlorophyll content, biomass, drought stress, and nutri-
tional status (Agati et al., 2013; Caturegli et al., 2015; Finke,
1992; Foschi, Volterrani, Grossi, & Miele, 2009). Satellite
remote sensing can also be used to assess N status of tur-
fgrasses spatially and in real time (Caturegli et al., 2015).
In the future, normalized difference vegetation index sen-
sors would ideally be mounted to mowing units to col-
lect data in near real time. These technologies may be
able to detect deficiencies and poor quality or sparse tur-
fgrass but are unable to pinpoint the cause of the inad-
equacies. For example, to determine optimal (or mini-
mal) fertilizer requirements, soil sampling or leaf tissue
analysis is still needed. Moreover, precision fertilization
practices include zoning a golf course into site-specific
management units, where areas with similar usages, soil
compositions, topography, plant responses, and microcli-
mates are zoned (Krum et al., 2010). A composite soil sam-
ple could be taken from each zoned area to analyze soil
nutrient status, which requires less sampling than grid
sampling (Carrow et al., 2010; Ikenaga & Inamura, 2008;
Johnson et al., 2001; Shaner, Khosla, Brodahl, Buchleiter,
& Farahani, 2008). A sensible approach might be to use
soil sampling site-specific management units to measure
the soil pool of rather immobile nutrients, such as P and
K (Giehl & Wirén, 2014), and to use remote sensing tech-
niques on a more frequent basis to measure mobile nutri-
ent status such as N.
The most effective method of removing existing weeds

in turfgrass swards without the use of synthetic herbicides
might be to spot spray with hot water or high concen-
trations of nonselective biological products such as acetic
acid. Host-specific biological products based on fungi or
bacteria are only available in selective countries around the
world, and their efficiency is questionable. Much effort is
ongoing to increase the efficacy of these products and they
might become viable options to synthetic herbicides in
the future. Thorough testing, including controlled screen-
ings and field trials, are needed to provide information
about the host-specific persistence of biological products
in changing environments over time. The development of
roboticmachines to detect and removeweedsmight be one
of the more promising approaches to control weeds in the
future. Detecting and removing weeds in dense turfgrass
swards is challenging but currently under development.
Sustainable turfgrass management will become increas-

ingly important for budgetary and environmental reasons;
however, approaches that address both objectives (cutting
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cost and environmental protection) are not always possible
as they can be mutually exclusive. Therefore, if synthetic
herbicides (or pesticides in general, for that matter) are
being banned from use on turfgrass areas, future research
is needed to develop maintenance strategies that include
minimum levels for sustainable nutrition guidelines that
focus on outcompetingweeds and on the prevention of tur-
fgrass pests in general.
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