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Chapter 1

General introduction
Wouter G. van Veen





Chapter 1

When the skis of the first man­made aircraft left the ground at Kitty Hawk [1]
probably billions of insects where flying world wide at the same time. After this first
flight, it would take several decades before high­speed camera’s would be able to
capture the wing movement of a flying locust. By then the world was already flying
regularly around the world, and much was known about aircraft, and the aerodynam­
ics involved to keep them aloft. Yet the aerodynamics involved in flapping flight
remained a mystery.

In the 1930’s an engineer applied the knowledge of this “aircraft” aerodynamics
to the flight of a bumblebee and proved that it should not be able to fly [2]. Obviously,
bumblebees are able to fly, but this story does illustrate that the knowledge gained on
aircraft cannot be readily applied to flying insects.

So, ”How do insects fly?”. Because the methods of insect flight found in nature
is huge, I will focus on the flight of diptera, which is an order of two­winged flying
insects [3]. Nonetheless, the aerodynamics that explain the flight of a dipteran might
be used to explain the flight of other insects alike.

Throughout this thesis I will keep referring back to the fruit fly (Drosophila hydei)
and the malaria mosquito (Anopheles coluzzii) as my model species. I chose these
two insects because their average size [4] , and their different methods of flying: low­
frequency high­amplitude vs high­frequency, low­amplitude. Both of these insects
operate in an intermediate Reynolds number regime (Re = O(100)).

In this chapter, I will give some background on insect flight. I will start out with a
description of the movement of the wings of the mosquito and fruit fly in section 1.1.
In section 1.2, I will outline how this movement of the wings results in the generation
of force with the use of aerodynamic mechanism. Throughout this section, I will also
highlight where the open questions remain in the current knowledge of insect flight.
In the final section 1.3, I will briefly summarize the open questions I highlighted in
the section before and give an outline of my thesis.

1.1 How do insects move their wings?

Unlike an aircraft, an insect generates forces from the movement of its wings relative
to its body. Rightfully the pioneering scientist stated that the movement of the wings
should be known before an explanation for the involved aerodynamics can be found

13



Aerodynamics of insect flight

[5]. Insects flap their wings incredibly fast, when observed with the naked eye it is
often impossible to see more than the blur of the wings. For instance, the humble fruit
fly moves its wings about 200 times back and forth in a second [6]. Even more ex­
treme, the mosquito that zooms around our heads during warm summer nights moves
its wings back and forth about 500 to 1000 times a second [7, 8].

Because insects flap their wings so fast, high­speed camera’s are often used to
extract the exact movement of the wings and body. Several synchronized high­speed
cameras are used from different angles. The filmed body and wing movements are
then used to reconstruct the three­dimensional movement of the wings [9].

The wing is assumed to rotate around a fixed point (the hinge) on the body of the
insect. Therefore it is convenient to express the orientation of the wing with respect
to the body with three Euler angles: the stroke angle, the deviation angle and the pitch
angle (figure 1.1 e).

An insect flaps its wings back and forth, contrary to for instance most birds that
flap their wings up and down (figure 1.1 a–d). The angle that describes the arc over
which the wing moves is the stroke angle (figure 1.1 e, blue lines). I will withhold a
formal description of the Euler angles for later chapters in this thesis. Often a plane is
defined which is parallel to the average motion of the wing, this plane is known as the
stroke plane. For the fruit fly and the mosquito, the stroke­plane is almost parallel to
the ground surface. The amount of out of plane motion is described by the deviation
angle (figure 1.1 e, red lines). Finally, the rotation of the wing around its span­wise
axis is described by the pitch­angle.

The movement of the wings can be divided in two parts: the forward stroke and
the backward stroke. The forward stroke starts with the wings at the dorsal side of
the animal (figure 1.1 a, c) with the wing almost upright. At the start of the forward
stroke, the wing will pitch down and increase the stroke rate. For the fruit fly, the wing
is pitched­down to an angle­of­attack of about α = 45°, for the mosquito the angle­
of­attack keeps decreasing throughout the forward stroke. At the end of the forward
stroke, the wing rotates around its span in order to attain a positive angle­of­attack for
the backward stroke. The point where the wing changes its stroke direction is known
as the stroke­reversal. At stroke­reversal the wing rotates around its span­wise axis,
which is known as pronation and supination. The backward stroke is similar to the
forward stroke, only the wing is moving towards the dorsal side.

The angle that the wing describes between the minimum and maximum stroke
angle is known as the wing­stroke amplitude. For the two examples, I discussed
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Chapter 1

earlier, the fruit fly and the mosquito, this amplitude is 131° and 40° respectively
(based on the kinematics in figure 1.1). Thus, the fruit fly represents an insect with
a low frequency (188Hz) and high amplitude (131°) and the mosquito resembles an
insect with a high frequency (500Hz to 1000Hz) and low amplitude (40°). Because,
these two insects represent two different methods of flying, I chose them as my model
species for my thesis.

1.2 How are forces generated with flapping wings?

Turning back to the early pioneers in the field, we need to address how the aforemen­
tioned wing movement leads to the generation of forces. Due to huge variety of flying
insects, this question turns from an apparent innocent one into a complex one. Luck­
ily one of the suggested methods for dissecting insect flight leads to a more universal
understanding of insect flight: the aerodynamic mechanism [10]. Throughout this
section, I will use figure 1.2 as a guideline. In this figure, I depicted all the different
aerodynamic mechanisms schematically.

An aerodynamic mechanism is a link of a part of the motion of the wing to the
aerodynamic force generation. These aerodynamic mechanisms are captured in a
model, which can be combined into a model for predicting the aerodynamic forces,
known as the quasi­steadymodel. The quasi­steadymodel assumes that for each point
in time the forces can be determined independent of the flow history [10].

The subdivision of the aerodynamics into several aerodynamic mechanisms is
not always straight­forward, because where does one mechanisms stop and another
begin? And do the aerodynamic mechanisms interact with each other, or are they
independent? To overcome this issue, I based each aerodynamic mechanism on the
least possible number of kinematic parameters. For instance, when looking at the
forces that depend on the stroke rate of the wing, I only studied the effect of the
stroke rate and the angle­of­attack, but removed all effects of the history of the flow,
and startup effects. I consider these two unsteady effects as a separate entity.

In the sections below, I choose to name the aerodynamic mechanisms after the
associated kinematics. I did this to easily identify the underlying kinematics of a
certain aerodynamic mechanisms. With this choice, I will sometimes have to deviate
from the naming most common in literature, but I will mention this when it occurs.
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1.2.1 Stroke rate forces & the leading edge vortex

Arguably the biggest advancement in the past three decades in insect flight was made
with the discovery of the leading edge vortex (LEV) [11]. The LEV is formed on top
of the wing during the forward and backward stroke (see figure 1.2 a for a schematic
representation). Due to the high angle­of­attack of an insect wing, the flow separates
at the leading edge of the wing. However, the flow reattaches before the trailing edge
forming a stable separated region.

Due to the angular motion of the wing, the separated region does not fully detach
from the wing surface [12]. This results in the ability of the insect to fly at high
angles­of­attack and produce high lift forces. The stability of LEV can be ascribed to
the rotational accelerations of the wing [13].

I call the forces based on the stroke motion and the presence of the LEV: the
stroke rate forces. In literature, these forces are often named “translational forces”.
The stroke rate forces depend on the stroke rate and the angle­of­attack, similar to how
the drag and lift of a helicopter blade depend on the angle­of­attack and rotation rate
of the propeller system. The stroke rate forces can be derived from the conventional
lift and drag in three consecutive steps as

Fsr =
1

2
ρ

∫ R

0
V 2
∞Csr (α) cdr (1.1)

=
1

2
ρ

∫ R

0
(ωsr)

2Csr (α) cdr (1.2)

=
1

2
ρω2

sCsr (α)

∫ R

0
r2cdr, (1.3)

where V∞ is the far­field fluid velocity relative to the wing, α the angle­of­attack,
Csr (α) the stroke rate force coefficient as a function of the angle­of­attack, c the local
chord length, r the distance from the root of the wing (rotation point) and finally R

the distance from the tip of the wing to the rotation point.

In the last step (equation (1.3)), the movement and position of the wing are sepa­
rated from a geometrical scaling parameter (the integral). This integral is the second
moment of area Syy, and is a measure of how much surface area of the wing is placed
away from the root of the wing. Due to the rotational nature of the wing movement
during flapping flight, the second moment of area will play an important role for nu­
merous aerodynamic mechanisms.
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The relation between the angle­of­attack, the stroke rate, and the force coefficient
Csr describes the force production of the wing. This relation is often determined by
an experiment with a revolving wing. A wing is placed under a fixed angle­of­attack
and the angular rate is increased. This experiment is repeated for different angles of
attack until the relation is known [14, 15, 16, 17, 7]. In a recent study, a wide range of
different aerodynamic models have been compared to experimental results [18]. Here
they found that the model based on the velocity component normal to the surface of
the wing performed the best.

1.2.2 Stroke­pitch interaction forces

Around stroke reversal, the wing is rotating rapidly around its span­wise axis. This
pitch rotation, in combinationwith the aforementioned strokemotion, generates stroke
pitch interaction forces. In literature, these forces are often named “rotational lift”,
however I think this naming is misleading, because the “rotational” part is unclear
about what rotation (for instance the stroke motion is also a rotation), and the “lift”
part actually includes both a lift and a drag component. Therefore, I will refer to
the “rotational lift” as the stroke­pitch interaction forces, because that removes these
problems.

The stroke­pitch interaction forces are based on the Kramer effect. When a wing
is pitching up, while moving forward, the relative velocity to the wing at the trailing
edge is decreased, and at the leading edge is increased. This change in local relative
velocity caused a pressure difference between the bottom and top surface of the wing,
which in turn generates an aerodynamic force. This forces acts normal to the surface
of the wing and is often derived from a two dimensional model, based on thin airfoil
theory [4]. I integrate this two­dimensional model over the surface of the wing, which
results in

Fsr−pr = ρ

∫ R

0
Csr−prV∞Γcdr (1.4)

= ρ

∫ R

0
Csr−prωsrωpccdr (1.5)

= ρCsr−prωsωp

∫ R

o
rc2dr, (1.6)

where Γ is the bound circulation, Csr−pr the stroke­pitch interaction force coefficient
independent of the motion of the wing and wing morphology, and ωp the pitch rate of
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the wing.
Here, the stroke­pitch interaction forces are modeled with the change in bound

circulation due to the pitching motion. This bound circulation is simply modeled as:
Γ = ωpc. Although it is valid to make a predictive model based on the circulation,
caution should be taken to see this as an explanation of the stroke­pitch interaction
forces. To illustrate my point, I will quote the textbook “Fundamentals of Aerody­
namics”[19] “Keep in mind that the true physical sources of aerodynamic force on
a body are the pressure and shear stress distributions exerted on the surface of the
body”.

The inclusion of the stroke­pitch interaction model in the quasi­steady model led
to a good prediction of the lift forces of a fruit fly [14, 4]. Even though, there was still
a significant variation in the parameterCsr−pr when the kinematics and the pitch­axis
where changed. This suggests that Csr−pr is still dependent on the kinematics and
the wing morphology, even though it should not be.

Despite these open questions, the model was widely adopted [14, 6, 20, 21]. Fur­
thermore, the model assumes that a wing that is pitching up generates the same forces
as a wing that pitches down, only mirrored. This assumption was never tested ex­
plicitly, nor is the assumption that there is no interaction between other aerodynamic
mechanisms and this mechanism.

1.2.3 Pitch rate forces

Forces around stroke­reversal are often associated with wake­capture (see section
1.2.5), forces associated with wing­acceleration (“added mass”, see section 1.2.4)
and stroke­pitch interaction forces (see section 1.2.2). However, the pitch rate forces
(rotational drag) could also be an explanation of the forces around stroke­reversal
[22, 21]. These forces are even thought to be the main driving mechanism behind
mosquito flight [7].

For the same reasons as with the naming of the “rotational lift”, I think that the
naming of “rotational drag” is misleading. The “rotational drag” consists of both a
lift and drag component, however the name suggests that it is a pure drag component.
Furthermore, it is again unclear to what the “rotational” part is referring to. Therefore,
I chose to name the “rotational drag” component as the pitch rate forces.

Like the stroke­pitch interaction forces, the pitch rate forces are assumed to be
independent on the angle­of­attack. Furthermore, they only act normal to the wing
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surface. This means that the pitch rate forces are assumed to only comprise of pressure
forces. The pitch rate forces can be modeled as a function of the change in angle­of­
attack α̇ and a constant coefficient as [21]

Fpr =
1

2
ρ

∫ cle

cte

rc2dcCprα̇|α̇|. (1.7)

The coefficient Cpr is assumed to equal the coefficient of drag at an angle­of­attack
of 90° [21], which can be obtained as Cpr = 3.2 [23]. The integral in equation (1.7)
represents the geometrical scaling parameter.

Even though the model for the pitch rate forces (equation (1.7)) is indeed ca­
pable of predicting forces around stroke­reversal no direct validation is presented.
The dependence of equation (1.7) on the derivative of the angle­of­attack α̇ means
that a wing that is plunging, without changing its pitch angle, also generates pitch
rate forces. This definition is troublesome, because the pitch rate forces provide an
explanation for the forces when no stroke rate is presented, which means that the
angle­of­attack at that point is undefined.

1.2.4 Stroke & pitch acceleration forces

Due to the constant change of direction of the wing, large accelerations are present in
the wingbeat kinematics of flapping insects (figure 1.1 i, j, example for the fruit fly
and mosquito). As a result of the wing accelerations the fluid around the wing has
to be accelerated as well. The mass of this fluid is often seen as “added­mass” [24].
In its most simple form, added mass can be visualized by a volume of fluid that is
attached to the wing (figure 1.2 d). This fluid has a mass and a force is required to
accelerate this fluid, hence the name ”added mass”. In equation form we can write
this idea as

F⃗am = ρV
dv⃗
dt
, (1.8)

where V is the volume of the “added mass” and dv/dt the acceleration of the wing
(and therefore, the acceleration of the addedmass). Obviously, equation (1.8) leaves a
lot of open questions, for instance, how large is the volume of fluid that is accelerated?
Does it change over time? Is there a gradient in the acceleration of the fluid around
the wing?

Before continuing with the investigation of different models for the added mass
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forces, it is wise to look at what kind of accelerations are present in insect flight. The
wing is changing direction at the end of each stroke, this introduces stroke accelera­
tions (e.g. changes in the stroke rate). At the same time, the wing is pitching around
its span, introducing pitch accelerations. Therefore, I will split the added mass forces
into two components directly related to the kinematics: the stroke acceleration forces
and the pitch acceleration forces.

Both the stroke acceleration forces and pitch acceleration forces can be approx­
imated using a two dimensional model based on inviscid flow. This model assumes
that the fluid that is accelerated with the wing equals that of a cylinder around the
wing with a diameter equal to the chord length of the wing. Therefore the volume
of the cylinder in the two dimensional model equals πc2/4. This results in a two­
dimensional model written as [25, 26]

F2D = ρ
π

4
c2

(
dvwing
dt

+∆xω̇p

)
, (1.9)

where∆x is the offset between the pitch axis and the symmetry axis of the chord. The
first term in equation (1.9) describes the stroke acceleration forces, and the second
term the pitch acceleration forces. Integrating equation (1.9) over the span of the
wing gives two three dimensional models for the stroke acceleration forces and pitch
acceleration forces, which can be written as

Fsa = ρ
π

4
sin(α)ω̇s

∫ R

0
rc2dr (1.10)

Fpa = ρ
π

4
ω̇p

∫ R

0
∆xc2dr. (1.11)

In both equations, the right side integral represents the dependence of the forces on the
wing morphology. The left side of the equation shows the dependence of the forces
on the wing kinematics.

Interestingly, both the stroke acceleration forces and the pitch acceleration forces
are linearly dependent on their respective acceleration. This means that for a fully
symmetrical periodic wingbeat kinematics the average of these forces equate to zero
[27]. However, even for a completely symmetric wingbeat the average of the drag is
non­zero.
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1.2.5 Unsteady effects

In the previous sections, I described a relation between part of the movement of the
insect and the forces associated with that movement. This direct relation between
the movement of the wing and the forces implies that the forces are not influenced
by the history of the flow­field around the wing. I mean with this that each point in
time and space can be seen completely isolated from the rest of the movement. This
assumption is known as the quasi­steady assumption [28, 29], and is often used as
assumption to form a quasi­steady model.

One reasoning behind this assumption is the ”proof by contradiction”, which sim­
ply states that if the predicted forces are below the real forces produced by the animal
the quasi­steady is insufficient. If the predicted forces are larger, than the quasi­steady
model cannot be discounted [10, 29]. The reason why I put this rather old thought
experiment here is that it illustrates the connection between the predictive and ex­
planatory roles of the quasi­steady model. Or turning it around, if the model predicts
the forces correctly then the model must explain these forces.

Besides this quasi­steady assumption, which simply removes all unsteady effects,
some mechanisms are identified that explicitly model the aerodynamic forces that
are the result of unsteady effects. The first model is known as the Wagner effect
[30], which takes into account the time­history by considering the development of the
flow. Another mechanism is the wake­capture effect, which includes the interaction
between the wake and the wing [31, 32, 33].

The naming of the wake­capture effect suggests that this mechanism particularly
plays a role around stroke­reversal, where the wing meets its own wake. However, all
insects flap their wings at subsonic speeds, meaning that the entire wake influences
the forces on the wing, not only the wake in front of the wing.

1.3 Outline of this thesis

In the previous section, I summarized the known aerodynamicmechanisms that are re­
sponsible for force generation in insect flight. In the last chapter of this thesis (chapter
6), I highlighted the double role that the quasi­steady model has in explaining insect
flight: predictive and explanatory. In this thesis, I revised some of the known aero­
dynamic mechanisms with systematic parametric studies to uncover their physical
principles and their dependence on the kinematics and wing morphology.
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In chapter 2, I revised the two aerodynamic mechanisms that are based on the
pitch rate motion of the wing: stroke­pitch interaction forces and pitch rate forces.
With the use of large parametric study based on computational fluid dynamics I related
the wing kinematics to the generation of aerodynamic forces. Furthermore, I included
seven different wingmorphologies to explicitly test the dependence of the stroke­pitch
interaction forces and the pitch rate forces on the wing morphology.

In chapter 3, I studied the addedmass effects with a similar systematic parametric
study I used in chapter 2. This method enabled me to validate the two­dimensional
model often used to explain the stroke acceleration forces in insect flight. First, I sys­
tematically varied the kinematics to find the relation between the stroke acceleration
and the change in aerodynamic forces. Furthermore, I used this parametric study to
study how the stroke acceleration aerodynamic mechanism interacts with the stroke
rate aerodynamic mechanism. Second, I varied the wing morphology systematically
to test the dependence of the stroke acceleration forces and its interactions on the wing
morphology. At the end of this chapter, I applied the model on the kinematics of the
fruit fly and the mosquito.

In chapter 4, I turned my attention back to the pitching movement of the wing.
Again based on a systematic parametric study, I related the generation of aerodynamic
forces to a pitch motion with non constant pitch rate. In this chapter, I was able to
explicitly test the validity of the two­dimensional model for a pitching wing. Fur­
thermore, in this chapter I tested the assumption that the aerodynamic forces behave
similarly for a wing that is pitching up or down, only opposite in sign. At the end of
this chapter, I applied the newly found models to the kinematics of the fruit fly and
mosquito.

In chapter 5, I seemingly took a detour from the study into the different aerody­
namic mechanisms, by studying the take­off of malaria mosquitoes. In this chapter,
I tested if the surroundings of the insect influenced the aerodynamic forces with the
inclusion of the ground effect. Apart from the ground effect, the study in this chapter
enabled me to see how the mosquito uses the substrate, from which it takes off.

Finally, in chapter 6, I used the models I found in the previous chapters to make
a single quasi­steady model. This quasi­steady model not only verified the predictive
capabilities of the aerodynamic mechanisms found in this thesis, but also reviewed
their importance for the fruit fly and mosquito as model organisms for low­frequency
high­amplitude, and high­frequency low­amplitude flight. At the end of the general
discussion, I took the take­off of the mosquito and tested the quasi­steady model in
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maneuvering flight. Again, I used the model here to see how the insect uses the
adaption of its kinematics to generate the required forces for the take­off.
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Figure 1.1: Kinematics of a fruit fly [6] and a mosquito [8]. (a – d) Schematic repre­
sentation of the flapping motion of the fruit fly (a, b) and mosquito (c, d) respectively.
The left and right panel show the forward and backward stroke respectively, black
lines indicate the location of the chord at 2mm from the wing root, the black dot the
leading edge and the diamond the rotation axis. (e) The three Euler angles for the
fruit fly (solid) and the mosquito (dashed), stroke angle (blue), deviation angle (red),
pitch angle (green). (f ) The angle­of­attack for the fruit fly (blue) and the mosquito
(red). (g) The stroke rate for the fruit fly (blue) and mosquito (red). (h) The pitch rate
for the fruit fly (blue) and mosquito (red). (i) The stroke acceleration for the fruit fly
(blue) and the mosquito (red). (j) The pitch acceleration for the fruit fly (blue) and
the mosquito (red).
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Figure 1.2: Schematic representation of aerodynamic mechanisms, black line indi­
cates the cross­section of the wing at 2mm from the root of the wing, the diamond
the location of the wing pitch axis, and the dot the location of the leading edge. (a)
Schematic representation of the stroke rate forces, which are related to the presence
of the leading edge vortex on top of the wing, and to the free­stream velocity V∞ and
the angle­of­attack α. (b) Schematic representation of the pitch rate forces, which
are only related to the change in angle­of­attack α̇. (c) Schematic representation of
the stroke­pitch interaction forces, which are related to the stroke rate and pitch rate.
(d) Schematic represenation of the stroke acceleration forces and pitch acceleration
forces, which are a function of their respective accelerations; circle indicates the as­
sumed volume of fluid attached to the accelerating wing.
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Chapter 2

Abstract

Most flying animals produce aerodynamic forces by flapping their wings back and
forth with a complex wingbeat pattern. The fluid dynamics that underlies this motion
has been divided into separate aerodynamic mechanisms of which rotational lift, that
results from fast wing pitch rotations, is particularly important for flight control and
maneuverability. This rotational force mechanism has been modelled using Kutta­
Joukowski theory, which combines the forward stroke motion of the wing with the
fast pitch motion to compute forces. Recent studies, however, suggest that hovering
insects can produce rotational forces at stroke reversal, without a forward motion of
the wing. We have conducted a broad numerical parametric study over a range of
wing morphologies and wing kinematics to show that rotational force production de­
pends on two mechanisms: 1) conventional Kutta­Joukowski­based rotational forces,
and 2) a rotational force mechanism that enables insects with an offset of the pitch­
axis relative to the wing’s chordwise symmetry axis to generate rotational forces in
the absence of forward wing motion. Because flying animals produce control actions
frequently near stroke reversal, this pitch­axis­offset dependent aerodynamic mecha­
nism may be particularly important for understanding control and maneuverability in
natural flyers.

2.1 Introduction

Most flying animals flap their wings to produce the aerodynamic forces required for
flight. These rapid oscillatory wing movements cause a complex unsteady airflow
over the wing, resulting in unsteady aerodynamic force production. To explain how
aerodynamic forces are related to the complex wing motion of flapping flight, distinct
unsteady aerodynamic mechanisms have been defined and modelled [1]. Arguably
the most important aerodynamic mechanisms currently identified for flapping flight
are delayed stall and the linked leading­edge­vortex­based lift [2], rotational lift re­
sulting from rapid wing pitch rotations [3], acceleration reaction forces or added mass
forces [1], clap­and­fling [4], and wake capture [5].

Models of the separate unsteady aerodynamics mechanisms are often combined to
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form a single quasi­steady model, where the aerodynamic forces produced by a beat­
ing wing can be estimated as the sum of the forces resulting from the separate aerody­
namic mechanisms [1]. For hovering fruit flies, a quasi­steady model based on only
leading­edge­vortex­based forces and rotational forces predicts the total aerodynamic
forces rather well, suggesting that these are two essential aerodynamic mechanisms
[6, 7].

The leading­edge­vortex­based forces scale with wing stroke rate and the angle­
of­attack of the wing (figure 2.1 a) [3]. Insect wings tend to operate at remarkably
high angles­of­attack (in the order of 45°) [3], which results in high aerodynamic force
production. The ability to operate at high­angles­of­attack without stalling the airflow
over the wing is linked to the presence of a leading­edge vortex (LEV) on the wing [8],
which is stabilized due the accelerations acting on the flow caused by the revolving
wing movement [9]. Despite the importance of the revolving wing movement on
force production, leading­edge­vortex­based forces are often called the translational
forces [6, 7]. Here, we will refrain from using this erroneous nomenclature, and call
leading­edge­vortex­based forces the stroke­rate related forces.

The second aerodynamic mechanism, the rotational force mechanism, is schemat­
ically represented in figure 2.1b,c. In flapping flight, an insect wing beats back and
forth, and in order to keep a positive angle­of­attack during both the forward and
backward stroke, the animal needs to rapidly pitch its wing up and down at stroke
reversal (figure 2.1d). This rapid pitch rotation generates aerodynamic forces in ad­
dition to the stroke­rate related force mechanism described earlier [10, 11, 12], and
adjusting the phase of the pitch movement relative to stroke reversal allows an an­
imal to rapidly adjust this rotational aerodynamic force [3]. For this reason, it was
suggested that rotational force production might be particularly important for flight
control and manoeuvrability [3], which was confirmed in later studies [7, 13, 14].

The previously proposed rotational force mechanism in fruit flies is based on the
Kramer effect and modelled using Kutta­Joukowski theory [11]. The Kramer effect
describes the force production of an aerofoil that both translates and pitches up at
the same time. The rotational velocity causes an increase in the circulation bound
to the aerofoil, which causes an increase in force production on the translating wing.
For hovering fruit flies, this Kutta­Joukowski based model predicts rotational forces
rather well, but there are several issues associated with this approach.

Firstly, as described above, an insect wing in hovering flight does not produce a
pure translating motion; the back and forth wing stroke movements are in fact rota­
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tional movements around the wing root. Secondly, the rotational force coefficient of
the Kutta­Joukowski­based model remains depended on the wing­pitch rate and the
chordwise location of the pitch axis [3, 11]. By using an alternative force normal­
ization, one may develop a rotational force model of which the coefficient is inde­
pendent of wing­pitch rate and pitch­axis placement. Finally, the Kutta­Joukowski
model predicts zero rotational force at zero stroke rate, which occurs at stroke rever­
sal. In contrast, wing­pitch rates are highest during stroke reversal, and a recent study
on the aerodynamics of mosquito flight showed that these insects produce relatively
high aerodynamic forces near stroke reversal [15]. As these forces correlated strongly
with wing­pitch rate, the authors suggested that mosquitoes produce these forces by
using additional novel aerodynamic mechanisms called rotational drag and trailing­
edge­vortex­based lift, by smart positioning of the wing pitch axis relative to the wing
chord [15].

The model developed to predict the rotational drag forces works well when ap­
plied to a hovering hawkmoth [16]. However, the effect of the geometrical scaling
on the rotational drag coefficient is not tested directly, as only a single wing was
tested [16]. For example, the rotational drag model suggests that a fully symmetrical
wing pitching about the symmetry axis would produce finite rotational drag. Such
wing would produce an aerodynamic torque about the pitch axis, but not a drag force
because aerodynamic forces near the leading edge would be canceled by equal and
oppositely directed aerodynamic forces near the trailing edge.

Based on computational fluid dynamics simulations with systematically varying
wing morphology and wing movement kinematics, we tested how wing morphology
and kinematics affect rotational force production. Using the outcomes, we propose an
improved rotational forcemodel. To isolate the rotational forcemechanism from other
aerodynamic mechanisms, such as the added mass, wake capture and leading­edge­
vortex­based force mechanisms, we used a study design inspired by previous studies
on the topic [3, 11], whereby we simulated wings moving at constant stroke rates
and pitch rates. But unlike these previous studies, we tested a range of wing shapes
and kinematics that encompassed two extremes within the dipteran insect family, the
fruit fly and the malaria mosquito. In addition, we simulated generic wing shapes
and varied the kinematics in a systematic way. Together, these simulations led to
the development of a new rotational force model that can predict rotational forces
at stroke reversal due to an offset between the wing­pitch axis and the chordwise
symmetry axis of the wing.
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2.2 Methodology

We conducted a systematic computational fluid dynamics (CFD) study within a para­
metric space based on eight different wing morphologies and a range of different
kinematic parameters, using the IBAMR CFD solver based on the immersed bound­
ary method [17]. See the Supplementary Methods in the Electronic Supplementary
Material (ESM) for more detail.

2.2.1 Wing morphology

To systematically test the effect of wing shape on rotational force production, we
designed a set of six rigid elliptical wings with a systematically varying chordwise
position of the pitch axis (figure 2.2a, right­hand side). Each generic elliptical wing
had a span of 3mm and maximum chord length of 0.65mm; for the six wings, the
rotational axis relative to the centre of the wing varied with a step size of 0.1mm
from 0mm for the symmetric wing to 0.5mm for the most asymmetric wing, that
thus pitches around an axis close to the leading edge. Next to these six geometries,
we tested both the wing geometry of a fruit fly Drosophila hydei [13] and a malaria
mosquito Anopheles coluzzii [18]. Both wings were scaled to also have a wing span
(from root to wing tip) of 3mm, and the wing­pitch axis was set to go through the
centre of the wing root (figure 2.2a).

2.2.2 Kinematic design

The kinematics for these simulations were designed such that at a pitch angle of 45°
the wing wasmoving at a constant pitch­rateωpitch and stroke­rateωstroke (figure 2.1 f–
h). At the point where the pitch angle is 45°, the forces were extracted. The extraction
point was at a maximum stroke angle of 107°, to avoid wake interaction. As a con­
sequence, at the point of extraction only the forces of two aerodynamic mechanisms
are present: the stroke­rate related forces Fstroke and the rotational forces Frotational.
In line with previous studies into the rotational force mechanism [3,7], we estimated
the rotational force (Frotational) as the difference between the forces on a wing that is
rapidly pitching up and the forces on the same wing with equal orientation, but with
a zero pitch rate (figure 2.1i, movie S1), as
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Frotational = Ftotal − Fstroke. (2.1)

Here Ftotal is the total force on the wing with a pitch angle of 45° and moving with
both a constant stroke rate and pitch rate, and Fstroke is the stroke­rate related force
of a wing with a constant pitch angle of 45° and the same stroke rate. Also in line
with previous studies [3], we assumed that rotational forces are the result of a pressure
difference above and below the wing, and therefore we measured and modelled the
rotational forces normal to the flat wing surface.

We performed these simulations for a range of constant pitch ratesωpitch and stroke
rates ωstroke. The (ωpitch, ωstroke) parametric space was designed such that it spans the
range of stroke rates and pitch rates employed by a fruit flyDrosophila hydei [14] and
malaria mosquito Anopheles coluzzii [18] during hovering flight (figure 2.1j). The re­
sulting simulations spanned a Reynolds­number range of 25 to 500 (equation S1 in
ESM), which is re presentable for small to average­sized insects [3]. Our method im­
plies that the rotational forces are not depending on the pitch angle. To test the validity
of this assumption, we repeated all the simulations in the (ωpitch, ωstroke) parametric
space of the most asymmetric elliptical wing, at a pitch angle of 30° and 60° (figure
S4).

2.2.3 Flow­field analysis

To study how changes in air movement and pressure distributions result in rotational
forces, we visualized airflow dynamics at the wing surface and within two planes
positioned perpendicular to the wing­pitch axis, placed at one­third and two­third of
the wing span (i.e. y = 1mm and 2mm, respectively). On the wing surface, we
visualized the pressure difference across the top and bottom surface of the wing, and
within a selection of planes perpendicular to the wing­pitch axis we visualized the
air­pressure distribution and distribution of the air­speed vectors.

2.2.4 Definition of our rotational model

We propose an aerodynamic rotational force model that captures the forces produced
by an insect wing making simultaneous stroke and pitch movements, by combining
a Kutta­Jakouwski­based model [3] with the rotational drag model [16]. The Kutta­
Jakouwski­based model predicts forces based on stroke and pitch movement of the
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wing; therefore, we will call these forces the stroke­pitch coupled forces Fstroke­pitch.
The rotational drag term is only depended on the wing­pitch­rate and therefore we
will call these forces the pitch­rate related forces Fpitch [16]. Thus, the total rotational
force is defined as

Frotational = Fstroke­pitch + Fpitch. (2.2)

The stroke­pitch coupled force per unit span F ′
stroke­pitch can be modelled using Kutta­

Joukowski theory [11] as (figure 2.1b)

F ′
stroke­pitch = ρU∞Γ, (2.3)

where U∞ is the free­stream velocity and Γ is bound circulation caused by the rota­
tional pitch movement [11]. The conventional rotational force model for insect wings
expresses the bound circulation as a function of both pitch rate and a wing­geometry
metric, and U∞ was characterized using wing­tip speed [11]. But as discussed above,
this model has the caveat that an insect wing has a rotational stroke movement rather
than a purely translational movement. To solve this issue, we propose to model U∞

as a function of ωstroke and the second­moment­of­area Syy, similar to the case of
stroke­rate related forces [18]. Likewise, we propose to express the pitch­rate related
bound circulation as a function of ωpitch and the second­moment­of­area relative to
the pitch­axis Sxx. Thus, stroke­pitch coupled aerodynamic forces can be expressed
based on Kutta­Joukowski theory (equation (2.3)) as

Fstroke­pitch = CF,stroke­pitchρ
√

SxxSyyωpitchωstroke, (2.4)

wherewe call
√
SxxSyy the pitch­stroke coupled second­moment­of­area, andCF,stroke­pitch

is the non­dimensional force coefficient for stroke­pitch coupled force production
(figure 2.1b). The second rotational force component (Fpitch, equation (2.2)) ex­
presses the forces produced by a pitching wing in absence of a stroke movement
(figure 2.1c). Here, we suggest modelling these pitch­rate related forces similar to
the rotational drag [16], but with a different geometrical scaling. We propose that the
offset between the pitch axis and the chord­wise centreline of the wing, called wing­
pitch asymmetry (basymmetry, figure 2.1c), primarily affects the magnitude of pitch­rate
related forces (figure 2.1c). The explanation of this is as follows. A fully symmetric
wing, where the pitch axis is positioned at the wing centreline (figure 2.1b), will not
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produce a net aerodynamic force when only pitching up. In contrast, an asymmetric
pitching wing, where the pitch axis is shifted towards the leading edge, will produce
a net aerodynamic force due to the asymmetry in effective airspeed near the leading
edge and trailing edge of the wing (figure 2.1c). The effect of pitch axis offset on the
second­moment­of­area relative to the pitch axis can be quantified by the asymmetric
second­moment­of­area defined as

Sx|x| =

∫ c2

c1

x|x|dA, (2.5)

where x is the chordwise wing axis, dA is an infinitesimal wing surface area, and
c1 and c2 are the locations of the wing trailing edge and leading edge, relative to the
pitch axis, respectively (figure 2.1e). Based on the here proposed scaling, we pose to
express pitch­rate related rotational aerodynamic forces as

Fpitch = CF,pitchρSx|x|ω
2
pitch, (2.6)

where CF,pitch is the force coefficient for pitch­rate related force production. Note
that equation (2.6) does not include the factor 1

2 , because this results in the same
scaling for Fpitch and Fstroke­pitch (equation (2.4)), with CF,pitch and CF,stroke­pitch as
non­dimensional parameters, respectively.

2.3 Results

2.3.1 Numerical simulations

We performed numerical experiments for 312 combinations of stroke rate, pitch rate
and wing geometry (figure 2.1j, database S1). Each experiment took on average
25 000 time steps and the mesh size (after adaptive refinement) was on average four
million cells. These simulations required 0.5 million CPU hours on our computer
cluster with 176 CPU’s.

2.3.2 Rotational force model

For our rotational force model, we focused on the forces normal to the wing surface,
as we assumed rotational forces to primarily consist of pressure forces. We tested
this assumption by comparing the normal and tangential components of the rotational
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forces. The tangential force component was 11%±6% (mean± standard deviation)
of the total rotational forces, showing that tangential forces were small but not negli­
gible. The full three­dimensional rotational forces for all simulations are provided in
ESM, database S1. The rotational forces for all simulations of the most asymmetric
elliptic wing, the fruit fly wing, the malaria mosquito wing, and the symmetric ellip­
tic wing are shown in figure 2.2b–e, respectively. For each combination of pitch­rate
and wing type, the rotational force varies linearly with stroke rate, allowing a fit with
the linear function Frotational = Astrokeωstroke + Bno­stroke, where Astroke is the stroke­
rate slope, andBno­stroke is the intercept, i.e. the rotational force without a stroke rate.
The fits for the different wings and pitch rates, figure 2.2 b–e shows that both the
slope and intercept vary with pitch rate. Comparing this with our rotational model
(equation (2)–(6)) suggests that slope of the fits (figure 2.2b–e) multiplied with the
stroke rate are the stroke­pitch coupled forces (Astrokeωstroke = Fstroke­pitch) and that
the intercept are the pitch­rate related forces Bno­stroke = Fpitch. Combining this with
equation (2.4) and (6) results in

Astroke = CF,stroke­pitchρ
√

SxxSyyωpitch

Bno­stroke = CF,pitchρSx|x|ω
2
pitch.

(2.7)

2.3.3 Stroke­pitch coupled rotational force model

We tested the relationship between Fstroke­pitch and both ωpitch and
√
SxxSyy in three

consecutive steps (figure 2.3a–c). First, we tested how Astroke varied with pitch rate
(figure 2.3a), confirming that this relationship is also approximately linear, and can
thus be expressed as

Astroke = Apitchωpitch. (2.8)

Here, Apitch is the linear fit coefficient that quantifies the pitch­rate slope for stroke­
pitch coupled forces. Secondly, we tested how Apitch depends on wing geometry,
expressed as

√
SxxSyy (figure 2.3b). This test revealed that Apitch scales approxi­

mately linearly with
√
SxxSyy, and that the intercept of the linear fit equals zero. Fi­

nally, to estimate the magnitude of the corresponding force coefficient CF,stroke­pitch,
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we normalized the stroke­pitch couple force as

F ∗
stroke­pitch =

Fstroke­pitch√
SxxSyy

(2.9)

and plotted this against ωpitch for all our simulations (figure 2.3c). The linear fit for
each wing geometry has a slope equal to CF,stroke­pitch, which is similar among the
eight tested wings (figure 2.3c). Thus, we estimated the stroke­pitch­couple force
coefficient for all eight wing geometries combined as CF,stroke­pitch = 2.08 ± 0.15

(mean ± standard deviation, n = 8).

2.3.4 Pitch­rate related rotational force model

We tested our pitch­rate related rotational force model using the same three­step ap­
proach as used forFstroke­pitch scaling above (figure 2.3e–g). First, we tested howFpitch

(= Bno­stroke) varied with pitch rate for the different wings (figure 2.3e), confirming
that Fpitch scales quadratic with pitch rate as

Fpitch = Dpitchω
2
pitch, (2.10)

where Dpitch is the quadratic growth factor of pitch­rate related forces. The inter­
cept is set to zero, because no rotational forces are produced by a non­moving wing
(Fpitch = 0N at ωstroke = 0 rad s−1 and ωpitch = 0 rad s−1). Secondly, we tested
how Dpitch depends on the asymmetry of the wing, expressed by Sx|x|, showing
that this relationship is linear (figure 2.3f ). We have omitted the symmetric ellip­
tic wing from this analysis, because for this wing Fpitch = 0N for all simulations with
ωstroke = 0 rad s−1 (figure 2.2e). Thirdly, to determine the magnitude of the pitch­rate
related rotational force coefficient we normalized the pitch­rate related force with
Sx|x| as

F ∗
pitch =

Fpitch

Sx|x|
, (2.11)

and plotted this against the pitch rate (figure 2.3g), for all simulations except those
of the symmetric wing with Sx|x| = 0m4. As expected, F ∗

pitch scales quadratic with
pitch rate, and thus we fitted quadratic functions through the data of each tested wing,
where the quadratic growth factor of each fit equals CF,pitch of that wing. The val­
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ues of CF,pitch of the different wings are similar, showing that the pitch­rate related
rotational force coefficient is approximately independent of wing shape and kinemat­
ics. Therefore, we expressed this coefficient for the seven asymmetric wings com­
bined as CF,pitch = 2.08 ± 0.11 (n = 7). Surprisingly, this coefficient is nearly
identical to CF,stroke­pitch discussed in the previous section. In fact, the two coeffi­
cients are not significantly different from each other (paired t­test, t­value(degrees­
of­freedom=13)=−0.89, p­value=0.41), and thus we suggest to use a single rotational
force coefficient for both mechanisms, being CF,rotational = 2.08 ± 0.13 (n = 15).
This results in our new rotational force model for a generic insect wing that moves at
both a constant stroke­rate and pitch­rate of

Frotational = CF,rotationalρ
(√

SxxSyyωstrokeωpitch + Sx|x|ω
2
pitch

)
. (2.12)

2.3.5 Effect of pitch angle on rotational force production

To test whether our rotational force model is independent of the pitch angle, we esti­
mated the rotational force coefficient for the most asymmetric elliptical wing at pitch
angles of both 30° and 60° (figure S4). These coefficients were not significant dif­
ferent from the those of the 45° pitch angle simulations (CF,pitch: independent t­test,
t­value(5)= 2.28, p­value=0.057; CF,stroke­pitch: independent t­test, t­value(6)= 0.52,
p­value=0.62), showing that rotational force magnitude is not significantly dependent
on pitch angle.

2.3.6 Aerodynamics of the combined stroke and pitch wing movement

The aerodynamic pressure forces produced by a wing moving with a combined stroke
and pitch movement (Ftotal) act on the wing at its centre of pressure. The location of
this centre of pressure is found by integrating the pressure distribution over the wing
surface. We performed this analysis for the symmetric elliptic wing, the fruit fly wing,
the mosquito wing, and the most asymmetric elliptic wings, moving with a stroke­rate
and pitch­rate of both 1000 rad s−1 (figure 2.4a–d, respectively). For all wings, the
centre of pressure is located close to the chordwise centre of the wing, suggesting that
it is nearly independent of the location of the pitch­axis.

To illustrate the nature of the distribution of pressure differences, we showed the
pressure differences across the wing surfaces (figure 2.4e–h), and flow field and air
pressures around the wings within two planes perpendicular to the pitch­axis, at 1mm
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and 2mm from the root (figure 2.4i­l and figure 2.4m­–p, respectively). These flow
fields and air­pressure distributions are similar between all tested wing geometries:
for all wings, the pressure differences across the wing surface is highest near the tip
and leading edge of the wing (figure 2.4e–­h), and along the complete lower side of
each wing a high­pressure region is present (figure 2.4m­l). The magnitude of this
high­pressure region is higher at the location 2mm from the root (figure 2.4m­p) than
at the 1mm location (figure 2.4i–l). On the upper side of each wing, a low­pressure
region is formed close to the leading edge, which coincides with the expected location
of the leading­edge­vortex (LEV). Both the low­ and high­pressure regions intensify
with increasing wing asymmetry, which is most apparent for the low­pressure region
present near the trailing edge (figure 2.4i–p).

2.3.7 Aerodynamics of pitch­rate related rotational force production

The pitch­rate related aerodynamic forces on a wing (Fpitch, equation (2.6)) were iso­
lated by analyzing the simulations of wings moving only with a non­zero pitch­rate
(ωstroke = 0 rad s−1 and ωpitch = 1000 rad s−1, figure 2.5). We again analyzed the re­
sults of the symmetric elliptic wing, the most asymmetric elliptic wing, the mosquito
wing and the fruit fly wing. Comparing these results with those of the same wings
moving with both a stroke and pitch movement (figure 2.4), highlights several inter­
esting aspects.

The center of pressure of the pitch­rate related forces (Fpitch, figure 2.5a–d) lies
closer to the trailing edge than that of the total aerodynamic force (Ftotal, figure 2.4a–
d). For all wings, the distribution of the pressure difference across the wing surface
does not vary along the span of the wing (figure 2.5e–h). In contrast, the pressure
difference varies strongly in chordwise direction, where it increases with the chord­
wise distance from the pitch axis. In front of the pitch axis (i.e. towards leading edge),
these pressure differences are positive, whereas behind the pitch axis (i.e. towards the
trailing edge) they are negative. Because negative pressure differences are associated
with a positive force production, the wing area in front of the pitch axes contributes to
negative pitch­rate related force production, and areas behind the pitch axis produce
positive forces.

These dynamics explain why pitch­rate related aerodynamic forces increase with
wing pitch asymmetry (as expressed by Sx|x|), and why the center of pressure of
Fpitch is located relatively close to the trailing edge (figure 2.5a–d): for the symmetric
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wing (Sx|x| = 0), the same amount of surface area is located in front and behind the
pitch axis, and thus the positive and negative contributions to force production exactly
balance each other (figure 2.5e), resulting in a zero net pitch­rate related force (figure
2.5a). For the asymmetric wings, the wing area behind the pitch axis is larger than
the area in front of the pitch axis, resulting in a larger positive contribution to Fpitch

near the trailing edge than the negative Fpitch production near the leading edge (figure
2.5b–d). As a result, the net pitch­rate related forces are positive and located behind
the chordwise centre of the wing.

To illustrate the nature of these pressure differences across the wing surface, we
show the flow field and air pressures around the wings within a plane perpendicular
to the pitch axis and at 2mm from the root of the wing for the four examined cases
(figure 2.5i–p). The flow fields are shown in two reference frames, in the wing refer­
ence frame as defined above (figure 2.5i–l) and the wing reference frame without the
subtraction of the wing velocity (figure 2.5m–p).

For the symmetric wing (figure 2.5i,m), the air pressure and flow fields are per­
fectly two­fold rotational symmetric relative to the center of the wing, explaining why
no net pressure force is produced. For all asymmetric wings, there are large pressure
variations near the trailing edge of the wing (figure 2.5j–l, n–p): underneath each
wing there is a high­pressure region and above the wing a low­pressure region. Thus,
the large pressure differences across the asymmetric wings, near the trailing edge, are
due to both a high­pressure region below the wings and a low­pressure region above
the wings.

To find the origin of the high­pressure region, we used the flow fields in the wing
reference frame (figure 2.5j–l), showing that for all asymmetric wings, there is a stag­
nation point in the middle of the high­pressure region. To find the origin of the low­
pressure region above the wing, we used the flow fields in the wing reference frame,
but without subtracting of the wing velocity (figure 2.5m–p). These flow fields show
that the air behind the stagnation point (towards the trailing edge) curls around the
trailing edge, forming a vortex near the trailing edge on the top surface of the wing.
The location of this trailing edge vortex coincides with a low­pressure region found
above the wing near the trailing edge.
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2.3.8 Aerodynamics of stroke­pitch coupled force production

Unlike for the pitch­rate related forces, there are no simulations at which only stroke­
pitch coupled forces were produced. Therefore, to isolate the aerodynamics underly­
ing the stroke­pitch coupled rotational forces (Fstroke­pitch) we used a method similar
to the method for estimating rotational forces (equations (1)–(2)). When assuming
that the pressure field around a wing that has a stroke and pitch movement (ptotal)
consists of the linear summation of the pressure field resulting from the stroke move­
ment (pstroke), the pitch movement (ppitch) and the stroke­pitch coupling (pstroke­pitch),
then we can estimate pstroke­pitch as

pstroke­pitch = ptotal − ppitch − pstroke (2.13)

where the pressure fields ptotal, ppitch and pstroke come from separate simulations.

We performed this analysis for the four wing geometries described earlier, mov­
ing at ωstroke = 1000 rad s−1 and ωpitch = 1000 rad s−1 (figure 2.6). Thus, to estimate
pstroke­pitch for a wing moving at ωstroke = 1000 rad s−1 and ωpitch = 1000 rad s−1, we
subtracted both the pressure field pstroke around awingmoving atωstroke = 1000 rad s−1

and ωpitch = 0 rad s−1, and pressure field ppitch of a wing moving at ωstroke = 0 rad s−1,
ωpitch = 1000 rad s−1, from pressure field ptotal around a wing moving at ωstroke =

1000 rad s−1 and ωpitch = 1000 rad s−1 (equation (2.13)). We did not apply this sub­
traction for the velocity field due to their non­linear relation with the pressure field.

The comparison of the derived pressure fields that result in Fstroke­pitch (figure 2.6)
with the pressure fields resulting in Ftotal and Fpitch (figure 2.4 and 2.5, respectively)
highlights several interesting aspects. For all wings, both the magnitude and the lo­
cation of Fstroke­pitch (figure 2.6a–d) lie in between those of Ftotal and Fpitch (figure
2.4a–d and 2.5a–d, respectively).

The pressure differences across the wing surface that causes Fstroke­pitch (figure
2.6e–h) is similarly distributed along the wing as for that of Ftotal (figure 2.4e–h),
with a low­pressure region near the wing tip and trailing edge. Unlike for the Ftotal

case, for Fstroke­pitch a secondary low­pressure is present close to the trailing edge at
approximately 2/3rd span (figure 2.6e–h).

The pressure in the two planes perpendicular to the pitch­axis (figure 2.6i–p) re­
veal a high­pressure region at the bottom surface of all tested wings, which is slightly
shifted towards the trailing edge. In the plane 1mm from the wing root (figure 2.6i–l),

45



Aerodynamics of insect flight

a low­pressure region is distributed over a large area on top of each wing, whereas in
the plane closer to the wing tip (2mm from root) the low­pressure region is mostly
concentrated near the leading edge. Particularly the intensity of the low­pressure re­
gion near the leading edge increases towards the wing tip (figure 2.6m–p), explaining
the large pressure difference across the wing near the tip and leading edge.

2.4 Discussion

2.4.1 The rotational force model

In our study, we showed that the rotational aerodynamic force (Frotational) produced
by an insect wing moving at a constant stroke rate and pitch rate is composed of a
pitch­rate related force component (Fpitch) and a stroke­pitch coupled force compo­
nent (Fstroke­pitch) (equation (2.12)). The relation betweenFrotational and the stroke rate,
captured in the stroke­pitch coupled force component (Fstroke­pitch), is linear, which is
in line with previous research [11]. Unlike these previous models, our stroke­pitch
coupled force model explicitly quantifies the effect of wing morphology on stroke­
pitch coupled force production.

Our pitch­rate related rotational force model is also similar to models described
in previous studies [16, 19]. But unlike these previous models, our model is able to
accurately capture the effect of wing­pitch asymmetry on the pitch­rate related force,
allowing us to show how flying insects can generate forces without making a stroke
movement.

Our rotational model is based on CFD simulations on rigid insect wings and el­
liptical wings rotating at constant stroke rates and pitch rates. This approach isolates
the rotational forces from the forces resulting from other aerodynamic mechanisms,
which enabled us to model the rotational forces. This also removed the effect of
the interaction between the rotational force mechanism and the other aerodynamic
mechanism. Thus, how all these aerodynamic mechanisms interact remains an open
question.

In addition, the proposed model assumes that the forces are all fully developed,
while it is known that the flow over the wing needs time to develop [12], meaning
that at rapid changing pitch rates the force estimates of our model might overestimate
the forces found in real insects. We consider these transient effects part of a separate
aerodynamic mechanism that should be investigated further in a future study.
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Despite these limitations, our new rotational force model captures the full dy­
namics between rotational force production and wing morphology and motion, yet
the model remains remarkable simple. Strikingly, the force coefficients of the stroke­
pitch coupled forcemodel and pitch­rate related forcemodel do not differ significantly
from each othersuggesting that both components form a single rotational mechanism
(equation (2.12)).

2.4.2 Stroke­pitch coupled rotational forces

The stroke­pitch coupled rotational force model resembles the conventional rotational
models based on Kutta­Joukowski theory [11, 16], but we use a different geometrical
scaling (equation (2.4)). After applying geometrical scaling, the previously­defined
conventional rotational lift model continues to show a dependency on wing pitch rate,
as its force coefficient increases with pitch rate [11]. In contrast, our stroke­pitch
coupled rotational force model removes the dependency of its force coefficient on the
wing pitch rate completely (figure 2.3a–c).

In addition, due to the applied geometrical scaling (equation (2.4)), the coefficient
of our stroke­pitch coupled rotational force model is also independent of wing geome­
try, at least for the eight tested wings (figure 2.3a–c), whereas for previous models this
is ambiguous. This geometrical scaling shows equal effects of spanwise and chord­
wise wing size on force production, as shown by the equal contribution of Syy and
Sxx, respectively (equation (2.4)). This means that an insect wing with a large span
(high aspect ratio) is equally able to generate pitch­stroke coupled rotational forces
as an insect wing with a large chord width (low aspect ratio).

The distribution of the pressure differences across the wing surface that underlie
the stroke­pitch coupled rotational forces also shows a dependence on both the span
and the chord. This demonstrates the physical basis of the scaling used in our model:
flapping­induced velocities further away from both the wing root and the pitch­axis
are higher, leading to larger pressure differences across the wing surface, which in
turn leads to a larger net aerodynamic force.

2.4.3 Pitch­rate related rotational forces

Contrary to the stroke­pitch coupled forces, the pitch­rate related rotational forces are
not dependent on the stroke­rate, and can thus result in significant aerodynamic force
production at stroke reversal of a beating insect wing. Such forces around stroke re­
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versal were observed in flying mosquitoes, and ascribed to a new aerodynamic mech­
anism called rotational drag [15, 16]. Our pitch­rate related rotational force model
resembles the model previously developed for this rotational drag mechanism [16],
but similar to the pitch­stroke coupled rotational force model, our geometrical scaling
is crucially different. We have chosen a geometrical scaling that quantifies asymmetry
in the wing, which is a vital basis for pitch­rate related rotational force production.

The geometrical scaling of our pitch­rate related rotational force model reveals
that the offset of the pitch­axis with respect to the wing symmetry axis determines the
magnitude of the pitch­rate related rotational forces (figure 2.3e–g). Hence, a wing
of which the pitch axis coincides with the symmetry axis cannot produce pitch­rate
related forces, something that was not captured by previous models [3, 16, 19]. This
suggests that an insect wing with a pitch axis located close to the chordwise symmetry
axis cannot generate high forces around stroke­reversal, using the rotational force
mechanism.

The flow dynamics associated with pitch­rate related rotational force production
shows that the low­pressure region is correlated to the presence of a trailing­edge
vortex (figure 2.5). This trailing­edge vortex has been identified previously near the
stroke reversal of a flapping mosquito wing, and which was proposed to result from
wake­capture [15]. In our study, wake­capture was absent and we still found a trailing
edge vortex; this suggests that the trailing edge vortex of the flapping mosquito wing
might be related to rotational force production instead of wake capture.

2.4.4 Rotational forces in the fruit fly and malaria mosquito

Our rotational model is not a complete model for flapping insect flight because other
important aerodynamic mechanisms such as added mass, wake capture, and stroke­
based forces are not modelled. Therefore, a remaining question is: how important are
the stroke­pitch coupled and pitch­rate related rotational forces for flying insects?

To investigate this, we applied our model to the full parametric space of stroke
rates and pitch rates found within the wingbeat kinematics of a hovering fruit fly (fig­
ure 2.7a–d) [13] and a hovering malaria mosquito (figure 2.7e–h) [20]. Throughout
each parametric space, we estimated the rotational forces Fstroke­pitch and Fpitch using
our rotational force model (equation (2.12)), which we then normalized using the ap­
proximate body weight of these fruit flies and mosquitoes (mg, with massm = 1mg
and gravitational acceleration g = 9.8m s−2).
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Both the stroke­pitch coupled rotational forces and pitch­rate related rotational
forces were on average higher for the mosquito than for the fruit fly (figure 2.7),
which is explained by the higher pitch­rates throughout the mosquito wingbeat caused
by their extremely high­frequency wingbeat (580Hz for the mosquito compared to
190Hz for the fruit fly) [13, 20]. These results agreewith previous studies that showed
that high­frequency flappers rely more on rotational forces for weight support [15,
21].

In contrast, our results suggest that the differences in rotational force production
between the fruit fly and mosquito might be smaller than previously reported based
on the wingbeat kinematics alone. The low aspect ratio wing of the fruit fly has a
relatively high second­moment­of­area about the pitch axis, and as a result both and
Sx|x| are higher for the fruit fly than for the mosquito (figure 2.2a). Hence, compared
to the mosquito, the fruit fly has a wing shape that is better adapted for high rotational
force production. This shows that to assess the relative contribution of rotational
forces to total aerodynamic force production in flying insects, both wing kinematics
and wing morphology should be considered. To maximize its rotational force pro­
duction, an insect can employ a low­aspect­ratio wing in combination with high pitch
rates and stroke rates. Furthermore, placing the pitch­axis closer to the wing leading
edge increases the asymmetric second­moment­of­area of the wing and consequently
increases the pitch­rate related rotational forces.

For both the mosquito and fruit fly, pitch­rate related rotational forces dominate
at low stroke­rates, whereas at higher stroke­rates the stroke­pitch coupled rotational
forces are higher (figure 2.7d, h). This suggests that near stroke reversal our newly­
defined pitch­rate related rotational forces are the primary aerodynamic force mech­
anism at play. Several studies have shown that insects primarily use this phase of the
wingbeat to produce aerodynamic roll and pitch torques for flight control [7], sug­
gesting that the here­introduced pitch­rate related rotational forces might be relatively
important for animal flight control and manoeuvrability.

The CFD simulations that we based our rotational lift model on encompasses a
Reynolds­number regime ranging from 25 to 500 (as defined by ESM equation S1).
Most insects fly within this Reynolds­number range [3, 22], suggesting that the model
might be relevant for the majority of flying insects; more research is needed to test
whether our model is also valid for natural flyers that operate at significantly higher
Reynolds numbers, such as large insects, birds and bats.

49



Aerodynamics of insect flight

2.5 References

[1] C. P. Ellington. “The aerodynamics of hovering insect flight. IV. aerodynamic
mechanisms”. In: Philosophical transaction royal society London 305 (1984),
pp. 79–113. DOI: 10.1098/rstb.1984.0052.

[2] C. van den Berg and C. P. Ellington. “The three­dimensional leading­edge vor­
tex of a ’hovering’ model hawkmoth”. In: Philosophical transactions B (1997).
DOI: 10.1098/rstb.1997.0024.

[3] M. H. Dickinson, F. Lehmann, and S. P. Sane. “Wing rotation and the aero­
dynamic basis of insect flight”. In: Science 284.5422 (June 1999), pp. 1954–
1960. DOI: 10.1126/science.284.5422.1954.

[4] G. R. Spedding and T. Maxworthy. “The generation of circulation and lift in
a rigid two­dimensional fling”. In: Journal of Fluid Mecahnics 165 (1986),
pp. 247–272. DOI: 10.1017/S0022112086003087.

[5] J. M. Birch and M. H. Dickinson. “The influence of wing–wake interactions
on the production of aerodynamic forces in flapping flight”. In: The Journal
of Experimental Biology 206 (2003), pp. 2257–2272. DOI: 10.1242/jeb.
00381.

[6] W. B. Dickson, A. D. Straw, and M. H. Dickinson. “Integrative Model of
Drosophila flight”. In: AIAA Journal 46.9 (2008), pp. 2150–2164.

[7] M. H. Dickinson and F. T. Muijres. “The aerodynamics and control of free
flight manoeuvres in Drosophila”. In: Philosophical Transactions B 371.1704
(2016). DOI: 10.1098/rstb.2015.0388.

[8] C. Poelma, W. B. Dickson, and M. H. Dickinson. “Time­resolved reconstruc­
tion of the full velocity field around a dynamically­scaled flapping wing”. In:
Experiments in fluids 41 (2006), pp. 213–225.

[9] D. Lentink and M. H. Dickinson. “Rotational accelerations stabilize leading
edge vortices on revolving fly wings”. In: The Journal of Experimental Biology
(2009). DOI: 10.1242/jeb.022269.

[10] C. P. Ellington. “The aerodynamics of hovering insect flight. III. kinematics”.
In: Philosophical Transactions B 305.1122 (1983), pp. 41–78. ISSN: 0080­
4622.

50

https://doi.org/10.1098/rstb.1984.0052
https://doi.org/10.1098/rstb.1997.0024
https://doi.org/10.1126/science.284.5422.1954
https://doi.org/10.1017/S0022112086003087
https://doi.org/10.1242/jeb.00381
https://doi.org/10.1242/jeb.00381
https://doi.org/10.1098/rstb.2015.0388
https://doi.org/10.1242/jeb.022269


Chapter 2

[11] S. P. Sane and M. H. Dickinson. “The aerodynamic effects of wing rotation
and a revised quasi­steady model of flapping flight”. In: The Journal of Exper­
imental Biology 205.8 (2002), pp. 1087–1096.

[12] S. P. Sane. “The aerodynamics of insect flight”. In: The Journal of Experimen­
tal Biology 206 (2003), pp. 4191–4208. DOI: 10.1242/jeb.00663.

[13] F. T. Muijres, M. J. Elzinga, J. M. Melis, and M. H. Dickinson. “Flies evade
looming targets by executing rapid visually directed banked turns”. In: Science
344 (2014), pp. 172–177. DOI: 10.1126/science.1248955.

[14] F. T. Muijres, J. Elzinga, N. A. Iwasaki, and M. H. Dickinson. “Body saccades
of Drosophila consist of stereotyped banked turns”. In: The Journal of Exper­
imental Biology 218 (2015), pp. 864–875. DOI: 10.1242/jeb.114280.

[15] R. J. Bomphrey, T. Nakata, N. Phillips, and S. M.Walker. “Smart wing rotation
and trailing­edge vortices enable high frequency mosquito flight”. In: Nature
554 (2017), pp. 92–95. DOI: 10.1038/nature21727.

[16] T. Nakata, H. Liu, and R. J. Bomphrey. “A CFD­informed quasi­steady model
of flapping­wing aerodynamics”. In: Journal of Fluid Mechanics 783 (Nov.
2015), pp. 323–343. DOI: 10.1017/jfm.2015.537.

[17] A. P. S. Bhalla, R. Bale, B. E. Griffith, and N. A. Patankar. “A unified mathe­
matical framework and an adaptive numerical method for fluid–structure inter­
action with rigid, deforming, and elastic bodies”. In: Journal of Computational
Physics 250 (2013), pp. 446–476. DOI: 10.1016/j.jcp.2013.04.033.

[18] C. P. Ellington. “The aerodynamics of hovering insect flight. I. The quasi­
steady analysis”. In: Philosophical transactions of the Royal Society B 305
(1984), pp. 1–15. DOI: 10.1098/rstb.1984.0049.

[19] Jeffrey A. Walker. “Rotational lift: something different or more of the same?”
In: The Journal of Experimental Biology 205 (2002), pp. 3783–3792.

[20] F.T. Muijres, S.W. Chang,W.G. Veen, J. Spitzen, B.T. Biemans, M.A.R. Koehl,
and R. Dudley. “Escaping blood­fed malaria mosqtuitoes minimize tactile de­
tection without compromising on take­off speed”. In: Journal of Experimental
Biology 220.20 (2017), pp. 3751–3762. DOI: 10.1242/jeb.163402.

51

https://doi.org/10.1242/jeb.00663
https://doi.org/10.1126/science.1248955
https://doi.org/10.1242/jeb.114280
https://doi.org/10.1038/nature21727
https://doi.org/10.1017/jfm.2015.537
https://doi.org/10.1016/j.jcp.2013.04.033
https://doi.org/10.1098/rstb.1984.0049
https://doi.org/10.1242/jeb.163402


Aerodynamics of insect flight

[21] D. L. Altshuler, W. B. Dickson, J. T. Vance, S. P. Roberts, andM. H. Dickinson.
“Short­amplitude high­frequency wing strokes determine the aerodynamics of
honeybee flight”. In: PNAS 102.50 (2005), pp. 18213–18218.

[22] R. Dudley. The biomechanics of insect flight: form, function, evolution. Prince­
ton University Press, 2002.

[23] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant,Matt Haberland, Tyler Reddy,
DavidCournapeau, Evgeni Burovski, Pearu Peterson,WarrenWeckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Mill­
man, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric
Larson, CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, De­
nis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1. 0 Contributors. “SciPy 1.0: Fundamental Al­
gorithms for Scientific Computing in Python”. In: Nature Methods 17 (2020),
pp. 261–272. DOI: https://doi.org/10.1038/s41592-019-0686-2.

2.6 Figures

52

https://doi.org/https://doi.org/10.1038/s41592-019-0686-2


Chapter 2

stroke angle
 pitch angle

x

y

z

(d)

stroke-rate related force
stroke-pitch 
coupled force pitch-rate related force

stroke rate   pitch rate + stroke rate pitch rate

(a) (b) (c)

(e)
x

y

ry

rx

dy

dx

wing
root

R

c1

c2

(g)

(h)

(i)

(f)

15 20 25
stroke angle [deg]

pi
tc

h 
an

gl
e 

[º]
 

30

45

60

an
gu

la
r r

at
e 

[r
ad

/s
]

0

500

1000

0

1

2

w
ei

gh
t-n

or
m

al
iz

ed
pr

es
su

re
 fo

rc
es

 [-
]

(j)

1000 2000 3000 4000 50000
pitch rate [rad/s]

0

st
ro

ke
 ra

te
 [r

ad
/s

]

2000

1000

all subset mosquito

basym
α

Figure 2.1: (a–­c) A two­dimensional schematic representation of the stroke­rate related force, the stroke­pitch coupled force,

and the pitch­rate related force on a wing, respectively (equations (1)–(2)). The circle and diamond indicate the leading edge and

pitch­axis location, respectively. The green and orange arrows show stroke­rate related force and rotational force, respectively. (a)

Blue arrows show wing velocity due to stroke movement. (b) Purple arrows show the wing­velocity distribution due to the combined

stroke­pitch movement. (c) Pink arrows show the wing velocity due to the pitch movement; basymmetry is pitch asymmetry. (d) The

fruit fly wing in the world reference frame, including the wing reference frame axes (attached to the wing), the stroke plane (in

light grey), stroke angle, and pitch angle (angle between the stroke plane and the wing surface). (e) wing geometry parameters for

calculating the second­moment­of­area parameters Sxx, Syy and Sx|x||. (f–i) the kinematics and forces used to estimate rotational

force production, where data in orange are for the pitching wing, and the green data are of a non­pitching wing (ωpitch = 0 rad s−1);

grey area is where the wing is still accelerating around its pitch axis; box with line indicates the stroke angle at which forces are

extracted. (f ) schematic representation of the two wings; the curved dashed line indicates the direction of (revolving) stroke motion;

(g) pitch angle versus stroke angle throughout the simulation, (h) pitch rate (solid) and stroke rate (dashed) versus stroke angle, and

(i) forces normal to the wing surface versus stroke angle. (j) Parametric space of stroke rate and pitch rate for an average wingbeat of

a hovering fruit fly (blue surface)[13] and of a hovering mosquito (red surface)[18]. Dots indicate the stroke rate and pitch rate of all

simulations conducted with the mosquito wing (red dots), the fruit­fly wing and the symmetric and most asymmetric elliptic wings

(blue dots), and all eight tested wings (green dots).
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Figure 2.2: (a) The geometry parameters, the stroke­pitch coupled second­moment­
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√
SxxSyy and the asymmetrical second­moment­of­areaSx|x|, of the six ellip­

tic wings (green), the fruit­fly wing (blue), and the mosquito wing (red). In light­grey
along the

√
SxxSyy y­axis are examples of wings with both increasing Sxx and Syy;

in light­grey along the Sx|x| ­axis is an example of wings with increasing Sx|x|. (b–e)
The rotational forces (difference between total forces and stroke­rate related forces at
an angle of attack of 45°) (ordinate) versus the stroke­rate (abscissa) and pitch­rate
(colour­bar above (b)), for the most asymmetric elliptic wing, the fruit­fly wing, the
mosquito wing, and the symmetric wing, respectively. A linear function was fitted
through the dataset at each simulated pitch rate.
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Figure 2.3: Testing of the stroke­pitch coupled force model (a–c) and the pitch­
rate related force model (e–g) using our CFD simulations. All data was color­coded
with wing geometry as defined in (d). (a) Stroke­rate slope of stroke­pitch coupled
forces Astroke (as defined by equation (2.7)) versus pitch­rate, for the eight wing ge­
ometries (color coded). Linear functions were fitted through the data for each separate
wing. (b) Pitch­rate slope for stroke­pitch coupled forcesApitch (equation (2.8)) versus√

SxxSyy, including a linear fit with intercept fixed at zero. (c) Normalized stroke­
pitch coupled forces F ∗∗

stroke­pitch (equation (2.9)) versus pitch­rate. The linear fit for
each wing has a slope equal to its force coefficient CF,stroke­pitch (equation (2.4)).
(e) Pitch­rate related rotational forces Fpitch versus pitch rate, including quadratic
fits. (f ) Growth factor of these quadratic fits Dpitch (equation (2.10)) versus Sx|x|,
including a linear fit. (g) Normalized pitch­rate related forces F ∗

pitch (equation (2.11))
versus pitch rate. The growth factor of the quadratic fit for each wing equals its force
coefficient, CF,pitch (equation (2.6)).
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Figure 2.4: The aerodynamics of the sub­set of four wings moving at a stroke rate
and pitch rate of both 1000 rad s−1. (a–d) Schematic representation of the aerofoil,
where the dot indicates the leading edge and the diamond the rotation axis. Pink
arrow illustrates the resultant force, Ftotal, blue arrow shows stroke direction, and
green arrow indicates the direction of the wing pitch. The forces and their location
were obtained by integration of the pressure differences across the wing surface. (e–h)
The distribution of pressure differences across the wing surface. Dashed line indicates
pitch­axis location; green and black lollipops indicate the location of the extraction
planes shown in (i–l) and (m–p), respectively. (i–p) Pressure and flow field relative
to the wing surface extracted from the planes indicated in (e–h).
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Figure 2.5: The aerodynamics of pitch­rate related force production by the sub­set
of four wings moving at a pitch rate of 1000 rad s−1 and a zero stroke rate. (a–d)
Schematic representation of the aerofoil (dot indicates leading edge; diamond indi­
cates rotation axis). Pink arrow indicates the pitch­rate related force Fpitch, and green
arrow shows the direction of wing pitch. The forces and their location were obtained
by integration of the pressure differences across the wing surface. (e–h) The distribu­
tion of pressure difference across the wing surface. Dashed line shows the pitch­axis;
black lollipop indicates the location of the extraction plane shown in (i–p). (i–p)
Pressure and flow field in respectively the wing reference frame with subtraction of
wing velocity (i–l) and the wing reference frame without subtraction of wing velocity
(m–p).
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Figure 2.6: The aerodynamics of stroke­pitch coupled force production by the sub­
set of four wings moving at both pitch rates and stroke rates of 1000 rad s−1. (a–
d) Schematic representation of the aerofoil (dot indicates leading edge; diamond in­
dicates rotation axis). Pink arrow indicates the resultant stroke­pitch coupled force
Fstroke­pitch, and green arrow indicates the wing pitch direction. The forces and their
location were obtained by integration of the pressure differences across the wing sur­
face. (e–h) Distribution of pressure differences across the wing surface. Dashed line
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Figure 2.7: Weight­normalized rotational forces throughout the parametric space
of stroke rates and pitch rates, for the wingbeat of a hovering fruit fly (a–d) and
a hovering malaria mosquito (e–h). The different components are: (a, e) weight­
normalized stroke­pitch coupled rotational forces; (b, f ) weight­normalized pitch­rate
related forces; (c, g) weight­normalized total rotational forces; (d, h) percentage of
pitch­rate related forces relative to the total rotational forces. All forces were esti­
mated using our rotational force model (equation (2.12)).
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2.7 Pre­processing

2.7.1 Kinematic design

Each numeric experiment consisted of two simulations. A simulation where the wing
had a set stroke rate and a constant pitch angle, and a wing moving at the same stroke
rate but that was also pitching up at a constant pitch rate (figure 2.8f–h).

For the simulation with constant pitch angle, the wing was placed in the numerical
domain at a pitch angle of 45°, and the stroke rate ωstroke was increased to the required
value using a smooth acceleration. The pitching wing was started at a pitch angle of
30°, and ωstroke was increased using the same smooth acceleration. As soon as this
wing reached its constant stroke rate, a smooth acceleration around the pitch axis
was started until it reached the desired pitch rate (figure 2.9g). We determined the
forces acting on both wings at the point in time at which the pitching wing reached a
pitch angle of 45°. We then estimated the rotational forces on the pitching wing as the
difference in forces normal to the wing surface between the pitching and non­pitching
wing (figure 2.8i).

For the set of eight wing shapes, a parametric study of different combinations of
stroke rate ωstroke and pitch rate ωpitch was conducted. The parametric space com­
pletely encloses the parametric space of the hovering wingbeat of the fruit fly [13]
and the mosquito [20] (figure 2.8j). For the fruit fly wing and the symmetric and
most asymmetric elliptic wings, we simulated a stroke­rate range of 0 < ωstroke <

1750 rad s−1with steps of 250 rad s−1 and a pitch­rate range of 0 < ωpitch < 3000 rad s−1

in steps of 500 rad s−1. To completely enclose the parametric space occupied by the
mosquito, the range for the mosquito wing was increased by adding pitch rates of
up to 5000 rad s−1(figure 2.8j). Finally, for the four remaining elliptic wings we per­
formed simulations at a pitch rates of both 0 < ωpitch < 3000 rad/second in steps of
500 rad s−1, for the stroke rates of both 0 rad s−1 and 1750 rad s−1 (figure 2.8j). The
resulting parametric space spanned a Reynolds number range from 25 to 500, based
on the definition of the Reynolds number of
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Re =
ρc
√
(ωstrokel)

2 +
(
ωpitchc

)2
µ

, (2.14)

where ρ is the air density, µ is the dynamic viscosity, c is the maximum chord length,
and l is the wing length.

2.8 Solver

2.8.1 Numerical setup

The simulations were performed on a domain of 14mm × 14mm × 14mm (figure
2.8a), where a periodic boundary condition was applied on all external boundaries
and a no­slip boundary condition at the wing surface.

At the centre of the domain, we placed a single wing model with prescribed wing
movement kinematics (figure 2.8d). All tested wings had a span of 3mm and wing
thickness of 0.03mm (1% of the span). The domain was optimized to have no in­
terference of the flow with the domain boundaries but kept as small as possible to
reduce mesh size and therefore computation time. To minimize the number of cells
used in themesh, and to simultaneously optimize the quality of the results, we used the
adaptive local refinement method of the CFD solver [17]. This method automatically
refines the mesh in regions with high vorticity (figure 2.8d).

2.8.2 Mesh and time­step study

The spatial and time resolutions were chosen after performing a mesh and time­step
study. The mesh­study was performed first using a wing that pitches up (ωpitch =

3000 rad s−1) whilst moving forward (ωstroke = 1750 rad s−1), for a range ofmesh sizes
(figure 2.9c) with a time­step of ∆t = 1 · 10−7 s. The effect of the mesh size on the
force at the extraction point (figure 2.9a,c) is small but decreasing mesh size comes
at a vast increase in the amount of cells. We have chosen the mesh­size of ∆x =

1.09 · 10−5m, which is at the boundary where a further refinement has little effect
on the solution; in contrast the computation time increases steeply due to the large
number of cells needed. Choosing this mesh­size led to an average use of four million
cells for each simulation. After choosing the mesh­size, the time­step was chosen
in a similar fashion. For the same simulation as used for the mesh study (ωpitch =
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3000 rad s−1, ωstroke = 1750 rad s−1), a range of time­steps where tested (figure 2.9d).
The effect of the time­step (figure 2.9b,d) is larger than that of the mesh­size. We
chose a time step ∆t = 1 · 10−7 s, because further refinement has little effect on the
solution, but the number of steps needed does increase drastically.

2.8.3 Solver validation

After performing the mesh­size and time­step study, the solver was validated by using
the known forces for hovering flight of the Drosophila hydei from robotic experiments
[7]. The forces produced by the numerical simulations [17] show the same overall
dynamics and magnitude in forces as the robotic experiment (figure 2.9f ).

2.9 Post­processing

2.9.1 Plane extraction

To study how changes in air movement and pressure distributions result in rotational
forces, we calculated airflow dynamics within four planes fixed in the wing reference.
Two planes were positioned parallel to the wing, at a distance of 0.06mm above and
below the wing surface. Two additional planes were positioned perpendicular to the
wing pitch axis at one­third and two­third of the wing span (i.e. y = 1mm and
y = 2mm, respectively). In the planes parallel to the wing, we computed the air
pressure distributions, from which we estimated the pressure difference across the
top and bottom surface of the wing. Within the planes perpendicular to the wing
pitch axis, we computed, next to the air pressure distribution, also the air velocity
distribution using a three­dimensional linear interpolator method [23].

In this study, we report air velocities in the wing reference frame, both relative to
the earth and relative to the wing. The air speeds relative to the wing were determined
as Urel,world = Uair,world–Uworld, whereby Uair,world is the air velocity vector in the
world reference frame, and Uworld is the wing velocity in the world reference frame.
The resulting air velocities relative to the wing, Urel,world, were then converted to
velocities in the wing reference frame, Urel,wing, using the method described earlier
for forces.
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2.9.2 Sensitivity analysis

The pressure differences across the wing surface were of particular interest because
these cause the aerodynamic pressure forces on the wing. We therefore performed a
sensitivity analysis to determine the correct offset of the extraction planes relative to
the wing surface. An offset for the planes relative to the wing was needed because the
cell height was in the same order of magnitude as the wing thickness, and therefore
pressure changed over several cells was not captured correctly if the planes would be
directly fixed to the wing surface.

To determine what the offset between wing surface and extraction plane needed
to be, we conducted a sensitivity study (figure 2.10), in which we systematically in­
creased the offset from the wing surface to the extraction plane (figure 2.10c). The
force resulting from integrating the pressure difference across the wing was compared
with the force computed by the solver (figure 2.10b). Based on this, we chose to give
all the planes an offset of 0.06mm from the wing surface, as this gives the smallest
error (figure 2.10b).

The effect of the offset on the computation of the centre of pressure is minimal
(figure 2.10a, d), meaning that the distribution of the pressure difference over the
wing is probably similar for all offsets.

2.9.3 Pitch angle variation

As discussed in section 2.2.4 of the main manuscript we performed additional simu­
lations. These simulations are similar in setup as the other simulations discussed in
section 2.2.2 with the exception that the pitch angles at which the rotational forces
were extracted were 30° and 60°. Figure 2.11 shows the results for these additional
simulations with the most asymmetric elliptic wing. This shows that also these rota­
tional forces have a linear relation with stroke rate ωstroke (figure 2.11a, b). A similar
analysis as discussed in section 2.3.3 and 2.3.4 is performed on these new simula­
tions, which yielded the same relation between stroke­pitch coupled rotational forces
and pitch rate ωpitch (figure 2.11c), and pitch­rate related forces and pitch rate (figure
2.11d).
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2.10 Supplementary figures
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Figure 2.8: Domain setup. (a) domain of 14mm x 14mm x 14mmwith in the center
the fruit fly wing geometry, boxes indicate local refinement defined by the adaptive
mesh refinement algorithm. (b) Slice of the domain (a) with the vorticity magnitude
added, the adaptive mesh refinement algorithm uses the vorticity to determine where
to refine.
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Figure 2.9: Mesh­study, time­step study and solver validation. (a) Forces for a
pitching fruit fly wing (ωpitch = 3000 rad s−1, ωstroke = 1750 rad s−1) for several mesh
sizes (see figure S2e). (b) Forces for a pitching fruit fly wing (ωpitch = 3000 rad s−1,
ωstroke = 1750 rad s−1) for several time­steps (see figure S2g). (c) Force deviation
from finest mesh at extraction point (pitch angle=45°) for several mesh sizes (see
figure S2e), in purple an estimate of the number of cells at extraction. (d) Force
deviation from finest time­step at extraction point (ωpitch = 45°) for several time­
steps (see figure S2g). (e) Colour­legend for all the mesh sizes used in panel (a) and
(c). (f ) Solver validation using the kinematics of a hovering fruit fly [7], red shows
simulation results, and blue shows robotic experiment results [7]. (g) Colour­legend
for all time­steps used in panel (b) and (d)
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(b) Comparison between the forces computed by the solver and the result of integrat­
ing the pressure difference across the wing surface. (c) Schematic representation of
the wing chord at 2mm from the root with the extraction planes increasing in distance
with darkening colour.
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Figure 2.11: Additional simulations with extraction points at 30° and 60°. (a) The
rotational forces (difference between total force and stroke­related force) at an pitch
angle of 30° (a) and 60° (b) (ordinate) versus the stroke rate (abscissa) and pitch rate
(colour­bar above (a)), for the most asymmetric elliptic wing, the fruit fly wing, the
mosquito wing, and the symmetric wing, respectively. A linear function was fitted
through the dataset at each simulated pitch rate. (c) Normalized stroke­pitch coupled
forces F ∗∗

stroke­pitch (equation (2.9)) versus pitch rate, for the most asymmetric elliptic
wing at a pitch angle of 30° and 60°. The linear fit for each pitch angle has a slope
equal to its force coefficient CF,stroke­pitch (equation (2.4)). (d) Normalized pitch rate
related forces F ∗

pitch (equation (2.11)) versus pitch rate, for the most asymmetric el­
liptic wing at a pitch angle of 30° and 60°. The growth factor of the quadratic fit for
each pitch angle equals its force coefficient CF,pitch (equation (2.6))

2.11 Supplementary tables

Table 2.1: List of symbols

Symbol unit Description

Apitch N Pitch­rate slope for stroke­pitch coupled forces

Astroke Ns rad−1 Stroke­rate slope for stroke­pitch coupled forces

Continued on next page
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Continued from previous page

Symbol unit Description

Bno­stroke N Pitch rate related forces

basymmetry mm Wing pitch asymmetry

CF,pitch ­ Force coefficient of the pitch­rate related aerodynamic mechanism

CF,rotational ­ Force coefficient of the rotational aerodynamic mechanism

CF,stroke ­ Force coefficient of the stroke­rate related aerodynamic mechanism

CF,stroke­pitch ­ Force coefficient of the stroke­pitch coupled aerodynamic mechanism

c1 mm Chordwise location of the trailing edge (figure 2.1e)

c2 mm Chordwise location of the leading edge (figure 2.1e)

dA mm2 Infinitesimal wing surface area

Dpitch Ns rad−1 Quadratic growth factor of pitch­rate related forces

Fpitch N Pitch­rate related forces

Frotational N Rotational aerodynamic forces

Fstroke N Stroke related forces

Fstroke­pitch N Stroke­pitch related forces

Ftotal N Total aerodynamic forces

F ′
stroke­pitch Nmm−1 Stroke­pitch coupled forces per unit span

F∗
pitch N/mm4

Pitch­rate related forces on a wing, normalized with the
asymmetric second­moment­of­area of the wing

F∗∗
stroke­pitch Ns/radmm4

Stroke­pitch coupled forces, normalized with stroke rate
and pitch­stroke coupled second­moment­of­area

p Nm−2 Air pressure

ppitch Nm−2 Air pressure of a simulation with a wing moving with a constant pitch rate

pstroke Nm−2 Air pressure of a simulation with a wing moving with a constant stroke rate

pstroke­pitch Nm−2 Air pressure related to the stroke­pitch forces

ptotal Nm−2
Air pressure of a simulation with a wing moving with constant stroke rate
and pitch rate

Re ­ Reynolds number, as defined by equation (2.14)

Sxx mm4 Second moment of area along the chord

Sx|x| mm4 Asymmetric second moment of area (equation (2.5))

Syy mm4 Second moment of area along the chord

t s Time relative to the start of the simulation

U ms−1 Air velocity vector

U∞ ms−1 Free stream air speed

[x, y, z] m Coordinates in the wing reference frame

[xworld, yworld, zworld] m Coordinates in the world reference frame

α rad Angle­of­attack

Γ m2 /s Air circulation

∆t s Simulation time step

∆x m Grid mesh size

ρ kgm−3 Air density

ωpitch rad s−1 Pitch rate

ωstroke rad s−1 Stroke rate
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Abstract

To produce the aerodynamic forces required for flight, dipteran insects beat their
wings back and forth at high frequencies. Because the angular accelerations of this
oscillating wing system scales quadratic with the wingbeat frequency, wing stroke­
acceleration based forces are expected to be particularly high for these two­winged
fliers. Here, we used computational fluid dynamics (CFD) simulations to study sys­
tematically how stroke­acceleration based forces and flow dynamics depend on wing
morphology, wing­stroke rate, and wing­stroke acceleration. Based on these results,
we developed an aerodynamicmodel that captures the stroke­acceleration forces based
on the wingbeat kinematics and wing morphology. Furthermore, we explicitly mod­
eled the interaction of the stroke­acceleration with a selection of other known aerody­
namic mechanisms. Our analysis shows that especially for high­frequency flapping
flight the stroke­acceleration forces contribute substantially to the forces on the wing.

3.1 Introduction

Dipteran insects fly by moving their wings rapidly back and fort in a complex motion
pattern. With this wing motion, they generate the aerodynamic forces required for
flight. Due to the unsteady nature of the involved aerodynamics and the complex
wing motion, the interaction between the wings and the surrounding air has been
difficult to model. To solve this problem, a common approach is to use aerodynamic
mechanisms [1], also known as phenomenology­based models [2]. These models
link the aerodynamic forces directly to the morphology and motion of the wing. Each
aerodynamic mechanism is able to predict the aerodynamic forces based on part of
the motion and orientation characteristics of the wing, for example the angular rate of
the wing and the angle­of­attack. Several of such aerodynamic mechanism have been
identified: translational lift (stroke­based forces) [3, 4, 5, 6], rotational lift (rotational
forces) [4, 7, 8, 9], wake­capture (forces owing to wing interaction with a previously
generated wake) [10, 11, 12, 13] and added­mass (acceleration­reaction forces) [12,
14, 15, 16, 7] 

Dipteran fliers exhibit a large range of wingbeat patterns, but common is that they
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move their wings mostly back and forth at a high angle­of­attack (≈ 45°) (figure 3.1a,
b). The wing motion can be divided into two parts: the forward stroke and backward
stroke (figure 3.1a and b respectively). During the forward­stroke, the wing is mov­
ing from the dorsal side of the insect towards the ventral side, and visa­versa for the
backward­stroke. Stroke­reversal is defined as the point where the wing moves from
the forward­ to the backward­stroke, or visa­versa. Around stroke­reversal the wing
first has to decelerate and then accelerate rapidly in the opposite direction. Further­
more, the wing has to rotate around its span with an angle of around 90° such that the
angle­of­attack during the next stroke is again close to 45° (figure 3.1c). Due to the
high flapping frequency (in the order of 100Hz), this all has to happen in an incredibly
short time [17, 18].

The stroke­based forces are related to the angular stroke velocity of the wing and
the angle­of­attack. The stroke­based forces are often linked to the presence of a
leading edge vortex (LEV), which is a stable separated region above the wing and
behind the leading edge. This separated region reattaches before the trailing edge
and is often identified as the reason that insects can fly at such high angles of attack
without experiencing stall, and consequently produce the high­lift forces required for
flight [19, 4, 3, 20]. The stroke­based forces are most prominent during mid­stroke,
where the stroke­rate is highest (figure 3.1d). The stroke­based forces can be modeled
with knowledge of the kinematics and the wing geometry as [4]

F⃗sr = ρC⃗sr (α)ω
2
s

∫ R

0
y2cdy, (3.1)

where F⃗sr is the stroke­rate force, ρ the air density, C⃗sr the stroke­rate force coeffi­
cient vector as a function of the angle­of­attack α, ωs the stroke­rate of the wing, y
the position along the span of the wing, and R the length of the wing. The integral in
equation (3.1) is responsible for the geometrical scaling known as the span­wise sec­
ond moment of area (Syy). This aerodynamic mechanism ignores the Wagner effect,
which states that at the start of a wingbeat the airflow needs time to develop around
the wing, and consequently there is a delay in aerodynamic force build up [14, 21].
However, the model is still able to predict the lift forces of a hovering fruit fly rather
well [12, 17], but falls short in predicting the drag forces [12].

The forces related to the pitching motion of the wing (i.e. rotation around the
spanwise axis) are a combination of rotational lift [4] and rotational drag  [7, 8, 9] and

78



Chapter 3

are most prominent during stroke­reversal. Around stroke­reversal, the pitch­rate of
the wing is high, which results in the presence of rotational forces. The rotational
forces can also be modeled using a quasi­steady approach, based on wing geometry,
wing pitch­rate and the stroke­rate of the wing [9].

The wake­capture aerodynamic mechanism is most prominent at the start of each
wing stroke [13, 10, 12]. This mechanisms relates the interaction of the wing with the
wake of the previous stroke. Because the wake of the previous stroke is part of the
time­history of the flow­field, it is difficult to capture the wake­capture aerodynamic
mechanism in a single model based on the kinematics and the wingmorphology alone.

The stroke­acceleration forces are the forces caused by a change of the stroke­
rate. The stroke­acceleration forces arise because a volume of fluid around the wing
is accelerated when the wing accelerates and hence exerts a force on the wing. The
force can be modelled as [22]

F⃗sa = ρV
d

dt
(v⃗) , (3.2)

where V is the volume of air that accelerates with the wing, v⃗ the velocity of the wing
and t is time. For insect flight, the acceleration­reaction forces are often approximated
by the model of a two­dimensional flat plate moving through inviscid air [23, 14, 12,
15, 16, 24] rewritten for a rotating wing using blade­element theory as

Fsa,2D =
π

4
ρω̇s sin (α)

∫ R

0
yc2(y)dy, (3.3)

where ω̇s is the angular acceleration of the wing, and the integral a geometrical scaling
parameter we will define as Ssedov.

Apart from the inviscid component of the acceleration­reaction forces an addi­
tional component that is related to the non­slip condition parallel to the surface of
the wing has been identified [2] . This component generates a non­zero contribution
to the overall acceleration­reaction forces, but is not linked to any phenomenology­
based model. It can be investigated with the use of force decomposition or the panel
method in flapping flight of a fruit fly [2, 25].

The aerodynamicmechanisms defined above are often combined in a quasi­steady
model [1] , which enables one to predict the forces of an insect based only on the mo­
tion and shape of the wing. Most of these models simply use linear summation of
only the stroke­rate force mechanism and the rotational force mechanism (e.g. [17],
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[18]). Wake capture is often ignored because it is difficult (or maybe even impos­
sible) to capture in a quasi­steady model. The linear relation of stroke­acceleration
forces with angular acceleration (equation (3.3)) of the wing means that for a symmet­
ric cyclical wingbeat the net contribution of the stroke­acceleration forces is zero [2],
which might partly be the reason why added mass forces are also often ignored when
modeling insect flight. However, stroke­acceleration forces still affect instantaneous
force production, and thus they can influence the power requirement of flight. Fur­
thermore, the wingbeat kinematics during many flight maneuvers are asymmetric as
the wings tend to move further to the back than to the front, and non­cyclic motions
occur during torque production in maneuvering flight.

In this study, we used computation fluid dynamics (CFD) modeling to systemat­
ically study how wing stroke accelerations affect aerodynamic force production, and
how this interacts with stroke­based forces. We designed a set of wing motion pattern
that allowed us to isolate the acceleration­reaction forces from forces produced using
the other aerodynamic mechanisms. By systematically varying the wing morphol­
ogy, angle­of­attack, stroke­rate and stroke­acceleration of the wing, we developed
an aerodynamic model that captures stroke­acceleration forces, and its interaction
with stroke­based forces. We applied our newly found model to the wingbeat kine­
matics of the fruit fly and mosquito and revealed that the stroke acceleration forces
are particular important for high­frequency flappers.

Our new acceleration­reaction force model improves our insight into the fluid
dynamics of rapidly oscillating wings, and the evolutionary trade­offs in the flight­
apparatus of dipteran insects. Furthermore, these insights may help the pave to path
to the application of biological inspired flying machines [26].

3.2 Material and Methods

3.2.1 Nomenclature

We studied how wing stroke­accelerations affect the aerodynamic force production
through acceleration­reaction and its interaction with the stroke­rate based aerody­
namic mechanism. To differentiate between the various force mechanisms, we based
their naming on the underlying kinematics. We defined a general model for stroke­
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based aerodynamic force production as

F⃗s = F⃗sr (α, ωs, geometry) + F⃗sr−sa (α, ωs, ω̇s, geometry) + F⃗sa (α, ω̇s, geometry) .
(3.4)

In this general model, there are three terms defined together with their dependency;
F⃗sr which are the stroke­rate based forces, F⃗sr−sa are the forces caused by the inter­
action between the stroke­rate and stroke­acceleration of the wing, and F⃗sa are the
acceleration­reaction forces caused by the stroke­acceleration of the wing (compara­
ble to equation (3.3)).

3.2.2 Numerical setup

Weconducted all our simulationswith the immersed boundarymethods solver IBAMR
[27]. A single rigid wing was placed with its root in the center of a domain with the
size of 5 cm x 5 cm x 5 cm. A periodic boundary condition was used on the sides of
the domain, and a no­slip boundary condition was chosen at the surface of the wing.

The time and space resolutions were chosen based on a previous study as ∆t =

1 · 10−7 s and∆x = 0.01mm [9]. The mesh uses adaptive mesh refinement based on
the vorticity in the flow­field; we used in total 3 refinement levels with the vorticity
thresholds at 50 s−1, 500 s−1, 5000 s−1, from coarsest to finest respectively. This re­
sulted in a mesh size of approximately 4 million cells and a total of 10 000 time­steps
per simulation.

The solver was validated by comparing the results of a simulation of hovering
kinematics of a fruit fly with forces measured in an experiment with a robotic flapper
[17] (see supplementary methods for more detail).

3.2.3 Wing morphology

Different wing morphologies were used during this study to explicitly study the effect
of the geometry on the stroke­based forces (equation (3.4)). Each modeled wing was
completely rigid with a wing thickness of 1% of the semi­span of the wing. Two
wing morphologies were based on those of the fruit fly and the malaria mosquito.
In addition to these two morphologies, we designed 13 elliptical morphologies. The
first set of four elliptical wings had a fixed wing length R = 3mm and a varying
chord length cmax = 0.5mm to 1.5mm with steps of 0.25mm (figure 3.2d, squares).
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The second set of four elliptical wings has a fixed chord length cmax = 1mm and a
varying wing length R = 2mm to 4mm in steps of 0.5mm, figure 3.2d circles). For
these sets of wings, the Sedov’s scaling parameter based on earlier stroke­acceleration
models (equation (3.3)) can be analytical be determined as

Ssedov =

∫ R

0
c(y)2ydy =

∫ 1
2
π

− 1
2
θ
(cmax cos (θ))2

(
1

2
R sin (θ) +

1

2
R

)
1

2
Rdθ, (3.5)

where cmax is the maximum chord length and θ the polar coordinate defined in figure
3.2c. Equation (3.5) shows that if the product cmaxR is kept constant the value Ssedov
also remains constant, for elliptical­shaped wings. Based on this notion, we designed
a set of five elliptical wings with constant Ssedov (based on cmax = 1mm and R =

3mm with a varying wing length and chord length (figure 3.2d, diamonds)).

The value of Ssedov increases with increasing value of Syy (figure 3.2e) except for
the elliptical wings with constant Ssedov. The values of Syy and Ssedov of both the fruit
fly and the mosquito fall within the parametric space spanned by the sets of elliptical
wings (figure 3.2e).

3.2.4 Reference frames

The position of the wing and the forces computed by the numerical solver were ex­
pressed in a right­handed world reference frame with its origin at the root of the wing
(see figure 3.1f ). The position of the wing was computed by first rotating around
the z­axis of the world­reference frame with the stroke­angle γ. The wing was then
rotated around its span­axis (y­axis of the wing­reference frame) with a pitch angle
(ϕ). In this study, there is no difference between the pitch­angle and the angle­of­
attack and therefor we will only refer to the pitch­angle as the angle­of­attack. If
there would have been an additional wing rotation, often described as the deviation
angle, or a non­zero velocity field the pitch angle and the angle­of­attack would not
coincide.

The forces used to create themodel (see section 3.2.1) are all expressed in thewing
reference­frame, which is a right­handed reference frame with the origin a the wing
hinge, the x­axis parallel to the wing surface pointing towards the trailing edge, the y­
axis parallel to the surface pointing towards the wing­tip and the z­axis perpendicular
to the wing­surface (figure 3.1f ).
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3.2.5 Kinematic setup: accelerating wings

We designed a set of simulations that allowed us to isolate the effect of the stroke­
acceleration on the forces from the other aerodynamic mechanisms present. Each set
of wing kinematics could be controlled by three main parameters; the stroke­rate, the
stroke­acceleration and the angle­of­attack. The angle­of­attack was kept constant
during the simulation, and was only varied between simulations. The stroke­rate and
stroke­acceleration varied during the simulation, however we used the stroke­rate and
stroke­acceleration at the end of the simulation to classify each simulation. Only the
forces at the last time­step of the simulations were used for the analysis.

To explain how the kinematics were designed, we will use the set of simulations
at a stroke­rate of ωs = 1000 rad s−1 and stroke­accelerations of ω̇s = 1 · 106 rad s−2

to 4.5 · 106 rad s−2 as an example (this range is also highlighted in figure 3.2f, g).
In each simulation, the wing was first accelerated to a constant stroke­rate of ωs =

600 rad s−1, irrespective of the stroke­acceleration at the end of the simulation (figure
3.1g, h). We chose this initial stroke rate as 60% of the maximum stroke rate at the
end of the simulation. To reduce the effect of time on the development of the flow, we
designed the kinematics such that each simulation took exactly the same time (1ms).
Because the kinematics with a different stroke­acceleration would take a different
time to bridge the difference in stroke­rate (in this case 400 rad s−1), we started the
acceleration of the wing at different times (figure 3.1g, h). The stroke­acceleration
was increased smoothly for each simulation (figure 3.1h), and then kept constant until
the end of the simulation.

At the end of each simulation, the stroke­rate and angle­of­attack was the same
for all simulations, only the stroke­acceleration was different. This means that only
the stroke­acceleration parameter can explain the differences in the forces acting on
the wing between the simulations.

3.2.6 Kinematic setup: decelerating wings

In addition to wings that were accelerating we designed an additional set that was
decelerating. We used the same approach as described for the accelerating wing.
However, the stroke rate had to be increased above the stroke rate at the end of the
simulation (figure 3.1 g). We took this stroke rate at 40% higher than the stroke rate
at the end of the simulation.

83



Aerodynamics of insect flight

3.2.7 Parametric space

The kinematics described in section 3.2.5 has three input parameters; stroke­acceleration,
stroke­rate and angle­of­attack. In this study, these parameters were systematically
varied to asses there influence on the forces. The range of these parameters was
determined based on the range encountered during hovering flight of the fruit fly
(Drosophila hydei)[17]  and mosquito (Anopheles coluzzii) [18] (figure 3.2f –h blue
fruit fly, red mosquito). The set of simulations can roughly be divided into two sub­
sets: a set of simulations based on the fruit fly wing morphology, and a set of simu­
lations with varying wing­morphologies.

The set of simulations based on the fruit fly wing morphology was primarily used
to quantify the relation between the kinematics and the stroke­based forces Fs. Based
on the observed kinematics, we used a range for the angle­of­attack that varied from
9° to 90° in steps of 9°, the stroke­rate from 500 rad s−1 to 2000 rad s−1 with steps
of 250 rad s−1 and the stroke­acceleration from 1 · 106 rad s−2 to 4.5 · 106 rad s−2 with
steps of 0.5 · 106 rad s−2 for the fruit fly wing (indicated with the blue dots in figure
3.2c, d). This resulted in a total of 480 simulations for the fruit fly wing morphology
alone (table 3.1).

In addition to the kinematics of an accelerating wing, we included a subset of
56 simulations for a decelerating wing with the angle­of­attack α = 36°, the stroke­
rate was varied between 250 rad s−1 to 1750 rad s−1 with steps of 250 rad s−1 and the
stroke­acceleration varied between −4.5 · 106 rad s−2 to −1 · 106 rad s−2 with steps of
0.5 · 106 rad s−2 (table 3.1).

The second set of simulations was primarily used to quantify the dependence of
the stroke­based forces Fs on the wing morphology. For this, we added the wing
morphology of the mosquito and the 13 elliptical wings (see section 3.2.3). For the
mosquito wing and the elliptical wings with constant Ssedov, we used a constant angle­
of­attack α = 36°, varied the stroke­rate ωs = 500 rad s−1 to 1750 rad s−1 in steps
of 250 rad s−1, and used two different stroke­accelerations ω̇s = 1 · 106 rad s−2 and
ω̇s = 4.5 · 106 rad s−2. This resulted in total to 192 simulations for these six wing
morphologies (table 3.1)

For the four elliptical wings with varying wing length and the four elliptical wings
with varying chord, we used the following kinematics; an angle­of­attack of α = 36°,
a stroke­rate range of ωs = 500 rad s−1 to 1500 rad s−1 in steps of 500 rad s−1, and
two stroke­accelerations ω̇s = 1 · 106 rad s−2 and ω̇s = 4.5 · 106 rad s−2. For these 8
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wing morphologies this led to a total of 32 simulations. In summary, in this study we
included 15 different wing morphologies and carried out a total of 776 simulations
(table 3.1).

Table 3.1: Stroke­acceleration kinematics overview. ff fruit fly wing morphology,
mo mosquito wing morphology, e Ssedov ellipse shaped wing with constant Ssedov, e
R ellipse shaped wing with constant wing length, e cmax ellipse shaped wing with
constant chord length.

Geometry α [­] ∆α[­] ωs [rad s−1] ∆ωs [rad s−1] ω̇s [rad s−2] ∆ω̇s [rad s−2

ff 9° to 90° 9° 250 to 1750 250 1 · 106 to 4.5 · 106 5 · 106

ff 36° ­ 250 to 1750 250 −4.5 · 106 to −1 · 106 5 · 106

mo 36° ­ 250 to 1750 500 1 · 106 & 4.5 · 106 5 · 106

e Ssedov 36° ­ 250 to 1750 500 1 · 106 & 4.5 · 106 5 · 106

eR 36° ­ 500 & 1500 ­ 1 · 106 & 4.5 · 106 ­
e cmax 36° ­ 500 & 1500 ­ 1 · 106 & 4.5 · 106 ­

3.3 Results

The result section is divided into five parts. First, the dependence of the forces on
the kinematics is discussed in section 3.3.1. Second the dependence on the wing
morphology is discussed in section 3.3.2. Third, the flow­field is studied for the
two acceleration­based components: the stroke­acceleration component Fsa (section
3.3.3) and the interaction component Fsr−sa (section 3.3.4). Finally, we apply our
newly found model on the kinematics of the fruit fly and mosquito in section 3.3.5.

3.3.1 The forces

The forces as a result of the stroke­accelerations ω̇s were assumed to decompose into
two terms: an acceleration term F⃗sa and an interaction term F⃗sr−sa. The interaction
term consists of the interaction between the previously described stroke­rate forces
and the stroke­acceleration forces.

The viscous forces due to the stroke acceleration comprise of 5% and 9% of
the total forces for the x­ and y­component respectively (taken at α = 45°, ωs =

1000 rad s−1 and ω̇s = 2 · 106 rad s−2). Here, we focus on the stroke­acceleration
induced pressure forces, and ignore the much smaller stroke­acceleration evoked vis­
cous forces (see appendix 3.8). The forces normal to the wing increase with increasing
stroke­acceleration ω̇s, for all angles of attack (figure 3.3a–k). We grouped the sim­
ulations with the same stroke­rate at the end of the simulation, and approximated the
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total force with a linear relation

Fs,z = ρ [Asaω̇s +Bsr] . (3.6)

Parameter Asa models the change in the stroke force Fs,z due to stroke­acceleration
ω̇s. This parameter Asa consists of the acceleration term Fsa and the interaction term
Fsr−sa (the last two terms in equation (3.4)). Parameter Bsr models the force gener­
ated in absence of stroke­acceleration (i.e. due to the stroke­rate).

Acceleration forces & interaction forces

Both Asa and Bsa are a function of the stroke­rate ωs and the angle­of­attack (figure
3.4a and c respectively). Parameter Asa is almost constant for the lower angles­of­
attack (α). However, for the higher angles­of­attack the effect of the stroke­acceleration
is reduced with increasing stroke­rate. We modeled Asa with a simple quadratic re­
lation without linear term

Asa = csaω
2
s + dsa. (3.7)

The coefficients csa and dsa in equation (3.7) are both a function of the angle­of­
attack. The first part of equation (3.7) models the interaction between the stroke­rate
and stroke­acceleration on the stroke­based forces, and can be recognized as the in­
teraction term Fsr−sa in equation (3.4). The second term models the effect of the
stroke­acceleration on the stroke­based forces, independent of the stroke rate. Thus,
dsa is equal to the acceleration term Fsa in equation (3.4). The coefficient csa that
modulates the interaction decreases with the angle­of­attack (figure 3.4c), although
the change is limited for higher angles of attack α = 54°. The acceleration term
dsa increases with increasing angle­of­attack (figure 3.4e). Both terms were approx­
imated by a quadratic relation

csa = csa−αaα
2 + csa−αbα (3.8)

dsa = dsa−αaα
2 + dsa−αbα. (3.9)

For the fruit fly wing, the coefficients were estimated as csa−αa = 2.01 · 10−13 µNs6,
csa−αb = −4.89 · 10−13 µNs6, dsa−αa = −1.29 · 10−6 µN s2 and dsa−αb = 4.5 · 10−6 µN s2.
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Stroke­rate forces

The forces in absence of stroke­acceleration (Bsr) are also a function of the stroke­
rate (ωs) and the angle­of­attack (α) (figure 3.4b). These forces should coincide with
the stroke­rate forces (Fsr, equation (3.4) and (3.21)), because without any stroke­
acceleration the stroke­acceleration forces and the interaction forces are equal to zero
(see equation (3.6)). Therefore the same relation to model Bsr is used as for the
stroke­rate forces (equation (3.21))

Bsr = hsrω
2
s , (3.10)

where the coefficient hsr increases with angle­of­attack (figure 3.4e) similar to the
stroke­rate forces. Therefore, again a simple quadratic relation is used to model the
dependence of hsa on the angle­of­attack α as

hsr = hsa−αaα
2 + hsa−αbα. (3.11)

For the fruit fly wing, the values of these coefficients are hsa−αa = −1.25 · 10−9 µN s2

and hsa−αb = 2.41 · 10−7 µN2. These forces only depend on the stroke­rate, and
therefore are expected to coincide with the stroke­rate forces Fsr described earlier.
However, the forces estimated by equation (3.10), are slightly lower than the forces
estimated by equation (3.21)). This difference is caused by a non­linear behavior for
low stroke­accelerations (below 5 · 105 rad s−2) as explained the following section.

Deceleration

For the simulations with a negative stroke­acceleration, we repeated the steps as for
the accelerating wings. The total stroke­based forces Fs are again approximated by a
linear relation (3.6) (figure 3.5a). The slope of this linear approximationAsa shows a
similar relation with the stroke­rate ωs (figure 3.5b). The forces that only depend on
the stroke­rateBsr are now estimated to be higher than the stroke­rate forcesFsr from
equation (3.21). Directly comparing the model for acceleration and deceleration show
that there is an offset, suggesting a non linear effect at very low stroke accelerations.
This non­linearity can be modeled using some form of a mixing function. However,
in the current study we only included the deceleration for a single angle­of­attack,
meaning that we were unable to determine this non­linear mixing function.
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3.3.2 Geometrical scaling

For the 14 different wing morphologies, we computed the two coefficients Asa and
Bsr (figure 3.6a, d). We then estimated their dependence on the stroke­rate using the
same equations as for the fruit fly wing morphology (equations (3.7), (3.10)). After
this last step, the stroke­based forces Fs can be approximated by three coefficients
csa, dsa and hsa. The first two coefficients show a linear relation with the scaling
proposed in equation (3.5) (figure 3.6b, c respectively). The last coefficient (hsr)
depends on the second moment of area along the span Syy (figure 3.6e). The final
model for the stroke­acceleration forces Fsa and interaction forces Fsr−sa becomes:

Fsr−sa = ρ
[(
c∗sa−αaα

2 + c∗sa−αbα
)
ω̇sωs

√
SyySsedov,

]
(3.12)

Fsa = ρ
[(
d∗sa−αaα

2 + d∗sa−αbα
)
ω̇s

√
SyySsedov

]
, (3.13)

where we assume that the fractions c∗sa−αa/c
∗
sa−αb and d∗sa−αa/d

∗
sa−αb are the same

for each geometry. From that assumption we derived the coefficients based on N =

15wing geometries as: c∗sa−αa = 3.02 · 10−8±6.13 · 10−9 s4, c∗sa−αb = −7.35 · 10−8±
1.49 · 10−8 [­], d∗sa−αa = −1.98 · 1011 ± 2.01 · 109[­] and d∗sa−αb = 6.92 · 1011 ±
7.05 · 109 [­], which are the coefficients independent of the wing morphology.

3.3.3 Aerodynamics of the stroke­acceleration forces

The pressure distribution psa on the wing surface due to the stroke­acceleration ω̇s

is approximated in two consecutive steps; First, the total pressure distribution ps

for a wing with high stroke­acceleration ω̇s = 4.5 · 106 rad s−2) and low stroke­rate
ωs = 500 rad s−1 is extracted (figure 3.10a, b). Secondly, the pressure distribution
psr of a wing moving at the same stroke­rate (figure 3.10c, d); ωs = 500 rad s−1), but
without a stroke­acceleration is extracted. The pressure distribution resulting form
stroke acceleration is estimated as

psa ≈ ps − psr. (3.14)

Here, we have assumed that the effect of the interaction term is limited at these low
stroke­rates. The pressure distribution psa (figure 3.10e, f ) is a result of the wing
acceleration, and the stroke­acceleration interaction term (Fsa and Fsr−sa in equation
(3.4) respectively).
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Effect of the stroke­acceleration

We estimated the pressure distribution psa (equation (3.14)) on the top, bottom and
in a plane perpendicular to the span of the wing (figure 3.7a) for a wing moving at
different stroke­accelerations (figure 3.7). A low pressure region is formed on the top
surface of the wing and a high­pressure region on the bottom of the wing. The low
pressure region appears to develop slower (figure 3.7b vs d) than the high pressure
region on the bottom of the wing. A similar pattern is observed when comparing the
top surface with the bottom surface (figure 3.7f –i, j–m).

The pressure region on top of the wing shows a small asymmetry along the chord,
where the lower pressure region is located more towards the trailing edge of the wing.
This might be the result of the pressure distribution of the interaction forces (see sec­
tion 3.3.4), or an interaction with the leading­edge vortex on the top surface of the
wing. The pressure region on top of the wing is symmetrical with the chord of the
wing and has its maximum around 2mm from the base of the wing.

Angle­of­attack effect

The change of the angle­of­attack α shows a similar pattern as the change of the
stroke­acceleration ω̇s (figure 3.8). The development of the high­pressure region on
the bottom surface is slowly followed by the development of a low­pressure region
on the top surface with an increasing angle­of­attack (figure 3.8a–d). On the bottom
surface, the maximum pressure is again located close to the center of the chord and
2mm from the root along the span (figure 3.8e–h). On the top surface, the low pres­
sure region is formed closer to the trailing edge. Interestingly, the low pressure region
moves further away from the root for an increase in angle­of­attack (figure 3.8i–l).

Aerodynamics of deceleration

The pressure distribution due to thewing deceleration (psa) shows that the low­pressure
region is now located on the bottom of the wing and the high­pressure region on top
of the wing (figure 3.9a–d). Interestingly, the high­pressure region that is now lo­
cated on top of the wing shows a shift towards the trailing edge. This shift towards
the trailing edge is similar to the shift of the low­pressure region of the accelerating
wing (figures 3.7 and 3.8). This further strengthens the notion that this shift is due to
the interaction with the leading­edge vortex.
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Geometrical scaling

We estimated the thickness of the accelerated fluid layer (δsa) from the pressure dis­
tribution on the wing­surface due to the stroke­acceleration. We first assumed that
this pressure distribution was caused only by the acceleration of a volume of fluid V .
The acceleration of the wing at any given location along the span y

a = ω̇sy. (3.15)

With the use of the second law from Newton we can use this local acceleration a to
compute the local force (dF ) acting on the surface of the wing

m · a = ρV ω̇sy = dF . (3.16)

The local force acting on the surface of the wing dF can also be derived from the
pressure distribution

dF = psadA, (3.17)

where dA is the surface of an infinitesimal part of the wing. The volume of air that
is acceleration (V , equation (3.16)) can be written in terms of this same surface V =

δsadA. Combining this with equation (3.16) and (3.17)

ρδsadAω̇sy = psadA (3.18)

δsa =
psa
ρω̇sy

. (3.19)

A schematic representation of the shape of the fluid­layer (figure 3.10g) shows an
elliptical shape of the fluid­layer across the chord. We computed the thickness of
the fluid­layer for the elliptical wings with a changing chord length (figure 3.10h–l),
which shows that the chord length influences the thickness of the fluid­layer. The
thickness of the fluid­layer decreases over the span, which was not predicted by the
blade­element model (equation (3.3)). This aerodynamic effect explains why a geo­
metrical scaling parameter that includes the influence along the span and chord was
needed to normalize the forces

(√
SyySsedov

)
.
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3.3.4 Aerodynamics of the interaction forces

The pressure distribution due to the interaction psr−sa was estimated by taking the
difference between twowingsmoving at the same stroke­acceleration ω̇s, but different
stroke­rates ωs, which results in

psr−sa ≈ [ps (ω̇s, ω1)− psr (ω1)]− [ps (ω̇s, ω2)− psr (ω2)] , (3.20)

where we took the baseline stroke rate at ω2 = 750 rad s−1 and the first stroke rate
at ω1 = 1750 rad s−1. We computed the pressure distribution due to the interaction
psr−sa for four different stroke accelerations (figure 3.11). The pressure on the bottom
of the wing (figure 3.11a–d) is almost unaffected by the stroke­interaction. However,
the pressure distribution on top of the wing (figure 3.11e–h) is increased over a large
portion of the wing surface. Only near the tip of the wing, a negative region is formed.
This increase in the pressure on top of the wing causes a reduction of the net pressure
distribution (figure 3.11i–l), which is in line with the reduction of the forces due to
the interaction mechanism (see section 3.3.1).

This same pattern of reduction persists with different angles of attack (figure
3.12i–l). The reduction of net pressure does move from the tip of the wing closer
to the root of the wing. The span­wise vorticity is reduced for a wing moving with
a stroke­acceleration (figure 3.12e–h) when compared with a wing moving without a
stroke­acceleration (figure 3.12a–d). This reduction of the span­wise vorticity hints
at a reduction of the leading­edge vortex when the wing is accelerating.

3.3.5 Application of the model

The model we found for the forces on a wing moving at a non­constant stroke rate
(equation (3.12) and equation (3.13)) was applied to the kinematics of a fruit fly [17]
and a malaria mosquito [18] (figure 3.13a and b respectively). A full definition of the
model can be found in the appendix section 3.10.

The stroke­rate forces for the fruit fly are dominant for both drag and lift (100%
and 95% of the total forces respectively 3.13g, i). The maximum of these stroke rate
forces is reached around mid­stroke for both the forward­stroke and backward­stroke.
For the mosquito, the stroke­rate forces also reaches a maximum around mid­stroke
(figure 3.13h, j). However, the dominance of the stroke­rate forces for the mosquito
wing motion is less pronounced than for the fruit fly (drag 71% lift 87% of the total
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forces).
The stroke­acceleration forces are around zero during mid­stroke of both the fruit

fly (figure 3.13e, g and i) and the mosquito (figure 3.13f,h and j), when the stroke
acceleration is zero. Before mid­stroke the stroke­acceleration forces have a positive
contribution to both lift and drag. At the start of the stroke, the stroke­accelerations are
positive (figure 3.1e). After mid­stroke, the wing is decelerating, preparing to change
direction at stroke­reversal. This leads to a negative contribution of the acceleration­
reaction forces to both lift and drag. The latter is interesting, because a negative drag
means that the wing is actually propelled by the stroke­acceleration forces.

Finally, the interaction forces do not appear to play any significant role in either
the fruit fly (lift 0.3%, drag −0.2%) or the mosquito (lift 0.8%, drag 0.5%). This
means that the interaction between the stroke­rate forces and the stroke acceleration
forces can be neglected when modeling the forces of flapping flight for the considered
medium­sized insects.

3.4 Discussion

3.4.1 The stroke­acceleration model

In this study, we showed that the stroke­based forces Fs comprises of three terms:
the stroke­rate forces Fsr, the interaction forces Fsr−sa and the stroke­acceleration
forces Fsa. For the last two forces, we developed a model that links the stroke­rate
ωs, stroke­acceleration ω̇s, the angle­of­attack α and the wing morphology to the
generation of forces.

Other models were based on a two­dimensional model for an accelerating flat
plate in inviscid flow [7, 12, 14, 15, 23, 16]. Ourmodel is the first that used fully three­
dimensional viscous flow as a basis for a model of the stroke­acceleration forces. Fur­
thermore, we explicitly tested if the stroke­acceleration forces Fsa where influenced
by the stroke­rate forces Fsr, through the inclusion of the interaction forces Fsr−sa.

To isolate the stroke­based forces Fs from other possible aerodynamic mecha­
nisms, we kept the angle­of­attack α constant within a single simulation. This means
that the wing was not undergoing any pitch­motion, and that the aerodynamic mecha­
nisms associated with this motion where not present [7, 9]. Thus, possible interactions
with pitch motions have not been tested.

Furthermore, insects flap their wings back and forth; hence they flap back through
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their ownwake [10, 11, 12]. In our study, we eliminated the effect of this wake­capture
mechanism by excluding a reciprocal wing movement. This also meant that we could
not study the effect of wake­capture on the stroke­acceleration forces.

It takes time for the flow around a moving wing to develop [21]. To remove the
dependence of this development time, we made sure that each simulation took exactly
1ms. However, it is unclear if the development time of the flow is not influenced by
the wing motion and angle­of­attack.

3.4.2 The stroke­acceleration forces

The model for the stroke­acceleration forces (equation (3.13)) resembles the model
based on two­dimensional inviscid flow (equation (3.3)). Here we showed that the
previous two­dimensional model over­predicts the stroke­acceleration forces slightly
Fsa based on an angle­of­attack of α = 45° and the ”old” geometrical scaling [16,
14, 7, 12, 15]. This force difference can be explained by the volume of fluid that is
accelerated by the wing. In the two­dimensional model, it was assumed that a cylinder
of fluid is accelerated with the wing [23]. However, our flow­field analysis shows
that the shape of the accelerated fluid was elliptical. Furthermore, the height of the
accelerated fluid layer decreased along the span. Taken together, these points explain
the difference in the two­dimensional model and our three­dimensional model.

The decrease of the fluid­layer over the span of the wing also showed that the
length of the wing is an important geometrical scaling parameter. Therefore, we pro­
posed a geometrical scaling where we combine the second moment of area along the
span, and the geometrical scaling Ssedov. The proposed geometrical scaling robustly
makes our model independent of the wing morphology.

In the geometrical scaling, the wing length and the wing chord both play a equal
role. This means that contrary to the original scaling a low­aspect ration and high­
aspect ratio are both equally influenced by the stroke­accelerations.

In this study, we used a set of 15 rigid model wings. However, the wings of
insects are deformable, which might influence the generation of forces. Based on
the pressure distribution of the stroke­acceleration forces (figure 3.7) the center of
pressure can be approximated at half the chord­length and 2/3 span. The location
of the center of pressure lies close to the rotation axes, and therefore we expect that
the wing deformations due to stroke­acceleration will not be as large as for instance
the wing deformation due to pitch­based motions [4, 7, 8, 9]. However, the stroke­
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accelerations often occur when the wing also has a large pitch rotation around its
span. Therefore, more research on the effects of the deformation of the wing on the
stroke­acceleration based forces is needed.

3.4.3 The interaction forces

The interaction forces Fsr−sa explicitly model the interaction between the stroke­
rate forces Fsr and the stroke­acceleration forces Fsr−sa. It shows that large stroke­
accelerations in combination with large stroke­rates reduce the leading­edge vortex
(LEV) and therefore reduce the stroke­acceleration forces. This reduction of the LEV
can be explained by a decrease in the pressure region on the top surface of the wing.
This decrease in pressure region creates a steeper pressure gradient, which in turn
reattaches the separated flow faster. This hypothesis should be further studied to better
understand the effect of stroke­accelerations on the LEV.

The reduction of the stroke­acceleration forces is minimal for lower stroke rates
and stroke accelerations. This can clearly be observed from figure 3.4a. It can also be
seen from the application of the model to the kinematics of the fruit fly and mosquito
(figure 3.13a and b respectively), where the interaction forces almost played no role
compared to those from other aerodynamic mechanisms. Therefore, for insects with
similar wingbeat kinematics as the fruit fly and mosquito the interaction forces can
safely be ignored.

3.4.4 Importance for insect flight

The stroke­acceleration forces are often not taken into account when studying in­
sect flight. For insects with a high­amplitude and a low frequency, like for instance
the fruit fly, this might be appropriate for a first order approximation of the forces.
However, for insects with a higher wing­beat frequency, such as the mosquito the
instantaneous stroke­acceleration forces play a more prominent role.

For insect flight maneuverability, the stroke­acceleration forces might play amore
prominent role than for weight support. Many adjustments of the wingbeat kinemat­
ics for maneuvering occur during stroke­reversal [17], which is the phase where the
stroke­acceleration forces appear prominent in both the fruit fly and the mosquito.

The model proposed in this study is a new take on a known aerodynamic mech­
anisms, with the use of a systematic parametric study based on computational fluid
dynamics. Furthermore, with the use of our two model species, the fruit fly and the
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malaria mosquito, we showed that the stroke accelerations play an important role in
the transient force generation of these insects. For high­frequency flappers, like the
malaria mosquito, the stroke acceleration forces do influence the force required for
weight support. This study is one of the first steps into a broader and more universal
understanding in the flight of flapping insects.
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forward­ and backward­stroke respectively. (c, d) Kinematics of a fruit fly (blue) [17]
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stroke­velocity and stroke­acceleration respectively. (f ) Definition of the world­
reference­frame, wing reference frame and the stroke angle and angle­of­attack. (g,
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accelerations at the end of the simulation indicated by the color­bar, stroke rate and
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Figure 3.7: Effect of the stroke­acceleration on the pressure field for the fruit fly
wingmorphology. (a) Schematic representation of a fruit fly wing under and angle­of­
attack ofα = 36°, square indicates the extraction plane used for panel b–e. (b–e) Pres­
sure distribution due to the stroke­acceleration psa (equation (3.14)) for 1 · 106 rad s−2,
2 · 106 rad s−2, 3 · 106 rad s−2, 4 · 106 rad s−2 respectively. (f –i) Pressure distribution
psa on the bottom surface for a wing with a stroke­acceleration of 1 · 106 rad s−2,
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Figure 3.8: Effect of the angle­of­attack on the pressure field for the fruit fly wing
morphology, ωs = 500 rad s−1, ω̇s = 4 · 106 rad s−1. (a–d) Pressure distribution due
to the stroke­acceleration psa (equation (3.14)) for angles of attack 27°, 45°, 63° and
81° respectively, in a plane perpendicular to the span 2mm from the root (figure 3.7
a). (f –i) Pressure distribution psa on the bottom surface for a wing with the angles
of attack 27°, 45°, 63° and 81° respectively. (i–l) Pressure distribution psa on the top
surface for a wing with the angles of attack 27°, 45°, 63° and 81° respectively.
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Figure 3.11: Effect of the stroke­acceleration on the pressure distribution due to the
interaction for the fruit fly wing morphology at an angle­of­attack α = 36°. (a–d)
Interaction pressure distribution psr−sa (equation (3.20)) on the bottom surface of a
wing moving with ω̇s = 1 · 106 rad s−2, ω̇s = 2 · 106 rad s−2, ω̇s = 3 · 106 rad s−2 and
ω̇s = 4 · 106 rad s−2. (e–h) Interaction pressure distribution psr−sa (equation (3.20))
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Figure 3.12: Effect of the angle­of­attack on the interaction pressure distribution
(psr−sa (equation (3.20)) for the fruit fly wing morphology with α = 36°, ωs =
1250 rad s−1 and ω̇s = 4.5 · 106 rad s−2. (a–d) Span­wise vorticity of a wing without
stroke­acceleration for α = 27°, α = 45°, α = 63°, α = 81° respectively. (e–
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α = 63°, α = 81° respectively. (i–l) Interaction pressure distribution (equation
(3.20)) for α = 27°, α = 45°, α = 63°, α = 81° respectively.
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Figure 3.13: Application of the stroke­acceleration model to the wing motion of
the (a, b) fruit fly [17] and (c, d) mosquito [18]. (e, g) Pressure forces in the wing
reference frame, for the fruit fly and mosquito respectively. (f, h) Average pressure
forces in the wing reference frame. (i, k) Lift forces perpendicular to the wing velocity
vector for the fruit fly and mosquito respectively. (j, l) Average lift force for the fruit
fly and mosquito respectively. (m, o) Drag forces, parallel to the wing velocity vector,
for the fruit fly and mosquito respectively. (n, p) Average drag forces for the fruit fly
and mosquito respectively. For the stroke rate contribution (blue), stroke­acceleration
contribution (green), interaction contribution (brown) and total (grey). Vertical line
indicates stroke­reversal.
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3.7 List of symbols

Table 3.2: List of symbols

Symbol unit Description

α ­ angle­of­attack

Asa µN s2 kgm−3 Coefficient that relates the stroke acceleration to the stroke based forces

Bsr µNkgm−3 Offset of the stroke based forces uninfluenced by the stroke acceleration

c mm chord length

cmax mm maximum chord length

csa µNs6 kg/m3 Coefficient that relatesAsa to the stroke rate

csa−αa, csa−αb µNs6 kg/m3 Coefficients that relates the coefficient csa to the angle­of­attack α

C⃗sr ­ stroke rate force coefficients

dsa µN s2 kgm−3 Offset of the coefficientAsa independent of the stroke rate

dsa−αb, dsa−αb µN s2 kgm−3 Coefficients that relates the coefficient dsa to the angle­of­attack α.

δsa mm thickness of the accelerated fluid layer

F⃗sr µN stroke rate forces

Fs µN stroke based forces

Fsr µN stroke rate forces

Fsr−sa µN stroke rate stroke acceleration interaction forces

Fsa µN stroke acceleration forces normal to the wing surface

F⃗sa µm stroke acceleration forces

F⃗sa,2D µm stroke acceleration forces estimate based on the blade element model

Fs,z µN stroke based forces normal to the wing surface

γ ­ stroke angle

hsr µNs4 kg/m3 Coefficient that relates the offset inBsr to the stroke rate

hsa−αa, hsa−αb µNs4 kg/m3 Coefficients that relates the coefficient hsr to the angle­of­attack.

ωs rad s−1 stroke rate

ω̇s rad s−2 stroke acceleration

psa Pa pressure distribution due to the stroke accelerations

ps Pa pressure distribution due to the stroke rate and stroke acceleration

psr Pa pressure distribution due to the stroke rate

psr−sa Pa pressure distribution due the to stroke rate stroke acceleration interaction

θ ­ deviation angle

ϕ ­ pitch angle

Syy mm4 span­wise second moment of area

Ssedov mm second moment of area based on a cylinder of accelerated fluid

R mm distance from wing root to wing tip

Continued on next page
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Continued from previous page

Symbol unit Description

ρ kgm−3 fluid density

V m3 volume of fluid accelerated with the wing

v⃗ ms−1 velocity of the fluid

[x, y, z]T mm position in the wing reference frame

3.8 Viscous forces

For the fruit fly wing geometry, we extracted the viscous forces along the chord (figure
3.14) and along the span (figure 3.15). We approximated the dependence of viscous
forces on the stroke acceleration ω̇s with the same linear relation used to predict the
dependence of the pressure forces on the stroke­acceleration (equation (3.6).

The viscous forces along the chord aremainly influenced by the stroke­acceleration
for lower angles of attack (figure 3.14a – d). For the span­wise viscous forces an opp­
site effect is observed (figure 3.15). However, both the chord­ and span­wise forces
are minimal compared to the forces normal to the wing surface (figure 3.3).

3.9 Stroke­rate forces

The stroke­rate forces (Fsr are the forces a function of the angle­of­attack α, stroke­
rate ωs and wing morphology (see equation (3.4)). In this study, we conducted a total
of 76 simulations where we systematically varied the stroke­rate, angle­of­attack, and
the wing morphology (see table 3.3)

Table 3.3: Stroke­rate kinematics overview
Geometry α [­] ωs [rad s−1]
fruit fly 9° to 90° 250 to 1750
mosquito 36° 500 to 1500
ellipse constant Ssedov 36° 500 to 1500
ellipse variable chord cmax 36° 250 to 1750
ellipse variable wing length R 36° 250 to 1750

The forces at the end of the simulation (1ms) show a quadratic relation with the
stroke­rate ωs (figure 3.16 a–c). The viscous forces (Fx and Fy) are approximately
10% of the total forces. The viscous force along the chord of the wing (Fx is dom­
inant for lower angles of attack, and decreases with an increase in angle­of­attack.
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Interestingly, this force switches sign around an angle­of­attack of 72°. Contrary to
the chord­wise force, the span­wise force (Fy) increases with the angle­of­attack up
to around 72°, after which it starts to decrease. For each angle­of­attack, the forces
can be approximated by the function

F⃗sr = ρ

Csr−xωaω
2
s + Csr−xωbωs

Csr−yωaω
2
s + Csr−yωbωs

Csr−zωaω
2
s

Syy, (3.21)

where Syy is the second moment of area along the span, and the coefficients Csr−∗ω∗

are determined from fitting equation (3.21) to the results of our simulations. The
fitting coefficients are dependent on the angle­of­attack (figure 3.16 (d–h), and are
approximated by a simple quadratic relation as

Csr−∗ω∗ = Csr−∗α∗aα
2 + Csr−∗α∗bα+ Csr−∗α∗c. (3.22)

The resulting fitting coefficients are only valid for the fruit fly wing morphology
and are presented in table 3.4

Table 3.4: Fitting parameters of equation (3.21) and (3.22)
Csr−∗α∗a Csr−∗α∗a Csr−∗α∗a

Csr−xωa 0.19 −0.39 0.14
Csr−xωb −29.96 −49.06 148.27
Csr−yωa −0.12 0.16
Csr−yωb 26.99 30.99
Csrzωa 1.57

To test the dependence of stroke­rate forces on the wing morphology, we included
an additional 14 wing morphologies. Of each of these geometries, we determined the
coefficients of equation (3.21), and compared these 14 geometries with the second
moment of area along the span Syy (see figure 3.17). We assumed that the relation
of these 14 coefficients with the angle­of­attack is not dependent on the wing mor­
phology. The quadratic component of both the span­wise viscous force (Fy) and the
pressure force Fz show a linear relation with the span­wise second moment of area
Syy (figure 3.17 b and c). At first sight, the scaling of the quadratic term of the chord­
wise viscous force Fx appears to be poor. However, the quadratic term is small, and
the chord­wise viscous force scales almost linearly with the stroke­rate ωs. There­
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fore, we assume that the proposed scaling is still adequate for the chord­wise viscous
forces. Indeed, the linear term of the chord­wise viscous force (figure 3.17 d) does
scale with the span­wise second moment of area Syy. The same can be said for the
linear term of the span­wise viscous force Fy.

3.10 Quasi­steady model

To test how the stroke­acceleration forces influence the total force production of flap­
ping insects, we developed a quasi­steady model. This model is only based on the
forces generated due to a stroke­motion (see forces in equation (3.4). The kinematics
used in this study where based on three angles; the stroke­angle γ, the deviation­angle
θ and the pitch­angle ϕ. From these three angles the total rotation matrix is defined
as

A = AγAθAϕ. (3.23)

From the rotation matrix we determined the angular rotation of the wing in the
world reference frame:

ω =

 0 ωz ωy

ωz 0 −ωx

ωy ωz 0

 =
dA

dt
AT . (3.24)

From the angular velocity matrixω the angular velocity vector ω⃗ = [ωx, ωy, ωz]
T

is determined. The angular velocity in the world­reference frame is then rotated to
the wing­reference frame with

ω⃗wing = AT ω⃗world. (3.25)

The angle­of­attack α is determined from the angular velocity in the wing refer­
ence frame as

α = tan−1

(
ωx

ωz

)
sign (ωx) . (3.26)

The multiplication with the sign of the angular velocity ωx in the wing reference
frame is included to change the sign of the angle­of­attack according to the direction
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of motion of the wing. The stroke rate ωs is positive by definition and can easily be
obtained with

ωs =
√

ω2
x + ω2

z . (3.27)

Finally, the stroke acceleration ω̇s is obtained by differentiating the stroke rate ωs

ω̇s =
d

dt
(ωs) . (3.28)

3.11 Supplementary figures
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Figure 3.14: Viscous forces along the chord for the fruit fly wing morphology as a
function of the stroke­acceleration ω̇s, colored by the stroke­rate ωs (see colorbar),
for different angles of attack (a–k, 9° to 90° respectively).
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Figure 3.16: Stroke­rate forces for the fruit fly wing morphology in the wing
reference­frame. (a – c) Stroke­rate forces as a function of the stroke­rate ωs colors
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Chapter 4

Abstract

Flying insects flap their wings back and forth at high frequencies to generate the forces
required for flight. At the end of each of each wing stroke, the insect rotates its wing
around it span to prepare for the next stroke. Before and after this stroke­reversal,
the angular accelerations of the wing around its span can become very big, and are
expected to influence the forces acting on the wing. With the use of Computational
Fluid Dynamics (CFD), we systematically studied how the pitch motion of the wing
influences the aerodynamic force generation. Furthermore, we varied the wing mor­
phology to study how the forces dependent on the shape of the wing. From these
results, we developed a new phenomenological model for all the forces associated
with the pitching motion of an insect wing. In this model, we also explicitly imple­
mented the interaction between each aerodynamic mechanism present due to a stroke­
and pitch­motion. This newly acquired model underlines the importance of the pitch
acceleration forces for insect flight, specifically for high­frequency flappers such as
the mosquito.

4.1 Introduction

Dipteran fliers flap their wings back and forth at high­frequencies to produce the re­
quired forces and torques to hover and maneuver [1] . During each back­ and forth­
motion (wing­beat) the wing has to be re­orientated for the next wing­beat (figure 4.1
a, b, example for the fruit fly)[2]. Apart from reversing the direction of motion of the
wing, the wing is rotated around its span to attain a positive angle­of­attack for the
next wing­beat. Before this reorientation the wing motion is dominated by extreme
angular accelerations around its span­wise axis (figure 4.1 i for the fruit fly [2] and
mosquito [3]). Previously, we observed that this angular acceleration has an big effect
on the forces acting on the wing (chapter 2).

A systematic approach of linking themotion of thewing to the aerodynamic forces
can be found in so called aerodynamic mechanisms [1], which are sometimes called
phenomenology based models [4] . An aerodynamic mechanism is a link between a
subset of the motion of the wing and a force generation. Aerodynamic mechanisms
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are often combined into a single quasi­steady model that can be used to predict forces
acting on the wing with only the use of the kinematics and wing morphology [1] .

As an example of an aerodynamic mechanism, the angular velocity during mid­
stroke and the high­angle­of­attack is linked to the so­called stroke­based forces (trans­
lational forces)[5]. The high­angle­of­attack in combination with the stroke rate sep­
arates the flow directly at the leading edge. The separated flow reattaches before the
trailing edge, forming a leading­edge­vortex (LEV) [6]. This generation of the LEV
is thought to be the main physical principle why insect can fly at such remarkably
high­angles [5], [6] . A model for the stroke­based forces is based on the principle
that the angular velocity of the wing causes a pressure difference between the top and
bottom surface proportional to the stroke­velocity (ωs) [5] and consequently can be
written as

Fsr =
1

2
ρCsr (α)ω

2
s

∫ R

0
y2cdy, (4.1)

where ρ is the density of the surrounding fluid, Csr (α) is the force coefficient as a
function of the angle­of­attack α, y the coordinate along the wing span, c the local
chord length, and R the length of the wing. The integral in equation (4.1) relates the
wing morphology to the scaling of the forces and is known as the span­wise second
moment of area Syy.

Another aerodynamic mechanism links the rotation of the wing around its span at
the end and start of the forward­stroke and backward­stroke (figure 4.1 a, b, c, d) to
the generation an additional set of forces [7, 8, 9, 5]. These forces play an important
role for maneuvering flight [2], but also play an important role for high­frequency
flapping flight found in for instance mosquitoes [8]. The stroke motion of the wing in
combination with the rotation around its span generates so­called stroke­pitch related
forces, which can be seen as a result of an increase of circulation around the wing due
to the pitching motion. Apart from this combination of the pitch­motion and stroke­
motion, the pitch­motion alone also generates forces known as the pitch rate forces [7,
9] . Important for these pitch­related forces is the offset of the pitch axis with respect
to the symmetry axis (chapter 2). A remarkably simple model is found to relate the
forces to the kinematics and geometry of the wing is written as

Fp = ρCpr

[
ωpωs

√
SxxSyy + ω2

pSx|x|

]
, (4.2)
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where Cpr, is the rotational force coefficient, ωp the pitch rate, Sxx, Syy and Sx|x| the
second moment of areas (see supplementary methods, 4.7).

Even though the pitch related forces are relatively well understood, all models
are based on the pitch up motion of the wing [2, 7]. The forces are assumed to be­
have similarly for a wing that is pitching up as it is for a wing that is pitching down.
However, no systematic validation of this assumption has been carried out.

The two aforementioned models, or mechanisms, link the generation of the forces
to the angular­rate, wing morphology and orientation of the wing. However, in reality
the wing is not moving at a constant velocity, but is constantly changing the stroke
rate and pitch rate. The effect of the change in velocity is often captured in the model
known as the added mass or acceleration reaction forces. The first model already
hints about the physical principle thought to be responsible for this mechanism, the
acceleration of a mass of fluid around the wing [10]. This idea is captured in an
equation as

F⃗am = ρV
dv⃗

dt
. (4.3)

Here V is the volume of accelerated fluid and v⃗ is velocity of the fluid. A simple two
dimensional model [11] is often integrated over the wing to find the effect of the wing
acceleration [4, 12, 13, 14]  . This integration results in

Fsedov,3D =
ρπ

4

[∫ R

0
ω̇syc(y)

2dy +

∫ R

0
∆xω̇pc(y)

2dy

]
. (4.4)

In equation (4.4) the forces generated by the wing are again linked to the kinematics
of the wing and the geometry and suggest a linear dependence of the forces on the
stroke­acceleration (first term) and pitch­acceleration (second term). In this study,
we focused on the pitch motion of the wing, and therefore ignored the first term in
equation (4.4).

When we combine the model for the pitch rate forces (equation (4.2)) with the
pitch acceleration forces (last term equation (4.4)) we should be able to predict all the
forces associated with a pitching wing. However, it is unclear if these two aerody­
namic mechanisms influence each other. Furthermore, to our knowledge no system­
atic validation of equation (4.4) is presented in literature. And lastly, there appears
to be no convergence on the choice of geometrical scaling used for this model, for
example in the scaling the offset∆x is sometimes ignored in favor of a scaling based
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on the chord length [9] .
In this study, we will limit our attention to all forces associated with a pitching

motion of the wing. To accomplish this, we designed four distinct wing kinematics
which enabled us to differentiate between a wing that is pitching up, and pitching
down, accelerating and decelerating. With the use of computational fluid dynamics
(CFD) solver based on the immersed boundary methods (IBAMR) [15], we systemat­
ically varied the kinematics over a large parametric space. The kinematics of the fruit
fly (Drosophila hydei)[2] and malaria mosquito (Anopheles coluzzii)[3] largely fall
within the simulated parametric space. Apart from systematically changing the wing
kinematics, we also varied the wing morphology with the inclusion of seven different
wing morphologies. Two of these wing morphologies are based on insects, and five
wing morphologies are generic elliptical wings.

The inclusion of the four kinematic cases, and seven wing morphologies has the
disadvantage of becoming complex and difficult to comprehend. Therefore, we in­
cluded road map (see section 4.2.7 figure 4.4). The advantage of this approach is
that we where able to explicitly test the interaction between different aerodynamic
mechanisms, test the difference between a wing that is pitching up or down, test the
difference between an accelerating and decelerating wing, and finally test the effect
of the wing morphology on the forces. At the end of our study (section 4.3.3), we
applied our newly constructed model to the kinematics of the fruit fly and mosquito.
Especially for the mosquito, the forces due to the pitch motion of the wing play an
important role in the generation of lift and drag.

4.2 Material & methods

4.2.1 Nomenclature

Here we will look at the effect of the pitch­acceleration on the other known aerody­
namic mechanisms found in insect flight. In line with previous studies on pitch­rate
aerodynamic mechanisms we will focus only on the forces perpendicular to the wing­
surface [7, 9, 5]. We based the name of the aerodynamic mechanism on the motion
to which it is related. For instance, stroke­rate forces is based on the ”stroke­rate”
motion of the wing. Sometimes such a naming scheme is impractical, for instance
when we want to discuss all the forces associated with a pitching moment. In such a
case, we named the forces after the motion itself, e.g. pitch­based forces. The total
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forces Ft are the sum of the stroke­based forces Fs and the pitch based forces Fp

Ft = Fs + Fp. (4.5)

We defined a generic model that captures the influence of the stroke­rateωs, pitch­rate
ωp and pitch­acceleration ω̇p on the pitch­based forces Fp

Fp = Fpr + Fpa + Fsr−pr + Fsr−pa + Fpr−pa + Fpr−sr−pa, (4.6)

where Fpr are the pitch­rate forces, Fpa the pitch­acceleration forces, Fsr−pr the
stroke­pitch­rate interaction forces, Fsr−pa the stroke­rate pitch­acceleration inter­
action forces, Fpr−pa the pitch­rate interaction forces and Fpr−sr−pa the pitch­stroke
rate interaction forces.

4.2.2 Numerical setup

All the simulations in this studywere carried out with the immersed boundarymethods
solver IBAMR [15], on a Cartesian grid with adaptive mesh refinement. We chose a
domain of 5 cm x 5 cm x 5 cmwith a periodic boundary conditions on the walls and on
the wing we used a no­slip boundary condition. The mesh­ and time­step were chosen
at ∆x = 0.01mm and ∆t = 1 · 10−7 s, which led to a mesh with approximately four
million cells and twelve thousand time­steps. The solver was validated in a previous
study [7].

4.2.3 Wing morphology

Wevaried thewing­morphology to determine the geometrical scaling parameter in our
model. Two wing morphologies were based on insects, namely the wing of the fruit
fly [2]  and the mosquito [3]. The mosquito combines a high­frequency (600 s−1), low­
amplitude (40°) kinematics with a slender wing (figure 4.2 f ), whereas the frequency
of the fruit fly is considerable lower (190 s−1), and its wing is less slender (figure 4.2
g).

In addition to the two insect wings, we designed a set of 5 elliptical wings where
the offset of the pitch­axis with respect to the symmetry axis (∆x, equation (4.4)) was
systematically varied from 0mm to 0.4mm. These elliptical wings where designed
such that the parametric space of the geometrical scaling parameters Syy and Sx|x|
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completely enclosed the geometrical parameters of the fruit fly and mosquito wings
(figure 1h).

4.2.4 Reference frames

Themotion of thewing (kinematics) were defined in the right­handedworld­reference­
frame with the origin placed at the root of the wing(figure 4.1 c). The stroke­angle
γ was defined around the z­axis of the world­reference­frame and the pitch­angle ϕ
around the y­axis of the wing­reference­frame (figure 4.1 c, y). Because the kinemat­
ics (see section 4.2.5) did not have any out of plane motion the angle­of­attack and
pitch­angle are the same, we therefore chose to name the pitch­angle as the angle­of­
attack.

The forces were computed in the world­reference­frame and then transformed
to the right­handed wing­reference­frame. The wing­reference­frame is attached a
reference frame attached to the wing with the x­axis parallel to the wing surface,
pointing from the leading­edge towards the trailing­edge. The y­axis is parallel to
the wing surface pointing from the root of the wing towards the tip of the wing. The
z­axis was defined perpendicular to the wing surface. As a result the forces along the
x­ and y­axis of the wing­reference frame are only viscous forces, the forces on the
wing along the z­axis are only pressure forces.

4.2.5 Kinematic setup

We used four distinct cases: pitching up and accelerating up (ωp > 0, ω̇p > 0),
pitch up accelerating down (ωp > 0, ω̇p < 0), pitching down and accelerating down
(ωp < 0, ω̇p < 0) and pitch­down and accelerating up (ωp < 0, ω̇p > 0) (figure 4.3
a–d). For each of these different cases we designed the wing motion (kinematics)
such that the force due to pitch­acceleration could be separated from the other forces.

The first case (I figure 4.3 a) requires the wing to have a positive pitch rate (ωp)
and positive pitch acceleration ω̇p. The wing is first accelerated to a constant stroke­
rate ωs starting at a zero angle­of­attack. After this initial acceleration the wing is
accelerated smoothly around its span to a constant pitch­acceleration (figure 4.3 e, i
and m). The simulation is stopped if the pitch­rate became larger than 3000 rad s−1 or
the angle­of­attack became larger than 70°.

The second case (II figure 4.3 b) requires the wing to have a positive pitch rate
and a negative pitch acceleration. The first step is the same as in the first case. For
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the second step, we increased the pitch rate to 3000 rad s−1 (figure 4.3 j). For the third
step we smoothly decelerated the wing until the pitch rate became 0 rad s−1.

The third case (III figure 4.3 d) was started at an angle­of­attack of 70°, such
that the angle­of­attack remained constant throughout the wing motion (figure 4.3
g). After the wing reached a constant stroke rate, the pitch rate was decreased to a
constant of −3000 rad/second. Finally, the wing was decelerated until it reached a
pitch rate of 0 rad s−1 (figure 4.3 k).

For the forth and final case (IV figure 4.3 c), we started the wing at an angle­of­
attack of 70°. After reaching a constant stroke rate the wing was pitched down with
a constant pitch­acceleration (figure 4.3 l, p). The simulation was stopped when the
wing reached a pitch rate of −3000 rad s−1.

4.2.6 Parametric space

The four kinematic cases, described in the previous section, all had two input param­
eters that define the full kinematics: the stroke rate and the pitch acceleration. For
each kinematic case we systematically varied these parameters (figure 4.1 i, j). We
based the parametric space on the kinematics of the fruit fly and mosquito.

For the first kinematic case (pitch rate up, pitch acceleration up) we varied the
stroke rate form 0 rad s−1 to 1750 rad s−1 with the step size 250 rad s−1, and the pitch
acceleration 4 · 106 rad s−2 to 2 · 107 rad s−2with step size of 2 · 106 rad s−2. The forces
were extracted at the pitch rates in the range 500 rad s−1 to 2750 rad s−1 with a step size
of 250 rad s−1 (see table 4.1, and figure 4.1 i, j). For this kinematic case we included
all wing morphologies (see second 4.2.3, and figure 4.2).

For the second kinematic case (pitch rate up, pitch acceleration down) we used
a similar parametric space as for the first case. The only difference being the pitch
acceleration range, which we varied between −2 · 107 rad s−2 to −6 · 106 rad s−2 with
a step size of 2 · 106 rad s−2 (see table 4.1, and figure 4.1 i, j). For this kinematic case
we only included the fruit fly wing morphology.

For the last two cases (pitch down) we used the same range for the pitch accel­
eration as for case one and case two. The stroke rate is varied between 250 rad s−1

to 1750 rad s−1 with steps of 250 rad s−1. We did not include the zero stroke rate, be­
cause for that kinematic there is not difference between pitch up and pitch down. For
both cases the forces are extracted at pitch rates −3000 rad s−1 to −500 rad s−1 with a
step size of 250 rad s−1 (see table 4.1, and figure 4.1 i, j).
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Table 4.1: Parametric space of the four kinematic spaces.
case geometries ωs [rad s−1] ωp [rad s−1] ω̇p[rad s−2]
I all 0 to 1750 500 to 2750 4 · 106 to 2 · 107
II fruit fly 0 to 1750 500 to 2750 −2 · 107 to −6 · 106
III fruit fly 250 to 1750 −3000 to −500 4 · 106 to 2 · 107
IV fruit fy 250 to 1750 −3000 to −500 −2 · 107 to −6 · 106

4.2.7 Analysis

The four different kinematic cases in combination with seven different wing mor­
phologies not only create a large data set, but also a complex one. To aid the reader
through the rest of this study we created a road map (figure 4.4). As an input for
analysis we start with the four kinematic cases for the fruit fly wing morphology. For
each simulation in these kinematic cases we obtained the forces in the world reference
frame (see section 4.2.4).

The goal of the first step of our analysis (i, figure 4.4)is to obtain the relation
between the pitch based forces Fp and the stroke rate ωs for both a wing pitching up
and down. To accomplish this, we first rotated the forces of each simulation from the
world reference frame to the wing reference frame. Then we subtracted the stroke
based forces (Fsr), which where computed using a previously obtained model (see
chapter 3). For each simulation, we then obtained the forces at specific pitch rates
(see section 4.2.6). The forces of all simulations with the same pitch acceleration
where grouped by the pitch rate and plotted against the stroke rate (see section 4.3.1).

In the second step (ii, figure 4.4, section 4.3.1), we wanted to obtain the relation
between the pitch motion and the force generation in absence of a stroke motion. We
did this in a similar way as our previous study on this subject [7], where we used
the intercept of the relation between the stroke rate and the pitch based forces. In
section 4.3.1 we used this intercept (Bpr) to find the pitch rate forces Fpr and the
pitch acceleration forces Fpa (equation (4.6)).

In the third step (iii, figure 4.4 section 4.3.1), we quantified the interaction be­
tween the stroke motion and the pitch motion for a wing that was pitching up. For
this we took the slope (Apr,u) of the linear relation found between the pitch based
forces and the stroke rate (see section 4.3.1). At the end of this step we obtained
the stroke­pitch interaction forces Fsr−pr, stroke­pitch acceleration interaction forces
Fsr−pa) and the interaction term Fsr−pr−pa for a wing that is pitching up. We re­
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peated this step for the wing that is pitching down in the fourth step (iv, figure 4.4,
section 4.3.1) and obtained the same terms as for the third step.

In the fifth step, we included the effect of changing the wingmorphology (v, figure
4.4, section 4.3.2). For this, we repeated all the steps of the first step for each wing
morphology. From this additional set of simulations, we obtained the geometrical
scaling for a wing that is pitching up and accelerating up.

4.3 Results

In this study, we looked at four different kinematic cases for the fruit fly wing mor­
phology. For one of these kinematic cases we included a total of six additional wing
morphologies (case I). In section 4.3.1 and section 4.3.2, we will uses these kinematic
cases and different wing morphologies to derive a model for the pitch based forces.
Figure 4.4 and section 4.2.7 serve as a road map throughout these two sections. In
section 4.3.3 we will apply the newly found model for the pitch based forces to the
kinematics and morphology of the fruit fly [2] and mosquito [3].

4.3.1 Forces

The total forces for each simulation consist of the summation of the forces of two
aerodynamic mechanisms: the stroke­based forces and the pitch­based forces (equa­
tion (4.5)). The forces due to the stroke­motion in absence of pitch­motion was known
from a previous study (see chapter 3). Therefore the forces were simply determined
as

Fp = Ft − Fs. (4.7)

The resulting pitch­based forces Fp are extracted at a range of given pitch­rates (see
figure 4.5 a for an example). This step enabled us to compare the forces at the same
pitch rate and stroke rate, but with different pitch­accelerations. The second step is
to group the forces by the same pitch­rate and plot the forces against the stroke rate
(figure 4.5 b, for an example). The example (figure 4.5 b) shows a clear linear relation
of the pitch­based forces with the stroke rate. Furthermore, the higher the pitch­rate
the higher the forces become, without violating this linear relation.
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Effect of the stroke motion

We repeated the steps discussed in section 4.3.1 for all 4 kinematic cases for the fruit
fly wing kinematics. The resulting forces due to a pitch­up acceleration are presented
in figure 4.6 and due to a pitch­down acceleration in figure 4.7. This is step i, in figure
4.4.

The forces due to a pitch­up motion, all show a linear relation with the stroke rate,
irrespective of the direction of the pitch­acceleration (pink lines in figure 4.6 and 4.7).
However, when the wing is pitching down the relation is no longer linear (purple lines
in figure 4.6 and 4.7). For lower stroke rates (up to ωs = 1000 rad s−1) it appears that
the pitch­based forces are suppressed. The decay of the pitch­based forces for a wing
pitching down appears to be higher after ωs = 1000 rad s−1. To capture the relation
between the pitch­based forces and the stroke rate ωs we moddeled the pitch­up and
pitch­down separately

Fp =

ρ (Apr,uωs +Bpr) ωp > 0

ρ
(
Apr,dω

2
s +Bpr

)
ωp < 0

, (4.8)

where the three coefficients Apr,u, Apr,d and Bpr are dependent on the pitch rate and
pitch acceleration. The term Bpr models the force that is independent of the stroke
motion of the wing.

Effect of the pitch motion

We are at step (ii) in our road map (figure 4.4). The coefficient Bpr is the intercept
of the lines in figure 4.6 and figure 4.7. This intercepts Bpr increases with increasing
pitch rate for a wing pitching down or up (figure 4.8 a). We grouped all the inter­
cept which were based on simulations with the same pitch­acceleration (figure 4.8
a). In this last step the variation of the pitch­acceleration was removed within a sub­
set, because each force is based on the same pitch acceleration. We estimated the
dependence of Bpr on the pitch rate with a third order polynomial

Bpr = apaω
3
p + bpaωp + cpa. (4.9)

The three coefficients apa, bpa and cpa are determined from fitting equation (4.9) to the
data in figure 4.8 a. All three coefficients show a variation with the pitch acceleration
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(figure 4.8 b – d).
It is difficult to asses the effect of this variation on the forces acting on the wing.

Therefore, we computed the forces of each individual term in equation (4.9) based
on the average, minimum and maximum coefficient (figure 4.8 e–g). The first two
coefficients apa and bpa show little variation in the forces between the minimum and
maximum coefficient. Therefore, we assumed that the two coefficients are constant
and took the value at the average. The last coefficient does show a large variation due
to the change in pitch acceleration. We estimated the dependence of the coefficient
cpa with a simple linear function.

Turning to our generic model (equation (4.6)), we can identify the pitch rate forces
Fpr and the pitch acceleration forces Fpa

Fpr = ρ
(
apaω

3
p + bpaωp

)
(4.10)

Fpa = ρ (ĉpaω̇p) . (4.11)

The pitch rate interaction forces Fpr−pa are zero because we assumed that the two co­
efficients apa and bpa are not dependent on the pitch acceleration. For the fruit fly, we
determined the coefficients apa = 1.35 · 10−16Ns3m3 kg−1, bpa = 2.01 · 10−9Nsm3 kg−1

and ĉpa = 6.82 · 10−13Ns2m3 kg−1 (see table 4.2).

Interaction with the stroke motion: pitch up

Now we will turn to step (iii) in our road map (figure 4.4). The interaction of the
pitch based forces with the stroke rate motion is modeled with the terms Apr,u and
Apr,d in equation (4.8). Because the pitch­up motion and the pitch­down motion both
have a different interaction with the stroke rate we will discuss them separately. In
this section, we will focus on the model for a wing that is pitching up, and in section
4.3.1 on a wing that is pitching down.

The dependence of the stroke interaction on the pitch rate for a wing pitching up
is approximated with a second order polynomial (figure 4.9 a)

Apr,u = dpr,uω
2
p + fpr,uωp + gpr,u, (4.12)

where the coefficients dpr,u, fpr,u and gpr,u show a variation with the pitch acceler­
ation (figure 4.9 b–d). For the first two coefficients dpr,u and fpr,u there appears to
be a clear distinction between a accelerating wing and decelerating wing (disconti­

139



Aerodynamics of insect flight

nuity around zero figure 4.9 b, c). For the last term there is a larger variation for a
decelerating wing than for an accelerating wing (figure 4.9 d).

Like we did for the for the coefficient Bpr we estimated the contribution of each
term in equation (4.12) to the total forces. Because equation (4.12) needs to be multi­
plied with the stroke rate to find the forces we chose a stroke rate of ωs = 1000 rad s−1

as reference value. For the first coefficients we modeled the acceleration and deceler­
ation separately (figure 4.9 e, f ). When the acceleration and deceleration are modeled
separately the two first coefficients show almost no variation with the pitch accelera­
tion. Therefore, we estimated the two coefficients dpr,u and fpr,u to be constant. The
last term gpr,u has an average value around zero (figure 4.9 g) and its variation has
little effect on the forces. For these reasons we assumed that the last term of equation
(4.12) can be ignored.

From the analysis given above, wemay assume that the interaction with the stroke
motion is only dependent on the pitch rate for a wing that is pitching up. This means
that the only forces that model this interaction are the stroke pitch interaction forces
Fsr−pr (equation (4.6)). Thus, all other forces that represent an interaction with the
stroke motion are assumed to be zero: Fsr−pa = 0, Fsr−pr−pa = 0.

Interaction with the stroke motion: pitch down

Here we will discuss step (iv) from our road map (figure 4.4). The pitch­down motion
of the wing (second part equation (4.8)) was analyzed similar to the pitch up motion.
First the relation between the coefficientApr,d and the pitch rate ωp was estimated by
a second order polynomial

Apr,d = dpr,dω
2
p + fpr,dωp + gpr,d, (4.13)

where the coefficients dpr,d, fpr,d and gpr,d are estimated from the fitting equation
(4.13) to the data (figure 4.10 a, b for deceleration and acceleration respectively). All
three coefficients vary with the pitch acceleration (figure 4.10 c–e).

We estimated the effect of this variation similar to what we did previously for
the pitch­up motion. The only difference being that we took the first two terms of
equation (4.13) together. We did this because part of the variation of one term is
canceled by the other term. The variation of the first two terms (dpr,dω2

p + fpr,dωp)
was estimated for a stroke rate of ωs = 1000 rad s−1 (figure 4.10 f acceleration, g
deceleration). Both the acceleration and the deceleration show little variation with
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pitch acceleration. Therefore, both the coefficients dpr,d and fpr,d are taken constant
for acceleration and deceleration.

The last term gpr,d does show a big variation for the a decelerating wing (figure
4.10 e right side). In contrast, for an accelerating wing the pitch acceleration has little
influence on this term (figure 4.10 e left side). Therefore, we assumed that gpr,d for
an accelerating wing that is pitching down is zero. The relation between gpr,d for a
decelerating wing was estimated with the a simple linear function (figure 4.10 e).

For a wing that is pitching down, the same interaction term as for a wing that is
pitching up is identified (Fsr−pr equation (4.6)).

Summary of the pitch acceleration model for the fruit fly

In the previous two paragraphs, we obtained a model that describes the forces due to
a pitch motion for the fruit fly wing morphology as

Fp =


ρ
[(
dpr,uω

2
p + fpr,uωp

)
ωs + apaω

3
p + bpaωp + ĉpaω̇p

]
ωp > 0

ρ
[(
dpr,dω

2
p + fpr,dωp + ĝpr,dω̇p

)
ω2
s + apaω

3
p + bpaωp + ĉpaω̇p

]
ωp < 0, ω̇p > 0

ρ
[(
dpr,dω

2
p + fpr,dωp

)
ω2
s + apaω

3
p + bpaωp + ĉpaω̇p

]
ωp < 0, ω̇p < 0

.

(4.14)

The coefficients for each of these equations are presented in table 4.2. Apart from
the total representation of the forces we splitted the forces into their respective aero­
dynamic mechanism based on the wing kinematics they relate to based on equation
(4.6). The forces that are purely dependent on the pitch motion are written as

Fpr = ρ
[
apaω

3
p + bpaωp

]
(4.15)

Fpa = ρĉpaω̇p. (4.16)

Furthermore, the forces that are dependent on the interaction between the stroke
rate and pitch rate are written as

Fsr−pr =

ρ
[
dpr,uω

2
pωs + fpr,uωpωs

]
ωp > 0

ρ
[
dpr,dω

2
pω

2
s + fpr,dωpω

2
s

]
ωp < 0

. (4.17)

Lastly, an interaction between the stroke rate and the pitch acceleration is identi­
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fied for a wing that is pitching down and decelerating that can be written as

Fpa−sr =

ρĝpr,dω̇pω
2
s ωp < 0, ω̇p > 0

0 otherwise
. (4.18)

Table 4.2: Coefficients of the pitch based model for the fruit fly wing morphology
ω̇p < 0 ω̇p > 0

apa 1.35 · 10−16 Ns3m3 kg−1

bpa 2.01 · 10−9 Nsm3 kg−1

ĉpa 6.82 · 10−13 Ns2m3 kg−1

pitch down ωp < 0
dpa,d 3.58 · 10−19 Ns5 m3/kg 3.09 · 10−20 Ns5 m3/kg
fpa,d 2.45 · 10−15 Ns2m3 kg−1 1.69 · 10−15 Ns2m3 kg−1

ĝpa,d −1.83 · 10−19 Ns4 m3/kg ­

pitch up ωp > 0
dpa,u −1.55 · 10−16 Ns4 m3/kg 5.07 · 10−16 Ns4 m3/kg
fpa,u) 2.09 · 10−12 Ns2m3 kg−1 5.21 · 10−12 Ns2m3 kg−1

4.3.2 Geometrical scaling

We are now at the last step of our roadmap (step (v), figure 4.4). For a subset of
the kinematic cases we included six additional wing morphologies (figure 4.2 a). We
repeated the analysis we did for the fruit fly wing morphology for these wings. For
a complete overview of the forces as a result of the simulation of these morphologies
refer to appendix 4.8 and 4.9.

For each wing morphology, we extracted the two coefficients Apr,u and Bpr,u

(figure 4.11). The coefficient Apr,u shows a quadratic relation with the pitch rate,
similar to the relation for the fruit fly (equation (4.12)). We assumed that the two
fitting coefficients dpr,u and fpr,u are independent of the pitch acceleration for all wing
morphologies. The coefficient dpr,u is scaled with the scaling parameter Sx|x|

√
Syy

(figure 4.12 a) and the coefficient fpr,u with the span­wise second moment of area
Syy (figure 4.12 b).

The coefficientBpr has a similar relationwith the pitch rate as found before for the
fruit fly (equation (4.9), figure 4.11 h–n). We assumed that the first two coefficients of
equation (4.9) (apa and bpa) are independent of the pitch acceleration. We scaled both
of these coefficients with the asymmetric second moment of area Sx|x| (figure 4.12 c,
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d). We approximated the dependence of the coefficient cpa on the pitch acceleration
with a simple linear relation cpa = ĉω̇p. The fitting parameter ĉp is scaled with the
asymmetric second moment of area Sx|x| (figure 4.12 f ). Finally, the normalized
values for cpa all fall approximately on a single line (figure 4.12 g). We did omit the
result for the symmetric wing, because cpa ≈ 0 and the asymmetric second moment
of area Sx|x| = 0mm4.

With this newly found geometrical scaling we are able to write the model for the
fruit fly (section 4.3.1) independent of the wing shape

Fsr−pr = ρ
[
d∗pr,uω

2
pωsSx|x|

√
Syy + f∗

pr,uωpωsSyy

]
ωp > 0 ω̇p > 0 (4.19)

Fpr = ρSx|x|
[
a∗paω

3
p + b∗paωp

]
ωp > 0 ω̇p > 0 (4.20)

Fpa = ρ
[
ĉ∗paω̇pSx|x|

]
ωp > 0 ω̇p > 0. (4.21)

However, the geometrical scaling is only computed for a wing that is pitching and
accelerating up. Therefore, the geometrical scaling for the stoke pitch acceleration
interaction Fpa−sr (equation (4.18)) could not be determined.

4.3.3 Application of the pitch­acceleration model

We applied the model found in section 4.3.1 to the wing kinematics of the fruit fly
and mosquito (figure 4.13). Because we used equations that are discontinuous around
zero for the stroke pitch interaction forces (Fsr−pr, equation (4.17)) and the stroke
pitch acceleration interaction forces (Fsr−pa, equation (4.18)), the resulting forces
also show discontinuities (figure 4.13 e, g).

We determined the lift and drag relative to the direction ofmotion of the wing. The
lift is defined perpendicular to the velocity vector, and the drag parallel to the velocity
vector. A negative drag therefore means that the drag and velocity are pointed in the
same direction. The pitch rate ωp and pitch acceleration ω̇p were also defined relative
to the direction of motion.

For the fruit fly, the stroke rate forces dominate the pressure forces (figure 4.13
e). The wing­beat averaged forces show a similar pattern, where only a small part of
the forces is generated due to the pitch motion (figure 4.13 f ). For the lift and drag,
a similar pattern is observed. However, for the mosquito the stroke rate forces play
a less prominent role, contributing only half of the total forces (figure 4.13 h). This
pattern is also observed for the lift and drag forces of the mosquito (figure 4.13 k, l,
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o, p).
For both insects, the forces associated with the pitch rate of the wing cause a

reduction in lift. This reduction of lift is related to the pitch down motion of the
wing directly after stroke reversal. Interestingly, this pitch down motion also causes
a negative contribution to the drag (figure 4.13 m, o). This negative drag can be seen
as a ”thrust” force, that aids the acceleration of the wing directly after stroke reversal.

The negative dip in lift due to the forces associated with the pitch rate (Fpr and
Fsr−pr) is compensated by a positive contribution due to the pitch acceleration forces
(Fpa). For the mosquito, the pitch acceleration forces remain present in the lift forces
throughout the wingbeat (figure 4.13 k). For the fruit fly, the pitch acceleration forces
are almost non­existent after mid­stroke of both the forward­stroke and backward­
stroke (figure 4.13 i). Therefore, it will not come as a surprise that in the averaged lift
forces this force component (Fpa) almost has no influence on the total forces for the
fruit fly. On the other hand, for the mosquito these forces add up to approximately
40% (figure 4.13 l). In the drag forces, the pitch acceleration component plays a
smaller role (figure 4.13 p).

4.4 Discussion

4.4.1 Our model

From 612 simulations with four different kinematic cases and seven different wing
morphologies, we obtained a new model for the forces associated with the pitch mo­
tion of the wing. This model is able to predict the forces associated with a pitching
wing with non constant pitch rate.

Our model is the most complete description of the forces associated with the pitch
motion of a flapping insect wing. We based our model of fully three­dimensional
viscous flow, whereas other models often fall back to inviscid two­dimensional flow
[11, 9, 13, 14]. Furthermore, we explicitly tested the interaction between aerodynamic
mechanisms. Lastly, we tested the assumption that a wing that is pitching up behaves
similar to a wing that is pitching down [5, 7, 9].

In our simulations, the wing had a constant pitch acceleration. This means that
the pitch rate is constantly changing. We then grouped the results at certain pitch rates
for different simulations together. The drawback of this analysis is that for each data
point with the same pitch rate the angle­of­attack is different. In line with previous
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study on this subject [5, 7], we assumed that the angle­of­attack did not have an effect
on the pitch based forces. However, in future studies this assumption should be tested.

Furthermore, this analysis method also means that we assumed that the time that
the flow needed to develop did not have an effect on the pitch based forces. However,
it is know that the flow around a moving wing does change over time [16]. Therefore,
it is unclear if in the final model the effect of flow development is implicitly modeled
through the other parameters.

4.4.2 Geometrical scaling

We included an additional set of simulations to give an estimate of how the pitch
based forces scale with the wing morphology. We showed that the wing asymmetry
is an important factor for the generation of the pitch based forces. This result is in
line with our previous study [7], where we showed the importance of the offset of the
rotation axis for the pitch rate forces and stroke pitch interaction forces. In addition,
the scaling of the pitch acceleration forces with this asymmetric second moment of
area is in line with previous studies on added mass forces.

The geometrical scaling was obtained for simulations with a wing that was pitch­
ing up and accelerating up. For the application of our model (section 4.3.3), we as­
sumed that this geometrical scaling could be extended towards a decelerating wing
and a wing that is pitching down. Future studies should test this assumption directly
by systematically varying the wing morphologies of wings that are decelerating or
pitching down.

4.4.3 Stroke interaction forces: Pitch up is not pitch down

Other models that predict the forces based on a wing pitch motion often only included
the effect of the stroke pitch interaction [5], or stroke pitch interaction and pitch rate
forces [9] [7]. Somemodels that were based on a two dimensional inviscid model [11]
were able to predict the pitch acceleration forces [14, 13]. However, our model is the
first to explicitly study the interaction between the stroke rate, pitch rate and pitch
acceleration. Furthermore, we based our model on fully three­dimensional viscous
flow.

In addition, ourmodel distinguishes between awing that is pitching up, or pitching
down. Previously it was assumed that simply mirroring the forces for a pitching up
wing was enough [5, 9, 7, 2]. However, in section 4.3.1 we clearly showed that
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the stroke pitch rate interaction forces do not scale linearly with the stroke rate for
a wing that is pitching down, whereas for a wing that is pitching up it does. This
difference mostly impacts the lower stroke rates (ωs < 1000 rad s−1) where the forces
are damped for a wing that is pitching down.

4.4.4 Pitch acceleration forces

More than anything our model underlines the importance of the pitch acceleration for
insect flight. The pitch acceleration forces scale linear with the pitch accelerations,
which is in accordance with the two­dimensional model [11, 13, 14, 9]. This leads to
a significant contribution of the pitch acceleration forces to the transient force contri­
bution of both the fruit fly and the mosquito. For the average of the forward­stroke
and backward­stroke, the contribution of the pitch acceleration forces for the fruit fly
is less pronounced. However, for the mosquito the pitch acceleration forces have a
contribution almost as big as the stroke rate forces.

Surprisingly, the stroke pitch interaction forces for the fruit fly have a relative
small contribution to the lift and drag forces (figure 4.13 j, n). Only for the backward
stroke of the drag component the pitch stroke interaction forces have a substantial
contribution compared to the pitch acceleration forces. This result is not in line with
previous results [5], where the stroke pitch interaction was seen as the main contrib­
utor to the weight support after the stroke rate forces.

Something similar is observed for the mosquito, albeit more extreme. The pitch
rate forces (rotational drag) was seen as the main contributor to the weight support
of mosquitoes [8]. However, our results do not show the same result (figure 4.13 l,
p), where the pitch rate forces almost have no contribution to the overall forces. The
stroke pitch interaction forces and the pitch acceleration forces both have a major
contribution to the lift and drag generation in mosquito flight.

The force generation of both the fruit fly and the mosquito clearly illustrate the
importance of the pitch acceleration forces for insect flight. However, before we hail
the pitch acceleration forces as the new king of aerodynamic mechanisms we should
model all possible interactions and mechanism. Because, this study also shows the
importance of quantifying all the aerodynamicmechanisms before pointing to a single
mechanism as the ”enabler” of a insect flight.
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Figure 4.1: Kinematics of the fruit fly and mosquito and the parametric setup. (a,
b, d, e) Schematic representation of the forward­stroke and backward­stroke of the
fruit fly [2] and mosquito [3], dashed line indicates stroke­reversal. (c) Definition of
the world­reference­frame, wing reference frame and the stroke angle and angle­of­
attack. (f – i) Kinematics of the fruit fly (blue) and mosquito (red), angle­of­attack α,
stroke­rate ωs, pitch­rate ωp and pitch­acceleration ω̇p respectively. (j, k) Parametric
space for the fruit fly (blue shaded) and mosquito (red shaded), blue dots indicate
simulations with fruit fly morphology, red dots for the mosquito morphology, green
dots ellipse shaped morphology and black dots are results from previous study [7].
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Figure 4.2: Different wing morphologies used in this study. (a – e) Elliptical wings
with with a variation of the pitch axis (black line). (f, g) Wing morphology of the
fruit fly [2] and mosquito [3]. (h) Span wise second moment of area Syy against the
asymmetric second moment of area (Sx|x|) for all the wings used in this study (panel
a–g).
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Figure 4.3: Kinematic setup divided in four different ”cases”: (a) pitch­up
acceleration­up, (b) pitch­up acceleration­down, (c) pitch­down acceleration­up and
(d) pitch­down acceleration­down, the dot indicates the leading­edge, diamond indi­
cates rotation axis, outer arrow the pitch­acceleration and inner arrow the pitch­rate.
(e – h) Pitch angle for each case respectively, dots indicate the extraction point. (i
– l) Pitch­rate for each case respectively, dots indicate the extraction point. (m–p)
Pitch­acceleration for each case respectively, dots indicate the extraction points.
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Figure 4.4: Road map for the analysis of the pitch based forces, each box has a
schematic that is characteristic for the analysis step. (a) Setup of the four different
kinematic cases (see section 4.2.5 and figure 4.3). (b) Analysis step to relate the pitch
based forces to the stroke rate for a wing pitching up and down (see section 4.3.1,
and figure 4.5, 4.6 and 4.7). (c) Analysis step that includes the influence of the pitch
rate on the stroke pitch interaction forces for a wing that is pitching up (see section
4.3.1 and figure 4.9). (d) Analysis step that includes the effect of the pitch rate on the
pitch based forces (see section 4.3.1 and figure 4.8). (e) Analysis step that includes
the influence of the pitch rate on the stroke pitch interaction forces for a wing that is
pitching down (see section 4.3.1 and figure 4.10). (f ) Summary of the results for the
fruit fly (see section 4.3.1). (g) Final step of the analysis, which includes the effect of
the wing morphology variation (see section 4.3.2 and figures 4.11, 4.12).
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equation (4.8).
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Figure 4.6: Variation of the pitch­based forces Fp for wings accelerating up while
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ω̇p = 6 · 106 rad s−2. (c) ω̇p = 8 · 106 rad s−2. (d) ω̇p = 1 · 107 rad s−2. (e)
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ω̇p = 1.8 · 107 rad s−2. (i) ω̇p = 2 · 107 rad s−2.
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Figure 4.7: Variation of the pitch­based forces Fp for wings accelerating down while
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of stroke acceleration [7]. (b–d) Fitting coefficients of equation (4.9) as a function
of the pitch acceleration, black lines are the estimates used in our model (see section
4.3.1). (e–g) Amount of force generated by each term in equation (4.9), black line is
based on the average coefficient, grey area is the area between the solution with the
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Figure 4.9: Variation of the coefficient Apr,u with the pitch rate, and pitch accel­
eration for the fruit fly wing morphology. (a) Variation of the coefficient Apr,u of
equation (4.8) with the pitch rate, the lines are fits based on function (4.12), colored
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156



Chapter 4

-3000 -1500 0
pitch rate (ωp) [rad s-1]

-3000 -1500 0
pitch rate (ωp) [rad s-1]

0

-2·10-6

-4·10-6

-6·10-6A
pr

, d
 [
μN

 s
2 ]

0

-2·10-6

-4·10-6

-6·10-6A
pr

, d
 [
μN

 s
2 ]

pitch-acceleration (ωp) [rad s-2]

-2·107 -1·107 1·107 2·107

.

0

-2

-4

-6

(d
pr

,d
ω

p2  +
 f p

r,d
ω

p)
ω

s2  [
μN

]

0

-2

-4

-6

(d
pr

,d
ω

p2  +
 f p

r,d
ω

p)
ω

s2  [
μN

]

0

-2

-4

-6

g p
r,d
ω

s2 
[μ

N
]

0 1500 3000
ωp [rad s-1]

0 1500 3000
ωp [rad s-1]

0 1500 3000
ωp [rad s-1]

-2·107 0 2·107

ωp [rad s-2]
. -2·107 0 2·107

ωp [rad s-2]
. -2·107 0 2·107

ωp [rad s-2]
.

0

5·10-13

-5·10-13d p
r,d

 [
μN

 s
4 ]

0

1·10-9

2·10-9

3·10-9

f p
r,d

 [
μN

 s
3 ]

0

-2·10-6

-4·10-6

g p
r,d

 [
μN

 s
2 ]

(a)

(b)

(c)

(f)

(d)

(g)

(e)

(h)

Figure 4.10: Variation of the coefficient Apr,d with the pitch rate, and pitch accel­
eration for the fruit fly wing morphology. (a, b) Variation of the coefficient Apr,d

of equation (4.8) with the pitch rate, the lines are fits based on function (4.13), col­
ored with the pitch acceleration for acceleration and deceleration respectively. (c–e)
Fitting coefficients of equation (4.13) as a function of pitch acceleration, black lines
are the estimates used in our model (see section 4.3.1). (f –g) Estimate of the first
two terms in equation (4.13), for a decelerating and accelerating wing respectively,
based on a stroke rate ωs = 1000 rad s−1, black line is based on the average coeffi­
cient, grey area is the area between the solution with the minimal and maximal co­
efficient. (h) Estimate of the last term of equation (4.13), based on a stroke rate of
ωs = 1000 rad s−1, black line is based on the average coefficient, grey area is the area
between the solution with the minimal and maximal coefficient.
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Figure 4.12: The fitting coefficients apa, bpa, cpa of equation (4.9), and dpr,u, fpr,u
of equation (4.12) for different wing morphologies (colors). (a) dpr,u as a function of
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√
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Syy, bars indicate the mimumum and maximum coefficient per morphology. (c, d)
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minimum and maximum coefficient per wing morphology. (e) Variation of cpa with
the pitch acceleration ω̇p for different wingmorphologies (colors), lines are simple fits
(cpa = ĉpaω̇p). (f ) The fitting parameter ĉpa as a function of the asymmetric second
moment of area Sx|x|. (g) The fitting parameter cpa normalized with the asymmetric
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Figure 4.13: Application of the pitch­based forces to the wing­kinematics of the fruit
fly [2] and mosquito [3], vertical lines are the stroke­reversal from forward­stroke
to backward­stroke. (a, b) Schematic representation of the forward­ and backward­
stroke for the fruit fly, dot is leading edge, diamond rotation axis, blue line is path
of the forward or backward stroke respectively (c, d) Schematic representation of the
forward­ and backward­stroke for the mosquito, diamond is rotation axis, red line
is the path of the foward or backward­stroke respectively. (e, g) Predicted pressure
forces based on the pitch acceleration model, forces in the wing reference frame for
the fruit fly and mosquito respectively. (f, h) Wingbeat averaged pressure force com­
ponents for the fruit fly and mosquito respectively. (i, k) Components of the lift forces
of the fruit fly and mosquito respectively. (j, l) Wingbeat averaged lift components
of the fruit fly and mosquito respectively. (m, o) Components of the drag forces of
the fruit fly and mosquito respectively. (n, p) Wingbeat averaged drag components
of the fruit fly and mosquito respectively.
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4.7 Definitions

Table 4.3: List of symbols

Symbol unit Description

α ­ Angle­of­attack

apa, bpa, cpa

Ns3 m3 kg−1, N sm3 kg−1,
Nm3 kg−1 Force coefficients relating the pitch rate toBpr

a∗
pa, b

∗
pa, ĉ

∗
pa s, s−1, ­

Equivallent of apa, bpa and ĉpa corrected for the
wing morphology variation.

Apr,u Ns
Interaction coefficient between the stroke rate and the
pitch based forces for a wing that is pitching up

Apr,d Ns2 kgm−3
Interaction coefficient between the stroke rate and the
pitch based forces for a wing that is pitching down

Bpr N Force independent of the stroke rate

c m Chord length

ĉpa Ns2 kgm−3
Force coefficient relating the pitch acceleration
to the pitch acceleration forces

Csr ­ Force coefficient for the stroke rate forces

∆xm m Space step for the mesh

∆x m
Offset between the center of the chord and the
pitch axis

dpr,u, fpr,u, gpr,u

Ns4 kg/m3, N s2 kgm−3

, N s kgm−3 Force coefficients relating the pitch rate to the coefficientApr,u

dpr,d, fpr,d, gpr,d

Ns5 kg/m3, N s3 kgm−3,
N s2 kgm−3 Force coefficients relating the pitch rate to the coefficientApr,d

d∗
pr,u, f

∗
pr,u s2 m−2, ­

Equivallent of dpr,u and fpr,u corrected for the
wing morphology variation.

Fam N Added mass forces

Fsedov,3D N
Acceleration forces computed with the three­dimensional
model based on [11]

ω̇s rad s−2 Stroke acceleration

ω̇p rad s−2 Pitch acceleration

Fp N Pitch based forces

Fpr N Pitch rate forces

Fpa N Pitch acceleration forces

Fpr−pa N Pitch rate interaction forces

Fpr−sr−pa N Pitch­stroke interaction forces

Fsr N Stroke rate forces

Fs N Stroke based forces

Fsr−pr N stroke pitch interaction forces

Fsr−pa N stroke rate pitch acceleration forces

Ft N Total aerodynamic forces

γ ­ Stroke angle

Continued on next page
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Continued from previous page

Symbol unit Description

ĝpr,d Ns4 kg/m3
Force coefficient relating the pitch acceleration
to the force coefficient gpr,d

ϕ ­ Pitch angle

ρ kgm−3 Fluid density

R m Distance from the root of the wing to the tip of the wing

Sxx m4 Chord­wise second moment of area

Sx|x| m4 Assymmetric second moment of area

Syy m4 Span­wise second moment of area

V m3 Volume of added mass

v ms−1 Velocity of the volume of the added mass

ωp rad s−1 Pitch rate

ωs rad s−1 Stroke rate

y m Location along the span of the wing

Throughout this study we used three second moments of area (Sxx, Syy and Sx|x|,
which are defined as:

Syy =

∫ R

0
y2cdy (4.22)

Sxx =

∫ cle

cte

rx2dx (4.23)

Sx|x| =

∫ cle

cte

x|x|rdx (4.24)

4.8 Forces of the elliptical wings

In the our main study, we have only presented the forces as a function of the stroke rate
for the fruit fly wing morphology. Throughout the rest of the study we only used the
derived coefficients for the other geometries. Here, we present the pitch based forces
for the symmetric elliptical wing (figure 4.14), the elliptical wing with a pitch axis
offset of 0.1mm (figure 4.15), the elliptical wing with a pitch axis offset of 0.2mm
(figure 4.16), the elliptical wing with a pitch axis offset of 0.3mm (figure 4.17) and
the elliptical wing with a pitch axis offset of 0.4mm (figure 4.18).
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4.9 Forces of the mosquito wing

In the our main study, we have only presented the forces as a function of the stroke
rate for the fruit fly wing morphology. Throughout the rest of the study, we only used
the derived coefficients for the other geometries. Here, we present the pitch based
forces for the mosquito wing (figure 4.19).

4.10 Viscous forces

In this study, we only considered the pressure forces in our pitch motion model. We
did this because the viscous forces along the chord (Fx) and the span (Fy) are consid­
erable lower than the pressure forces. For the sake of completeness, we the viscous
forces for the fruit fly wing morphology are presented in figure 4.20, 4.21, 4.22 and
4.23.

4.11 Quasi­steady model

To test how our newly constructed pitch forces model influence the total force pro­
duction of flapping insects we developed a quasi­steady model. This model is only
based on the forces generated due to a stroke rate motion and the pitch motion. The
kinematics used in this study where based on three angles; the stroke­angle γ, the
deviation­angle θ and the pitch­angle ϕ. From these three angles the total rotation
matrix is defined assumed

A = AγAθAϕ. (4.25)

From the rotation matrix we determined the angular rotation of the wing in the world
reference frame:

ω =

 0 ωz ωy

ωz 0 −ωx

ωy ωz 0

 =
dA

dt
AT . (4.26)

From the angular velocity matrix ω the angular velocity vector ω⃗ = [ωx, ωy, ωz]
T is

determined. The angular velocity in the world­reference frame is then rotated to the
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wing­reference frame with

ω⃗wing = AT ω⃗world. (4.27)

The angle­of­attack α is determined from the angular velocity in the wing reference
frame

α = tan−1

(
ωx

ωz

)
sign (ωx) . (4.28)

The multiplication with the sign of the angular velocity ωx in the wing reference
frame is included to change the sign of the angle­of­attack according to the direction
of motion of the wing. The stroke rate ωs is positive by definition and the pitch rate
is based on the angular rate around the pitch axis (ωy), but has to be corrected for the
direction of stroke motion. This results in two equations to compute the stroke rate
and pitch rate, which are written as

ωs =
√
ω2
x + ω2

z (4.29)

ωp = ωysignωx. (4.30)

Finally the pitch acceleration is obtained by first taking the derivative of the angular
rate around the pitch axis, and then correcting it for the direction of stroke motion,
which is written as

ω̇p =
d
dt

(ωy) sign(ωx). (4.31)

4.12 Supplementary figures
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Figure 4.14: Variation of the pitch­based forces Fp for wings accelerating up while
pitching up (pink dots) for the symmetric elliptical wing. (a) ω̇p = 4 · 106 rad s−2.
(b) ω̇p = 6 · 106 rad s−2. (c) ω̇p = 8 · 106 rad s−2. (d) ω̇p = 1 · 107 rad s−2. (e)
ω̇p = 1.2 · 107 rad s−2. (f ) ω̇p = 1.4 · 107 rad s−2. (g) ω̇p = 1.6 · 107 rad s−2. (h)
ω̇p = 1.8 · 107 rad s−2. (i) ω̇p = 2 · 107 rad s−2.
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Figure 4.15: Variation of the pitch­based forces Fp for wings accelerating up while
pitching up (pink dots) for the elliptical wing with a pitch axis offset of 0.1mm.
(a) ω̇p = 4 · 106 rad s−2. (b) ω̇p = 6 · 106 rad s−2. (c) ω̇p = 8 · 106 rad s−2. (d)
ω̇p = 1 · 107 rad s−2. (e) ω̇p = 1.2 · 107 rad s−2. (f ) ω̇p = 1.4 · 107 rad s−2. (g)
ω̇p = 1.6 · 107 rad s−2. (h) ω̇p = 1.8 · 107 rad s−2. (i) ω̇p = 2 · 107 rad s−2.
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Figure 4.16: Variation of the pitch­based forces Fp for wings accelerating up while
pitching up (pink dots) for the elliptical wing with a pitch axis offset of 0.2mm.
(a) ω̇p = 4 · 106 rad s−2. (b) ω̇p = 6 · 106 rad s−2. (c) ω̇p = 8 · 106 rad s−2. (d)
ω̇p = 1 · 107 rad s−2. (e) ω̇p = 1.2 · 107 rad s−2. (f ) ω̇p = 1.4 · 107 rad s−2. (g)
ω̇p = 1.6 · 107 rad s−2. (h) ω̇p = 1.8 · 107 rad s−2. (i) ω̇p = 2 · 107 rad s−2.
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Figure 4.17: Variation of the pitch­based forces Fp for wings accelerating up while
pitching up (pink dots) for the elliptical wing with a pitch axis offset of 0.3mm.
(a) ω̇p = 4 · 106 rad s−2. (b) ω̇p = 6 · 106 rad s−2. (c) ω̇p = 8 · 106 rad s−2. (d)
ω̇p = 1 · 107 rad s−2. (e) ω̇p = 1.2 · 107 rad s−2. (f ) ω̇p = 1.4 · 107 rad s−2. (g)
ω̇p = 1.6 · 107 rad s−2. (h) ω̇p = 1.8 · 107 rad s−2. (i) ω̇p = 2 · 107 rad s−2
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Figure 4.18: Variation of the pitch­based forces Fp for wings accelerating up while
pitching up (pink dots) for the elliptical wing with a pitch axis offset of 0.4mm.
(a) ω̇p = 4 · 106 rad s−2. (b) ω̇p = 6 · 106 rad s−2. (c) ω̇p = 8 · 106 rad s−2. (d)
ω̇p = 1 · 107 rad s−2. (e) ω̇p = 1.2 · 107 rad s−2. (f ) ω̇p = 1.4 · 107 rad s−2. (g)
ω̇p = 1.6 · 107 rad s−2. (h) ω̇p = 1.8 · 107 rad s−2. (i) ω̇p = 2 · 107 rad s−2.
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Figure 4.19: Variation of the pitch­based forces Fp for wings accelerating up
while pitching up (pink dots) for the mosquito wing.(a) ω̇p = 4 · 106 rad s−2. (b)
ω̇p = 6 · 106 rad s−2. (c) ω̇p = 8 · 106 rad s−2. (d) ω̇p = 1 · 107 rad s−2. (e)
ω̇p = 1.2 · 107 rad s−2(f ). ω̇p = 1.4 · 107 rad s−2. (g) ω̇p = 1.6 · 107 rad s−2. (h)
ω̇p = 1.8 · 107 rad s−2 (i) ω̇p = 2 · 107 rad s−2.
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Figure 4.20: Variation of the viscous forces Fx for wings accelerating up while
pitching up (pink dots) or down (purple dots) for the fruit fly wing morphology.
(a) ω̇p = 4 · 106 rad s−2. (b) ω̇p = 6 · 106 rad s−2. (c) ω̇p = 8 · 106 rad s−2. (d)
ω̇p = 1 · 107 rad s−2. (e) ω̇p = 1.2 · 107 rad s−2. (f ) ω̇p = 1.4 · 107 rad s−2. (g)
ω̇p = 1.6 · 107 rad s−2. (h) ω̇p = 1.8 · 107 rad s−2 (i) ω̇p = 2 · 107 rad s−2.
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Figure 4.21: Variation of the viscous forces Fy for wings accelerating up while
pitching up (pink dots) or down (purple dots) for the fruit fly wing morphology.
(a) ω̇p = 4 · 106 rad s−2. (b) ω̇p = 6 · 106 rad s−2. (c) ω̇p = 8 · 106 rad s−2. (d)
ω̇p = 1 · 107 rad s−2. (e) ω̇p = 1.2 · 107 rad s−2. (f ) ω̇p = 1.4 · 107 rad s−2. (g)
ω̇p = 1.6 · 107 rad s−2. (h) ω̇p = 1.8 · 107 rad s−2. (i) ω̇p = 2 · 107 rad s−2.
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Figure 4.22: Variation of the viscous forces Fx for wings accelerating down while
pitching up (pink dots) or down (purple dots). (a) ω̇p = −20 · 106 rad s−2. (b) ω̇p =
−18 · 106 rad s−2. (c) ω̇p = −16 · 106 rad s−2. (d) ω̇p = −14 · 106 rad s−2 (e). ω̇p =
−12 · 106 rad s−2. (f ) ω̇p = −10 · 106 rad s−2. (g) ω̇p = −8 · 106 rad s−2. (h) ω̇p =
−6 · 106 rad s−2.
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Figure 4.23: Variation of the viscous forces Fy for wings accelerating down while
pitching up (pink dots) or down (purple dots). (a) ω̇p = −20 · 106 rad s−2. (b) ω̇p =
−18 · 106 rad s−2. (c) ω̇p = −16 · 106 rad s−2. (d) ω̇p = −14 · 106 rad s−2. (e) ω̇p =
−12 · 106 rad s−2. (f ) ω̇p = −10 · 106 rad s−2. (g) ω̇p = −8 · 106 rad s−2. (h) ω̇p =
−6 · 106 rad s−2
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Chapter 5

Abstract

Escaping from a blood host with freshly acquired nutrition for her eggs is one of the
most critical actions in the life of a female malaria mosquito. During this take­off she
has to carry a large payload, up to three times her body weight, while avoiding tactile
detection by the host. What separates the malaria mosquito from most other insects is
that the mosquito pushes off gently with its legs whilst producing aerodynamic forces
with its wings. Apart from generating the required forces, the malaria mosquito has
to produce the correct torques to pitch up during the take­off. Furthermore, the fed
mosquito has to alter the direction of its aerodynamic force vector to compensate
for the higher body pitch angle due to its heavier abdomen. Whether the mosquito
generates these torques and redirection of the forces with its wings or legs remains
unknown. By combining rigid­body inverse dynamics analyses with computational
fluid dynamics simulations, we show that mosquitoes use leg push­off to control pitch
torques, and that the adaption of the aerodynamic force direction is synchronized with
modulations in force magnitude. These results suggest that during the push­off phase
of a take­off, mosquitoes use their flight­apparatus primarily as a motor system, and
they use leg push­off forces for control.

5.1 Introduction

Females of most mosquito species depend on a blood­meal to acquire the needed
nutrition for reproduction [1], however obtaining this blood­meal is not without risk
[2]. The gravid mosquito has to find and land on a host, consume the blood and take­
off all without being detected. The host­seeking behavior and the blood feeding has
been studied in detail [1] [3], but less is known about the take­off [2].

To increase its chance to successfully fly away, a mosquito needs to maximize
its escape velocity within the constraint of avoiding tactile detection by the host [4].
Maintaining a high escape velocity becomes particularly challenging for blood­fed
mosquitoes, because a mosquito can triple in weight due to a blood­meal [1], [2],
which in combination with the absence of large forces generated by the legs, puts
even more strain on the flight apparatus. The escape velocity scales inversely with
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the size of the blood­meal and consequently with the survival chance [2].
During the take­off of an insect, the flight­apparatus can either be started before

take­off, during take­off, or after take­off [5]. Insects adopting the first take­off strat­
egy, such as the butterfly [6] and the drone­fly [5], rely almost completely on the
generation of aerodynamic forces with their wings. Insects adopting the last take­off
mechanics rely on the forces generated by the legs to generate the upward accelera­
tion, for instance found in the escape response of the fruit fly [7] and the take­off of
the Locust [8]. Finally, many insects combine leg forces with aerodynamic forces to
generate the upward acceleration, for example the voluntary take­off of the fruit fly
[5], [7]. It has been suggested that mosquitoes avoid tactile detection by extending
their legs whilst generating aerodynamic forces with their wings [4], [9], keeping the
force on the substrate lower than the tactile detection threshold of mammalian skin
(Fthreshold = 0.07mN) [10]. This may explain why the difference between a voluntary
take­off and escape take­off in the fruit fly is not found in mosquitoes [4].

How the aerodynamic forces and torques required for take­off are generated by the
mosquito remains unknown [4]. One of the possible explanations of the remarkable
lifting capabilities of the mosquitoes may be caused by the interaction of wingbeat­
induced air movement with the substrate from where the animal flies away, known as
the ground effect. Although no ground effect has been found in similarly sized insects,
such as the fruit fly [11], the mosquito does not jump in the air, but starts flapping its
wings close to the ground. The closer proximity of the flapping mosquito wing to the
substrate, may lead to ground reaction forces to aid in the mosquito’s take­off.

Another explanation is the increase of the stroke amplitude during take­off, which
is linked to an increase in force production [4]. Other insects that are able to carry large
payloads employ a similar wingbeat kinematics as the mosquito [12], [13]; using a
shallow stroke amplitude during steady hovering flight, enables the insect to increase
its stroke amplitude when accelerating the body or carrying large payloads.

Apart from generating enough forces, the mosquito has to correct its body pitch
angle, which is nose­down at the start of the take­off, to a nose­up orientation to ensure
a more horizontal stroke­plane of the wingbeat [4]. The required pitch­up torque can
be generated by the legs, as seen in the take­off of fruit­flies [5], or by adapting the
wing kinematics as applied by maneuvering fruit flies in free flight [14], [15], [16]. It
remains an open question how themosquito controls its body pitch during the take­off.

In this study, we focused on the forces and torques generation during take­off of
the malaria mosquito (Anopheles coluzzii)[4], clarified by combining rigid­body in­
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verse dynamics analyses with state of the art computational fluid dynamics [17]. Our
analysis suggests that the ground effect plays no role in aerodynamic force produc­
tion during the take­off of the mosquito, despite the close proximity of the beating
wings to the ground. Furthermore, the aerodynamic force vector aligns closer to the
body with increasing total force to compensate for the pitch­up orientation due to the
heavy abdomen of a blood­fed female mosquito. Lastly, the pitch­up body movement
throughout the take­off is primarily controlled my modulating the leg push­off forces
exerted on the ground, which in turn change the pitch­torques.

5.2 Materials & Methods

Experimental animals and conditions

Here, we combined rigid­body inverse dynamics analyses with computational fluid
dynamics (CFD) to study the take­off dynamics of 13 female malaria mosquitoes
(Anopheles coluzzii). Six take­off maneuvers were of non­blood­fed mosquitoes, and
seven of blood­fed malaria mosquitoes; the kinematics of these maneuvers were pre­
viously published [4]. The inverse dynamics method provided us with total force
and torque dynamics throughout each maneuver and the CFD simulations allowed
us to determine the aerodynamic forces and torques produced by the flapping wings.
By subtracting aerodynamic forces and torques from the total forces and torques, we
estimated the contribution of the leg push­off to force and torque production.

For one take­off of a lean mosquito and one of a blood­fed mosquito, we per­
formed CFD simulations both with and without a take­off platform to evaluate the
effect of the presence of the ground on the aerodynamic forces and torques acting on
the mosquitoes.

Computational fluid dynamics solver

We used computational fluid dynamics (CFD) based on the immersed boundary meth­
ods [17] to simulate the forces, torques and the flow­field as a result of the wing and
body motion of the mosquito during take­off. The immersed boundary method en­
abled us to simulate the complex movement of the mosquito, without having to take
complex mesh deformations of traditional CFD methods into account [18].

The simulations were conducted on a domain of size 140mm on all sides (fig­
ure 5.1 b). The domain size was chosen such that negligible interaction between the
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airflow generated by the mosquito and the domain boundaries occurred, except for
the bottom boundary, because we simulated a mosquito taking­off from the ground.
On all boundaries, a no­slip boundary is enforced, such that all boundaries act as an
impenetrable wall. On the body of the mosquito, a no­slip boundary condition was
enforced using the forcing function of the immersed boundary method [17].

Both the motion and the shape of the mosquito were prescribed during the simu­
lation. The motion of the body and wings arises from the measured kinematics, the
shape of the mosquito comes from the combined shape of the body and wings (fig­
ure 5.1 c, d). Wing geometry scale isometrically with wing length and all wings had
a thickness of 0.03mm (1% of the wing length). All mosquitoes had a body length
of 4.7mm, and the shape of the body was kept constant for all lean mosquitoes and
blood­fed mosquitoes; for the computation of the center of mass it is assumed that the
mass is homogeneous distributed in the mosquito.

To accurately compute the complex fluid dynamics close to the mosquito, we used
an adaptive mesh refinement (AMR) algorithm that refines the mesh based on areas
in the flow­field with high­vorticity. This resulted effectively in a refinement close to
the body and in the wake. At the finest refinement level a refinement of∆x = 0.0304

mm was used, which led to a mesh­size of approximately 4 million cells. After the
choice of the refinement level a corresponding time­stepwas chosen of∆t = 1∙10−7s.
We validated the solver using the wingbeat kinematics of a hovering fruit fly and the
corresponding aerodynamic forces, determined using a robotic flapper experiment
[14]. The forces simulated by our method are similar to the forces predicted in the
robotic experiment (see Supplementary methods for more detail).

Reference frames

In this study, two reference frames were used; the world­reference frame, and the
stroke­plane reference frame. Theworld­reference frame is a right­handed orthogonal
reference frame with its origin at the center of the domain at ground level (figure 5.1
b). To simulate a take­off without a ground present, the start of the take­off was placed
70mm above the bottom of the simulation domain.

The stroke­plane reference frame is a right­handed orthogonal reference frame
attached to the center of mass of the body of the mosquito (figure 1e—g) and aligned
with the stroke plane of an average wingbeat. Its y­axis is pointing to the right­side of
the animal, the x­axis pointing forward in the direction of the head, and pitched down
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relative to the body axis with a constant stroke­plane angle β = 47.5o (figure 5.1 f );
the z­axis pointing down towards the ventral side of the mosquito (figure 5.1 e–g).

Kinematics

The body and wing motion of the mosquito take­offs were obtained from a previous
study [4]. The rotation and location of the bodywere prescribed in theworld­reference
frame (figure 5.1 b). The motion of the wings was described in the stroke­plane ref­
erence frame (figure 5.1 e), using three Euler angles; the stroke angle, the deviation
angle and the wing rotation angle. First, the stroke angle (γ, figure 5.1 e) describes
the forward and backward motion within the stroke­plane of the wing, where for a
zero stroke angle the wing is aligned with the y­axis. Secondly, the deviation angle
(θ, figure 5.1 g) describes the wing angle out of the stroke­plane, where for positive
deviation angles the wing is pointing towards the dorsal side of the body. Finally,
the wing rotation angle (ϕ, figure 5.1 f ) describes the rotation of the wing along its
longitudinal axis, where a zero angle defines a vertical wing with the leading edge
pointing upwards.

Force analysis

Throughout a take­off, the total force acting on a mosquito, F⃗total, consist of the aero­
dynamic force, F⃗aero, and the ground reaction forces from the legs, F⃗leg. The total
forces were computed in the world­reference frame from the kinematics using inverse
rigid­body dynamics as

(
F⃗total

)
world

= mmosq
d

dt

(
V⃗world

)
− W⃗ , (5.1)

where mmosq is the mass of the mosquito, V⃗world the velocity vector of the body in
the world­reference frame and W⃗ the weight of the mosquito (W⃗ = [0; 0;−mmosqg],
where g = 9.81 m s−2).

The aerodynamic forces computed by the CFD solver were also determined in
the world­reference frame. These aerodynamic forces fluctuate highly throughout
each wingbeat, and therefore we estimated the wingbeat­average aerodynamic forces,
F⃗aero, using a fifth order Butterworth filter (flow = 1 · 10−6 Hz and fhigh = 200 Hz).
The leg­derived forces were estimated as the difference between the total aerodynamic
forces and the wingbeat­average aerodynamic forces as F⃗leg = F⃗total − F⃗aero.
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To compute the angle between the aerodynamic force vector and the stroke­plane,
the forces derived from the CFD solver F⃗aero were first transformed to the stroke­plane
reference frame by

(
F⃗aero

)
stroke

= AT
strokeA

T
body

(
F⃗aero

)
world

, (5.2)

where Astroke is the rotation matrix from the body­reference frame to the stroke­
plane reference frame and Abody the rotation matrix that describes the motion of the
body in the world reference frame.

From the forces in the stroke­reference frame, the angle between the force and the
stroke­plane (figure 5.1 f ) was computed as

ξ = tan−1

 (Fz)stroke

sign(Fx)stroke

√
(Fx)

2
stroke + (Fy)

2
stroke

 . (5.3)

All forceswere either normalizedwith theweight of the animal as F⃗ ∗ = F⃗/(mmosqg),
or with a generic weight F⃗ ∗∗ = F⃗/(mgeng), withmgen = 1mg.

Torque analysis

Similar to the forces, the torques produced by the mosquito were also expressed in the
stroke­plane reference frame, using the reference frame transformation described in
equation (5.2). The resulting stroke­plane­based torques consist of roll torque about
the x­axis, pitch torque about the y­axis, and yaw torque about the z­axis.

The total torques produced by the mosquito were computed based on the kinemat­
ics using rigid­body inverse dynamics in two steps: first, we computed the angular
momentum of the mosquito in the stroke­plane reference frame as

(
L⃗total

)
stroke

= Iω⃗stroke, (5.4)

where I is the moment of inertia matrix of the mosquito, and ω⃗stroke the angu­
lar velocity of the mosquito in the stroke­plane reference frame. Secondly, the total
torque produced by the mosquito was computed as

(
T⃗total

)
stroke

=
d

dt

(
L⃗total

)
stroke

. (5.5)

The equivalent aerodynamic torques produced by the beating wings were esti­
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mated using CFD. Like the forces, these torques vary highly throughout each wing­
beat, and therefore we estimated the wingbeat­average aerodynamic torques using a
fifth order Butterworth filter (flow = 1 · 10−6 Hz and fhigh = 200 Hz [19]). The an­
gular momentum that would result from aerodynamic torque production alone, was
estimated by numerically integrating the aerodynamic torques throughout each take­
off maneuver.

The corresponding torques and angular momentum produced by leg push­off were
consequently estimated as T⃗leg = T⃗total− T⃗aero and L⃗leg = L⃗total−L⃗aero, respectively.
All torques were then normalized with the product of body length and body weight
of the animal T⃗ ∗ = T⃗/(mmosqglmosq).

Throughout a take­off, a mosquito primarily pitches up, and thus we primarily
focused on pitch torque production. To study the effect of the different pitch torque
components on this pitch dynamics, we defined the contribution of pitch torque on
pitch angle change εpitch. This parameter can be calculated by integrating the angular
momentum throughout the push­off phase of the take­off as

εpitch = I−1
nlift­off∑
i=0

(
L⃗i

)
pitch

, (5.6)

whereby I−1 is the inverse of the moment of inertia, nlift−off is the time­step
at which the last leg leaves the ground, and L⃗i either the total, aerodynamic or leg
contribution to the angular momentum at time­step i.

5.3 Results

Ground effect

The ground effect was studied by conducting two identical simulations, the only dif­
ference being the presence or absence of the ground. We conducted this dual simula­
tion for both a lean mosquito and a blood­fed mosquito.

A patch of the ground surface (2cm x 2cm) was extracted when the air pressure
acting on the ground was maximum (figure 5.2 a–d). The maximum air pressure
planes with the ground present (figure 5.2 a, c) show larger pressure fluctuations when
compared with the planes without ground present (figure 5.2 b, d). The air pressure
acting on the ground surface of 2cm x 2cm was extracted for all the time­steps during
the push­off phase and integrated over the surface. The resulting forces fluctuate
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during the take­off, but for all simulated lean mosquitoes the average maximum force
(Fsubstrate = 0.05 ± 0.01 mN, n = 6) remain below the force detection threshold of
mammalian skin (Fthreshold = 0.07 mN, figure 5.2 i) [10]. The average maximum
forces for the blood­fed mosquitoes is equal to the detection threshold (Fsubstrate =

0.07 ± 0.01 mN, n = 7). The averaged pressure forces are considerable lower than
the forces generated by the legs, and only alter the total averaged forces acting on the
substrate slightly (figure 5.2 i, j).

Interestingly, the large differences in ground pressure between the simulations
with and without ground do not lead to large differences in the wake structure (figure
5.2 e–h). For the case with ground present, the wake is interacting with the ground but
no large change is propagated further towards the insect (figure 5.2 e, g). Furthermore,
no difference can be observed in the forces on the body and wings of the mosquitoes,
for both the lean and blood­fed mosquitoes (figure 5.2 i, j; lean mosquito with ground:
F ∗
aero,z = 0.69 ± 2.45; lean mosquito without ground: F ∗

aero,z = 0.69 ± 2.45; fed
mosquito with ground: F ∗

aero,z = 0.69±1.35; fed mosquito without ground:F ∗
aero,z =

0.69± 1.35). This suggests that throughout the take­off, the mosquito does affect the
pressure distribution on the ground, but that the presence of the ground has no effect
on the aerodynamic forces on the mosquito.

Vertical forces

At the start of a take­off, mosquitoes are often pitched head down (figure 5.3 a, b)
and during the take­off they make a rapid pitch­up movement. As a consequence, the
stroke­plane is oriented almost vertically at the start of the take­off and rotates towards
a horizontal orientation near the end of the push­off phase. The path of the blood­fed
mosquito has a larger horizontal component compared to the lean mosquitoes (figure
5.3 a, b and figure 5.4 a).

Comparing the computed aerodynamic force opposing the gravity vector Fz,aero

with the total vertical forces Fz,total needed for the measured body accelerations (fig­
ure 5.3 c, e) show that the large force fluctuation during the push­off originate from
the ground forces on the legs and not from the aerodynamic forces acting on the wing.
After push­off, the difference between the computed aerodynamic forces and the re­
quired aerodynamic forces are minimal and not significantly different from zero (one
sample t­test, p = 0.0034), except for a short phase directly after lift­off in the case of
the lean mosquito. This might originate from the filtering of the aerodynamic forces.
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The average total force, aerodynamic force and leg force during take­off (figure
5.4 c) shows that both the legs and the wings make a contribution to force production
throughout the push­off. The ratio between aerodynamic forces and leg­induced push­
off forces are not significantly different between lean and fed mosquitoes (figure 5.4
d, independent t­test, p = 0.087). For both lean and blood­fed mosquitoes the wings
contribute 25.9%± 6.9% (n = 13) to vertical force production throughout the push­
off phase of a take­off.

The angle between the resultant force vector and the stroke­plane, known as the
force angle ξ, was computed when the aerodynamic resultant force is larger than half
of the body weight. In the case of the lean mosquito (figure 5.3 d), the force angle
starts high at take­off and gradually decreases to around 90o. The blood­fed mosquito
starts with a force vector more aligned to the body of the mosquito (figure 5.3 f ). The
average force angle during take­off for the fed mosquitoes is significantly lower than
the lean mosquitoes (figure 5.4 b; fed mosquitoes: ξ = 82.93o ± 8.81o, n = 7; lean
mosquitoes: ξ = 94.62o±8.30o, n = 6; independent t­test, p = 0.038) [19].

The resultant force, normalized with a standard mass of 1mg, per wingbeat for
both the lean and fed mosquitoes scales with the stroke amplitude (figure 5.4 e), and
shows a significant positive correlation (simple linear regression, p < 0.0001). The
deviation angle amplitude, the difference between the maximum and minimum devi­
ation angle per wingbeat, also scales positively with the stroke amplitude (figure 5.4 f,
simple linear regression, p < 0.0001). Finally, in the blood­fed mosquitoes the force
angle ξ scales negatively with the resultant force (figure 5.4 g, p < 0.0029), whereas
this correlation is absent in the lean mosquitoes (p = 0.36).

Pitch torques

During the take­off, all the measured mosquitoes are pitching up [4]. To initiate this
pitch­up maneuver a mosquito needs to produce pitch­up torque, and to stop this
pitch­up rotation the animal should produce a pitch­down torque. To test how the
mosquitoes produce these torques, we compared total pitch torques and the aerody­
namic pitch torques throughout the take­off (figure 5.5 a, c). During the flight phase
of the take­off, the wingbeat­average aerodynamic pitch torques do not significantly
differ from the total torques (∆T ∗

pitch = −0.017 ± 0.049, n = 12, one sample t­test,
p = 0.28). This shows that our CFD method captures the aerodynamic torques well,
allowing us to estimate pitch torques from leg push­off as the difference between total
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torque and aerodynamic torque. During the push­off phase, largest differences occur
between total pitch torques and the aerodynamic pitch torques, suggesting that the leg
push­off forces contribute to pitch­torque production.

During the push­off phase, the total body pitch­torque shows a positive pitch­
up peak for both lean and blood­fed mosquitoes (figure 5.5a, c). In the case of the
lean mosquito, part of this torque is generated by the wings, but the aerodynamic
torques are always lower than the total torques. The total torques produced by the
blood­fed mosquito reveals a more dramatic dynamics, with a large pitch­up total
torque followed by a pitch­down torque, which is not found in the corresponding
aerodynamic torques (figure 5.5/c/).

The pitch­up torque peaks at the start of the push­off phase are not different be­
tween the lean and blood­fed mosquitoes (p = 0.208 independent t­test, figure 5.5b),
whereas the following pitch­down torque peaks are on average 2.16 times higher in
the blood­fed mosquitoes, compared to the lean mosquitoes (p = 0.0022 independent
t­test, figure 5.5b).

Based on the temporal dynamics of torque production, we determined the relative
contribution of total pitch torque, leg­induced torque and wing­induced torque to the
pitch­up body reorientation (equation (5.6), figure 5.5d). The contribution of the total
torques to the pitch angle (εtotal) is similar for both the lean and the fed mosquitoes
(figure 5.5 d). The contribution of the aerodynamic torques to the pitch angle εaero
is higher for the fed mosquitoes than for the lean mosquitoes, most likely due to a
blood­load induced backward shift of the center of mass relative to the aerodynamic
center (figure 5.5d). As a result, the blood­fed mosquitoes have a lower contribution
of the legs to the pitch up torque production εleg than the lean mosquitoes. In fact,
on average, leg push­off in blood­fed mosquitoes even contribute negatively to the
pitch­up maneuver (fed mosquitoes: εleg = −4.66o ± 29.70o, n = 7), whereas for
the lean mosquitoes the average leg­induced pitch­up contribution was positive (lean
mosquitoes: εleg = 30.96o ± 33.05o, n = 6).

Comparing the contribution of aerodynamic torques and leg push­off torques to
the pitch­up movement within the push­off phase (figure 5.5e) shows that the positive
contribution of aerodynamic torques, mostly present in the blood­fed mosquitoes, is
compensated by a reduced (or even negative) pitch­up contribution from the legs.
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5.4 Discussion

Force production

During take­off, a mosquito has to produce high enough forces to reach an escape
velocity that maximizes the chance to escape a predator or a defensive blood­host [2].
These forces are generated by a combination of the aerodynamic forces produced by
the flapping wings and ground push­off forces from the legs [4], [9]. In our sim­
ulations, we compared the required forces needed to perform the measured take­off
with the aerodynamic forces generated by the wings. Our results show that during the
push­off phase of a take­off, the aerodynamic force indeed represents 25.9%±6.90%
of the total take­off force (n = 13, figure 5.4c). Interestingly, this fraction does not
differ significantly between fed mosquitoes and lean mosquitoes (p = 0.087), which
suggests that the aerodynamic and leg forces scale both with the body mass of the
animal.

Forces acting on the substrate

The take­off poses a large demand on the flight­apparatus of particularly a blood­fed
mosquito, because during a take­off the animal has to generate a high enough escape
velocity while carrying a considerable payload. We explored whether the interaction
of the wake with the substrate enhances the force generation of the wing, aiding in
the take­off.

For this, we conducted two computational experiments; one for a lean and one
for a fed mosquito. Both experiments consisted of two simulations; one with ground
present, and one without ground present. Surprisingly the ground had no effect on the
forces on themosquito, even though the wake had a clear interaction with the substrate
(figure 5.2i–l). The change in the wake did not seem to propagate upstream to the
flapping mosquito, which resulted in a similar airflow around the wings compared to
the case without substrate present. This result is in line with a previous study on fruit
flies [11].

However, our result do show that the presence of the substrate increases the local
pressure compared to equivalent plane at the same location in free air. This means
that the wake has an effect on the substrate, which is in line with previous hypotheses
[4]. For the blood­fed mosquitoes, the force on the platform resulting from this air
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pressure increase is equal to the detection threshold for mammalian skin, which might
suggest that blood­fed mosquitoes can be detected during take­off. However, this
force does not act on a single point as it is distributed over an surface of 2cm x 2cm
(figure 5.2c). This spreadingmay cause that the peak force on the skin surface remains
below the detection limit of a mammalian host, which is in line with the hypothesis
that escaping hematophagous insects can use wing­induced aerodynamic forces to
reduce the chance of being detected [4].

Adaptation of the wingbeat kinematics

Our second hypothesis was that the mosquito increases its shallow stroke amplitude in
order to increase the aerodynamic force production. The stroke amplitude is strongly
correlated with the wingbeat­average aerodynamic resultant forces (figure 5.4e). Fur­
thermore, the stroke amplitude is correlated positively with the deviation angle am­
plitude (figure 5.4f ), which implies that both the stroke angle and the deviation angle
are adapted simultaneously. This combined adjustment of the stroke and deviation
angle amplitude suggests that a relatively simple mechanism is used to increase the
resultant forces. A similar mechanism to increase the aerodynamic forces was found
in honeybees [12].

Force angle alignment

Due to the higher weight of the abdomen during take­off, the pitch angle of a fed
mosquito is in general higher than for unfed mosquitoes [4]. This higher pitch­angle
of the body leads to a higher angle between the stroke­plane and the ground, because
the stroke­plane is fixed to the body­axis of the animal (figure 5.1e–g). The force
angle (ξ) of blood­fed mosquitoes, the pitch angle between the force vector and the
stroke­plane, is reduced significantly compared with lean mosquitoes (figure 5.4b).

For the blood­fed mosquitoes, the decrease in force angle, aligning the force vec­
tor closer to the body axis, is correlatedwith the increase in aerodynamic force produc­
tion (figure 5.4g). At the same time, to increasing this aerodynamic force, blood­fed
mosquitoes not only increase stroke amplitude (figure 5.4e), but they also increase
the deviation angle amplitude (figure 5.4f ). A recent study showed that such change
in deviation angle amplitude causes a pitch down rotation of the force vector [4].
This suggests that blood­fed mosquitoes synchronize re­alignment of the force vector
with increase in force magnitude. This allows them to simultaneously compensate
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for both the weight increase and the higher body pitch angle as a result of flying with
a blood­load in their abdomen.

Pitch control via leg push­off

During take­off, the mosquito has to pitch­up rapidly to reorient its stroke­plane par­
allel to the ground, such that the force vector opposes the gravity vector [4]. This
pitch­up motion occurs when the legs are still touching the ground. We have found
that both lean and fed mosquitoes use their legs for pitch­up control (figure 5.5d). In­
terestingly, the lean mosquitoes achieve this pitch control via a positive contribution
of leg torques to the pitch­up movement, whereas in fed mosquitoes the legs con­
tribute on average negatively to the pitch­up movement (figure 5.5e). This is most
likely caused by a backward shift of the center of mass as a result of blood feeding
(figure 1c). Due to this, a blood­fed mosquito generates larger aerodynamic pitch­up
torques, which need to be compensated by pitch­down torques produced by the legs
at push­off (figure 5.5b, c).

Fruit flies also generate a large pitch­up torque during take­off, where they rely
solely on their legs. When the fruit fly is airborne it uses its wings to generate a counter
torque to stop the pitch up rotation of the body [5]. On the other hand, mosquitoes
produce pitch torques with both their legs andwings throughout the complete push­off
phase. The pitch torque produced by the wings remains relatively constant throughout
the take­off maneuver. For blood­fed mosquitoes the leg­induced torques vary from
positive when initiating the pitch­up maneuver, to negative when stopping the pitch
up rotation (figure 5.5b–c).

This suggests that that malaria mosquitoes use their flight­apparatus primarily as
a motor system, whereas they use their legs to control the body pitch movements
throughout take­off maneuvers. Together with the apparent co­regulation of aerody­
namic force magnitude and force angle, this suggests that malaria mosquitoes possess
a robust control system that allows them to perform rapid take­off maneuvers both
with and without a blood­load in their abdomen.
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an online repository.
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5.7 List of symbols

Table 5.1: List of symbols
Variable units description
Astroke Rotation matrix from the body reference frame to the stroke reference frame
Abody Rotation matrix from the world­reference frame to the body reference frame
β Angle between the stroke­plane and the body axis
ε⃗ Angle produced by a torque around a single axis during the push­off phase
εaero Angle produced by the aerodynamic torque around the pitch axis during the push­off phase
εleg Angle produced by the leg torque around the pitch axis during the push­off phase
F⃗total N Forces derived from the body accelerations
F⃗leg N Forces exerted by the legs
F⃗aero N Aerodynamic forces produced by the mosquito

Fsubstrate mN
Force acting perpendicular to the substrate caused by
the interaction of the wake with the substrate

F⃗∗ Specific weight normalized forces F⃗∗ = F⃗/(mmosqg)

F⃗∗∗ Generic weight normalized forces F⃗∗∗ = F⃗/(mgeng)

γ Stroke angle
I kg m2 Mass moment of inertia
lmosq mm Specific body length of the mosquito
L⃗total kgm2 s−1 Angular momentum derived from the body rotation
mmosq mg Specific body mass of the mosquito
mgen mg Generic body mass of 1mg
ω⃗ s−1 Angular velocity
ϕ Rotation angle
θ Deviation angle
T⃗total Nm Torques derived from the total angular momentum Ltotal

T⃗leg Nm Torques produced by the legs
T⃗aero Nm Aerodynamic torques produced by the mosquito
Tpitch Normalized pitch torque
T⃗∗ Specific weight and body length normalized torques T⃗∗ = T⃗/(mmosqglmosq)

V⃗ ms−1 Velocity of the mosquito in the world reference frame, derived from the kinematics
W⃗ N Weight vector in the world reference frame
ξ Angle between the force vector and the stroke­plane

5.8 CFD

The spatial and time resolutions were chosen after performing a mesh and time­step
study. The mesh­study was performed first using a wing that pitches up (ωpitch =

3000 rad s−1) whilst moving forward (ωstroke = 1750 rad s−1), for a range ofmesh sizes
(Figure 5.6c) with a time­step of ∆t = 1 · 10−7 s. The effect of the mesh size on the
force at the extraction point (Figure 5.6 a, c) is small but decreasing mesh size comes
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at a vast increase in the amount of cells. We have chosen the mesh­size of ∆x =

3.04 · 10−5mm, which falls within a small error from the finer mesh; in contrast the
computation time increases steeply due to the large number of cells needed. Choosing
this mesh­size led to an average use of 4 million cells for each simulation. After
choosing the mesh­size, the time­step was chosen in a similar fashion. For the same
simulation as used for the mesh study (ωpitch = 3000 rad s−1,ωstroke = 1750 rad s−1),
a range of time­steps where tested (Figure 5.6d). The effect of the time­step (Figure
5.6b, d) is larger than that of the mesh­size. We chose a time step ∆t = 1 · 10−7 s,
because further refinement has little effect on the solution, but the number of steps
needed does increase drastically.

The computational fluid dynamics solver is validated using the kinematics of a
steady hovering fruit fly and the resulting forces published earlier [20]. The forces
predicted by the solver on the third wing­beat show a good match with the forces
found by the robotic flapper (see Figure 5.6f) [17].

The wake­structure for both the lean mosquito and the fed mosquito are shown in
Figure 5.7 and 5.8 respectively. Both figures show a front view (a), perspective view
(b), top view (c) and side view (d). Both figures show the complex flow­field around
a mosquito during take­off.
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5.9 Supplementary figures
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Figure 5.6: Mesh­study, time­step study and solver validation. (a) Forces for a pitch­
ing fruit fly wing (ωpitch = 3000 rad s−1, ωstroke = 1750 rad s−1) for several mesh sizes
(see Figure 5.6 e). (b) Forces for a pitching fruit fly wing (ωpitch = 3000 rad s−1,
ωstroke = 1750 rad s−1 ) for several time­steps (see Figure 5.6g). (c) Force deviation
from finest mesh at extraction point (pitch angle= 45o) for several mesh sizes (see
Figure 5.6e), in purple an estimate of the number of cells at extraction. (d) Force de­
viation from finest time­step at extraction point (ωpitch = 45o) for several time­steps
(see figure 5.6g). (e) Color­legend for all the mesh sizes used in panel (a) and (c). (f)
Solver validation using the kinematics of a hovering fruit fly [20], red shows simula­
tion results, and blue shows robotic experiment results [20] . (g) Color­legend for all
time­steps used in panel (b) and (d).
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Figure 5.7: Wake­structure visualisation around a lean mosquito during the take­off.
The iso­surface was chosen at a vorticity threshold of 2000 s−1. (a) front view (b)
perspective view (c) top view (d) side view.
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Figure 5.8: Wake­structure visualisation around a blood­fed mosquito during the
take­off. The iso­surface was chosen at a vorticity threshold of 2000 s−1. (a) front
view (b) perspective view (c) top view (d) side view.

5.10 Supplementary legends

Database The forces, torques and kinematics of all the simulations used in this study
are provided in the electronic supplementary file ”database_S1.h5”. This is an
open­source HDF5 database file format that can be read with commonly­used script­
ing languages such as Matlab and Python. The database consists of three groups:
”Leanmosquitoes”, ”Blood­fedmosquitoes” and ”Ground effect”. These groups have
more groups inside which conincide with the data­set per simulation. In this set the
following data can be found: the forces from CFD in the world reference frame, the
torques fromCFD in the stroke­plane reference frame, the forces from inverse dynam­
ics, the torques from inverse dynamics, and the geometry used in the simulations. The
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sequence name consists of the date and the sequence number used in the study from
which we got the kinematics [4].

Movie S1Movie of the CFD simulation results of the take­off of the leanmosquito
shown in Figure 5.7. The movie shows the mosquito and iso­surfaces at a vorticity
threshold of 2000 s−1, colored according to Figure 5.7. Playback is slowed down
approximately 900 times.

Movie S2Movie of the CFD simulation results of the take­off of the fed mosquito
shown in Figure 5.8. The movie shows the mosquito and iso­surfaces at a vorticity
threshold of 2000 s−1, colored according to Figure 5.8. Playback is slowed down
approximately 900 times.
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6.1 Introduction

I started this thesis with a simple and seemingly humble question: How do insects
fly? In the first three chapters, I used large parametric studies to uncover the aerody­
namics behind a constant pitch rate motion, a stroke acceleration motion and a pitch
acceleration motion. In my last research project, I studied the take­off maneuver of
several lean and blood fed mosquitoes to find the effect of the interaction with the
substrate, of both the fluid and the legs of the animal.

In this chapter, I will use the aerodynamic mechanisms found in the first three
chapters to study hovering flight of the fruit fly (Drosophila hydei) [1] and the malaria
mosquito (Anopheles coluzzii) [2]. To do this, I developed a quasi­steady aerody­
namic model, which I applied step by step to the kinematics of the two insects. Fur­
thermore, I used computational fluid dynamics (CFD) [3] to find the total forces of
the flying insects. The forces computed by the quasi­steady model were compared
with these total forces and data from literature.

At the end of this chapter, I used the quasi­steady model on the kinematics of the
take­off of the lean and fed mosquitoes. The forces I found in chapter 5 served as a
comparison for the output of the quasi­steady model.

6.2 Forces of hovering flight

With the use of computational fluid dynamics simulations, I calculated the aerody­
namic forces of a fruit fly and a mosquito during hovering flight. The force output
of these two simulations were used as a comparison for the quasi­steady model that I
developed in section 6.3. In section 6.2.1, I will briefly introduce the setup I used for
these simulations. In section 6.2.2, I will discuss the outcome of these simulations.

6.2.1 Setup

Reference frames and kinematics

I used four reference frames of which three were right­handed reference frames: the
world reference frame, the stroke plane reference frame and the wing reference frame,
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and one aerodynamic reference frame. The forces were computed in the world ref­
erence frame, with the z­axis opposing the gravity vector (figure 6.1 a). The stroke
plane reference frame was defined to the body of the animal with the z­axis pointing
down and the x­axis pointing forward and the y­axis pointing to the tip of the right
wing at mid­stroke (figure 6.1 a–c). Finally, the wing reference frame was defined
with respect to the stroke plane reference frame with three Euler angles: the stroke­
angle γ, the deviation angle θ and the pitch angle ϕ.

The wing was first rotated with the stroke­angle around the z­axis of the stroke
plane reference frame, with a positive stroke angle being a rotation towards the ventral
side of the animal (figure 6.1 f ). Secondly, the wing is rotated around the x­axis of the
intermediate reference frame with the deviation angle (figure 6.1 d). Finally, the wing
is rotated around its span with the pitch angle ϕ (figure 6.1 e). The three Euler angles
for the fruit fly and mosquito for hovering flight were based on previous results [1, 2]
(figure 6.3 a–c).

In addition, to the three reference frames, I included an aerodynamic reference
frame which depends on the direction of motion of the wing (figure 6.2). The lift was
defined perpendicular to the direction of motion of the wing. The drag was defined
parallel to the direction of motion of the wing. This reference frame was also used
to define the angle­of­attack, stroke rate, stroke acceleration, pitch rate, and the pitch
acceleration.

Computational setup

I used an immersed boundary method solver (IBAMR) [3] to simulate the forces act­
ing on a wing of a hovering fruit fly and mosquito. I used the same setup as I did
throughout this thesis, with a domain of 5 cm x 5 cm x 5 cm, a time­step of ∆t =

1 · 10−7 s, and adaptive mesh refinement with the finest grid size ∆x = 0.01mm.
This resulted in a mesh of approximately four million cells and for the fruit fly 53 000
time­steps per wingbeat and for the mosquito 17 000 time­steps per wingbeat. For a
verification and validation of the solver refer to the appendix of chapter 2.

6.2.2 Results

The forces normal to the wing surface of the fruit fly and the mosquito (figure 6.3
f ) are presiding over the viscous forces (figure 6.3 d, e). The force along the chord
(figure 6.3 a) has a small contribution to the overall forces. The chord­wise force
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points towards the trailing edge throughout the wingbeat, which reduces the lift and
increases the drag.

The lift and drag components (figure 6.3 g, h respectively) are computed based
only on the pressure force. The resulting lift and drag will be higher throughout the
wingbeat if the viscous forces were included. I chose to remove the effect of the
viscous forces, because almost all models I developed in this thesis are only based on
the forces normal to the wing surface. Obviously, figure 6.3 a shows the importance
of models that explicitly model the viscous force component.

The drag (figure 6.3 h) shows a large discontinuity at stroke­reversal. This discon­
tinuity is actually caused by the definition of the aerodynamic reference frame, that
makes the drag dependent on the direction of motion of the wing. This discontinuity
is not present in the forces in the wing reference frame (figure 6.3 d–f ). However,
this jump in forces is not some mathematical oddity. The mosquito, and in lesser
amount the fruit fly, are both experiencing a negative drag directly after stroke re­
versal (around 50% wingbeat progress). This negative drag means that the insect is
actually aided in the acceleration of its wing at the start of the stroke. The lift of the
fruit fly reaches a maximum after stroke reversal for the backward stroke. For the
mosquito, this maximum is reached mid­stroke for the forward stroke (figure 6.3 g).

6.3 From wing motion to force production

In this section, I will gradually develop a quasi­steady model based on the aerody­
namic mechanisms I found in this thesis. I will compare the quasi­steady model with
the results of the CFD found in section 6.2.2. In each section, I will compare the
sum of all aerodynamic mechanism up to that point with the sum of all aerodynamic
mechanisms before that point. I will start with the stroke rate forces in section 6.3.1.
In section 6.3.2, I will add the stroke pitch interaction forces to the model. Then I will
add the pitch rate forces in section 6.3.3. After adding the stroke rate and pitch rate to
the model, I will add the stroke acceleration in section 6.3.4. Finally, in section 6.3.5
I will add the pitch acceleration forces and the stroke pitch acceleration interaction
forces. In this last step, the quasi­steady model based on the aerodynamic mecha­
nisms described in this thesis is complete. I will end this section with a discussion on
the roles which the quasi­steady model has in section 6.3.7.
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6.3.1 The stroke motion: setting a baseline

The forces associated with the stroke motion of the wing with a constant stroke rate
and constant angle­of­attack are generally correlated with the presence of the leading
edge vortex (LEV) [4, 5, 6]. In the appendix of chapter 3, I computed the stroke rate
forces based on a relative simple model, which can be written as

Fsr = ρCsr sin (α)ω2
sSyysign (ωx) , (6.1)

where, ρ is the fluid density, Csr the stroke rate force coefficient, α the angle­of­
attack, ωs the stroke rate, Syy the span­wise secondmoment of area andωx the angular
rate around the x­axis in the wing reference frame. The stroke rate and angle­of­attack
both depend on the direction of motion of the wing. To robustly quantify in which
direction the wing is moving, I chose to use the sign of the angular rate in the wing
reference frame around the x­axis (ωx). From the definition of the stroke rate (ωs and
the angle­of­attack α in figure 6.2 b, and d), I derived the following two equations:

ωs =
√
ω2
x + ω2

z , (6.2)

α = tan−1

(
ωx

ωz

)
sign (ωx) . (6.3)

The force coefficient was determined in chapter 3 (appendix D) asCsr = 1.56. I used
this coefficient in combination with the model (equation (6.1)) to compute the lift and
drag for the fruit fly and mosquito (figure 6.4).

For both the fruit fly and the mosquito, the stroke rate forces produce a strictly
positive lift and drag (figure 6.4), by definition. Around mid­stroke both force com­
ponents reach their maximum. For the fruit fly, it appears that both components are
reasonably well predicted by the stroke rate forces alone, but for the mosquito the
stroke rate forces lead to an under­prediction of the lift and drag (figure 6.4 b, d).
This under­prediction of the forces by the stroke rate forces is in line with previous
studies for the fruit fly [1] and for the mosquito [7].

The model for the stroke rate forces Fsr (equation (6.1)) resembles the normal
force model found previously [8] (figure 6.5). If I only compare the results at a single
angle­of­attack (α = 46°), the model presented here is close to earlier found mod­
els [9]. Interestingly, some models based on the results of robotic flappers lead to a
higher estimation of the coefficient of lift and the coefficient of drag [5, 10, 11, 12].
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The model developed for mosquito flight used interpolation to find the dependence of
the coefficient on the angle­of­attack [7]. Therefore, I took the coefficient of lift and
the coefficient of drag at an angle­of­attack of 45°, which resulted in Cl ≈ 1 − 1.05

and Cd ≈ 1.1 − 1.5 (figure 9, in Bomphrey 2017 [7]). These results are consid­
erable lower than the coefficient of lift and drag I find at an angle­of­attack of 45°
(Cl = 1.56). Partially, this might be explained by the fact that in the former study
the lift is measured after three revolutions of the wing, which means that the wing is
rotated through its own wake. However, the wake from continuous revolutions has
a velocity moving with the wing due to the spin­up of the fluid, whereas for a re­
ciprocal movement of the wing the velocity of the previous stroke moves against the
movement of the wing. Therefore, I consider the method I discuss in this thesis more
accurate than the method presented in literature.

6.3.2 The combined stroke & pitch motion: stroke pitch interaction

The forces as a result of a pitchingwing and awing that has a strokemotion is modeled
as

Fsr−pr =

ρ
(
d∗pr,uω

2
pωsSx|x|

√
Syy + f∗

pr,uωpωsSyy

)
sign (ωx) ωp > 0

ρ
(
d∗pr,dω

2
pω

2
sSx|x|

√
Syy + f∗

pr,dωpω
2
sSyy

)
sign (ωx) ωp < 0,

(6.4)

where ωp is the pitch rate, Sx|x| the asymmetric second moment of area, and d∗pr,u,
f∗
pr,u, d∗pr,d and f∗

pr,d the coefficients that link the kinematics to the force generation
(see chapter 4).

Here, I do make a big assumption, namely that the geometrical scaling for a wing
pitching down is the same as for a wing pitching up. I chose to use the model that
differentiates between pitch up and pitch down in favor of the model discussed in
chapter 2, because I consider the later model an advancement of the earlier one.

The pitch rate ωp coincides with the pitch rate around the span in the wing refer­
ence frame. Because the pitch rate changes definition as the wing changes its direction
after stroke reversal (figure 6.2 b and d), I included the sign of the angular rate around
the x axis, which results in a simple equation for the pitch rate, which is written as

ωp = ωysign (ωx) , (6.5)
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where ωy is the angular rate around the pitch axis in the wing reference frame. For
both insects, the inclusion of the stroke pitch interaction results in a higher peak force
for the lift (figure 6.6 a, b). The lift and drag are predicted reasonably well with the
combination of the stroke rate model, and the stroke pitch interaction model. Notably
absent are the large negative peaks in the drag of the mosquito (figure 6.6 d).

The prediction of the stroke pitch interaction forces introduces a discontinuity
when the wing is changing from pitch up to a pitch down motion and visa­versa. I
assumed that this change from models happens instantaneously. However, in reality
a smoother transition from one model to the other is probably present. More research
is needed to uncover how the transition from a pitch up to a pitch down motion occurs
and how the forces are influenced.

The model found in the second chapter did not discriminate between a wing that is
pitching up or down. Actually, the assumption that a wing that pitches up produces the
same forces as a wing that pitches down is commonly applied [5, 1, 13, 14, 15]. The
model from chapter 2 indeed does include these negative peaks in both the lift and drag
(figure 6.7 a, b and c, d respectively). These negative peaks are often associated with
the hypothesis that Dipteran flappers use delayed wing rotation to generate torques
required for maneuvering [6, 1]. This delayed wing rotation happens around stroke
reversal, where the wing is pitching down. This new model shows that the stroke
pitch interaction forces due to a wing that is pitching down is impaired compared to a
wing that is pitching up. Therefore, it might be that other aerodynamic mechanisms
are more relevant for predicting the torque production around stroke­reversal.

There are several models present in literature that model the stroke pitch interac­
tion forces as a function of the kinematics and wing morphology [15, 14, 13]. Each
of these models use the same scaling for the wing morphology, namely:

Sxy =

∫ cle

cte

yx2dx. (6.6)

Because themodel presented in equation (6.4) is dependent on the direction of rotation
and the coefficients in equation (6.4) on the direction of the acceleration (see chapter
4, table 4.2), I decided to use the much simpler model presented in chapter 2 for the
comparison with literature. This simpler model shows good agreement with the more
complex model for a wing pitching up (figure 6.7).

The model presented in chapter 2 used a different morphological scaling than
presented in equation (6.6). For the sake of comparison I recomputed the coefficients
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found in literature by multiplying them with the fraction Sxy/
√
SxxSyy for both the

fruit fly and the mosquito.

The rotational lift coefficient based on the scaling parameter Sxy (equation (6.6))
reported in literature is Csr−pr = 1.55 [15, 13, 14]. Here I assume that the reported
value of Csr−pr = 0.55 in Nakata 2015 is actually a typo and should be 1.55[14].
When I multiply this coefficient with the scaling fraction discussed earlier I come to a
coefficient for the fruit fly of Csr−pr = 1.02 and for the mosquito of Csr−pr = 1.06.
The coefficient found in chapter 2 was Csr−pr = 2.08 ,which means that the model
discussed in this thesis will result in stroke pitch interaction forces that are almost a
factor two higher than the forces predicted previously in literature.

6.3.3 The pitch motion: pitch rate

The forces as a result of a wing pitching up or down can be modeled as (see chapter
4)

Fpr = ρa∗paω
3
pSx|x| + ρb∗paωpSx|x|, (6.7)

where the pitch rate was obtained in the previous section (section 6.3.2, equation
(6.5)), Sx|x| is the asymmetric second moment of area, and a∗pa, b∗pa are coefficients
that describe the relation between the pitch rate and the pitch rate forces. For the
fruit fly, the pitch rate forces cause a dip in the lift forces directly after stroke reversal
(figure 6.8 a). For the mosquito, the pitch rate forces also show a dip in the lift directly
after stroke reversal for the forward stroke (figure 6.8 b at≈ 10%). However, for the
backward stroke the pitch rate forces are first positive, and then become negative.
At around mid­stroke of both the forward stroke and backward stroke, the pitch rate
forces have a positive contribution to the lift.

The contribution of the pitch rate forces to the drag of the fruit fly and themosquito
are negative after stroke reversal (figure 6.8 c, d). A negative dragmeans that the force
vector is pointed towards the direction of motion of the wing. Therefore, the pitch
rate forces contribute to the acceleration of the wing at the start of the forward stroke
and backward stroke. In addition, the contribution of the pitch based forces to the
drag becomes positive around mid­stroke for both insects. A positive drag is acting
in the opposite direction to the wing motion. This means that the pitch rate forces
also aid in the deceleration of the wing at the end of the stroke, which might reduce
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the cost of flight.

The model proposed in equation (6.7) is similar to other models in literature [14].
As before, the main difference is the geometrical scaling with the asymmetric scaling
parameter Sx|x| compared to the previously used scaling parameter Sxy. To compare
the coefficient directly, I multiplied the coefficient from literature with the factor
Sxy/Sx|x|. The coefficient from literature is actually based on the maximum coeffi­
cient of drag [14], which is found at 3.2 [16]. If I multiply this value with the factor
of scaling parameters, I find for the fruit fly a coefficient of 8.59 and for the mosquito
9.60. Both these values are considerably higher than the coefficient 2.08 I found in
chapter 2 and in chapter 4.

Apart from the difference in coefficients the geometrical scaling is also differ­
ent. The geometrical scaling proposed in this thesis (Sx|x|) takes into account that a
symmetrical wing does not generate pitch rate forces. Whereas the geometrical scal­
ing Sxy does not take this into account, and clearly overlooks the importance of the
asymmetrical placement of the wing pitch axis with respect to the symmetry axis.

6.3.4 Wing accelerations: stroke acceleration

In chapter 3, I showed that the stroke acceleration influence the aerodynamic forces.
The influence of the stroke motion on the aerodynamic forces consists of an interac­
tion term Fsr−sa and an independent term Fsa. The influence of the interaction term
on the forces is minimal and therefore I ignore this term here. The stroke acceleration
forces can be modeled as

Fsa = ρ
(
d∗sa−αaα

2 + d∗sa−αbα
)
ω̇s

√
SsedovSyy. (6.8)

Where ω̇s are the stroke accelerations, Ssedov a geometrical scaling parameter based
on the two­dimensional model developed by (Sedov 1965)[17], and d∗sa−αa, d∗saαb
are coefficients that describe the relation between the angle­of­attack and the stroke
acceleration forces. I obtained the angle­of­attack in a previous section (section 6.3.1,
equation (6.3)), and the stroke acceleration is derived from the stroke rate (equation
(6.2)) as

ω̇s =
d

dt

(√
ω2
x + ω2

z

)
. (6.9)
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The stroke acceleration forces have a positive contribution to the lift at the start of
the stroke, directly after stroke reversal (figure 6.9 a, b). At the end of the forward
stroke and backward stroke, the contribution to the lift becomes negative due to the
deceleration of the wing.

The contribution to the drag is positive at the start of the forward and the backward
stroke (figure 6.9 c, d). At mid­stroke, the contribution becomes negative, working in
opposite direction of the wing acceleration. The stroke accelerations on average have
a positive contribution to the drag (6.12). Thus, the hypothesis posed in literature,
that the stroke acceleration forces are irrelevant for the wingbeat averaged forces, is
not valid [18].

Overall, the prediction of the lift and drag of the fruit fly appears to be quite good
after the addition of the stroke acceleration forces. Especially the lift component
only shows a small overshoot for the fruit fly, but for the mosquito it is almost equal.
However, this does not mean that with the use of the models up to now we can explain
insect flight. I will discuss this in more detail in section 6.3.7.

Others also have included the stroke accelerations (added mass) in their models,
based on a two­dimensional model [17, 19, 20, 15, 21, 22]. These models are similar
to the model presented in equation (6.8), with two noticeable differences: the depen­
dence on the angle­of­attack, and the morphological scaling. The dependence of the
angle­of­attack in these other models is based on the acceleration normal to the wing
surface (e.g. ω̇s sinα), whereas the model I present here uses a quadratic relation with
the angle­of­attack. Actually these two methods of scaling with the angle­of­attack
are not all that different.

What is different is the morphological scaling through the parameter
√
SyySsedov

in the model presented here, and Ssedov in the other models. In the model presented
here, the variation of the wing along the y­axis is an important scaling parameter for
the stroke acceleration forces.

I evaluated the model presented here at an angle­of­attack α = 45° for both the
fruit fly and the mosquito. For both species, the results from this model compared
with literature is similar for the fruit fly:(
d∗sa−αaα

2 + d∗sa−alphabα
)√

SsedovSyy = 2.74 · 10−12m4 againstπ/4 sin (α)Ssedov =
2.65 · 10−12m4 and for the mosquito:(
d∗sa−αaα

2 + d∗sa−alphabα
)√

SsedovSyy = 1.87 · 10−12m4 againstπ/4 sin (α)Ssedov =
1.6 · 10−12m4. This means that the approximation based on the two­dimensional
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model is capable of predicting the stroke acceleration forces quite well.

6.3.5 Wing accelerations: pitch­acceleration

The contribution of the pitch­acceleration to the overall forces consists of two terms:
the pitch acceleration forces Fpa and the stroke­pitch acceleration forces Fsr−pa. I
will first discuss the pitch acceleration forces and end the development of the model
with the stroke­pitch acceleration interaction forces.

The pitch acceleration forces are linear dependent on the pitch acceleration, and
can simply be modeled as

Fpa = ρĉ∗paω̇pSx|x|, (6.10)

where ĉ∗pa is a coefficient that describes the relation between the pitch acceleration ω̇p

and the pitch acceleration forces. The pitch acceleration ω̇p needs to be determined
before the direction of the pitch motion is determined. This can be done by taking the
angular rate around the span and taking the derivative, which results in

ω̇p =
d

dt
(ωy) sign (ωx) . (6.11)

The pitch acceleration forces affect lift around the start of the forward and backward
stroke the most (figure 6.10 a, b). The fruit fly generates a small amount of pitch
acceleration forces at the start of each stroke. However, the lift of the mosquito is
largely impacted by the pitch acceleration forces.

The drag shows a similar trend as the lift, where the largest influence is at the
start of the forward stroke and backward stroke (figure 6.10 c, d). Directly after
stroke­reversal a negative contribution to the drag is provided for both the fruit fly
and mosquito. This negative contribution means that the pitch acceleration forces
actually provide a thrust, instead of a drag. At around ≈ 10% after stroke reversal,
the contribution to the drag becomes positive.

The linear scaling of the pitch acceleration forces with the pitch acceleration is
in line with previous results [19, 20]. These previous models where based on a two­
dimensional model [17]. The difference between these models and the model pre­
sented here is the geometrical scaling. Therefore, I recomputed the coefficient used
in the models of the previous studies by multiplying themwith a factor of the different
scaling factors SsedovSx|x|. For the fruit fly, this results in a coefficient of 2.77 and
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for the mosquito of 2.63. For both insects, the “old” coefficient is considerable larger
than the coefficient ĉ∗pa = 1.27 discussed in this section.

The last term of the quasi­steady model are the stroke pitch acceleration forces. These
forces model the interaction between the stroke rate and the pitch acceleration of the
wing. In chapter 4, I proposed a model for these forces as

Fsr−pa =

ρĝpr,dω̇pω
2
s ωp < 0, ω̇p > 0

0 otherwise.
(6.12)

Shining in its absence is the geometrical scaling. Because I only varied the wing mor­
phology for the wings that are pitching up, I was unable to determine the geometrical
scaling of the stroke pitch acceleration forces. Therefore, I assumed that the geo­
metrical scaling of the stroke pitch acceleration forces is the same as the geometrical
scaling for the pitch acceleration forces, namely: Sx|x|.

For the fruit fly, the stroke pitch acceleration forces barely have an effect on the lift
and drag (figure 6.11 a, c). For the mosquito, a slight reduction of the lift and the drag
is found at the start of the forward and backward stroke around ≈ 20% after stroke
reversal (figure 6.11 b, d). However, even for the mosquito the effect on the forces
due to the interaction between the stroke rate and the pitch acceleration is minimal.

6.3.6 The total forces: fruit fly vs mosquito

In the previous section, I finished the quasi­steady model based on the aerodynamic
mechanisms found in this thesis. Throughout each section, I applied each aerody­
namic mechanism to the kinematics of the fruit fly and the mosquito. Here, I took the
average of the lift and the drag for the forward and the backward stroke (figure 6.12).
For the fruit fly, the lift and drag are mostly influenced by the stroke rate motion of
the wing. The lift of the forward stroke is the component that is influenced the most
by the other aerodynamic mechanisms (figure 6.12 d).

For the mosquito, the stroke rate motion remains a large influence. However, the
other components take up to half of the total forces (figure 6.12). Especially the pitch
acceleration forces play a huge role in the lift of the mosquito, and in lesser amount
in the drag. Interestingly, the pitch rate forces play almost no role in the average lift
forces, which is not in line with previous research [7]. However, the pitch rate forces
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do have a big contribution to the drag forces.
To summarize, the stroke rate motion appears to be of great importance for both

flappers. However, for low­amplitude high­frequency flappers it appears that the
other aerodynamic mechanisms greatly influence the aerodynamic forces.

6.3.7 Bringing it all together: explanatory or predictive?

The final quasi­steady model presented at the end of the previous section seems to be
a poor model in predicting the forces of either the fruit fly or the mosquito (section
6.3.5, figure 6.11). One could even argue that if we left out the last two steps, and
took the model in figure 6.9, that the model would perform better. Before I will dive
into the reasons why the prediction might deviate from the actual forces, I want to
start with a more philosophical question: What kind of role does the model have?

I see the two roles being used mixed together throughout literature: explanatory
and predictive. The predictive role is straightforward: Do the forces predicted by the
quasi­steady model overlap with forces generated by the actual insect? However, the
explanatory role has the goal to understand insect flight by linking part of the motion
of the wing to the forces that are being generated [23]. By mixing the two goals one
can easily come to the conclusion that if the model predicts the forces correctly, then
it must also be able to explain the forces correctly.

For instance, when the rotational forces were described for the fruit fly, the model
led to a better prediction of the forces [5, 13]. Actually, if we look at a quasi­steady
model where only the stroke rate forces and the stroke pitch rate forces are present the
prediction is rather good for the lift of the fruit fly (see section 6.3.1 and 6.3.2, figure
6.6 a). However, this does not mean that the fruit fly is not influenced by the other
aerodynamic mechanisms found in this thesis. Actually, the aerodynamic mechanism
that is “important” for the fruit fly is chosen through the order to which we apply
the models to the kinematics. For instance, if we would have started with the pitch
acceleration forces and ended with the stroke rate forces the latter would seem to be
the cause of the over prediction of the quasi­steady model.

Another example is found in a recent discovery that the pitch rate forces are the
key mechanism behind mosquito flight (rotational drag, see section 6.3.3) [7, 14]. A
simple quasi­steady model based on the stroke rate forces and the stroke acceleration
forces, was compared to the results from computational fluid dynamics. The differ­
ence between the aerodynamic forces computed by the quasi­steady model and the
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CFD results were ascribed to the rotation of the wing. However, in this thesis I have
shown that a direct computation of the pitch rate forces does not improve the predic­
tive capabilities of the quasi­steady model for either the lift or drag of the mosquito
(figure 6.8 b, d). Furthermore, the mix between the predictive and explanatory role
is used to come to this conclusion; if the stroke rate forces are not enough to predict
to lift generation there must be another aerodynamic mechanism that does.

These two examples both have a understandable flaw in reasoning, that if the pre­
dicted forces are correct that the aerodynamic mechanisms responsible for this predic­
tion must be the explanation of insect flight. However, I believe that this reasoning
should be turned around. All the aerodynamic mechanisms and their interactions
should be understood thoroughly before we can asses their contribution to the force
generation of a certain insect.

Considering the final model presented in figure 6.11. As mentioned before, the
model is unable to accurately predict the forces during hovering flight of a fruit fly and
mosquito. For both the fruit fly and the mosquito, the combination of all the models
lead to an overestimation of the lift forces at the start of both the forward stroke and
backward stroke. In this thesis, I ignored two unsteady aerodynamic mechanisms:
the Wagner effect [24] and wake­capture [25, 26]. Both these models are strongly
dependent on the history of the flow. This makes the development of these models,
based on the kinematics alone, difficult or even impossible. Nonetheless, further re­
search into the role of these two aerodynamic mechanisms might play a crucial part
towards a deeper understanding of insect flight.

6.4 Let’s stretch it: What can we learn from these aerody­
namic models?

Up until this point, I have developed a quasi­steady model and applied it to the hov­
ering flight of the fruit fly and mosquito. In this section, I will put the model through
its paces and apply it to the take­off of the malaria mosquito in section 6.4.1. Finally,
in section 6.4.2 I will look into the load carrying capabilities of the malaria mosquito.

6.4.1 Mosquito take­off

In chapter 5, I used CFD to find the forces and torques of 13 mosquitoes during
take­off. The set consisted of a group of mosquitoes that where lean and a group
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of mosquitoes that where blood­fed. Here I applied the quasi­steady model to the
kinematics of these take­offs [2]. I used a moving average filter with a width of
three wingbeats to minimize the large fluctuations. Because I computed the forces on
two wings simultaneously the lift and drag were diffucult to asses and interpet. Fur­
thermore, from the CFD results from chapter 5 only the forces of two wings where
available. Therefore, I use the forward force (x­axis in the stroke reference frame
figure 6.1) and the upward force (inverted z­axis in the stroke reference frame shown
in figure 6.1).

I took one example sequence for the lean mosquito and one for the fed mosquito.
In the lean mosquito, the forward force shows a minimum after ten wingbeats and
then stabilizes from 20 wingbeats on (figure 6.13 a). The quasi­steady model follows
this pattern rather well, but falls short in the exact prediction of the forces. A similar
pattern is observed in the upward force for the lean mosquito (figure 6.13 c), where
the model shows a similar pattern, but overshoots the prediction of the forces. For
the blood­fed mosquito, the forward force is predicted rather poorly (figure 6.13 b),
where neither the overall trend nor the forces itself are predicted correctly. In the
upward force of the blood­fed mosquito (figure 6.13 d), a peak is observed in the
quasi­steady model that is absent in the results from CFD.

To asses the contribution of each aerodynamic mechanism during the take­off, I
took the average of the forces from the start until the point where the legs leave the
ground (figure 6.13 e–h). In both the fed and lean mosquito, the stroke rate forces are
dominant during in the upward direction, leading to an over­prediction of the forces of
≈ 150% and≈ 200% for the lean and fed mosquitoes respectively. Interestingly, this
trend is not persistent for the forward force component, where the stroke­pitch rate
forces and the stroke acceleration forces are dominant (figure 6.13 e, g). The pitch
rate forces have a negative contribution to the forward force, reducing the forward
acceleration.

When applying the quasi­steady model to the take­off of the mosquitoes, I implic­
itly assumed that the motion of the insect has no influence on the forces. However,
the forward velocity will change the lift and drag throughout the stroke [18]. This
might explain part of the discrepancies between the quasi­steady model and the CFD
results.
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6.4.2 Blood fed mosquitoes vs lean mosquitoes

The take­off kinematics used for chapter 5 also led to the development of a generic
wingbeat for load carrying in mosquitoes [2]. These kinematics can be obtained
from the original wing kinematics in combination with a modified wing kinematics
as (equation 9 from [2])

k = ksteady +MODk

(
F/mgunfed − F/mgunfed, steady

)
, (6.13)

where k is one of the Euler angles that describe the motion of the wing, and MODk

the modification of the same angle. Equation (6.13) enabled me to vary the wingbeat
kinematics of a mosquito gradually from a lean mosquito to a fed mosquito (figure
6.14). As second step, I computed the contribution of each component of the quasi­
steady model to the drag and lift (figure 6.15 and figure 6.16). Finally, I computed
the wingbeat averaged lift and drag (figure 6.17 a and b respectively).

The stroke­rate forces are a big part of both the drag and lift at any weight support
(figure 6.17). Interestingly, the drag is only increased during the backward stroke, but
remains almost unaffected during the forward stroke (figure 6.15 a). However, the
lift is increased throughout the wingbeat (figure 6.16 a).

Actually, all the other aerodynamic mechanisms also only show an increase in
drag during the backward stroke (figure 6.15). However, these aerodynamic mecha­
nisms hardly influence the wingbeat averaged drag (figure 6.17 a), with the notable
exception of the stroke acceleration forces.

The rise in lift found in the stroke rate forces is not found in the other aerodynamic
mechanisms (figure 6.16 b – f ). The stroke pitch rate forces and the pitch based forces
mainly change during the backward stroke. However, these changes seem to balance
each other, because in the wingbeat averaged forces little change is observed for these
mechanisms (figure 6.17 b). The stroke acceleration forces show an increase at the
start of the forward stroke, which is balanced at the start of the backward stroke (figure
6.16 b. The pitch acceleration forces do show an increase during the first part of the
stroke (figure 6.16 e, which leads to a gradual increase of the averaged lift forces with
increasing weight support (figure 6.17 b).
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6.5 Concluding remarks

In this thesis, I used systematic parametric studies to uncover the aerodynamics of
flapping insect flight. I started with a simple question: How do insects fly?. Cou­
pling the motion of the wing to the generation of aerodynamic forces with the use of
aerodynamic mechanisms gave a good framework for answering this question. Often
these aerodynamic mechanisms were combined into a quasi­steady model.

I started out with revising the known aerodynamic mechanisms of stroke pitch
rate interaction forces and pitch rate forces in chapter 2. Here I showed that the offset
of the pitch axis and the symmetry axis of the wing influenced the generation of pitch
rate forces greatly. Furthermore, I showed that the stroke rate forces, pitch rate forced
and stroke pitch rate forces could all be linear added to form the total forces, if the
wing is moving at a constant stroke rate and pitch rate.

In chapter 2 the systemically parametric study based on CFD was again used to
uncover the relation to the stroke acceleration and the aerodynamic forces. With the
use of a large parametric study I identified that there is an interaction between the
stroke rate forces and the stroke acceleration forces. However, this interaction proved
to be small enough to be ignored when applied to the kinematics of the fruit fly and
mosquito. Furthermore, the stroke acceleration forces are particular important for the
flight of high­frequency flappers such as the mosquito.

In chapter 4, I took another look at the pitch motion of the wing. However, this
time the pitch rate was varying. The pitch motion model that followed showed that
a wing that is pitching up does not generate the mirrored forces of a wing that is
pitching down. Furthermore, the pitch acceleration influenced the pitch rate forces.
In this model, the offset of the pitch axis and the symmetry axis again influenced the
aerodynamic forces, strengthening its importance for insect flight.

In chapter 5, I studied the effect of the substrate on the take­off of a malaria
mosquito. Here I showed that the aerodynamic ground effect was irrelevant. How­
ever, the insects do heavily rely on the ground for take­off by using their legs both
for the generation of take­off forces, but also uses their legs to generate the required
pitch torques for take­off.

In this general discussion, I combined all the aerodynamic mechanisms in a single
quasi­steady model. With this model, I showed that the predictive capabilities based
on the aerodynamic mechanisms described in this thesis is not adequate. However,
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the model does give an insight in what mechanisms were responsible for lift and drag
production in the hovering flight of a fruit fly and mosquito. Interestingly, the pitch
rate forces, stroke acceleration forces and the pitch acceleration forces generated a
thrust at the start of the forward stroke.

Even though, I explicitly tested the interaction between different components of
the quasi­steady model, I was unable to test all the interactions. For instance, the
interaction between the stroke acceleration and pitch acceleration. Some of these in­
teractions might be large enough to influence the aerodynamic forces, and eventually
lead to a better predictive capability of the quasi­steady model, and a better under­
standing of insect flight. Furthermore, the unsteady aerodynamic mechanisms, such
as the Wagner effect and the wake­capture effect, might also have a large effect on
the aerodynamic forces. These unsteady aerodynamicmechanisms, and the additional
interaction terms, require a revision such that their effects can be known. Lastly, in
this thesis I ignored derivatives higher than the acceleration, such as the jerk. It is un­
clear how a non­constant pitch or stroke acceleration will influence the aerodynamic
forces.

When the aerodynamic mechanisms were applied to the take­off of the mosquito
it was hard to predict the correct aerodynamic forces. The differences could not be
ascribed to the ground effect, because I showed in chapter 5 that the ground effect
is not present. Another possibility, apart from missing aerodynamic mechanisms, is
the motion of the insect, which might also influence the aerodynamic forces. Similar
parametric studies I conducted in this thesis could be fruitful to uncover the interaction
between the aerodynamic mechanisms and the motion of the body.

Because the quasi­steady model has such poor predictive capabilities it appears
that it is not useful to further pursue the missing aerodynamic mechanisms. Why not
simply use computational fluid dynamics? With computing power becoming (relative
) cheap one is capable to compute the aerodynamic torques and forces of complex ma­
neuvers, such as I did in chapter 5. However, providing insight into the aerodynamics
of flapping flight based on CFD simulations alone is not straightforward. I see the
value of identifying the different aerodynamic mechanisms in conjunction with CFD
to improve the understanding of insect flight.
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Figure 6.1: Defintion of the world reference frame, stroke reference frame and wind
reference frame. (a – c) Schematic representation of the front view, side view and
top view of a fruit fly, large red dot is estimation of the center of mass, small green
dot and red dot are the root of the right and left wing respectively. (d – f ) Definition
of the deviation angle θ, pitch angle ϕ and stroke angle γ with respect to the stroke
reference frame.
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Figure 6.2: Definition of the aerodynamic reference frame, fruit fly kinematics added
for reference. (a, c) Forward stroke and backward stroke respectively, in blue mov­
ing from the dorsal to the ventral side (forward) or visa­versa for the backward stroke,
black lines indicate the location of the chord at 2mm from the root of the wing, dia­
mond indicates the rotation axis, black dot indicates the leading edge, large circle is
the enlargement shown in panel b, d. (b, d) Enlargement of panel a and c around a
single wing chord, blue arrows indicate the definition of a positve angle­of­attack α
and positive pitch rate ωp, green and red arrow indicate the definition of the lift and
drag with respectively.
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Figure 6.3: Kinematics and aerodynamic forces computed with CFD of the fruit
fly (blue) and mosquito (red), vertical dashed lines indicate the location of stroke
reversal. (a – c) Kinematics of the fruit fly (blue) [1] and mosquito (red) [2], stroke
angle, deviation angle and pitch angle respectively. (d – f ) Chord­wise, span­wise
and wing normal forces of the fruit fly and mosquito. (g, h) Lift and drag based on
the pressure forces only, for the fruit fly and mosquito based on the definition of the
aerodynamic reference frame (see figure 6.2, and section 6.2.1).
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chapter 2), black line are the forces of the stroke rate force model for the fruit fly and
mosquito wing kinematics, light gray shaded area are the forces computed with CFD
(see section 6.2.2). (a, b) Lift component for the fruit fly and mosquito respectively.
(c, d) Drag component for the fruit fly and mosquito respectively.
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Figure 6.7: Comparison of the model stroke pitch interaction model from chapter 2
(red, dashed) and the stroke pitch interaction model from chapter 4 (red, solid), black
line are the forces of the stroke rate force model for the fruit fly and mosquito wing
kinematics, light gray shaded area are the forces computed with CFD (see section
6.2.2). (a, b) Lift component for the fruit fly and mosquito respectively. (c, d) Drag
component for the fruit fly and mosquito respectively.

242



Chapter 6

0

10

20

30

-10

-20

0% 50% 100%
wingbeat progress [-]

L
if

t (
L

) 
[μ

N
]

0

10

20

30

-10

-20

0% 50% 100%
wingbeat progress [-]

D
ra

g 
(D

) 
[μ

N
]

0

10

20

30

-10

-20

0% 50% 100%
wingbeat progress [-]

L
if

t (
L

) 
[μ

N
]

0

10

20

30

-10

-20

0% 50% 100%
wingbeat progress [-]

D
ra

g 
(D

) 
[μ

N
]

(a) (b)

(c) (d)

Fsr Fsr-pr Fpr Fsa Fpa Fsr-pa

pitch rate forces

fruit fly mosquito

Figure 6.8: Application of the pitch rate force model (purple line, see chapter 2),
black line are the sum of the stroke rate forces and the stroke pitch interaction forces,
for the fruit fly and mosquito wing kinematics, light gray shaded area are the forces
computed with CFD (see section 6.2.2), vertical dashed lines indicate stroke rever­
sal. (a, b) Lift component for the fruit fly and mosquito respectively. (c, d) Drag
component for the fruit fly and mosquito respectively.
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Figure 6.9: Application of the stroke acceleration forcemodel (green line, see chapter
3), black line are the sum of the stroke rate forces, the stroke pitch interaction forces,
and the pitch rate forces, for the fruit fly and mosquito wing kinematics, light gray
shaded area are the forces computed with CFD (see section 6.2.2), vertical dashed
lines indicate stroke reversal. (a, b) Lift component for the fruit fly and mosquito
respectively. (c, d) Drag component for the fruit fly and mosquito respectively.
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Figure 6.10: Application of the pitch acceleration force model (orange line, see
chapter 4), black line are the sum of the stroke rate forces, the stroke pitch interac­
tion forces, pitch rate forces, and the stroke acceleration forces, for the fruit fly and
mosquito wing kinematics, light gray shaded area are the forces computed with CFD
(see section 6.2.2), vertical dashed lines indicate stroke reversal. (a, b) Lift compo­
nent for the fruit fly and mosquito respectively. (c, d) Drag component for the fruit
fly and mosquito respectively.
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Figure 6.11: Application of the stroke pitch acceleration force model (pink line, see
chapter 4), black line are the sum of the stroke rate forces, the stroke pitch interaction
forces, pitch rate forces, stroke acceleration forces, and the pitch acceleration forces,
for the fruit fly and mosquito wing kinematics, light gray shaded area are the forces
computed with CFD (see section 6.2.2), vertical dashed lines indicate stroke rever­
sal. (a, b) Lift component for the fruit fly and mosquito respectively. (c, d) Drag
component for the fruit fly and mosquito respectively.
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Figure 6.12: Average contribution of each aerodynamic mechanism discussed in this
thesis, compared with the average forces computed with CFD. (a) Average force of
the backward stroke. (b) Average drag of the forward stroke. (c) Average lift of the
backward stroke. (d) Average lift of the foward stroke.
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Figure 6.13: Application of the quasi­steady model to the take­off of lean and fed
malaria mosquitoes. (a, b) Sum of the quasi­steady components of the forward force
component of a lean and fed mosquito during take­off respectively, in grey the forces
computed with CFD (see chapter 5) (c, d) Sum of the quasi­steady components of
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Chapter 7

7.1 Summary

Insects are flying all around us. However, answering the question: Howdo insects fly?
is difficult. In this thesis, we set out to uncover the relation between the movement
of the wing of an insect and the aerodynamic forces. For this we used two Dipteran
species as model organisms for low frequency high amplitude and high frequency low
amplitude fliers.

In chapter 2, we revisited the two aerodynamic mechanisms based on the pitch
rate motion of the wing: the stroke pitch interactions and the pitch rate forces. We
used a large parametric study based on computational fluid dynamics to uncover the
relation between the kinematics and the aerodynamic forces. The aerodynamic forces
as a result of the pitch motion with constant angular rate broke up into two compo­
nents. The first component is only dependent on the pitch rate of the wing. The
second component is an interaction component between the stroke rate and the pitch
rate. To assess the influence of the wing morphology we included seven additional
wing morphologies. The inclusion of these additional wing morphologies showed
that the stroke interaction forces are related to both the spanwise and chordwise sec­
ond moment of area. Furthermore, the pitch rate forces where dependent on the offset
between the pitch axis and the symmetry axis of the wing.

We used a similar approach for chapter 3 as we used in chapter chapter 2. With
this parametric study we set out to uncover the relation between the aerodynamic
forces and the stroke motion of the wing for a non­constant stroke rate. We designed
a set of wing kinematics such that the aerodynamic forces due to the stroke rate, stroke
acceleration and the interaction between the two, could be found. We included an ad­
ditional set of wing morphologies to explicitly test the dependence of these forces on
the wing morphology. The stroke acceleration forces depend on a scaling parameter
that scales with the chord length and the length of the wing. At the end of this chapter
we used a quasi­steady model to apply our model to the kinematics of the fruit fly and
the mosquito. With the use of this model we were able to show that the stroke accel­
eration forces become more prominent for high­frequency, low­amplitude flappers,
such as mosquitoes.

In chapter 4, we took another look at the pitch motion of the wing. Unlike we did
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in chapter 2, we did not use a constant pitch rate. We again used a systematic para­
metric study based on computational fluid dynamics to uncover the relation between
the stroke rate forces, pitch rate forces, pitch acceleration forces, and the interactions
between each component. Here, we tested the validity of the two­dimensional model
often used to model the pitch acceleration forces in flapping flight. Furthermore, we
included a set of four different kinematic cases, which enabled us to explicitly test
the dependence of the forces on the direction of motion of the wing. From this we
learned that the forces generated by an accelerating pitch up wing cannot be simply
translated into a model for an accelerating pitch down wing. With the inclusion of
several additional wing morphologies we showed that the offset between the pitch
axis and the symmetry axis is not only important for the pitch rate forces, but also for
the pitch acceleration forces.

In chapter 5, we used the take­off of the mosquito to test the influence of the sub­
strate on the generation of aerodynamic forces. We simulated several lean and blood
fed mosquitoes taking off from a substrate using computational fluid dynamics. From
these simulations we showed that the ground did not have any effect on the aerody­
namic forces acting on the wings of the animal. However, the substrate did have an
important effect on the generation of the forces of the insect. The mosquitoes used a
combination of leg push­off forces and aerodynamic forces to take­off. Furthermore,
the insect used its legs to generate pitch up torques during take­off.

In chapter 6, we gathered the knowledge gained in the previous chapters and build
a quasi­steady model. In addition, we simulated the aerodynamic forces of a hovering
fruit fly and mosquito, which gave us a comparison for the quasi­steady model. From
this comparison, we learned that the quasi­steady model based on the aerodynamic
mechanisms found in this thesis led to a poor predictive model. However, the model
did uncover that mosquitoes rely more other aerodynamic mechanisms apart from the
stroke rate forces. At the end of chapter 6, we applied the quasi­steady model to the
take­off kinematics we used in chapter 5. This time the quasi­steady model showed
even a bigger difference, mainly over­predicting the aerodynamic forces. This led us
to hypothesize that the body motion of the insect also has a large interaction with the
aerodynamic forces. Lastly, we used the kinematics of a lean mosquito and gradually
changed these kinematics to that of a fed mosquito. Here, we showed that the lift is
altered through a change in mainly the stroke rate forces.
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7.2 Samenvatting

Insecten vliegen overal om ons heen. Desalniettemin, is het beantwoorden van de
vraag “Hoe vliegen insecten?” lastig. In deze dissertatie zijn we vertrokken met de
taak om de relatie tussen de beweging van de vleugel van een insect en de aerody­
namische krachten te vinden. Hiervoor hebben we gebruik gemaakt van twee Diptera
soorten as model organisme voor laag frequent hoge amplitude vliegen en hoog fre­
quent lage amplitude vliegen.

In hoofdstuk 2, hebben we twee aerodynamische modellen gebaseerd op de pitch
beweging van de vleugel herzien: de “stroke pitch interacties” en de “pitch rate”
krachten. We hebben gebruik gemaakt van een grote parametrische studie gebaseerd
op “computational fluid dynamics” (CFD) om de relatie tussen de kinetica en de aero­
dynamische krachten te achterhalen. De aerodynamische kracht als een resultaat van
de pitch beweging met een constante hoeksnelheid viel uiteen in twee verschillende
componenten. De eerste component is alleen afhankelijk van de pitch hoeksnelheid
van de vleugel. De tweede component is een interactie tussen de “stroke” hoeksnel­
heid en de “pitch” hoeksnelheid. Om de invloed van de vleugelvorm te onderzoeken
hebben we zeven extra vleugelvormen toegevoegd. De toevoeging van deze extra
vleugelvormen lied zien dat de “stroke” interactie krachten allemaal gerelateerd zijn
aan de spanwijze en koordwijze tweede oppervlakte moment. Verder waren de “pitch
rate” krachten afhankelijk van de afstand tussen de “pitch” as en de symmetrie as van
de vleugel.

Voor hoofdstuk 3 hebben we een soortgelijke methode als voor hoofdstuk 2
toegepast. Met deze parametrische studie hebben we de relatie tussen de aerody­
namische krachten en de “stroke” beweging van de vleugel onderzocht voor een
vleugel die beweegt met een niet constante “stroke” hoeksnelheid. We hebben een set
vleugel bewegingen ontworpen zodat de aerodynamische krachten als resultaat van
de “stroke” snelheid, “stroke” acceleratie en de interactie tussen deze twee bewegin­
gen gevonden konden worden. We hebben een set extra vleugelvormen toegevoegd
om expliciet te testen hoe de krachten afhangen van de vorm van de vleugel. De
“stroke” acceleratie krachten hangen af van een schaling parameter die afhangt van
de koorde en de lengte van de vleugel. Aan het einde van dit hoofdstuk hebben we
gebruik gemaakt van een “quasi­steady” model om ons model toe te passen op de ki­
netica van een fruit vlieg en een mug. Met dit model hebben we kunnen aantonen dat
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de stroke acceleratie prominent worden voor vliegers met een hoge frequentie, zoals
muggen.

In hoofdstuk 4, zijn we nogmaal terug gegaan naar de “pitch” beweging van de
vleugel. Deze keer, in tegenstelling tot in hoofdstuk 2, hebben we de “pitch” hoek­
snelheid niet constant gehouden. We hebben wederom gebruik gemaakt van een sys­
tematische parametrische studie gebasseerd op “computational fluid dynamics” om
de relatie tussen de “stroke rate” krachten, de “pitch rate” krachten, de “pitch” accel­
eratie krachten en de interactie tussen deze componenten te achterhalen. We hebben
de validiteit van het twee­dimensionale model getest die vaak gebruikt wordt om de
“pitch” acceleratie krachten te modeleren in flappend vliegen. Verder hebben we een
set van vier verschillende vleugel bewegingen toegevoegd, die ons in staat stelde om
expliciet de afhankelijkheid tussen de krachten en de richting van de beweging van
de vleugel te testen. Hiervan hebben we geleerd dat de krachten gegenereerd door
een accelererende vleugel die ook omhoog draait niet simpel te vertalen zijn naar een
model voor een vleugel die naar beneden accelereert. Met de toevoeging van zeven
extra vleugel vormen hebben we laten zien dat de afstand tussen de “pitch” as en de
symmetry as niet alleen van belang is voor de “pitch rate” krachten, maar ook voor
de “pitch acceleration” krachten.

In hoofdstuk 5 hebben we het opstijgen van een mug gebruikt om te testen wat
de invloed van het substraat is op de aerodynamische krachten. We hebben verschei­
dene ongevoede muggen en verscheidene gevoede muggen gesimuleerd die opstij­
gen van een substraat met gebruik van “computational fluid dynamics”. Met gebruik
van deze simulaties hebben we kunnen aantonen dat de grond geen effect had op de
aerodynamische krachten. De muggen gebruikte een combinatie van hun poot afzet
krachten en de aerodynamische krachten om op te stijgen. Verder gebruikte het insect
zijn poten om de “pitch” omhoog momenten te genereren tijdens het opstijgen.

In hoofdstuk 6 hebben we de kennis van de vorige hoofdstukken gebruikt en een
“quasi­steady” model ontwikkeld. Verder hebben we de aerodynamische krachten
van een stilhangende fruit vlieg en mug gesimuleerd, wat ons een vergelijking ver­
schafte voor het “quasi­steady” model. Van deze vergelijking hebben we geleerd dat
het “quasi­steady”model gebasseerd op de aerodynamischemechanismes beschreven
in deze dissertatie leidde tot een slechte voorspelling van de krachten. Het model lied
echter wel zien dat muggen meer vertrouwen op andere aerodynamische mechanisme
dan de “stroke rate” krachten. Aan het einde van hoofdstuk hoofdstuk 6 hebben we
het “quasi­steady” model toegepast op de kinetica van opstijgende muggen die we
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eerder gebruikt hebben in hoofdstuk 5. Deze keer liet het “quasi­steady” model een
nog groter verschil zien met d voorspelde het model de krachten. Dit heeft ons tot
de hypothese geleid dat de beweging van het lichaam van het insect ook een grote
interactie heeft met de aerodynamische krachten. Als laatste hebben we de kinetica
van niet gevoede en bloed gevoede muggen gebruikt. De kinetica werd langzaam ve­
randerd van een ongevoede mug naar een bloed gevoede mug. In dit geval werd de
“lift” vooral veranderd door de “stroke rate” krachten.

259



Aerodynamics of insect flight

7.3 About the author

Wouter Gerben van Veen was born on the 17th of
February 1988 in Hoorn, the Netherlands. In his
childhood he was always curious how things worked,
especially technical stuff. His teachers in primary
school described him as a cheerful child, but too
much talking. He needed a challenge. This need for
challenge was expressed in secondary school (Col­
lege Hageveld in Heemstede) by making and launch­
ing a water rocket, which unfortunately pierced a new
roof of the schoolbuilding when coming down with

enormous power.
After secondary school he started his study Aerospace Engineering at the TU

Delft. During his bachelor period he followed a minor Software developing. His
bachelor project contained the development of a hypersonic re­entry vehicle, the
Hyperion­3. His internship was at Institut de Mécanique des Fluides de Toulouse,
where he independently executed calculations of Computational Fluid Dynamics.
In 2015 he completed his Master of Aerospace Engineering, specialization Aero­
dynamics. His thesis: Reynolds averaged Navier­Stokes modeling of schock wave
boundary­layer interactions.

During his study Wouter participated at Proteus Eretes in Delft as a race rower
and coach. He was also a Member of the Board. During his time here he developed
a sensorsystem, which provided coaches with information of the rowers during the
training, to increase the results of the team. For this, he won the Pinewood Innovation
Price and he co­operated with the Vrije Universiteit in Amsterdam during his PhD to
improve the system and with the purpose to test it on rowers of Olympic level.

After finishing his Master degree, he was ready for another challenge. He joined
the team of Florian Muijres to study the aerodynamics of insect flight. Together with
a colleague, he filled a room with computers that were able to put the best heaters to
shame. The result of the calculations of these computers can be seen throughout this
thesis. After his career in science, he will start a new life in Jena in Germany, where
he will devote his time to become a better software developer.

260



Chapter 7

7.3.1 List of publications

[1] D. Szubert, van Veen, Wouter G., F. Grossi, Hoarau Y, Braza M., Giepman
Rogier, Ferry Schrijer, and Bas van Oudheusden. “Physics and modelling of
the transonic and supersonic shock wave boundary layer interaction of oblique
and normal shock at high Reynolds number.” In: (10th International ERCO).

[2] van Veen,Wouter G., Rogier Giepman, Ferry Schrijer, and Bas van Oudheus­
den. “RANS modeling of shock wave­boundary layer interactions”. In: (3rd
ECCOMAS Young Investigators Conference, Aachen, Germany; 07/2015).

[3] F T Muijres, S W Chang, van Veen, W G, J Spitzen, B T Biemans, M A R
Koehl, and R Dudley. “Escaping blood­fed malaria mosqtuitoes minimize tac­
tile detection without compromising on take­off speed”. In: Journal of Exper­
imental Biology (2017).

[4] van Veen, Wouter G., Johan L. van Leeuwen, and Florian T. Muijres. “A
chordwise offset of the wing­pitch axis enhances rotational aerodynamic forces
on insect wings: a numerical study”. In: Journal of The Royal Society Interface
16.155 (2019), p. 20190118. DOI: 10.1098/rsif.2019.0118.

[5] vanVeen,WouterG., Johan L. van Leeuwen, and Florian T.Muijres. “Malaria
mosquitoes use leg push­off forces to control body pitch during take­off”. In:
Journal of Experimental Zoology Part A: Ecological and Integrative Physiol­
ogy 333.1 (2020), pp. 38–49. DOI: 10.1002/jez.2308.

[6] Annelieke S. Wentzel, Joëlle J. E. Janssen, Vincent C. J. de Boer, van Veen,
WouterG., Maria Forlenza, andGeert F.Wiegertjes. “FishMacrophages Show
Distinct Metabolic Signatures Upon Polarization”. In: Frontiers in Immunol­
ogy 11 (2020), p. 152. DOI: 10.3389/fimmu.2020.00152.

[7] Annelieke S. Wentzel, Jules Petit, van Veen, Wouter G., Inge Rosenbek Fink,
Marleen H. Scheer, M. Carla Piazzon, Maria Forlenza, Herman P. Spaink,
and Geert F. Wiegertjes. “Transcriptome sequencing supports a conservation
of macrophage polarization in fish”. In: Scientific Reports 10 (2020). DOI:
10.1038/s41598-020-70248-y.

7.4 Training Supervision Plan

261

https://doi.org/10.1098/rsif.2019.0118
https://doi.org/10.1002/jez.2308
https://doi.org/10.3389/fimmu.2020.00152
https://doi.org/10.1038/s41598-020-70248-y


Aerodynamics of insect flight

A. The Basic Package year credits
WIAS Introduction Day 2015 0.3
Course on philosophy
of science and or ethics 2016 1.5
Course on essential skills 2015 1.2

B. Disciplinary Competences
Proposal 2016 6.0
Introduction course into programming

using GPU CUDA 2017 1.2
WIAS Course Statistics for the life sciences 2017 2.0
C Programming with Linux 2019 5.0

C. Professional Competences

Supervising Master students 2016 0.6
Efficient writing strategies 2019 1.3
Scientific writing 2018­2019 1.8

D. Presentation Skills
(poster) “Aerodynamics of high­frequency

flapping flight of mosquito’s”
New Orleans workshop Neuroscience

and Locomotion 20­01­2016 2016 1.0
(Oral presentation) “The aerodynamics

of rapid wing pitch movements
of flapping insect wings,
a numerical study” SEB 2018 1.0

(Oral presentation) “Offset in rotation axis
increases rotational lift

production in insect wings:
a numerical study” Burgers dag 2018 1.0

E. Teaching competences
Supervising bachelor student 2017 1.0
Supervising functional zoology 2015 0.5
Supervising functional zoology 2016 0.5
Supervising modeling biological systems 2016 4.0
Supervising modeling biological systems 2017 (4)
Supervising modeling biological systems 2018­2019 (4)

Education and Training Total 30

262



Chapter 7

263



Colofon
Financial support from Wageningen University for printing this thesis is gratefully
acknowledged.

Cover design by Wouter G. van Veen
Layout by Wouter G. van Veen
Printed by ProefschriftMaken.nl || www.proefschriftmaken.nl


	General introduction
	A chordwise offset of the wing-pitch axis enhances rotational aerodynamic forces on insect wings: a numerical study
	A numerical analysis of wing-stroke related acceleration-based forces in insect flight
	A new perspective on rotational forces in insect flight: a numerical study
	Malaria mosquitoes use leg push-off forces to control body pitch during take-off
	General discussion
	Summary

