


 

PROPOSITIONS 

 

1. Long daily temperature series without inhomogeneities are an illusion.  

(this thesis) 

 

2. Homogenization processes do not aim to increase or decrease warming trends in temperature 

series. 

(this thesis) 

 

3. Every scientist should be aware of their own field of expertise, ignoring these limits is 

disrespectful. 

 

4. Scientific conclusions cannot be taken through consensus. 

 

5. Deadlines are one of the best incentives for human activities. 

 

6. Accessibility to long-distance travels should be guaranteed in a sustainable society. 
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Summary

The changes of European climate have serious effects on society and economy. A thorough

climatological analysis is fundamental to provide reliable and accurate assessments of

these changes. Extreme temperature events, such as heatwaves and cold spells, have

considerable effects on e.g. health systems, energy consumption and phenological cycles.

Their changes in frequency and severity over the last centuries can be studied using daily

temperature series from in-situ weather stations. However, these series suffer from external

interventions to the measuring stations, such as relocations and modifications to the

instruments, and from changes in their surroundings (growing trees, new buildings). These

induced changes in the recorded values are not related to climatic events, making the series

inhomogeneous and unreliable. With the aim of producing solid temperature databases,

several works in the past decades have introduced techniques for the identification of such

changes and their correction (homogenization). Within this thesis, a new procedure has

been developed, taking inspiration from the Quantile Matching method [Trewin, 2013].

This is based on the calculation of different adjustments for average and extreme values

and, in this project, has been revisited and modified, introducing new aspects aimed

at making it more flexible, more heuristic and more faithful to the originally observed

data. The new homogenization is applied to the European Climate Assessment & Dataset

(ECA&D), a pan-European dataset providing observations from all European National

Meteorological Services. The method is validated with a comparison to acknowledged

homogenization methods against a benchmark dataset, proving its robustness and the

quality of the results. The homogenized temperature series, thanks to their high reliability,

are then analyzed, performing trend analyses focused on the extreme events. Finally the

homogenized series are used to create a homogenized version of E-OBS, gridded dataset

obtained with the interpolation of ECA&D station data. The homogenized E-OBS is then

employed to compare the trends on average and extreme values of the last decades with

those simulated in the same period by climate models, which in other studies are used for

predictions of future climate under different emission scenarios.

The Introduction (Chapter 1) explains the context in which this thesis is developed. The

current state and knowledge about climate change is introduced, followed by the issues

implied by the presence of inhomogeneities in temperature series. The aims of the thesis
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and the expected results and further applications are then exposed in detail.

Chapter 2 describes in detail the statistical bases of the homogenization method. It

is composed by a break detection that statistically identifies the timing of the occurred

inhomogeneities. This is needed since the dataset is too big to handle the available docu-

mentation of reported changes occurred to the stations (metadata), which would require

a long and labourious process. The second step is the adjustment calculation, developed

following previous studies on the technique of Quantile Matching. This calculates different

adjustments for the daily data according to their position in the temperature distribution,

thus handling differently average and extreme values. The reported case studies prove

the effectiveness of the routine, showing clear improvement in the quality of the series.

The difference in the trends of several indices of minimum and maximum temperature

between homogenized and raw series show limited changes in average (between +0.01 and

+0.02) and no geographical patterns. Moreover, the trends of homogenized series present

a clear improvement of the geographical consistency and a considerable narrowing of their

distribution. This proves the increased quality of the dataset.

The work reported in Chapter 3 describes the process of blending of series. This involves,

for example, the series of the station in a city centre that was ended and the new one

that was started in a close-by rural area or in an airport. The blending procedure here

described joins these series by concatenating them and by mutually filling their gaps.

While on one side this process generates long series, on the other hand the blended

series are not necessarily homogeneous. For this reason, the homogenization process

exposed in Chapter 2 is adapted and applied to these series. The results of this process

is a set of long and homogeneous series that are fundamental for thorough historical

climatic inspections. Three case studies help exposing the complexity of the process

and its benefits. Finally a trend assessment on the new homogenized blended series has

been performed. Similarly to what reported by previous studies, this has revealed steep

trends in summer maximum temperatures over the Mediterranean and in winter minimum

temperatures in Eastern Europe. The latter is connected with a narrowing of the winter

minimum temperatures, while in Central Europe a relevant widening of summer maximum

temperatures is observed.

The Quantile Matching homogenization procedure is compared with other methods in

Chapter 4. Here two benchmark datasets are generated, concatenating data from homo-

geneous neighbouring series in the national network of Czech Republic and among series

specifically selected within the ECA&D. Two benchmark datasets allow to compare situ-

ations with very good data quality and station density (Czech dataset) and with scarcer

station density and presence of missing data (European dataset). Three well known

methods (DAP, HOM, SPLIDHOM) are evaluated together with the Quantile Matching,

making use of a set of metrics, such as Root Mean Square Error, percentage of adjusted
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data and evaluation of trends in average and extreme values. On the Czech Dataset

almost all methods perform very well, proving the quality of their statistical features in

favourable conditions. The European Dataset allows to test the robustness of the methods

in challenging conditions. Here some methods show difficulties in the homogenization of

warm extremes and large percentages of missed adjustments of biased data. The Quantile

Matching works very well in both cases, showing good performances, comparable to the

results of a prestigious method as SPLIDHOM.

The homogeneous blended series are the bases for a new version of the gridded dataset

E-OBS, which is a valuable tool for the validation of climate simulations, such as the ones

developed in the frame of the High Resolution Model Intercomparison Project. These

models aim at simulating the climate of the period after 1950 and can be compared to

observed values to detect how well they reproduced climate variability and trends. Studies

of previous versions of climate simulations highlighted underestimations in the trends of

(especially warm) extreme events. In Chapter 5 this comparison is performed taking the

difference of the trends in average values and in the number of warm (or cold) extreme

events above (or below) percentile-based thresholds. The studied models simulate the

trends generally well, though they show underestimation of the strong reduction of cold

events in Eastern Europe and of the steep increase of warm events in the Mediterranean

area.

In the Synthesis (Chapter 6) the obtained results are summarized and discussed, focusing

on how they have accomplished the aims of the research. The homogenization method

based on the Quantile Matching has shown to work very well on the individual series and

on the whole network, reducing the presence of anomalous trends and increasing spatial

coherence of the data. The comparison with other methods against a benchmark dataset

has validated the quality of the new method and given reliability to the studies performed

on the homogenized dataset. These have confirmed the severe warming processes over

Europe, highlighting the increased distribution width of summer daily temperatures over

Central Europe and the narrowing of the distribution of winter daily temperatures over

the Alps and Eastern Europe. Finally, one of the very powerful uses of the results of

this thesis has been shown. This is the evaluation of climate simulations against a ho-

mogenized gridded dataset, which has allowed to inspect how well the models are able to

reproduce the statistical features of the extreme temperature events over the last decades.

Moreover, in the Synthesis possible improvements for the homogenization method are ex-

posed together with concluding remarks. The main conclusions of this thesis are the

acknowledgement of the high efficiency of the developed method, of the high quality of

the obtained dataset and of the important added value that homogenization processes

like this provide to climatological analyses and to the solidity of the evidences of climate

change.





Riassunto

I cambiamenti che interessano il clima globale ed europeo comportano rilevanti con-

seguenze su società ed economia. È quindi fondamentale che essi siano compresi e descritti

mediante accurate analisi climatologiche. Gli eventi di temperatura estrema, come on-

date di calore e di gelo, hanno effetti considerabili, per esempio sul sistema sanitario,

sul consumo di energia e sui cicli fenologici. Le variazioni in frequenza ed intensità di

questi fenomeni avvenute negli ultimi secoli possono essere studiate utilizzando serie gior-

naliere di temperatura, registrate da stazioni meteorologiche in loco. Tuttavia, queste

serie presentano criticità dovute a interventi sulle stazioni, come trasferimenti e modi-

fiche alla strumentazione, e a variazioni nell’ambiente circostante come crescita di alberi

o costruzione di nuovi edifici. Di conseguenza i valori misurati presentano alterazioni non

collegate alla variabilità climatica, ma a fattori esterni, rendendo le serie disomogenee.

Negli ultimi decenni diversi studi hanno introdotto tecniche per l’identificazione di queste

alterazioni e la loro correzione (omogenizzazione), con l’intento di produrre affidabili se-

rie di temperatura. Questa tesi presenta un nuovo metodo di omogeneizzazione, basato

sul paragone delle distribuzioni di probabilità, ispirato al metodo del Quantile Matching

(QM) [Trewin, 2013]. Il QM calcola correzioni differenti per valori medi ed estremi ed

è stato qui rivisitato, introducendo nuovi aspetti tali da renderlo più empirico, flessibile

e fedele alle osservazioni originali. La nuova tecnica di omogeneizzazione è stata appli-

cata all’European Climate Assessment & Dataset (ECA&D), una raccolta di misurazioni

provenienti da tutti i servizi meteorologici nazionali europei. Un raffronto con rinomati

metodi di omogeneizzazione, applicati a un dataset di riferimento, ha permesso di ver-

ificare la robustezza e la qualità dei risultati ottenuti e di validare il metodo. I trend

calcolati sulle serie omogeneizzate sono più attendibili, permettendo una migliore valu-

tazione dei cambiamenti nei fenomeni medi ed estremi. Infine, le serie omogeneizzate sono

utilizzate per calcolare una nuova versione degli E-OBS, dataset su griglia ottenuto con

l’interpolazione dei dati di stazione di ECA&D. Questo dataset su griglia è impiegato per

confrontare i trend di valori medi ed estremi degli ultimi decenni con quelli simulati sullo

stesso periodo da modelli climatici, impiegati allo stesso tempo per la previsione del clima

dei prossimi decenni.



xii Riassunto

L’Introduzione (Capitolo 1) descrive il contesto in cui questa tesi si sviluppa. In partico-

lare è riportato lo stato dell’arte delle conoscenze sui cambiamenti climatici, seguito dai

problemi implicati dalla presenza di disomogeneità nelle serie di temperatura. Infine sono

trattati l’obiettivo di questa tesi, i risultati attesi e le future applicazioni.

Il Capitolo 2 descrive in dettaglio le basi statistiche del metodo di omogeneizzazione. Il

primo stadio consiste nel determinare, attraverso strumenti statistici, a che punto della

serie temporale si verifica la disomogeneità. Questo è necessario a causa delle dimensioni

troppo estese del dataset, che non permettono di gestire le documentazioni relative alle

date degli interventi sulle stazioni (metadati), il cui processo richiederebbe un eccessivo

investimento di tempo e risorse. Il secondo passaggio include il calcolo delle correzioni,

sviluppato secondo la tecnica del Quantile Matching. Tale metodo calcola diverse cor-

rezioni per i dati giornalieri a seconda della loro collocazione nella distribuzione delle

temperature, permettendo cos̀ı di gestire differentemente valori medi e valori estremi.

I casi-studio riportati provano l’efficacia del metodo. La media continentale dei trend

calcolati sui valori medi non presenta rilevanti variazioni rispetto alle serie originali (da

+0.01 e +0.02). Tuttavia, la rimozione dei trend anomali comporta una considerevole

diminuzione dell’ampiezza della distribuzione dei trend stessi e una maggiore omogeneità

della loro distribuzione geografica.

Il Capitolo 3 descrive il processo di integrazione fra stazioni vicine, detto blending. Questo

accade, per esempio, fra la serie interrotta di una stazione urbana e quella successiva-

mente avviata in una vicina zona rurale o in un aeroporto. Tale procedura consiste nel

concatenare due o più serie e nell’usare i loro dati per riempire reciprocamente eventuali

periodi scoperti. Le serie cos̀ı generate hanno il vantaggio di essere lunghe e complete,

ma con lo svantaggio di presentare nuove disomogeneità. Per questa ragione, il metodo di

omogeneizzazione mostrato nel Capitolo 2 è stato adattato e applicato alla nuova prob-

lematica. Il risultato di questo ulteriore processo è quindi un insieme di serie lunghe ed

omogenee, essenziali per un accurato studio storico sul clima. La complessità di questo

lavoro e i suoi benefici sono presentate mediante tre casi studio. Infine l’analisi dei trend

delle nuove serie ha rivelato, in linea con studi precedenti, trend accentuati per le tem-

perature massime estive nell’area Mediterranea e per le minime invernali sull’Europa

Orientale. Quest’ultimo risultato è collegato al restringimento della distribuzione delle

minime invernali, in contrasto con il rilevante allargamento individuato per le massime

estive in Europa Centrale.

Il Quantile Matching è stato poi comparato con altri metodi, come riportato nel Capitolo

4. Due dataset di riferimento hanno permesso di testare i metodi su condizioni ottimali

(alta qualità dei dati e densità di stazioni, dataset Ceco) e su condizioni proibitive (inferi-

ore densità di stazioni insieme a più lacune nei dati, dataset Europeo). Il raffronto con tre

rinomati metodi (DAP, HOM, SPLIDHOM) è stato effettuato utilizzando degli indicatori
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come lo Scarto Quadratico Medio (RMSE), la percentuale di dati corretti e il calcolo dei

trend di valori medi ed estremi. Tutti i metodi hanno mostrato buoni risultati sul dataset

Ceco, rivelando la qualità delle teorie statistiche utilizzate. Al contrario, il dataset Eu-

ropeo ha permesso di verificare la robustezza dei metodi in condizioni più impegnative.

In questo caso, alcuni metodi hanno mostrato criticità nell’omogeneizzazione dei valori

estremi collegati agli eventi caldi, insieme ad alte percentuali di mancate correzioni. Il

Quantile Matching ha dato risultati soddisfacenti in entrambi i casi, all’altezza di quelli

di un metodo ampiamente validato come SPLIDHOM.

Le serie omogenee ottenute dal processo di blending sono utilizzate come base per una

nuova versione del dataset su gliglia E-OBS, il quale è un prezioso strumento per la

validazione di simulazioni climatiche, come quelle sviluppate nel contesto del progetto

di comparazione dei modelli ad alta risoluzione (HighResMIP). Tali modelli hanno lo

scopo di riprodurre il clima del periodo successivo al 1950 e possono essere confrontati

con le osservazioni per esaminare la simulazione della variabilità e dei trendi climatici.

Studi sulle precedenti versioni di tali simulazioni hanno evidenziato sottostime nei trend,

specialmente degli eventi caldi. La comparazione fra E-OBS e le simulazioni è trattata nel

Capitolo 5, in questo caso l’analisi si focalizza sulla differenza dei trend nei valori medi e

nel numero di eventi al di sopra (o al di sotto) di soglie calcolate in base ai percentili della

distribuzione. I modelli studiati simulano in maniera affidalible i trend di valori medi,

tuttavia presentano una sottostima della forte riduzione degli eventi freddi in Europa

Orientale e del rapido aumento degli eventi caldi nell’area Mediterranea.

Nelle Conclusioni (Capitolo 6) vengono discussi i risultati ottenuti, valutando come questi

rispondano agli obiettivi della ricerca. Il metodo di omogeneizzazione basato sul Quantile

Matching ha dimostrato di lavorare in maniera ottimale sulle singole serie e sull’intero

dataset, riducendo la presenza di trend anomali e incrementando la coerenza spaziale dei

dati. Il raffronto con altri metodi tramite un dataset di riferimento ha permesso di vali-

dare la qualità del nuovo metodo e di dare affidabilità agli studi messi in atto sul dataset

omogeneizzato. Questi ultimi hanno confermato l’intenso processo di riscaldamento in

Europa, evidenziando l’allargamento della distribuzione delle temperature estive in Eu-

ropa Centrale e il restringimento della distribuzione delle temperature invernali sulle Alpi

e in Europa Orientale. Infine, è stato mostrato uno degli usi più significativi dei risultati di

questa tesi: la valutazione delle simulazioni climatiche mediante un dataset su gliglia omo-

geneizzato che ha permesso di testare la capacità dei modelli di riprodurre le statistiche

degli eventi di temperatura estrema negli ultimi decenni. Inoltre, sono indicati i possibili

miglioramenti da apportare al metodo di omogeneizzazione, assieme a considerazioni fi-

nali. Le principali conclusioni tratte in questa tesi sono la validazione dell’alta efficienza

del metodo sviluppato, della rilevante qualità del dataset che viene generato e l’importante

valore aggiunto che i processi di omogeneizzazione come questo conferiscono alle analisi

climatologiche e alla solidità delle evidenze riguardo i cambiamenti climatici.
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Chapter 1

Introduction



2 Introduction

1.1 Climate Change

Since the end of 19th century the atmosphere of Planet Earth has experienced a marked

warming process attributed to the human activity. The average temperature has raised

with a rate of about 0.085◦C per decade in the period from 1880 to 2019 and has shown

an accelerated rate in the second half of the 20th century [Klein Tank and Können, 2003;

Hansen et al., 2010; Simolo et al., 2010; Lawrimore et al., 2011; Jones et al., 2012; Rohde

et al., 2013; Delvaux et al., 2018; World Meteorological Organization, 2019]. The trend

is confirmed by the fact that each of the four last decades (1980-1989, 1990-1999, 2000-

2009 and 2010-2019) has been warmer than all the previous ones [Hartmann et al., 2013;

World Meteorological Organization, 2019]. The global average during the last ten years

has shown persistence of this tendency: according to WMO 1, NOAA Global Time Series 2,

MetOffice/UEA Climate Research Unit 3 and NASA-GISS Surface Temperature Analysis
4, among the top 10 warmest years on records, 7 belong to the last decade with 2019

being the second warmest year ever after 2016, see Figure 1.1.

Figure 1.1: Anomalies of global yearly mean temperature compared to the 1985-1900

mean. Courtesy of WMO, https://public.wmo.int/en/media/press-release/wmo-confirms-

2019-second-hottest-year-record

The natural variability of the climate is not sufficient to describe such changes [Bindoff

1https://public.wmo.int/en/media/press-release/wmo-confirms-2019-second-hottest-year-record
2https://www.ncdc.noaa.gov/cag/
3http://www.cru.uea.ac.uk/
4https://data.giss.nasa.gov/gistemp/graphs v4/



1.1 Climate Change 3

et al., 2013]. There is strong agreement on attributing the reasons of this phenomenon

to increased concentrations of greenhouse gases such as carbon dioxide, methane and

nitrous dioxide, emitted in the atmosphere by industrial activities. The energy balance of

the atmosphere is due to the equilibrium between solar incoming radiation (short-wave)

and thermal upward emission of surface and atmosphere: the more solar radiation enters

the system, the higher the temperature of the system gets, in order to emit more long-

wave radiation and find a balance. The greenhouse gases absorb the upward long-wave

radiation emitted by the Earth surface and by the atmosphere itself and re-emit it partially

downwards, increasing the incoming energy in the troposphere. The lower layers of the

atmosphere respond to this excess raising the average temperature, in order to increase

the thermal emission and reach an energy equilibrium.

The warming of temperatures has been observed almost in all places of the surface of the

Earth [Hartmann et al., 2013; World Meteorological Organization, 2019]. The magnitude

of such phenomenon has been inspected by several studies which have focused on national,

regional and global station networks or gridded interpolated datasets. These have high-

lighted different behaviours and different warming trends, identifying continental areas at

high latitudes (including, among them, Europe, Mediterranean and Middle East) as areas

affected by a stronger increase of temperatures [Vose et al., 2005; Alexander et al., 2006;

Rohde et al., 2013; Donat et al., 2013; World Meteorological Organization, 2019].

While the increase in average temperature has been widely analysed and demonstrated,

the dynamics of warm and cold extreme events are currently of great interest due to their

strong impact on economy and society. These events are monitored by specific indices that

measure, for each year, the number of days that are above or below a certain threshold,

which is either a fixed critical value (e.g. below 0◦C for frost nights) or a value which

relates to local climatic features. The latter option allows analyses that are applicable to

any kind of climate and for example make use of the 10th or 90th percentiles, which are

those values that are larger than, respectively, 10% and 90% of the considered sample. The

percentage of days whose minimum (maximum) temperature is below the 10th percentile

is called TN10p (TX10p) or Cold Nights (Day-times), while the percentage of days whose

minimum (maximum) temperature is above the 90th percentile is called TN90p (TX90p)

or Warm Nights (Day-times) [ETCCDI, 2009].

On a global level, it is observed the predominance of warming trends on all extreme

temperature indices. Trends on the extremes of minimum temperatures present larger

trends compared to those on maximum temperature, see table 1.1, while for both variables

the trends on the warm extremes appear to be steeper (but still within each other’s error

range).

This indicates that, while the rise of night temperatures is significantly larger than the

day-time ones, both experience a increase in extremely warm events which is larger than
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Table 1.1: Global average of trends (1951-2012) of the percentage of cold nights (TN10p),

cold day-times (TX10p), warm nights (TN90p) and warm day-times (TX90p). [Donat et al.,

2013; Hartmann et al., 2013]

%/dec TN TX

10p -3.9 ±0.6 -2.5 ±0.7

90p 4.5 ±0.9 2.9 ±1.2

the decrease in the number of extremely cold events.

Such fact doesn’t automatically imply that a positive trend in variability is observed.

The observed behaviour can also be explained by shift of the distribution of temperatures

without changes in the shape [Simolo et al., 2010; Morak et al., 2011; Donat and Alexan-

der, 2012], left panel of Figure 1.2. Nevertheless the frequency of extremes is shown to

be more sensitive to the changes in variability than to changes in the mean [Katz and

Brown, 1992; Della-Marta et al., 2007], this can also be seen in the diagrams of Figure

1.2.

Figure 1.2: Effects on extreme indices due to the increase in the mean and in the variability.

[Cubasch et al., 2013]

The trends on extreme indices show differences according to the considered areas. Almost

all the the regions of the world present trends that can be linked to global warming.

Nevertheless wide areas present trends which are significantly larger than on the rest of

the globe. Among all, Arctic and Asian areas have shown the largest trends on Cold

Nights, while Europe and the Mediterranean have experienced stronger trends on the

Warm Days in comparison to the rest of the globe, see Figure 1.3, [Donat et al., 2013].

The latter is directly related to the occurrence of heatwaves, which have increased their

frequency, length and intensity in the last decades [Scherrer et al., 2005; Della-Marta

et al., 2007; Perkins et al., 2012] and whose impact on agriculture, health, infrastructures

and economy is considerable [Donadelli et al., 2017].

The present thesis focuses on the European and Mediterranean area, which has been

indicated as one of the most sensitive areas to climate change [Giorgi, 2006; Hartmann

et al., 2013]. Moreover it has shown considerably large trends in temperatures and in
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frequency of extreme events such as warm spells and heatwaves [Klein Tank and Können,

2003; Scherrer et al., 2005; Della-Marta et al., 2007; Brown et al., 2008; van Oldenborgh

et al., 2009; Efthymiadis et al., 2011; Simolo et al., 2011; Andrade et al., 2012; Perkins

et al., 2012; Donat et al., 2013].

Figure 1.3: Trends in TN10p (left) and TN90p (right) on the global gridded dataset HadEX2.

[Donat et al., 2013]

Understanding the evolution in frequency and amplitude of extreme temperatures is then

fundamental to assess how the climate is changing, to thoroughly communicate to pub-

lic opinion and policy makers the related risks, to encourage adaptation and increase

resilience.

In order to perform this, the best approach is the use of daily temperature measurements

from ground-based weather stations. These provide accurate and direct values of the

temperature in certain locations and are longer and more solid than series derived from

satellite-derived data (which may vary according on the instrument and are the result of

inversion processes) and reanalyses data (obtained from data assimilation).

1.2 Temperature measurements and their inhomo-

geneities

1.2.1 Data collection

The in-situ recording of daily temperatures is a fundamental practice for the production

of important data in climate analysis, indispensable for the assessment of magnitude and

the speed of the changes in climate. Starting from the second half of 17th century the

collection of daily temperature values has slowly spread all over Europe. However only

during the 20th century the number of active stations has significantly increased, growing

exponentially after World War Two.
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The European Climate Assessment and Dataset (ECA&D) [Klein Tank et al., 2002] has

operated in the last decades in the collection of series of daily measurements from more

than forty-four countries all over European and Mediterranean areas. These series include

measurements of temperature and twelve more variables such as precipitation, pressure,

wind speed, humidity, cloud cover, solar radiation, etc.. As of beginning of 2020 the

ECA&D stores more than 8000 temperature series, having length that ranges from a few

years to more than 200 years.

1.2.2 Inhomogeneities

Long series of daily temperatures are fundamental for the inspections on the variations

in statistical features (e.g. average, variability, distribution width, etc.) of the tempera-

ture distribution [Easterling et al., 1996; Trewin, 2013; Nemec et al., 2013]. However any

temporal or spatial analysis is affected by changes occurred to the measuring stations, re-

lated to artificial intervention or changes in the natural surroundings [Begert et al., 2005;

Thorne et al., 2005; Brunetti et al., 2006; Menne and Williams Jr, 2009]. The relocation

of a station from the centre of cities to the airport (or to a closeby rural area) is one of the

most common examples of changes that have taken place in the history of a measuring

series [Tuomenvirta, 2001; Begert et al., 2005]. This has usually happened to address

aviation needs or scientific guidelines. These include for example the regulations of Inter-

national Civil Aviation Organization (ICAO) that require a meteorological station to be

present at the airport and the recommendations of Weather Meteorological Organization

(WMO), which advises to place the instrument in a grass field, far from building or trees,

in order to ensure reliable measurements. An example of this is the series of Salzburg that

initially had been in (various locations of) the centre of the city and in 1939 was relocated

to the airport, see Figure 1.4. This is an excellent (and rare) example of a series with

exhaustive documentation. Its original version and supplementary information are made

available by the Central Institute for Meteorology and Geodynamics (ZAMG), which also

produced an homogenized version [Nemec et al., 2013].

The combination of relocations like this with those due to eventual changes of the in-

strumentation itself (e.g. from manual to automatic thermometers or replacement of the

screen [Auchmann and Brönnimann, 2012]) and with changes in the surrounding of the

station (such as new building or growing trees, [Ren, 2017; Yosef et al., 2018]) introduce

perturbations that significantly alter the natural signal, which is uniquely induced by

climate and weather variability [Aguilar et al., 2003; Hartmann et al., 2013]. Such in-

terferences are very common since it is almost inevitable for long-running temperature

series to experience any kind of changes [Domonkos, 2011; Kruger and Nxumalo, 2017;

Vincent et al., 2018]. As a consequence, in several works more than 70% of the series

are found to be inhomogeneous [Brunet et al., 2006; Kuglitsch et al., 2009; Syrakova and

Stefanova, 2009; Nemec et al., 2013; Mamara et al., 2014]. These are, most of the times,
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Figure 1.4: Top left: weather station in the garden of the Library of Salzburg. Top right:

weather station in the area of the airport. Courtesy of ZAMG. Bottom: locations of the two

stations with distance and elevations. Courtesy of Google Maps.

related to relocations from urban to rural surroundings [Böhm et al., 2001; Vincent et al.,

2012].

In the specific case of Salzburg the relocation to the airport in 1939 induced a sudden

cooling bias to the measured values as the measurement equipment were no longer exposed

to the warmer conditions which are present in the urban environment, the Urban Heat

Island (UHI). This can be distinguished as a step-like change through the warming trend

in the annual mean of temperatures of figure 1.5.

1.3 Homogenization: concepts and methods

The presence of inhomogeneities dramatically decreases the accuracy of any analysis based

on temperature series. Therefore a process aimed at the adjustment of non-climatic signals

in temperature series (i.e. homogenization) is essential [Aguilar et al., 2003; Venema et al.,
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Figure 1.5: Annual mean maximum temperature at the station of Salzburg. The line rep-

resents a weighted running mean, which allows a clearer and less noisy visualization of the

tendencies.

2013]. A climatological study that skips a homogeneity assessment is therefore unreliable

and likely to confuse climatic and non-climatic signals, since these often present similar

amplitudes [Caussinus and Mestre, 2004].

1.3.1 Statistical Break Detection

The homogenization is composed of two steps: the break detection and the adjustment

calculation. The first step can substantially benefits by eventual transcriptions or notes

on the changes that may have affected the values of the series, documents known as

metadata. Such information is extremely precious in the case of manual homogenization,

since it allows to establish the temporal location in which the perturbations to the signal

(i.e. breaks) took place. Nevertheless in most of the cases, especially back in time, this

information is not available, not digitized or rather reported in the local language. For this

reason many of the methods developed in the last years are completely automated and

proceed with statistical routines able to detect the break points [Caussinus and Mestre,

2004]. Furthermore the large size of some networks, such as ECA&D, make it impossible

to handle all the metadata, enhancing the need of only automated procedures.

The earliest Break Detection routines (absolute methods) were based on analyses of the

statistical consistency of the series through time. For example this was done looking

for abrupt changes in the mean values, (Standard Normal Homogeneity Test, SNHT,

[Alexandersson, 1986]). However, the most recent methods (relative methods) consider

reference series whose behaviour is a mix of the natural climatic signal and random -
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weather - variations. Most of the times the references are chosen among highly correlated

neighbouring series, since these have experienced the same climate conditions of the tar-

get inhomogeneous series [Aguilar et al., 2003]. This step is particularly important when

trends in the temperature are present as these can be misinterpreted by absolute break

detection methods as breaks and generate false positives. With the relative method, the

assumption is made that the reference series shares the same climatic signal as the tar-

get. This makes that, in the case of a homogeneous target, the difference series should

have a strictly noisy behaviour, while, when the target is not homogeneous, it is easier

to detect a break. Recently the use, as reference, of sets of series has spread (pairwise

comparison, [Menne and Williams Jr, 2005; Trewin, 2013]). This allows to identify the

climatic signal that is common to multiple neighbouring series [Aguilar et al., 2003; Menne

and Williams Jr, 2005; Della-Marta and Wanner, 2006; Venema et al., 2013] and avoids

to rely on an individual series [Della-Marta and Wanner, 2006] or on the average of a

selected set [Alexandersson and Moberg, 1997; Vincent et al., 2002; Begert et al., 2005;

Štěpánek et al., 2009], operation that is sensitive to changes of station availability. Sev-

eral break detection methods have been developed in the last decades, mostly based on

yearly, seasonal or monthly averages [Alexandersson, 1986; Vincent et al., 2002; Caussinus

and Mestre, 2004; Menne and Williams Jr, 2005; Della-Marta and Wanner, 2006; Wang

et al., 2007; Mestre et al., 2011]. Recent works have compared these methods [Venema

et al., 2013; Domonkos, 2013; Lindau and Venema, 2013] identifying positive aspects and

drawbacks and highlighting the strength of procedures based on agreement among break

detections procedure [Venema et al., 2013; Domonkos, 2013; Lindau and Venema, 2013],

which present lower amount of false positives.

1.3.2 Adjustment calculation methods

Once the break points are detected, each of the portions of the series that is identified by

two consecutive breaks needs to be adjusted. This has to be done in order to make them

consistent with the latest segment [Aguilar et al., 2003], which is still updated and is likely

to be the one with the best quality of measurement recording. The large noise, typical of

daily temperature measurements, implies that data can only be adjusted making use of

temporal aggregations, usually on a monthly basis. Such approaches allow to inspect the

statistical features of the data, such as mean values, variability and parameters related to

the distribution.

The adjustment of the series considering uniquely the mean values reduces the impact

of the homogenization and is not able to apply adequate corrections to very cold and

very warm values. This is due to the fact that relocations, changes in instruments and

the other inhomogeneity sources don’t induce uniform biases to the data [Tuomenvirta,

2001; Della-Marta and Wanner, 2006]. Each inhomogeneity generator produces different

effects on the values, these depend on external factors, such as radiation, cloud cover,
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wind strength and direction [Brandsma and Van der Meulen, 2008; Brugnara et al., 2016]

and are not constant throughout the year [Böhm et al., 2010]. For example in a hot

sunny July day a station in the city measures the temperature in an environment that

is warmed up by solar radiation and by the heat coming from buildings, asphalt, etc..

The last factors are (partially) absent in the airport or the country side, thus a relatively

large difference between the two sites is expected. In a less warm, cloudy and windy day

of the same month, where the lower atmosphere is horizontally mixed and the incoming

solar radiation is less dominant, the effect related to the urban environment (Urban Heat

Island Effect) is expected to be lower. For these reasons adjusting the two cases with

same factors would be not accurate.

Therefore the monthly values, obtained e.g. as difference between the averages before and

after the break, need to be projected on a daily resolution, some works have implemented

this by reconstructing the seasonal cycle [Vincent et al., 2002; Brunetti et al., 2006]

(i.e. the adjustment depends on the calendar day). Nevertheless, these approaches don’t

account for the variability or the shape of the temperature distribution [Mestre et al.,

2011]. For this reason recently some methods have started taking into consideration the

position of the data in the distribution of the inspected month, distinguishing among cold,

average and warm events. In order to do this, the two samples of measurements (before

and after the break) can be split into bins according to their measured value. These

bins usually are equally large and include an established fraction or percentage of the

whole dataset, for this reason they are called quantiles or percentiles. The sequences of

quantiles of the part before the break (the one that needs to be adjusted) can be compared

with other sequences obtained from surrounding homogeneous stations, which are used

to calculate the expected values for that series. Such comparison can be performed with

sophisticated techniques (non-linear regressions, cubic smoothing splines, etc.) [Della-

Marta and Wanner, 2006; Mestre et al., 2011], allowing to account for both the seasonal

cycle and the higher moments.

Recently a more empirical approach has been elaborated: the quantile matching. The

analysis is still based on quantile binning, though it avoids any kind of parametrization

or regression, relying on simple operations that keep values closer to the original signal

[Štěpánek et al., 2013; Trewin, 2013]. Figure 1.6 shows, for the case of Salzburg, the

pdf of the data of the maximum temperatures in the month of January for the 20 years

before and the 20 years after the relocation to the airport. Here it’s possible to see how

the distance between the two distributions is larger for cold values than for warm values.

This is more evident in the lower panel where the quantile sequences (5th ,10th ,15th , etc.)

of the two distributions are displayed.
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Figure 1.6: Top: Probability density function of the measurements of maximum temperatures

in January in Salzburg. Blue (Red) indicates the portion of 20 years before (after) the break

in 1938. Bottom: Sequences of quantiles (5th , 10th , 15th ...) for the same intervals of top

panel.

1.3.3 Application to composite series

In some cases the available metadata (although often insufficient) permits to identify

those series that are related to different locations and to split them in more series. After

a preliminary check for further inhomogeneities, which is always needed, these shorter

series can be employed for the creation of long composite series. Longer series allow

more reliable statistical examinations and, by consequence, more solid historical analysis

of climate change in the considered locations. The composition can be performed with

simple concatenation of series, i.e. series in the airport starts when the series in the

city stops, or with a mutual gap filling, i.e. any missing data in the airport series is

filled with data from the city, if available. Nevertheless, these processes introduce further

inhomogeneities, compromising the reliability of the long series. While the concatenation

generates a unique break date, the mutual gap filling creates a blending of data from

different sources that requires particular care [Trewin and Trevitt, 1996; Tuomenvirta,

2001; Brunet et al., 2006; Böhm et al., 2010; Rahimzadeh and Nassaji Zavareh, 2014;

Vincent et al., 2018]. Therefore the homogenization of the composite series is difficult

for the particular cases that can be present. However, this step is fundamental to turn
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the long composite series into long and homogeneous ones, powerful tools for accurate

climatological analyses [Peterson et al., 1998; Aguilar et al., 2003]

1.4 Aims of the Thesis

The present thesis has the purpose to provide a significant contribution to the improve-

ment of reliability of climatological analyses of extreme events based on in-situ daily

temperature measurements. These series of daily data are of primary importance, com-

pared to reanalyses and satellite data. This is because of their longer duration and to the

fact of being a direct measure of the local temperature, not needing inversion or data as-

similation procedures. Hence, they are essential for a thorough description of the change

and the variability of the climate in the last centuries. The assessment of their quality and

homogeneity is mandatory, in order to guarantee reliability and robustness. The removal

of non-climatic signals is a fundamental part of this process.

The starting goal of this thesis is to plan and develop a homogenization routine for the

ECA&D temperature dataset. Such method can take inspiration from some of the best

aspects of existing methods and improve them with innovative solutions. The large size of

the European Climate Assessment & Dataset and the impossibility to process the meta-

data (stored in the shape of comments) require the development of a completely automated

procedure. An important corner stone for automated procedures is to avoid the overcor-

rection of the data. This implies the need to keep the values and the statistical features

of the series as close as possible to the original version. Such conservative approach in-

cludes the requirement of a break detection method with a low rate of false positives. The

procedures based on the agreement of a set of methods [Kuglitsch et al., 2012; Venema

et al., 2013] present such quality. At the same time the adjustment calculation method is

required to manage the data with care, preserving the statistical and physical features of

average and extreme values. This last requirement is a fundamental aspect of the work of

this thesis, due to the important role of extreme temperatures events on e.g. agriculture,

health. [Donadelli et al., 2017]

For this reason the procedure developed in this thesis takes inspiration from previous

works as the study of Trewin [2013], which introduced a new heuristic approach to the

homogenization methods based on the analysis of the distribution of temperatures. The

absence of linear or non-linear regressions (used by Della-Marta andWanner [2006]; Mestre

et al. [2011]), averages of values of surrounding stations [Štěpánek et al., 2013] or fitting

to predefined functions [Menne and Williams Jr, 2009] permits to focus on the comparison

of the distributions of the original data. This is a key point for this work, since it falls

within the scope of the implementation of a conservative approach. Such pragmatic

avenue is expected to convey high flexibility to the statistical aspects of the method.
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This is fundamental due to the wide spectrum of inhomogeneity sources, whose signals

take many forms. Furthermore the need of flexibility involves aspects as the selection of

reference series. This step of the procedure has to be able to work in the great variety

of station density that the ECA&D presents. For example, in some areas and periods,

one series might have a very low amount of neighbouring (potentially usable as reference)

series. Such conditions require careful constraints on the references selection. Indeed,

the choice has on one side to preserve the statistical robustness, selecting an adequate

number of references and, on the other side, avoiding the involvement of low correlated

series, which would carry misleading signals [Domonkos, 2011].

Once the original series have been homogenized, it is important to check the presence

of series which lay in neighbouring areas and to combine them into longer series. The

use of long lasting records brings considerable benefits to climatological analyses, since

they allow valuable historical perspectives. Thus, a further goal of this thesis is the

application of a process of composition of series, inspired to the blending process already

developed within the ECA&D team. Nevertheless, since this process is based on mutual

donation of data for the filling of gaps, one value related to an original series can be

present in more than one blended series. For this reason a procedure of duplicate removal

is needed, in order to have that value appearing in only one blended series. Finally, the

inhomogeneities generated by the gathering data related to different locations need to be

adjusted, applying an adapted version of the homogenization procedure developed within

this project.

For the requirements listed above, this thesis contributes significantly in the scientific

debate about the development of automated homogenization processes for daily temper-

ature series. The presence of important aspects such as being conservative, heuristic

and flexible are expected to guarantee a powerful and reliable result. Thus the resulting

homogenized series are precious for historical and climatological studies on average and

extreme values.

In order to assess these benefits, this thesis aims at verifying how much and in which way

the homogenization modifies the statistical behaviours of a temperature dataset. This

can be done performing comparison with the original versions of the data. A crucial task

of this step is to prove that this homogenization process does not have the purpose of

enhancing the observed warming trends or hiding tendency with opposite sign. Hereafter,

a thorough validation of a homogenization methods needs to include the comparison

with other homogenization methods against a solid benchmark, making use of clear and

transparent metrics.

These steps provide solidity to the historical analyses that are performed on the homoge-

nized dataset. These studies, which are part of the aims of this thesis, intend to describe

the changes in average temperatures and extreme events over Europe in the last centuries.
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At this point, the assessment of the local characteristics of climate change is of primary

importance, including inferences the possible reasons of the observed trends.

The benefits of working with a homogenized temperature dataset are several and include

the improvement of E-OBS, gridded dataset based on the interpolation station data of

ECA&D. The wide use of E-OBS in several fields (biology, energy market, health, etc.)

makes it a powerful product, whose use is also possible for the validation of climate models.

Providing a powerful example of the benefits of the use of homogenized data for other

disciplines is the final aim of this thesis.

1.5 Expected results and benefits

1.5.1 Effects of the homogenization

The application of homogenization procedure and the analysis of its effects on national

networks or individual stations has been the subject of several studies in the last decades.

The large amount of inhomogeneities due to relocations often introduce cooling signals to

the new measurements, similarly to what observed for the case of Salzburg.

In these cases, as expected, the predominance of negative correcting factors (to be applied

to the earlier portion of the series) has been reported in several analyses [Tuomenvirta,

2001; Böhm et al., 2001; Syrakova and Stefanova, 2009; Lawrimore et al., 2011; Vincent

et al., 2012; Nemec et al., 2013], see Figure 1.7. The lowering of the earlier values compen-

sates the cooling effect of the inhomogeneities, implying, by consequence, a warmer trend

in the homogenized series. Nevertheless, these examples haven’t represented the totality

of the adjusted series [Brunet et al., 2006; Nemec et al., 2013; Mamara et al., 2014; Yosef

et al., 2018; Squintu et al., 2019] and in some cases positive adjustments have been found

to be dominant [Kuglitsch et al., 2009; Osadchyi et al., 2018], thus generating less warm

trends.

The reduction of standard deviation (due to the removal of step-like changes) and the

increase of mutual correlation that is observed Mamara et al. [2014] have confirmed the

trustworthy of the homogenized dataset. The improved features of the networks have

also been seen in the better spatial consistency of the trends [Syrakova and Stefanova,

2009; Hannart et al., 2014; Delvaux et al., 2018; Osadchyi et al., 2018; Yosef et al., 2018;

Fioravanti et al., 2019] and in the removal of the anomalous ones [Vincent et al., 2002;

Mamara et al., 2014; Pérez-Zanón et al., 2015; Squintu et al., 2019] as can be seen in

Figure 1.8.
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Figure 1.7: Histogram of adjustments of daily series in the global dataset (escluding US) used

by [Lawrimore et al., 2011], calculated with the method by [Menne and Williams Jr, 2009]

Figure 1.8: Trends on TX90p over Austria after (left) and before (right) the homogenization.

[Nemec et al., 2013]

1.5.2 Comparison of homogenization methods

Different methods applied to the same raw data are expected to produce homogenized

dataset with slightly or significant different features [Pérez-Zanón et al., 2015; Li et al.,

2016; Fioravanti et al., 2019]. Consequently, it is reasonable to wonder which homogeniza-

tion method to choose when approaching an inhomogeneous dataset. Important studies

have compared homogenization procedures (manual, semi-automated and automatic),

mainly focusing on the break detection accuracy and on the adjustment calculation on a

monthly level [Venema et al., 2013; Domonkos, 2013; Lindau and Venema, 2016]. On the

other side several works have performed comparisons of homogenization methods with

the intent of validating a newly developed one [Caussinus and Mestre, 2004; Menne and

Williams Jr, 2005; Della-Marta andWanner, 2006; Mestre et al., 2011; Trewin, 2013].

A thorough comparison must be transparent and objective, this is possible by using

benchmark datasets and clear metrics. Benchmark series are homogeneous series which
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are intentionally perturbed, generating inhomogeneous series (test) whose truth is known.

This can be done introducing missing values, outliers, trends, noise and inhomogeneities

[Menne and Williams Jr, 2005; Mestre et al., 2011; Williams et al., 2012; Venema et al.,

2013; Domonkos, 2013; Lindau and Venema, 2016] with known frequency and amplitude,

determined within ad-hoc studies. However, such approaches don’t reproduce all the

possible signals that can be generated by real inhomogeneities [Vincent et al., 2018].

For this reason in the last years the generation of test series using observed data has

become more common [Trewin, 2013]. This has usually been performed by concatenating

portion of series related to neighbouring series, so that all the statistical features of a real

relocation (plus eventually other inhomogeneity sources) can be simulated.

Once the benchmark dataset has been generated, the homogenization methods have been

applied to the tests, producing a set of homogenized versions. These have been compared

to the benchmarks with clear metrics such as the root mean square error [Mestre et al.,

2011; Venema et al., 2013; Domonkos, 2013; Trewin, 2013; Domonkos and Coll, 2017;

Gubler et al., 2017; Vincent et al., 2018]. Finally the differences between the trends in

the benchmarks and in the homogenized versions (in average and extreme values) has

allowed to evaluate if and how the main climatic characteristics of the benchmarks are

reproduced. The comparison of homogenization methods are powerful tools that stimulate

the scientific debate in the field and push researchers towards the improvement of the

methods themselves.

1.5.3 Use of homogenized datasets in climatological studies

Homogeneous temperature series are a precious tool for the creation of gridded datasets.

In the particular case of this dissertation, the homogenized blended series of ECA&D

are used for the calculation of a new version of E-OBS [Haylock et al., 2008; Cornes

et al., 2018], a high resolution (0.1◦) gridded dataset that covers almost all Europe and

Mediterranean from 1950 to present days. The lower uncertainty of the values and the

higher spatial consistency make it more reliable for the studies of any field, from cli-

matology itself, to health, agriculture and infrastructure-related studies. A particularly

important application is the use of homogenized gridded datasets for the validation of

climate simulations [Bhend and Whetton, 2013; Flato et al., 2014]. These are models

that run on the past decades taking historical observed values (land use, greenhouse gases

aerosol concentration, volcanic eruptions, solar radiation, etc.) as boundary conditions

and forcings. The evaluation of the biases and the comparison of trends on average and

extreme values allow to assess the accuracy of the models. Evaluations performed in the

last years, especially after the release of the Climate Model Intercomparison Project 5

(CMIP5) [Taylor et al., 2012], have shown that the models reproduce well the trends of

average values [Sillmann et al., 2013; Flato et al., 2014]. Nevertheless a relevant under-

estimation of the trends of extreme warm values has been observed over Western Europe
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and Mediterranean [Min et al., 2013; Flato et al., 2014]. Since Europe is one of the most

sensitive areas to climate change [Giorgi, 2006; Brown et al., 2008; Hartmann et al., 2013],

the new homogenized E-OBS have a high potential in determining how good the mod-

els have simulated the climate and, consequently, in speculating on how good they may

predict the changes in climate in the next decades.

Among all the further possible uses, homogenized series are also a precious tool for the

evaluation of small scale phenomena, like those related to boundary layer dynamics. In

particular, models like Weather Research and Forecasting System (WRF) can benefit

from the presence of series that carry exclusively climatic signal and can compare the

reproduced Urban Heat Island with the adjustments calculated within the homogenization

processes.

More uses of homogenized temperature can be implemented. This happens for health

related studies (e.g. impacts of heat waves or cold spells), phenological analyses, biolog-

ical inspections (for example analyzing the relation between temperature and vectors of

diseases, as ticks) and energy demanding analyses (for heating or cooling). Finally even

within Earth and Climate sciences there are high potentialities that come from the use

of homogenized data, such as the inspection of the influences of temperature extremes on

the abundance of particular compounds (e.g. NO2) and, as mentioned above, modelling

improvement or boundary layer analyses.

1.6 Structure of the thesis

The thesis is composed by this Introduction, the following four Chapters and a final

Synthesis.

The detailed mathematical and statistical bases of the Quantile Matching methods are

displayed in Chapter 2. Here all the steps are explained and the effects on individual

relevant case studies are shown. Furthermore an outlook on the trends of temperature

series before and after the homogenization allows to evaluate the consequences on the

trend distribution and the increased spatial consistency of the dataset.

Chapter 3 presents the composition of blended series with a sophisticated step for the re-

moval of the duplicate data generated by the mutual gap filling. After this, the application

of Quantile Matching to the blended series is presented, together with three peculiar case

studies. Important section of this chapter is a trend assessment over the whole continent,

with particular attention on the trends of extreme events and on the difference between

them.
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The Quantile Matching is compared with other automated homogenization methods (DAP

[Štěpánek et al., 2013], HOM [Della-Marta and Wanner, 2006] and SPLIDHOM [Mestre

et al., 2011]) in Chapter 4. Here a new procedure for the generation of a benchmark

dataset, based only on observed data, is described. The applications of the homogenization

methods to this benchmark dataset have been evaluated with transparent metrics and with

new indicators that allow to evaluate how accurately the trends are reconstructed.

Chapter 5 shows how the E-OBS gridded dataset, obtained by interpolating [Haylock

et al., 2008; Cornes et al., 2018] the homogenized blended series, can be used to validate

the climate projections of the model developed in the frame of High Resolution Model

Intercomparison Project. This is done by looking at trends in average and extreme values

and introducing an index that is able to compare the new higher resolution models with

the performances on trends of the lower resolution version.

Finally in the Synthesis, Chapter 6, the highlights and the main conclusions are outlined.

In particular here the inspection will focus on how the obtained results fit the aims of the

thesis. Furthermore this chapter will introduce the new issues that have arisen during the

development of the project and the possible improvements that can be implemented to

further increase the value of the homogenization procedure and of its results.



Chapter 2

Homogenization of daily

temperature series in the European

Climate Assessment & Dataset

Abstract

The daily maximum and minimum temperature series of the European Climate Assess-

ment & Dataset are homogenized using the quantile matching approach. As the dataset is

large and the detail of metadata is generally missing, an automated method locates breaks

in the series based on a comparison with surrounding series and applies adjustments which

are estimated using homogeneous segments of surrounding series as reference. A total of

6,500 series have been processed and after removing duplicates and short series, about

2,100 series have been adjusted. Finally, the effect of the homogenization of daily maxi-

mum and minimum temperature on trend estimation is shown to produce a much more

spatially homogeneous and then plausible picture.
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2.1 Introduction

Modifications to meteorological stations, such as relocation, replacement of the instru-

ment, recalibration, new buildings in the neighborhood or growth of vegetation in the

proximity, alter temperature measurements and introduce biases in the observational

records that do not relate to weather and climate [Aguilar et al., 2003; Hartmann et al.,

2013]. The analysis of climatic variability and climatic change requires homogeneous tem-

perature series [Peterson et al., 1998]: these series do not confuse the climatic signal with

artificial biases which are present in non-homogenous series [Begert et al., 2005; Thorne

et al., 2005; Brunetti et al., 2006; Menne and Williams Jr, 2009]. Prior to climate anal-

yses, actions are required aimed at the removal of step-like or gradual changes related to

these non-climatic effects in observational records [Caussinus and Mestre, 2004].

The registration of activities on meteorological stations in the metadata keeps track of

these changes and sufficiently detailed metadata allow a precise temporal localization of

the breaks. Unfortunately the availability of metadata is often low, especially further

back in time, and doesn’t cover the whole set of inhomogenities that affect the measure-

ments [Caussinus and Mestre, 2004]. This implies that break-detection based on metadata

only is not possible for many datasets, even though this approach is regarded as most ac-

curate and reliable. This argument, and the sheer size of a dataset, motivates the use of

an automated homogenization procedure [Caussinus and Mestre, 2004].

The aim of this study is to develop a pan-European homogeneous dataset of daily maxi-

mum and minimum temperature using such an automated homogenization procedure. It

will use a recent agreement-based system to detect breaks [Kuglitsch et al., 2012] and the

quantile matching technique [Trewin, 2013] in combination with a pairwise-comparison

[Menne and Williams Jr, 2005] approach to determine adjustments. The elements in this

approach are introduced below.

Automated homogenization procedures consists of two steps: break detection and ad-

justment calculation (which follow - or are integrated with - a quality check procedure)

[Alexandersson, 1986; Caussinus and Mestre, 2004]. These have been focusing mainly

on the detection of breaks in the monthly, seasonal or annual values and use statistical

tests accompanied with penalizing functions [Alexandersson, 1986; Caussinus and Mestre,

2004; Menne and Williams Jr, 2005; Wang et al., 2007] or inspections on autocorrelation

of residuals [Vincent, 1998]. Recent comparisons [Venema et al., 2013; Domonkos, 2013;

Lindau and Venema, 2013] have pointed out advantages and drawbacks of the most com-

mon systems. Procedures that look for an agreement among methods (e.g. [Kuglitsch

et al., 2012]) go one step further and take benefits from the reduced uncertainty in break

location by looking for consensus.

Homogenization of annual or monthly averages does not automatically imply a homog-
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enization of higher-order moments [Trewin, 2013] since the processes that generates in-

homogeneities on daily data-sets are non-linear, i.e. introduced inhomogeneities to the

temperature measurements depend, not in a linear way, on the temperature itself [Della-

Marta and Wanner, 2006] and external factors as cloud cover, wind strength and direction

can modify extreme daily values differently than the averaged conditions [Brandsma and

Van der Meulen, 2008].

Some methods homogenize daily records simply by interpolating monthly adjustment to

a daily resolution via a polynomial [Vincent et al., 2002] or trigonometric regressions

[Brunetti et al., 2006]. While this approach assures that daily adjusted values reflect the

same temporal behaviour as those observed in the monthly series [Vincent et al., 2002],

adjustments for the higher-order moments are not guaranteed [Mestre et al., 2011]. A more

advanced set of methods considers the temperature distribution which, split into quantile

bins, is compared with expected values obtained from surrounding stations. A non-linear

regression or cubic smoothing splines [Mestre et al., 2011] are used for the calculation of the

correcting factors. Finally a method not based on model parameterization or regressions

is the quantile matching, which compares quantiles of the distributions of measurements

before and after the break and calculates adjustments by requiring similarity between

these distributions.

Ideally, adjustments are made by comparing measurements from the original and the dis-

turbed situation for overlapping periods [World Meteorological Organization, 2011]. The

difference between these records eliminates the background climatic signal and highlights

the effects of e.g. the change in location. When such parallel measurements are not

available, the most reliable source of information about the climate background is the

net of neighbouring stations being exposed to the same climatic conditions as the target

series [Aguilar et al., 2003; Menne and Williams Jr, 2005; Della-Marta and Wanner, 2006;

Venema et al., 2013].

Approaches to construct the reference series are weighted (or simple) averages of surround-

ing recorded anomalies [Alexandersson and Moberg, 1997; Vincent et al., 2002; Begert

et al., 2005; Štěpánek et al., 2009], using a high-correlated homogeneous series [Della-

Marta and Wanner, 2006] or performing the pairwise comparison [Menne and Williams Jr,

2005; Trewin, 2013]. The calculation of an averaged series may incorporate the inhomo-

geneities of neighbouring series into the reference series [Menne and Williams Jr, 2005;

Della-Marta and Wanner, 2006], might get misleading features from uncorrelated series

and can be affected by the change in number of contributing series, introducing strong

changes of mean and variance in the reference [Brunetti et al., 2006], thus compromis-

ing the ability to represent statistical features of the climate background [Caussinus and

Mestre, 2004]. On the other hand, while the use of single series allows the analysis to

be independent from the changes in data availability, this approach is risky since it relies

totally on a series whose quality might not be certain and whose climatic features might
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not be consistent with the target series. Isolation of the artificial signal with pairwise

comparison, where each reference series provides an estimate of the adjustment of the

target series, is shown to be more robust at detection undocumented changes [Menne

and Williams Jr, 2009] and more reliable for the calculation of estimates of the adjusting

factors [Trewin, 2013].

The study is organised as follows: Section 2 introduces the data set and the methods,

Section 3 shows the results, a few case studies and the effects of the homogenization on

trends in temperature. The study is discussed and concluded in Section 4.

2.2 Data & Methods

2.2.1 ECA&D Dataset

The European Climate Assessment & Dataset (ECA& D, [Klein Tank et al., 2002] [Klok

and Klein Tank, 2008] is a collection of daily station observations of currently 12 elements

and contains at the time of writing (July 2018) data from nearly 11100 European stations

(more than 7500 with temperature measurements) and is gradually expanding. ECA&D

contains more than 200 temperature series starting before 1900, but a strong increase in

the number of series is found in the 1950s. Data from the station network at ECA&D

is updated on a monthly basis using data kindly provided directly by the National Me-

teorological and Hydrological Services (NMHSs), individual researchers affiliated with a

university, global data centres like the National Centers for Environmental Information

(Asheville, US) or the synoptic messages from the NMHSs delivered through the Global

Telecommunication System [World Meteorological Organization, 2007].

Data coverage varies depending on the countries and on the time coverage (Figure 3.1.

Early series (start before 1890) are well distributed in western Europe with the exception

of southern Italy and northern Scandinavia. Further data-rescue work is in progress for

the improvement of data coverage in low density areas and periods.

The quality check procedure in ECA&D is documented elsewhere [ECA&D Project Team,

2012] and at the time of writing simply insists on consistency between maximum and

minimum temperature, does not allow more than 5 repeating values and flags data when

the difference from the climatological value exceeds five times the standard deviation.

A more sophisticated quality check procedures for ECA&D is currently developed, as

an evolution of Štěpánek et al. [2009], based on spatial consistency of measurements in

cooperation with Global Change Research Institute (Brno,CZ).
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Figure 2.1: Minimum and maximum temperature series in ECA&D. Colour code indicates

the start of the series.

2.2.2 Break Detection

The detection of breaks is done using a completely automated procedure which is blind

to metadata. The break detection method is inspired by the approach of Kuglitsch et al.

[2012], which seeks agreement (i.e. common detected timing of breaks) of two out of three

common break detection methods (Prodige: [Caussinus and Mestre, 2004], RHtest: [Wang

et al., 2007] and GAHMDI: [Toreti et al., 2012]. The main difference with the Kuglitsch

et al. (2012) approach is that both the selection of reference series and the combination

of the three detection methods have been automated. Both are performed separately

on annual and winter/summer half means of standardized differences between candidate

and a maximum of eight reference series are used, basing the selection on completeness,

correlation of annual averages (minimum of 0.6), and distance (maximum of 1000 km). At

least three reference series must confirm a breakpoint in any of the temporal aggregations

in a pairwise approach.

The breakpoints are detected at annual resolution. Breakpoints detected in adjacent years

by different methods, reference series, or temporal aggregations, are considered the same

breakpoint.
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Simultaneous changes made to the measurement networks at a national scale are difficult

to detect simply because surrounding reference series will suffer from the same resulting

break. For these breaks documented metadata is required.

2.2.3 Calculation of Adjustments: Quantile Matching

The adjustment of daily temperature is inspired by the work of Trewin [2013] and is based

on a quantile matching algorithm which compares the probability density distribution of

temperature before and after the considered break, not taking into account metadata.

By making use of a set of homogeneous references series, the climatic signal is accounted

for and the assumption is made that the difference series between the candidate and the

reference (in their homogeneous sub-periods) is random noise.

The adjustment process targets each series individually. The break detection produces

a sequence (t1, t2, t3, ..., tn) of the timing of the detected breaks in the candidate series

(from the most recent to the earliest). Following these breaks, the candidate is divided

into n+ 1 sub-series

S0(t|t1 < t), S1(t|t2 < t < t1), etc., (2.1)

which are homogeneous by definition [Caussinus and Mestre, 2004]. These segments will

be considered independently during the following steps of the process. Segments shorter

than 5 years are not adjusted because of insufficient length required for a robust calculation

of quantiles.

Reference selection and use

The references are selected from a box of 6◦ centered on the candidate station and with

an elevation difference smaller than 500 meters. For high-elevation stations (≥ 1000m),

this threshold is changed to find neighbouring stations within half the elevation of the

candidate station (which increases the number of reference series for mountain stations).

Among the series that fulfill these requirements, in case of densely covered areas, the set

union of the 40 longest ones and the 20 starting earliest are chosen.

With the same splitting procedure used for the candidate series, the results of break

detection are used to divide the reference series into homogeneous sub-series. Only the

sub-series with at least 5 years of overlap with both segments of the candidate (i.e. at

either side of the break) are selected. This constraint helps to avoid series that have

breaks in the same period to be references to each other (e.g. in case of simultaneous

breaks in a national network). Since the presence of a trend on temperatures is likely

to happen, the maximum length of the sub-series used for calculating the adjustments is

set to 20 years, so that the changes in time of the moments don’t alter the shape of the

distribution, e.g. making it broader.
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For each reference sub-series, the daily raw correlation with the segment of the candidate

after the break is calculated. In order to limit the computational time but simultaneously

preserve statistical significance, out of the set of reference series, the 18 series with the

highest correlation are chosen, provided they have correlations higher than 0.75. Note that

this threshold is higher than earlier suggested [Domonkos, 2013]. Figure 2.2 illustrates

the selection of homogeneous references for a detected break in the candidate series.

Figure 2.2: Schematic diagram of reference selection where the sections between green curly

brackets are used and sections marked with a red cross are not. Reference series with corre-

lation below 0.75 are discarded, as well as series with overlap shorter than 5 years or data

recorded more than 20 years before or after the break.

In areas with a sparse network, which are common for the early periods, the number

of available references may be low. In these cases non-split (and thus inhomogeneous)

series (up to 5 in total, meeting the correlation, geographical and temporal overlapping

requirements) are added to the reference set, avoiding stations having a sub-segment

already selected. In any case a minimum of 3 references series is required for the procedure

to be performed, otherwise the candidate is temporarily discarded. The larger size and

density of the station network of ECA&D in comparison to the Australian dataset of

Trewin [2013] makes that the availability of reference series is higher for the European

situation.

Note that the selection of reference series for the adjustment calculation is different than

the one used for the break detection.

Calculation of quantile-based adjustments

Adjustment calculation has been developed taking inspiration from [Trewin, 2013]. It is

performed backwards considering the breaks from t1 to tn successively. The segment of

the candidate series after the considered break (ti) is termed the basis series (B), while the

segment (Si, where i=1,2,...,n) immediately before it is to be adjusted. For each reference

Rj, we define Raft
j and Rbef

j as the portion of the reference after and before the break

ti.
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The quantile-based adjustments for daily data are calculated on a monthly base and

applied on a daily resolution, depending on which quantile of the monthly distribution the

daily data belong to. The distribution of temperatures is then considered for each month

separately, introducing the seasonal cycle in the adjustments. Absolute temperatures from

the target monthm are considered, and values from the preceding month and the following

month are gathered to reduce the noise and to make sure that a sufficient amount of data

are available to determine the quantiles. This approach makes that weather types from

the spring and autumn transition seasons, like March and May, contribute to determining

the adjustment for homogenization of April temperatures, which is likely to be influenced

both by typical March and May conditions. These temperature measurements are sorted

in ascending order and e.g. the value associated to 10th quantile is calculated as the

median value of all data points between the 7.5th and 12.5th quantiles. This process

generates quantile sequences for data before and after the break in the target (sq,m,bq,m)

and in the reference series (rbefj,q,m,r
aft
j,q,m) (thus obtaining 4 quantile sequences).

The adjustment for each of the quantiles is then calculated in a three-step approach.

First the difference between quantile sequences of the candidate series before and after

the breaks is calculated, this difference is affected by both the artificial and the climatic

signal. Secondly, to identify the climatic signal, the difference between quantile sequences

of the reference series before and after the break is calculated. As third step, in order

to isolate the artificial signal, the above differences are subtracted to each other. These

steps are summarized by the following equation:

ai,j,q,m = (bq,m − si,q,m)−
(
raftj,q,m − rbefj,q,m

)
(2.2)

In order to reduce noise, the adjustments are smoothed using a simple mean of adjustments

from the neighbouring months and neighbouring quantiles.

āj,q,m =
aj,q,m + aj,q+5,m + aj,q−5,m + aj,q,m+1 + aj,q,m−1

5
(2.3)

Further check has been performed to avoid situations in which negative slopes of the

smoothed sequences cause, after their application, changes in the rank of the data (i.e.

data changing quantile after homogenization). This check has interested a very small

portion of the series, more details on this can be found in Appendix 2.A

As mentioned above, the application of adjustments is performed considering each daily

value of the series individually, depending on the location in the monthly temperature

distribution.

A set of estimations of the correction is produced, each one corresponding to the different

overlapping periods each reference series Rj has with the segments of the candidate series.

The value to be corrected may belong to a different quantile in each of these overlapping
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periods. After determining these quantiles (q̃j) the estimation (ṽj) of the adjusted value

related to Rj is:

ṽj = v + aj,q̃,m (2.4)

where v is the original value. The final adjusted value is then calculated taking the median

of the estimations:

v = median(ṽj) (2.5)

where j=(1,...,r).

The method described above has been applied to the whole ECA&D dataset. The high

number of breaks detected caused a high number of short homogeneous segments, which

often were not long enough to be homogenized or had too short overlapping period with

the homogeneous segments of the surrounding reference series, making it impossible to

perform the quantile matching. These portions have been integrated in the temporary

homogenized version of the dataset, which has undergone a second round of homogeniza-

tion. In this second run the break detection and quantile matching have been launched

again, so that additional adjustments were calculated.

2.3 Results

2.3.1 Statistics of the adjustments

Figure 2.3 shows the number and timing of the detected breaks for the first iteration and

for the second iteration. The relatively high number of breaks detected in the original

series during the first iteration resulted in a high number of short homogeneous segments.

These segments, serving as references, are often not long enough to be homogenized or had

a too short overlapping period with the target series. In such a situation no adjustments

are possible. Nevertheless, the first homogenization iteration improved the number and

the length of the homogeneous segments which made it possible to adjust additional

breaks in the second iteration. The number of series for daily maximum and minimum

series in the ECA&D dataset and the number of adjusted series after the first and second

iterations are shown in Table 3.1.

Since the second iteration takes the results of the previous iteration as input, the possi-

bility exists that this complex system diverges too strongly from the initial situation (e.g.

positive feedbacks in the iterative processes, tendency for the removal of local signals or

introduction of forced trends in the temperature series). This issue might be alleviated

by applying the homogenization on the original series, using the homogenized series as
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references in each iteration and setting a convergence threshold to stop the system. In

the approach documented here, we simply limit the number of iterations to two.

Table 2.1: Number of series involved in the stages of the homogenization process. Homog-

enized series, for each iteration, consist of the sum of the adjusted series and the already

homogeneous series. Low percentage of homogenized series is due to the exclusion of short

and duplicate series.

TN TX

Original series 6438 6404

(complete set of considered series)

Homogeneous original series 560 670

(original series labelled as

homogeneous by the break detection)

Adjusted series it.1 2111 2007

(series that have been corrected

during iteration 1)

Homogenized data-set, iteration 1 2671 2677

(union of series that were already

homogeneous and adjusted series)

Homogeneous series after iteration 1 1165 1131

(union of original homogeneous series

and series successfully homogenized

after iteration 1)

Adjusted series, Iteration 2 1526 1571

(series that have been corrected during it.2)

Homogenized data-set (final) 2691 2702

(union of series that were already

homogeneous and adjusted series)

Final non homogeneous series 1357 1260

(according to a third run of break detection)

Final homogeneous series 1334 1441

(according to a third run of break detection)

The adjustments that have been applied to the breaks vary strongly with the month and

the quantiles. Figure 2.4 shows that the adjustment of the median is symmetric around

-0.1◦Cand smaller (and less frequent) adjustments are found for the second iteration.

Furthermore the distribution of adjustments of the median is wider for minimum tem-

peratures and more peaked around for maximum temperature. Averages of adjustments

for the 5th , 50th and 90th quantiles (see table 2.2) are more negative for TN. For both

variables adjustments for lower quantiles are more negative, indicating a general tendency
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Figure 2.3: Statistics regarding application of break detection on ECA&D temperature data-

set. Histogram describes number of breakpoints per series, line describes number of stations.

Left (Right) panels are about minimum (maximum) temperatures. Top and bottom panels are

respectively for first and second break detection runs.

to broaden the probability density distribution. This is consistent with earlier findings

[Lawrimore et al., 2011; Trewin, 2013; Thorne et al., 2016].

Table 2.2: Averages of adjustments for 5th , 50th and 95th percentile for TN and TX in first

and second iteration

TN TX

05th perc 50th perc 95th perc 05th perc 50th perc 95th perc

1st it. -0.12 ◦C -0.11 ◦C -0.10 ◦C -0.06 ◦C -0.05 ◦C -0.06 ◦C

2nd it. -0.03 ◦C -0.01 ◦C -0.01 ◦C -0.04 ◦C -0.03 ◦C -0.03 ◦C

The peak in the distribution close to zero relates to (a) the independence between break

detection and adjustment calculation, i.e. a break may be found but the comparison to the

surrounding reference series does not give a reliable correction and (b) to the possibility

that the median needs no adjustment but percentiles in the tails do.

This latter situation is illustrated in the scatterplots of adjustments for the 5th versus

the 95th quantiles, for the series where adjustments of the median are null (figure 2.5).

These figures show a centred and symmetric distribution and indicate that adjustments

are not skewed towards more positive or negative slopes. These figures also show that
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no thresholds on the absolute value of the adjustments are used, contrasting with the

approach of [Trewin, 2013] who applied adjustments only if the resultant shift in annual

mean exceeded the ± 0.3 ◦C threshold.

Figure 2.4: Histograms of adjustments for values in the median quantile (q50), for TN (left

column) and TX (right colums) and for first iteration (top row) and second iteration (bottom

row). Difference in width between first and second iteration proves the different role of the two

phases.
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Figure 2.5: Density scatterplot of adjustments for quantile 95 versus quantile 05 when adjust-

ments for the median are null. Minimum temperature (left column), maximum temperature

(right column), first iteration (top row), second iteration (bottom row).
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2.3.2 Case studies

In order to demonstrate the method in more detail, two case studies are presented.

Bamberg

An illustrative example is the adjustment of data from the station of Bamberg (Germany)
1. Metadata reports a set of breaks (Table 2.3) which are only partially retrieved by the

automatic break detection (first iteration: 1891,1952; second iteration: 1920).

The two documented breaks are not reproduced exactly, but the 1948/49 break is lo-

cated within a few years. The further breaks that are detected are probably related to

unrecorded changes in the features of the station.

Table 2.3: Available metadata regarding station in Bamberg, Germany.

1880-01 to 1948-12 Bamberg (Sternwarte - City Centre) z=283m

1949-01 to 1995-03 Bamberg (South - Country Side) z=243m

1995-03 to present Bamberg (South - Country Side) z=239m

Figure 2.6: Reference series that have been used for the homogenization of the break in

1952 in the station of Bamberg (red dot). Numbers represent correlation calculated between

references and basis series (considering the 20 years following the break).

1The German Weather Service now makes the data for station Bamberg available as separate series

ranging from 1879 to 1958 and from 1949 to 2018
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The high density of stations in Germany and Austria provided by their respective me-

teorological services allows to have more than 18 reference series available for the break

in 1952 on which we focus in this case study. The 18 highest correlated ones have been

selected (figure 2.6).

Figure 2.7: Top: Histograms and pdf of adjusted minimum temperature in month May for

the 20 years before 1952 (blue) and 20 years after that (red). Light blue and light red curves

represent original probability density functions. Bottom: Quantile functions related to the

above distributions, same colour code.

Shape and location of the probability distributions of the non-homogenized temperatures

before (light red) and after (light blue) the break show a clear distinction (figure 2.7).

Shifts in quantile sequences varies from very low values for the tails of the distribution to

1.1◦Cfor the median, showing the different effect of the break on mean and extreme values.

Probability plots after the two iterations of homogenization (red before and blue after the

break) get closer to each other in different way depending on the quantiles, indicating that

the difference between the two original distributions was not entirely due to the artificial

intervention. The two sub-series (before and after the break) do not completely overlap
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due to the climatic variability that has been captured by the surrounding reference series

and taken into account in determining the adjustments.

Estimates of adjustments related to each reference (for this case study) are shown in

figure 2.8. These are the results of the process described by equation 3.1, followed by

smoothing and check of negative slopes. Figure 2.8 shows that the lower quantiles have

stronger (more negative) adjustments than the upper quantiles which increases the width

of the distribution. As an example of the adjustment process, the estimates related to the

value measured on 22th May 1951 (6.2◦C) are highlighted in figure 2.8. This measurement

belongs to different quantiles (35th and 40th ), depending on the reference series that is

considered, since for each of these there is a different overlapping period with the target

series. The final correction is taken as the median of the estimates, in this particular case

the adjustment will be -1.3◦C, with a final homogenized value of 4.9◦C.

Figure 2.8: Estimation of adjustments for month May , station of Bamberg and break in

1952 after the smoothing process and the negative slop check.

Effects on the series are evident when indices like the annual mean are plotted (figure 2.9,

top panel). In this particular case, the first iteration is able to correct the series almost

entirely, since the break that has been detected during the second iteration (1920) had

very low adjustments. Comparison of corrections for the mean and for the two tails of the

distribution show the expected differences: larger(smaller) corrections for the 5th (95th )

quantile.
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Figure 2.9: Annual mean (top), 5th quantile (centre), 95th quantile (bottom) time series for

minimum temperatures in Bamberg. Black line: original series, blue: first iteration result,

red: second iteration result. Vertical lines: output of break detection in the first (blue) and in

the second (red) iteration.
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Salzburg

A particularly representative case is the station of Salzburg (Austria), where the metadata

reports a set of breaks (table 2.4). Break detection detects almost all these breaks,

except the most recent one which is probably small in amplitude (only 3 meters of change

in height), and detecting some further breaks which probably derive from unreported

changes in the stations features. For this case study, focus will be on the break located

near 1938 which is associated with the relocation of the station from the city to the nearby

airstrip.

Table 2.4: Available metadata for station in Salzburg, Austria.

1863-01 to 1883-12 High School (Gymnasium Altes Borromäum) z=424m

1884-01 to 1903-07 High School (Oberrealschule) z=419m

1903-08 to 1941-02-28 Studiengebäude-Lehrerbildungsanstalt z=423m

1939-03-01 to 1996-06-15 Airport station 1 z=434m

Since 1996-06 Airport station 2 z=437m

Figure 2.10: Reference series that have been used for the homogenization of the break in

1938 in the station of Salzburg (red dot). Numbers represent correlation calculated between

references and basis series. Correlations are calculated using the 20 years following the break.
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For the 1938 break, 12 reference series meet the requirements, see figure 2.10 . Shape

and location of the probability distribution of temperatures before and after break in

1938 (figure 2.11) show a clear shift of the distribution of records before the break. Shift

in quantiles varies from 0.6◦Cfor the 5th quantile to 1.1◦Cfor the median, showing the

different effect of the break on mean and extreme values. Probability distributions after

the 2 iterations of homogenization almost overlap each other, indicating that a great part

of the difference was due to the relocation, while the remaining difference represents actual

climatic variability that relates to the surrounding reference series.

Adjustments applied may be seen in figure2.12, analogous to figure 2.8 with the difference

that here the slope of the curve in the quantile-adjustment plot is not as steep as in the

Bamberg case. The highlighted marks are related to the measurement on 14th May 1938

(4.9◦C), whose adjustment will be -0.7◦C, with a final value of 4.2◦C.

Figure 2.11: Top:Histograms and probability distribution of adjusted minimum temperature

in month May for the 20 years before 1938 (blue) and 20 years after that (red). Light blue

and light red curves represent original distributions. Bottom: quantile functions related to the

above distributions, same colour code.
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Figure 2.12: Estimation of adjustments for month May , station of Salzburg and break in

1938 after the smoothing process and the negative slop check. The inset shows the locations of

the series used to calculate the adjustment.

Effects on the series are evident when indices like the annual mean are plotted (figure 2.13,

top panel). Interesting about this case is that first iteration (blue lines, when not covered

by red) corrects the big breaks, such as the break in 1938. On the other hand, the

second iteration is able to adjust two early breaks (red vertical lines) that were not

detected during the first round because of the lack of long reference series in the early

periods. The two new breaks are confirmed by the metadata (table 2.4). The amplitude

of adjustments in this case is clearly lower, showing that second iteration works as an

enhancement of adjustments from the first round. Appendix 2.B shows that the second

iteration homogenizes the older part of the series that was not corrected during the first

round.
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Figure 2.13: Annual mean time series for minimum temperatures in Salzburg. Black line:

original series, blue: first iteration result, red: second iteration result. Vertical lines: output

of break detection in the first (blue) and in the second (red) iteration.

2.3.3 Application to the complete data-set

Figure 2.14 shows trends in annual mean daily minimum and maximum temperature over

the 1961-2010 period, before the homogenization (top panels) and after the homogeniza-

tion (middle panels). The comparison of these figures shows the removal of several outliers

and unrealistic low or high trends values. The trends based on the homogenized series are

much more spatially homogeneous. The bottom panels of figure 2.14 show the difference

in trend values between the non-homogenized and homogenized series which demonstrate

that the adjustments go both ways - trends are increased and decreased by this procedure.

A coherent spatial pattern of adjustments is not evident from this figure.

The almost complete disappearance of stations with negative and very large trends demon-

strates the effectiveness of the method in recognizing and keeping the climate signals that

dominates the series and removing outliers trends which are related to artificial signals.

Even though the result is the convergence of the trends of all stations to positive values,

it is important to notice that the aim of this process is not the removal of the negative

trends. This phenomenon is an indirect effect of the homogenization procedure. Indeed

all stations with excessively high trends (i.e. dark red circles) have been adjusted with

negative factors, as shown in figure 2.14, bottom row. A further check is to search for sta-

tions that still showed a negative trend or a exceptionally high trend exceeding 0.6◦C/dec.

Figure 2.15 shows the locations of the stations related to these extreme trends. These

are not isolated stations but it is shown that these values are consistent with trends of

neighbouring stations. The low value trends are mainly located in Bulgaria and southern
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Romania, while the very large trends are mainly in the Northern Baltic area. The second

case is likely to be the result of a widespread climatic effect, while the first might be the

result of the influence of the series of Bucarest on the neighbours.

In Appendix 2.C box plots show the distribution of the trends in the annual mean of TN

and TX for the two successive iterations. These indicate a narrowing of the distribution

of the trends together with a significant reduction of outliers.

Figure 2.16 describes the distribution of the trends on extreme indices (5th percentile

of TN and 95th percentile of TX) in the original data-set and after the two stages of

homogenization.

Beside the changes in the width of the distributions, changes in the first moment have

been observed. The medians show a slight shift to higher values (table 2.5) for annual

means. TN05 and especially TX95 show a more irregular behaviour, where overadjusted

trends in the first iteration are refined in the second iteration.

Table 2.5: Median trend values of annual averaged daily minimum and maximum temper-

ature, of TN05 and of TX95, for the original dataset, after the first iteration and after the

second iteration.

TN annmean TX annmean TN05 TX95

original +0.31 ◦C/dec +0.35 ◦C/dec +0.41 ◦C/dec +0.35 ◦C/dec

1st iteration +0.31 ◦C/dec +0.37 ◦C/dec +0.42 ◦C/dec +0.40 ◦C/dec

2nd iteration +0.32 ◦C/dec +0.37 ◦C/dec +0.42 ◦C/dec +0.37 ◦C/dec
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Figure 2.14: Maps of trends of annual mean in the period from 1961 to 2010 of original series

(top), homogenized series (middle) and difference between the two (bottom) about minimum

(left column) and maximum temperatures (right column). Blue circles indicate negative trends,

red circles represent positive trends below 0.6◦C/dec, dark red circles represent trends above

0.6◦C/dec. Size of the circle is proportional to the amplitude of the trend. Thickness of the

circle indicates significance of the trend itself (above 0.95). Code colour is chosen basing on

the box plots of figure 2.18 (blue and brown values lie on the tails of the original distribution).
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Figure 2.15: Left: Map of series having trend of annual mean of minimum temperatures lower

than 0.1◦C/dec, transparency of the dots indicate non significant trend. Right: Map of series

having trend of annual mean of minimum temperatures larger than 0.5◦C/dec, transparency

of the dots indicate non significant trend.

Figure 2.16: Distribution of trends for TN05 (top) and TX95 (bottom). Each plot shows

boxplot for original (grey), first iterations’ result (blue) and second iterations’ result (red)
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2.4 Discussion and Conclusions

A fully automatic homogenization method for daily temperature series has been presented

and applied to the pan-European dataset ECA&D. The size of the dataset and the ab-

sence of detailed metadata for all series and stations requires a procedure which is blind

for metadata and is able to handle a large variety of data quality conditions. These chal-

lenges are met by using a combination of the break detection method developed earlier

by [Kuglitsch et al., 2012] and the quantile matching method which has been pioneered

earlier by [Trewin, 2013] for use in large datasets. In order to distinguish between climatic

signal and artificial signal in the breaks, a network of reference series in the vicinity of the

record that needs adjustment is employed. In this study, the reference series are chosen

from coordinate boxes of 6◦× 6◦ around the target series, with thresholds on altitude dif-

ference. A further selection, using daily raw correlation and length of overlapping period,

makes this approach sufficiently flexible to cope with both high and low station density

areas. These criteria take inspiration from the the nearest neighbour stations approach

of [Menne and Williams Jr, 2009] and [Trewin, 2013].

The whole procedure is iterated twice. While the first iteration locates and adjusts the

largest discontinuities, the second iteration is able to adjust more subtle changes such

as earlier breaks, breaks with smaller amplitude or in areas with scarce station density.

The more abundant presence of homogeneous sub series after the first iteration makes

this possible. The homogenization has been able to adjust about 2700 ECA&D tem-

perature series, while the remaining ones are duplicates or consist in short records. A

final round of break detection has shown that only 1400 series can be considered com-

pletely homogenized, while on the rest minor breaks persist. No further iterations are

made to remain as close as possible to the original dataset while adjusting for the largest

inhomogeneities.

The trends in annual averaged values show a much stronger spatial consistency than before

the adjustments. This illustrates the effectiveness in the removal of the artificial signals,

thus making the climatic signal dominant. A comparison between trends prior and after

the homogenization shows that changes in trends are both ways. The averages of the

distributions of European trends of annual means are shifted slightly to warmer values

(TN: +3.2%, TX: +5.7%). At the same time the interquantile range of the distributions

of these trends are consistently reduced (TN: from 0.16 to 0.10◦C/dec, TX: from 0.12 to

0.08◦C/dec), indicating a higher uniformity of the values. Similar conclusions are reached

when considering indices for extreme values, such as the 5th and 95th quantiles.

The strength of the quantile matching method is that each part of the distribution (i.e.

quantile) is considered independently from the others. Previous studies on temperature

probability distributions have focused on fitting the probability density functions with

sophisticated functions or calculation of variations in the distribution parameters. On
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the other hand the quantile matching approach has a more heuristic approach, aiming

at being more versatile and able to adapt to the wide spectrum of signals that artificial

activities may lead to the records.

In distinction with the Trewin [2013] approach, no linear interpolation between quantiles

(used to obtain adjustments for percentiles between the multiples of 5) is included, re-

ducing the parameterization of the process. Furthermore the calculation of adjustment is

more conservative (use of averaged values and check of negative slopes) and the selection

of reference series employs different criteria to give more importance to data availability

and correlation.

Nonetheless further studies have been performed and are planned to understand minor

controversial aspects of the described method. The dispersion of the reference series has

been shown to affect the calculation of the adjustments (Appendix 2.D). Therefore it

is planned to inspect how to lend the reference selection an ”angular even distribution”,

i.e. approximately same number of references on the North, on the South, on the East

and on the West of the candidate series. The selection of reference series must also take

into account the contribution of series with anomalous behaviour, as seen in Figure 2.15,

where the negative trend in a station (Bucarest) might be one of the reasons of the lower

trends observed in the surrounding area. The validation and the comparison of the results

with other adjustment calculation methods are currently subject of further studies.

In conclusion, the method to adjust inhomogeneities in daily temperature discussed here is

a purely statistical method. While the use of quantile matching favours the differentiation

of adjustments for low and high daily extremes and have a seasonal cycle, these adjust-

ments don’t consider existing meteorological circumstances. Future work using a physical

approach to calculating the adjustments, in which actual weather contributes to the size

of the adjustment, will give an alternative estimate of the homogeneity adjustment.
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2.A Check of negative slopes in the adjustment se-

quences

During the application of the quantile matching method it might happen that the rank of

measurements is not preserved. This occurs if the adjustment of a high quantile is smaller

than that of a lower quantile.

This possible setback, that involves approximately 0.5% of the adjustment calculation,

requires a constraint in order to keep the rank of data when the sequence has a negative

slope in the adjustment - quantile plane. By definition a quantile sequence, including the

result of the adjusting process (s̃j,q,m ) must have a non-negative slope. This implies that

for any q:

s̄j,q+5,m − s̄j,q,m ≥ 0 (2.6)

For each q, elements of the adjusted quantile sequence are calculated like:

s̄j,q,m = sj,q,m + aj,q,m (2.7)

Thus:

s̃j,m,q+5 − s̃j,m,q =

= (sj,q+5,m + āj,q+5,m)− (sj,q,m + āj,q,m) =

= (sj,q+5,m − sj,q,m) + (āj,q+5,m − āj,q,m) ≥ 0

And finally:

(āj,q+5,m − āj,q,m) ≥ − (sj,q+5,m − sj,q,m) (2.8)

This constraint is implemented fixing the adjustment related to the median and checking

the two tails quantile by quantile. In case of a too negative slope, the value is corrected

moving it to the closest acceptable value.

For instance, for the right tail of he distribution, if:

a(j̃, 55, m̃)− a(j̃, 50, m̃) < −s(j̃, 55, m̃) + s(j̃, 50, m̃) (2.9)

then the corrected value is set to:

ā(j̃, 55, m̃) = a(j̃, 50, m̃)− s(j̃, 55, m̃) + s(j̃, 50, m̃) (2.10)



2.B Munich 47

2.B Munich

The need and the utility of the second iteration with the break detection and homoge-

nization can be appreciated when looking data from the station of Munich (Germany).

Metadata reports a set of breaks (Table 2.6) including one in the 1920s.

Table 2.6: Available metadata regarding station in Munich, Germany.

1879-01 to 1954-07 Munich (Botanic Garden Nynphenburg ) z=515

1954-08 to 1999-03 Munich (Nynphenburg residential area ) z=515m

1999-04 to present No location metadata (probably not changed) z=515m

(changes in measuring times in 2001-04)

Here the big difference between red and blue lines in figure 2.17 indicates that the first

iteration was not able to correct the breaks in 1912 an 1926. Nevertheless the higher

availability of data and long homogeneous segments, together with a better signal to

noise ration has allowed to adjust the earliest part of the series on the second run of the

software.

Figure 2.17: Annual mean time series for minimum temperatures in Munich. Same colour

code as previous figures.



48 Homogenization of daily temperature series in the ECA&D

2.C Trend assessments on annual means

Assessment of trends before and after the homogenization has been computed on annual

means, showing a relevant narrowing of the distribution, especially between original and

first iteration, while the second iteration acts more like a refining of the result, see figure

2.18.

Figure 2.18: Distribution of trends for annual mean of minimum (top) and maximum tem-

perature. Each plot shows boxplot for original (grey), first iterations’ result (blue) and second

iterations’ result (red)

2.D Geographically-induced patterns on adjust-

ments

Adjustment calculations may depend on the geographical distribution of reference series

around the target series. The homogenization of the break in 1938 of series of Salzburg

(Austria) has been checked considering separately the reference series that lay on the
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north (south, west and east), see figure 2.19, top panels. Both pairs north-south and

east-west present some differences, more evident in the case east-west. Reason of this

difference is highlighted in the adjustments sequences for month of May of western and

eastern series, where it is clear that four series in the western dataset introduce larger

(negative) adjustments. This series correspond to the 4 north-western German stations,

which differ for topographical characteristics with respect to the rest of the stations.

Figure 2.19: Annual mean of minimum temperatures in Salzburg after homogenization using

4 different sets of reference series: northern (black), eastern (blue), southern (red), western

set (green).

Therefore the extremely high variety of European topography and climate features require

to perform an accurate choice of the references for each target series, reasoning on its

locations, surroundings etc. Furthermore in some cases the sparseness of stations density

doesn’t allow to be able to select the best stations. In further versions of the software an

even angular distribution of the references around the target will be implemented in case

of regions with high density of stations.





Chapter 3

Building long homogeneous

temperature series across Europe:

a new approach for the blending of

neighboring series

Abstract

Long and homogeneous series are a necessary requirement for reliable climate analysis.

Relocation of measuring equipment from one station to another, such as from the city cen-

ter to a rural area or a nearby airport, is one of the causes of discontinuities in these long

series which may affect trend estimates. An updated procedure for the composition of long

series is here introduced. It couples an evolution of the blending procedure already im-

plemented within the European Climate Assessment and Dataset (which combines data

from stations no more than 12.5 km apart from each other) with a duplicate removal,

alongside the quantile matching homogenization procedure. The ECA&D contains ap-

proximately 3000 homogenized series for each temperature variable prior to the blending

procedure, around 820 of these are longer than 60 years; the process of blending increases

the number of long series to more than 900. Three case studies illustrate the effects of

the homogenization, showing the effectiveness of separate adjustments on extreme and

mean values (Geneva), on cases where blending is complex (Rheinstetten) and on series

which are completed by adding relevant portions of GTS synoptic data (Siauliai). Finally,

a trend assessment reveals the removal of negative and very large trends, demonstrating

a stronger spatial consistency. The new blended and homogenized data-set will allow a

more reliable use of temperature series for indices calculation and for the calculation of

gridded data-sets, and will be available for users on www.ecad.eu.
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3.1 Introduction

Long and high resolution temperature series are fundamental in climatological studies

for giving a historical perspective of average warming and climatic extremes [Peterson

et al., 1998; Aguilar et al., 2003]. An important requirement for these series is that they

are homogeneous. The removal of non-climatic or artificial signals, inhomogeneities, is

essential since climatic trends may be contaminated by these signals as shown by e.g.

Venema et al. [2013] and Squintu et al. [2019].

It is highly likely that the surroundings of long-running meteorological stations will change

over time or that the location of the instruments and possibly also the measurement

procedure will also change [Domonkos, 2011; Kruger and Nxumalo, 2017; Vincent et al.,

2018]. In addition, stations may be temporarily or permanently terminated, producing

discontinuities in the dataset.

A common procedure [ECA&D Project Team, 2012; Menne et al., 2012; Kruger and

Nxumalo, 2017] that is used to build long and continuous time series is to fill gaps in a

series using data from neighboring stations or to combine long segments of measurements.

When data of stations from very different surroundings are combined, in particular from

urban and rural (e.g. airport) areas, large inhomogeneities are introduced [Trewin and

Trevitt, 1996; Tuomenvirta, 2001; Brunet et al., 2006; Böhm et al., 2010; Rahimzadeh

and Nassaji Zavareh, 2014; Vincent et al., 2018]. The extension of series can be also

performed with data related to sources that are not completely comparable. An example

of this is the update of series to recent periods with GTS-derived synoptic messages

[Van den Besselaar et al., 2012], synops. The presence of these discontinuities makes

the combined data unreliable for accurate climatological analyses, since the amplitude of

inhomogeneities can be as large as the climate change signal itself [Peterson et al., 1998;

Caussinus and Mestre, 2004; Begert et al., 2005; Della-Marta and Wanner, 2006; Venema

et al., 2013].

Several studies on singular cases or on small datasets have produced tailored homogeneity

adjustments for composite series [Maugeri et al., 2002; Böhm et al., 2010; Yang et al.,

2013; Dienst et al., 2017; Kruger and Nxumalo, 2017; Delvaux et al., 2018; Nemec et al.,

2013], and were able to account for the specific characteristics of the considered series

and for metadata. In the case of large datasets, it is not possible to generalize a tai-

lored approach for an individual case to the whole dataset due to the number of series

involved [Dienst et al., 2017; Delvaux et al., 2018]. For such datasets a fully automatic

procedure is required which has to be able to handle the large spectrum of, sometimes

unknown, circumstances (different surroundings, measurement techniques, protocols and

elevation) that each specific case presents. The procedure can not rely on metadata as

this information is often lacking
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The aim of this study is to provide a new approach to the operational procedure used in the

construction of composite series (blending) [ECA&D Project Team, 2012] in the European

Climate Assessment & Dataset (ECA&D) [Klein Tank et al., 2002]. The combination with

a duplicate-removal procedure and with a quantile matching homogenization technique,

analogous to the method presented by Squintu et al. [2019], allows the production of more

reliable long temperature series, which are a fundamental tool for the estimation of indices

and trends.

3.2 Data

The ECA&D collects data from thousands of stations spanning the European and Mediter-

ranean domain. Temperature records play a key role, with about 3000 stored series per

element (minimum, maximum and mean) (status January 2019, see table 3.1) which have

been previously homogenized within the work presented in Squintu et al. [2019]. Figure

3.1 shows the spatial distribution of homogenized non-blended (OriHom, see subsection

3.2.1) series of average temperatures (TG). Here the size of the dot represents the length of

the series and the color coding the starting year. This dataset clearly has a high potential

for generating longer series, especially in the denser areas, and a blending procedure was

developed to construct these augmented series. The procedure works by replacing missing

data in the original non-homogenized series with measurements from surrounding stations

and extends it to current times, when possible, with synoptic messages. A limitation of

this approach is reflected in the production of duplicates of time series: in the case of a

relocation, a new series is constructed joining donated data from the discontinued station

to the receiving operational station and vice versa. Although the blended series are a fun-

damental tool for the development of the E-OBS gridded data-set [Haylock et al., 2008;

Van den Besselaar et al., 2011; Cornes et al., 2018], duplicating time series in the input to

this gridded data-set over-emphasizes the corresponding information. Thus an additional

step to avoid any duplication is needed and has been included in this study.

3.2.1 Naming convention

The current ECA&D blended series (from now on referred to as OldBlend) were generated

from the original non-homogenized series (OriNonHom) of ECA&D. The new blended

series (NewBlend) are the result of the updated blending procedure described in the

current study, which takes as input the homogenized original series (OriHom). These,

as introduced by Squintu et al. [2019], are the result of two iterations of homogenization

which remove large breaks. A third run of break detection revealed the presence of

only minor inhomogeneities, which motivated not to further adjust in order to prevent

overcorrection and preserve resemblance to the original data.
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Finally, the homogenized version of the blended series will be referred to as NewHomBlend.

The method described in this paper is applied to daily minimum temperature (TN), daily

maximum temperature (TX) and daily average temperature (TG).

Figure 3.1: Available TG homogenized series (OriHom, see section 23.2.1) in ECA&D. The

size of the dots indicates the length of the series while color coding indicates the start year.

3.3 Methods

3.3.1 The modified blending procedure

The construction of a NewBlend is performed for each station individually. Nearby sta-

tions around a target station are identified in a radius of 12.5 km and with a maximum

of 25 meters of difference in altitude. These include the stations providing synoptic mes-

sages. This distance is the result of a pragmatic choice, based on the observation that

mutual distances between stations affected by relocation tend to be below such threshold.

All the OriHom data belonging to the target series and to the neighbouring series, which

can be more than one for each station, are involved in the blending.

The series with the most recent data of the target station is called the basis series, while

other OriHom from the same and neighboring stations are defined as donating series since

they donate their data to fill possible gaps in the basis and to extend it to both earlier

times and to more recent times (with GTS data).

In this process, illustrated in Figure 3.2, each day between the earliest and the latest date

in the available series is considered individually. If the daily value is missing in the basis,

the donating series are checked for availability for that date. The series which donates

the datum is chosen according to a hierarchy based on distance from the basis, i.e. if the
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closest donor has a value on that date, it is selected, otherwise the second closest is checked

and so on. In any case priority is given to validated series over synop values; the latter

are used only when no alternative data are available and updates from the data providers

are lacking. Integration with synop data is performed only if the last validated data lies

in the 10 years preceding the current date [ECA&D Project Team, 2012]. In this step the

introduced data are not adjusted for elevation or changes in the surroundings.

Figure 3.2 illustrates that the blended series is composed of segments that come from

different series. The length of such segments might vary from several years to single days.

Furthermore, contributions from a specific donating series can be fragmented (filling more

than one gap in the basis series), making the homogenization more complicated.

Figure 3.2: Schematic diagram to show how data belonging to basis and donating series

contribute to the creation of a long blended series. Lines indicate continuous segments, empty

dots represent missing data. Missing data that have been infilled are indicated by full circles

having the color of the corresponding donor. Donating series are sorted according to their

rank.

3.3.2 Avoiding duplicates

The described blending procedure determines the presence of identical segments of data,

due to the mutual exchange of data that can occur between two neighboring stations.

The presence of duplicates has the effect of giving double weight to certain records in the

construction of gridded datasets like E-OBS.

The avoidance of duplicates in the new method is illustrated by the example of the area

of Berlin (Figure 3.3). Initially all neighboring stations of Berlin-Tempelhof (ECA&D

ID: 2759) are considered. For any of the neighbouring stations, it is checked if additional

surrounding stations can be included. The process is iterated until no more stations are

in the radius of 12.5 km of any of the already selected stations, determining a cluster of

stations that have donated data to each other. The stations in the cluster are ranked

giving priority first to those with OriHom which are still updated and then to those with
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the longest duration. According to these criteria Berlin-Tempelhof is ranked first. Among

its donating series, the one which starts the earliest is the series of Berlin-Dahlem (ID:

41). This series is not updated anymore and its data are used to extend Tempelhof and

Berlin-Tegel (ID: 4005) to earlier times. At the same time the blending procedure found

data with ID 2579 to complete the series with ID 41 to current times. The portion of 41

before 1948 is used in the blending of station 2759, thus the values of this time interval

are removed from 4005 and 41, since they have lower rank. The same process is applied

for the segment between 1948 and 1963, which is present in 4005 and thus removed from

41. Stations Berlin-Buch (ID: 4529), Berlin-Marzahn (ID:4561) and Berlin-Schonefeld

(ID:4570) are part of the cluster but their data cannot be used for the extension of 2579

nor can they profit from data from each other or from the lower ranked station since their

distance to other stations is larger than the pre-set threshold. As a result of this process,

no daily measurement appears in more than one blended series.

Figure 3.3: Diagram and map representing the removal of duplicate records from blended

series in the area of Berlin. Colors identify the series that contribute to the blended series.

Dashed lines indicate data removed to avoid the presence of duplicates.

3.3.3 Homogenization of the NewBlend series

In contrast to the OldBlend series, in which data from a neighboring station were simply

inserted to fill gaps or to extend the record, the data of the NewBlend is adjusted to

avoid the introduction of inhomogeneities. Although the generation of NewBlend series is

applied to all elements available in the ECA&D database, the homogenization is applied

to NewBlend temperature series only and is based on the probability density functions of

the respective OriHom series. Methods to homogenize time series with a daily resolution

for other elements are currently in an experimental phase and are outside the scope of
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this paper.

The calculation of adjustments is based on the quantile matching method documented

by Squintu et al. [2019] which is based upon earlier work of Trewin [2013]. This consists

of the comparison of the distributions of temperatures of the basis and of the donating

OriHom. Data related to each month are considered separately over a period of at least

5 years from both basis and donating series. The records are divided into bins, each

corresponding to the quantiles from 5 to 95. Sequences of values related to the quantiles

are obtained, one for the basis and one for the donating series. These are subtracted from

each other, in order to obtain an estimate of the adjustments. Since a climate change

signal may be present in the difference of these quantiles, a comparison against parallel

segments extracted from surrounding stations, which are used as references, is performed

to remove this climate-related signal. More details are provided in the appendix of Squintu

et al. [2019] and in Trewin [2013]. The reference series are selected among all the available

OriHom in a coordinate box. This box always spans 6◦ in latitude, while the range of

longitude varies according to the latitude in order to cover the same direction in the West-

East direction that the box covers in the North-South direction. Each reference allows the

calculation of an estimate of the adjustments. Finally, considering the set of estimates,

the median is taken as the final correcting factor.

The adjustments are applied to each datum that appears in the blended series and which

does not belong to the basis, according to its donating series, month and quantile.

3.4 Results

The procedure described above is applied to all the OriHom temperature series of ECA&D.

Three case studies are reported in this section. The first (Geneva) illustrates the im-

provements on to the extremes indices, the second (Rheinstetten) represents an example

of a series with discontinuous blending contributions from donating series and the third

(Siauliai) explains how the GTS data have been treated and adjusted. Following these

examples, an analysis of the effects on the whole data set is reported.
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3.4.1 Case study: Geneva, Switzerland

Among the several examples of stations that have been relocated, one of particular interest

is the series of TN from Geneva. The station in Parc de l’Observatoire was decommissioned

in 1961. This station was likely influenced by nearby buildings and trees and by the Urban

Heat Island Effect (see position in the map of figure 3.4). Simultaneously, the station in

the open fields of the Cointrin Airport was established at a distance of 5.8 km and 15

meters higher than the old station. In the blending step these two OriHom are joined and

an adjustment is required to avoid the introduction of an inhomogeneity.

Figure 3.4: Map of Geneva (courtesy of Google Maps) with the location of the station Parc

de l’Observatoire (south) and Cointrin Airport (north) connected by the white line.

As expected [Tuomenvirta, 2001; Böhm et al., 2010; Yang et al., 2013], the (indirect) re-

moval of the urban heat island and, with lower impact, the elevation difference introduces

a cooling factor to the NewBlend. A clear step-like pattern (black lines in figure 3.5)

is observed when the series are joined without adjustment, while the red lines show the

blending of the series using the homogenization adjustments. The average effect of the

homogenization on annual means of TN (figure 3.5, top panel) is -1.3◦C, while for the

annual 10th percentile (bottom panel) the adjustments are stronger, -1.9◦C. This shows

that corrections based on mean values, in this case, underestimate adjustments for the

more extreme values. This example illustrates how the combination of blending and ho-

mogenization generates a long and homogeneous series where the non-climatic effects of

site location have not been adjusted.
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Figure 3.5: Top panel: annual means of minimum temperatures of the blended series of

Geneva. Dots stand for yearly values while the line is a gaussian weighted running mean.

Black items represent the NewBlend, red items represent the NewHomBlend. Contributing

segments are reported in the sequences of bars (one per day) on the bottom of the plots: the

blue sequence indicates the period covered by Geneva Observatoire (ID:19277), red indicates

Geneva Cointrin (ID: 740), and green indicates sparse contributions of the closest synop series

(WMO 06700). Bottom panel: same as above but for the annual 10th percentile
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A final check has been performed to validate the results of this process against the ho-

mogenized temperatures provided by MeteoSwiss. These are monthly values of TG, thus

the average of the 12 values has been compared with the average of the 365 daily values

of the TG NewHomBlend series of Geneva. The strong agreement between the two series

(see figure 3.6) is confirmed by the low RMSE: 0.15◦C.

Figure 3.6: Top panel: annual means of mean temperatures of the blended series of Geneva.

Same color code as figure 3.5 with the addition of the annual average of the monthly homoge-

nized values provided by MeteoSwiss (grey lines and dots).

3.4.2 Case study: Rheinstetten, Germany

The meteorological station at Rheinstetten airport, Germany, was in operation between

January 1948 and 1984 and again from 2009 onward. Data from this station are blended

with data from the station Karlsruhe, which is located in a park approximately 8 km away

from Rheinstetten (figure 3.7) and 4 meters of elevation lower. This urban station has an

uninterrupted record running from 1876 to 2008, allowing the series of Rheinstetten to

be extended further back in time and to fill the gap between 1985 and 2008. Figure 3.8

shows how in both periods the temperature in the Karlsruhe station appears to be warmer

(as expected for a station in an urban environment) than the rural station. The applied

adjustments convert these data to values that are more consistent with the basis.

The structure of this blended series is a representative, but rare, example with multiple

relevant contributions from the same donating series. More frequently it is observed

that multiple contributions from the same donating series consist of a main segment and

several individual or short sequences of donated data that fill sparse missing values in

the basis. During the homogenization step each segment is adjusted according to the
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Figure 3.7: Map of Karlsruhe and Rheinstetten (courtesy of Google Maps) with the location of

the station Karlsruhe (north) and Rheinstetten airstrip (south) with the white line connecting

the two stations.

statistical features of the whole donating series. Thus the quantile adjustments are the

same for all segments belonging to the same donor. Calculating separate adjustments

for each segment would require arbitrary choices: determining which criteria to follow

for splitting the donating series would make the process subjective. Furthermore, such a

decision would imply the development of a more complicated algorithm which would be

applied to a very small portion of the dataset (about 0.3%).

This motivated to apply as adjusting factors to blended data before 1948 and between

1984-2000 values which are drawn from the same set of quantile-based adjustments. Since

the temperature values in the record before 1948 are generally lower than those in the

latter period, the adjustments for the early period will sample the lower quantiles more

than those from the more recent segment.
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Figure 3.8: Annual mean of the blended TG series of Rheinstetten. Same color code as figure

3.5. Red bar indicates data from Rheinstetten (11506), blue bar indicated data from Karlsruhe

(182).

3.4.3 Extending the series with homogenized synop data: Siauliai, Lithua-

nia

Synop data are used for a maximum of 10 years to extend to present-day those series

that are not regularly updated [ECA&D Project Team, 2012]. The daily TN and TX

values are based on 12 hour periods (from 6 to 18 UTC for TX and from 18 to 6 UTC for

TN, local time). This implies that synop values for TX (TN) are equal or underestimate

(overestimate) the 24 hour-based TX (TN) values. Daily mean values (TG) are calculated

as a simple average of TX and TN. Therefore this system is likely to introduce systematic

biases on the last portion of the series and thus to introduce inhomogeneities [Van den

Besselaar et al., 2012]. The quantile matching approach is used to adjust these biases,

making synoptic data more consistent with data from the surrounding stations.
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Figure 3.9: Example of homogenization of GTS contributions to the series of Siauliai, Lithua-

nia, for TN (top) and TX (bottom). Color code is the same as figure 3.5.
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It is important to stress that synops are appended and corrected, but not used as refer-

ences; their statistical features are not transferred in any case to the surrounding series.

An example of the correction of synops, for the TN and TX series of Siauliai, Lithuania, is

shown in figure 3.9. As expected, the corrections applied to synops have low amplitude and

different sign for maximum and minimum temperature. While this behaviour has been

observed on almost all the most relevant contributions of GTS data, the histograms of

adjustments applied to synops (figure 3.10) show that the negative adjustments dominate

for minimum temperatures, while for maximum temperatures the distribution is centered

around zero. This difference may be due to the fact that the probability of recording

maximum temperature outside the 6-18 interval (local time) is lower than the probability

of having minimum temperature occurring outside the 18-6 interval [Van den Besselaar

et al., 2012]. Secondly the location of the station providing the synops series does not

always coincide with the basis series, a fact that might interfere with the systematic biases

introduced above.

Figure 3.10: Histograms of adjustments applied to the 50th percentiles of GTS series for TN

(left) and TX(right).

3.4.4 Application to the whole dataset: statistics

Table 3.1 describes the effects on the whole dataset. Considering the average lengths of

OriHom (taking the longest for each station) and NewHomBlend, no considerable changes

are observed (around +2 years). The transplant from a series to another together with

the removal of duplicates explains the low increase. The most relevant change is observed

in the distribution of the length of the series. This is illustrated in the histogram of figure

3.11 which highlights the shift towards larger values (thus longer series) confirmed by the
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increase (around +16%) of very long series (more than 60 years), see table 3.1. At the

same time stations with a very low amount of data slightly increase their number. These

series have donated most of their data to their neighbors.

Figure 3.11: Histogram and density function of the length of series before (OriHom) and

after (NewHomBlend) the blending and the homogenization of the blended series. Red (Blue)

items represent the original (final) dataset.

Table 3.1: Statistics regarding length of series. In the case of OriHom, only the longest series

for each station is considered.

OriHom NewHomBlend

TN TX TG TN TX TG

Number of series 3199 3201 2710 3110 3114 2673

Number of series 824 821 866 927 914 900

longer than 60 years

Average length 46.41 46.00 52.31 48.70 48.11 53.98
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3.4.5 Effects of modified blending on trends

The results presented in sections 3.4.1, 3.4.2 and 3.4.3 indicate the power of the coupled

blending and homogenization on individual series. Nonetheless, the correction of anoma-

lous trends and the pursuit of a stronger spatial consistency of the trends is one of the

primary tasks of the blending procedure.

Figure 3.12 compares the results for NewBlend and NewHomBlend. The trends displayed

in those plots are for the annual 90th percentile of TX and are calculated using Sen’s Slope

method [Sen, 1968], which is more robust than linear regression; the significance of these

trends is estimated using the Mann-Kendall test. Only the trends of those series with at

least 80 years of data between 1911 and 2010 are considered, in order to focus on long

term phenomena.

In the upper panel a lack of order is evident in the distribution of trends, with few apparent

outliers. For example, Girona (Spain) 0.70 ◦C/decade, Milan (Italy) -0.20 ◦C/decade

and Uccle (Belgium) -0.16 ◦C/decade. These is a clear sign of the presence of gross

inhomogeneities. At the same time, less evident anomalies alter the spatial consistency,

since the amplitude of such signals is comparable to those of the climatic trends. The

disappearance of the extremely high and extremely low trends and the more consistent

spatial patterns indicate the improved quality of the NewBlendHom dataset.

The map in the bottom panel of figure 3.12 shows the difference between the trends of

NewHomBlend and NewBlend for each station. The difference of two trends is considered

significant if the 95% confidence intervals of the two subtraction terms do not overlap.

The absence of any pattern in such a plot indicates that the modified blending approach

is neutral and does not favor an increase (decrease) of temperature trends over Europe,

which would correspond to a predominance of orange/red (blue/purple) circles in the

bottom panel of figure 3.12.

The median of the trends over Europe of NewBlend and NewHomBlend do not show

relevant changes (0.14◦C/decade to 0.15◦C/decade for the 50th percentile of the three

elements), i.e. when looking at the whole distribution, the differences in sign of the cor-

rections compensate each other. Nevertheless changes in trends of the individual series

are not negligible [Tuomenvirta, 2001]. The specific features of each area are filtered-out

by the summarizing calculation (as mean, median, percentiles) due to the heterogene-

ity [Donat and Alexander, 2012; Li et al., 2016] of the dataset and to its non uniform

density.
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Figure 3.12: Observed trends on 90th percentile of TX on the non-homogenized (NewBlend,

top-left) and on the homogenized (NewHomBlend, top-right) blended series. Bottom panel

represents the difference (hom-ori) of these trends for each station.
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3.4.6 Assessment of trends

The geographical patterns of temperature trends can now be assessed without being af-

fected by the identified and introduced inhomogeneities. The quantile matching method

provides different adjustments for the lower and the higher quantiles, and hence trends in

the 10th and 90th percentiles of temperature are evaluated in this section. The maps in

figure 3.13 show how the calculated trends vary over Europe. Winter (December, January

and February) minimum temperatures (left column) show large trends in eastern Europe

and in the Alpine region, especially for the lower percentiles. In the bottom panels changes

in the shape of the distribution have been inspected by subtracting trends of 90th and

10th percentiles from each other. For winter minimum temperature, a narrowing of the

probability distribution across the Eastern Mediterranean (Alps, Balkans, Ukraine) and

Baltic Area is observed. This might be related to a decrease in the snow coverage of the

areas during winter which disproportionally affects the cold tail of the distribution. At

the same time Atlantic Regions and Arctic Russia show a slight increase in the distribu-

tion width. In contrast, summer (June, July and August) maximum temperatures (right

column) have larger trends across southern Europe. While this increase has almost the

same amplitude over the Iberian Peninsula, the results for Central Europe and Northern

Italy are affected by steeper trends for the 90th percentile, which implies that the distri-

bution of summer maximum temperature is becoming wider in these latter areas. These

are the areas where the increase in intensity and duration of summer heat waves has had

the highest impact, resulting in a larger trend on the warm tail of the distribution. These

results are strongly related with the increase of frequency of extremely warm events, con-

firmed by several works on heat waves over the Mediterranean area [Della-Marta et al.,

2007; Simolo et al., 2010; Yosef et al., 2018].
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Figure 3.13: Maps of trends of NewHomblend of winter TN (left) and summer TX (right) for

10th and 90th percentiles (top and center row) for the 1911-2010 period. Bottom row shows the

difference between the trends for 90th and 10th percentiles: green (purple) represents narrowing

(broadening) of the distribution.
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3.5 Summary and Discussion

In this study the homogenization procedure for temperature series documented in Squintu

et al. [2019] is coupled with the blending procedure that is used operationally in the

ECA&D [ECA&D Project Team, 2012]. The aim of the blending is to produce series

that are as long and as complete as possible, facilitating climatological assessments. Long

and homogeneous temperature records are constructed and trends in these records are

compared against trends based on records that are constructed using the traditional

method.

The most common situation that results in inhomgeneities is the relocation of a station

from the city to the airport or to the countryside, which is expected to introduce a cooling

signal in the resulting blended series. Furthermore, several other factors might also affect

the series, including changes in the instruments and changes in the way the daily value is

determined. Another specific issue that has been addressed is the extension of the series

with synoptic messages. The inhomogeneity introduced when combining validated data

with these synoptic data [Van den Besselaar et al., 2012] is also corrected.

The approach is illustrated using examples of three locations in Europe. A trend assess-

ment comparing the new and the traditional method shows significant changes (variation

in trends on 90th percentile of annual TX above 5% or below -5%) in 22% of the stations

(figure 3.12).

With this new development, more reliable trend assessments on the extreme parts of the

temperature distribution can be made as unrealistic outliers are removed. One example

demonstrating this is the difference in trends in the 10th and 90th percentiles of seasonal

temperature records. Dramatic differences between Eastern (warm trends in winter TN)

and Western Europe (warm trends in summer TX) have been observed. In addition,

the difference between trends in the 90th and 10th percentile of seasonal temperature has

revealed a narrowing of winter TN distribution over South-East Europe and a widen-

ing of summer TX distribution over Central Europe. This highlights the importance of

conducting regional analyses of climate change impacts.

Considering the results of the modified blending procedure for temperature, additional

actions are needed in the future for its further development. One of the most ambitious

ideas is the use of measurements of other meteorological variables (such as solar radiation,

humidity or wind speed) to better interpret the differences among the stations that donate

data to the blended series. The availability of a dataset with such long and homogeneous

series will be a starting point for further studies on the characteristics of the warming

climate of Europe.

The new blended and homogenized series will be used as the basis for a future version

of E-OBS [Cornes et al., 2018] and should serve as a reliable benchmark for comparisons
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against computed trends in climate models.

All original data as provided by the ECA&D data providers, as well as the blended

homogenized data, will be made available where permission to do so is given.
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3.A Quantile Matching: brief description of the pro-

cedure

The quantile matching procedure is described in detail in Squintu et al. [2019], which

has been developed from previous work by Trewin [2013]. As discussed in the main

text the homogenization procedure applied to the NewBlend series takes as input the

OriHom series that have contributed to the creation of the blended series itself. The

latest ending series (excluding GTS) that belongs to the target station is called basis, B,

while all the other series (from the same and from neighbouring stations) will be referred

to as donating series. The procedure makes use of a set of OriHom series located in the

surrounding (within a coordinate box whose width varies according to latitude, see main

text).

Adjustments are calculated considering individually each donating series, Di. For each

series the first step is the definition of the reference list. At least three reference series,

having at least five years of overlap and a correlation of 0.75 or higher with the basis and

the considered donor, are required to proceed with the homogenization of the donated

data; in the case of high availability the most correlated reference series are selected. For

each reference Rj, R
B
j and RDi

j are defined as the portions of the reference which are in

overlap with, respectively, the basis and the donating series.

Adjustment calculation is performed for each month separately, including adjacent months

in order to reduce the noise. The absolute temperature measurements related to the

selected months of B ,Di ,R
B
j and RDi

j are sorted in ascending order. The 5th , 10th , ...,

90th , 95th quantiles are selected, generating 4 quantile sequences (bq,m,di,q,m,r
B
j,q,m,r

Di
j,q,m).
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The adjustments for Di, related to reference Rj for the month m and the quantile q are

then calculated as:

ai,j,q,m = (bq,m − di,q,m)−
(
rBj,q,m − rDi

j,q,m

)
(3.1)

This process is iterated for each reference j=1,...,r.

At this point each value (v) which has been donated by Di, knowing its month, is adjusted

looking, for each Rj , at the quantile (q̃j) it belongs to in the overlapping period between

Di and Rj. Thus r estimates of the adjusted value are obtained:

ṽj = v + aj,q̃j ,m (3.2)

The final adjusted value is then calculated taking the median of the estimations:

v = medianj(ṽj) (3.3)

This process is iterated for each donating series that contributes to the blended se-

ries.





Chapter 4

Comparison of homogenization

methods for daily temperature series

against an observation-based

benchmark dataset

Abstract

In this chapter four homogenization methods for daily temperatures (together with two

variants) have been tested and compared. This has been performed constructing a bench-

mark dataset, where segments of homogeneous series are replaced with simultaneous mea-

surements from neighbouring homogeneous series. This generates inhomogeneous series

(tests) whose homogeneous version (benchmarks) is known. Two benchmark datasets

are created: one based on series from the Czech Republic (with high quality, high sta-

tion density and a large number of reference series) and one more challenging (missing

segments, low station density and scarcity of references) with stations from all Europe.

The comparison has been performed with pre-defined metrics which check the statisti-

cal distance between the homogenized versions and the benchmark. Almost all methods

perform well on the near-ideal benchmark (maximum relative RMSE: 1.01), while on the

European dataset, the homogenization methods diverge and the rRMSE increases up to

1.87. Analyses of the percentages of non-adjusted inhomogeneous data (up to 39%) and

substantial differences in the homogenized trends helped identifying diverging procedural

characteristics of the methods. These results add new elements to the debate about ho-

mogenization methods for daily values and motivate the use of realistic and challenging

datasets in evaluating their robustness and flexibility.
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4.1 Introduction

Homogenization of climatic data is a fundamental step in any climatological analyses. Hu-

man intervention on measuring stations induces sharp or gradual changes to temperature

time series, affecting the reliability of the climatological analyses.

In the last decades several homogenization methods have been developed. While initially

the focus has been on the adjustment of annual, seasonal or monthly series (thus mainly

studying the changes on the first moments of the temperature distribution) in the last

two decades several studies have focused attention on daily values and on the effects on

extreme events, which have more effect on higher moments.

Homogenization procedures are divided into two phases: the break detection, that is

generally applied to series that are aggregated to the yearly, seasonal or monthly time

scale, and the adjustment calculations. The first step is not part of the focus of this paper.

The latter is suitable to be adapted to a daily resolution and has been subject of a vivid

debate. Several studies have stated that the use of metadata and the eventual subjective

assessments and decisions are preferable for a thorough homogenization [Venema et al.,

2013; Pérez-Zanón et al., 2015; Gubler et al., 2017; Delvaux et al., 2018]. Nevertheless

the size of certain datasets and the need for objectivity and reproducibility require the

use of completely automated processes [Venema et al., 2013]. The currently existing

automated approaches for the adjustment of daily series range from methods that are

based on the detection of a yearly cycle [Vincent et al., 2002], to the parametrization

of the distribution [Caussinus and Mestre, 2004; Della-Marta and Wanner, 2006; Mestre

et al., 2011], or to more heuristic approaches [Menne and Williams Jr, 2009; Štěpánek

et al., 2009; Trewin, 2013; Squintu et al., 2019]. The different mathematical and statistical

theories behind the methods and their various procedural aspects (e.g. separation between

break detection and adjustment calculation, number of iteration of the process, different

number of references, etc.) imply that the homogenized version of a inhomogeneous series

will be different depending on the method that is used to homogenize it.

The comparison of the efficiency and capability of these methods is then a powerful tool

for the detection of their strong and weak spots, contributing to the development of more

capable homogenization systems.

In several cases the comparison among methods has been performed as a validation for

newly introduced homogenization methods [Caussinus and Mestre, 2004; Menne and

Williams Jr, 2005; Della-Marta and Wanner, 2006; Mestre et al., 2011; Trewin, 2013;

Vincent et al., 2018]. On the other hand some outstanding studies have inspected the ef-

ficiency of automated, semi-automated and manual homogenization procedures [Venema

et al., 2013; Domonkos, 2013; Li et al., 2016], focusing on break detection skills and on

the performance on monthly data [Venema et al., 2013].
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Every comparison of homogenization methods must ensure transparency and objectivity.

The establishment of a benchmark dataset and the definition of clear metrics and evalu-

ation parameters, determined before the examination of the results, give a fundamental

contribute to this purpose.

The benchmark series are series that are meant to carry only the climatic signal, which can

be either real or simulated, and are used as truth to be reproduced by a homogenization

method. These records, which must be homogeneous and lack any quality issue, are

intentionally perturbed in order to create fictitious inhomogeneous test series that will be

the input of the evaluated homogenization procedures. The creation of the test series has

usually been implemented with the insertion in the benchmarks of missing values, outliers,

trends, noise and inhomogeneities [Menne and Williams Jr, 2005; Mestre et al., 2011;

Williams et al., 2012; Venema et al., 2013; Domonkos, 2013; Lindau and Venema, 2016].

The temporal frequency and amplitude used for the insertion of such events is chosen

following ad-hoc studies, in order to reproduce as much as possible realistic situations. An

evolution of this approach considers the creation of ensembles [Domonkos, 2011; Vincent

et al., 2018; Domonkos and Coll, 2017] of perturbed test series. This is done by varying

amplitude and frequency of the breaks, allowing to test the efficiency of homogenization

methods under particular conditions. Though such an approach is not able to reproduce

all the possible artificial signals that might be introduced to inhomogeneous series [Vincent

et al., 2018], giving more relevance to those signals that are easier to be studied and

recognized. Moreover the events and phenomena that can affect a recording station are

so various, complex and unexpected, that recent works have considered the opportunity

to rely only on validated data (instead of simulated ones) for the creation of the test

series [Venema et al., 2013; Gubler et al., 2017; Vincent et al., 2018]. This approach has

been recently developed by Trewin [2013] who elaborated the idea of joining records from

close-by stations. This method allows to test homogenization methods on real data (thus

carrying all the possible signals). Nevertheless with this choice there is no knowledge on

the truth (i.e. knowing the series as it was affected by only the climatic signal), since

the benchmark, even after a preliminary homogenization and quality check, will never be

completely free from artificial signals.

Whatever method is chosen for the creation of a benchmark dataset, the considered ho-

mogenization methods are applied to the test series with the aim to reproduce the bench-

marks. The distance between the homogenized versions and the benchmarks, evaluated

with transparent and clear metrics that must be defined in advance, indicates the per-

formance of the homogenization. The most common used metrics involve calculations

of relative RMSE (rRMSE) [Mestre et al., 2011; Venema et al., 2013; Domonkos, 2013;

Trewin, 2013; Domonkos and Coll, 2017; Gubler et al., 2017; Vincent et al., 2018], changes

in the trends of indices [Domonkos, 2013; Venema et al., 2013; Pérez-Zanón et al., 2015;

Domonkos and Coll, 2017] and countings of number of days within fixed absolute thresh-

olds around benchmark values (e.g. PD05, see section 4.2.4) [Trewin, 2013; Vincent
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et al., 2018]. Finally the calculation of network mean biases of the trends [Domonkos,

2013; Domonkos and Coll, 2017] are a good indication of systematic behaviours related

to certain homogenization methods and provide a good general estimation of the perfor-

mance. In the specific case of evaluation of homogenization methods of daily data it is

important to focus on the effect on trends of indices that are related to extreme values

[Trewin, 2013], such as 10p (10th percentile of a daily series calculated on annual basis)

or 90p (same but for the 90th percentile).

Benchmarking and evaluating methods helps a scientific community to develop and get

mature [Venema et al., 2013]. On one hand users which are performing climatological

studies are assisted in the evaluation of how the methods fit their needs. On the other

hand the researchers that develop homogenization software can improve the methods in-

cluding new features and facing statistical and procedural challenges with more awareness.

Furthermore this stimulates the debate on the comparison methods themselves, pushing

in the direction of the development of more reliable system for the creation of benchmark

datasets and more sophisticated metrics.

The aim of the present work is to evaluate the performances of the homogenization meth-

ods that have been considered and to highlight criticisms in their statistical and procedural

features. An important focus will be given to the construction of a reliable benchmark

and the description of clear metrics which are mandatory steps to assess solidity and

transparency of any study of this kind. This analysis is limited to methods that can be

applied to large datasets, thus completely automated. Several methods have been devel-

oped in the last decades ([Della-Marta and Wanner, 2006; Menne and Williams Jr, 2009;

Štěpánek et al., 2009; Wang et al., 2010; Mestre et al., 2011; Trewin, 2013; Domonkos and

Coll, 2017; Guijarro, 2018; Squintu et al., 2019]). In the framework of Copernicus Project

(C3S.311a-Lot4) only the four listed below have been tested. The involvement of more

methods is planned and will be implemented within future works.

4.1.1 Compared methods

The Quantile Matching, developed within the European Dataset Climate and Assessment

(ECA&D), calculates adjustments via the comparison of the distribution of temperatures

before and after a detected break. This happens taking the difference of similar quantiles

(5th , 10th , etc.) in the two periods, identifying the changes in the distribution in the

two target segments. The same comparison is performed on contemporary segments in

a set of reference series, identifying which part of the difference is due to the climatic

background. The obtained adjustment estimates depend on the quantile, on the month

and on the corresponding reference series, their median value is then applied to the daily

values. Homogeneous references are chosen among the highest-correlated surrounding

homogeneous series, with threshold on distance and correlation. A series is corrected if



80 Comparison of homogenization methods against a benchmark dataset

at least 3 homogeneous reference series with at least 5 years of overlap are available. See

[Squintu et al., 2019] for more details.

The DAP (Distribution Adjusted by Percentile) method [Štěpánek et al., 2009, 2013]

works as well on empirical distributions. The process calculates the day-by-day difference

between candidate and reference series (obtained as average of 5 highly correlated neigh-

bouring series), such values are binned according to the percentiles of the candidate series.

This is performed separately for the portions of the series before and after the break and

iterated for each month individually, including adjacent months. Finally the differences of

the results before and after the break are calculated and smoothed by a low-pass filter. For

each datum before the break its quantile is determined via interpolation of the percentiles

and the corresponding adjusting factor is then applied. The tails of the distribution re-

ceive a special treatment: if the correlation after correction does not improve by at least

0.05% (considering each month individually) the adjustment is not applied and the origi-

nal data are preserved. Note that even if both QM and DAP are based on quantiles, the

first one manages the reference series with a ”pairwise comparison” approach [Menne and

Williams Jr, 2009; Trewin, 2013] while the latter in this work calculates the average of

the selected references, coherently with all the previous applications of DAP performed

by GCRI. Finally there are several different procedural differences, as the low-pass filter

and the correlation improvement threshold used by DAP.

The third tested method was developed by [Della-Marta and Wanner, 2006] and is widely

known as High Order Moments (HOM). This works comparing the candidate with an

overlapping reference series. A model is developed comparing candidate and reference

after the break. The same model, applied to the reference segment before the break, is

used to create a predicted series. The values of difference between observed and predicted

are binned in deciles according to the quantile of the observed series. The values related

to each decile are fitted with a local estimated scatterplot smoothing (LOESS) function,

that determines a smooth set of adjustments depending on the quantile of the candidate

series.

Finally SPLIDHOM [Mestre et al., 2011] considers as well only one highly-correlated

reference series, which can also be inhomogeneous. Regressions based on cubic splines are

calculated in order to describe the relationship between the candidate and the reference

in the two overlapping periods before and after the break. The difference of these two

models allows to determine the adjustments basing on the values of the reference before

the break. The values of this last segment can be obtained from the candidate values

with the inversion of the regression introduced above. Thus, starting from the value of

the candidate before the break, the adjustment can be calculated knowing the regression

relationships between the candidate itself and a reference series.

This last method, differently from the previous ones, doesn’t make use of quantile bins,

but it completely relies on regression methods. On the other hand, while HOM couples
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regression and quantile binning, Quantile Matching and DAP are solely based on empirical

features.

HOM and SPLIDHOM have been tested twice, the first time with their original config-

uration and the second time using procedural approaches similar to DAP. For example

the application of a low-pass filter with coefficients retrieved from a Gaussian distribution

(more reliable than a moving average [Mitchell et al., 1966]) in order to smooth the ad-

justments and a threshold on the improvement of correlation have been applied. leaving

unchanged those data that don’t fulfill such constraint. Thus these variants keep the

statistical aspects of HOM and SPLIDHOM, coupling them with the more conservative

approaches typical of DAP.

4.2 Data & Method

4.2.1 Construction of a benchmark dataset

A benchmark dataset is a fundamental tool in the comparison of homogenization methods.

It is based on so-called benchmark series (benchmarks), which must be homogeneous and

lack serious quality issues. In this work the data of the benchmarks are partially replaced

by homogeneous segments of data coming from surrounding series (perturbers), following

Trewin [2013]. Such intervention generates test series (tests), which are inhomogeneous,

but composed of homogeneous segments, and need to be adjusted. The homogenization of

such test series, adjusting the perturbing segments, is performed by the selected methods

with the help of a set of homogeneous reference series (references), whose density and

data availability can change. The different homogenized versions are compared through

established metrics.

The challenges of a benchmark dataset are in the inhomogeneities themselves, which can

have various amplitudes, structure and timing. At the same time the data availability and

the station density has a great influence on the performance of homogenization [Caussinus

and Mestre, 2004; Domonkos, 2013; Gubler et al., 2017]. In this study two different

benchmark dataset have been created for these reasons. The first one consists of a very

dense dataset in the Czech Republic where 20 benchmark series are accompanied by

more than 200 references. Here the methods can easily work and their results can be

compared in favourable conditions. The second one aims at testing the capability of the

homogenization methods to work in difficult conditions where the number of homogeneous

reference series is low. This implies that test series are required to be used as reference

for each others homogenization and that in some cases the homogenization is impossible

due to data scarcity. In the following sections the two benchmark datasets are explained

in detail.
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4.2.2 The Czech benchmark dataset

The Czech dataset aims at testing the methods on a nearly-ideal situation where station

density and series continuity is high and where the group of series to be adjusted represent

a very small percentage of the whole dataset (less than 10%), while the remainder includes

homogeneous series.

In such favourable conditions the statistical features of the homogenization methods can

be compared independently from any thresholds on data availability and data quality that

are used in the software scripting and reflect the views of the developer of the minimal

conditions for which homogenization is meaningful.

The benchmark series (green dots in figure 4.1) span the 1970-1999 period and have

been perturbed in the first 15 years with data coming from homogeneous neighbouring

stations (black dots), so that the breaks are all set to the same date (1st of January

1985). More than 200 homogeneous reference series (purple dots) are provided to help the

homogenization. The used series are all provided by CHMI and have been preliminarily

checked in their quality and in their homogeneity with Proclim DB software [Štěpánek

et al., 2009, 2013].

Figure 4.1: Geographical distribution of benchmark and test series (green dots), perturbing

series (black) and reference homogeneous series (purple dots). Benchmark series have same

location for minimum and maximum temperatures.
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4.2.3 The European benchmark datasets

The European benchmark dataset is composed of original series extracted from the Euro-

pean Climate and Assessment Dataset (ECA&D, [Klein Tank et al., 2002]) and are based

on actual observations that did not undergo homogeneity adjustments. Benchmarks are

chosen among the set of already homogeneous series of the ECA&D. Their homogeneity

is tested through the agreement of three tests (Prodige [Caussinus and Mestre, 2004],

RHtest [Wang et al., 2007] and GAHMDI [Toreti et al., 2012]) according to the method

documented by Kuglitsch et al. [2012] and Squintu et al. [2019]. All the series which

have been assessed as homogeneous in the 1970-1999 period are considered to provide the

benchmarks. For each of the potential benchmarks the neighbourhood (radius of 20 km

and maximum elevation difference of 50 meters) is inspected in order to find series whose

homogeneous segments will be used to perturb the benchmarks. A nearby series with at

least 6 years of homogeneous data between 1970 and 1993 is found become eligible as a

perturbing series (perturber). All homogenization procedures adjust the earlier part of

the series consistent to their most recent part [Aguilar et al., 2003]. Hence the last six

years of the considered period (1994-1999) are preserved for the data coming from the

benchmark and will be used as basis for the calculation of the adjustments. The potential

perturbing segments are checked to be sure they are not total or partial duplicates of the

benchmarks, analyzing correlation and absolute mean of daily differences. If no neigh-

bours following such constraints are found, the potential benchmark is discarded. This

process is performed separately for minimum (TN) and maximum (TX) temperatures.

In order to generate a dataset of moderate size, only 50 TN and TX benchmark series

(among circa 70 series per each element) are chosen. This selection has given priority to

those stations that provide series to both datasets (more or less 35). The remaining ones

are chosen in order to approximately reproduce the same geographical distribution for

both variables, with few interesting exceptions (Belarus for TN, Serbia for TX, see figure

4.2).

Once benchmark and its perturbers are identified, the test series are created, replacing the

data of the benchmark with the data of the perturber. In case only one perturber is related

to a certain benchmark, the whole (homogeneous) perturbing segment is used to replace

the benchmark data. Thus the change point will be at the end of the perturbing segment.

If more perturbers for the same benchmark are found, these have been combined in order

to donate segments of at least 6 years of data. In case the identified perturbers are homo-

geneous all through the whole period, the change point has been set on the 1st January of

1985. This has allowed to create a sub-set of test series with simultaneous breaks, which

is a great challenge for the homogenizers in current times [Venema et al., 2013]. Figure

4.3 illustrates the building of the test dataset. The generated change points (breaks),

whose distribution can be observed in figure 4.4, have been transcribed, together with

coordinates and elevations of the benchmarks and their corresponding perturbers.
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Figure 4.2: Geographical distribution of benchmark and test series (green dots) and reference

homogeneous series (purple dots) for minimum (top) and maximum (bottom) temperatures.

The set of 50 test series for each variable has been integrated with 40 homogeneous series,

chosen among the discarded potential benchmarks. The selection has been performed

on a geographical uniform pattern. Since the percentage of homogeneous series observed

in the ECA&D dataset is 35%, the goal has initially been to reproduce such proportion
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Figure 4.3: Schematic diagram describing how a test series is generated. Each of the per-

turbing segments is required to be at least 6 years long and after 1994 only benchmark data is

used.

between homogeneous and non-homogeneous series. This choice would have caused a lack

of series in some areas (such as Spain, UK, France) and would have lead to the possibility

of not being able to homogenize them at all. For this reason the references have been

selected so that each benchmark has at least 3 homogeneous references in its surrounding

area (see figure 4.2).

Figure 4.4: Distribution of inserted breaks in the European Benchmark dataset, which derives

from data availability and automatic combinations. The peak in 1985 is the result of the

adding of simultaneous breaks (see text). No breaks are allowed before January 1976 and after

December 1993 (dashed vertical lines), since each segment in the test must be at least 6 years

long.
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Figure 4.5 shows the distribution of daily differences for each pair of test and corresponding

benchmark for the Czech and European tests, and for both daily maximum and mimimum

temperature. The amplitude of the breaks shows a strong variation, as demonstrated

by the interquartile range and the 5th and 95th quantiles. Although the centres of the

distribution tend to be more in the negative half of the plot, for almost all the series

the distributions of the breaks cover negative and positive values. This indicates the

need of particular care in the homogenization process and confirms the complexity of

inhomogeneities.

Figure 4.5: Distributions, series per series, of the daily differences between test series and

corresponding benchmark series. Thick line indicates interquartile range, while dotted lines

stand for the tails of the distribution up (down) to 95th (5th ) quantile.
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4.2.4 Definition of metrics

A reliable comparison of homogenization methods requires a set of metrics, defined in

advance. The most commonly used metric is the relative RMSE (rRMSE) ([Mestre et al.,

2011; Venema et al., 2013; Domonkos, 2013; Trewin, 2013; Vincent et al., 2018; Domonkos

and Coll, 2017]) which allows to measure the distance between the homogenized and the

benchmark version of a series. Then an average of the results on all the benchmark series

and an analysis of their distribution allow to compare all the tested methods. A powerful

metric, developed specifically for daily series, is the PD05: number of days where the

day-by-day difference between the homogenized version and the benchmark is lower than

0.5 ◦C[Trewin, 2013; Vincent et al., 2018]. This is useful in defining a day by day accuracy

of the homogenization, even though it may be positively biased in cases of breaks with

low magnitude.

Even though these metrics give a general overview of the power of the tested methods,

they lack the information about variability of the series and about the effect of the ho-

mogenization methods on extreme values and interannual variance, which are of great

importance [Trewin, 2013]. The trends assessment, inspecting how the homogenized ver-

sions get close to the benchmark trend, are one of the metrics that allow a thorough

comparison of the methods [Domonkos, 2013; Venema et al., 2013; Pérez-Zanón et al.,

2015; Domonkos and Coll, 2017]. In this paper trends on 10th , annual mean and 90th

percentile are compared.

The distance of the obtained trends from the one of the benchmak is measured with a

homogenization indicator (hom ind) defined by the following expression:

hom ind = 1− hom− ben

tst− ben
(4.1)

where hom is the homogenized value (which can also be daily value, annual mean, annual

percentile, etc.), ben is the value related to the benchmark (the goal of the process) and

tst is the value related to the test series (the starting point).

Such indicator takes the following values:

• 0 when the adjustments, if any, have no effect on the series;

• 1 when the adjustment perfectly reproduce the benchmark value;

• above 1 when the series is over-adjusted;

• between 0 and 1 when the series is partially adjusted;

• negative values when the series is adjusted in the wrong direction;
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This metric allows an estimation of the accuracy of the homogenization and is more

powerful than a simple difference between homogenized and benchmark values that would

be difficult to analyze in the general context, due to the specific features of each benchmark

series. Nevertheless when the difference between tst and ben is close to zero, singularities

appear, limiting the significance of the indicator in such eventualities.

In the case of the European benchmark dataset the scarcity of data may cause that one

or more of the tested methods does not apply adjustments to the test series (or part of

it). For this reason a preliminary evaluation of the number of non effective adjustments

is made. The fraction of non-adjusted data is reported as ratio between the number of

daily data where the difference between test value and the homogenized value is zero and

the number of daily data that has to be adjusted (i.e. parts of the test series that belong

to the perturbers). In this work the homogenization of a test series is considered fruitless

when the percentage of non-adjusted data is above 80%. Such threshold is high enough to

avoid considering fruitless series with a high amount of data whose calculated adjustment

is actually zero or series with high percentage of missing data.

4.3 Results

4.3.1 Czech dataset

The introduced metrics have been used to evaluate the performance of the homogenization

methods on the Czech dataset. As expected, due to the good quality of the dataset, all

the methods managed to homogenize all the series in all of their parts. In the following

section the colour code displayed in table 4.1 is used.

Table 4.1: Acronym, references and colours associated to the homogenization methods.

Colours are used for figures from 4.6 onwards.

method reference acronym colour

Test series see section 4.2.1 inh black

(inhomogeneous)

Quantile Matching [Squintu et al., 2019] QM red

DAP [Štěpánek et al., 2009] DAP blue

HOM [Della-Marta and Wanner, 2006] HOMHOM yellow

SPLIDHOM [Mestre et al., 2011] SPLIDHOM green

HOM see section 4.1.1 HOMDAP purple

with ’DAP’ parameters

SPLIDHOM see section 4.1.1 SPLIDHOMDAP orange

with ’DAP’ parameters
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Table 4.2: Results of methods comparison on the Czech dataset. Underlined values are

discussed in the text.

dataset(CZ) mean of mean of mean of hom ind of trends of

RMSE [◦C] PD05[%] annmean 10p 90p

TN TX TN TX TN TX TN TX TN TX

Test Series 1.31 1.17 39.01 37.44

Quantile Matching 0.96 0.73 52.79 65.48 1.37 1.08 0.71 0.81 1.09 0.63

DAP 0.96 0.74 51.74 64.89 1.03 1.12 0.83 0.70 0.90 0.62

HOM 0.99 1.03 50.59 62.82 0.86 1.01 0.77 0.68 0.73 0.42

SPLIDHOM 0.97 0.74 51.50 64.76 0.89 1.12 0.86 0.70 0.80 0.63

HOM (DAP) 0.98 0.74 50.86 64.38 0.99 1.10 0.59 0.51 0.79 0.47

SPLIDHOM (DAP) 0.96 0.74 51.82 64.93 1.09 1.12 0.88 0.71 0.81 0.48

First inspection is performed with the rRMSE, taking the benchmark version as reference,

here lowest values indicate the best performances.

Figure 4.6: Histograms and density plots of rRMSE for the comparison of methods on the

Czech dataset.

In figure 4.6 all the methods show similar behaviours except HOM (yellow line). The

deviation of this method in comparison to other methods is confirmed in table 4.2, where

HOM shows a high average of rRMSE for the homogenization of TX. The high value

of mean rRMSE is due to the performance on two series, one of these can be observed

in figure 4.7. Here it is clear how the results of HOM do not correctly reproduce the

annual mean of the benchmark (grey thick line). The anomalous behaviour of HOM is

confirmed by plotting the homogenization indicator (equation 4.1) applied to the yearly

values (bottom panel) where all the methods (except QM) show to be over-adjusting

the series (hom ind>1), while HOM under-adjusts it and in some years the annual mean
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is adjusted in the wrong direction (negative hom ind). In this example the very similar

values of the test and the benchmark in the first two years reveal a weak spot of such tool,

easily affected by singularities. Aspect that will be treated in the concluding remarks.

Finally, when checking the trends (which are presented in the legend), HOM performs

better than the other methods, being the only one not over-correcting the trends and

being the second closest to the benchmark value.

Figure 4.7: Comparison of homogenized versions of the benchmark series of Semčice, Czech

Republic. Color code is set according to table 4.1, black items represents the test series, grey

items stand for the value of the benchmark. Top panel shows annual means (points) with

running mean (lines), the more the homogenized values get close to the grey line, the better

the homogenization has been. This distance is better displayed in the bottom panel, applying

the homogenization indicator, explained in equation 4.1, to each yearly value.

Table 4.2 also indicates that the performance on PD05 is approximately the same among

the six methods. At the same time the last six columns, which display the hom ind

applied to the trends, show only a general overestimation of the trends on annual mean

of TX. For the annual mean of TN an even distribution around the ideal value (1) is

found with the exception of the anomalous value of QM (1.37). The homogenization of

the extreme values shows underestimation of almost all the method and all indices. This

is observed especially for the 90th percentile of TX with values ranging between 0.42 and

0.63. Furthermore the performance on the trends of the 10th percentile by HOMDAP



4.3 Results 91

appears to be very low for both TN and TX. Figure 4.8 shows the distributions that

generate these averages. The higher value for QM is due to a distribution that peaks at

values larger than 1, indicating a good performance with a slight overestimation. On the

other side, the lower averages observed for the other methods are related to a more spread

distribution and a higher presence of outliers, which are plotted in single columns out of

the vertical solid lines.

A more exhaustive description of the performance of the methods in reproducing the

trends on average and extreme indices is shown in figure 4.9. Here the evaluation has

been made via scatter plots that allow to compare at the same time the hom ind results

about trends of extreme indices and on the mean values.

Left (Right) panel shows the comparison of hom ind of trends of annual mean vs 10th

(90th ) of minimum (maximum) temperatures: all methods show a scattered behaviour.

Nevertheless, the lines (contours of half height of the two-dimensional probability density

function) help identifying that all the methods homogenize generally well, since they are

centred around the black diamond (coordinates (1,1), corresponding to an ideal homoge-

nization on both indices). Thus the anomalous behaviours mentioned above are isolated

and not systematic.

In both cases the distribution is more spread along the x axis, indicating a lower perfor-

mance in the homogenization of extreme values. At the same time there is less ordered

behaviour in the contours of the distributions in the case of minimum temperature which

is probably due to the more local characteristics of such variable.

Figure 4.8: Histograms and density plots of hom ind applied to the trends of the 90th per-

centile (90p) of minimum temperature series (TN). Vertical lines define the central area of the

histogram, that needs smaller bins in order to better describe the distribution. Values out of

such limits are plotted in single columns on the external areas, helping identifying outliers.
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Figure 4.9: Scatter plots with contours of half height of density distributions of homogeniza-

tion indicator calculated on trends on various indices. Left: TN - hom ind on trends of 10th

percentile vs. annual mean. Right: TX - hom ind on trends of 90th percentile vs. annual

mean. N.b. values which lay out of the graph domain are plotted on the boundaries. Colour

code follows table 4.1.
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Table 4.3: Table reporting the amount of non-adjusted series and non-adjusted data.

dataset(Euro) number of series with more mean of percentage

than 80% of non-adjusted data of non-adjusted data [%]

TN TX TN TX

Quantile Matching 2 3 17.43 20.73

DAP 3 1 34.22 39.69

HOM 0 0 33.43 27.27

SPLIDHOM 0 0 13.27 17.86

HOM(DAP) 3 3 36.22 40.60

SPLIDHOM(DAP) 4 2 35.18 40.79

4.3.2 European dataset

The scarce geographical density of test and reference series of the European benchmark

dataset and the presence of multiple and non-simultaneous breakpoints make that the

availability and length of homogeneous sub-series that could be used for the homogeniza-

tion process are limited. These challenging conditions make that some methods abstain

from homogenizing some tests and apply no adjustments on portions of the series. Table

4.3 reports the number of series with a fruitless homogenization (see section 4.2.4 for the

definition) indicating an average rate of 1 to 4 failures (out of the 50 test series) for all

methods but HOM and SPLIDHOM. These latter two methods adjust a sizeable part of

all test series, despite the scarcity of references. Figure 4.10 shows the areas where the

methods fail more often: regions with low density (Spain, Italy) and occasionally those

on the edges of the denser areas.

Though, while the number of failed series are similar, significant differences are observed

on the average of non-adjusted data. The mean of the percentage of non-adjusted data

(last two columns of table 4.3) show different behaviours. In the histograms of figure

4.11 QM, SPLIDHOM and HOM present relative narrow distribution, whose low peak

values indicate successful performances. Nevertheless QM presents 5 series with 100% of

non-adjusted and the high value of the peak of HOM indicates the possibility of issues

when homogenizing some of the series. At the same time the other methods show spread

distributions indicating high percentage of sparsely non-adjusted data, whose features

will be inspected further in the text. This preliminary analysis has allowed to understand

how the methods approach the low density of stations, since some methods (as QM)

leave the most problematic series unchanged, while others (ProclimBD, HOMDAP and

SPLIDHOMDAP) manage to homogenize portions of their daily data.

rRMSE, PD05 and accuracy in the reproduction of the trends have been then evaluated

on the homogenized versions, including those series (and those portions of the series)

that haven’t been adjusted. Table 4.4 highlights an evident lower performance of the
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Figure 4.10: Series whose failing rate is above 80%. Color code follows table 4.1.Sizes of the

circles change for graphical purposes and don’t represent different magnitudes.

tested methods compared to the case of the Czech dataset (table 4.2), which can be

Figure 4.11: Histograms and density plots representing the percentage of non-adjusted data

for each series. Colour code follows table 4.1.
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expected. The reduction of rRMSE after the application of the homogenization methods

has considerably a lower magnitude and, at the same time, the PD05 shows a lower

increase of percentages. While almost all histograms and pdf show a good improvement

(see figure 4.12) compared to the inhomogeneous series, the HOM histogram (yellow)

presents a clearly anomalous behaviour, which was anticipated by high averages of table

4.4 and repeats what was already observed in the context of the Czech dataset.

The comparison of the obtained trends with the ones of the corresponding benchmark has

revealed a high difficulty in the reproduction of the original trends within the European

dataset. While the averages of indicators related to HOM versions are almost always

outside of the 0.5-1.5 range (which indicates 50% distance from the benchmark trend), all

Table 4.4: Results of methods comparison on the European dataset. Relevant negative results

are highlighted in bold.

dataset(Euro) mean of mean of mean of hom ind of trends of

rRMSE [◦C] PD05[%] annmean 10p 90p

TN TX TN TX TN TX TN TX TN TX

Test Series 1.60 1.28 39.51 46.37

Quantile Matching 1.25 1.16 43.72 50.41 0.65 0.82 1.01 0.33 0.78 1.23

DAP 1.34 1.21 42.10 48.43 0.55 0.56 0.86 0.91 0.36 1.56

HOM 2.00 1.74 38.20 44.80 1.46 0.31 0.80 1.92 2.00 3.14

SPLIDHOM 1.27 1.21 42.77 47.50 0.87 0.59 0.95 0.79 0.30 1.49

HOM (DAP) 1.42 1.24 40.68 47.85 0.58 0.37 0.63 0.65 0.29 1.63

SPLIDHOM (DAP) 1.35 1.22 41.93 48.51 0.57 0.49 0.69 0.80 0.32 1.51

Figure 4.12: Histograms and density plots of rRMSE (TN & TX together) for the compar-

ison of methods on the European dataset. Lines represent corresponding probability density

functions.
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the other methods present similar behaviours, with few exceptions. Worst performances

are observed on the trends of the warm extremes (90th percentile). The underestimation

of the trends for TN (of all calculated indices) are related to a large presence of very

negative results (related to adjustments in the wrong direction) as shown in the top panel

of figure 4.13, where a high number of series lie on the left of the boundaries of the

histogram. The opposite happens for trends of 90p for TX, where the overestimation is

due to a high number of overcorrected series, which lie on the right of the boundaries of

the histogram (bottom panel of figure 4.13). In both cases the very high and very low

values of the homogenization indicator are related to singularities when the amplitude of

the inhomogeneity was very low (i.e. below 0.5 ◦C). Such a situation implies a low value

in the denominator of equation 4.1, thus large absolute value of the indicator.

Figure 4.13: Histograms and density plots of hom ind calculated on trends of 90p of TN

(top) and TX(bottom). Same graphical features as figure 4.8

An example of such fact is displayed in figure 4.14, where the low magnitude of the breaks

is identified but all methods but HOM that over-corrects the first portion of the series

(large positive values of the homogenization indicator on yearly 90p of TX). This has a
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consequence on the calculation of hom ind on the trend of HOM, which in this case has

a value of 6, indicating a correction 6 times bigger than the one needed to reproduce the

trend of the benchmark.

Figure 4.14: Effects of the homogenization methods on the 90p of TX of Hamburg. Same

structure and colour code as figure 4.7. N.b. Good accordance among the results imply that

some of the lines are overlapped

Special attention has to be given to the particular shape of the distribution of DAP,

HOMDAP and SPLIDHOMDAP in the bottom panel of figure 4.13. This is related to

the conservative philosophy of DAP, which is to preserve original data rather than risking

wrong adjustments. Consequence of this choice is the high percentage of non-adjusted

data observed in figure 4.11. The peak close to 0, which is related to trends which are

not altered during the homogenization, indicates a high number of non-changed data in

the warmest records of these series. The same behaviour is found in the scatter-plots of

the right panel of figure 4.15, where these three methods present a bimodal structure,

with one of the two maxima that tends to get close to the (0,0) point, which represents

uncorrected data. This scatter-plot, together with the one related to TN temperatures

(left panel), displays a very scattered distribution as well as broader and less defined

densities, reflecting the difficulty in homogenizing such dataset. Nevertheless QM, and

especially SPLIDHOM, appear to perform well, moving the peak in the distribution near

(1,1).
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Figure 4.15: Same as figure 4.9 but for the European dataset.
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4.4 Discussion

The higher density and correlations of the Czech dataset (see table 4.5) makes that almost

all the methods perform well, homogenizing the whole series with similar results.

Table 4.5: Average distance and correlation in the two datasets. Please note that the Czech

dataset has an homogeneous distribution of the stations, while the density of stations in the

European varies considerably among the regions.

Czech European

TN TX TN TX

Average distance [km] 40.4 38.3 198.0 220.1

Average correlation 0.896 0.928 0.629 0.615

Nevertheless, even under favourable conditions a method like HOM has been affected by

statistical issues. The causes of this might be inspected in the software of this method,

nevertheless such research is not in the scope of the present work.

On the other side, the comparison of the methods on a more challenging dataset has

helped to test the robustness of the procedures and has revealed different behaviors.

The evaluation of the percentages of unchanged data has highlighted how approaches

in the application of the adjustments vary among the considered methods. Those that

use DAP settings (DAP, HOMDAP and SPLIDHOMDAP) require an improvement in

the candidate-reference correlation (at least 0.05) in order to allow the adjustment of a

daily datum, preferring to leave the data unchanged when such constraint is not fulfilled.

This is evident in figures 4.11,4.13 and 4.15 and highlights how procedural choices lead

to similar results even when statistical properties (see section 4.1.1) of the methods are

considerably different. The aforementioned choices are the effect of a more conservative

strategy that can be adopted by homogenizers. This aims at giving (when in doubt)

priority to original data over homogenized ones, which can be required for particular

studies or projects.

The spread distribution of percentage of non-adjusted data in the series observed in figure

4.11 is the most evident effect of the conservative constraints. Though, this is considerably

different from the distribution observed for example in the case of quantile matching. This

last method implements its conservative strategy with a different approach. It evaluates

the possibility of applying adjustments considering the whole candidate and reference

series: when correlation is too low or the overlapping period is too short, the whole series

is left unchanged, explaining the peak of unchanged data at 100%.

Finally, while the non-adjustment criteria of QM affect the whole distribution of daily

data, figures 4.13 and 4.15 have shown that the unchanged data related to the methods
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with DAP parameters are more concentrated around the warm extremes. This is probably

due to a lower correlation gain when homogenizing summer extremes.

4.5 Summary and Conclusions

A comparison between homogenization methods (Quantile Matching [Trewin, 2013;

Squintu et al., 2019], DAP [Štěpánek et al., 2009], HOM [Della-Marta and Wanner, 2006]

and SPLIDHOM [Mestre et al., 2011]) has been performed on two benchmark datasets.

The two dataset (Czech Republic, Europe) are built with analogous methods, replacing

data of homogeneous series (benchmarks) with data coming from homogeneous segments

of neighbouring series, thus generating non-homogeneous series to be adjusted (tests).

While the Czech dataset has high quality and station density, in the European dataset

stations are sparse and homogeneous reference series represent a minority (44% of the

set, down to 20% in some areas). The performance of the homogenized versions (can-

didates) has been evaluated using metrics such as the rRMSE ( RMSE of the difference

series between candidate and corresponding benchmark), PD05 (percentage of values in

the difference series below 0.5◦C). These metrics have revealed a good performance of

all the methods but HOM, which presents a high number of outliers in both datasets.

Trends on indices such the 10th and 90th percentile (together with the annual mean) have

then been tested. This has allowed to test performance of the homogenization methods

in reproducing extreme values and related indices. Such comparison has been operated

via the introduction of a homogenization indicator (hom ind) that can be applied to

any indices or measured values. This determines the goodness of the homogenization

on a clear common scale: wrong adjustment (< 0), no adjustment (0), partial adjust-

ment (between 0 and 1), ideal adjustment (1) and overcorrection (> 1). Plotting results

of hom ind helps identifying anomalous behaviours and systematic biases. In particu-

lar it has been observed that, while in the Czech dataset all methods have performed

well with minor exceptions, the more challenging European dataset has revealed sev-

eral criticisms, among all in the homogenization of warm extremes for three methods

(DAP,HOMDAP,SPLIDHOMDAP).

Though, the structure of the equation that defines hom ind has shown to be vulnerable

in case of low difference between test and benchmark values. These situations can lead to

singularities (i.e. very large values of hom ind) which in reality are related to reasonable

values. At the same time conditions of no difference between test and benchmark are

affected by a very low signal-to-noise ration. This means that the homogenization process

presents high values of uncertainty, making the result hard to be defined in terms of

quality. Thus a more sophisticated version of the equation (4.1) may be developed

in order to avoid this issue, since inhomogeneities with low magnitude are important

challenges of benchmark (and real) datasets and any homogenization method needs to be
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able to identify and account for them. Further changes will also be needed in the technique

for the construction of benchmark datasets, for example widening the size of the datasets,

extending the covered time interval, inserting plateau breaks (as suggested by Domonkos

and Coll [2017]) or giving more relevance to mountain areas where a minimal change

of altitude may bring to large inhomogeneities. Nevertheless the use of two different

benchmark datasets, as done here, has shown to be a powerful tool in order to perform a

complete analysis of the capabilities of the methods.

In this study the methods are compared in their original version, without further elements

but those described in their original papers. Though it is clear that the different approach

in the selection of reference series affects the performance of the methods themselves. In

particular the use of a single or a set of references (real record or average of surrounding

series) make the methods respond differently to the statistical features of the references.

For this reason a further study would be needed with the aim of comparing the homog-

enization methods in similar conditions of reference selection, analyzing how they would

behave in all the possible situations (i.e. set of references, average of references or single

reference). Nevertheless this work has allowed a comparison under different aspects of the

selected methods and has given clear indications about their performances.

It’s fundamental to stress that the selection of the best homogenization method is not in

the goals of this work: such choice depends on the needs of each individual user. Studies

like this aim at stimulating the debate on the field of homogenization of temperatures,

stressing criticisms of some methods and indicating to future programmers which aspects

(e.g. management of low density of stations, importance of extreme values) should be

better developed to reach an always higher quality of homogenization on a daily basis.

For example particular care should be given in managing the adjustment of extreme val-

ues which have been proven to need a different treatment with respect to average values.

On the other hand homogenization methods must be able to account for the most various

geographical patterns. This implies that the procedure is required to be flexible enough

to adapt to conditions of areas with very high and very low data quality and correlation

between series. At the same time, users should choose the most suitable homogenization

method evaluating these aspects, considering especially the station density and the statis-

tical properties of the climate of the interested area (i.e. mountain, plain, coastal climates,

etc.). For these reasons the belief of the benefit [Venema et al., 2013] that publication of

studies about the comparison of homogenization methods have on the field has become

stronger.

Finally a short consideration is needed about the specific case of the European Climate As-

sessment and Dataset. This includes areas with extreme high density (Germany, Sweden,

etc.) and areas with low density (Northern Africa, Middle East, parts of Mediterranean

Europe, etc.), thus a method that is able to face both data scarce as data rich conditions

is needed. Quantile Matching was applied earlier to the whole ECA&D dataset [Squintu
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et al., 2019] and the good performance of this method on both the Czech dataset and the

European dataset, characterizing data-rich and data-scarce conditions respectively, and

the similarity in the results to a widely known and recognized method as SPLIDHOM,

gives confidence in the homogenization of ECA&D using Quantile Matching.
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Chapter 5

Evaluation of trends in extreme

temperatures simulated by

HighResMIP models across

Europe

Abstract

Simulation of the climate of the past day by day is an important tool for the validation

of of climate models. The comparison with observed daily values allows to assess their

reliability and the soundness of their projections on the climate of the future. Frequency

and amplitude of extreme events are fundamental aspects that climate simulations need

to reproduce. These have high impacts on economy and society. The ability of simulat-

ing them will allow policy makers in taking better measures to face the climate changes.

In this work six models developed within the High Resolution Model Intercomparison

Project are compared over Europe with the homogenized version of the E-OBS gridded

dataset. This is done first comparing averages, extremes and trends of the simulated sum-

mer maximum temperature and winter minimum temperatures with the observed ones.

Extreme values have been analyzed making use of indices based on the exceedances of

percentile-based thresholds. Winter minimum temperatures are generally underestimated

by models in their averages (down to -4◦C of difference over Italy and Norway) while

simulated trends in averages and extreme values are found to be too warm on western

Europe and too cold on eastern Europe (e.g. up to a difference of -4% per decade on the

number of Cold Nights over Spain). On the other side the models tend to underestimate

summer maximum temperatures averages in Northern Europe and overestimate them in

the Mediterranean areas (up to +5◦C over the Balkans). The simulated trends are too
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warm on the North West part and too cold on the South East part of Europe (down to

-3%/dec. on the number of Warm Days over Italy and Western B alkans). These results

corroborate the findings of previous studies [Min et al., 2013; Sillmann et al., 2013] about

the underestimation of the warming trends of summer temperatures in Southern Europe,

where these are more intense and have more impacts. A comparison of the high resolu-

tion models with the corresponding version in CMIP5 has been performed comparing the

absolute biases of extreme values trends. This has shown a slight improvement for the

simulation of winter minimum temperatures, while no signs of significant progresses have

been found for summer maximum temperatures.

This chapter was originally submitted and is currently under revision as:

Squintu, A. A., van der Schrier, G., van den Besselaar, E., van der Linden, E.,

Scoccimarro, E., Roberts, C., and Klein Tank, A. (2020b). Evaluation of trends in

extreme temperatures simulated by highresmip models across europe (submitted).

Climate Dynamics
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5.1 Introduction

5.1.1 Climate simulations

A change in the frequency and intensity of climatic heat extremes has important impacts

of the society and the economy, as most of these events have serious effects on agriculture,

energy demand, transportation industry, health, etc. For this reason a prediction of future

climate that realistically assesses changes in the evolution of extreme events is fundamental

in order to understand the challenges that need to be faced. The climate models used for

the production of future projections are also used to simulate the climate of the recent

past. This is done by taking as input verified historical observed boundary conditions (e.g.

land use) and using observed values as internal (artificial and natural, such greenhouse

gases and aerosol concentration, volcanic eruptions) and external forcings (e.g. solar

irradiance).

The simulations of the climate of the past are an important challenge for climate models

and, since the statistics of these simulations can be compared with observed values, are

crucial for the validation of projections to the future [Flato et al., 2014].

The Climate Model Intercomparison Project 3 (CMIP3) [Meehl et al., 2007] and the

CMIP5 [Taylor et al., 2012] have contributed in collecting and comparing all the available

climate simulations and projections. CMIP5 uses an improved specification of historical

forcings and contains experiments with longer temporal perspectives than its predecessors

[Taylor et al., 2012; Flato et al., 2014], and it has shown a clear improvement in model

performance on temperature simulations compared to CMIP3 [Flato et al., 2014]. More

recently the project PRIMAVERA (funded within the European Union Horizon 2020

project) has worked in the frame of the CMIP6 HighResMIP protocol . Here a coordinated

set of experiments has been designed to assess both standard and enhanced horizontal-

resolution simulations in the atmosphere and ocean (with up to 0.25◦ in the atmosphere)

[Haarsma et al., 2016].

5.1.2 Gridded datasets as comparison-term for climate simulations

The comparison of these climate simulations against observations, focusing e.g. on long

term trends, is a powerful tool for the evaluation of how the models reproduce the climate

under observed conditions and forcings.

Such validation has important implications in determining how reliable the same models

are when applied to the future decades and what they should improve in order to produce

better projections [Bhend and Whetton, 2013].

The evaluation of climate simulations has been the subject of several studies and has been
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improved in the last years [Flato et al., 2014]. These have focused on the intercomparison

of the models or on the comparison with reanalyses, observed individual series or, more

recently, gridded observational datasets. The choice of the used reference is fundamental

and needs to be performed with care [Sillmann et al., 2013].

The use of observations is preferable [Gleckler et al., 2008; Flato et al., 2014] since reanal-

yses, even though they can be used as a replacement for areas with sparse observational

coverage, are affected by a poor representation of extremes.

The use of individual station data is a very direct approach, but hampered because the

gridbox value of a model represents an area-average whereas the station observation is a

point-value. This is particularly problematic for climatic extremes.

For these reasons the validation against observational gridded datasets is more appropri-

ate. Their grid squares represent area-averages as in the case of the models. In addition,

such datasets provide a homogeneous spatial distribution and remove some observational

noise, which is a typical issue of station data [Cornes and Jones, 2013]. Nevertheless such

products, especially with a daily resolution, have been lacking for long time [Kiktev et al.,

2003; Kharin et al., 2005] and the possible comparisons are still limited in space and time

[Flato et al., 2014].

5.1.3 Simulation of extreme events

The E-OBS gridded dataset [Haylock et al., 2008; Cornes et al., 2018], used in this study,

matches the high spatial and temporal detail of this new generation models, see section

5.2.2 for more details.

The works of [Kharin et al., 2005] first and, more recently, [Sillmann et al., 2013] have

shown that climate simulations reproduce time averaged values, like monthly means,

better than the short duration extreme events. Though these have great impact on

economy and society and, when compared to average values, present different trends

and behaviors [Hartmann et al., 2013]. It is widely accepted that changes in the climate

are driven by variations of the average [Scherrer et al., 2005]. Nevertheless debate has

taken place on the magnitude of the change of variability [Alexander et al., 2006; Simolo

et al., 2010; Morak et al., 2011; Donat and Alexander, 2012], since extreme events depend

more on this than on the average [Katz and Brown, 1992]. Changes in variability are

shown to lead to amplified effects on values exceeding a certain threshold [Della-Marta

et al., 2007] and a change in the mean insufficiently explains particular record-breaking

events, such as the heatwave of 2003 [Schär et al., 2004]. This has motivated researchers

to go beyond the validation of the model average European climate and to focus on the

most impacting aspects [Stainforth et al., 2013].

While the analysis of changes in aggregated averages has been the subject of several
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studies [Gleckler et al., 2008; van Oldenborgh et al., 2009], the attention on the assesment

of variability in extreme events has increased in the last years [Kiktev et al., 2003; Kharin

et al., 2005, 2007; Sterl et al., 2008; Min et al., 2013; Sillmann et al., 2013, 2014b,a]. A few

studies have inspected the simulation of events with a return time of the order of years,

the so-called hard extremes [Kharin et al., 2005, 2007; Sterl et al., 2008]. Calculations

of trends on such statistics often lacks significance [Frich et al., 2002] which motivates

the use of indices related to soft (or moderate) extremes that occur one or multiple times

every year [Klein Tank and Können, 2003]. Indices related to soft extremes have been

established by the Expert Team on Climate Change Detection and Indices (ETCCDI)

[ETCCDI, 2009], following previous works [Frich et al., 2002]. One kind of soft extremes

indices is based on the most extreme yearly value of the records, e.g. TXx (warmest

maximum temperature of the year) or TNn (coldest minimum temperature of the year).

Such indices present a high interannual variability, which makes it difficult to calculate

trends on relatively short periods. Furthermore, these indices are very sensitive to quality

issues in the observational data, especially if the quality issues occur at a station in a data

sparse area.

Indices based on absolute or percentile-based thresholds are good alternatives to focus

on climatic extremes. Absolute thresholds cannot be applied with same efficacy to all

climates, as in the case of Frost Days (number of days with minimum temperature, TN,

below 0◦C) to warm areas (e.g. southern Mediterranean or Middle East) or Summer Days

(number of days with maximum temperature, TX, above 25◦C) to high-latitude or high-

altitude regions (e.g. Iceland or northern Scandinavia). Such features make these indices

hard to use for geographical comparison. In addition, if a model has a bias in the mean

values, this is likely to have systematic effects on the indices based on fixed threshold.

Such issues do not apply to indices with percentile-based thresholds, for example: TN10p,

percentage of days with daily minimum temperature below the 10th percentile and TX90p,

percentage of days with daily maximum temperature above the 90th percentile. Both

percentile thresholds are calculated considering the data of the series in a long reference

period, usually thirty years. These are site specific, since the thresholds change for each

grid point according to the local climatic features. Thus they are immune to biases in

mean values and applicable to any climate [Klein Tank and Können, 2003; Kiktev et al.,

2003; ETCCDI, 2009; Sillmann et al., 2014b].

The 5th International Panel on Climate Change (IPCC) assessment report, while indicat-

ing progresses for CMIP5 over CMIP3 in the bias of the models (with relevant discrep-

ancies in Northern Europe) [Flato et al., 2014; Bhend and Whetton, 2013], criticized the

description of the seasonal cycle. This showed a slight underestimation over the Mediter-

ranean and overestimation over Eastern Europe [Flato et al., 2014]. At the same time the

simulation of extreme events in the second half of the 20th century has improved [Flato

et al., 2014; Sillmann et al., 2013]. Nevertheless, in the case of regional models forced with

reanalysis data, Min et al. [2013] reports an underestimation in trends of extreme warm
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temperature values in the European and Mediterranean region. In particular, none of the

models considered by Min et al. [2013] identified a significant trend while observational

datasets showed significant changes.

5.1.4 Purpose of the paper

Since Europe belongs to one of the most sensitive areas to climate change [Giorgi, 2006;

Brown et al., 2008] the current study takes advantage of the new homogenized gridded

dataset over Europe and aims to validate global high resolution models that have been

made available in the PRIMAVERA project. This includes an assessment of the improve-

ment of these high resolution models in reproducing observed trends in comparison to

their lower resolution version, following other works that have evaluated the progresses

of HighResMIP in the analysis of other phenomena, such as tropical cyclones [Roberts

et al., 2020].

5.2 Data & Methods

5.2.1 Models

The tested simulations have been developed in the frame of the PRIMAVERA Project,

that aims at increasing spatial resolution of climate models. Six models have been ana-

lyzed in latest high resolution (HR) version and in a previously existing lower resolution

(from now on referred to as lower resolution, LR), focusing on the period from 1970-2014

(see section 5.2.2) and considering the region enclosed between 22◦W and 50◦E and 20◦N

and 76◦N. The variables considered in this study are minimum temperature (TN) and

maximum temperatures (TX) on a daily resolution. Each model taking part in PRIMAV-

ERA has contributed with several experiments, the one that has been used for this work

is named ”highres-SST-present”. This consists of an atmosphere-only integration, forced

with observed SST, observed sea-ice concentration and external radiative forcings over the

period 1950-2014. Each model has a different spatial resolution and a different number

of ensemble members. Tables 5.1 (HR) and 5.2 (LR) summarize the characteristics of

the used models and the availability of the ensemble members as of 23rd of September,

2019.

The ECMWF model has native resolution Tco399 (∼ 25 km) for HR and Tco199 (∼ 50

km) for LR. In the frame of PRIMAVERA they have been provided in a regridded version,

respectively to 0.25◦ and 0.5◦ constant latitude-longitude regular grids, more details in

[Roberts et al., 2018]. The Ec-Earth3P model runs at the resolution TL511 for HR and

TL255 for LR on a non-regular latitude-longitude grid. The scripts used for the indices
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calculation (5.2.3) require regular grids, making it necessary to regrid the Ec-Earth3P

model.

Table 5.1: Characteristics of the high resolution models that have been used. Resolutions

have been rounded at the second decimal digit. Insitute acronyms and corresponding references

for the models: Centro euro-Mediterraneo sui Cambiamenti Climatici (CMCC), [Cherchi et al.,

2019]; Centre National de Recherches Météorologiques - Centre Européen de Recherche et de

Formation Avancée en Calcul Scientifique (CNRM-CERFACS), [Voldoire et al., 2019]; EC-

Earth, [Haarsma, 2020]; European Centre for Medium-Range Weather Forecasts (ECMWF),

[Roberts et al., 2018]; MetOffice - Hadley Centre (MOHC), [Roberts et al., 2019]; Max-Planck-

Institut für Meteorologie (MPI-M), [Gutjahr et al., 2019].

Acronym CMCC CNRM Ec-Earth ECMWF HadGEM3 MPI

Model name CMCC- CNRM- EC- ECMWF- HadGEM3- MPI-

CM2- CM6- Earth3P IFS- GC31- ESM1-2-

VHR4 1-HR -HR HR HM XR

Institute CMCC CNRM- EC-Earth- ECMWF MOHC MPI-M

CERFACS Consortium

# of 1 1 3 6 3 1

ens. memb.

ens. memb. r1i1p1f1 r1i1p1f2 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1

labels r2i1p1f1 r2i1p1f1 r1i2p1f1

r3i1p1f1 r3i1p1f1 r1i3p1f1

r4i1p1f1

r5i1p1f1

r6i1p1f1

Long. res. [◦] 0.31 0.5 0.49 (regridded) 0.5 0.35 0.47

Lat. res. [◦] 0.23 0.5 0.35 (regridded) 0.5 0.23 0.47
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Table 5.2: Characteristics of the low resolution models that have been used. Resolutions

have been rounded at the second decimal digit.

Acronym CMCC CNRM Ec-Earth3 ECMWF HadGEM3 MPI

lowres lowres lowres lowres lowres lowres

Model name CMCC- CNRM- EC- ECMWF- HadGEM3- MPI-

CM2- CM6- Earth3P IFS- GC31- ESM1-2-

HR4 1 LR LM HR

Institute CMCC CNRM- EC-Earth- ECMWF MOHC MPI-M

CERFACS Consortium

# of 1 1 2 8 5 1

ens. memb.

Ens. memb. r1i1p1f1 r1i1p1f2 r1i1p1f1 r1i1p1f1 r1i1p1f1 r1i1p1f1

labels r3i1p1f1 r2i1p1f1 r1i2p1f1

r3i1p1f1 r1i3p1f1

r4i1p1f1 r1i14p1f1

r5i1p1f1 r1i15p1f1

r6i1p1f1

r7i1p1f1

r8i1p1f1

Long. res. [◦] 1.25 1.4 0.98 (regridded) 1 1.88 0.94

Lat. res. [◦] 0.94 1.4 0.7 (regridded) 1 1.25 0.94

5.2.2 E-OBS

The reference used for the evaluation of the models is the E-OBS for TN and TX [Hay-

lock et al., 2008; Cornes et al., 2018]. It comes as a 100-members ensemble, whose spread

increases in areas with low station density, indicating a larger uncertainty. In this work

only the ensemble mean is considered. E-OBS is based on the station data of the Euro-

pean Climate Assessment & Dataset (ECA&D) [Klein Tank et al., 2002], which collects

data of thirteen variables from more than 19000 stations located in all countries of the

European and Mediterranean region. Almost 10000 of these stations provide temperature

data. These are provided by National Meteorological and Hydrological Services, univer-

sities or private companies and range from late 18th century to current times. However,

relocation of stations, instrumentation changes and variations in the surroundings of the

meteorological stations affect the quality of ECA&D temperature temporal series related

to such stations (and therefore E-OBS), reducing the reliability for temporal analyses.

For this analysis, a modified version of E-OBS is constructed based on recent work on the

homogenization of the temperature series of ECA&D [Squintu et al., 2019, 2020c]. This

work has removed a large part of the inhomogeneities and makes it possible to smoothly

combine series that belong to neighbouring stations, gathering data into one long-running
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homogeneous series, called blended series. This considerably improves the input data for

E-OBS. A data set of long and homogenized series are the prerequisite to assess climatic

change [ETCCDI, 2009; Jones and Wigley, 2010].

For the purpose of this work, only the blended series that start before 1970 and that stop

after 2014 have been considered in the construction of a special version of E-OBS, called

E-OBS.hom. This selection aims to have a constant number of blended series contributing

to each grid-point, avoiding that the changes in station density might introduce inhomo-

geneities. Table 5.3 indicates that there is not a drastic change in the number of blended

series choosing 1970 or 1980 as starting point, thus 1970 has been chosen in order to work

with a longer period.

Table 5.3: Number of series which are continuously active during the indicated time interval.

Percentage is calculated with respect to the total amount of blended homogenized series (first

row). As expected, longer periods have lower amount of series which are active during the

whole interval.

period # of TN series # of TX series

(% over the total) (% over the total)

total: no time restriction 3110 (100% ) 3086 (100% )

1950-2014 612 (19.7% ) 603 (19.5% )

1960-2014 997 (32.1% ) 983 (31.8% )

1970-2014 1268 (40.7% ) 1248 (40.4% )

1980-2014 1376 (44.2% ) 1353 (43.8% )

5.2.3 Data analysis

In this work the minimum temperatures in the winter months (DJF ) and the maximum

temperatures in the summer months (JJA) have been analyzed. After checking the bias

of the seasonal averages (TNavg-DJF and TXavg-JJA), for each grid-point the indices

TN10p and TX90p have been calculated on a seasonal level, obtaining respectively TN10p-

DJF and TX90p-JJA. In both cases the percentile thresholds have been calculated over

the 1981-2010 period, making use of the bootstrapping approach introduced by [Zhang

et al., 2005].

In order to perform a grid-point by grid-point comparison the E-OBS indices have been

regridded with a bilinear procedure to the native grid of each model (with the exception of

the ”substitute” grid used for EC-Earth3, see table 5.1), creating six versions of remapped

E-OBS for each index.

At this point for each dataset and each grid-point the trends on the indices on the 1970-
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2014 period have been obtained. 1 Calculation of trends has been done following the

Sen’s slope method [Sen, 1968], which is more robust than a least square approach and

does not require the assumption of a normal distribution [Sen, 1968; Alexander et al.,

2006; ETCCDI, 2009]. Some model experiments have been run in ensemble mode and in

order to obtain the ensemble means, for each model the trends on each grid-point related

to the ensemble members have been averaged. Each ensemble mean has been compared

to the corresponding E-OBS regridded dataset taking the difference of the trends on each

grid-point. The difference has been considered significant when the 95% interval of each

trend on E-OBS and the 95% interval of each corresponding trend on the model don’t

overlap. This process, applied to both high and low resolution versions, has allowed to

detect areas in which the models underestimate or overestimate the trends that have been

seen in observational datasets. Finally, the absolute trend bias is defined as the absolute

difference between the trend in the model and the trend in the E-OBS dataset. This bias

has been calculated using the HR and the LR models.

To compare the HR absolute trend bias with its corresponding LR one, a new temporary

dataset has been created on the grid resolution of the HRmodel (LRtoHR). These LRtoHR

grid-points have been filled by using the absolute trend bias of the LR grid-point that

overlaps with the LRtoHR grid-point. This is done in order to better inspect the local

impact of the increasing resolution, which would be lost in case of a comparison with

regridding to lower resolution.

The HR and the LRtoHR absolute trend biases have been compared by taking the differ-

ence as shown in equation 5.1 .

abstrendbiasHR − abstrendbiasLR = |trendHR − trendE−OBS| − |trendLR − trendE−OBS|
(5.1)

If this metric produces a negative value, then the HR absolute trend bias is lower than

the one of LR, thus the trend for HR is closer to the observed one, indicating a better

performance. On the other side a positive value indicates that the HR’s performance is

worse than the corresponding LR. The aim of using absolute trend biases is to assess if the

HR trends are closer to the E-OBS trends than corresponding LR trends, independently

from the sign of the trend difference. If the comparison was performed with trend biases,

it would have only communicated if the HR models simulate warmer (positive result) or

1Note that the indices for extreme values used in this work are site specific. This means that, by

definition, for each gridpoint of each model the percentage of days in the 1981-2010 period above (below)

the the 90th (10th ) percentile is exactly 10 %. Therefore it is not expected to observe a significant

difference between the percentage of values exceeding the thresholds in the models and in the observations.

These, if present, would be only related to the larger considered period (1970-2014) and would not carry

significant meaning. For this reason the analysis has been conducted directly on the trends, which describe

the changes in the distribution shape.
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colder (negative result) trends than the corresponding LR models, see equation 5.2.

trendbiasHR − trendbiasLR = (trendHR − trendE−OBS)− (trendLR − trendE−OBS)

= trendHR − trendLR

(5.2)

5.3 Results

5.3.1 Minimum temperatures

Bias in winter averages

The considered HR models show strong differences in the reproduction of TNavg-DJF,

see Figure 5.1. The largest mean bias is found for CMCC (+2.96 ◦C), while Ec-Earth3,

ECMWF and HadGEM3 underestimate on average the minimum temperatures, with a

common exception on Northern Scandinavia, far from the coast. At the same time an

underestimation of winter TN over Italy and Norway is found in 5 models. MPI and

CNRM perform best in terms of mean biases and present considerably lower extension

of the shaded area. These are present when the simulated TNavg-DJF is significantly

different from the observed one (i.e. absence of overlap between the 95% confidence

interval of the two terms of the difference).

Trends in winter averages

Trends on the TNavg-DJF of the models in the 1970-2014 period are compared against

the same indices of E-OBS. All models reproduce very well the trends in winter TN.

The mean trend biases, Figure 5.2, range between -0.16 ◦C per decade (◦C/dec) (CNRM)

and +0.02 ◦C/dec (ECMWF). This indicates a tendency in simulating lower trends over

the continent, but mainly for Eastern Europe. Nevertheless recurring positive biases are

found over the Kola Peninsula (NorthWestern Russia, 6 models out of 6), in the Balkans

(5/6) and along the European coast of the Western Mediterranean (4/6).

Trends on cold extremes

Trends in winter cold extremes as TN10p-DJF are more challenging and Figure 5.3 shows

these trends for the HR version of the models. While HadGEM3 (mean trend bias: -1.25

%/dec) and, less strongly, ECMWF (mean trend bias: -0.65 %/dec) simulates a lower

trend of number of days below the 10th percentile almost over the whole continent, thus

having warmer trends than observed, CMCC presents a large contrast between Western
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and Eastern Europe. In particular a wide area over Iberia, Southern France and the

Alps is found where the differences are significant and exceed -4 %/dec, indicating a poor

representation of the trends in these areas. The overestimation of the trends (colder trends

than what is observed) over Eastern Europe is common to 4 models, while warmer trends

over the Mediterranean area are simulated by all models but MPI. This last one is the

only model whose mean bias is not significantly negative and does not present pronounced

patterns, with the exception of having a too strong warming in TN10p-DJF over Sweden

and Norway, in common with three other models. The combination of the tendency to

warmer simulated trends in TN10p-DJF together with the fair representation of trends in

average values, imply that these HR models have simulated a winter climate with similar

average characteristics but fewer cold events, symptoms of a narrowing daily minimum

temperature distribution.

The patterns in the trend bias in the HR models can be compared to the low resolution

models, whose results are shown in Appendix 5.A. Figure 5.9 shows that the LR models

present similar patterns in the trend biases as HR models s.

Figure 5.4 presents the difference in absolute trends biases of TN10p-DJF between HR and

LR, see section 5.2.3. Negative values (green) indicate that HR has lower absolute trend

bias than LR for that specific grid-point, thus it is performing better. Only CMCC clearly

shows an area with worse absolute trend biases over Central Europe (where very large

trends are simulated), which contrasts with the strong performance of the same model

over Eastern Europe. Despite of this, the mean absolute trend biases over the whole

continent are reduced for almost all the models, indicating a general improvement in the

description of the cold extremes between low and high resolution. The best improvement

is found for HadGEM3 (-0.51%/dec), while the only worsening, out of the considered

models, is for ECMWF (+0.17 %/dec) whose LR version is found to perform the best

among the others, see 5.A. The model with the lowest mean absolute trend bias in high

resolution is MPI (0.61 %/dec).
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Figure 5.1: Difference in the winter average of TN between the HR models and E-OBS. Red

indicates overestimation, blue indicates underestimation. Significant differences are indicated

by small thin circles for each grid-point, which result in shaded areas.
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Figure 5.2: Difference in the trends of TNavg-DJF for HR models. Red indicates overesti-

mation (warmer simulated trends), blue indicates underestimation (colder simulated trends).

Significant differences are indicated by black circles.
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Figure 5.3: Difference in trends of TN10p-DJF between the HR models and E-OBS. Red(blue)

indicates an underestimation (overestimation) of the trend, related to a warmer (colder) trend

in the model.
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Figure 5.4: Difference in absolute trend bias of TN10p-DJF between HR and LR models. Red

(green) pixels indicate an increase (decrease) of the absolute trend bias, thus a better (worse)

performance.
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5.3.2 Maximum temperatures

Bias in summer averages

The comparison of summer maximum temperatures, has started from the evaluation of

the bias of the models. Four of them give a mean bias that has a lower absolute value

compared to what is observed for winter TN, see figure 5.5. CMCC presents a large

underestimation (-3.83 ◦C), similar, but with opposite sign, to the corresponding result

for TN. The remaining 5 models show a common north-south gradient, with a warm

bias along the Mediterranean and Black Sea coast and a general underestimation over

Northern Europe, with different patterns and small exceptions. A large overestimation

common to all models is found in Northern African regions. Nevertheless in these areas

the large biases (above +10 ◦C) can be in part related to the high uncertainty of E-OBS,

due to a lower station density.

Trends in winter averages

The difference in trends of TXavg-JJA ranges between -0.17 ◦C/dec (ECMWF) and +0.03
◦C/dec (CMCC), see Figure 5.6. The models tend to slightly underestimate the warm-

ing of summer temperatures. This is more evident over the Mediterranean and Eastern

Europe, especially for models as EC-Earthand ECMWF. These present large areas (over

Italy and Balkans) where the differences are significant, implying an inaccurate reproduc-

tion of the changes in the climate of these areas. On the other side almost all the models

tend to overestimate the trends over Southern Scandinavia, especially over Norway.

Trends on warm extremes

Figure 5.7 helps evaluating the reproduction of TX90p-JJA, which describes warm tem-

perature extremes. The results show a large underestimation of the trends for EC-Earth(-

0.73 %/dec), ECMWF (-0.59 %/dec) and HadGEM3 (-0.56 %/dec). In all cases stronger

trends, consistent with what found for the trends on the averages, are simulated over

Norway and Sweden. The overall bias in the MPI model is very small, but the underesti-

mation of trends in south-eastern Europe apparently compensates the overestimation of

trends in north-western Europe. This aspect (as found for the simple seasonal averages

as well) is simulated by most of the models, indicating a general tendency to reproduce

lower trends of warm extremes on the Mediterranean and Black Sea region and slightly

larger ones around Northern Sea. In these areas large significant differences are found in

particular for EC-Earth3, ECMWF and HadGEM3.

Figure 5.8, showing the difference in absolute trend biases between the HR and LR model

configuration, does not show a common pattern. Best improvement in the passage from
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HR to LR is for MPI (-0.16 %/dec), while HadGEM3 presents the largest worsening (+

0.25%/dec). No particular geographical structures are found in this case. This result

indicates that the reproduction of trends of warm extremes with High Resolution models

hasn’t considerably improved over Europe for most of the models.



5.3 Results 121

Figure 5.5: Same as figure 5.1 but for TX-JJA.
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Figure 5.6: Same as figure 5.2 but for TX-JJA.
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Figure 5.7: Difference in trends of TX90p-DJF between the considered models and E-OBS.

Red(blue) indicates an overestimation (underestimation) of the trend, related to a warmer

(colder) trend.
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Figure 5.8: Same as figure 5.4 but for TX90p-JJA.
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5.4 Summary and Conclusions

Six models in their High (HR) and Low Resolution (LR) versions have been compared

(over the 1970-2014 period) to E-OBS.hom, a version of the gridded dataset E-OBS based

on homogenized daily series (each covering at least 1970-2014) of observed temperatures.

The analysis has been performed focusing first on the biases and the trend biases of

mean values of winter minimum temperatures (TNavg-DJF) and mean values of summer

maximum tempratures (TXavg-JJA) and then on two ETCCDI [ETCCDI, 2009] defined

indices. These are the number of days with minimum temperatures below the 10th per-

centile of winter values (’cold nights’, TN10p-DJF) and the number of days with maximum

temperatures exceeding the 90th percentile of summer values (’warm day-times’, TX90p-

JJA). The percentile thresholds have been calculated using the 1981-2010 period. After

the calculation of the trends of the considered indices, for those models with more than

one ensemble member (see table 5.1), the ensemble mean has been calculated. For each

grid-point, average values and trends in the models have been compared to observations

and an assessment is made of the difference between the HR and LR model versions.

For both winter-mean TN as summer-mean TX strong biases have been found in the sim-

ulations, with the strongest ones for CMCC. This model shows mean bias of +2.96◦C/dec

for TNavg-DJF and -3.83◦C/dec for TXavg-JJA, indicating an underestimation of the

seasonal cycle all over the continent. The other models present smaller biases (averaged

over Europe). Nevertheless common patterns are found, such as an underestimation of

winter minimum temperatures over Italy and Norway and a shared overestimation in the

north of Sweden and Finland. This last issue may be related to a lack of snow coverage

simulated by the models, as suggested by [van Oldenborgh et al., 2009] and [Diffenbaugh

et al., 2013].

As for maximum temperatures in summer: the models share a common North-South

gradient in the bias, with warmer values along the European coasts of the Mediterranean.

This may be related to excessive moisture in Northern Europe and a lack of moisture

in the Southern sector [Seneviratne et al., 2006; van Oldenborgh et al., 2009; Lorenz

et al., 2010]. Evaluation of results for TXavg-JJA shows a slight overestimation of trends

for HR compare to E-OBS on Northern Europe and an underestimation on Southern

Europe, especially over Italy and the Balkans. This pattern is consistent with what found

by [Bhend and Whetton, 2013], which detected an underestimation of trends of average

summer TX over Europe in CMIP5.

In Southern Europe, the combination of an excessively large negative bias in summer

maximum temperatures with a too weak increase in the seasonal average and with a

much weaker (compared to observations) increase in the extreme indices points to issues

in the representation of soil moisture in the models. In a climate which is too warm the

soil can be expected to lack more moisture than in cooler conditions due to enhanced
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evaporation. Once the soil is dry the radiation balance is shifted to a state where sensible

heat is dominant over latent heat. Under boundary conditions where the incoming energy

flux (due to increase of green house gases) raises, this implies a further increase in sensible

heat and surface warming. Nevertheless in conditions of moist soil, the simulated warming

trend in temperatures would be even stronger, due to the shift from latent, thus getting

close to the observed conditions [Seneviratne et al., 2006; van Oldenborgh et al., 2009;

Lorenz et al., 2010; Min et al., 2013].

The most interesting aspects on the trends in winter temperatures, figure 5.2, is the

simulation of colder trends in Eastern Europe (excluding the Kola peninsula) common to

all models. Such anomaly might be linked to too small simulation of the reduction trend

of snow coverage compared to the observations [van Oldenborgh et al., 2009] and suggests

to conduct an inspection on the performances of models on this particular variable, which

will be subject of future studies.

The too warm simulated trend on the peninsula of Kola is found in the trends on TNavg-

DJF and TN10p-DJF (as an underestimation of the number of days below the 10th per-

centile) and is related to E-OBS station density issues. The only series with observed

values in the area (Krasnoshelye) starting before 1970 has missing data between 1972 and

1980. The interpolation of data coming from series in surrounding stations, in the case of

TN, brings to higher values in the 1972-1980 compared to the following years, introducing

a too cold trend that doesn’t take place in the models. This behavior, limited to only one

series, motivates the ECA&D group to work on further data collection and in increasing

the station density in this and other areas. This will allow to increase the quality of the

interpolation and avoid such criticisms.

Trends in extreme values have presented several anomalies, often with common geograph-

ical patterns among the models. While the underestimation of trends of TNavg-DJF

simulated over Eastern Europe is found also for TN10p-DJF five models indicate an un-

derestimation of the percentage of cold days, thus warmer trends, over Southern Europe.

At the same time the underestimation of percentage of warm day is found for the trends of

TX90p-JJA, indicating colder trends than the observed ones, consistent with the findings

of [Min et al., 2013] for CMIP5.

The combination of these two aspects indicates that around the Mediterranean the model

trends in the tails of the distribution are closer to each other than what is observed.

Therefore in Southern Europe the distribution of simulated daily temperatures tends to

get narrower compared to the distribution of observed daily temperatures, underestimat-

ing the intensity of the extremes, especially the warm ones.

As a last step, the analysis of the absolute trend bias evolution in the models from LR

to HR does not show a general improvement. Each model presents different patterns

and diverse behavior in terms of change of mean absolute trend bias. Nevertheless this

index decreases for TN10p-DJF in almost all models (but ECMWF), indicating a better
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improvement compared to what id found for TX90p-JJA, where only 3 methods slightly

improve and the other ones present worsening up to +0.25%/dec.

Finally, it appears that the new high resolution models, even though they do not signifi-

cantly increase or decrease their absolute bias on the trends of the extremes, still present

some criticisms especially on the area of the Mediterranean. In this region the most se-

rious discrepancy to observations is the large underestimation of the increasing trends of

warm extremes. Considering the high economic and societal vulnerability of these areas to

very warm events in summer and the importance of the prediction of heatwaves intensity

and frequency for the next decades, it is fundamental to improve the simulation of these

phenomena and of their projections to future decades.
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5.A Performance of the models in their Low Resolu-

tion version

The LR version of the models tend to underestimate the trend in TN10p-DJF. Figure 5.9

displays that all the mean biases are negative. This indicates a general overestimation of

the warming trend, with a few exceptions for some models in certain areas, e.g. MPI in

Central Europe. Only for a small part of the grid-points the difference is significant, i.e.

the 95% confidence level ranges of the models and E-OBS trends don’t superimpose.

Performance of LR models on trends of TX90p-JJA present different patterns. In general

trends on Eastern Europe are underestimated (colder trends than observed). Nevertheless

the mean biases indicate that, contrarily to what is seen for the other models, CMCC and

CNRM slightly overestimate the trends.
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Figure 5.9: Difference in the trends of TX10p-DJF between the LR models and E-OBS.

Red (blue) indicates that the models have more negative (positive) trends in the number of

days above the 10th percentile, related to warming (cooling) trends. Circles indicate significant

differences.
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Figure 5.10: Difference in the trends of TX90p between the LR models and E-OBS. Red

(blue) indicates that the models have more positive (negative) trends in the number of days

above the 90th percentile, related to warming (cooling) trends. Circles indicate significant

differences.





Chapter 6

Synthesis
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6.1 Aims of the research

The present thesis contributes to the ability of the scientific community to improve the

monitoring of changes in the extreme climate events, based on in-situ observations. These

measurements, compared to other systems such as satellite measurements or reanalyses,

present longer temporal coverage (up to more than 200 years). Furthermore they are direct

result of an observation of real climatic conditions and are not the result of inversion or

modelling processes.

The use of daily temperature series is compromised by human interventions to the stations,

such as changes of position within a site, changes in the instrumentation or relocations of

the site itself. These introduce biases, which can be sudden or gradual, often have similar

amplitudes as the climatic signal [Aguilar et al., 2003; Caussinus and Mestre, 2004; Begert

et al., 2005; Della-Marta and Wanner, 2006; Menne and Williams Jr, 2009]. The presence

of such inhomogeneities involves a large portion of raw observations [Tuomenvirta, 2001;

Hartmann et al., 2013; Li et al., 2016]. Therefore thorough homogeneity assessments and

adjustments are mandatory before any climatological analysis. This will convey further

robustness to the scientific evidences of climate change [Domonkos, 2011; Trewin, 2013;

Lindau and Venema, 2016]. In addition, the homogeneity of station series is fundamental

for the reliability of derived products as gridded datasets [Venema et al., 2013; Cornes

et al., 2018].

In order to provide a reliable source for climate change assessment in Europe, this project

has aimed at developing a homogenization method to be applied to the station data in the

European Climate Assessment and Dataset (ECA&D). The ECA&D collects thousands of

temperature series from all over Europe (Figure 3.1), making it one of the largest databases

of meteorological in-situ observations on the continent. This dataset is widely used within

the research community, as demonstrated by the more than 1400 citations obtained by

Klein Tank et al. [2002] (status January 2020), which first introduced and described the

dataset. Furthermore, the station records of ECA&D are used in the construction of the

E-OBS gridded dataset, which has been of great interest for the scientific community

(more than 2200 citations for Haylock et al. [2008] and more than 55 for the recently

introduced Cornes et al. [2018]).

The history of the measurements in ECA&D (metadata), like changes in location or

instrumentation, is often poorly documented. In addition, the sheer size of the dataset

simply makes it excessively time consuming to involve careful analyses of metadata. Thus,

the need is to develop a completely automated procedures, able to autonomously track

the inhomogeneities (break detection) and adjust them (adjustment calculation) [Dienst

et al., 2017; Delvaux et al., 2018].

On one hand the break detection has to be able to identify the change points with the low-
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est possible rate of false positives. On the other side, the adjustment calculation needs to

determine which factors to add to the values in order to remove non-climatic signals from

the series. These routines need to work efficiently on the ECA&D. Hence, the procedure

has to be flexible enough to manage wide spectrum of inhomogeneity signals and areas

with very sparse station density. A further aim of the study has been to implement the

procedure with an approach that manages the data without employing parametrizations

(e.g. fit to models, linear and non-linear regression), so that the adjustments derive from

real observed signals and are not filtered with pre-defined analytical functions.

In several cases the series (often located in urban areas) are ended and new ones are simul-

taneously started in a nearby location (usually in the airport or in a rural area). These

series are gathered in order to generate long series, ideal for thorough historical assess-

ments. Long records are constructed through a process called ’blending’, in which series

of neighbouring stations are combined into longer series. Since this process generates fur-

ther (and more complex) inhomogeneities, the adjustment calculation procedure applied

to the undocumented inhomogeneities needs to be adapted to the blended series.

A corner stone of this thesis has been the focus on extreme temperatures, due to their

higher impact on society and economy compared to average values [Donadelli et al., 2017].

A thorough trend analysis on station data has been among the aims of this dissertation,

including assessments on the effects brought by the homogenization process and inspec-

tions of the possible phenomena that drive the observed changes in the climate.

Finally, it is fundamental that any homogenization method is validated in order to assess

the quality of its products and, once this is done, that powerful examples of the possible

uses of the new homogenized data are provided. By demonstrating the usefulness and

solidity of the developed routines and the obtained products, the aim is to increase trust

and confidence in the user community.

6.2 Results and Discussion

6.2.1 The new homogenization method

In the frame of this thesis a homogenization procedure has been developed following the

requirements of the goals listed above: being fully automated, conservative (avoiding

false positives and overcorrections), heuristic (favouring the real signal against models

and regressions) and flexible (able to handle all realistic inhomogeneities and all station

density conditions). The break detection, based on the work of Kuglitsch et al. [2012],

checks the series with three different methods [Caussinus and Mestre, 2004; Wang et al.,

2007; Toreti et al., 2012] and looks for agreement of at least two of them. In the three cases

reported in Chapter 2, the metatadata show good agreement with the detected breaks.
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Such findings indicate that break detection presents a good accuracy, even though some

breaks don’t correspond to a documented change in location or equipment. Unfortunately

it’s not possible to determine if these effectively are false positives. Although these are

impossible to avoid, the fact that two break detection methods out of three indicate them

as change points reassures on the goodness of the result.

Each detected break divides the target series into two sub-series whose data, month by

month, are binned into quantiles and compared, identifying the difference in the shape

of the distributions before and after the break. This difference is generated by climatic

and artificial signals. Since the first needs to be preserved in the final homogenized series,

the second one has to be isolated. For this reason the climatic signal is identified by

considering homogeneous reference series, whose quantile differences are subtracted from

the one related to the target. This approach, whose details are explained in Chapter 2,

allows to elaborate customized adjustments for extreme values. In addition it is flexible

enough to handle situations with a low station density while remaining computationally

efficient in case of a very high station density, as proved in its application on different

benchmark datasets in Chapter 4.

A strong point of the quantile matching procedure described in this work is its heuris-

tic approach. The procedure developed in this project takes the natural signal as it

comes from the measurements, working on the real observed distribution of the values

This contrasts with other methods that determine the values of the adjustments with

parametrizations of the temporal series [Menne and Williams Jr, 2009] or regression mod-

els applied to the probability density function [Della-Marta and Wanner, 2006; Mestre

et al., 2011]. Such aspect conveys flexibility, allowing that any (realistic) shape of the

distribution is handled and adequately managed, without forcing the data into expected

behaviours or parametrized patterns. These benefits involve especially the extreme values,

whose adjustment factors are calculated without any influences from the first moment of

the distribution. Furthermore in the whole process the necessity not to over-adjust the

data has always been taken into consideration. This conservative approach has, for ex-

ample, been implemented with the smoothing of the adjustments and with the check of

negative slopes in the adjustments (see Appendix A of Chapter 2), which have respec-

tively aimed at removing noise-induced signals and at not varying, during the process,

the rank of a value within its sample.

Similarly to previous studies [Brunet et al., 2006; Kuglitsch et al., 2009; Syrakova and

Stefanova, 2009; Nemec et al., 2013; Mamara et al., 2014] only 10% of the series of ECA&D

were already homogeneous. As expected from the large presence of relocations from cities

to rural areas [Brunet et al., 2006; Nemec et al., 2013; Yosef et al., 2018] a slight majority

of the adjustments applied to the earlier parts of the series (in order to be consistent with

the latest ones) are negative. This due to the removal of the Urban Heat Island Effect

from the (earlier) parts related to the urban stations, which, lowering the values, causes
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slightly warmer trends.

By consequence cooling biases are introduced to the series, these require to be adjusted

lowering the values related to the urban stations. The case studies display a clear im-

provement in the quality of the series (Figures 2.9,2.13,2.17).

The new homogenized version of the original series in the ECA&D is the input for the

updated blending procedure, enriched with a new module for the removal of the duplicates

generated by the blending itself. (Chapter 3). The blended series are then homogenized

with a special version of quantile matching able to manage individual isolated values and

longer portions of data. The case studies explained in this Chapter demonstrate again

the strength of the quantile matching homogenization, highlighting the different results

between average and extreme values and presenting the capability to handle cases with

complex blending.

The combination of these two steps generates a data set with long and homogeneous series,

these are an extremely precious tool for the inspection of the long-term climate of Europe

from the historical and geographical points of view. One of the aims of this thesis has been

to identify the contributions of homogenization to the general statistical characteristics

of the dataset, exploring the benefits and eventual unexpected atypical behaviours. The

network average trends of annual mean, 5th and 95th percentiles present a limited change

(between +0.01 and +0.02 ◦C/dec). However, anomalous trends that could be observed

in the raw dataset are now absent. The same effect can be seen in the reduction of the

range of trends of the series (Figure 2.16) and in the relevant increase of geographical

consistency (Figures 2.14, 3.12). This proves that, while the network averages don’t show

relevant changes, the benefits for single stations and for the description of the local climate

are clear, as stated in several previous studies [Tuomenvirta, 2001; Brunetti et al., 2006;

Li et al., 2016]. In addition no particular patterns in the change of trends of series are

observed (Figures 2.5,3.12), confirming that the aim of this thesis (and homogenization

procedures in general) is not to intentionally increase the trends, but to just provide data

which are immune from non-climatic interferences.

The Quantile Matching has been, together with five more homogenization methods, eval-

uated against a benchmark dataset in Chapter 4. This has been done against two bench-

mark datasets, whose construction has been performed concatenating portions of homo-

geneous neighbouring series, This process allows to create series affected by a plausible

relocation-like signal, tests, whose unperturbed version is known, benchmarks. The eval-

uation has been made using widely known metrics such as the Root Mean Square Error,

the calculation of the percentage of adjusted data and the formulation of a new indicator

that is able to calculate how much the homogenized version gets close to the benchmark

characteristics. The application of Quantile Matching to a low-station-density benchmark
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dataset has shown that a lower percentage of non-homogenizable values (Table 4.3), a bet-

ter performance in terms of root mean square error and a very satisfactory reproduction

of the trends of average and extreme values (Figure 4.13). This has demonstrated that

Quantile Matching performs on the level of widely known and prestigious homogenization

methods as SPLIDHOM [Mestre et al., 2011] and is robust enough to handle both very

favourable and very challenging conditions.

6.2.2 Observed changes in European climate

The new dataset of homogenized blended series allows to inspect trends on the long

term over Europe, focusing on extreme values and on eventual changes in the width of

the distribution. Strong warming trends in winter temperatures over Alps and Eastern

Europe have been identified, similarly to what observed in other studies [Simolo et al.,

2010; Osadchyi et al., 2018; Krauskopf and Huth, 2019]. In addition the cold tail (10th

percentile) has shown warmer trends than the warm tail indicating a relevant narrowing

(i.e. cold values have experienced a steeper increase). These two facts are linked to the

reduction in snow coverage, that affects the cold part of the distribution reducing the

number of days with very cold night-time temperatures. On the other side, steep trends

in both the 10th and 90th percentile of summer maximum temperatures in Southern and

Western Europe have been found. This is consistent to earlier findings of several works

that focused on the area [Brunet et al., 2006; Della-Marta et al., 2007; Simolo et al.,

2010; Delvaux et al., 2018; Fioravanti et al., 2019] that have observed how this area, and

especially the Mediterranean have been involved by increased length and intensity of heat

waves. This has also been found in this thesis, in particular identifying a considerable

increase in the shape of summer maximum temperatures Central Europe and Northern

Italy, areas involved by the growing extension of summer heat waves.

The blended homogenized series are used as input to obtain the homogenized E-OBS,

calculated following the techniques documented by Haylock et al. [2008] and Cornes et al.

[2018]. The homogenized E-OBS is a reliable representation of the climate of the last

decades and can be used for the validation of climate simulations such as those devel-

oped in the frame of the High Resolution Model Intercomparison Project (HighResMIP)

[Haarsma et al., 2016]. Such validations are fundamental to determine how well the cli-

mate models work in reproducing the climate of the past and, by consequence, how reliable

is their prediction about the climate of the future.

When checking the trends in the number of winter days with minimum temperatures

below the 10th (1981-2010) percentile, a large overestimation (thus colder trends than

observed) is found for several models over Russia, Ukraine and Belarus (Figure 5.3). This

indicates that the steep warming of cold extremes in such areas (also observed in Chapter

3) is not well simulated. A similar situation is found for the trends in number of summer
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days above the 90th percentile in Southern Europe (Figure 5.7). This recalls similar

behaviours pointed out by Min et al. [2013] and Sillmann et al. [2013], which reported

a clear underestimation of warming trends over various regions of Europe. Such finding

suggests that climate projections predict an increase of warm extremes over Southern

Europe which is probably lower that what will actually happen.

6.3 Outlook

6.3.1 Possible improvements to the procedure

The Quantile Matching has shown great effectiveness on the ECA&D dataset, fulfilling

the requirements that were set at the start of the project. However further ideas for

improvements have risen.

Preliminary actions on the dataset would bring relevant benefits to the homoge-

nization procedure. One of this is a powerful quality check, able to detect and

eventually remove outliers, repeated values and more kinds of mistakes occurred

during the measurement or the transcription of temperature values. The realiza-

tion of a more sophisticated quality procedure is in progress in the frame of the

service C3S311aLot4 (http://surfobs.climate.copernicus.eu) and the project INDECIS

(http://http://indecis.eu/). It aims at improving the current one active on ECA&D,

which relies on control of the consistency of the data with the statistical characteristics

of the series itself, according to the recommendations of the World Meteorological Orga-

nization. The new procedure will compare the daily data with the values of neighbouring

series, so that the risk of flagging extreme values as outliers is reduced to the lowest. As

a result, the (already robust) quantile matching process will deal with only clean and

realistic data and be even more effective.

Further improvements on the Quantile Matching procedure are possible: the homogeniza-

tion procedure is criticized for the influence that is given to the adjustments by references

that are clustered in the same area (see Appendix D of Chapter 2). In these situations,

the selection of the reference selection can be improved. Although the applied threshold

on correlation provides a first check, giving priority to series with similar behaviour, the

risk of attributing too large weight to station populated areas is high. Therefore the

correlation selection can be coupled with constraints that favour an uniform angular

distribution of the references around the inhomogeneous stations. This could be done

for example dividing the surrounding region into four quadrants (SouthWest, NorthWest,

NorhEast, SouthEast) and selecting an equal number of references in each of them. Such
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process can provide more solidity to the adjustment calculation, though this will imply a

considerable computational cost, since for each station the required time for the reference

series selection would be four times longer.

Another critical step in the Quantile Matching procedure is the reiteration of the pro-

cess. This is performed in order to identify and correct inhomogeneities that were not

detectable in the first iteration, when the signal to noise ratio is very low. Ideally the

process could be reiterated until no change points are identified by the break detection.

However, this choice would trigger a progressive increase of false positives. This is related

to the fact that the use of the homogenized series as references for the following iteration

determines a process with no memory of the previous stages, likely to diverge from the real

original conditions. The choice of limiting to two iteration is purely pragmatic and de-

rives from the evident benefits reached after this stage. Nevertheless, the iterating system

could be improved if for each iteration, instead of using the output of previous iteration

as references, the original series, split into homogeneous sub-series as of first iteration,

are used. Even though this solution would provide a binding constraint to the system,

avoiding divergence from the original state, there would still be the need to define when

to stop the process, determining a convergence threshold (e.g. limited difference between

the results of two consecutive iterations). Furthermore such process might bring to an

indefinite computational time, so that directly setting a maximum number of iterations

would be needed anyway.

6.3.2 Enriching the comparisons of homogenization methods

The comparison of homogenization methods has been the subject of several studies, es-

pecially in the last decade [Venema et al., 2013; Domonkos, 2013; Trewin, 2013; Li et al.,

2016; Vincent et al., 2018]. This thesis, pursuing on one side the validation of the devel-

oped method, in parallel has contributed to the debate on the tools and the methods to

use for a thorough comparison. The quality of the developed tools, such as the new kind

of benchmark datasets and the use of traditional and innovative metrics, have allowed to

obtain interesting results and to confirm the solidity of the Quantile Matching. Neverthe-

less there is space for a wide spectrum of improvement, that would make a comparison of

homogenization methods more challenging and detailed.

One example is the possible refining of the process of benchmark construction with the

insertion of random missing data, outliers and data switches between minimum and max-

imum temperatures. This allows a ”flavours approach”, similar to what adopted in

the frame of the INDECIS process, where the author has taken part in a preliminary

phase.



6.3 Outlook 139

Further benefits can be obtained by the use of new metrics, with the aim of testing

the robustness and, in particular, the accuracy in reproducing extreme events. For this

purpose, metrics as RMSE and PD05 (see Chapter 4 for the definitions) can be calculated

restricting the sample to only the values above the 10th or below the 90th percentile of

the benchmark allowing to focus the evaluation on the extreme values themselves and

not only on the trends.

The procedure of reference selection has shown to be a fundamental aspect in the func-

tioning of a homogenization procedure. Therefore any methods can benefit from the use

of more sophisticated reference selections. For this reason the comparison performed in

Chapter 4 could be further enriched by the analysis of the combination of homogenization

procedures with different reference selection routines. This would give a clearer overview

of the capabilities of the homogenization procedures and about the impact of the reference

selection.

Finally the homogenization indicator can be upgraded to avoid its sensibility to singular-

ities (e.g. inserting logarithmic behaviours) and can be analysed counting the percentage

of series whose value fall in the 0.5-1.5 range, considered the optimal one.

6.3.3 Physical based homogenization

As shown in this thesis, the homogenization of temperature series is a fundamental step

in any reliable climatological analysis based on temperature measurements from weather

stations. The fact that usually the amplitude of the signal introduced by external in-

terferences is comparable to the climatic signal, makes unreliable any study that skips

this phase. The results of any research strongly depends on whether the homogenization

step is implemented and the accuracy of the used homogenization method influences the

results, as seen in Chapter 4. In particular these variations are observed for the extreme

temperature events, whose high sensitivity to inhomogeneities is proven.

The statistical approach developed in this thesis manages extreme values according to

their position in their monthly distribution. This allows to distinguish the adjustments

for cold and warm events from those for the average. Although the relevant results shown,

the inhomogeneities are driven by more complex factors than the simple temperature

itself.

In the specific case of a relocation, the difference in temperature between the urban and

rural sites is likely to be influenced by the weather conditions. The same incoming solar

radiation differently influences the two situations, affecting the amplitude of the Urban

Heat Island. In a bright summer day the urban station is likely to measure sensitively

higher temperatures compared to the rural station, due to the heat that is re-emitted
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by asphalt and buildings in the surroundings. On the other side during a cloudy day

buildings and roads don’t get over-heated by solar radiation and re-emit less than in

sunny conditions. Thus the temperature difference between urban and rural station is

expected to be lower. Such difference could be even lower in the case of strong wind,

which favours the horizontal mixing of the atmosphere.

The sky conditions can be also relevant in the difference of minimum temperatures. A

thick cloud cover is expected to absorb part of the thermal long wave radiation emitted

by the urban areas (due to e.g. buildings heating) and to partially re-emit downwards,

further increasing the temperature difference with the rural station. Night temperature

can also be influenced by different humidity conditions or by the presence of snow cover

that would further lower the rural temperature.

Other inhomogeneity sources, such as the change of screen, analogously present depen-

dence from the incoming solar radiation and the cloud cover, as it was observed in previ-

ous works [Auchmann and Brönnimann, 2012]. Therefore the growing availability of data

about these weather variables opens to new cutting-edge evolutions.

The measurements of cloud cover, solar radiation, humidity, wind direction and speed,

precipitation and snow depth stored in ECA&D give a precious chance for the development

of homogenization procedures that account for physical conditions. Their values could

be used to implement a more sophisticated version of Quantile Matching. The sample of

temperature measurements can be divided in more sub-samples according, for example,

to the cloud cover, as done by Brugnara et al. [2016]. This would allow to calculate

adjustments to be applied especially to very cloudy days or to days with clear sky. The

same could be done for all the available variables. Such process would create a set of

estimations of adjustments from which it would be possible to calculate (for example

with a simple mean or median) the final adjustment.

Evidently this kind of approach would require complete and long-lasting measurements for

each variable, which unfortunately are not always available in the ECA&D. For this reason

it would be difficult to apply it to regions where quality and entirety of data is limited.

Anyway, this improvement can be developed as a plug-in, used in case of sufficient data

availability. By doing this there would be the possibility to adjust the whole temperature

dataset with the normal Quantile Matching and to apply further physycal-based (and

probably small) adjustments on the areas where this is feasible. Furthermore, this kind of

process will allow to perform adjustments to the temperature measuremente preserving

coherence with all the other weather variables, thus conveying to the final product higher

quality and reliability.

In the cases where the measurements from other variables are lacking, the information

related to the weather condition can be obtained from very high resolution boundary layer

models as the Weather Research and Forecasting System (WRF). This takes the reanalysis
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values of several weather variables (temperature, wind, solar radiation, precipitation, hu-

midity, etc.) as bounday condition and is able to simulate the detailed weather conditions

with a spatial resolution of 100 meters and a temporal resolution of 10 minutes.

The use of the results of Weather Research and Forecasting System (WRF) as references

for the homogenization was the aim of the MSc internship at KNMI of Jan Biermann

[Biermann, 2018], supervised (among the others) by the author of this thesis. Within

this project an inhomogeneous series (similarly to what done in Chapter 3) was created

concatenating data from Amsterdam Noord between 2008 and 2012 and from Schiphol

Airport from 2013 to 2017. WRF has been used to simulate the weather conditions in

the area, generating values for both locations. At the same time, the Quantile Matching

has been used to reconstruct the temperature in Schiphol in the first period, knowing

the temperature in Amsterdam Noord. This has allowed to evaluate the accuracy of the

reconstruction of the Urban Heat Island Effect by Quantile Matching, observing that the

statistical homogenization procedure reproduces the known values in Schiphol better than

the WRF. Such results open to the possibility to join the efforts of Quantile Matching and

WRF for the development of a new kind of homogenization that, taking into consideration

observed values of all the weather variables and the reanalysis, is able to improve the

adjustment according to the weather conditions of the area.

6.3.4 Concluding Remarks

The work displayed in this thesis has been developed with strong links to the previous

researches in the field. Several aspects of previous works have been considered and used

as inspiration. These have been reinterpreted and combined with innovative solutions,

contributing to the creation of a completely automated homogenization procedure. This

is able to deal with all the various station density configurations present in the European

Climate Assessment ad Dataset and to work on all the kind of inhomogeneities that

this dataset presents. These qualities convey the Quantile Matching the prerequisites to

become an ideal homogenization methods for other temperature datasets that, as ECA&D,

are involved by various configurations and qualities of data.

The developed approach focuses on maintaining as much as possible the characteristics

of the original dataset. This makes the homogenized dataset particularly reliable for the

analysis of extreme events. Such values are treated with care and adjusted independently

from the average. Thanks to this the trend assessments performed on the extreme indices

for homogenized temperatures are particularly valuable and trustworthy. These inspec-

tions describe a continent that is undergoing a rather dramatic change in its climatic

features, with reducing cold extreme events and enhancing warm extreme events.

The discovery that the analyzed climate models don’t completely simulate such behaviours

is worrying. This calls on the need of further inspecting their accuracy and extend the
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study on more projects and on wider areas than only Europe. By consequence it is

possible to speculate that if they don’t correctly reproduce, for example, the frequency

and intensity of heatwaves on Southern Europe in the last decades, they are not likely to

perform better for the coming decades.

The possible uses of homogenization datasets and the potentialities for other studies prove

that the development of homogenization processes for temperature dataset is not a self

aimed study. The robustness of the process itself and the reliability of its results allow

the improvement of several levels of climatological research and strengthen the validation

studies that make use of homogenized series.

Following the aforementioned results, there is strong belief that this study, brings con-

siderable advantages for the scientific research in the field of climate assessment, with

particular benefits for the studies on extreme events. This will firstly enhance the solid-

ity and the accuracy of the evidences of climate change and, by consequence, make the

communication to society and policy makers more persuasive and effective.
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Seneviratne, S. I., Lüthi, D., Litschi, M., and Schär, C. (2006). Land-atmosphere coupling

and climate change in Europe. Nature, 443:205–209. doi:10.1038/nature05095.

Sillmann, J., Donat, M. G., Fyfe, J. C., and Zwiers, F. W. (2014a). Observed and

simulated temperature extremes during the recent warming hiatus. Environmental

Research Letters, 9(6):064023.

Sillmann, J., Kharin, V., Zhang, X., Zwiers, F., and Bronaugh, D. (2013). Climate

extremes indices in the cmip5 multimodel ensemble: Part 1. model evaluation in the

present climate. Journal of Geophysical Research: Atmospheres, 118(4):1716–1733.

Sillmann, J., Kharin, V., Zwiers, F., Zhang, X., Bronaugh, D., and Donat, M. (2014b).

Evaluating model-simulated variability in temperature extremes using modified per-

centile indices. International Journal of Climatology, 34(11):3304–3311.



REFERENCES 151

Simolo, C., Brunetti, M., Maugeri, M., and Nanni, T. (2011). Evolution of extreme

temperatures in a warming climate. Geophysical research letters, 38(16).

Simolo, C., Brunetti, M., Maugeri, M., Nanni, T., and Speranza, A. (2010). Understand-

ing climate change–induced variations in daily temperature distributions over italy.

Journal of Geophysical Research: Atmospheres, 115(D22).

Squintu, A. A., van der Schrier, G., Brugnara, Y., and Klein Tank, A. (2019). Homog-

enization of daily temperature series in the european climate assessment & dataset.

International Journal of Climatology, 39(3):1243–1261.
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