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Abstract 

Lu, H. (2020). Genome-wide interaction analyses of milk production traits in 

dairy cattle. PhD thesis, Wageningen University, the Netherlands 

 

There is substantial evidence that the genetic background of milk production 

traits changes during lactation. It is known that the genetic variances for 

several milk production traits change during lactation and genetic correlations 

between milk production traits at different lactation stages differ from unity. 

In addition, for the diacylglycerol O-acyltransferase 1 (DGAT1) K232A 

polymorphism it has been shown that its effects on milk production traits are 

not constant during lactation. However, most genome-wide association 

studies (GWAS) for milk production traits do not account for changes in 

genetic effects during lactation. Therefore, these GWAS might miss QTL 

whose effects change during lactation. The objective of this thesis was to scan 

the whole genome for QTL whose effects on milk production traits change 

during lactation. First, 4 different GWAS approaches were performed to detect 

QTL with changing effects on protein content during lactation including an 

alternative approach; GWAS for genotype by lactation stage interaction. 

Results showed that the GWAS for genotype by lactation stage interaction 

identified significant regions that were not detected in GWAS assuming 

constant SNP effects during lactation. The GWAS for genotype by lactation 

stage interaction were performed for 7 other milk production traits. In total 7 

genomic regions whose effects change during lactation exhibited significant 

genotype by lactation stage interaction effects. Therefore, GWAS for 

genotype by lactation stage interaction offered new possibilities to unravel the 

changes in genetic background of milk production traits. Changes in genetic 

effects in early lactation might be related to negative energy balance. Effects 

of pregnancy might cause changes in late lactation. Possible effects of 

pregnancy were further investigated by studying genotype by pregnancy 

interaction. Interestingly, the effects of pregnancy on milk production traits 

differed for DGAT1 genotypes. Finally, GWAS for genotype by season 

interaction were performed and identified major interaction signals on 

chromosomes 3 and 14 (DGAT1). 
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1.1 Changes in milk yield and components during lactation 

Bovine milk contains fat, protein, lactose, minerals, and other components 

(Fox et al., 2015). It is known that milk yield and content of main milk 

components change during lactation as shown in Figure 1.1. 

 

Figure 1.1. Changes in milk yield and components during lactation in first-

parity Dutch Holstein-Friesian cows. 

1.1.1 In early lactation 

In early lactation, milk yield increases whereas fat content and protein 

content decrease. The increased milk yield demands energy that cannot be met 

because of the physiologically constrained feed intake directly after calving 

(De Vries and Veerkamp, 2000; van Knegsel et al., 2005). Therefore, dairy 

cows experience a negative energy balance (NEB) in early lactation. During 

NEB, the energy deficit needs to be compensated via the mobilization of body 

fat reserve (Bauman and Currie, 1980; Bell, 1995). This process affects the fat 

to protein ratio, FA composition, β-hydroxybutyrate, and other components in 

milk. It is known that dairy cows with NEB have an increased probability of 
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suffering from metabolic disorders like ketosis and displaced abomasum 

(Collard et al., 2000; Duffield et al., 2009). Moreover, NEB is related to an 

increase in days open and lower conception rates after insemination (De Vries 

and Veerkamp, 2000; Llewellyn et al., 2007). Routinely monitoring NEB in 

early lactation is essential for management practices. However, directly 

quantifying NEB is expensive and time-demanding. Therefore, changes in 

milk yield and components have been suggested as potential indicators to 

routinely monitor NEB in a cost-effective way (Friggens et al., 2007; Van 

Knegsel et al., 2007; Stoop et al., 2009).  

1.1.2 In late lactation 

In late lactation milk yield and components also change (Figure 1.1), which 

was partly due to the involution of the mammary gland. From an evolutionary 

perspective, involution of the mammary gland after peak production is due to 

the decreased demand for milk from calves and dairy cows need to prepare for 

the next lactation (Jena et al., 2019; Zhao et al., 2019). Another factor that 

might contribute to changes in milk yield and components in late lactation is 

pregnancy. Dairy cows typically are inseminated and start gestation around 

130 d in lactation. When gestation and lactation occur concurrently, the feed 

and energy intake will not only be used for milk production and maintenance 

but also for development of the fetus. In addition, heifers also need energy for 

growth. The partitioning of energy and nutrients between the cow and the 

embryo might decrease the availability of energy and nutrients for milk 

production (Bauman and Currie, 1980; Bell, 1995). Therefore, pregnancy has 

an impact on milk yield and components; pregnancy decreases milk yield, 

lactose yield, fat yield, protein yield, and increases fat content (Ragsdale et 

al., 1924; Olori et al., 1997; Bohmanova et al., 2009; Penasa et al., 2016). 

These effects of pregnancy on milk production traits occur during late 

gestation and coincide with the increased energy demand for fetal growth. The 

fetus needs a relatively small amount of energy during early developmental 

stages; from conception throughout the first 5 months of pregnancy the 

additional metabolic energy required by a pregnant cow is less than 1% of the 
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energy demand for milk production (Moran, 2005). The growth of the fetus 

increases exponentially from d 160 in gestation onwards. In the last 2 months 

of gestation the fetus acquires around 60% of its birth weight (Prior and Laster, 

1979; Bauman and Currie, 1980; Bell et al., 1995; Krog et al., 2018). 

It has been estimated that as a consequence of pregnancy, 305 d milk yield 

of a first-parity Holstein-Friesian cow is reduced with 207 kg as compared to 

a non-pregnant cow (Olori et al., 1997). The changes in milk yield and 

components due to pregnancy need to be accounted for in the genetic 

evaluation of dairy cattle and adjustments for pregnancy are implemented in 

several countries. Otherwise cows with better fertility, which are more likely 

to be pregnant, would be penalized in their breeding value for milk production 

traits (Olori et al., 1997; Bohmanova et al., 2009; Loker et al., 2009). As 

pregnancy affects milk yield and components, studies have been performed to 

investigate possibilities to predict pregnancy status based on milk infrared 

spectra (Lainé et al., 2017; Toledo-Alvarado et al., 2018; Delhez et al., 2020). 

It has been suggested that after 150 d in pregnant predicting pregnancy status 

based on changes in milk yield and components might be used as a 

complementary tool to detect fetal abortion (Delhez et al., 2020). 

1.2 Changes in genetic parameters of milk production 

traits during lactation 

As the biological background of milk synthesis changes, e.g., due to NEB 

and pregnancy, the genetic parameters of milk yield and components might 

also change during lactation. It has been reported that heritabilities for milk 

yield were 0.16 in early lactation (5 DIM), increase to 0.39 in mid lactation 

(205 DIM), and decreased to 0.30 in late lactation (305 DIM) (Druet et al., 

2003). The genetic variance for milk yield is higher in mid lactation than in 

early and late lactation. The residual variance decreases from early to mid 

lactation and is form thereon rather constant till late lactation (Pool et al., 

2000; Druet et al., 2003). Heritabilities for other milk production traits are also 

known to change during lactation (Strabel and Jamrozik, 2006; Muir et al., 

2007; Hammami et al., 2008).  
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Figure 1.2. Genetic correlations of milk yield at different lactation stages 

and fat content at different lactation stages. Data are adapted from Druet et al. 

(2005). 

 

Genetic correlations of milk yield and fat content during lactation is shown 

in Figure 1.2. It shows that genetic correlations between test-day milk yield 

measured between day 20 till day 150 in lactation are higher than 0.8. Genetic 

correlations between fat content measured from day 20 till day 230 in lactation 

are higher than 0.8. The genetic correlations decrease when the time interval 

between lactation stages increases, e.g., the correlation between milk yield at 

day 20 and day 320 is smaller than 0.2. Similar results were found in other 

studies (Druet et al., 2003; de Roos et al., 2004; Zavadilová et al., 2005; 

Caccamo et al., 2008; Savegnago et al., 2013). The changes in genetic 

parameters during lactation suggest that milk production traits are genetically 

different traits during lactation, especially in early and late lactation. 
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1.3 GWAS for changing genetic effects during lactation 

As shown in section 1.2, there is evidence that the genetic effects on milk 

production traits changes during lactation. There is also evidence that effects 

of specific genes on milk production traits change during lactation. For 

example, effects of the diacylglycerol O-acyltransferase 1 (DGAT1) K232A 

polymorphism, a polymorphism with major effects on milk yield and several 

components, change during lactation. The DGAT1 effects on milk yield and 

fat content increase during the first 60 d in lactation (Strucken et al., 2012b); 

the Wilmink parameter describing the slope toward the peak production is 

significantly associated with DGAT1 genotype (Strucken et al., 2011); DGAT1 

genotype by lactation stage interaction effects were identified for milk yield, 

lactose yield, fat content, and protein content (Bovenhuis et al., 2015). In 

addition, expression of several genes involved in milk synthesis increases 

during the initiation of lactation and then decreases after peak production, e.g., 

DGAT1, STAT5, FASN, BTN1A1, AGPAT6 (Bionaz and Loor, 2008; 2011; 

Wickramasinghe et al., 2012). Although there is evidence suggesting that 

genetic effects change during lactation, most genome-wide association studies 

(GWAS) to identify genetic background of milk production traits do not 

consider changes in genetic effects during lactation (Jiang et al., 2010; Cole 

et al., 2011; Meredith et al., 2012; Nayeri et al., 2016). These GWAS were 

performed using either cumulative milk production records (e.g., 305 d milk 

yield) or test-day records with constant genetic effects, and therefore might 

miss QTL whose effects change during lactation (Lund et al., 2008; Ning et 

al., 2018). 

Only a few GWAS were performed to identify QTL with genetic effects 

that change during lactation using different approaches. First, lactation can be 

split up and GWAS can be performed for specific parts of the lactation. 

Strucken et al. (2012b) split up the first 60 d in lactation, i.e., the most crucial 

period for dairy cows, into 6 stages and performed GWAS for each lactation 

stage. Different SNP were identified for different lactation stages. This might 

indicate that SNP effects change during lactation, however, the detection 

power is not the same for these lactation stages. Furthermore, this approach 

does not efficiently utilize all available data.  



1 General introduction 

 

 

16 

 

Second, a lactation curve was fitted or a phenotype (like lactation 

persistency) was defined based on test-day records, then GWAS were 

performed based on estimated lactation curve parameters or lactation 

persistency (Pryce et al., 2010; Strucken et al., 2012a; Macciotta et al., 2015). 

The Wilmink lactation curve uses 3 parameters to describe milk production 

traits during lactation, i.e., the level, the slope toward peak or nadir, and the 

slope after peak or nadir (Wilmink, 1987). Significant effects on the slope 

toward peak and after peak were identified for protein yield e.g., on 

chromosomes 3 and 27 (Strucken et al., 2012a). Lactation persistency 

describes how milk yield decrease after peak production. Lactation 

persistency can be defined in different ways and some QTL e.g., on 

chromosomes 6 and 27 have been associated with lactation persistency (Pryce 

et al., 2010). This approach is a 2-step analysis and the accuracies of estimated 

parameters or phenotypes are important for the GWAS.  

Third, GWAS have been performed using random regression of 

polygenetic effects and fixed regression of SNP effects during lactation 

(Szyda et al., 2014). In (random) regression models, Legendre polynomials 

are commonly used to fit the development of polygenetic and SNP effects, 

however, selection of the best polynomial order is computationally demanding 

and extreme effects tend to be estimated at the peripheries of lactation (López-

Romero and Carabaño, 2003; Miglior et al., 2009). 

Alternatively, GWAS for genotype by lactation stage interaction can be 

used to detect changing SNP effects during lactation. Bovenhuis et al. (2015) 

identified significant DGAT1 by lactation stage interactions for milk yield, fat 

content, protein content, and protein yield. However, a genome-wide screen 

for genotype by lactation stage interaction has not been conducted. 

1.4  Aim and outline of this thesis 

This thesis aimed to unravel the changes in the genetic background of milk 

production traits during lactation. Accounting for changes in the genetic 

background might contribute to the development of better management 

indicators based on milk production traits. In chapter 2, we performed 4 
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different GWAS approaches to identify QTL whose effects change during 

lactation using milk protein content as an example trait. One of those methods 

is the GWAS for genotype by lactation stage interaction. In chapter 3, we 

performed GWAS for genotype by lactation stage interaction for 7 other milk 

production traits, i.e., milk yield, lactose yield, fat yield, protein yield, lactose 

content, fat content, and SCS. In chapter 4, we estimated effects of pregnancy 

on milk production traits and investigated whether the changes in genetic 

effects on milk production traits in late lactation are related to pregnancy. In 

chapter 5, we estimated the effect of season on milk production traits. In 

addition, we performed a GWAS for genotype by season interaction. The 

general discussion focuses on 3 points: changes in genetic parameters of milk 

production traits during lactation in the data that was used for this thesis, 

approaches to model changing SNP effects during lactation using random 

regression models, and the identification of genetic effects that change on FA 

composition during lactation. 
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Abstract 

Genetic effects on milk production traits in dairy cattle might change 

during lactation. However, most genome-wide association studies (GWAS) 

for milk production traits assume that genetic effects are constant during 

lactation. This assumption might miss these QTL whose effects change during 

lactation. This study aimed to screen the whole genome specifically for QTL 

whose effects change during lactation. For this purpose, 4 different GWAS 

approaches were performed based on 19,286 test-day milk protein content 

records of 1,800 first-parity Dutch Holstein cows that were genotyped using a 

50k SNP panel. Separate GWAS for specific lactation stages suggested that 

the detection power greatly differs between lactation stages and that genetic 

effects of some QTL change during lactation. GWAS for estimated Wilmink 

lactation curve parameters detected many chromosomal regions for Wilmink 

parameter a (protein content level), whereas 2 regions for Wilmink parameter 

b (decrease in protein content towards nadir), and no regions for Wilmink 

parameter c (increase in protein content after nadir). A GWAS using a 

repeatability model where SNP effects are assumed to be constant during 

lactation detected 20 chromosomal regions with effects on milk protein 

content, however, there was no evidence that their effects changed during 

lactation. A GWAS for genotype by lactation stage interaction using a 

repeatability model and accounting for changing genetic effects during 

lactation detected 5 regions on chromosomes 3, 9, 10, 14, and 27. The 

significant genotype by lactation stage interaction indicated that their effects 

changed during lactation. Three of these 5 regions were only identified using 

a GWAS for genotype by lactation stage interaction. Our study demonstrated 

that GWAS for genotype by lactation stage interaction offers new possibilities 

to identify QTL involved in milk protein content. The performed approaches 

can be applied to other milk production traits. Identification of QTL whose 

genetic effects change during lactation will help elucidate the genetic and 

biological background of milk production.  

Key words: GWAS, genetic effect, longitudinal trait, genotype by 

lactation stage interaction  
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2.1 Introduction 

Quantitative genetic studies have shown that the additive genetic variance 

for milk production traits changes during lactation (e.g. Jakobsen et al., 2002; 

Druet et al., 2005) and genetic correlations between milk production traits in 

early and late lactation differ from unity (e.g. Druet et al., 2003; Bastin et al., 

2011). Furthermore, for the diacylglycerol O-acyltransferase 1 (DGAT1) 

K232A polymorphism it has been shown that its effects on milk production 

traits are not constant during lactation (e.g. Strucken et al., 2011; Szyda et al., 

2014; Bovenhuis et al., 2015). In addition, results from gene expression 

studies show that the expression of several genes involved in milk production 

changes during lactation (e.g. Bionaz and Loor, 2011; Wickramasinghe et al., 

2012). Therefore, genetic effects on milk production traits might change 

during lactation. However, genome-wide association studies (GWAS) for 

milk production traits are mainly based on 305-day lactation records, which 

are summed or average test-day milk production records (e.g. Jiang et al., 

2010; Cole et al., 2011). These studies detect QTL based on their average 

genetic effects during the whole lactation and assume that genetic effects of 

QTL related to milk production traits are constant. In a GWAS using models 

assuming constant genetic effects during lactation, QTL whose genetic effects 

change during lactation might not be detected (Lund et al., 2008; Ning et al., 

2018). 

Only a few studies specifically performed genome-wide screens for QTL 

whose genetic effects change during lactation (Strucken et al., 2012a; 

Macciotta et al., 2015). These GWAS were performed based on estimated 

lactation curve parameters or principal components and used relatively small 

data sets (less than 400 cows). Alternatively, screening the whole genome 

specifically for regions showing genotype by lactation stage interaction has 

not previously been carried out. 

The objective of this study was to screen the whole genome for genetic 

effects that change during lactation. For this purpose we performed 4 GWAS 

approaches using test-day milk protein content in Dutch first-parity Holstein 

cows: 1) separate GWAS for specific lactation stages; 2) GWAS for estimated 
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Wilmink lactation curve parameters; 3) a GWAS using a repeatability model 

where SNP effects are assumed constant during lactation; and 4) a GWAS for 

genotype by lactation stage interaction using a repeatability model and 

accounting for changing genetic effects during lactation. This study will 

provide insight in differences between the 4 approaches and might lead to the 

detection of new QTL that would not have been detected when using models 

assuming genetic effects are constant. The results of this study are expected 

to further elucidate the genetic and biological background of milk protein 

content. 

2.2 Materials and methods 

2.2.1 Phenotypes and genotypes 

Test-day milk production records of 1,800 first-parity cows were available 

for this study. The cows were part of the Dutch Milk Genomics Initiative and 

details can be found in Stoop et al. (2007). In brief, all cows were at least 

87.5% Holstein-Friesian and were housed on 398 commercial herds with at 

least 3 cows per herd. Cows were milked twice daily and milk protein content 

was determined as part of routine milk recording using infrared spectroscopy 

(MilkoScan FT 6000, Foss Electric, Hillerød, Denmark) at the milk control 

station (Qlip, Zutphen, the Netherlands). The lactation was truncated at 390 

days, each cow on average had 10.7 test-day records and the total number of 

test-day records was 19,286. Average milk protein content was 3.50% and the 

standard deviation was 0.31%.  

DNA was isolated from blood samples and all cows were genotyped using 

a customized 50k SNP chip (CRV, cooperative cattle improvement 

organization, Arnhem, the Netherlands) with the Infinium assay (Illumina, 

San Diego, CA). The SNP sequence were mapped using BLAST 

(http://www.ncbi.nlm.nih.gov/blast) and bovine genome assembly Btau 4.0 

(Liu et al., 2009). 

http://www.ncbi.nlm.nih.gov/blast
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2.2.2 GWAS approaches 

If QTL effects change during lactation, separate GWAS for specific 

lactation stages might give different results. The GWAS signals might be 

strong during some parts of the lactation and weak or absent during other 

lactation stages. Therefore, in the first GWAS approach separate genome-

wide associations were performed for specific lactation stages. For this 

purpose the lactation was divided in 26 lactation stages of 15 days each. 

Average number of test-day records for each lactation stage was 742. GWAS 

were performed based on data from 2 consecutive lactation stage classes, e.g. 

lactation stages 1 & 2, 3 & 4 and so on. In this way most of the cows had at 

least one test-day record in each of the separate GWAS. Because the number 

of records per lactation stage decreased towards the end of lactation, data from 

lactation stages 21 to 26 were combined for the last GWAS. Combining 

lactation stage classes might in some cases result in multiple test day records 

per cow in a GWAS data set. In that case the first test day record of a cow was 

removed. The GWAS for specific lactation stages were performed using 

model [2.1]:  

 

yjklmno = μ + b1·afcjklmno + C_seasonj  + scodek + lactl + SNPm + HTDn + 

animalo + ejklmno, [2.1] 

 

where yjklmno is test-day milk protein content; μ is the overall mean; afcjklmno 

is a covariate describing the effect of age at first calving and b1 is the 

regression coefficient; C_seasonj is the fixed effect of calving season (May – 

July 2004, August – October 2004, November 2004 – January 2005, and 

February – April 2005); scodek is the fixed effect accounting for possible 

differences in genetic level between daughters of proven bulls, test bulls, and 

other proven bulls; lactl is the fixed effect of lactation stage (26 classes of 15 

days each); SNPm was the fixed effect of SNP genotype, modeled as a class 

variable; HTDn was the random effect of herd-test-day, which was assumed to 

be distributed as 𝑁(0, 𝑰𝜎𝐻𝑇𝐷
2 ), where I is an identity matrix and 𝜎𝐻𝑇𝐷

2 is the 

herd-test-day variance; animalo was the random additive genetic effect of the 
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individual and was assumed to be distributed as 𝑁(0, 𝑨𝜎𝑎
2), where A is the 

additive genetic relationships matrix and 𝜎𝑎
2 is the additive genetic variance; 

ejklmno was the random residual and was assumed to be distributed as 

𝑁(0, 𝑰𝜎𝑒
2), where I is an identity matrix and 𝜎𝑒

2 is the residual variance. The 

additive genetic relationship matrix A was constructed based on 14,062 

animals (traced back 5 generations) and pedigree of the animals was provided 

by the Dutch herdbook (CRV, Arnhem, The Netherlands). Cows descended 

from proven bulls (825 cows), test bulls (805 cows), and other proven bulls 

(173 cows). Possible differences in genetic level between daughters of these 

bulls were accounted for in the model by the effect of scodek. Model [2.1] 

accounts for a lactation stage effect lactl because each separate GWAS 

analyzed test-day records from at least 2 different lactation stage classes.  

GWAS based on estimated lactation curve parameters were performed 

(Strucken et al., 2012a). In order to be able to compare our results with these 

GWAS, we performed the second GWAS approach. In these analyses, we first 

fitted a Wilmink lactation curve (Wilmink, 1987) to the test-day records of 

each cow using following model: 

 

yi = a + b·exp −0.05·DIMi + c·DIMi + ei, [2.2] 

 

where yi is test-day milk protein content; DIMi is days in milk; parameter 

a represents the milk protein content level; parameter b represents the decrease 

in protein content towards nadir; and parameter c represents the increase in 

protein content after nadir. Lactation curve parameters were estimated using 

the Procedure NLIN in SAS (SAS Inc., 1999). Subsequently GWAS for 

estimated lactation curve parameters, as proposed by Strucken et al. (2012a), 

were performed using the following model: 

 

yjkmno = μ + b1·afcjkmno + C_seasonj  + scodek + SNPm + Herdn + animalo + 

ejkmno, [2.3] 

 

where yjkmno are estimated lactation curve parameters a, b or c; Herdn was 

the random effect of herd-test-day, which was assumed to be distributed as 
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𝑁(0, 𝑰𝜎𝐻𝑒𝑟𝑑
2 ), where I is an identity matrix and 𝜎𝐻𝑒𝑟𝑑

2 is the herd-test-day 

variance; Other model terms are as described for model [2.1].  

A GWAS using a model that assumes that genetic effects are constant 

during lactation might not be able to detect QTL whose genetic effects change 

during lactation (Lund et al., 2008; Ning et al., 2018). To investigate this 

hypothesis we performed the third GWAS approach using all test-day records 

and the following repeatability model that SNP effects are assumed to be 

constant throughout the lactation: 

 

yjklmnop = μ + b1·afcjklmnop + C_seasonj  + scodek + lactl + SNPm + HTDn + 

animalo  + pep + ejklmnop, [2.4] 

 

where lactation stage lactl has 26 classes in this analysis; pep is the 

permanent environmental effect that was assumed to be distributed as 

𝑁(0, 𝑰𝜎𝑝𝑒
2 ), where I is an identity matrix and 𝜎𝑝𝑒

2  is the permanent 

environmental variance. Other model terms are as described for model [2.1]. 

Finally, we performed the fourth GWAS approach to specifically search 

for QTL whose effects change throughout lactation, i.e., SNP that show 

significant genotype by lactation stage interaction. For this purpose model 

[2.4] was extended with a SNP by lactation stage interaction term (SNP × 

lact)lm: 

 

yjklmnop = μ + b1·afcjklmnop + C_seasonj  + scodek + lactl + SNPm + (SNP × 

lact)lm + HTDn + animalo  + pep + ejklmnop, [2.5] 

 

where model terms are as described for model [2.4] and lactation stage lactl 

has 26 classes in this analysis. For SNP that showed significant SNP by 

lactation stage interaction, the effects during the course of lactation were 

estimated using a model including the SNP by lactation stage interaction but 

without the main effects of SNP and lactation stage:  

 

yjklmnop = μ + b1·afcjklmnop + C_seasonj  + scodek + (SNP × lact)lm + HTDn + 

animalo  + pep + ejklmnop, [2.6] 
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where model terms are as described for model [2.4] and lactation stage 

class lactl has 26 classes. A t-test was used to test the significance of the 

difference between any of 2 SNP genotypes within each lactation stage. If the 

P-value for the possible comparisons between any of 2 SNP genotypes was 

smaller than 0.001, the SNP effect within that lactation stage was considered 

significant. 

To test SNP by lactation stage interaction, any SNP genotype class in each 

lactation stage class needs to have a sufficiently large number of test-day 

records. SNP were not included in the GWAS if a genotype class contained 

less than 10 test-day records in any of the lactation stage classes. After this 

restriction, 30,348 SNP remained and the same SNP were used in the different 

GWAS approaches. All GWAS were performed in ASReml 4 (Gilmour et al., 

2006). 

2.2.3 Significance threshold 

The significance of SNP effects in GWAS approach 1 (separate lactation 

stages), GWAS approach 2 (Wilmink lactation curve parameters), GWAS 

approach 3 (repeatability model), and the SNP by lactation stage interaction 

effect in GWAS approach 4 were tested using the Wald F-test statistic. 

Possible inflation of the test statistic was inspected based on quantile-quantile 

(QQ) plots where the observed −log10(P-value) was plotted against the 

expected −log10(P-value). The genome-wide significance threshold for the 

SNP effects was based on false discovery rate (FDR). FDR was calculated 

using the R package “qvalue” (Storey and Tibshirani, 2003) and FDR < 0.01 

was considered significant. Previous GWAS for SNP by environment 

interaction observed a strong inflation of the test statistic for the interaction 

term (e.g. Voorman et al., 2011; Marigorta and Gibson, 2014). When the 

distribution of the test statistic under null hypothesis is unambiguous, 

permutation is a powerful strategy to estimate significance threshold 

(Churchill and Doerge, 1994; Doerge and Churchill, 1996). Therefore, the 

genome-wide significance threshold for the SNP by lactation stage interaction 

effect was not based on FDR but determined using permutation. In each 

permutation, all 30,348 SNPs of an animal were simultaneously assigned to a 
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randomly selected other animal. Subsequently a GWAS was performed using 

the permuted genotypes. For each permutation the smallest genome-wide P-

value of the SNP by lactation stage interaction term was stored. Permutation 

was repeated 100 times to determine the 1% significance threshold for the 

interaction term.  

2.3 Results 

The SNP with the highest −log10(P-value) for significant chromosomal 

regions (lead SNP) identified in the different GWAS approaches are in Table 

2.1. Different chromosomal regions on the same chromosome are 

differentiated by letters.  

2.3.1 Separate GWAS for specific lactation stages  

Manhattan plots of separate GWAS for specific lactation stages are shown 

in Figure 2.1. Results are presented for early lactation (lactation stages 1 & 2, 

Figure 2.1A), mid lactation (lactation stages 13 & 14, Figure 2.1B) and late 

lactation (lactation stages 21 to 26, Figure 2.1C). Manhattan plots of separate 

GWAS for other lactation stages are not shown. Figure 2.1 and Table 2.1 

demonstrate that there were large differences between lactation stages in 

number of detected chromosomal regions. In early lactation only a region on 

chromosome 6 significantly affected milk protein content. In mid lactation 

significant associations were detected on chromosomes 4, 5, 6, 10a, 10c, 14a, 

15a, 20, 24, and 26. In late lactation significant associations were detected on 

chromosomes 6, 10b, 14a, and 16a. The region on chromosome 6, which 

contains the casein gene cluster, was the only region that showed significant 

associations in all separate GWAS for specific lactation stages. The region on 

chromosome 14a, which contains the DGAT1, did not show significant 

associations in early lactation and the significance of the GWAS signal 

showed large changes as lactation progressed (Table 2.1). Except 

chromosomes 6 and 14a, regions on chromosomes 4, 5, 10a, 10c, 15a, 20, 24, 

and 26 showed significant effects in mid lactation but no significant effects in 

early and late lactation. The regions on chromosomes 10b and 16a showed 
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significant associations in late lactation but no associations were detected in 

early and mid-lactation. These differences between lactation stages in number 

of detected chromosomal regions and in their significance suggest that genetic 

effects of some QTL change during lactation.  

2.3.2 GWAS for wilmink lactation curve parameters 

Manhattan plots of GWAS for the 3 Wilmink lactation curve parameters 

are shown in Figure 2.2. For parameter a, representing the milk protein content 

level during lactation, significant SNP were detected on chromosomes 1, 6, 

8b, 9a, 14a, 15b, 16b, 20, 23, and 26 (Figure 2.2A). The strongest GWAS 

signals for parameter a were detected on chromosomes 6, 14a, and 20. For 

parameter b, which represents the decrease in protein content towards nadir, 

significant effects were detected on chromosomes 14a and 18 (Figure 2.2B). 

For parameter c, which represents the increase in protein content after nadir, 

no significant QTL were detected (Figure 2.2C).  

2.3.3 GWAS based on the repeatability model  

The Manhattan plot for the GWAS using a repeatability model and 

assuming SNP effects are constant during lactation is shown in Figure 2.3. 

Significant chromosomal regions were detected on chromosomes 4, 6, 7, 8a, 

10c, 11, 14a, 14b, 15a, 15b, 16a, 20 and 26. Strong GWAS signals were found 

on chromosomes 6, 14a, 15a, 15b, and 20; as 90% of the SNPs that passed the 

significance threshold were clustered in these chromosomal regions.  

2.3.4 GWAS for SNP by lactation stage interaction 

The Wald F-test statistic for the SNP by lactation stage interaction effect 

showed a strong inflation, which is illustrated via the QQ plot. To determine 

the appropriate threshold for the SNP by lactation stage interaction term 

permutations were performed. Based on 100 permutations the 1% genome-

wide significance threshold was estimated to be −log10(P-value) = 18.6.  
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Figure 2.1. Manhattan plots for milk protein content in specific different 

lactation stages. (A) lactation stages 1 & 2 (d 1 to d 30), (B) lactation stages 

13 & 14 (d 181 to d 210), and (C) lactation stages 21 to 26 (d 301 to d 390). 

The cut-off value for the y-axis is set at a −log10(P-value) of 30. The horizontal 

line indicates a false discovery rate < 0.01. 
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Figure 2.2. Manhattan plots for Wilmink lactation curve parameters fitted 

to milk protein test-day records. (A) Wilmink parameter a, (B) Wilmink 

parameter b, and (C) Wilmink parameter c. The cut-off value for the y-axis is 

set at a −log10(P-value) of 30. The horizontal line indicates a false discovery 

rate < 0.01. In Figure 2.2C no threshold is indicated as none of the SNP effects 

were significant.   
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Figure 2.3. The Manhattan plot for milk protein content based on test-day 

milk protein content records. The cut-off value for the y-axis is set at a 

−log10(P-value) of 30. The horizontal line indicates a false discovery rate < 

0.01. 

 

 

Figure 2.4. The Manhattan plot for SNP by lactation stage interaction on 

milk protein content. The cut-off value for the y-axis is set at a −log10(P-value) 

of 30. The horizontal line indicates the genome-wide significance threshold 

based on permutation (−log10(P-value) = 18.6). 

 

The Manhattan plot for the SNP by lactation stage interaction effect is 

shown in Figure 2.4. Significant SNP were detected on chromosomes 3, 9b, 

10b, 14a, and 27. Estimated effects for the (SNP × lact) interaction term for 
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the lead SNP in these chromosomal regions were obtained from model [2.6]. 

Figure 2.5 shows the estimated effects of the lead SNP for the 5 regions that 

show significant SNP by lactation stage interaction. The lead SNP on 

chromosome 14a showed a different pattern as compared to the lead SNP from 

the other significant regions. The lead SNP on chromosomes 3, 9b, 10b and 

27 in general showed no significant effects in early and mid-lactation but SNP 

effects became significant towards late lactation whereas the lead SNP on 

chromosome 14a showed significant effects throughout the whole lactation 

except for early lactation (Figure 2.5). 
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Figure 2.5. Effects of lead SNP that show significant SNP by lactation 

stage interaction during lactation. (A): rs29011303 on Chromosome 3; (B) 

rs43193272 on Chromosome 9; (C) rs41591350 on Chromosome 10; (D) 

rs523413537 on Chromosome 14; and (E) rs109651365 on Chromosome 27. 

* indicates a significant (P < 0.001) difference between any 2 SNP genotype 

classes in that specific lactation stage based on a t-test. 
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2.3.5 Comparing different GWAS approaches  

On chromosomes 8, 9, 10, 14, 15, 16, and 26, different GWAS approaches 

identified different lead SNP. A 2-SNP analysis revealed that the lead SNP on 

chromosome 10b (at 46.6 Mbp and 48.7 Mbp, Table 2.1) were in strong 

linkage disequilibrium and they detected the same QTL. Similarly, the 2 lead 

SNP on chromosome 26 were in strong linkage disequilibrium and 

represented the same QTL.  

Some regions only showed significant effects in one of the GWAS 

approaches; chromosomes 5, 10a, and 24 only showed significant effects in 

the separate GWAS for specific lactation stages, chromosomes 9a and 16b 

were only significant for Wilmink parameter a, chromosome 18 only showed 

significant effects for Wilmink parameter b, chromosomes 7, 8a, and 11 were 

only significant in the repeatability model [2.4] and chromosomes 3, 9b, and 

27 only showed significant SNP by lactation stage interaction effects. The 

region on chromosome 14a showed highly significant effects in all GWAS 

approaches: all lactation stages except for lactation stages 1 & 2, Wilmink 

parameters a and b, the repeatability model and a highly significant SNP by 

lactation stage interaction.  

Twenty chromosomal regions on chromosomes 1, 4, 5, 6, 7, 8a, 8b, 9a, 

10a, 10c, 11, 14b, 15a, 15b, 16a, 16b, 20, 23, 24, and 26 did not show evidence 

for changing effect sizes during lactation: no clear pattern in the significance 

for different lactation stages, no significant effects for Wilmink parameters b 

and c, and no significant SNP by lactation stage interaction were detected. 

Five chromosomal regions on chromosomes 3, 9b, 10b, 14a and 27 showed 

significant SNP by lactation stage interaction (model [2.5]), indicating that 

effects of these regions changed during lactation. chromosome 10b was 

significant in the GWAS based on data from lactation stages 21 to 26 and also 

showed a strong but non-significant GWAS signal for Wilmink parameter c 

(Table 2.1, −log10(P-value) = 4.0). Chromosome 14a affected both the milk 

protein content level (Wilmink parameter a) and the shape of the lactation 

curve (Wilmink parameter b). Chromosomes 3, 9b, and 27 showed significant 

SNP by lactation stage interaction but did not show significant effects in any 

of the other GWAS analyses we performed. These 3 chromosomal regions 
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showed a clear increase in −log10(P-value) towards later lactation stages 

(Table 2.1, e.g. GWAS based on data from lactation stages 21 to 26, model 

[2.1]), although not significant. Furthermore, for Wilmink parameter c, the 

lead SNP on chromosome 3 showed −log10(P-value) of 5.5, which is not 

significant at the applied threshold of FDR < 0.01 but significant at threshold 

of FDR < 0.05. Chromosome 9b showed a strong but non-significant GWAS 

signal for Wilmink parameter c (Table 2.1, −log10(P-value) = 5.1). 

2.4 Discussion 

In this study we performed different GWAS using test-day milk protein 

content records. The objective was to specifically screen the genome for SNP 

whose effects change during lactation. For this purpose 4 different approaches 

were performed: 1) separate GWAS for specific lactation stages; 2) GWAS 

for estimated Wilmink lactation curve parameters; 3) a GWAS using a 

repeatability model where SNP effects are assumed constant during lactation; 

and 4) a GWAS for genotype by lactation stage interaction using a 

repeatability model and accounting for genetic effects that change during 

lactation. Separate GWAS for specific lactation stages suggested that the 

detection power greatly differs between lactation stages and that effects of 

some QTL change during lactation. Many regions were detected for Wilmink 

parameter a whereas 2 regions were detected for Wilmink parameter b and no 

regions were detected for Wilmink parameter c. Twenty chromosomal regions 

were detected with effects on milk protein content, however, there was no 

evidence that their effects changed during lactation. A GWAS specifically for 

SNP by lactation stage interaction identified 5 regions, from which 3 were not 

identified based on the other GWAS approaches we performed. To determine 

the appropriate significance threshold for the SNP by lactation stage 

interaction term permutation was used. 

2.4.1 QTL for milk protein content 

In the current study regions on chromosomes 4, 6, 7, 8a, 10c, 11, 14a, 14b, 

15a, 15b, 16a, 20, and 26 were identified using a repeatability model (model 
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[2.4]) where SNP effects are assumed constant during lactation. Except for 

chromosome 14a, we did not find evidence that effects of these regions 

changed during lactation, e.g. these regions were not significant for Wilmink 

parameters b or c and did not show significant SNP by lactation stage 

interaction. The region on chromosome 6 contains the casein gene cluster (e.g. 

Ferretti et al., 1990; Threadgill and Womack, 1990) and the region on 

chromosome 20 (35.9 Mbp, Table 2.1) is closed to the Growth Hormone 

Receptor (33.9 Mbp, Btau 4.0) gene (e.g. Arranz et al., 1998; Blott et al., 

2003). These 2 QTL have been shown to have large effects on milk protein 

content. The region on chromosome 10c (51.6 Mbp, Btau 4.0) was identical 

to the region detected by Schopen et al. (2011) in a GWAS for milk protein 

composition, which was based on largely the same animals and genotypes as 

used in the current study. On chromosome 10 (46.6 Mbp, UMD 3.1) Nayeri 

et al. (2016) and Pausch et al. (2017) reported significant effects on milk 

protein content. Significant associations for chromosomal regions on 

chromosomes 4, 14b, 15a, 15b, and 16a are also in agreement with results 

from other GWAS (e.g. Buitenhuis et al., 2016; Pausch et al., 2017; Teissier 

et al., 2018). GWAS performed by Nayeri et al. (2016) and Pausch et al. 

(2017), which were based on large data sets, detected a number of 

chromosomal regions with effects on milk protein content that were not 

detected in the current study: regions on chromosomes 5, 29, and a second 

region on chromosome 6. The reason we did not detect some of these regions 

might be related to power.  

Regions on chromosomes 3, 9b, 10b, 14a, and 27 showed significant SNP 

by lactation stage interaction effects. The region on chromosome 14a contains 

DGAT1, which has a major effect on several milk production traits (e.g. 

Grisart et al., 2002; Grisart et al., 2004; Bovenhuis et al., 2016). Effects of 

DGAT1 on milk production traits change during lactation (Strucken et al., 

2011; Szyda et al., 2014). Based on largely the same data as current study, 

Bovenhuis et al. (2015) described large DGAT1 by lactation stage interaction 

on milk yield, fat content, and protein content. Except for chromosomes 10b 

and 14a, the rest 3 regions were not significant in any of the other GWAS 

approaches we performed. However, these regions have been associated with 
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milk production traits in other studies. Jiang et al. (2010) reported a QTL on 

chromosome 3 (92.8 Mbp, Btau 4.0) with effects on milk and protein yield. 

Strucken et al. (2012a) reported significant effects for Wilmink parameters on 

chromosome 3 (86.6, 115.9, and 116.9 Mbp) for milk protein yield. These 

GWAS signals are close to the region on chromosome 3 (93.2 Mbp, Table 2.1) 

with significant SNP by lactation stage interaction. The region on 

chromosome 27 (37.9 Mbp, Table 2.1) with a significant SNP by lactation 

stage interaction is closed to the 1-acylglycerol-3-phosphate O-

acyltransferase 6 (AGPAT6) gene (38.9 Mbp, Btau 4.0). AGPAT6 is involved 

in milk fat synthesis and has pleiotropic effects on other milk components 

(Littlejohn et al., 2014) and has been shown to affect milk fat yield and fat 

content over the first 60 days of lactation (Strucken et al., 2012b). Furthermore 

it has been shown that the expression of AGPAT6 in the mammary gland 

increases over the first 60 days in lactation and decreases afterwards 

(Beigneux et al., 2006; Bionaz and Loor, 2008).  

2.4.2 Approaches to detect QTL whose effects change during lactation 

A simple approach to find indications for genetic effects that change during 

lactation is to split up the data and perform separate GWAS for different parts 

of the lactation. However, splitting up the data does not make optimal use of 

all available information and it does not provide a direct framework for 

significance testing of SNP whose genetic effect change during lactation. 

Results from separate GWAS for different parts of the lactation showed large 

differences in number of detected chromosomal regions: in early lactation 

only a region on chromosome 6 significantly affected milk protein content 

whereas in mid lactation up to 10 different regions were detected. This shows 

that the power to detect QTL greatly differs between lactation stages. The 

differences in the number of QTL detected in the lactation stage and the 

changes in additive genetic variance during lactation (details in chapter 6) also 

suggest that the effects of QTL change during lactation. 

The low QTL detection power in early lactation as compared to later 

lactation stages can be explained by both a lower additive genetic variance 

and a higher residual variance: the heritability estimate for lactation stages 1 
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& 2 was 0.07 whereas for lactation stages 13 & 14 it was 0.63 (results not 

shown). Separate GWAS for specific lactation stages is expected to be less 

powerful than GWAS based on the repeatability model as it uses 

approximately a 10 times smaller number of records than the repeatability 

model. Counterintuitively, the results obtained from the GWAS based on the 

smaller data set from specific lactation stages (Model [2.1]) and based on the 

repeatability model using all test-day records (Model [2.4]) suggest that 

excluding test-day records from early lactation might be a means to increase 

the QTL detection power. For example, the −log10(P-value) for the region on 

chromosome 14a containing DGAT1 based on the repeatability model [2.4] 

using all available test-day records was 33.1 whereas the GWAS for lactation 

stage 13 & 14 based on only 10% of the records, the −log10(P-value) for 

DGAT1 reached 47.0 (Table 2.1). To check if excluding records can result in 

a stronger GWAS signal we performed an additional analysis using the 

repeatability model [2.4] but excluding data from lactation stages 1 to 4. This 

indeed increased significance of DGAT1 from 33.1, based on all test day 

records, to 54.4 when analyzed based on a smaller data set consisting of test 

day records only from lactation stages 5 to 26. Difference between both 

homozygous DGAT1 genotypes in lactation stage 1 & 2 is -0.01 and in 

lactation stage 13 & 14 is 0.26. In the repeatability model [2.4] genotypic 

effects are averaged over the lactation and the difference between 

homozygous DGAT1 genotypes is 0.18. As QTL detection power is directly 

related to QTL effect size these differences between DGAT1 genotypes are 

part of the explanation why excluding test-day records from early lactation is 

a means to increase the QTL detection power. 

To detect QTL whose effects change during lactation a 2-step approach 

might be used where in a first analysis lactation curves are fitted to the test-

day records and in a second analysis GWAS are performed based on estimated 

parameters. This approach has been used in other studies (e.g. Strucken et al., 

2012a; Macciotta et al., 2015) and allows detection of QTL that affect the 

shape of the lactation curve. In our study these analyses mainly resulted in the 

detection of chromosomal regions that affected the milk protein content level 

(Wilmink parameter a) and only 2 chromosomal regions that affected the 
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shape of the lactation curve (Wilmink parameters b) were detected. More 

subtle changes in the lactation curve, which were identified based on testing 

for SNP by lactation stage interaction, apparently are not picked up based on 

GWAS for Wilmink parameters. Using models that give a more accurate 

description of the lactation curve might be an alternative, however, these also 

require estimation of more parameters (e.g. Grossman and Koops, 2003).  

The GWAS for Wilmink parameters detected several chromosomal 

regions affecting milk protein level (Wilmink parameter a), which were not 

detected in the repeatability model or in most of the lactation stage specific 

GWAS (regions on chromosomes 1, 8b, 9a, 16b, and 23). Therefore we 

concluded that these regions are likely false positives that might be a 

consequence of the 2-step approach where differences in accuracies of 

estimated lactation curve parameters between cows are not taken into account 

in the GWAS. Consequently the obtained significance of SNP effects using 

this 2-step approach are not correct and should be interpreted with caution.  

A GWAS based on the repeatability model [2.4] assumes homogenous 

residual variance, which is an assumption that is violated in this study, 

especially in early lactation. To test the sensitivity of our results to 

heterogeneous residual variance we also performed a GWAS using 

phenotypes that were standardized based on the variance within each lactation 

stage class. This analysis did not result in the detection of other chromosomal 

regions than the ones reported in Table 2.1. The repeatability model assumes 

that SNP effects are constant throughout lactation and SNPs on chromosomes 

4, 6, 7, 8a, 10c, 11, 14b, 15a, 15b, 16a, 20 and 26 seem to follow this 

assumption. The assumption of constant SNP effects might lead to missing 

time-dependent QTL effect (Lund et al., 2008; Ning et al., 2018). The effect 

of region on chromosome 14a clearly changed during lactation but its effect 

still was detected due to its large average effect. SNPs on chromosomes 3, 9b, 

10b, and 27, however, were not detected based on analyses using the 

repeatability model [2.4]. 

Testing for SNP by lactation stage interaction is an alternative approach to 

detect chromosomal regions whose effects change during lactation. A GWAS 

for SNP by lactation stage interaction identified 3 novel regions 
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(chromosomes 3, 9b, and 27) that were not detected in other analyses. 

However, this model was not able to detect a region on chromosome 16a, 

which showed a clear association in lactation stage 21 to 26 (−log10(P-value) 

= 7.0, Table 2.1). This illustrates that this approach is limited by the statistical 

power to detect interaction effects. In addition, determining the significance 

threshold for the interaction term needs permutation (test statistic inflation 

shown in the QQ plot). To estimate significant threshold, we performed 100 

permutations, which is computationally demanding.  

Ning et al. (2018) used random regression to model changes in additive 

genetic, permanent environmental and SNP effects on test-day milk 

production records. Ning et al. (2018) concluded that the proposed model can 

control type I errors for QTL detection and has higher power as compared to 

a repeatability model. Theoretically random regression modeling also would 

be suited for detecting QTL whose effects change during lactation. This would 

imply testing for the best polynomial fit of SNP effects might be 

computationally demanding. 

2.4.3 Biological interpretation  

GWAS for SNP by lactation stage interaction identify regions whose 

genetic effects on milk protein content change during lactation. Effects on 

milk protein content can be due to effects on protein yield and milk yield. 

Change in genetic effects are in agreement with quantitative genetic studies 

that genetic variance and genetic correlations for milk production traits 

change, especially during the beginning and the end of lactation. Genetic 

effects of DGAT1 on chromosome 14a showed significant SNP by lactation 

stage interaction, which is mainly due to the lack of a DGAT1 effect in early 

lactation (lactation stage 1 & 2, Figure 2.5D). The exact mechanism behind 

effects of DGAT1 on milk protein synthesis remains unclear. Bovenhuis et al. 

(2015) indicated that most of the effects of DGAT1 on milk production traits, 

like milk protein content, originated from the effect on water excretion (or 

dilution effect) and de novo fatty acids synthesis. However, the DGAT1 

polymorphism also has significant effects on the yield of different milk 

proteins (Bovenhuis et al., 2016). In early lactation, dairy cows might suffer a 
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negative energy balance. During this period after calving, dairy cows mobilize 

body reserves to balance the energy deficit due to the dramatic increase in 

milk yield and the restricted feed intake (e.g. Collard et al., 2000; Macciotta 

et al., 2015). Bovenhuis et al. (2015) suggested that in early lactation another 

DGAT enzyme, DGAT2 (Cases et al., 2001) might play a more important role 

than DGAT1 and this could be an explanation for the observed changes in 

DGAT1 effects on milk protein content. 

Chromosomal regions on chromosomes 3, 9b, 10b, and 27 did not show 

significant effects on milk protein content in early and mid-lactation but only 

in late lactation (Figure 2.5). In late lactation, most of the cows in our data 

were lactating and pregnant. However, because of different insemination and 

conception dates, dairy cows were in different pregnancy stages. Pregnancy 

has a negative effect on milk yield as a considerable amount of the nutrients 

are needed for the growth and maintenance of the developing fetus (e.g. Olori 

et al., 1997). Gestation stage also affects fat- and protein content of milk that 

increase as pregnancy advances (e.g. Olori et al., 1997). The mechanisms by 

which gestation affects milk yield and composition are mainly related to 

hormone-mediated partitioning of nutrients from milk production to 

pregnancy requirements. Furthermore, it is well established that the regulation 

of protein synthesis in the mammary gland is under control of hormones 

(Bionaz and Loor, 2011). Therefore, pregnancy might be a reason why genetic 

effects on milk protein content change during lactation, although the 

physiological mechanisms are still unknown. Associations between milk 

protein content and reproductive performance in dairy cows have been 

reported in several studies (e.g. Madouasse et al., 2010). It has been suggested 

that the association between milk protein content and reproductive 

performance is partly due to the negative energy balance in early lactation. 

Morton et al. (2016) indicated that factors determining milk protein content 

during the first 30 d of lactation are not identical to factors determining milk 

protein content in late lactation. Furthermore, Morton et al. (2016) suggested 

that milk protein content in late lactation is more important than milk protein 

content in early lactation for the milk protein content-reproductive 

performance relationship. This is in agreement with the hypothesis that 
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pregnancy might be a reason why genetic effects on milk protein content 

change during lactation. 

2.5 Conclusions 

The current study aimed to detect genetic effects that change during 

lactation. For this purpose, 4 different GWAS approaches were performed for 

milk protein content. Separate GWAS for specific lactation stages suggested 

that the detection power greatly differs between lactation stages and that 

genetic effects of some QTL change during lactation. GWAS for estimated 

Wilmink lactation curve parameters detected many QTL but these results 

should be interpreted with caution as they were based on a 2-step approach. 

Twenty chromosomal regions were detected with effects on milk protein 

content, however, there was no evidence that their effects changed during 

lactation. Five chromosomal regions were detected whose effect on milk 

protein content change during lactation on chromosomes 3, 9b, 10b, 14a, and 

27 , from which chromosomes 3, 9b, and 27 were only detected in GWAS for 

SNP by lactation stage interaction. The performed approaches can be used to 

other milk production traits. Exploring QTL whose effects change during 

lactation are expected to elucidate the genetic and biological background of 

milk production. 
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Abstract 

There is substantial evidence that the genetic background of milk 

production traits changes during lactation. However, most of the genome-wide 

association studies (GWAS) for milk production traits assume that genetic 

effects are constant during lactation and therefore might miss those QTL 

whose effects change during lactation. The GWAS for genotype by lactation 

stage interaction are aimed at explicitly detecting the QTL whose effects 

change during lactation. The purpose of this study was to perform GWAS for 

genotype by lactation stage interaction for milk yield, lactose yield, lactose 

content, fat yield, fat content, protein yield, and SCS to detect QTL with 

changing effects during lactation. For this study 19,286 test-day records of 

1,800 first-parity Dutch Holstein cows were available and cows were 

genotyped using a 50k SNP panel. A total of 7 genomic regions with effects 

that change during lactation were detected in the GWAS for genotype by 

lactation stage interaction. Two regions on BTA14 and BTA19 were also 

significant based on the GWAS that assume constant genetic effects during 

lactation. Five regions on BTA4, BTA10, BTA11, BTA16, and BTA23 were 

only significant in the GWAS for genotype by lactation stage interaction. The 

biological mechanisms that cause these changes in genetic effects are still 

unknown, but negative energy balance and effects of pregnancy may play a 

role. These findings increase our understanding of the genetic background of 

lactation and may contribute to the development of better management 

indicators based on milk yield and composition. 

Key words: GWAS, lactose, genetic background, negative energy 

balance, pregnancy 
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3.1 Introduction 

There is substantial evidence that the genetic background of milk 

production traits changes during lactation. Quantitative genetic studies have 

shown that genetic correlations between milk production traits in early and 

late lactation differ from unity (Druet et al., 2003; Bastin et al., 2011; Strucken 

et al., 2012b). In addition, expression of genes underlying milk production 

traits changes during lactation (Bionaz and Loor, 2008; 2011; 

Wickramasinghe et al., 2012). Furthermore, QTL affecting lactation 

persistency have been identified, describing the decline in milk yield after 

peak production (Pryce et al., 2010; Do et al., 2017; Nayeri et al., 2017). 

Although these studies indicate that effects of QTL underlying milk 

production traits may change along the trajectory of lactation, most of the 

genome-wide association studies (GWAS) for milk production traits assume 

that QTL effects are constant during lactation (e.g. Jiang et al., 2010; Cole et 

al., 2011). This assumption may lead to missing those QTL whose effects 

change during lactation (Lund et al., 2008; Ning et al., 2018). 

Understanding the genetic background of milk production during the 

course of lactation is not only relevant for selective breeding but also for 

developing management indicators. During early lactation, high energy 

requirements of dairy cows for milk production cannot be met by energy 

uptake and the resulting negative energy balance (NEB) has detrimental 

effects on health and fertility (Collard et al., 2000; De Vries and Veerkamp, 

2000; Strucken et al., 2015). To limit the consequences of NEB it has been 

suggested to select for the shape of the lactation curve by putting different 

weights on milk production during different lactation stages. Milk yield and 

composition has also been suggested as an indicator of energy balance 

(Friggens et al., 2007; McParland et al., 2011; Xu et al., 2019) and pregnancy 

(Lainé et al., 2017; Toledo-Alvarado et al., 2018). Understanding the genetic 

background of milk production during the course of lactation and accounting 

for genetic differences between cows may improve prediction accuracies of 

these indicators. 
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The detection of QTL with effects on milk production traits that change 

during lactation may be possible by using alternative GWAS models. For 

example, GWAS have been performed for specific stages of lactation 

(Strucken et al., 2012b; Krattenmacher et al., 2019; Lu and Bovenhuis, 2019; 

Oliveira et al., 2019a). GWAS can also be performed based on estimated 

lactation curve parameters (Strucken et al., 2012a; Macciotta et al., 2015; Lu 

and Bovenhuis, 2019). In our previous study, we compared these GWAS 

approaches for milk protein content and proposed an alternative; the GWAS 

for genotype by lactation stage interaction (Lu and Bovenhuis, 2019). This 

approach has resulted in the detection of 5 QTL with effects on milk protein 

content that change during lactation, including the 3 new QTL that were only 

identified in the GWAS for genotype by lactation stage interaction (Lu and 

Bovenhuis, 2019). 

The objective of the present study was to perform GWAS for genotype by 

lactation stage interaction and in this way screen the genome specifically for 

QTL with changing effects on milk yield, lactose yield, lactose content, fat 

yield, fat content, protein yield, and SCS. The identification of these QTL is 

expected to increase our understanding of the genetic and biological 

background of lactation. 

3.2 Materials and methods 

3.2.1 Phenotypes and genotypes 

Test-day milk production records of 1,800 first-parity cows were available 

from cows included in the Dutch Milk Genomics Initiative. Details on the 

selection of cows involved in the Dutch Milk Genomics Initiative can be found 

in Stoop et al. (2007). The total number of test-day records was 19,286 with 

slight differences between traits. Test-day milk production records include 

milk yield, lactose yield, lactose content, fat yield, fat content, protein yield, 

and SCS. Lactose, fat, and protein content were determined by infrared 

spectroscopy (MilkoScan FT 6000, Foss Electric, Hillerod, Denmark) at milk 

control station laboratory (Qlip, Zutphen, the Netherlands). Lactose, fat, and 

protein yield were calculated by multiplying respective content by milk yield. 
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SCS was determined using a Fossomatic 5000 (Foss Electric) and analyzed as 

loge(SCC). Our previous study showed that some of the genetic differences 

are specific for late lactation and therefore lactation was not truncated at 305 

d but at 390 d (Lu and Bovenhuis, 2019). 

Blood samples of cows were collected for DNA isolation and genotyped 

using a customized 50k SNP chip (CRV, cooperative cattle improvement 

organization, Arnhem, the Netherlands) with the Infinium assay (Illumina, 

San Diego, CA). SNP were mapped using the bovine genome assembly Btau 

4.0 (Liu et al., 2009). In total, 1,800 cows have both genotypes and test-day 

milk production records. Cows with a genotyping rate < 90% and SNP with a 

genotyping rate < 80% were discarded, as described in detail by Schopen et 

al. (2011). To test the genotype by lactation stage interaction effects, we 

required any SNP genotype class in each lactation stage class to have a 

minimum number of test-day records. Therefore, SNP were not included in 

the GWAS if a genotype class contained less than 10 test-day records in any 

of the lactation stage classes. After this restriction, 30,348 SNP remained for 

all GWAS. 

3.2.2 Statistical models 

The GWAS specifically aimed at identifying QTL with effects that change 

throughout lactation, i.e., SNP that exhibited significant genotype by lactation 

stage interaction effects, were performed using the following model: 

 

yjklmnop = μ + b1·afcjklmnop + C_seasonj + scodek + lactl + SNPm + (SNP × 

lact)lm + HTDn + animalo + pep + ejklmnop, [3.1] 

 

where yjklmno is test-day milk production traits; μ is the overall mean; 

afcjklmno is a covariate describing the effect of age at first calving and b1 is the 

regression coefficient; C_seasonj is the fixed effect of calving season (May – 

July 2004, August – October 2004, November 2004 – January 2005, and 

February – April 2005); scodek is the fixed effect accounting for possible 

differences in genetic level between daughters of proven bulls, test bulls, and 

other proven bulls; lactl is the fixed effect of lactation stage (lactation was 
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truncated at 390 d with 26 stages of 15 d each); SNPm is the fixed effect of 

SNP genotype, modeled as a class variable; (SNP × lact)lm is the genotype by 

lactation stage interaction; HTDn is the random effect of herd-test-day, which 

is assumed to be distributed as 𝑁(0, 𝑰𝜎𝐻𝑇𝐷
2 ), where I is an identity matrix and 

𝜎𝐻𝑇𝐷
2 is the herd-test-day variance; animalo is the random additive genetic 

effect of the individual and assumed to be distributed as 𝑁(0, 𝑨𝜎𝑎
2), where A 

is the additive genetic relationships matrix and 𝜎𝑎
2 is the additive genetic 

variance; pep is the permanent environmental effect and assumed to be 

distributed as 𝑁(0, 𝑰𝜎𝑝𝑒
2 ), where I is an identity matrix and 𝜎𝑝𝑒

2  is the 

permanent environmental variance; and ejklmnop is the random residual and 

assumed to be distributed as 𝑁(0, 𝑰𝜎𝑒
2), where I is an identity matrix and 𝜎𝑒

2 

is the residual variance. The additive genetic relationship matrix A was 

constructed based on 14,062 animals (traced back 5 generations) and pedigree 

of the animals was provided by the Dutch herdbook (CRV, Arnhem, The 

Netherlands). Cows descended from proven bulls (825 cows), test bulls (805 

cows), and other proven bulls (173 cows). Possible differences in genetic level 

between daughters of these bulls were accounted for in the model by the effect 

of scodek. 

For SNP that exhibited significant genotype by lactation stage interaction 

effects, SNP effects during the course of lactation were estimated using a 

model including the effect of genotype by lactation stage interaction but 

without the main effects of SNP and lactation stage:  

 

yjklmnop = μ + b1·afcjklmnop + C_seasonj + scodek + (SNP × lact)lm + HTDn + 

animalo + pep + ejklmnop, [3.2] 

 

where model terms are as described for the model [3.1]. The estimated 

effects for (SNP × lact) provide insight into the changes of SNP effects during 

lactation. In each lactation stage, a t-test was used to test differences between 

any of 2 possible SNP genotype combinations (AA vs AB, AA vs BB, and AB 

vs BB). If the P-value of any of these combinations was < 0.001, SNP effects 

in that lactation stage were considered significant. 
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A model assuming constant genetic effects during lactation can only detect 

QTL in case significant lactation average effects exist, but may not allow 

detection of QTL with effects that change during lactation (Lund et al., 2008; 

Ning et al., 2018). To test this hypothesis, we also performed a GWAS in 

which SNP effects were assumed to be constant during lactation, i.e., without 

the model term (SNP × lact)lm: 

 

yjklmnop = μ + b1·afcjklmnop + C_seasonj + scodek + lactl + SNPm + HTDn + 

animalo + pep + ejklmnop, [3.3] 

 

where model terms are as described for the model [3.1]. All GWAS were 

performed in ASReml 4 (Gilmour et al., 2006).  

3.2.3 Significance thresholds  

Significance of the (SNP × lact)lm interaction term in the model [3.1] and 

SNPm in the model [3.3] were tested using the Wald F-test statistic. Possible 

inflation of the test statistic was inspected based on quantile-quantile (QQ) 

plots where the observed −log10(P-value) was plotted against the expected 

−log10(P-value). The test statistic for SNP by lactation stage interaction is 

inflated as discussed by (Lu and Bovenhuis, 2019). Therefore, genome-wide 

significance thresholds for the genotype by lactation stage interaction effects 

were determined based on 100 permutations. In each permutation, all 30,348 

SNP of an animal were simultaneously assigned to a randomly selected other 

animal. Subsequently, the GWAS were performed using permuted genotypes. 

For each permutation the smallest genome-wide P-value of genotype by 

lactation stage interaction term was stored to determine the 1% significance 

threshold. Genome-wide significance thresholds for SNP effects in the model 

[3.3], i.e. the GWAS where SNP effects are assumed to be constant during 

lactation, were based on false discovery rate (FDR). FDR was calculated using 

the R package “qvalue” (Storey and Tibshirani, 2003) and FDR < 0.01 was 

considered significant. Significant SNP sequences were mapped using 

BLAST (http://www.ensembl.org/index.html) in Ensembl against genome 

assembly ARS-UCD 1.2. Potential candidate genes were identified from 
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genes located in a region ± 0.25 Mbp from significant SNP and prioritized 

based on their biological function. 

 

Table 3.1. Test-day milk production traits measured in 1,800 twice-milked 

first-parity Holstein cows 

 

Trait Number Mean SD CV(%) 

Milk yield (kg/d) 19,286 24.55 5.33 22 

Lactose yield (kg/d) 19,027 1.14 0.26 22 

Lactose content (%) 19,027 4.65 0.15 3 

Fat yield (kg/d) 19,227 1.06 0.22 21 

Fat content (%) 19,227 4.36 0.64 15 

Protein yield (kg/d) 19,241 0.85 0.17 20 

SCS 17,945 4.16 1.03 25 

3.3 Results  

Test-day records number, mean, standard deviation, and coefficient of 

variation for 7 milk production traits measured in 1,800 first-parity Holstein 

cows, milked twice a day, are given in Table 3.1. Lead SNP i.e., SNP with the 

highest −log10(P-value) in significant regions identified in the GWAS for 

genotype by lactation stage interaction (SNP × lact) are given in Table 3.2. A 

total of 7 regions with changing effects on milk production traits during 

lactation exhibited significant genotype by lactation stage interaction effects. 

Manhattan plots of the GWAS for genotype by lactation stage interaction for 

milk yield, lactose content, fat yield, and fat content are given in Figure 3.1. 

Manhattan plot for lactose yield is similar to milk yield, and no significant 

(SNP × lact) signals were detected for protein yield or SCS. Therefore, 

Manhattan plots for the significance of the (SNP × lact) term for these 3 traits 

are not shown. The effect sizes of lead SNP during lactation estimated using 

the model [3.2] are shown in Figure 3.2. Many genomic regions with 

significant lactation average effects were identified based on the GWAS using 
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the model [3.3], i.e., a model in which SNP effects are assumed to be constant 

during lactation. Results from these analyses are presented in Figure 3.3. 

The thresholds for the SNP by lactation stage interaction term were based 

on permutation because the Wald F-test statistic showed strong inflation as is 

illustrated via the QQ plots. The 1% genome-wide significance thresholds for 

(SNP × lact) estimated from permutation are −log10(P-value) = 16.4 for milk 

yield, 14.1 for lactose content, 11.1 for fat yield, 17.2 for fat content, 13.5 for 

lactose yield, 14.9 for protein yield, and 12.0 for SCS. The 7 regions showing 

significant genotype by lactation stage interaction effects will be discussed in 

more detail. 

 

Table 3.2. The −log10(P-value) of the lead SNP from the GWAS for genotype 

by lactation stage interaction and GWAS based on a repeatability model in 

which SNP effects are assumed to be constant during lactation.  

 

SNP name BTA Position (bp)1) Inter2) Repeat3) Trait 

rs41589559 4 15,571,252 11.7 0.1 Fat yield 

rs17870335 10 37,134,948 18.2 0.2 Fat content 

rs41571749 11 71,651,998 19.5 0.5 Fat content 

rs523413537 14 445,087 26.7 16.3 Milk yield 

rs523413537 14 445,087 22.1 14.4 Lactose yield 

rs523413537 14 445,087 58.0 136.3 Fat content 

rs41618029 16 60,571,815 12.1 0.2 Fat yield 

rs41578697 19 57,745,840 22.5 5.1 Lactose content 

rs41626406 23 31,739,338 19.4 0.7 Fat content 
1)Position of SNP was based on Btau 4.0.  
2)GWAS for genotype by lactation stage interaction based on a repeatability 

model including genotype by lactation stage interaction to account for 

changing effects during lactation. 
3)GWAS based on a repeatability model in which SNP effects are assumed to 

be constant during lactation.   



3 GWAS for genotype by lactation stage interaction 

 

 

64 

 

 

 

 



3 GWAS for genotype by lactation stage interaction 

 

 

65 

 

 

Figure 3.1. Manhattan plots for genotype by lactation stage interaction of 

milk production traits. The horizontal line indicates the genome-wide 

significance threshold based on permutation. The y-axis is cut at −log10(P-

value) of 30, and the highest −log10(P-value) on BTA14 for fat content is 58. 

3.3.1 BTA14 

Significant genotype by lactation stage interaction effects were detected 

for milk yield, lactose yield, and fat content on BTA14. The lead SNP (Table 

3.2) for this region is 1 of the 2 SNP responsible for the diacylglycerol O-

acyltransferase 1 (DGAT1) K232A polymorphism. Therefore, the DGAT1 

effects on milk yield, lactose yield, and fat content change during lactation. 

Figure 3.2A shows that the effects of DGAT1 on milk yield are not significant 

in early lactation (around lactation stage 1 and 2); gradually become 

significant and increase from early lactation to mid lactation (around lactation 

stage 13 and 14); slightly decrease in late lactation (around lactation stage 21 

to 26). The DGAT1 effects on lactose yield are similar to effects on milk yield 

(results not shown). For fat content, the effects of DGAT1 are significant 

throughout lactation but considerably lower in early lactation than in middle 

and late lactation (results not shown). Although the DGAT1 effects on these 3 

traits change during lactation, DGAT1 was also detected based on GWAS 

using the model [3.3], which assumes constant SNP effects during lactation 

(Figure 3.3). These results indicate that lactation average effects for milk 

yield, lactose yield, and fat content are large enough to be detected. We found 
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no evidence that the effects of DGAT1 on fat yield changed during lactation 

(Figure 3.1), but significant lactation average effects were detected (Figure 

3.3). The DGAT1 effects on lactose content, protein yield, and SCS were not 

significant in neither the GWAS for genotype by lactation stage interaction 

nor in GWAS where SNP effects are assumed to be constant during lactation 

(Figure 3.1, Figure 3.3).  

3.3.2 BTA19 

A region on BTA19 (57.7 Mbp to 63.4 Mbp) exhibited significant 

genotype by lactation stage interaction effects for lactose content (Figure 3.1, 

Table 3.2). The lead SNP in this region exhibited significant effects in 

lactation stages 1, 11, and 14 to 25 (Figure 3.2B). Throughout lactation, cows 

with genotype GG had higher lactose content than cows with genotype AA, 

but the difference is smaller in early lactation. Furthermore, in lactation stage 

1, 11, and 14 to 17, the effects of heterozygote genotype AG were similar to 

the effects of homozygote genotype AA, whereas later in lactation, during 

stages 18 to 25, the effects of genotype AG were similar to genotype GG. 

Although effects change during lactation, this region was also detected in 

GWAS for lactose content based on the model [3.3] that assumes constant 

SNP effects during lactation (Figure 3.3). GWAS modeling lactation average 

effects identified a region on BTA19 (36.5 Mbp to 62.3 Mbp, Figure 3.3) that 

overlaps with the region detected for genotype by lactation stage interaction. 

The lead SNP based on the model [3.3] is located at 55.4 Mbp, which is close 

to the lead SNP for the genotype by lactation stage interaction (model [3.1], 

57.7 Mbp, Table 3.2). These 2 lead SNP were both significant when they were 

included simultaneously in the model [3.3]. This indicates that these 2 SNP 

capture different parts of the variation in lactose content. Therefore, we 

hypothesize that BTA19 contains QTL with changing effects and QTL with 

constant effects on lactose content during lactation. Except for lactose content, 

no significant effects on BTA19 were identified for other milk production 

traits. 
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Figure 3.2. Effects of lead SNP that show genotype by lactation stage 

interaction during different lactation stages. (A) rs523413537 on BTA14 for 

milk yield; (B) rs41578697 on BTA19 for lactose content; (C) rs41589559 on 

BTA 4 for fat yield; (D) rs17870335 on BTA10 for fat content; (E) 

rs41571749 on BTA11 for fat content; (F) rs41618029 on BTA16 for fat yield; 

and (G) rs41626406 on BTA23 for fat content. *P < 0.001 for the difference 

between any 2 SNP genotype classes in that specific lactation stage based on 

t-test. 

3.3.3 BTA4, BTA10, BTA11, BTA16, and BTA23 

In addition to BTA14 and BTA19, there were regions on BTA4 and 

BTA16 with the genotype by lactation stage interaction effects for fat yield 

(Figure 3.1) and regions on BTA10, BTA11, and BTA23 with the genotype 

by lactation stage interaction effects for fat content (Figure 3.1). The GWAS 

signals of these 5 regions were not as strong as those found on BTA14 and 

BTA19 (Table 3.2). Lead SNP on BTA4 and BTA16 only exhibited 

significant effects in early lactation; lead SNP on BTA11 and BTA23 only 

exhibited significant effects in lactation stage 1, and lead SNP on BTA10 

exhibited significant effects in lactation stages 1 and 24 (Figure 3.2). These 5 

regions were only significant in the GWAS for genotype by lactation stage 

interaction and not significant in the GWAS that assume constant SNP effects 

during lactation (model [3.3], Figure 3.3).  
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Figure 3.3. Manhattan plots for milk production traits based on a 

repeatability model where SNP effects are assumed constant during lactation. 

The horizontal lines indicate significance thresholds (false discovery rate < 

0.01). Manhattan plots for lactose yield is similar to milk yield, and no 

significant regions were detected for protein yield and SCS. 

3.4 Discussion 

In this study, we screened the genome specifically for QTL with effects 

that changed during lactation on 7 milk production traits. A total of 7 regions 

showed significant signals in GWAS for genotype by lactation stage 

interaction with changing effects during lactation. Effects of BTA14 (DGAT1) 

on milk yield, lactose yield, and fat content changed during lactation. Effects 

of BTA19 on lactose content changed during lactation. Regions of BTA14 and 

BTA19 were also significant in the GWAS that did not account for changing 

SNP effects but assumed constant SNP effects during lactation. Regions on 

BTA4, BTA10, BTA11, BTA16, and BTA23 exhibited significant genotype 

by lactation stage interaction effects for fat yield and fat content. These 5 

regions were not identified in the GWAS assuming constant SNP effects 

during lactation. 
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3.4.1 BTA14 

The region on BTA14 contains the DGAT1 K232A polymorphism with 

significant effects on milk production traits (e.g. Grisart et al., 2002; 

Bovenhuis et al., 2016). Effects of DGAT1 on milk yield change during 

lactation (e.g. Strucken et al., 2011; Bovenhuis et al., 2015). Oliveira et al. 

(2019b) estimated average DGAT1 effects for 3 different lactation stages: 

from d 5 till d 95, from d 96 till d 215 and from d 216 till d 305. They 

concluded that DGAT1 effects on milk yield increase during these 3 lactation 

stages. Our results, however, suggest that DGAT1 effects on milk yield tend 

to decrease in late lactation (around lactation stage 21 to 26, Figure 3.2A). The 

effects of DGAT1 on fat content are small in early lactation and increase as 

lactation proceeds (Bovenhuis et al., 2015). The changes in the effects of 

DGAT1 on milk production mainly occur in early lactation (Bovenhuis et al., 

2015) when dairy cows may suffer a NEB (e.g. Collard et al., 2000; Coffey et 

al., 2002). Bovenhuis et al. (2015) hypothesized that, in early lactation, 

another DGAT enzyme, DGAT2 (Cases et al., 2001), may play a more critical 

role than DGAT1, which could be a possible explanation for the observed 

changes in DGAT1 effects on milk production traits. 

3.4.2 BTA19 

A region on BTA19 (57.7 to 63.4 Mbp) exhibited significant genotype by 

lactation stage interaction effects on lactose content. Similar effects have not 

been reported previously for lactose content. A few GWAS have been 

performed for lactose content in dairy cattle (Lopdell et al., 2017; Wang and 

Bovenhuis, 2018; Costa et al., 2019c), but none of these studies considered 

changing genetic effects during lactation. Compared to other milk production 

traits, milk lactose content has the smallest coefficient of variation (Table 3.1). 

This has a biological reason; milk osmolality is bound by biological constrains 

and lactose is a major factor determining milk osmolality (e.g. Costa et al., 

2019b). If lactose content changes during lactation, it is also expected to affect 

other contributors to the osmolarity of milk (e.g., the minerals Na+, K+, and 

Cl−). An altered balance of Na+, K+, and Cl− ions may be the result of mastitis, 
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which changes the conductivity of milk by damaging mammary epithelium 

(Fox et al., 2015). As milk lactose content has been proposed as a potential 

indicator of mastitis (Haile-Mariam and Pryce, 2017; Costa et al., 2019a), the 

observed effects of BTA19 may be indirect and due to mastitis susceptibility. 

However, no GWAS has identified signals on BTA19 for SCS, which is an 

indicator trait of mastitis (e.g. Koeck et al., 2014). Besides, we re-analyzed the 

effects of the lead SNP on BTA19 while accounting for differences in SCS, 

i.e., model [3.1] extended with a co-variable SCS. The significance of the 

genotype by lactation stage interaction term did not change (results not 

shown). Therefore, we did not find evidence that the changing effects of QTL 

on lactose content on BTA19 are due to differences in mastitis susceptibility. 

Lu and Bovenhuis (2019) suggested that regions with effects on protein 

content that changed during late lactation are due to the effects of pregnancy 

(e.g. Bohmanova et al., 2009; Morton et al., 2016). Gestation has been shown 

to affect milk production traits because gestation requires repartitioning of 

nutrients between milk production and fetus development (e.g. Olori et al., 

1997). Differences in pregnancy stages may also affect lactose content in late 

lactation, though the effects of pregnancy on lactose content have not been 

well studied (Penasa et al., 2016). The effects of pregnancy stages on milk 

production start to increase at around 5 months (lactation stage 11) into 

lactation (e.g. Bohmanova et al., 2009; Loker et al., 2009). This coincides with 

changes in the effects of the heterozygote genotype on lactose content (Figure 

3.2B). 

We found evidence that the chromosomal region on BTA19 contains QTL 

with changing effects and QTL with constant effects on lactose content during 

lactation. Lopdell et al. (2017) reported several QTL for lactose content on 

BTA19 and proposed a number of candidate genes, including GHDC (43.6 

Mbp), KCNH4 (43.6 Mbp), STAT5A (43.7 Mbp), and STAT5B (43.7 Mbp). 

STAT5A and STAT5B play a key role in controlling milk protein gene 

expression, including lactalbumin, which is essential for lactose synthesis 

(Osorio et al., 2016). In addition, a chromosomal region on BTA19 from 

approximately 33 Mbp to 62 Mbp showed significant associations with 

multiple fatty acids (FA), in particular, de novo synthesized FA C8:0, C10:0, 
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C12:0 and C14:0 (e.g. Bouwman et al., 2012; Gebreyesus et al., 2019). 

Candidate genes on BTA19 involved in FA biosynthesis include SREBF1 

(35.7 Mbp), ACLY (43.4 Mbp), STAT5A, STAT5B, GH (49.7 Mbp), and FASN 

(52.2 Mbp). The pleiotropic effects of BTA19 on lactose content and FA may 

be because lactose and FA synthesis are tightly connected bioprocesses 

through glycolysis and tricarboxylic acid cycle. Among these candidate genes, 

STAT5A and STAT5B have been reported to affect mammary gland 

development, prolactin signaling, and mammary cell involution (Haricharan 

and Li, 2014; Raven et al., 2014). Also, in vitro experiments have 

demonstrated that STAT5A is associated with fertilization and embryonic 

survival rate in Holstein cattle (Khatib et al., 2008; Khatib et al., 2009). 

Therefore, STAT5A and STAT5B are potential candidate genes for the detected 

effects on lactose content. However, other possible candidate genes include 

KCNJ2 (62.5 Mbp), which is one of the expression QTL for lactose content 

with a much stronger expression signal than STAT5B (Lopdell et al., 2017), 

and microRNA-196a (39.1 Mbp) that affects bovine fertility (Tripurani et al., 

2011). In summary, multiple candidate genes with strong linkage 

disequilibrium underlie the effects of BTA19 on lactose content. 

3.4.3 BTA4, BTA10, BTA11, BTA16, and BTA23 

For fat yield and fat content, regions on BTA4, BTA10, BTA11, BTA16, 

and BTA23 with changing effects during lactation exhibited significant 

genotype by lactation stage interaction effects (Table 3.2). The changes in the 

effects of these 5 regions seemed to occur in very early lactation (Figure 3.2). 

The short period during which these regions seem to affect fat yield or fat 

content explains why these regions are not identified in the GWAS that 

assume constant SNP effects during lactation (model [3.3], Figure 3.3). These 

5 new regions have weaker genotype by lactation stage interaction signals than 

BTA14 and BTA19. Nevertheless, the GWAS for genotype by lactation stage 

interaction allow possibilities of identifying new QTL that are not identified 

in GWAS based on a model in which SNP effects are assumed to be constant 

during lactation. 
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The effects of these QTL that are only significant during early lactation 

may be related to the critical initiation phase of the lactation cycle. At the start 

of lactation, expression changes for many genes involved in lipogenesis and 

lipolysis (e.g. Sumner-Thomson et al., 2011; Khan et al., 2013). The region 

detected on BTA23 contains candidate gene butyrophilin subfamily 1 member 

A1 (BTN1A1, 31.6 Mbp). Butyrophilin is involved in active exocytosis of lipid 

droplets into the lumen of the alveoli in milk fat synthesis (Osorio et al., 2016). 

Although this gene is involved in fat metabolism, the exact mechanism 

underlying the observed interaction effects remains unclear. 

3.4.4 Alternative GWAS approaches 

The current study performed GWAS for genotype by lactation stage 

interaction in order to identify QTL whose effects change during lactation. Lu 

and Bovenhuis (2019) compared the GWAS for genotype by lactation stage 

interaction with other GWAS approaches to detect changing genetic effects 

during lactation; separate GWAS for specific lactation stages (Strucken et al., 

2012b; Krattenmacher et al., 2019; Oliveira et al., 2019a) and GWAS for 

estimated lactation curve parameters (Strucken et al., 2012a; Macciotta et al., 

2015). GWAS for specific stages of lactation split up the data and does not 

provide a direct framework for significance testing of SNP effects that change 

during lactation. GWAS for estimated lactation curve parameters fit a 

lactation curve and differences in accuracies of estimated lactation curve 

parameters between cows are not taken into account in the GWAS (Lu and 

Bovenhuis, 2019). 

Also, GWAS can be performed based on lactation persistency (Pryce et al., 

2010; Do et al., 2017; Nayeri et al., 2017), which is sometimes defined as the 

difference in milk yield between lactation d 280 (lactation stage 19) and d 60 

(lactation stage 4). GWAS on lactation persistency may not necessarily 

identify the same genomic regions as the GWAS for genotype by lactation 

stage interaction. For example, although genetic effects for DGAT1 change 

during lactation (e.g. Strucken et al., 2011; Bovenhuis et al., 2015), DGAT1 

has not been detected in a number of GWAS for lactation persistency (Pryce 

et al., 2010; Do et al., 2017; Nayeri et al., 2017). Figure 3.2A shows that the 
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difference in effects of DGAT1 on milk yield in lactation stage 19 (d 285) and 

lactation stage 4 (d 60) are relatively small, though the effects of DGAT1 

clearly change during lactation. This may explain why DGAT1 is not detected 

in GWAS for lactation persistency. 

Alternatively, GWAS for longitudinal data can be performed using random 

regression models. Such an approach can take into account changes in genetic 

and environmental variation during lactation, including changing SNP effects 

(e.g. Szyda et al., 2014; Ning et al., 2019). GWAS based on random regression 

models did not formally test whether SNP effects change or stay constant 

during lactation (e.g. Oliveira et al., 2019a; Oliveira et al., 2019b). 

Furthermore, such a test might be computationally demanding (Ning et al., 

2018). 

3.4.5 Implications 

The GWAS for genotype by lactation stage interaction identified genomic 

regions with effects on milk yield and composition that change during 

lactation. Exact biological reasons for the changing effects during lactation 

are unknown but may be the NEB in early lactation and the effects of 

pregnancy in late lactation. These hypotheses can be tested by making use of 

data on energy balance and pregnancy status. Several studies have 

investigated possibilities to predict energy balance and pregnancy status using 

milk yield and composition, e.g., quantified based on infrared spectra. 

Identification of the QTL with changing effects during lactation will help to 

further understand the genetic and biological background of milk production 

traits and may contribute to the development of better management indicators 

based on milk yield and composition. 

3.5 Conclusions 

The GWAS for genotype by lactation stage interaction were performed for 

milk yield, lactose yield, lactose content, fat yield, fat content, protein yield, 

and SCS. A total of 7 chromosomal regions with effects that change on milk 

production during lactation showed significant genotype by lactation stage 
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interaction. The effects of BTA14 on milk yield, lactose yield, and fat content 

and the effects of BTA19 on lactose content changed during lactation. These 

regions were also identified based on GWAS that assume constant genetic 

effects during lactation. In addition, 5 regions on BTA4, BTA10, BTA11, 

BTA16, and BTA23 with effects on fat yield and fat content that changed 

during lactation were detected. These 5 regions were not detected using the 

GWAS model in which SNP effects are assumed to be constant during 

lactation. We hypothesize that the changes in effects of QTL on milk 

production traits during lactation may be the result of NEB in early lactation 

and pregnancy effects in late lactation, though exact mechanisms underlying 

the changing effects during lactation are still unknown. 
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Abstract 

Pregnancy is inseparable from the initiation of lactation and for 

maintaining the milk production cycle. Pregnancy affects milk production and 

therefore should be accounted for in the genetic evaluation. Furthermore, there 

might be genetic differences in pregnancy effects on milk yield and 

composition. The objective of this study was to estimate phenotypic and 

genetic effects of pregnancy on milk production traits. For this purpose, test-

day records and conception dates of 1,359 first-parity Holstein-Friesian cows 

were available. Significant effects of pregnancy on all milk production traits 

were detected except SCS. The pregnancy effects on milk yield, lactose yield, 

protein yield, fat yield, and fat content were small during early gestation (< 

150 d) and substantially increased in late gestation. The effects of pregnancy 

on milk protein yield were relatively stronger than those on fat yield. The 

effects of pregnancy on milk production traits differed for DGAT1 genotypes. 

Milk yield, lactose yield, protein yield, and fat yield of DGAT1 AA cows were 

more affected by pregnancy than that of DGAT1 KK cows. These results 

suggest that the impact of shortening or omitting the dry off period on milk 

production might depend upon their DGAT1 genotype.  

Key words: pregnancy effect, DGAT1 by pregnancy stage interaction, 

nutrient allocation during pregnancy 
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4.1 Introduction 

Pregnancy is a prerequisite for the initiation of lactation and for 

maintaining the milk production cycle. Pregnancy also affects milk production 

traits (Ragsdale et al., 1924; Erb et al., 1952; Coulon et al., 1995). When 

pregnancy and lactation are concurrent, nutrients need to be partitioned 

between the fetus and milk production (Bauman and Currie, 1980; Bell, 1995). 

It has been estimated that as a consequence of pregnancy, 305 d milk yield of 

a first-parity Holstein-Friesian cow is reduced with 207 kg as compared to a 

non-pregnant cow (Olori et al., 1997). Effects of pregnancy on milk yield and 

other milk production traits are relevant to the genetic evaluation of dairy 

cattle and in several countries genetic evaluation accounts for pregnancy 

effects. Otherwise cows with better fertility, which are more likely to be 

pregnant, would be penalized in their breeding value for milk production traits 

(Olori et al., 1997; Bohmanova et al., 2009; Loker et al., 2009). 

Pregnancy effects on milk production traits strongly depend upon the stage 

of pregnancy; effects of pregnancy on milk yield are small during early 

pregnancy (< 150 d in gestation), after which effects start to increase non-

linearly (Olori et al., 1997; Bohmanova et al., 2009; Loker et al., 2009). 

Pregnancy effects in late gestation are relevant for assessing the impact of 

shortening or omitting the dry-off period; shortening the dry off period will 

result in additional milk production that might compensate for decreased milk 

production in the next lactation (Kok et al., 2016). As pregnancy affects milk 

yield and composition, studies have been performed to investigate 

possibilities to predict pregnancy status based on milk infrared spectra 

(Toledo-Alvarado et al., 2018; Delhez et al., 2020). Pregnancy might also 

affect the genetic background of milk production traits. It has been found that 

effects of some genes related to milk production traits change during lactation 

and it has been suggested that changes during late lactation might be related 

to pregnancy (Lu and Bovenhuis, 2019; Lu et al., 2020). However, so far no 

studies investigated if there are genetic differences in pregnancy effects on 

milk production traits. The objective of this study was to estimate the effects 



4 The genetic differences in pregnancy effects 

 

 

88 

 

of pregnancy on milk production traits and to investigate if these effects differ 

between cows with different genotypes. 

4.2 Materials and methods 

4.2.1 Data 

The cows for this study were part of the Dutch Milk Genomics Initiative 

and details about data collection and data structure can be found in Stoop et 

al. (2007). In brief, all cows were at least 87.5% Holstein-Friesian and were 

housed on 398 commercial herds with at least 3 cows per herd. For the current 

study a subset of cows was selected from the original data set and selection 

was based on the possibilities to accurately predict date of conception. Cows 

were only selected if the calving date for the second parity and insemination 

records in first-parity were available. For those cows, date of conception was 

estimated based on the calving date for the second parity minus an average 

gestation length of 279 d. Cows were only included in our analyses if the last 

registered insemination record in the first-parity was within a 30 d interval of 

the estimated conception date (± 15 d). Of the available 1,800 first-parity cows 

1,359 cows met these criteria and were used for further analyses.  

Test-day milk production records of 1,359 first-parity cows were available 

including milk yield, lactose yield, lactose content, protein yield, protein 

content, fat yield, fat content, and somatic cell count. The total number of test-

day records was 14,505 with slight differences between traits and each cow 

on average had 10.7 test-day records. All test-day records were obtained from 

routine milk recordings. Lactose, fat, and protein content were determined by 

infrared spectroscopy (MilkoScan FT 6000, Foss Electric, Hillerod, Denmark) 

at the milk control station laboratory (Qlip, Zutphen, the Netherlands). 

Lactose, fat, and protein yield were calculated by multiplying respective 

content by milk yield. Somatic cell count was determined using the 

Fossomatic 5000 (Foss Electric) and analyzed as SCS, i.e., loge(SCC). 
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4.2.2 Pregnancy effects on milk production traits 

Pregnancy effects on milk production traits were estimated using the 

following model: 

 

yjklnopq = μ + b1·afcjklnopq + C_seasonj + scodek + lactl + PSn + HTDo + 

animalp + peq + ejklnopq, [4.1] 

 

where yjklnopq is the test-day milk production traits; μ is the overall mean; 

afcjklnopq is a covariate describing the effect of age at first calving and b1 is the 

regression coefficient; C_seasonj is the fixed effect of calving season (May – 

July 2004, August – October 2004, November 2004 – January 2005, and 

February – April 2005); scodek is the fixed effect accounting for possible 

differences in genetic level between daughters of proven bulls, test bulls, and 

other proven bulls; lactl is the fixed effect of lactation stage (26 stages of 15 

d each); PSn is the fixed effect of pregnancy stage (stage 0 indicating the period 

before conception and 8 pregnancy stages of 30 d each); HTDo is the random 

effect of herd-test-day, which is assumed to be distributed as 𝑁(0, 𝑰𝜎𝐻𝑇𝐷
2 ), 

where I is an identity matrix and 𝜎𝐻𝑇𝐷
2 is the herd-test-day variance; animalp is 

the random additive genetic effect of the individual and assumed to be 

distributed as 𝑁(0, 𝑨𝜎𝑎
2), where A is the additive genetic relationships matrix 

and 𝜎𝑎
2 is the additive genetic variance; peq is the permanent environmental 

effect and assumed to be distributed as 𝑁(0, 𝑰𝜎𝑝𝑒
2 ), where I is an identity 

matrix and 𝜎𝑝𝑒
2  is the permanent environmental variance; and ejklnopq is the 

random residual and assumed to be distributed as 𝑁(0, 𝑰𝜎𝑒
2), where I is an 

identity matrix and 𝜎𝑒
2 is the residual variance. The additive genetic 

relationship matrix A was constructed based on 14,062 animals (traced back 

5 generations). The pedigree of the cows was provided by the Dutch herd book 

(CRV, Arnhem, the Netherlands). Cows descended from proven bulls (638 

cows), test bulls (586 cows), and other proven bulls (135 cows). Possible 

differences in genetic level between daughters of these bulls were accounted 

for in the model by the effect of scodek. 
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Lactation was truncated at 390 d instead of 305 d, resulting in 26 lactation 

stage classes of 15 d each. Truncation at 390 d increased the number of test-

day records in late lactation and the number of test-day records for late 

pregnancy stages. Test-day records before the conception date were assigned 

to pregnancy stage 0 and from the conception date onwards 8 pregnancy stages 

of 30 d each were defined. After 240 d of pregnancy most cows were dried off 

and the remaining 26 test-day records were excluded from the analysis. 

The significance of PSn on milk production traits was tested using the Wald 

F-test statistic. Differences between estimated effects for pregnancy stage 0 

and other pregnancy stages were tested using a t-test. If the P-value was < 

0.001 the effect of that pregnancy stage on a milk production trait was 

considered significantly different from the effect of pregnancy stage 0. 

4.2.3 Genetic differences in pregnancy effects 

In our previous studies we identified several QTL whose effects on milk 

production traits changed during lactation (Lu and Bovenhuis, 2019; Lu et al., 

2020). Some of the changes in genetic effects occur in early lactation and 

might be related to negative energy balance. Others occur in late lactation and 

we hypothesized that these changes might be related to pregnancy. We tested 

this hypothesis for the following SNP by trait combinations; rs29011303, 

rs43193272, rs41591350, and rs109651365 for protein content; rs523413537 

for milk yield, lactose yield, protein content, and fat content; rs41578697 for 

lactose content. SNP genotypes were available based on a 50k SNP panel as 

described in Schopen et al. (2011). SNP rs523413537 is 1 of the 2 SNP 

responsible for the diacylglycerol O-acyltransferase 1 (DGAT1) K232A 

polymorphism and therefore will be referred to as DGAT1 in the remaining 

part of this paper. The frequency of the DGAT1 K allele in the current 

population is 0.40. In order to investigate the hypothesis that changes in SNP 

effects are related to pregnancy, we used the following model: 

 

yjklmnopq = μ + b1·afcjklmnopq + C_seasonj + scodek + lactl + SNPm + (SNP × 

lact)lm + PSn + (SNP × PS)mn + HTDo + animalp  + peq + ejklmnopq, [4.2] 
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where SNPm is the fixed effect of the SNP genotype (3 genotype classes); 

(SNP × lact)lm is genotype by lactation stage interaction which allows SNP 

effects to change during lactation; (SNP × PS)mn is genotype by pregnancy 

stage interaction which allows SNP effects to change during pregnancy. Other 

model terms are as described for model [4.1].   

The significance of (SNP × PS)mn in model [4.2] was tested using the Wald 

F-test statistic. The test statistic of the interaction term is inflated (Lu and 

Bovenhuis, 2019) and therefore the significance of (SNP × PS)mn model term 

was tested based on 1,000 permutations. In each permutation, SNP genotypes 

were randomly re-assigned to another animal. Subsequently, the permuted 

data were re-analyzed and the Wald F-test statistics of (SNP × PS)mn term 

were stored. These Wald F-test statistics were used to determine the 5% 

significance threshold level of (SNP × PS)mn interaction term. All the analyses 

were performed in Asreml (Gilmour et al., 2006). 

4.3 Results and discussion 

4.3.1 Pregnancy effects on milk production traits 

Table 4.1. Descriptive statistics of test-day milk production traits, days open 

and age of first calving for 1,359 first-parity Holstein-Friesian cows 

 

Trait Number Mean SD 

Milk yield (kg/d) 14,505 24.63 5.30 

Lactose yield (kg/d) 14,341 1.15 0.25 

Lactose content (%) 14,341 4.65 0.14 

Protein yield (kg/d) 14,469 0.86 0.17 

Protein content (%) 14,469 3.51 0.31 

Fat yield (kg/d) 14,460 1.06 0.22 

Fat content (%) 14,460 4.37 0.63 

SCS 13,555 4.14 1.02 

Days open (d) 1,359 130 77 

Age at first calving (yr) 1,359 2.13 0.16 
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Figure 4.1. Estimated effects (with ± SE) of pregnancy on milk production 

traits for different pregnancy stages. The Y-axis is scaled by the phenotypic 

standard deviation (in parentheses) of the corresponding traits. The dashed 

line indicates the effect of pregnancy stage 0 (non-pregnant). A significant (P 

< 0.001) difference between effects of a pregnancy stage and pregnancy stage 

0 based on a t-test is indicated by *.  
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The number of records, mean, and standard deviation for the test-day milk 

production traits, days open, and age at first calving for 1,359 first-parity 

Holstein-Friesian cows are in Table 4.1. On average, cows were pregnant at 

130 d after calving but there were substantial differences; the days open ranges 

from 55 d (5th percentile) to 284 d (95th percentile) in lactation. These large 

differences in conception date allow disentangling the effects of pregnancy 

and lactation stage. Average age at first calving was 2.13 yr and ranged from 

1.80 till 2.98 yr. 

There were significant effects of pregnancy on all milk production traits 

except SCS (model [4.1]). Figure 4.1 shows the estimated effects of the 

different pregnancy stages on milk production traits. In Figure 4.1 traits were 

expressed in phenotypic standard deviations in order to make effect sizes 

comparable across traits. Cumulative pregnancy effects were calculated as the 

cumulative differences between pregnant and non-pregnant cows (pregnancy 

stage 0). Cumulative effects of pregnancy over pregnancy stages 1 through 8, 

i.e., ∑  0.5 ∙ 30 ∙ (𝑃𝑆𝑛 + 𝑃𝑆𝑛+1)𝑛=7
𝑛=0  on milk yield were −247 kg, on lactose 

yield −11.6 kg, on protein yield −10.4 kg, and on fat yield −8.2 kg. When 

expressed in phenotypic standard deviations, pregnancy effects on protein 

yield were more pronounced than those on fat yield (Figure 4.1). The effects 

of pregnancy on lactose content and protein content were small. Pregnancy 

effects on milk yield, lactose yield, protein yield, fat yield, and fat content 

were relatively small in early pregnancy and became more important in late 

pregnancy, e.g., pregnancy effects on milk yield from stage 5 (d 150) onwards 

accounted for 88 % of the total cumulative effects of pregnancy on milk yield. 

For first-parity Holstein-Friesian cows Olori et al. (1997) estimated 

pregnancy effects on 305 d milk production of −207 kg of milk, −10.7 kg of 

lactose, −8.7 kg of protein, and −8.1 kg of fat. For Canadian Ayrshire, Loker 

et al. (2009) estimated pregnancy effects of −222 kg of milk, −10.0 kg of 

protein, and −7.3 kg of fat. The latter estimates were based on first-, second-, 

and third-parity test-day records with days in milk ≥ 5 and ≤ 365 (Loker et al., 

2009). These pregnancy effects on milk production traits differ slightly from 

the estimates in the current study. Like the current study, other studies also 

reported more pronounced effects of pregnancy on protein yield than on fat 
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yield (Olori et al., 1997; Bohmanova et al., 2009; Loker et al., 2009). Milk 

lactose is the major component for milk osmosis and shows a little variation 

(Fox et al., 2015; Costa et al., 2019). This explains why milk lactose content 

is not strongly affected by pregnancy. The effects of pregnancy on protein 

content are also small, which is due to relatively similar pregnancy effects on 

protein yield and milk yield. Consequently, the effect of pregnancy on protein 

content, i.e. the ratio of protein yield over milk yield, is small. Similar to the 

current study, other studies also reported that pregnancy effects on milk yield, 

lactose yield, protein yield, fat yield, and fat content mainly occur during late 

gestation (e.g. Olori et al., 1997; Bohmanova et al., 2009; Penasa et al., 2016). 

Pregnancy effects on milk production traits are likely due to nutrient 

partitioning during gestation (Bauman and Currie, 1980; Bell, 1995). The 

availability and allocation of nutrients during gestation involves feed intake, 

nutrient absorption, milk production, maintenance, body reserve, and fetus 

development. In addition, for heifers part of their body growth takes place 

during the first lactation and therefore growth is an additional nutrient 

demanding process. Pregnancy effects on milk production traits might 

therefore be due to several factors one of them being that nutrients partitioned 

to fetus development are no longer available for milk production. Stronger 

effects of pregnancy on protein yield than fat yield might be related to the 

requirements of the fetus; protein requirement of the fetus is nearly twice that 

of the fat requirement (Prior and Laster, 1979). Increased pregnancy effects 

towards late gestation on milk yield, lactose yield, protein yield, and fat yield 

is also in line with the nutrient requirements of the fetus; growth of the fetus 

increases exponentially from d 160 in gestation onwards and in the last 2 

months of pregnancy the fetus acquires around 60% of its birth weight (Prior 

and Laster, 1979; Bauman and Currie, 1980; Bell et al., 1995; Krog et al., 

2018). For management purposes, it is assumed that the energy required for 

the development of the fetus is non-significant during early gestation and extra 

energy for gestation is only considered from 190 d in gestation onward (NRC, 

2001).  
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4.3.2 Genetic differences in pregnancy effects 

Table 4.2. The P-values for SNP by pregnancy stage interaction of a selected 

set of SNP1) whose effects change during late lactation 

 

SNP BTA Position(bp)2) Trait 
P-value 

(SNP × PS)3) 

rs29011303 3 93,216,176 Protein content 0.54 

rs43193272 9 85,934,554 Protein content 0.89 

rs41591350 10 48,721,829 Protein content 0.66 

rs523413537 14 445,087 Milk yield <0.001 

rs523413537 14 445,087 Lactose yield <0.001 

rs523413537 14 445,087 Protein content 0.004 

rs523413537 14 445,087 Fat content 0.43 

rs41578697 19 57,745,840 Lactose content 0.73 

rs109651365 27 37,915,598 Protein content 0.78 
1) SNP were from studies by Lu and Bovenhuis (2019) and Lu et al. (2020). 

SNP rs523413537 is 1 of the 2 SNP responsible for the DGAT1 K232A 

polymorphism. 
2) SNP position based on Btau 4.0.  
3) The P-values for genotype by pregnancy stage interaction (SNP × PS) were 

based on 1,000 permutations. 

 

In previous studies we identified chromosomal regions whose effects 

change during late lactation and we hypothesized that these changes might be 

related to pregnancy (Lu and Bovenhuis, 2019; Lu et al., 2020). The lead SNP 

of the chromosomal regions previously identified for specific SNP by trait 

combinations are shown in Table 4.2 and it was tested if changes in these SNP 

effects can be attributed to pregnancy. The SNP rs523413537 on BTA14 

(DGAT1) showed significant SNP by pregnancy stage interactions (SNP × PS) 

for milk yield, lactose yield, and protein content. For the other 6 SNP by trait 

combinations we did not find evidence that changes in SNP effects during 

lactation can be attributed to pregnancy. In our previous study, changing 



4 The genetic differences in pregnancy effects 

 

 

96 

 

DGAT1 effects during late lactation on milk yield, lactose yield, protein 

content, and fat content were detected based on stringent genome-wide 

significance thresholds (Lu and Bovenhuis, 2019; Lu et al., 2020), which 

reduces detection power. However, it is well documented that the DGAT1 

polymorphism has major effects on several milk production traits (e.g. Grisart 

et al., 2002; Bovenhuis et al., 2016). Therefore, the DGAT1 by pregnancy 

stage interaction for other milk production traits (protein yield, fat yield, 

lactose content, and SCS) were also tested using model [4.2], and significant 

interactions were detected for protein yield (P = 0.008) and fat yield (P = 

0.009). 

The estimated effects of DGAT1 during pregnancy on milk yield, lactose 

yield, protein yield, fat yield, and protein content are shown in Figure 4.2. The 

estimated effects for SNP by pregnancy stage interaction were from model 

[4.2] without the main effects of SNP and pregnancy stage. Figure 4.2 shows 

that milk yield, lactose yield, protein yield, and fat yield of DGAT1 AA cows 

are more affected by pregnancy than those of DGAT1 KK cows. For DGAT1 

KK cows, pregnancy reduced milk yield, lactose yield, protein yield, and fat 

yield from d 180 in pregnancy onwards, for AK cows reduction in milk yield, 

lactose yield, protein yield, and fat yield started around d 120 in pregnancy, 

and for AA cows pregnancy affected milk yield, lactose yield, protein yield, 

and fat yield shortly after conception. Figure 4.2 also shows that differences 

in protein content for cows with different DGAT1 genotypes are relatively 

constant throughout gestation but differences between genotypes tend to 

decrease toward late gestation. Estimates for cumulative pregnancy effects on 

milk yield, lactose yield, protein yield, and fat yield over pregnancy stages 1 

through 8 for cows with different DGAT1 genotypes are shown in Table 4.3. 

Effects differed substantially for DGAT1 genotypes, e.g. pregnancy effects 

were −443 kg milk for AA cows, −233 kg for AK cows and 26 kg for KK 

cows. For KK cows the estimated effects of pregnancy from d 1 through d 180 

were small and positive and cumulative effects over pregnancy from d 180 to 

d 240 were −36.5 kg of milk.  
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Figure 4.2. Effects (with ± SE) of DGAT1 genotypes on milk yield, lactose 

yield, protein yield, fat yield, and protein content during pregnancy. The 

effects were estimates for SNP by pregnancy stage interaction from a model 

without main effects of SNP and pregnancy stage. The Y-axis is scaled by the 

phenotypic standard deviation (in parentheses) of the corresponding trait. The 

dashed line indicates the effects of pregnancy stage 0 (non-pregnant), 

separately for each DGAT1 genotype. 

 

Differences in pregnancy effects between cows with DGAT1 genotypes 

might be due to differences in fertility; cows with a higher number of days 

open might show smaller effects of pregnancy on milk production. Therefore, 

we also compared days open for cows with different DGAT1 genotypes; for 

AA cows this was 127 d, for AK cows it was 136 d and for KK cows it was 
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123 d. These differences were not significant and cannot explain the observed 

differences between DGAT1 genotypes in pregnancy effects on milk 

production traits. Pregnancy effects on milk production might be due to 

changes in the allocation of nutrients during gestation that involves feed 

intake, milk synthesis, maintenance, body reserve, fetus development, and 

growth for heifers (Bauman and Currie, 1980; Bell, 1995). Milk production of 

KK cows was less affected by pregnancy than that of AA cows, which might 

indicate that KK cows partition fewer nutrients from milk synthesis to fetal 

growth. If so, the birth weight of calves from KK cows should be lower than 

calves from AA cows and consequently KK cows would have less calving 

problems than AA cows. However, there is no evidence that KK cows produce 

calves with lower birth weight (Cole et al., 2014) and have better calving ease 

than AA cows (Berry et al., 2010). The effects of maternal DGAT1 genotypes 

on birth weight of the offspring or on calving difficulties might be relatively 

small and therefore difficult to detect. There also might be alternative 

explanations for the observed effects of DGAT1 genotypes, e.g. differences in 

feed intake, body reserve, and age of first calving. However, Banos et al. 

(2008) did not detect significant effects of DGAT1 genotypes on feed intake 

and body reserve. Furthermore, in the current population age at first calving 

was not significantly affected by the DGAT1 polymorphism (results not 

shown). Therefore, the physiological background of observed differences in 

pregnancy effects of DGAT1 genotypes on milk production traits and potential 

consequences on the calves require further investigation. 

 

Table 4.3. Cumulative effects (kg) of pregnancy on first parity milk yield, 

lactose yield, protein yield, and fat yield for cows with different DGAT1 

genotypes 

 

DGAT1 Milk yield Lactose yield Protein yield Fat yield 

AA −443 −20.6 −16.3 −13.5 

AK −233 −11.2 −9.7 −9.4 

KK 26 1.0 −2.2 4.6 
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Conventionally, dairy cows are dried off in late gestation and in negative 

energy balance after calving due to the peak production and constrained feed 

intake (e,g, Collard et al., 2000; De Vries and Veerkamp, 2000). Alternative 

management strategies such as shortening or omitting the dry off period has 

been proposed to reduce peak production after caving (e.g. Chen et al., 2015; 

Kok et al., 2017; van Hoeij et al., 2017). This management strategy results in 

additional milk yield during late gestation and decreased milk yield in the next 

lactation. Kok et al. (2016) suggested that the suitability of this management 

strategy should be assessed with consideration of milk yield during the last 60 

d in gestation, i.e. the conventional dry off period. Our study showed that milk 

yield during late gestation was affected by pregnancy and effects of pregnancy 

differ between cows with different DGAT1 genotypes. This suggests that the 

suitability of cows for shortening or omitting the dry off period might depend 

upon their DGAT1 genotype. Further research is needed to study how cows 

with different DGAT1 genotypes respond to shortening or omitting the dry off 

period.  

It has been suggested that after 150 d in gestation pregnancy status can be 

predicted based on milk infrared spectra (Lainé et al., 2017; Toledo-Alvarado 

et al., 2018; Delhez et al., 2020). Such information might be used as a 

complementary tool to detect fetal abortion (Delhez et al., 2020). The current 

study shows that there are significant differences in pregnancy effects on milk 

production traits between cows with different DGAT1 genotypes. Milk 

production traits of DGAT1 KK cows are hardly affected by pregnancy. 

Therefore, accuracy of predicting pregnancy based on milk infrared spectra 

might be poor. Effects of pregnancy for DGAT1 AA cows are stronger and 

start earlier in pregnancy that might result in higher prediction accuracies. 

Wang and Bovenhuis (2020) demonstrated that combining milk infrared 

spectra with genotypic information can improve prediction of milk fat 

composition. Therefore, accounting for genetic differences in pregnancy 

effects might improve prediction of pregnancy by milk infrared spectra. 
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4.4 Conclusions 

Significant effects of pregnancy on milk production traits were detected 

except SCS. Pregnancy effects on milk yield, lactose yield, protein yield, fat 

yield, and fat content were mainly observed during late pregnancy (>d 150). 

Pregnancy effects on protein yield were higher than those on fat yield. 

Interestingly, pregnancy effects on milk yield, lactose yield, protein yield, fat 

yield, and protein content differed considerably between cows with different 

DGAT1 genotypes.  
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Abstract 

In the milk production system of several countries there are considerable 

differences between seasons. For example, in the Netherlands, cows are on 

pasture in summer whereas cows are kept inside and fed silage in winter. The 

differences between seasons affect milk composition and might impact the 

genetic background of milk production traits. The objective of this study was 

to estimate phenotypic and genetic effects of season on milk production traits. 

For this purpose, 19,286 test-day milk production records of 1,800 first-parity 

Dutch Holstein-Frisian cows were available. The effects of season on milk 

production traits were estimated and GWAS for genotype by season 

interaction were performed. Season effects were significant for all milk 

production traits. Effects of season were largest for milk fat yield and fat 

content; smallest for milk yield, lactose yield, lactose content, and somatic cell 

score; and intermediate for milk protein yield and protein content. Major 

genotype by season interaction effects were identified on chromosome 3 and 

14 (DGAT1). The phenotypic and genetic effects of season might be due to 

the differences in feeding regime during season.  

Key words: genome-wide association study (GWAS), genotype by season 

interaction, fresh grass 
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5.1 Introduction 

Milk contains fat, protein, lactose, vitamins, and other constituents that 

make an important contribution to the human diet (e.g. Haug et al., 2007). The 

nutritional value of milk and dairy products are related to milk composition 

(Couvreur et al., 2006; Ortiz-Gonzalez et al., 2007; Li et al., 2019). Variation 

in milk yield and composition can be due to many factors, e.g., genetic 

differences, feeding regime, or lactation stage (Dhiman et al., 1999; Elgersma 

et al., 2004; Poulsen et al., 2012). Furthermore, there might be interaction 

between genetic factors and the feeding regime that the genetic background of 

milk composition might change during different feeding regimes. 

Nutrigenomic studies show that feed affects the expression of genes 

underlying milk yield and composition (e.g. Bionaz et al., 2015; Loor et al., 

2015). In addition, it has been shown that effects of DGAT1 on several fatty 

acids (FA) in Chinese Holstein are about half of that in Danish or Dutch 

Holstein population, which might be due to the differences in feeding regime 

(Gebreyesus et al., 2019). Other studies showed that SCD1 effects on FA 

differ depending upon the feeding system (Valenti et al., 2019). 

In many dairy production systems feeding regimes differ between seasons. 

For example, in the Netherlands and other countries, cows are kept inside and 

fed silage in winter but in summer cows are mainly on pasture (Larsen et al., 

2014; van der Laak et al., 2016). These differences in feeding regime are the 

most likely reason that milk fat content and protein content are lower in 

summer than in winter (e.g. Heck et al., 2009; Larsen et al., 2010). Moreover, 

feeding differences during season might have consequences for the genetic 

background of milk composition. For specific genes genotype by season 

interaction has been identified; DGAT1 by season and SCD1 by season (winter 

or summer) interaction effects were observed for milk FA like cis-9 C18:1 

(Duchemin et al., 2013). However, a genome-wide scan of genotype by season 

interaction for milk production traits has not been performed. Therefore, the 

objectives of this study were to estimate effects of season on milk production 

traits and perform a genome-wide scan for genotype by season interaction. 
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5.2 Materials and methods 

5.2.1 Phenotypes and genotypes 

Test-day milk production records of 1,800 first-parity cows were available 

for this study. The cows were part of the Dutch Milk Genomics Initiative and 

details of these animals can be found in Stoop et al. (2007). In brief, all cows 

were at least 87.5% Holstein-Friesian and were housed on 398 commercial 

herds with at least 3 cows per herd. Test-day milk production records include 

milk yield, lactose yield, lactose content, fat yield, fat content, protein yield, 

protein content, and SCS. All test-day records were obtained from routine 

milk recordings. Cows were milked twice daily and the total number of test-

day records was 19,286 with slight differences between traits. 

DNA was isolated from blood samples and cows were genotyped using a 

customized 50k SNP chip (CRV, cooperative cattle improvement 

organization, Arnhem, the Netherlands). SNP were mapped using the bovine 

genome assembly Btau 4.0 (Liu et al., 2009). Cows with a genotyping rate < 

90% and SNP with a genotyping rate < 80% were discarded, as described in 

detail by Schopen et al. (2011). SNP were not included in the GWAS if a 

genotype class contained less than 10 test-day records in any of the lactation 

stage classes (Lu and Bovenhuis, 2019). After this restriction, 30,348 SNP 

remained for all GWAS. 

5.2.2 Season effects on milk production traits 

Season effects on milk production traits were estimated using the following 

model: 

 

yjklnopq = μ + b1·afcjklnopq + C_seasonj + scodek + lactl + seasonn + HTDo + 

animalp + peq + ejklnopq, [5.1] 

 

where yjklnopq is test-day milk production traits; μ is the overall mean; 

afcjklnopq is a covariate describing the effect of age at first calving and b1 is the 

regression coefficient; C_seasonj is the fixed effect of calving season 
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modelled as a class variable (May – July 2004, August – October 2004, 

November 2004 – January 2005, and February – April 2005); scodek is the 

fixed effect accounting for possible differences in genetic level between 

daughters of proven bulls, test bulls, and other proven bulls; lactl is the fixed 

effect of lactation stage (26 stages of 15 d each, lactation was truncated at 390 

d in milk); seasonn was the fixed effect of season modeled as a class variable 

(the period from July 2004 to February 2006 was divided into Summer: June 

– August, Autumn: September – November, Winter: December – February, 

Spring: March – May). HTDo is the random effect of herd-test-day, which is 

assumed to be distributed as 𝑁(0, 𝑰𝜎𝐻𝑇𝐷
2 ), where I is the identity matrix and 

𝜎𝐻𝑇𝐷
2 is the herd-test-day variance; animalp is the random additive genetic 

effect of the individual and is assumed to be distributed as 𝑁(0,𝑨𝜎𝑎
2), where 

A is the additive genetic relationships matrix constructed based on 14,062 

animals (traced back 5 generations) and 𝜎𝑎
2 is additive genetic variance; peq is 

the permanent environmental effect that is assumed to be distributed as 

𝑁(0, 𝑰𝜎𝑝𝑒
2 ), where I is the identity matrix and 𝜎𝑝𝑒

2  is permanent environmental 

variance; and ejklnopq is the random residual and is assumed to be distributed as 

𝑁(0, 𝑰𝜎𝑒
2), where I is the identity matrix and 𝜎𝑒

2 is residual variance. The 

pedigree of the cows was provided by the Dutch herd book (CRV, Arnhem, 

the Netherlands). Cows descended from proven bulls (825 cows), test bulls 

(805 cows), and other proven bulls (173 cows). Possible differences in genetic 

level between daughters of these bulls were accounted for in the model by the 

effect of scodek. Classes for season were constructed based on changes 

observed in milk production traits throughout the year as reported by Heck et 

al. (2009). Consequently, classes for season differ slightly from classes for 

calving season. The number of test-day records was 5,163 in winter, 5,233 in 

spring, 4,052 in summer, and 4,838 in autumn.  

The significance of season effects on milk production traits was tested 

using the Wald F-test statistic. Differences between the estimated effect for 

winter and other seasons were tested using a t-test. If the P-value was < 0.001 

the effect of that season on a milk production trait was considered significantly 

different from the effect of winter. 
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5.2.3 GWAS for genotype by season interaction 

Differences especially in feeding regime between seasons might change 

the genetic background of milk production traits. GWAS specifically aimed 

at identifying QTL whose genetic effects differ between seasons, i.e. SNP that 

show genotype by season interaction, were investigated using the following 

model: 

 

yjklmnopq = μ + b1·afcjklmnopq + C_seasonj + scodek + lactl + SNPm + seasonn + 

(SNP × season)mn + HTDo + animalp + peq + ejklmnopq, [5.2] 

 

where SNPm is the fixed effect of the SNP genotype modeled as a class 

variable; (SNP × season)mn is the genotype by season interaction which allows 

SNP effects to change during season; Other model terms are as described for 

model [5.1]. 

The significance of the (SNP × season)mn interaction term in model [5.2] 

was tested using the Wald F-test statistic. Possible inflation of the test statistic 

was inspected based on quantile-quantile (QQ) plots where the observed 

−log10(P-value) was plotted against the expected −log10(P-value). Previous 

studies have shown that the test statistic for the SNP by environment 

interaction term is strongly inflated (e.g. Voorman et al., 2011; Marigorta and 

Gibson, 2014; Lu and Bovenhuis, 2019). When the distribution of the test 

statistic under the null hypothesis is unambiguous, permutation is a powerful 

strategy to estimate the significance threshold (Churchill and Doerge, 1994; 

Doerge and Churchill, 1996). Therefore, the genome-wide significance 

thresholds for the (SNP × season)mn were determined based on 100 

permutations. In each permutation, all 30,348 SNP of an animal were 

simultaneously assigned to a randomly selected other animal. Subsequently, 

GWAS were performed using the permuted genotypes. For each permutation, 

the smallest genome-wide P-value of the (SNP × season)mn was stored to 

determine the 1% significance threshold for the interaction term. All GWAS 

were performed in ASReml 4 (Gilmour et al., 2006). 
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The sequences of SNP with significant genotype by season interaction 

effects were mapped in Ensembl against genome assembly ARS-UCD 1.2 

(http://www.ensembl.org/index.html). Candidate genes were identified based 

on genes located in a region ± 0.25 Mb from the significant SNP and 

prioritized based on their biological function. 

5.3  Results and discussion 

5.3.1 Season effects on milk production traits 

Test-day records number, mean, standard deviation, and coefficient of 

variation for 8 milk production traits measured in 1,800 first-parity Holstein 

cows, milked twice a day, are given in Table 5.1. The estimated effects of the 

different seasons on milk production traits were shown in Figure 5.1. Effects 

on traits were expressed in phenotypic standard deviations in order to make 

effect sizes comparable across traits. Season significantly affected all milk 

production traits (model [5.1]). Fat yield, fat content, protein yield, and protein 

content were lower in summer and autumn than in winter and spring. Season 

effects on milk protein yield and content were smaller than on milk fat yield 

and content. Milk yield, lactose yield, and lactose content declined from 

summer to autumn. Season effects on SCS were relatively small. 

 

Table 5.1. Test-day milk production traits measured in 1,800 twice-milked 

first-parity Dutch Holstein-Frisian cows 

 

Trait Number Mean SD CV(%) 

Milk yield (kg/d) 19,286 24.55 5.33 22 

Lactose yield (kg/d) 19,027 1.14 0.26 22 

Lactose content (%) 19,027 4.65 0.15 3 

Fat yield (kg/d) 19,227 1.06 0.22 21 

Fat content (%) 19,227 4.36 0.64 15 

Protein yield (kg/d) 19,241 0.85 0.17 20 

Protein content (%) 19,241 3.50 0.31 9 

SCS 17,945 4.16 1.03 25 
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Figure 5.1. Estimated effects (with ± SE) of season (4 classes, 3-month 

interval) on milk production traits. The Y axis is the scaled effect by standard 

deviation (in parentheses) of corresponding traits. * indicates a significant (P 

< 0.001) difference between that season and winter based on a t-test. 

 



5 GWAS for genotype by season interaction 

 

 

113 

 

It has been shown previously that fat content and protein content in the 

Netherlands are lower in summer than in winter; and these seasonal effects are 

stronger for fat content than for protein content (Heck et al., 2009). Feed 

differences are most likely an important factor contributing to these season 

effects. In the Netherlands and several other countries, most of the cows are 

on pasture in summer and fresh grass is an important component of the ration 

whereas in winter no fresh grass but silage and concentrates are offered to the 

cows (van der Laak et al., 2016). When the proportion of fresh grass in diet 

increases, milk fat yield and fat content decrease (Elgersma et al., 2004; 

Couvreur et al., 2006). Fresh grass contains a high proportion of long-chain 

unsaturated FA, therefore, cows fed on fresh grass produce milk with a higher 

concentration of long-chain unsaturated FA. These blood-derived long-chain 

unsaturated FA negatively affect the de-novo FA synthesis (Elgersma et al., 

2004; Couvreur et al., 2006). Nutritional effects on milk protein composition 

are smaller than those on fat composition (Sutton, 1989; Walker et al., 2004; 

Schopen et al., 2009). Effects of season on milk yield, lactose yield, and 

lactose content are relatively small compared to effects on milk fat and protein 

(Figure 5.1). Lactose is the major component contributing to the osmolality of 

milk and therefore shows a little variation (Fox et al., 2015; Costa et al., 2019). 

Lactose yield and milk yield have high correlations and can be regarded as 

very similar traits. It has been shown that milk yield increases with the 

proportion of fresh grass in the diet, however, these effects are relatively small 

(Couvreur et al., 2006). In autumn, the declined milk yield, lactose yield, and 

lactose content might be related to the decreased quality of grass in the 

Netherlands due to the changes in weather conditions. The daily weather 

conditions during July 2004 to February 2006 are available from 35 

meteorological stations throughout the Netherlands. For the summer, the 

average hours of sunshine was 6.5, the average temperature was 17.1 degrees 

Celsius, and the relative humidity was 82.2%. For the winter the average hours 

of sunshine was 2.4, the average temperature was 3.2 degrees Celsius, and the 

relative humidity was 85.0%. These weather conditions are relevant to the 

grass growth and quality (Lenart et al., 2002; Newman, 2004; McKeon et al., 

2009). 
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The differences in weather conditions such as day length, temperature, and 

humidity between seasons might also affect physiology of dairy cows and then 

affect milk composition. With increasing day length, the cow increases 

prolactin and decrease melatonin production, which has a positive effect on 

milk yield (Dahl et al., 2000; Dahl et al., 2012). Dahl and Petitclerc (2003) 

showed that cows under long-day photoperiod (16–18 h of light and 6–8 h of 

dark) produce 3 kg/d more milk compared with their counterparts under short-

day photoperiod (8 h of light and 16 h of dark). However, the differences in 

average day length in the Netherlands during season (6.5 h in summer vs 2.4 

h in winter) would not have large impact on milk production. High 

temperature and humidity in summer can also result in heat stress, during 

which dairy cows decrease dry matter intake to reduce their metabolic heat 

and milk production (Bernabucci et al., 2014; Bernabucci et al., 2015). The 

temperature and humidity in the Netherlands during 2004 to 2006 are not 

expected to cause serious heat stress according to the calculation of the 

temperature humidity index using formula presented by Bernabucci et al. 

(2014). 

5.3.2 Genotype by season interaction 

Differences during season might affect the genetic background of milk 

composition, therefore, GWAS for genotype by season interaction were 

performed for 8 milk production traits. Manhattan plots for genotype by 

season interaction for the traits milk yield, protein yield, protein content, fat 

content, and lactose content are shown in Figure 5.2. Results for lactose yield 

were similar to those of milk yield. For fat yield and SCS no significant 

regions were detected. The SNP with the highest −log10(P-value) for each 

significant chromosomal region, i.e. the lead SNP, are shown in Table 5.2. In 

total, 6 regions were identified in the GWAS for SNP by season interaction, 

i.e., a region on BTA3 for milk yield and protein yield; a region on BTA14 

for milk yield, protein content, and fat content; and 4 regions for lactose 

content. The lead SNP rs523413537 on BTA14 is 1 of the 2 SNP responsible 

for the diacylglycerol O-acyltransferase 1 (DGAT1) K232A polymorphism. 



5 GWAS for genotype by season interaction 

 

 

115 

 

The GWAS signals on BTA19, BTA20, BTA24 and BTA25 for lactose 

content were considerably smaller than those on BTA3 and BTA14.  
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Figure 5.2. Manhattan plots for genotype by season interaction for milk 

yield, protein yield, protein content, fat content, and lactose content. The 1% 

genome-wide significance thresholds for genotype by season interaction 

estimated from permutation were −log10(P-value) = 13.6 for milk yield, 12.5 

for protein yield, 16.8 for protein content, 12.0 for fat content, and 11.8 for 

lactose content. The y-axis is cut at a −log10(P-value) of 30, and the highest 

−log10(P-value) on BTA14 for protein content is 66.8. 

 

Significant genotype by season interaction indicate that genetic effects 

change during season. Our previous studies showed that genetic effects of 

BTA14 and BTA19 also change during lactation (Lu and Bovenhuis, 2019; 

Lu et al., 2020). To determine if the observed effects are truly effects of SNP 

by season interaction (SNP × season) and not due to possible differences in 

lactation stage (SNP × lact), additional analyses were performed. For these 
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analyses model [5.2] was extended with the model term (SNP × lact), which 

will allow that genetic effects also can change during lactation. The 

significance of (SNP × season), after accounting for (SNP × lact), was based 

on 1000 permutations. In each permutation, the SNP genotypes were 

randomly re-assigned to another animal, the permuted data were analyzed and 

the Wald F-test statistics of the (SNP × season) term was stored. These Wald 

F-test statistics were used to determine the threshold for the 5% significance 

level. After adjusting for (SNP × lact), the (SNP × season) for lactose content 

on BTA19 (P = 0.41) and BTA24 (P = 0.37) was no longer significant. These 

results indicate that SNP by season interaction on BTA19 and BTA24 can be 

attributed to differences in the effects of lactation stage. 

 

Table 5.2. The P-values of the lead SNP showing SNP by season interaction 

based on a model that accounted for genotype by lactation stage interaction 

 

SNP names BTA Position1) Traits 
P-values 

(SNP × season)2) 

rs43346157 3 68,187,867 Milk yield <0.001  

rs43346157 3 68,187,867 Protein yield <0.001 

rs523413537 14 445,087 Milk yield 0.07 

rs523413537 14 445,087 Protein content <0.001  

rs523413537 14 445,087 Fat content 0.02 

rs41578697 19 57,745,840 Lactose content 0.41 

rs41578306  20 43,267,450 Lactose content 0.03 

rs134347242 24 2,511,631 Lactose content 0.37 

rs41647500 25 17,068,047 Lactose content 0.001 

1) Position of SNP was based on Btau 4.0. SNP rs523413537 is 1 of the 2 SNP 

responsible for the DGAT1 K232A polymorphism. 
2) The P-values for genotype by season interaction (SNP × season) were based 

on 1,000 permutations using a model that accounted for genotype by lactation 

stage interaction. 
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Figure 5.3. Effects (with ± SE) of lead SNP that show genotype by season 

interaction during season (4 classes, 3 months interval). The Y axis is the 

scaled effect by standard deviation (in parentheses) of corresponding traits. 

(A) rs43346157 on BTA3 for milk yield; (B) rs43346157 on BTA3 for protein 

yield; (C) rs523413537 on BTA14 for milk yield; (D) rs523413537 on BTA14 

for fat content; and (E) rs523413537 on BTA14 for protein content.  

 

The genotype by season interaction effects of the lead SNP on BTA3 

(rs43346157) and BTA14 (DGAT1) estimated from model [5.2] without the 

main effects of SNP and season are shown in Figure 5.3. The effects of the 

lead SNP on BTA20 and BTA25 for lactose content are relatively small. For 

BTA3 there are indications for re-ranking interaction on milk yield and protein 

yield; genotype AA of rs43346157 had the highest value in spring and summer 
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but the lowest value in autumn. In autumn, milk yield and protein yield 

declined (Figure 5.1) and genotype AA showed a stronger decline than the 

other genotypes. On BTA3 (68.1 Mbp, Btau 4.0) no candidate genes were 

identified within a region ± 0.25 Mb from the significant SNP. The gene 

ACADM (acyl-CoA dehydrogenase medium chain), which is located at 73.8 

Mbp (Btau 4.0) and involved in lipid metabolism, has been shown to be 

differentially expressed between dairy cows fed corn stover and alfalfa hay 

(Dai et al., 2018). For DGAT1, interaction effects on milk yield, fat content, 

and protein content were not due to re-ranking of genotypes but due to scaling; 

effects were smaller in summer and autumn than in winter and spring. It has 

been described that the DGTA1 polymorphism has major effects on several 

milk components (e.g. Grisart et al., 2002; Bovenhuis et al., 2016). Effects of 

the DGTA1 polymorphism on FA in Chinese Holstein were about half of that 

in Dutch or Danish Holstein with the same direction of the genotypic effects 

(Gebreyesus et al., 2019). Furthermore, DGTA1 effects in winter and summer 

milk samples of Dutch Holstein showed scaling effects for some FA like cis-

9 C18:1 (Duchemin et al., 2013). These studies suggest that the changes in 

genetic effects on milk production traits are most likely because of nutrition. 

5.4  Conclusions 

The effects of season were significant on 8 milk production traits. The 

season especially affected fat yield and fat content. Regions on BTA3 and 

BTA14 (DGAT1) showed highly significant genotype by season interaction. 

These phenotypic and genetic effects of season on milk production traits are 

most likely related to differences in feeding regimes. 
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The objective of this thesis was to unravel the changes in the genetic 

background of milk production traits during lactation. There is substantial 

evidence that the genetic background of milk production traits changes during 

lactation. However, most genome-wide association studies (GWAS) for milk 

production traits do not account for these changing genetic effects during 

lactation. These studies might miss QTL whose effects change during 

lactation. In Chapter 2, different GWAS approaches were used to identify 

QTL whose effects on protein content change during lactation, including an 

alternative approach; GWAS for genotype by lactation stage interaction. In 

Chapter 3, GWAS for genotype by lactation stage interaction were performed 

for 7 other milk production traits. Results in chapter 2 and 3 showed that 

GWAS for genotype by lactation stage can identify QTL that are missed in 

GWAS with constant genetic effects during lactation. Changes in genetic 

effects in early lactation might be due to negative energy balance and changes 

in late lactation might be due to pregnancy. In chapter 4, the effects of 

pregnancy on milk production traits were estimated and it was tested whether 

changing genetic effects in late lactation are related to pregnancy. Results 

showed that pregnancy effects on several milk production traits increased 

during late pregnancy and changing genetic effects of the diacylglycerol O-

acyltransferase 1 (DGAT1) K232A polymorphism on milk yield, lactose yield, 

and protein content in late lactation were related to pregnancy. In chapter 5, 

effects of season on milk production traits were estimated and GWAS for 

genotype by season interaction were performed. Season effects were stronger 

on milk fat yield and fat content than on other milk production traits. There 

were genomic regions on chromosomes 3 and 14 (DGAT1) with significant 

genotype by season interaction on milk production traits. 

In this general discussion, I will first discuss the changes in genetic 

parameters of milk production traits during lactation for the data that were 

used in this thesis. Secondly, I will discuss alternative approaches for 

modeling SNP effects during lactation. Finally, I will discuss the changing 

genetic effects on fatty acids (FA) during lactation. 
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6.1 Genetic parameters of milk production traits during 

lactation 

Most GWAS for milk production traits were performed using either 

cumulative milk production records (e.g., 305 d milk yield) or test-day records 

with constant genetic effects during lactation (Cole et al., 2011; Pausch et al., 

2017; Teissier et al., 2018; Wang et al., 2019). However, it has been shown 

for several milk production traits that additive genetic variances change during 

lactation and genetic correlations among different lactation stages differ from 

unity (Jamrozik and Schaeffer, 1997; Pool et al., 2000; Druet et al., 2003; 

Caccamo et al., 2008). These studies suggest that genetic effects underlying 

milk production traits change during lactation. Therefore, different GWAS 

approaches have been performed in order to account for these changing 

genetic effects during lactation (see chapter 2 and 3). In the first section of the 

general discussion I will demonstrate the changes in genetic parameters of 

milk production traits during lactation for the data that were used in this thesis. 

6.1.1 Separate lactation stages 

The genetic parameters during lactation were first estimated by separating 

the lactation into different stages and creating different data sets. 

Subsequently, milk production traits in each lactation stage were analyzed 

using the following model:  

 

yjklno = μ + b1·afcjklno + C_seasonj  + scodek + lactl + HTDn + animalo + ejklno, 

[6.1] 

 

where model terms are as described for model [2.1] in chapter 2. A detailed 

description of the lactation stages can be found in chapter 2. In brief, the 

lactation was divided in 26 lactation stages of 15 days each. The average 

number of test-day records for each lactation stage was 742. Genetic 

parameters were estimated based on data from 2 consecutive lactation stage 

classes, e.g. lactation stages 1 & 2, 3 & 4 and so on. In this way most of the 

cows had at least a test-day record in each of the separate analysis. Because 
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the number of records per lactation stage decreased towards the end of 

lactation, data from lactation stages 21 to 26 were combined. Model [6.1] 

accounts for lactation stage effects because in each separate analysis test-day 

records were from at least 2 different lactation stage classes. Eventually, 11 

analyses were performed and on average each analysis has 1,593 records. 

6.1.2 Random regression  

Random regression models can directly model changes in random effects 

(e.g., additive genetic, permanent environmental, and residual) during 

lactation. This approach uses all the data simultaneously instead of dividing 

the data in subsets (Strabel and Jamrozik, 2006; Muir et al., 2007; Hammami 

et al., 2008; Miglior et al., 2009). Genetic parameters of milk production traits 

were estimated using the following random regression model: 

 

yjklno = μ + b1·afcjklno + C_seasonj  + scodek + lactl + HTDn + 

∑  2
𝑖=0 φi(t)·animalio+ ∑  2

𝑖=0 φi(t)·peip + ejklnop, [6.2] 

 

where φi(t) are the regression coefficients of the i-th Legendre polynomial; 

animalio and peip are the random additive genetic effect and the permanent 

environmental effect, respectively; other model terms are as described for 

model [6.1]. The coefficients of the Legendre polynomial φi(t) are defined as 

follows: φ0 = 1, φ1 = t, φ2 = 
1

2
 (3t2-1), where t represents a standardized number 

of d in milk: t = 
2(d−1)

(390−1)
− 1. The additive genetic effect and the permanent 

environmental effect were fitted using a 2nd order Legendre polynomial. 

Fitting higher order polynomials resulted in convergence problems. For the 

residual variance no Legendre polynomial was fitted but the lactation was 

divided into 3 classes; 3 d – 60 d, 61 d – 240 d, and 241 d – 390 d in milk. For 

these classes different residual variances were fitted. Covariances among 

residual variance classes were assumed to be absent. I will present results of 

the random regression analysis for milk yield and fat content. Random 

regression analysis for other milk production traits showed convergence 

problems. 
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Figure 6.1. Genetic and residual variances (with ± SE) of milk production 

traits estimated based on 11 separate analyses where test-day records are 

grouped based on lactation stage. 
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6.1.3 Results and discussion 

The estimated additive genetic variances (± SE) and residual variances (± 

SE) for 8 milk production traits in different lactation stages are shown in 

Figure 6.1. The SE of genetic variance for several milk production traits was 

higher for the last lactation stages due to a lower number of test-day records. 

For milk yield, lactose yield, and lactose content, genetic variances were 

higher in mid lactation than in early and late lactation; residual variances were 

higher in early lactation than in mid lactation. For fat content and protein 

content, genetic variances increased toward mid lactation and from thereon 

were stable until late lactation. Residual variances for these traits decreased in 

early lactation and were stable during mid lactation. However, in late lactation, 

the residual variance of protein content increased. Heritabilities for fat content 

and protein content increased from early to mid lactation and stayed constant 

for fat content for the rest of the lactation but decrease for protein content in 

late lactation (Results not shown). For fat yield, protein yield, and SCS, the 

genetic variances were relatively constant throughout the lactation. The 

residual variances for fat yield and SCS decreased in early lactation. 

 

 

Figure 6.2. Development of the genetic variances for milk yield and fat 

content during lactation estimated using random regression and fitting a 2nd 

order Legendre polynomial. The genetic variances estimated for separate 

lactation stages (lact_stage) were plotted for comparison. 

 

The genetic variances of milk yield and fat content during lactation 

estimated using random regression models are shown in Figure 6.2. The 
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development of the genetic variances from both approaches differed on some 

points. For example, in mid lactation, the genetic variance of milk yield 

estimated using random regression was much higher than that estimated based 

on separate analyses of lactation stages. 

The changes in additive genetic and residual variances for milk production 

traits are consistent with those reported in literature. For milk yield, the genetic 

variance and heritability is highest in mid lactation and the residual variance 

decreases in early lactation and stays stable during mid lactation (Druet et al., 

2003; de Roos et al., 2004). Genetic parameters of lactose yield are similar to 

genetic parameters of milk yield because lactose is the main factor 

determining milk osmolality and lactose content has small coefficient of 

variation (Fox et al., 2015; Costa et al., 2019). Like the current study, Druet 

et al. (2005) reported that the heritability for fat content has its highest value 

during mid lactation with a value close to 0.60 and the heritability of protein 

content increases from 0.10 to 0.50 in the first part of lactation. For fat yield, 

protein yield, and SCS, relatively constant heritability estimates were reported 

by Miglior et al. (2009) and Druet et al. (2005). 

The changes in genetic parameters of milk production traits during 

lactation have been widely investigated using different statistical models. 

Compared to performing separate analyses for different lactation stages, 

random regression has the advantage to efficiently use all available data 

(Schaeffer and Dekkers, 1994; Oliveira et al., 2019a). However, random 

regression models also have some disadvantages. In random regression 

studies changes in additive genetic and permanent environmental effects 

during lactation commonly are fitted using Legendre orthogonal polynomials 

with different orders (Jamrozik et al., 1997; López-Romero and Carabaño, 

2003). The statistical tests for the best polynomial order are computationally 

demanding (Corrales et al., 2015). The likelihood ratio and AIC test may be 

used for selection of the best polynomial order, however, these tests tend to 

favor more complex models (López-Romero and Carabaño, 2003). Therefore, 

the selection of the polynomial order is in general arbitrary and commonly 

2nd to 6th order Legendre polynomials are fitted (Misztal et al., 2000; Strabel 

et al., 2005). Fitting higher order Legendre polynomials results in a larger 



6 General discussion 

 

 

133 

 

number of parameters to be estimated, and therefore, a larger dataset is 

needed. Moreover, higher polynomial orders tend to estimate extreme values 

at the peripheries of the lactation (Pool et al., 2000; López-Romero and 

Carabaño, 2003; Miglior et al., 2009). 

The changes in genetic and residual variance might imply that the QTL 

detection power changes during lactation. In chapter 2, GWAS for separate 

lactation stages were performed for milk protein content. In early lactation, 

only a region on chromosome 6 was significant and in mid lactation, up to 10 

chromosomal regions were identified. These results might be partly due to an 

increase in genetic variance and a decrease in residual variance towards mid 

lactation (Figure 6.1). In chapter 2 and 3, major genotype by lactation stage 

interaction signals were identified for milk yield, lactose yield, lactose 

content, fat content and protein content. For these traits, changes in additive 

genetic and residual variances are larger than those for fat yield, protein yield, 

and SCS (Figure 6.1). In conclusion, changes in genetic parameters for milk 

production traits suggest that there might be changing effects for genes 

underlying milk synthesis during lactation. 

6.2 Modeling SNP effects during lactation 

Besides changing genetic variance during lactation, effects of specific 

QTL, e.g., DGAT1 on milk production traits are known to change during 

lactation (Strucken et al., 2011; Szyda et al., 2014; Bovenhuis et al., 2015). 

There are different GWAS approaches to detect QTL whose effects change 

during lactation as presented in chapter 2 and 3. In these chapters results were 

presented based on genome-wide interaction analyses for milk production 

traits. Other studies investigated changes in SNP effects using random 

regression models (e.g. Szyda et al., 2014; Ning et al., 2018; Oliveira et al., 

2019b). Therefore, I will discuss different approaches to model changes in 

SNP effects during lactation using DGAT1 as an example. 

First I estimated DGAT1 effects on milk production traits for separate 

lactation stages based on the following model: 
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yjklmno = μ + b1·afcjklmno + C_seasonj  + scodek + lactl + β·SNPm + HTDn + 

animalo + ejklmno, [6.3] 

 

where SNPm is the fixed effects of the DGAT1 genotype modeled as a 

covariate (0, 1 or 2 A alleles) and β is the regression coefficient (allele 

substitution effect); other model terms are described for model [6.1]. In 

chapter 2 and 3, SNP effects were modeled as a class variable, which requires 

estimating an additional parameter but offers the possibility to estimate 

additive and dominant effects. 

DGAT1 effects during lactation were also estimated using the following 

random regression model: 

 

yjklmnop = μ + b1·afcjklmno + C_seasonj  + scodek + lactl + ∑  𝑖
𝑖=0 φi(t)·SNPim + 

HTDn + ∑  2
𝑖=0 φi(t)·animalio+ ∑  2

𝑖=0 φi(t)·peip + ejklmnop, [6.4] 

 

where SNPim is the fixed effect of the DGAT1 genotype modeled as a 

covariate (0, 1 or 2 A alleles); other model terms are as described for model 

[6.2]. The additive genetic and permanent environmental effects were allowed 

to change during lactation and a 2nd order Legendre polynomial was fitted. 

Furthermore, the heterogeneous residual variance was accounted for as 

described for model [6.2]. The changes of the SNP effects during lactation 

were modelled by fitting Legendre polynomial orders 1 to 4. 

The estimated DGAT1 effects on milk production traits for separate 

lactation stages are shown in Figure 6.3. For milk yield and lactose yield allele 

substitution effects first increased in early lactation, were stable in mid 

lactation, and then decreased in late lactation. For fat content and protein 

content, in early lactation allele substitution effects first increased whereas in 

late lactation effects on fat content were relatively stable and effects on protein 

content slightly decreased. The DGAT1 effects on fat yield were relatively 

stable during lactation.  
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Figure 6.3. DGAT1 effects (with ± SE) on milk production traits in 

separate lactation stages. 

 

The DGAT1 effects on milk yield and fat content change during lactation, 

estimated based on different orders of Legendre polynomial are shown in 

Figure 6.4. Changes of DGAT1 effects on milk yield and fat content estimated 

based on data from separate lactation stages and from fixed regression with 
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polynomial orders higher than 2 were very similar. For DGAT1 effects 

modelling Legendre polynomial higher than order 2 does not seem to improve 

the fit.  

 

 

Figure 6.4. DGAT1 effects on milk yield and fat content during lactation 

based on different orders of Legendre polynomials. The genetic effects 

estimated for separate lactation stages (lact_stage) were plotted for 

comparison. 

 

Estimating SNP effects for separate lactation stages does not efficiently 

utilize the available data (Strucken et al., 2012; Krattenmacher et al., 2019; 

Oliveira et al., 2019b) and this approach does not provide a statistical 

framework for testing whether SNP effects change during lactation. The 

approach based on random regression of polygenetic effects and fixed 

regression of SNP effects makes use of all data in a single analysis. However, 

a large dataset is needed as a substantial number of parameters needs to be 

estimated. Studies that performed GWAS fitted a fixed regression of SNP 

effects during lactation using the same polynomial order for all SNP (Ning et 

al., 2018; Oliveira et al., 2019b). However, the best polynomial order might 

differ between SNP and traits and the selection of the best polynomial order 

is computationally demanding (Ning et al., 2018). Moreover, the estimated 

polygenetic and SNP effects at the start and end of lactation need to be treated 

with caution. 

Alternatively, GWAS for genotype by lactation stage interaction were 

suggested in chapter 2 and permutations were used to estimate significance 

thresholds. This approach is based on a repeatability model that assumes 
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constant polygenetic, permanent environmental, and residuals variances 

during lactation and allows SNP effects to change during lactation. GWAS is 

aimed to determine significance of SNP effects and not to estimate genetic 

variances and covariances. It is known that significance test depends upon 

some assumptions; independence of residuals and therefore the model should 

account for family relations (polygenetic effects), normal distribution of 

residuals, and homogenous residual variance. The repeatability model 

assumes constant polygenetic, permanent environmental, and residuals 

effects, and these assumptions are violated for some milk production traits 

during lactation. However, violation of these assumptions is not relevant when 

the distribution of the test statistics and the significance thresholds are based 

on the permutation. Therefore, GWAS for genotype by lactation stage 

interaction are recommended to identify QTL with changing effects on milk 

production traits during lactation. 

6.3 Genetic effects on fat composition during lactation 

Milk fat is an important component of human diets and milk fat 

composition is related to human health (Haug et al., 2007; Bergamaschi et al., 

2016). Milk fat consists of FA and saturated FA (~70% of milk fat) have been 

associated with several human diseases, whereas low level of unsaturated have 

been associated with beneficial effects on human health (Samková et al., 

2012). In addition, milk FA might contain valuable information for 

management practice e.g., FA composition has been associated with the 

energy status of dairy cows (Van Haelst et al., 2008; Jorjong et al., 2015). 

Studies based on infrared predicted FA showed that the heritabilities of FA 

change during lactation (Freitas et al., 2020a; Freitas et al., 2020b). Therefore, 

effects of genes underlying FA might change during lactation. Chapter 2 and 

3 of the this thesis showed that DGAT1 effects on milk yield, lactose yield, fat 

content, and protein content change during lactation. It is known that DGAT1 

also affects milk FA (Bouwman et al., 2011; Gebreyesus et al., 2019). 

Therefore, I will discuss the genetic effects of DGAT1 on FA during lactation. 

The milk FA profile of 2,001 first-parity Holstein cows was available from 

the Dutch Milk Genomics Initiative and described in detail by Stoop et al. 



6 General discussion 

 

 

138 

 

(2008). Milk samples for FA analyses were collected both in winter and 

summer. Winter records were available from 1,905 cows and cows were 

between 63 and 282 d in lactation. Summer records were available from 1,795 

cows and cows were between 97 and 335 d in lactation. Descriptive statistics 

of FA can be found in Duchemin et al. (2013). 

The statistical model to quantify DGAT1 effects on FA is  

 

yjklmnopq = μ + b1·afcjklmnopq + C_seasonj  + scodek + lactl + SNPm + (SNP × 

lact)lm + seasonn + (SNP × season)mn + Herdo + animalp + peq + ejklmnopq, [6.5] 

 

where SNPm is the fixed effect of the DGAT1 genotype modeled as a class 

variable (AA, AB, and BB); seasonq was the fixed effect of season modeled as 

a class variable (Summer: May and June 2005, Winter: February and March 

2005); (SNP × lact)lm is the genotype by lactation stage interaction which 

allows SNP effects to change during lactation; Herdo was the random effect 

of herd-test-day, which was assumed to be distributed as 𝑁(0, 𝑰𝜎𝐻𝑒𝑟𝑑
2 ), where 

I is an identity matrix and 𝜎𝐻𝑒𝑟𝑑
2 is the herd-test-day variance; other model 

terms are as described for model [5.2] in chapter 5. The model also accounted 

for genotype by season interaction (SNP × season)mn because it has been 

reported that DGAT1 effects on some FA differ between winter and summer 

(Duchemin et al., 2013). From 60 d in lactation 6 lactation stages were defined 

and each lactation stage consisted of 45 d. The significance of genotype by 

lactations stage interaction on FA was tested using the Wald F-test statistic.  

The current analysis did not identify significant DGAT1 by lactation stage 

interaction effects on FA. This suggests the DGAT1 effects on FA are constant 

during d 63 to d 335 in lactation. To my best knowledge, only 2 studies 

accounted for changing effects of DGAT1 on FA during lactation and these 

were infrared predicted FA with considerable differences in prediction 

accuracies (Freitas et al., 2020a; Freitas et al., 2020b). In the current study FA 

were measured using gas chromatography as described by Schennink et al. 

(2007). This method quantifies FA with higher accuracy than infrared 

predicted FA, however, quantification by gas chromatography in a large scale 

is expensive and time-consuming. The current study did not include FA 
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measurements in early lactation (< 60 d) when cows are in negative energy 

balance, which has consequences for milk fat composition (Van Knegsel et 

al., 2014). Therefore, significant DGAT1 by lactation stage interaction effects 

might be detected when milk FA records before d 60 in lactation are included. 

6.4 Conclusions 

In this general discussion, I estimated genetic parameters for milk 

production traits during different lactation stages. These analyses showed that 

genetic variances and heritabilities for milk yield, lactose yield, lactose 

content, fat content, and protein content change during lactation. Results were 

in line with findings presented in other chapters of this thesis. GWAS using 

random regression models to detect genetic effects that change during 

lactation have been suggested. However, this approach requires large datasets, 

is computationally demanding for selection of the Legendre polynomial order, 

and might give extreme estimates at the peripheries of lactation. Finally, no 

evidence that genetic effects of DGAT1 on FA change during d 63 and d 335 

in lactation was identified in the dataset of this thesis. 
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Milk yield and composition change during lactation and have been 

suggested as indicators e.g., for cow health and fertility. The changes in milk 

yield and composition were due to different metabolic pathways of milk 

synthesis. For example, milk synthesis is affected by negative energy balance 

in early lactation and pregnancy in late lactation. The differences in metabolic 

pathways might affect the genetic background of milk production traits during 

lactation. It is known that for milk production traits genetic variances change 

and genetic correlations differ from unity during lactation. For specific QTL 

underlying milk synthesis e.g., diacylglycerol O-acyltransferase 1 (DGAT1) 

K232A polymorphism, genetic effects change during lactation. However, 

most genome-wide association studies (GWAS) to identify genetic 

background of milk production traits do not account for the changes in genetic 

effects during lactation. These studies were based on accumulated records, 

e.g., 305 d milk yield or test-day records with constant genetic effects during 

lactation. Therefore, these GWAS might miss QTL whose effects change 

during lactation. The objective of this thesis was to unravel the changes in the 

genetic background of milk production traits during lactation. Accounting for 

these changes in the genetic background during lactation might contribute to 

the development of better indicators based on milk yield and composition. 

Chapter 2 focused on the different approaches to detect QTL with 

changing effects during lactation. Four different GWAS approaches using a 

50k SNP panel were performed based on 19,286 test-day milk protein content 

records: 1) separate GWAS for specific lactation stages; 2) GWAS for 

estimated Wilmink lactation curve parameters; 3) a GWAS using a 

repeatability model where SNP effects are assumed constant during lactation; 

and 4) a GWAS for genotype by lactation stage interaction using a 

repeatability model and accounting for changing genetic effects during 

lactation. Separate GWAS for specific lactation stages suggested that the 

detection power greatly differs between lactation stages and that genetic 

effects of some QTL change during lactation. GWAS for estimated Wilmink 

lactation curve parameters detected many chromosomal regions for Wilmink 

parameter a (protein content level), whereas 2 regions for Wilmink parameter 

b (decrease in protein content towards nadir), and no regions for Wilmink 
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parameter c (increase in protein content after nadir). Twenty chromosomal 

regions were detected with effects on milk protein content, however, there was 

no evidence that their effects changed during lactation. For 5 chromosomal 

regions located on chromosomes 3, 9, 10, 14, and 27 there was significant 

evidence for genotype by lactation stage interaction and thus that their effects 

on milk protein content changed during lactation. Three of these 5 regions 

were only identified using a GWAS for genotype by lactation stage 

interaction. These results further elucidated the genetic background of milk 

protein content and demonstrated that GWAS for genotype by lactation stage 

interaction offers new possibilities to unravel the changes in the genetic 

background of milk composition. 

Chapter 3 explicitly performed GWAS for genotype by lactation stage 

interaction for 7 other milk production traits, i.e., milk yield, lactose yield, 

lactose content, fat yield, fat content, protein yield, and somatic cell score 

(SCS) to screen the whole genome for QTL with changing effects during 

lactation. For this study 19,286 test-day records of 1,800 first-parity Dutch 

Holstein-Friesian cows were available that were genotyped using a 50k SNP 

panel. A total of 7 genomic regions with changing effects during lactation 

were detected in the GWAS for genotype by lactation stage interaction. Two 

regions on chromosomes 14 and 19 were also significant in the GWAS that 

assume constant genetic effects during lactation. Five regions on 

chromosomes 4, 10, 11, 16, and 23 were only significant in the GWAS for 

genotype by lactation stage interaction. The biological mechanisms that cause 

these changes in genetic effects are still unknown, but negative energy balance 

in early lactation and effects of pregnancy in late lactation may play a role. 

These findings increased our understanding of the genetic background of 

lactation and might contribute to the development of better management 

indicators based on milk composition. 

Chapter 4 further investigated the hypothesis that changes in genetic 

effects during late lactation might be related to pregnancy. Pregnancy is 

inseparable from the initiation of lactation and for maintaining the milk 

production cycle. Pregnancy affects milk production and therefore should be 

accounted for in the genetic evaluation. Furthermore, there might be genetic 
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differences in pregnancy effects on milk composition. Therefore, phenotypic 

and genetic effects of pregnancy on milk production traits were estimated 

using 14,505 test-day records of 1,359 first-parity Dutch Holstein-Friesian 

cows with accurately estimated conception dates. Significant effects of 

pregnancy on all milk production traits were detected except SCS. The 

pregnancy effects on milk yield, lactose yield, protein yield, fat yield, and fat 

content were small during early gestation (< 150 d) and substantially increased 

in late gestation. The effects of pregnancy on milk protein yield were 

relatively stronger than those on fat yield. Interestingly, the effects of 

pregnancy on milk production traits differed for DGAT1 genotypes. Milk 

yield, lactose yield, protein yield, and fat yield of DGAT1 AA cows were more 

affected by pregnancy than that of DGAT1 KK cows. For example, the average 

cumulative effects of pregnancy on milk yield were -247 kg. However, effects 

of pregnancy were negligible for DGAT1 KK cows and were -443 kg for 

DGAT1 AA cows. Therefore, more evidence was identified to support the 

hypothesis that changing genetic effects of DGAT1 on milk yield, lactose 

yield, and fat content might be related to pregnancy. 

Besides, to relieve the impact of NEB on dairy cows in early lactation, 

alternative management strategies such as shortening or omitting the dry off 

period has been proposed to reduce peak milk production after caving. This 

management strategy results in additional milk yield during late gestation and 

decreases milk yield in the next lactation. It has been suggested that the 

suitability of this management strategy should be assessed with consideration 

of milk yield during the last 60 d in gestation, i.e., the conventional dry off 

period. Our study showed that milk yield during late gestation was affected by 

pregnancy and effects of pregnancy differ between cows with different 

DGAT1 genotypes. Although deciding which genotype is more suitable for 

shortening or omitting dry period length needs the milk production records in 

the next lactation, our analysis suggested that the suitability of cows for 

shortening or omitting the dry off period might depend upon their DGAT1 

genotype. In addition, as pregnancy affects milk yield and composition, 

studies have been performed to investigate possibilities to predict pregnancy 

status based on milk infrared spectra. The current study showed that there 
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were significant differences in pregnancy effects on milk production traits 

between cows with different DGAT1 genotypes. Therefore, accounting for 

genetic differences in pregnancy effects might improve the prediction of 

pregnancy by milk infrared spectra. 

Chapter 5 quantified phenotypic and genetic effects of season on milk 

production traits in the Netherlands based on 19,286 test-day milk production 

records of 1800 first-parity Holstein-Friesian cows that were genotyped using 

a 50k SNP panel. In the Netherlands and other countries, cows are grazed on 

pasture in summer whereas in winter cows are kept inside and fed silage. The 

different feeding regime during season might change the milk composition 

and affect the genetic background of milk production traits. The season effects 

were significant for all milk production traits. For example, milk fat yield and 

protein yield were lower in summer than in winter. The effects of season were 

largest for milk fat yield and fat content; smallest for milk yield, lactose yield, 

lactose content, and SCS; and intermediate for milk protein yield and protein 

content. Moreover, GWAS for genotype by season interaction were performed 

and 2 regions with major interaction signals on chromosomes 3 and 14 were 

identified. 

Chapter 6 is the general discussion. I first estimated the changes in genetic 

parameters of milk production traits during lactation for the data that were 

used in this thesis. Genetic variances and heritabilities of milk yield, lactose 

yield, lactose content, fat content, and protein content change during lactation. 

The changes in genetic parameters suggested that the genetic background of 

milk production traits might change during lactation and GWAS can be 

performed with consideration of changing genetic effects during lactation. 

Secondly, I discussed the approaches to model changing SNP effects during 

lactation especially in random regression models. GWAS based on random 

regression of polygenetic effects and fixed regression of SNP effects could 

investigate the changes in the genetic effects during lactation. However, a 

large dataset is needed to accurately estimate a large number of parameters; 

the selection of best Legendre polynomial order to fit each random and SNP 

effect in GWAS are computation demanding; and might estimate extreme 

values in the peripheries of lactation. Third, DGAT1 by lactation stage 
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interaction on milk FA composition were estimated during d 63 to d 335 in 

lactation and no significant signals were identified. Therefore, no evidence in 

our dataset showed that the effects of DGAT1 on FA change during d 63 to d 

335 in lactation. 
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