# Deep learning approach to classify false and true positive chromosomal translocations

Ina Hulsegge, Aniek Bouwman, Roel Veerkamp and Claudia Kamphuis Big Data Network lunch meeting 20-02-2020







## **KB** Artificial Intelligence

Building knowledge on utilizing unstructured (images) data, by applying new AI techniques (deep learning).

Case study



Can machine learning reduce, or replace, the manual inspection of structural variants.





## **Translocations**



#### change in location of a chromosomal segment





### **Motivation**

- Important to detect structural variants
- Bioinformatic tools to detect SVs
- False positives → Manual inspection needed
- Manual inspection is time-consuming, costly and poorly standardized





## Challenge



Develop a Deep Learning model to classify images of sequence reads into false and true translocations with the ultimate goal to replace manual inspection





## Deep learning

- Machine learning technique
- Continually analyze data with a logic structure
- Learn from unstructured data.
- Multiple layers





## Convolutional neural networks

CNN is a **multi-layered** neural network with a unique architecture designed to **extract increasingly complex features** of the data **at each layer** to determine the output



Data



### Data

### Training and validation set: 34 animals

- 80% for model training;
- 20% for model validation.

#### Performance evaluation: 5 animals

| Data set   | #animals | % data | #false | #true |
|------------|----------|--------|--------|-------|
| Training   | 34       | 80     | 1723   | 395   |
| validation | 34       | 20     | 431    | 99    |
| Testing    | 5        | 100    | 294    | 50    |





## Automatic generation of images

- Integrative Genomics Viewer (igv)
- Automatic generation of the images based on chromosome number and position





## Data augmentation

#### Image data augmentation

- artificially expand the size of dataset
- creating modified versions of images
- shift, flip, brightness, zoom





Horizontal flip





## VGG-like convnet







## Results training and validation set









Model development Accuracy training: 0.959 Accuracy validation: 0.906

## Results on independent test set

#### Performance of 5 animals 344 pictures

|                               |       | CNN model    |          |
|-------------------------------|-------|--------------|----------|
|                               |       | False        | True     |
| Gold                          | False | 278          | 16       |
| standard<br>Aniek             | True  | 11           | 39       |
| <ul> <li>Accuracy</li> </ul>  | 0.922 | (278+39)/344 |          |
| <ul> <li>Precision</li> </ul> | 0.709 | 39/(16+      | -39)     |
| • Recall                      | 0.778 | 39/(11+      | -39)     |
| Specificity 0.962             |       | 278/(27      | '8+11)   |
| • F1_score                    | 0.743 | (2*39)/      | ((2*39)+ |
| <b>AGENINGEN</b>              |       |              |          |

## Performance evaluation

Balancing false positive and true translocations

- Added 3 copied of true SV in training and validation set
- Trainings set :1723 and 395 -> 1723 and 1580
- Performance of 5 animals 345 pictures

|             | Without copies<br>(Previous results) | With copies |
|-------------|--------------------------------------|-------------|
| Accuracy    | 0.922                                | 0.942       |
| Precision   | 0.709                                | 0.812       |
| Recall      | 0.778                                | 0.780       |
| Specificity | 0.962                                | 0.963       |
| F1_score    | 0.743                                | 0.796       |





### Conclusions

- Much is already possible with small dataset
- The results looks promising
  - the sensitivity (recall), still need to be improved





## Where to from here

- Finetuning model
- More data
- Images of bigger region of DNA 25→50
- Colouring chromosomes to 1 colour
- More balanced data

### Suggestion are welcome





# Thank you for your attention





