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ABSTRACT 

Ammonia is an important pollutant in the atmosphere. It is the precursor gas of 

secondary particulate aerosol and an indicator of local emission. With large areas of 

grassland and crop field, the Netherlands has the highest ammonia concentration in 

Europe. In this research, the OPS (Operational Priority Substances) model is used to 

simulate the atmospheric NH3 concentration in the Netherlands based on the emission 

data in 2018. The emission sources are analyzed in different categories and other 

factors like transportation from outside are also in consideration. The emission 

estimate is optimized by the inverse modelling method. According to the result, the 

OPS model has a quite acceptable simulation performance. The agricultural sources 

are proved to be dominant. The emission from stables is likely to be overestimated. 

On the contrary, emission sources from the cropland (including manure application 

and crop emission and fires) are expected to be underestimated and the contribution 

to the average NH3 concentration is relatively low. Factors like manure application 

methods or changing numbers of animals explain the high emission uncertainty. Large 

misestimation also occurs in the transportation from surrounding countries. Different 

bias correction and model error selection can influence model performance as well. 

More research is needed in the future, for example the temporal variation modelling 

and spatial distribution of emissions. 
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1. INTRODUCTION 

1.1 Research Background 

In the past decades, ammonia (NH3) has drawn more attention as an important 

atmospheric pollutant that is mainly from agricultural activities, together with waste 

disposal and vehicular exhaust (Behera et al., 2013). As a reduced form of nitrogen, 

ammonia after emission is subsequently mixed with oxidized acid gases (NOx or SO2) 

and transported in the atmosphere. It is chemically transformed into secondary 

inorganic aerosols such as ammonium nitrate (NH4NO3) and ammonium sulfate 

((NH4)2SO4) and other NH3 fractions are removed from the atmosphere by dry and wet 

deposition. The deposited NH3 back to the surface can cause acidifying and 

eutrophying effects on terrestrial and aquatic ecosystems (Bobbink et al, 1998) and 

the secondary products in particulate matter lead to detrimental effects on public health 

(Schlesinger and Cassee, 2003, Buijsman et al., 1998). 

 

The reaction between NH3 and acid can be in different forms. As a result, reductions 

in SO2 and NOx emissions influence the formation of ammonium salts and 

consequently, the ammonia concentration in the air. This phenomenon has been 

observed in several European countries (Sutton et al., 2003). Previous studies indicate 

aerosol formation is more often limited by HNO3 ,especially in wintertime (Womack et 

al., 2019). However, some researches reveal that the particle matter formation can be 

equally sensitive to NH3 concentration. Taking different opinions into account, the 

aerosol can be more effectively controlled by reducing either NH3 or acid gases based 

on research and modelling (Franchin et al., 2018). 

 

According to Loubet et al. (2009), a large fraction of the emitted NHx (ammonia and 

ammonium) may be recaptured by the surrounding vegetation, hence reducing the 

contribution of these hot spots to long-range transport of NHx. Local recapture of NH3 

ranges from 2% to 60% within 2 km of a hot spot. The main means of NH3 wet 

deposition is the in-cloud scavenging process. When the plume is mixed into the clouds, 

NHx is transferred into cloud droplets. These droplets aggregate through various 

microphysical processes to snowflakes and raindrops, which are then deposited from 

the atmosphere. In the areas with low emission, the wet deposition during 

transportation from outside is the main sink of NH3. In the countries with high NH3 

emission densities as the Netherlands, dry deposition of NH3 from local sources and 

wet deposition of ammonium (𝑁𝐻4
+) from remote sources dominate the deposition 

(Asman et al., 1998).  
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Meteorological processes influence the effectiveness of the previously mentioned 

processes (Bleeker et al., 2009). Local dry deposition is sensitive to source height, 

atmospheric stability, wind speed, structure of the surrounding canopies. Other factors 

are like stomatal absorption, which mainly depends on green leaf area index and 

stomatal NH3 compensation point of vegetation, and , absorption at leaf and soil 

surface , which depends largely on surface wetness (Loubet et al., 2009). Long-

distance transportation and wet deposition are also influenced by meteorological 

factors like precipitation and wind direction.  

 

Ammonia and ammonium are both widely studied. However, the measurements of NH3 

are more suitable to be the indicators of emission, because 𝑁𝐻4
+ is, the product of 

NH3 and acids, which is more sensitive to the concentration of acid gas. For example, 

the rapid decline in SO2 concentrations has an influence on the ammonium trend 

(Sutton et al., 2003, Horvath and Sutton, 1998). Besides, the atmospheric lifetime of 

𝑁𝐻4
+ is longer than that of NH3. As a result, the foreign emissions of ammonium have 

generally a larger effect on the Dutch concentrations (van Zanten et al., 2017). 

According to the model results of van der Swaluw et al. (2011), 50% of 𝑁𝐻4
+ 

suspending in the air and 40% of NHx (NH3 and 𝑁𝐻4
+) in droplets are from sources 

outside of the Netherlands. In contrast, only around 15% of NH3 is imported from 

abroad (the number is higher in the border areas near Germany and Belgium). 

Therefore, the NH3 concentration in the atmosphere is considered as the most reliable 

component to monitor the long-term tendency of the emission (Bleeker et al., 2009). 

 

 

Ammonia in the Netherlands 

In the Netherlands, ammonia concentrations are the highest in Europe due to a high 

density of agricultural activities (van Zanten et al., 2017). Among the total ammonia 

emission, about 85% comes from agricultural sources; other emissions are from the 

industry, traffic and consumers (emissieregistratie.nl). 

 

The national government has made policies for ammonia reduction for decades. For 

example, a ban on manure surface spreading came into force in 1991, making it 

mandatory to inject the manure into the soil either directly or shortly after application. 

To a large extent, this policy prevented the emission of NH3 after the application of 

animal manure. Provinces are also responsible for the implementation of nature 

policies and the regulation of ammonia emission close to nature areas (Luesink and 

Michels, 2018). At the continental level, the European Parliament and the Council of 

the European Union have set national emission ceilings (NEC) for the pollutants to 
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prevent acidification and eutrophication. Ammonia is included in order to provide more 

comprehensive protection for the environment and human health from their adverse 

effects (EU, 2001). 

 

As a result of the ammonia abatement policies, reported ammonia emissions show a 

steady decline since 1990 with the largest decline in the first decade (Figure 1). The 

decline is largely due to the measure of incorporating animal manure into the soil 

instead of broadband spreading (van Zanten et al., 2017). The plots can be generally 

distinguished into two periods: a period between 1993 and 2004 when ammonia 

concentrations were declining and a period of slightly increasing ammonia 

concentrations from 2005 and afterward. In the first period, large emission reductions 

were reported, while the second period is characterized by smaller emission reductions 

(Wichink Kruit et al., 2017).  

 

 

Figure 1 Trends in reported ammonia emissions and measured NH3 between 1990 

(emissions)/1993(measurements) and 2014. The ammonia concentration is represented by the 

mean of gap filled time series of 8 monitoring stations (Jimmink et al., 2015). 
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Figure 2 Contribution of different NH3 emission sources to the total ammonia emission in the 

Netherlands from 1990 till 2017 (emissieregistratie.nl). 

 

Low-emission manure spreading techniques have an important reducing effect on the 

atmospheric ammonia concentration. Figure 2 shows the reported emission changes 

from some major sources in the past decades. Without these techniques, the ammonia 

concentrations at the measurement stations would have been 3.5–4 μg m−3 higher in 

recent years (Wichink Kruit et al., 2017). Declining trends are also found for other 

agricultural emission sources like stable animals and manure storage. 

 

Compared with the reported emission reduction, the NH3 concentration decreases far 

slower. Focusing on the data of recent years in Figure 3, the emission (blue line) 

continues in decline while the concentration has even a tendency of increasing for both 

the modeled (purple) and measured values (green). A difference around 10% is also 

observed between the modelling and the measurement. Therefore, there is a necessity 

to check the NH3 emission reduction and to simulate the concentration more accurately.  
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Figure 3 Trends in reported ammonia emissions and concentration in recent years. The blue line 

in decline is the modelled NH3 emission; the green and purple lines are the measured and modelled 

atmospheric concentration respectively (emissieregistratie.nl).  

 

 

The OPS Model 

With the help of computers, air quality models can provide pollutants information in 

space and time (Fahey et al., 2017). The OPS (Operational Priority Substances) model 

is used in this research. The model simulates the atmospheric process sequence of 

emission, dispersion, transport, chemical conversion and deposition. Details about the 

model’s mechanism is described in the following chapter. Several previous studies 

have been performed using OPS. In Wichink Kruit et al. (2017), a detailed analysis of 

the trend in NH3 using the OPS model is presented. The general performance of the 

OPS model for ammonia concentration, ammonium concentration and wet deposition 

of ammonia and ammonium is quite good when evaluated with observations over the 

whole period.  

 

 

From the knowledge above we find that emissions declined at a much lower rate since 

2005 but the observed concentrations increased slightly. One-third of the observed 

difference in trends can again be explained by the changed chemical conditions while 

for the rest the explanation is uncertain (Wichink Kruit et al., 2017).  
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In this research, I investigate relations between the emission and the atmospheric NH3 

concentration in 2018, the Netherlands, by modeling different emission cases in order 

to optimize the emission estimation and find explanation for the under- or 

overestimation. Finally, I will give recommendation for further model improvement. 

1.2 Research Objective 

To investigate the relations between ammonia emission and its atmospheric 

concentration in the Netherlands. 

1.3 Research Questions 

General research question: 

What are the effects of changes in the input or model parameters of the OPS model 

on the ammonia concentration and deposition? 

 

Specific research questions: 

 Compared with the observed ammonia concentration, how does OPS perform based 

on the emission data, in a one-year modeling study? 

 Do the ammonia concentration and emission in the Netherlands have a linear 

relationship, in the one-year OPS modeling?  

 What is the emission matrix, which presents how the change of each emission source 

category affects the concentration? 

 Can we improve the comparison between modeled concentrations and measured ones 

by changing emissions (within certain boundaries)? 

 What is the role of other processes (chemistry, deposition, foreign contribution) in the 

relation between emission and atmospheric concentration? 

2. METHODOLOGY 

First, a review of the OPS model description manual (version 4.5.2) (Sauter et al., 2018) 

is conducted to describe the basic information about the OPS model, in preparation for 

the running of experiments. Previous studies also provide experience about OPS 

modeling, knowledge about pollutants in the Netherlands, and mechanisms of 

ammonia in the atmosphere. A description of inverse modeling is also given to present 

the statistical approaches that are used for data analysis. In the last step, I present a 

step-by-step analysis of the numerical experiments I conducted during my thesis 

research. 



7 

2.1 OPS Model 

The OPS model used in this research is aiming to calculate the concentration and 

deposition of pollutants for the Netherlands using a high spatial resolution (typical 

1 × 1 𝑘𝑚2). The substances simulated by OPS can be divided into three groups: The 

acidifying and eutrophying substances (SO2, NOx, NH3 and secondary products), non-

acidifying (gaseous) substances and particle-bounded substances. 

 

As shown in Figure 4, the flow chart describes the operation overview of the model. 

Schematically, it consists of three main parts. 

a. A primary pre-processor MPARKNMI that reads hourly meteorological 

observations and interpolates these observations to 6 meteorological regions 

in the Netherlands. 

b. A secondary pre-processor METPRO that calculates transport trajectories 

arriving at a receptor on the basis of hourly wind observations. METPRO also 

derives secondary parameters, which define the atmospheric state along the 

trajectories from the observed data. This pre-processor classifies hourly 

meteorology data into groups with similar properties and, in this way, describes 

the necessary statistics for the relevant period. 

c. The OPS-model itself, which computes concentrations and depositions on the 

basis of various inputs. 

 

Figure 4 Schematic view of the long term and short-term OPS models with its pre-processing steps 

by the programs MPARKNMI and METPRO. Note that most users will only use the OPS-LT part in 

the red box. 
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The approach used in this research for the OPS-model can be classified as a long-

term climatological trajectory model in combination with a Gaussian plume model on 

the local scale (typically <30 km) which treats impacts of sources on a receptor 

independently. The model is basically a linear model. In other words, it can be treated 

as a pseudo non-linear model because the chemical reaction rates and dry deposition 

velocities rely on the background concentration of pollutants (Sauter et al., 2018).  

 

The input data of the model includes the information about receptors and emission 

sources (for example coordinates, emission strength, height, horizontal dimensions, 

etc.) and information about the meteorological conditions measured at one or more 

locations in the Netherlands (including wind direction and wind speed at two heights, 

precipitation data, global radiation, temperature and snow cover.) The output of the 

model consists of concentration, dry deposition and wet deposition data, listed either 

by receptor or in gridded form. 

 

Receptors information 

Receptors are located at measurement points of MAN (Meetnet Ammoniak in 

Natuurgebieden, man.rivm.nl), which has 217 NH3 observation points and LML 

(Landelijk Meetnet Luchtkwaliteit, www.luchtmeetnet.nl) with 8 measurement stations 

(Figure 5). Information like the measurement stations, locations and receptors heights 

are parts of the input in the OPS model while the measured concentrations at the 

receptors are also used as the observation data for the model optimization.  
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Figure 5 Locations of MAN and LML measuring points in the Netherlands (RIVM, 

www.luchtmeetnet.nl). White dots: NH3 concentration, green dots: NOx concentration, blue dots: 

wet deposition NOy, NHx, red dots: dry deposition NH3. 

2.2 Inverse Modeling Method 

Comparing the OPS modelling concentration and the observation data, the model can 

be optimized. 

 

State 

Now that we have the observation data 𝑦, the original emission estimate 𝑥𝑎 and the 

forward model 𝐹 (the model parameters were omitted for simple notation), we can 

improve the performance of the model by so-called inverse modeling analysis. 

According to Brasseur et al. (2017), inverse analysis helps us to find the optimal 

emission estimate 𝑥, by reducing the errors in the forward simulation 𝑦 = 𝐹(𝑥). The 

process in inverse analysis involves building the Jacobian matrix and minimizing the 

cost function of the forward model. 

 

 

Error Reduction 

http://www.luchtmeetnet.nl/
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Concerning the emission sources releasing NH3 to the atmosphere, each of them has 

an emission rate x together with an emission error 𝜀𝑥. Thus, the original estimate can 

be noted as 𝑥𝑎 + 𝜀𝑥,𝑎. Similarly, there can also be a difference between the measured 

concentration 𝑦 and the model simulation 𝐹(𝑥). We note it as the observational error 

𝜀𝑜. It can be further divided into three components: 𝜀𝑜 = 𝜀𝐼 + 𝜀𝑀 + 𝜀𝑅. The instrument 

error 𝜀𝐼 is the error between the measured value and the real concentration during 

the measurement process. The model error 𝜀𝑀 is the error contributed by the model 

parameters such as winds and model physics. It occurs during the forward model 

simulating the concentration. The representation error 𝜀𝑅  describes the mismatch 

between the model resolution and the measurement location. It is caused by the 

numerical discretization of the model equations. In inverse modeling, 𝜀𝐼 and 𝜀𝑀 are 

in an inherent relationship. A very precise instrument is useless if the model is poor; 

on the contrary, a good performing model is useless if the instrument measures roughly. 

Instrument and model must match well if we want to obtain a better knowledge of 𝑥 

from 𝑦 (Brasseur et al., 2017). 

 

In this research, both the emission estimate 𝑥 and observations 𝑦 are vectors. The 

dimensions correspond to the numbers of emission categories and receptors 

respectively. As a result, the errors are all vectors as well. To solve the inverse problem 

requires the construction of the prior emission error covariance matrix 𝑆𝑥 = [𝜀𝑥𝜀𝑥
𝑇] and 

of the observational error covariance matrix 𝑆𝑜 = [𝜀𝑜𝜀𝑜
𝑇] as input of the calculation. 

The errors are assumed uncorrelated so that 𝑆𝑜 is the sum of the instrument error 

covariance matrix 𝑆𝐼 = [𝜀𝐼𝜀𝐼
𝑇], the representation error covariance matrix 𝑆𝑅 = [𝜀𝑅𝜀𝑅

𝑇], 

and the forward model error covariance matrix 𝑆𝑀 = [𝜀𝑀𝜀𝑀
𝑇 ] : 𝑆𝑂 = 𝑆𝐼 + 𝑆𝑅 + 𝑆𝑀 

(Brasseur et al., 2017). 

 

 

Bias of the error 

The observational error could be biased if the instrument is inaccurate or if there are 

systematic errors in some aspect of the forward model. The bias will be propagated 

through the equations to cause a corresponding bias in the solution. In that case, the 

observation bias is rewritten as 

 𝑦 = 𝐹(𝑥) + 𝑏𝑜 + 𝜀𝑜
,
. 𝑏𝑜 = 𝐸[𝜀𝑜]   

𝜀𝑜
,  is the residual random error such that 𝐸[𝜀𝑜

, ]  =  0. The optimal estimate can be 

derived as above by replacing 𝑦 with 𝑦– 𝑏𝑜 (Brasseur et al., 2017). 
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Description and building Jacobian Matrix 

The prior emission estimate used here is assumed to be a unit multiplier for each 

selected category. In other words, after the optimization, all sources within this 

category will be multiplied by the optimized multiplier. The prior multipliers for all 

categories make up an original estimate vector 𝑥𝑎 = [1, 1, ⋯ 1]. From previous section, 

we know the OPS model is linear. Therefore, we can assume the model expression 

as: 𝐹(𝑥) = 𝐾𝑥 . K is the so-called Jacobian Matrix describing how weights each 

emission element in the projection to F(x). It can be constructed by changing the input 

of certain elements and observing the consequent results. 

 

If we make a perturbation 𝑑𝑥 to the original input 𝑥𝑎, the Jacobian matrix is calculated 

as: 𝐾 = (𝐹(𝑥𝑎 + 𝑑𝑥) − 𝐹(𝑥𝑎))/𝑑𝑥. With the fact that the model is linear, the process 

can be simplified by doing separate runs for the emission of one category only and 

setting the 𝑑𝑥 as a unit prior value of the multiplier. Thus, the result of a separate run 

𝐶𝑐𝑜𝑛𝑡𝑟,𝑖 equals to the corresponding column of the Jacobian Matrix, as: 𝐾𝑖 = 𝐶𝑐𝑜𝑛𝑡𝑟,𝑖 

(Figure 6). 

 

Figure 6 The building of Jacobian Matrix K. According to the linearity of the model, the column 𝑲𝒊 

equals to the corresponding contribution concentration 𝑪𝒄𝒐𝒏𝒕𝒓,𝒊, 𝑲𝒊 = 𝑪𝒄𝒐𝒏𝒕𝒓,𝒊. 

 

Calculation of Cost Function 

Now that we have prepared the observation vector 𝑦, the prior information 𝑥𝑎, the 

forward model 𝐹, and the error covariance matrices 𝑆𝑥 and 𝑆𝛰, the optimal estimate 

𝑥 can be calculated. According to Brasseur et al. (2017), 𝑥 is obtained when the cost 

function 𝐽(𝑥) attains its minimum value. 𝐽(𝑥) reflects the observational and emission 

error constraints to the model, showing the maximum conditional probability density of 

𝑥 when 𝑦 has a known value. The equation to calculate it is: 

𝐽(𝑥) = (𝑥 − 𝑥𝑎)𝑇𝑆𝑥
−1(𝑥 − 𝑥𝑎) + (𝑦 − 𝐹(𝑥))

𝑇
𝑆𝑜

−1(𝑦 − 𝐹(𝑥)) 
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To find its minimum, the derivative of it should be 0, or ∇𝑥𝐽(𝑥) = 0: 

∇𝑥𝐽(𝑥) = 2𝑆𝑥
−1(𝑥 − 𝑥𝑎) + 2𝐾𝑇𝑆𝑜

−1(𝐹(𝑥) − 𝑦) = 0 

𝐾𝑇 = ∇𝑥𝐹𝑇is the transpose of the Jacobian matrix. Considering the OPS model is a 

linear model, the optimal estimate can be expressed as: 

𝑥 = 𝑥𝑎 + 𝐺(𝑦 − 𝐾𝑥𝑎), 

with 

𝐺 = 𝑆𝑥𝐾𝑇(𝐾𝑆𝑥𝐾𝑇 + 𝑆𝑜)−1 is the gain matrix, which shows the sensitivity of the optimal 

estimate to the observations, i.e., 𝐺 = 𝜕𝑥/𝜕𝑦. In inverse modeling, it tells us which 

observations contribute most to constrain specific components of the optimal estimate. 

The optimal error covariance matrix of 𝑥 is calculated as: 

�̂� = (𝐾𝑇𝑆𝑜
−1𝐾 + 𝑆𝑥

−1)−1 

2.3 Experiment Design 

According to the research questions, OPS model features and the method of inverse 

modelling, the experiment can be described in the following steps: 

• Some pre-simulations are made to check the linear relationship between 

emission and concentration and to select the emission categories for analysis. 

• Given the emission data and categories, we will simulate the ammonia 

concentration in the Netherlands for a one-year period. Then we compare the 

yearly average result with the observed concentration in order to check OPS’s 

performance. 

• Changes are then made for a certain emission source category, while the 

others are fixed. We analyze how the change in each emission category affects 

the concentration (to construct the Jacobian matrix).  

• Finally, we will try to optimize emissions in the different categories, to find a 

best match between model and observations (inverse modelling); To avoid 

unrealistic solutions, realistic lower and upper boundaries for each emission 

category must be provided to the system, in the form of matrices S. 

• We will test the sensitivity of the result to different assumptions of the assumed 

model error, and will also investigate the effect of possible model biases. 

 

 

Linearity of the model 
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The linearity of the model is checked in this research by a simulation with 2 receptors 

and different emission inputs. In addition, to test if there are bias in the model or original 

𝑁𝐻3 preset in the air, a run without emissions was also made. Since the model cannot 

run with all zero input values, one of the 1.08 × 106 emission sources are set to be 

1 × 10−10𝑔/𝑠 . The average simulated concentration was almost zero ( 0.593 ×

10−15𝜇𝑔/𝑚3). Therefore, we can confirm 𝑐 =  0 in the linear equation 𝐹(𝑥) = 𝑘𝑥 + 𝑐. 

 

 

Emission input 

For this research, the emission input consists of files with 832475 emission sources in 

the Netherlands and 251815 sources in the surrounding countries and the sea 

(available on www.emissieregistratie.nl). The emitting time is a one-year period in 2018. 

For some sources of the outside, due to the lack of recent census, data of 2017 is used 

instead. The emission sources can be generally divided into 8 categories, namely 

Industry, Energy, Vehicles, Agriculture, Waste Processing, Commerce, Construction 

and Consumers. Each of them can be further divided into detailed categories and the 

codes are in the appendix A. Among the categories, the agriculture is expected to be 

the major emission source. A test run was operated to verify the contribution of each 

category. After that the agriculture emission was further divided into stable animals 

(including some major livestock kinds and others), storage of livestock, manure 

application of different animals on the fields, fertilizers use (including compost and 

inorganic N fertilizers), emission from standing crops, crops residues and fires. Traffic 

and consumers emission are also two important emission sources, so they were kept 

separate categories. The other categories were combined as one due to the low 

emission amount. Emissions from surrounding countries, Belgium and Germany, 

together with the sea were set as independent categories, while the NH3 transported 

from all further countries was in one category. 

 

Error of the experiment 

The emission error 𝜀𝑥 in the Netherlands is related to each emission category (Table 

1), which can be found in Lagerwerf et al., 2019. One standard deviation is used for 

this study. For those categories that are not in the list or for emissions from other 

countries, a default value of 15% is assumed, while emissions in Belgium and 

Germany are assumed with 30% uncertainty due to close distances and interactions. 

The measuring instrument error 𝜀𝐼 is made up of an absolute value and a relative part 

depending on measured concentration by each receptor, as [0.12 + 0.0962 ×

𝑐𝑜𝑛𝑐2]0.5 𝜇𝑔/𝑚3 for annual standard uncertainty (Lolkema et al., 2015). There is no 

reference available for the model error 𝜀𝑚. Based on the results of modeling, we tried 

0.35, 1 and 4 𝜇𝑔/𝑚3 respectively for the model error. Since the OPS model computes 

http://www.emissieregistratie.nl/
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concentrations directly at the location of the measuring stations, the representative 

error is omitted in this research and assumed to be included in 𝜀𝑚. 

 

Table 1 Relative emission error of each category (Lagerwerf et al., 2019). One standard deviation 

is used for this study. 

Emission Category Relative Emission Error (%) 

Stables: dairy cattle 20.5 

Stables: Other cattle 16 

Stables: Breeding pigs 18.5 

Stables: Fattening pigs 21 

Stables: Poultry laying hens 21 

Stables: Other poultry 24.5 

Stables: Other livestock 25 

Livestock storage 23.5 

Grazing: dairy cattle 55 

Grazing: other livestock 45 

Manure use: grazing animals 34.5 

Manure use: stable animals 40 

Manure processing 11.5 

Fertilizer application 30 

Crops and fires 30 

Traffic 15 

Consumers 15 

Other categories 15 

From Belgium 30 

From Germany 30 

From other countries 15 

From the sea 15 
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3. RESULT 

3.1 Emission Analysis 

3.1.1 Emission Distribution  

 Figure 7 shows the NH3 emission over the Netherlands and the nearby countries. 

Emission data has a higher resolution within the Netherlands. There are obviously 

more hotspots in the east part of the Netherlands than in the west, especially the 

grassland areas in Friesland, east Gelderland and between North-Brabant and 

Limburg. It can be noticed that there is less emission from the coastal city areas and 

low value from the forests in the central Gelderland and the east part of Utrecht. 

However, there was a hotspot with very high emission between those forest areas 

(Gelderse Vallei). Concerning the surrounding regions, it also can be found that the 

emission in cities has lower emission, like Brussel in Belgium and Rhine-Ruhr 

metropolitan region in Germany. On the contrary, more hotspots occurred in rural 

areas, like northwest Germany and the coastal region in Belgium. Different from that 

in the continent, the emission from the sea was low and evenly distributed. Given the 

large area, the total amount is still non-negligible (~1050 𝑔/𝑠 in the sea nearby). 

 

Figure 7. Emission of NH3 in the Netherlands (right) and the sea and the surrounding countries 

(left), in 2017. 

 

With the knowledge of the emission sources special distribution, we can look further 

into different emission categories. The histogram below presents the NH3 emitted from 

each category within the Netherlands (Figure 8). We find that grazing animals' manure 

use has the largest amount of emission (1030𝑔/𝑠) in the Netherlands as a total. This 

category is also assigned the largest error (350𝑔/𝑠). The following most influential 

emission in agriculture is from dairy cattle with around 880𝑔/𝑠 and 150𝑔/𝑠 uncertainty. 

The other agricultural emissions are much smaller. Other obvious stable categories 

+ 

+ 
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are fattening pigs (~300𝑔/𝑠) and laying hens (~190𝑔/𝑠). However stable animals 

manure use on cropland has only 205𝑔/𝑠 emission. More NH3 was emitted from 

fertilizers (~320 𝑔/𝑠). Besides emissions from agriculture, NH3 emission from traffic 

(~170𝑔/𝑠) and consumers (~380𝑔/𝑠) is important. 

 

Figure 8 Each category’s ammonia emission rate within the Netherlands. 

 

Compared with the domestic emission sources, NH3 that is emitted outside the 

Netherlands needs to travel a long distance to enter the Netherlands. However, with a 

huge total amount from the countries nearby, the effect could be important as well, 

especially for regions close to the border. For this reason, the domestic emission, 

foreign transport, and emissions from the sea are all taken into account when 

simulating 𝑁𝐻3 concentration. 

3.2 OPS Simulation 

3.2.1 Comparison with the Observation 

With the emission data as the input, OPS modelling results are available for analysis. 

Figure 9 shows a comparison between the modelling result and the observation data. 

The OPS model has an acceptable performance on simulating the NH3 concentration 

in 2018. The points of a scatter plot are located close to the 1:1 line. The Correlation 

Coefficient (R) equals to 0.84 and Cost-function was 450.08. It can be noticed that the 

low-value observations (~0-5 𝜇𝑔/𝑚3) are generally underestimated by the OPS model. 
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More points are located above the 1:1 line when the concentration is higher (~10-15 

𝜇𝑔/𝑚3 ), showing the overestimation of the model in this concentration range. 

Concerning the uncertainty, we can see the points have larger error bars as the 

concentration are higher. This was reasonable because there were relative 

components in the calculation of observational error (from the equation). Another 

finding is that the simulation of NH3 concentration on the LML receptor points (orange) 

is more scattered than for the MAN receptor points (blue). 

 

Figure 9 Scatter plots between the simulation and the observation of MAN measurement system 

(blue points) and LML measurement system (orange points) in 2018. The red line is the 1:1 

reference line. 

3.2.2 Atmospheric concentration of NH3 in NL 

The OPS model simulates the NH3 concentration around the measurement stations. 

Figure 10 gives information about the spatial variation of NH3 concentration over the 

Netherlands. It is obvious that the eastern part of the Netherlands has much higher 

concentrations than the west. Especially in the eastern part of the province North-

Brabant and southern Overijssel, many stations show high concentrations of NH3 in 

the air. Another hotspot is the area with a concentration of poultry farms, east of Utrecht 

city. Consistent with the emission distribution, the concentrations in South-Holland and 

the central forests are relatively low. This pattern is caused by the main circulation, 

with predominant winds from the south-west. 
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Figure 10 Modelled NH3 concentration at measurement stations in the Netherlands in 2018 (in 

𝝁𝒈/𝒎𝟑). The points are located where the stations are. 

3.2.3 Contribution of each category in NH3 concentration 

A fraction of emitted NH3 will deposit back to the ground, react into secondary products, 

or transport outside and the other part remains in the air. To study the contribution of 

different emission sources, the percentage from each category in the average NH3 

concentration is calculated. Note that this is the average over all measuring stations 

and not the average over the Netherlands as a whole. As shown in Table 2, dairy cattle 

are the most important source (23.3%). Other cattle (4.9%) and fattening pigs (9.4%) 

also have relatively high contributions, which is in line with their emission strength 

(Figure 11). However, despite the high emissions of grazing animals' manure use 

(~24.8% of domestic emission), only 9.3% of NH3 in the air is from this category. A 

similar low contribution is observed in other manure-related categories. Fertilizer use, 

crop emission and fires on cropland also had low contribution rate compared with their 

emission amount. In contrast, 10.7% of the NH3 is originating from consumers, which 

was very high compared with its emission amount (8.6%). In addition, NH3 that is 

transported from outside of the Netherlands also contributes a lot. Germany (10.4%), 

Belgium (4.2%) and the sea (4.4%) were critical sources, while countries further away 

only contributed around 0.6% together.  
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Table 2 Emission percentage of each category, and after deposition, chemical reaction and in- and 

out-fluxes, the concentration percentage originated from each category. The NH3 concentration 

from outside is the result of transportation.  

Emission Category Emission (%) Concentration (%) 

Stables: dairy cattle 20.9 23.3 

Stables: Other cattle 3.5 4.9 

Stables: Breeding pigs 2.5 3.2 

Stables: Fattening pigs 7.3 9.4 

Stables: Poultry laying 

hens 

4.3 4.8 

Stables: Other poultry 1.4 1.6 

Stables: Other livestock 0.9 0.9 

Livestock storage 2.4 2.6 

Grazing: dairy cattle 0.8 0.4 

Grazing: other livestock 0.3 0.1 

Manure use: grazing 

animals 

24.8 9.3 

Manure use: stable 

animals 

5.2 2.2 

Manure processing 0.6 0.8 

Fertilizer application 8.1 2.9 

Crops and fires 3.3 1.0 

Traffic 3.4 1.6 

Consumers 8.6 10.7 

Other categories 1.6 0.5 

From Belgium 4.2 

From Germany 10.4 

From other countries 0.6 

From the sea 4.4 
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Figure 11 Emission percentage and after deposition, chemical reaction and in- and out-fluxes, the 

concentration percentage originated from different categories. The NH3 concentration from 

outside is the result of transportation. Pie charts for each category are in Appendix II 

3.3 Model Optimization  

The OPS simulation result gives us information about different NH3 emission 

categories and regions and how they influence the atmospheric concentration in the 

Netherlands. By reducing the errors with the inverse modelling method, the model is 

optimized, and a new emission estimate is obtained, with reduced uncertainty. No 

bounds are imposed on the new emission estimate.  

3.3.1 Performance Improvement 

A comparison between the performance of the original and the optimized simulation is 

shown in Figure 12. After the optimization, it is found that the points further approach 

the 1:1 reference line, which means the OPS modelled concentrations are closer to 

the observation values. The Correlation Coefficient (R) increased from 0.84 to 0.88. 

As a result of error reduction, the Cost-function 𝐽(𝑥) decreases from 450.08 to 285.90. 

Note that this value is by definition the minimum cost function that can be obtained 

given the current settings. 
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Figure 12 Original (left) and optimized (right) scatter plots between the simulation and the 

observation of MAN measurement system (blue points) and LML measurement system (orange 

points). The red line is the 1:1 reference line.  

3.3.2 Optimized Emission Estimate 

Figure 13 and Table 3 show the optimized emissions of the different categories, scaled 

to the original value (𝑥𝑎 = 1). The histogram height presents the relative change in 

emissions. An overestimation (~5-25%) is prevalent for stable animals, while the 

estimates mostly remained the same for grazing animals. The manure use of both 

stable and grazing livestock is underestimated according to the calculation. Especially 

for stable animals' manure, the optimized emission is more than 1.8 times larger than 

the original value. Underestimation is also observed for fertilizer application (25%) and 

crops and fires (40%). Traffic emission becomes ~2% higher and that of consumers 

becomes ~10% lower. In terms of foreign emissions, a significant underestimation of 

50% and overestimation of 50% is calculated for Belgium and Germany, respectively.  

 

The black error bars denote the reduced emission uncertainty and the red bars behind 

them were the original emission errors. As shown in Figure 13, significant error 

reduction occurs in the category of dairy cattle, manure use: both stable and grazing 

animals, and consumers. Stable animals’ manure use was the emission category with 

the largest change, and the other three are the major NH3 sources in the Netherlands. 

Other categories with obvious lower emission errors are fattening pigs, NH3 

transported from Belgium, Germany and the sea. For certain important categories, like 

grazing animals and crops and fires, the error was almost not reduced.  
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Figure 13 The relative changes in the emission estimate and error. The original value of all 

categories was 1 (the red line) and the optimal estimate values were the heights of the columns. 

The red error bars were the corresponding original emission errors and the black error bars were 

the error after reduction.  

 

Table 3 Emission amount of each category and its uncertainty before and after the optimization 

Emission Category Original 

Emission 

(g/s) 

Optimized 

Emission 

(g/s) 

Original 

Emission 

Error (%) 

Optimized 

Emission 

Error (%) 

Stables: dairy cattle 873.5 706.6 20.5 10.1 

Stables: Other cattle 146.5 115.8 16 11.5 

Stables: Breeding pigs 105.6 100.0 18.5 17.7 

Stables: Fattening pigs 304.0 279.1 21 12.8 

Stables: Poultry laying 

hens 

181.8 145.8 21 17.7 

Stables: Other poultry 57.1 42.3 24.5 22.6 

Stables: Other livestock 39.0 39.3 25 24.8 

Livestock storage 101.3 98.7 23.5 22.7 

Grazing: dairy cattle 34.7 33.9 55 54.8 

Grazing: other livestock 11.9 11.7 45 45.0 
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Manure use: grazing 

animals 

1037.3 1249.2 34.5 21.8 

Manure use: stable 

animals 

219.2 401.2 40 34.1 

Manure processing 26.8 26.7 11.5 11.5 

Fertilizer application 338.0 422.9 30 28.7 

Crops and fires 136.0 196.1 30 29.1 

Traffic 141.3 144.9 15 14.8 

Consumers 358.7 337.2 15 10.0 

Other categories 67.7 70.3 15 15.0 

From Belgium 2.2E+03 4.4E+03 30 17.5 

From Germany 2.1E+04 1.0E+04 30 6.7 

From other countries 1.6E+05 1.7E+05 15 15.0 

From the sea 1.0E+03 1.1E+03 15 9.3 

 

3.3.3 Bias Correction and Model Error 

Bias correction 

According to the bias correction method and the situation of this research, 3 types of 

bias correction cases were used for correction during the optimization. 

 1) 𝑏𝑜 = �̅� −  𝐹(𝑥𝑎)̅̅ ̅̅ ̅̅ ̅̅ , 2) 𝑏𝑜 = ∑
𝑦𝑖−𝐹(𝑥𝑎)𝑖

𝑆𝑜,𝑖
∑ 𝑆𝑜,𝑖

−1⁄ , 3) without bias.  

For the first type, the average value of all receptors is used. In comparison, the second 

type calculates the bias of each receptor separately and includes the error for every 

element of the vector. After the bias correction, the original model performs better than 

before (Table 4). The improvement is less so that the optimized model performs slightly 

poorer, as the corrected result had higher cost function than that without bias correction. 

There was no obvious difference in the results between the 2 bias calculation methods. 

 

Table 4 Optimizing results before and after bias correction 

 Without 

Correction 

With Bias Correction 

1 

With Bias Correction 

2 

Original RMSE 1.74 1.65 1.65 
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R 0.84 0.84 0.84 

Cost 

Function 

502.94 450.08 450.08 

Optimal RMSE 1.22 1.28 1.28 

R 0.89 0.89 0.89 

Cost 

Function 

244.67 280.79 280.74 

 

Optimized estimate with different model errors 

When the model error is changed to a different value, corresponding change is on the 

optimized emission estimate. As shown in Table 5, some categories are not sensitive 

to the uncertainty changes, like cattle and pigs, livestock storage and traffic. On the 

contrary, for other categories like other poultry, manure use, crop and fires, the 

changes are larger. This shows the simulation of NH3 from these categories may be 

more complicated. We can also find for categories that change a lot after the 

optimization, such change will be enlarged significantly by the small model error. 

Example is like transportation from Belgium and Germany, or manure use of stable 

animals.   

Table 5 Optimized estimate (emission multipliers) with the model error of 1, 2 and 0.6 𝝁𝒈/𝒎𝟑. 

Emission Category 1 𝛍𝐠/𝐦𝟑 2 𝛍𝐠/𝐦𝟑 0.6 𝛍𝐠/

𝐦𝟑 

Stables: dairy cattle 0.81 0.87 0.80 

Stables: Other cattle 0.79 0.88 0.74 

Stables: Breeding pigs 0.95 0.98 0.91 

Stables: Fattening pigs 0.92 0.99 0.85 

Stables: Poultry laying 

hens 

0.80 0.90 0.75 

Stables: Other poultry 0.74 0.90 0.59 

Stables: Other livestock 1.01 1.00 1.01 

Livestock storage 0.97 0.99 0.99 

Grazing: dairy cattle 0.98 0.99 0.95 

Grazing: other livestock 0.99 1.00 0.96 
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Manure use: grazing 

animals 

1.20 1.10 1.22 

Manure use: stable 

animals 

1.83 1.40 2.13 

Manure processing 1.00 1.00 0.99 

Fertilizer application 1.25 1.11 1.37 

Crops and fires 1.44 1.18 1.71 

Traffic 1.03 1.01 1.05 

Consumers 0.94 1.01 0.85 

Other categories 1.04 1.01 1.08 

From Belgium 2.05 1.58 2.29 

From Germany 0.48 0.52 0.48 

From other countries 1.05 1.02 1.08 

From the sea 1.02 1.04 0.96 

 

4 DISCUSSION  

4.1 Result Analysis 

Stable and storage 

Emission from livestock stable and the storage inside and outside the stable are one 

of the dominant NH3 sources. NH3 is mainly released from the urine excreted by 

animals in the stables and the mineralized organically bound N in mammals feces also 

contribute a small amount (Lagerwerf et al., 2019). Although the latest calculation 

method using total ammoniacal N (TAN) instead of total N excretion (Oenema et al., 

2000; Van der Hoek, 2002) avoids much overestimation, some emission loss can still 

exist, like the TAN loss as gaseous N compounds (Vonk et al., 2019). This might 

partially have led to the overestimation shown by the OPS model result. Other possible 

emission factors causing the overestimation and uncertainty include the number of 

animals per category, the proportion of organic N mineralization, different manure 

management systems and lack of occupancy, etc. (Vonk et al., 2019).  

 

According to Asman et al. (1998), NH3 concentration drops rapidly within the first 1–2 

km from the sources, as a result of dry deposition. This also causes high spatial 
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variation in rural areas. The stables are widely located in the large areas of grassland 

in the central Netherlands (Figure 14). Therefore, the emission from stable animals 

contributed the most to a high average concentration of the whole country. This 

explains the result of emission amount (Fout! Verwijzingsbron niet gevonden.). 

 

Figure 14 Dominant land use for the Netherlands and for Belgium and Germany (Sauter et al., 2018). 

 

 

Manure use and cropland 

Another essential emission source is from the agricultural soil, including the manure 

application, crops emission and the excrement deposited by grazing animals. From 

the results, we found that the NH3 emission from manure use is underestimated and 

the original errors are very high. Many emission factors might cause such a result, for 

example, the application techniques, the configuration of grassland, uncropped land, 

and cropland, or soil types (Vonk et al., 2019). For the crops, the residue has relatively 

low emission uncertainty (20%), but the standing crop (150%) is hard to predict. Such 

uncertainties are hardly reduced by inverse modeling. The same problem happens for 

the category grazing animals as well.  

 

Although the livestock manure is also applied in the grassland or other non-agricultural 

usage, the majority is used in the arable lands. From the previous chapter, we know 

that manure use emits a significant amount of NH3. However, the croplands are 
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concentrated in the coastal region of Zeeland and the border areas of Groningen and 

Limburg (Figure 14). As shown in Figure 15, in the perspective of the one year, the 

wind is mainly from the south and west for most of the time. A large amount of NH3 

could have been transported out of the Netherlands. Together with dry deposition in 

the local area, it explains the relatively low proportion of NH3 concentration originated 

to manure use (Table 2). 

 

Figure 15 The annual percentage of hours in which the mean wind direction is from each of the 

four cardinal wind directions (based on a statistical analysis of historical hourly weather reports 

and model reconstructions from January 1, 1980 to December 31, 2016 observed in 

Amsterdam)( Weather Spark).  

 

 

Traffic, consumers and other categories 

The emission sources of these categories are generally located close to urban areas. 

The wind from the sea can transport the NH3 emitted from the coastal cities eastward. 

Besides, the high mobility of traffic and consumers sources is likely to help the 

spreading. For some sources like industry, the relatively high emission height might 

have decreased dry deposition efficiency. Many of these NH3 sources are also the 

sources of other pollutants or close to them (traffic, industry etc.). As a result, the NH3 

concentration is more sensitive to the change of acid gas (H2SO4, HNO3, etc.) emission, 

which is more likely to cause under- or overestimation in the air. Especially more 

vehicles have the selective catalytic reduction systems in order to decrease NOx 

emission, which can lead to an increase of NH3 release (Sun et al., 2017). According 

to Suarez-Bertoa et al. (2016), no regulation has been made so far, except for Euro VI 

standards for heavy trucks. Similar phenomenon also happens for the catalytic 

reduction equipment in power plants (Shah et al., 2015). 
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Surrounding areas 

Based on Asman et al. (1998), wet deposition caused by scavenging of particulate 

dominates inputs at remote locations far from sources. Water vapor aggregates around 

the aerosol (including 𝑁𝐻4
+ ) to form droplets. Gaseous NH3 may then be easily 

absorbed on the surface and is then removed with the precipitation. Wind direction 

also plays a critical role in the NH3 transportation from outside. The wind is prevalent 

from the south and west for the most time of the year, which means NH3 is easier to 

be transported from Belgium than Germany. On the other hand, the high total amount 

of emission in Germany can still influence NH3 in the Netherlands when the wind is 

from the east. The interaction between foreign countries and the boundary areas is 

also important. From the sections above we know there are underestimations on 

cropland emission that has large areas located in north-east close to the main emission 

region of Germany. The lower NH3 export might lead to a corresponding higher import 

(Figure 13). Similarly, the overestimation of stable animal emission was likely to explain 

the change of emission from Belgium. Many stables are close to the southern border 

though there are also croplands in Limburg. The large difference after the optimization 

was also because of the high uncertainty. This is tested by setting the emission error 

to 15%, which reduces the optimized estimate of Belgium from 205% to 152% and 

from Germany from 48% to 54%. 

 

4.2 Future Study 

Bias Correction 

For this study, we assume the emission and its error unbiased. But in reality, if 

ammonia emissions are under- or overestimated, the model may be systematically too 

low or too high, respectively. In this case, a bias correction would be undesirable. A 

bias-correction scheme is useful when biases are caused by factors outside the state, 

for instance, wind fields, atmospheric stability, etc. To further correct the bias in 

emission, emission data and analysis results from the other years are needed. 

 

 

Model errors 

To check the assumption of model error, simulations with assumed model errors are 

carried out. We find that with the higher model error, the optimized emission values 

stay closer to the original ones. In this case, we give less trust to the model so the 

boundaries for the emission factor become narrower consequently. If a category stays 

the same, and the error is not reduced, the measurement network does not provide 

enough information to constrain that source category. On the other hand, if the model 
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error is too low, the optimized result will change a lot by the other errors reduction. The 

result will be out of the preset boundaries and unrealistic. That might be out of the 

experience expectation because we overestimate the model’s capability.  

In the future study, if more information about the model error selection is available, we 

can give more precise emission estimates. For example, a relative model error that 

varies with the size of emission file or the number receptors can be used together with 

the absolute uncertainty. 

 

 

Time and area resolved simulation 

From the previous discussion, we know that the atmospheric concentration of NH3 from 

emission estimate can be affected by certain emission factors, transportation, and 

efficiency of deposition. To further investigate the sensitivity of these factors, more 

controlled modelling runs are recommended.   

 

For example, annual average values are used in this study but seasonal emission 

patterns significant influence the concentrations as well. Livestock manure emits more 

in the summer and more NH3 is likely emitted by consumers in wintertime. Similarly, 

the meteorology changes in the year need to be considered. Because the NH3 

concentration has large spatial variation as the result of dry deposition, the distribution 

of sources is essential for the emission study. The original location of NH3 also 

determines where it will be transported to. In the future, we could divide the 

Netherlands into different regions and vary the emission in each region. Simulations 

with such an extended optimization state in the future can give us more sensitivity 

information to improve the OPS model. 

 

In Belgium and Germany, the emission estimate and the error in the sources might be 

different from those in the Netherlands. To further test the data of each category can 

be useful and we can estimate the transportation more effectively. Possible means 

maybe collecting more documents about how the emission is valued and conducting 

similar modeling of different categories in these areas. 

 

 

Linearity of the model 

The linear model makes the simulation process more efficient and the building of the 

Jacobian matrix easier. As a result, it is more capable for analyzing the estimation of 
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NH3 emission and effects on the concentration. As the same time, there may also be 

some problems caused by the linearity. For example, the speed of chemical reaction 

between NH3 and acid can be influenced by the NH3 concentration. Similar efficiency 

changes may also occur in the deposition and transportation. More variables that 

depend on the NH3 concentration are likely to improve the performance of the model 

in the future. 

5. CONCLUSION  

After simulating the NH3 concentration in 2018 for one-year length based on the 

emission data and comparing the modeling result with the observation, we found the 

OPS model has a quite acceptable performance: the Correlation Coefficient equals 

0.84 and the Cost-function is 450.08. The emission was divided into different 

categories according to the expected contribution of various emission sources. 

Through the method of inverse modeling analysis, the emission matrix (Jacobian) was 

constructed, which presents how the change of each emission source category affects 

the concentration. Then we optimized the model by reducing the errors to obtain the 

minimum cost-function value (285.90). 

 

From the result, we showed that agricultural sources dominate the contribution to NH3 

concentration Within that the emission amount from stable livestock (including cattle, 

pigs and poultry) was overestimated and the NH3 emitted from these categories had 

higher contribution to the concentration in the air. On the contrary, other essential 

emission sources from the cropland (including manure application and crop emission 

and fires) were underestimated and the contribution was relatively lower. Factors like 

manure application methods or changing numbers of animals made the emission 

estimation uncertainty very high for those categories. Other than agriculture, emission 

from traffic and consumers also had an influential contribution. The decline of acid in 

the air could reduce the amount of NH3 to react with. The NH3 transported from Belgium 

and Germany contributed 19.7% to the total concentration in the Netherlands. 

Emission from Belgium was significantly underestimated while that from Germany was 

overestimated a lot. Misestimation in the border areas and the high uncertainty could 

be the possible reasons. 

 

Although the model performed well in the simulation of 2018 atmospheric NH3, certain 

improvements are still needed. The linearity was checked in this research. It makes 

the analysis easier, but some processes may change with the NH3 concentration. Data 

from other years can be helpful to correct bias. The better model error shall be set in 

future studies to let the model make the largest uncertainty reduction and keep within 

the realistic boundaries at the same time. Simulations, where emissions can be 
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changed regionally in the Netherlands, are needed to investigate detailed contribution 

and sensitivity. Also, time-varied simulations rather than yearly average are required. 

More information about foreign emission will be useful for better analysis of outside 

transportation as well.   
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APPENDIX I. CODE OF EMISSION CATEGORIES 

4200 Agriculture: fertilizer application: fertilizer application / plant protection products 

and harvests 

4340 Agriculture: Emission from agricultural crops and fires 

4511 Agriculture: livestock farming: Stables: Dairy cattle 

4512 Agriculture: livestock farming: Stables: Other cattle 

4513 Agriculture: livestock farming: Stables: Breeding pigs 

4514 Agriculture: livestock farming: Stables: Fattening pigs 

4515 Agriculture: livestock farming: Stables: Poultry laying hens 

4516 Agriculture: livestock farming: Stables: Other poultry 

4517 Agriculture: livestock farming: Stables: Other livestock 

4520 Agriculture: livestock farming: Storage: 

4531 Agriculture: livestock farming: Grazing: dairy cattle NH3 

4532 Agriculture: livestock farming: Grazing: other livestock NH3 

4541 Agriculture: livestock farming: Manure use: grazing animals  

4542 Agriculture: livestock farming: Manure use: stable animals  

4550 Agriculture: livestock farming: Manure processing  

4340 Agriculture: Emission from agricultural crops and fires 

4200 Agriculture: fertilizer application: fertilizer application / plant protection products 

and harvests 

4340 Agriculture: Emission from agricultural crops and fires 

3000 Traffic 

8000 Consumers 

12567 Other categories 

56 From Belgium 

276 From Germany 

998 From other countries 

999 From the sea 
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APPENDIX II. EMISSION AND CONCENTRATION FOR EACH 

CATEGORY 
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Figure 16 Emission percentage of each category, and after deposition, chemical reaction and in- 

and out-fluxes, the concentration percentage originated from each category. The NH3 

concentration from outside is the result of transportation. 
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APPENDIX III. PYTHON SCRIPT FOR EMISSION ESTIMATE 

OPTIMIZATION  

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

 

# Based on Brasseur, Jacob  https://doi.org/10.1017/9781316544754.012 

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>CHOOSE RECEPTOR 

TYPE >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

rcp_type = 'Combination'     # Receptor type can be MAN, LML or Combination 

 

#err_emis_rel = [0.41, 0.32, 0.37, 0.42, 0.42, 0.49, 0.50, 0.47, 1.10, 0.9, 0.69, 0.8, 0.23, 0.6, 0.6, 

#                0.3, 0.3, 0.3, 0.6, 0.6, 0.3, 0.3] 

err_emis_rel = [0.41, 0.32, 0.37, 0.42, 0.42, 0.49, 0.50, 0.47, 1.10, 0.9, 0.69, 0.8, 0.23, 0.6, 0.6, 

0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3] 

#The values are 2 sigmas 

err_emis_rel = np.array(err_emis_rel) * 0.5 

#err_emis_rel = 0.3     # relative error in emissions (first rough estimate) (-) 

 

err_model_abs = 1     # absolute error in model (ug/m3)   FS assumption (0.35, 1 and 2) 

err_instr_abs = 0.01    # absolute error in measuring instrument (ug/m3)   FS add reference 

err_instr_rel = 0.096   # relative error in measuring instrument (-)       FS add reference 

 

iopt_bias = 2   #select bias cerrection 

#0:with out bias 

#1:b_o = y.mean() - conc_ref.mean() 

#2:b_o = sum((obs - conc_ref) / S_o.diagonal()) / sum(np.linalg.inv(S_o).diagonal()) 

 

categories = [4511, 4512, 4513, 4514, 4515, 4516, 4517, 4520, 4531, 4532, 4541, 4542, 4550, 4200, 

4340, 

3000, 8000, 12567, 56, 276, 998, 999] 

 

#>>>>>>>>>>>>>>>VARIABLES>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

 

# number of emission categories FS read from file? 

ncat = len(categories) 

x_a = np.ones(shape = (ncat, 1))    # multiplication factor for emissions of eight categories 
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def read_conc(filename, obs): 

 

#Read OPS concentrations at LML or MAN locations 

 

df = pd.read_csv(filename, skiprows=range(0, 3), header = None, 

names = ['name', 'x', 'y', 'ammonia', 'dry', 'wet', 'tot', 'ammonium'], 

delim_whitespace=True) 

 

df = df.drop(['x', 'y', 'dry', 'wet', 'tot', 'ammonium'], axis=1) 

df = df.sort_values('name') 

df = df.reset_index() 

df = pd.concat([df, obs], axis=1) 

df = df.dropna() 

output = df['ammonia'] 

#output = np.transpose(np.matrix(output)) 

return output 

 

def compute_jacobian(rcp_type): 

 

# Get observations: 

obs = pd.read_excel('Observation.xlsx', sheet_name=rcp_type) 

 

# Get reference concentration: 

conc_ref = read_conc("Analysis/" + rcp_type + "/new_emission_result.tab",obs) 

 

# n = number of receptors: 

n = len(conc_ref) 

 

# Create empty matrix 

K = np.zeros(shape = (ncat, n)) 

 

# Loop over categories: 

for icat in range(ncat): 

 

# Read concentration for sensitivity run and compute Jacobian = dy/dx for this emission category 

# dy/dx = (model(x=1) - model(x=0))/(1-0) = model(x=1), because model(x=0)= 0. 

conc = read_conc("Analysis/" + rcp_type + "/" + rcp_type +"_" + str(categories[icat]) + ".tab",obs) 

K[icat] = np.matrix(conc) 
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K = np.transpose(K) 

 

# Skip missing values and get concentration values 'obs' and put observations into vector y: 

obs = obs.dropna() 

obs = obs['obs'] 

y = np.transpose(np.matrix(obs)) 

 

 

return K, y, conc_ref, n 

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

 

# Read conc_ref = reference concentration, K = Jacobian, y = observation, n = number of receptors: 

if rcp_type == 'MAN': 

K, y, conc_ref, n = compute_jacobian('MAN') 

 

if rcp_type == 'LML': 

K, y, conc_ref, n = compute_jacobian('LML') 

 

 

if rcp_type == 'Combination': 

K_lml, y_lml, conc_ref_lml, n_lml = compute_jacobian('LML') 

K_man, y_man, conc_ref_man, n_man = compute_jacobian('MAN') 

 

K = np.concatenate((K_lml, K_man)) 

y = np.concatenate((y_lml, y_man)) 

conc_ref = np.concatenate((conc_ref_lml, conc_ref_man)) 

n = n_lml + n_man 

 

#>>>>>>>>>>>>>>>>ERROR-

MATRIX>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>> 

#>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

# A priori error covariance matrix (see 11.42 Brasseur, Jacob) and also x_a = 1 

err_emis_rel_sq = np.array(err_emis_rel)**2 

S_a = np.diag(err_emis_rel_sq) 

#S_a = np.diag(np.zeros(ncat) + err_emis_rel_sq) 
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# model error covariance matrix: 

S_m = np.diag(np.zeros(n) + err_model_abs**2) 

 

# instrument error covariance matrix: 

obs = np.squeeze(np.asarray(y)) 

delta_i_sqr_array = np.array(err_instr_abs +(err_instr_rel * obs)**2) # ug/m3 

S_i = np.diag(delta_i_sqr_array) 

 

# Observational error matrix; we assume that the representation error = 0, 

# because OPS computes concentration directly at the location of the receptor: 

S_o = S_m + S_i 

 

 

 

#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>DEFINE THE LINEAR MODEL>>>>>>>>>>>>>>>>>>>>> 

if iopt_bias == 0: 

b_o = 0 

elif iopt_bias == 1: 

b_o = y.mean() - conc_ref.mean() 

else: 

b_o = sum((obs - conc_ref) / S_o.diagonal()) / sum(np.linalg.inv(S_o).diagonal()) 

 

 

 

def F(x): 

# OPS-model (Taylor expansion around x_a): 

F = K @ (x - x_a) + np.transpose(np.matrix(conc_ref)) + b_o 

return F 

 

 

#>>>>>>>>>>>OPTIMAL ESTIMATE (11.80 and 11.79 in Brasseur, Jacob) 

#>>>>>>>>>>>>>>>>>>>>>>>>>>> 

G = S_a @ np.transpose(K) @ np.linalg.inv((K @ S_a @ np.transpose(K)) + S_o) 

x_optimal = x_a + G @ (y - F(x_a)) 

print ('The optimal x is:', x_optimal) 

 

 

#>>>>>>>>>>>>>>>>>>>COST-FUNCTION (11.76, 11.77 in Brasseur, Jacob): 

def cost(x): 
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J = np.transpose(x - x_a) @ np.linalg.inv(S_a) @ (x - x_a) + np.transpose(y - F(x)) @ np.linalg.inv(S_o) 

@ (y - F(x)) 

return J 

 

 

def cost_deri(x): 

J_d = 2 * np.linalg.inv(S_a) @ (x - x_a) + 2 * np.transpose(K) @ np.linalg.inv(S_o) @ (F(x)  -y) 

return J_d 

 

 

#print('The original cost is:', cost(x_a)) 

#print('The optimal cost is :', cost(x_optimal)) 

#print('The optimal cost derivative is:', cost_deri(x_optimal)) 

 

# posterior error covariance matrix (11.81) 

S_optimal = np.linalg.inv(np.transpose(K) @ np.linalg.inv(S_o) @ K + np.linalg.inv(S_a)) 

print('posterior error covariance matrix', np.sqrt(S_optimal.diagonal())) 


