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Summary 

The distribution of components over the different forms ('species') in which they are 
present in different soil phases (speciation) can be calculated by solving mass balance 
equations. Soil phases include different species (complexes) in the water phase, gases in 
the gas phase, minerals, organic liquids (NAPL) and adsorbed components (surface 
species) in the solid phase. An overview of a system description is usually presented in 
the form of a so-called 'table of species'. Adsorption- and desorption processes are 
described by means of either the Langmuir- or the Freundlich sorption model. This 
chapter includes a few simple examples of speciation calculations. 

9.1 Introduction 

Chemical speciation comprises the distribution of chemical compounds over the dif­
ferent forms in which they are present in different phases of a soil-water system. In 
other words, it concerns both their distribution over different phases in a soil-water 
system (the solid-, water- and gas phases, and possibly also the biota phase) and the 
different forms in which they are present in these phases. Furthermore, the situation in 
a state of chemical equilibrium is considered, rather than how equilibrium is attained or 
how long it will take to attain equilibrium. With regard to speciation, the following text 
discusses only ionic compounds, although it also applies to organic chemicals. 

Speciation calculations are used for determining the chemical equilibrium composition 
of soil-water systems, i.e. the total amounts or concentrations of the various species 
present in the system. In such calculations, physico-chemical processes such as com-
plexation, hydrolysis, precipitation, dissolution, volatilization, oxidation, reduction, ad­
sorption and desorption need to be considered. As far as the biota phase is involved, 
bioaccumulation or uptake by organisms should also be taken into account. However, 
there are no simple partition models for ionic compounds with regard to the biota phase 
and therefore uptake is often described as if it concerns adsorption onto cell walls 
(Plette et al. 1996). 

Compounds may be present in the form of various species, such as: 

H+, Cd2+, OH, CI", P04
3-, Al3+ 

- in the water phase: 
free ions 
complexes (ion pairs) 
metal-DOC complexes 

CdCl+, A10H2+, H2P04, chelates (EDTA) 
Cu-DOC (DOC = Dissolved Organic Carbon) 
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in the solid phase: 
minerals or solids 
organic liquids 
adsorbed to soil particles 

CdS(s), CdC03(s), AlP04.2H20(s), Fe(OH)3(s) 
Benzeen, Tolueen, Tri, Per, oil, PAH, Tar 
Various sorption models: 

(surface species) - Langmuir, Freundlich, Ion Exchange 
- Variable charge models, heterogeneity models 

- in the gas phase: 
gases : NH3(g), C02(g), H2S(g), HCN(g) 

- in the biota phase : accumulated in organisms; no simple partition models are 
available, except models for organic chemicals. 

It is often necessary to do speciation calculations, because there is a lack of proper ana­
lytical methods for the direct identification and determination of species concentrations. 
In most cases, only the total amounts of compounds can be determined by analytical 
methods, not the amounts of their specific forms (e.g. only the total amount of Cd can 
be determined, not the concentration of Cd2+). Important exceptions are proton activity 
(pH) and redox potential (relative electron activity), which can easily be measured, 
whereas it is very difficult to estimate their total amounts in soil-water systems. 

To give an example, speciation calculations need to be done in the case of risk assess­
ments, as these require detailed information on the identities and concentrations of 
prevailing species because of differences in toxicity and/or behaviour in the soil-water 
system. 

In other words, speciation calculations can supplement data which have been obtained 
by means of available analytical methods (e.g. total amounts of compounds). The re­
maining text explains how such calculations are done and what data they require. A few 
simple examples are included. For more information on the concerned systematic meth­
od for solving chemical equilibria, refer to the workbook 'Chemical Equilibria in Soil, 
Water, Sediment; Part B' (Keizer & van Riemsdijk 1992). 

9.2 Arithmetic method 

The first step of the systematic method for solving chemical equilibria consists of 
defining the system which contains all the relevant components. These components 
could be considered the 'building blocks' or 'basic entities' of the system. Many dif­
ferent species may be present; they are the reaction products of the components which 
react with each other. Components themselves are also considered species. 

The equilibrium constant or formation constant (K°) of an equilibrium reaction is 
defined as the species activity divided by the product of the component activities. For 
diluted solutions with very low salt concentrations, the activities of the components are 
equal to their concentrations. 

Example of a system description: 

Components : Cd2+ and CI" 
Species : Cd2+, CI", CdCl+ and CdCl2° 
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Equilibrium reactions: 

Cd2+ + CI" < —> CdCl+ log(K°) = 1.98 
Cd2+ + 2 CI" < —> CdCl2° log(K°) = 2.6 

(CdCl+) = (Cd2+).(C1").10198 : activity of species CdCl+ 

(CdCl2°) = (Cd2+).(C1)2.1026 : activity of species CdCl2° 

Commonly, free cations and free anions are considered components of systems (e.g. 
H+, Cd2+, P04

3 , Al3+, CI). 

A chemical equilibrium problem is solved by calculating the distribution of the compo­
nents over all species present in the system. This requires knowledge of the concentra­
tions or activities (e.g. pH) and/or the total amounts of the components (e.g. Cd(t)). 
The total amount of a component, distributed over several species, may be expressed in 
terms of the mass balance of that component. 

Example of mass balance equations for the Cd-Cl system: 

Cd(t) = [Cd2+] + [CdCl+] + [CdCl2
0]: total amount of Cd 

Cl(t) = [CI] + [CdCr] +2[CdCl2
0]: total amount of CI 

In this text ( ) is used for the activities of species or components, and [ ] for their 
concentrations. 

If mass balances are used, the calculations need to be done in terms of concentrations, 
and all species need to be expressed in terms of components and formation constants. 
However, such constants are normally defined in terms of activities. Therefore, activ­
ities need to be converted to concentrations. For such conversions, activity coefficients 
are used, as follows: 

ai = fi-Ci (1) 

the activity of species i (mol/1) 
the concentration of species i (mol/1) 
the activity coefficient of species i 

The activity coefficients can be readily calculated using the following Davies equation: 

log(f) = -0.51Z2(_v£—-0.2TJ) (2) 

Zj : the valence of species i 
U : ionic strength (mol/1) 

The above formula can be used for calculating the activity coefficient for a given ionic 
strength, provided the latter does not exceed a value of approximately 0.5. In the case 
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of higher values, the Davies equation needs to be adapted. The ionic strength is calcu­
lated using the following formula: 

U =0.5 £(C.Z,2) 

n : the total number of species 

(3) 

This problem can be solved only by iteration. In many practical situations, a reasonably 
accurate estimate of the ionic strength can be made on the basis of known component 
concentrations and/or total amounts present in solution, and therefore this iteration pro­
cedure need not be applied. 

Example: Estimate U on the basis of the total amounts of the components present in a 
solution containing 0.02 mol/1 CdCl2: 

U = 0.5 (0.02 * 4 + 0.04 * 1) = 0.06 mol/1 

For values of f; for ions with abs(z) = 1, 2, 3 and 4 for different values of U (0 - 0.5 
mol/1), see Figure 9.1. 

s l.o 

0.4 0.5 
ionic strength 

Figure 9.1. Activity coeffic ait versus ionic strength for z = 1, 2, 3 and 4. 

In solving chemical equilibria, the following systematic approach is usually taken: Cal­
culate the activity coefficients on the basis of an estimated ionic strength, and convert 
the equilibrium constants regarding the basic set of equilibrium reactions to 'concentra­
tion constants'. Thus, the 'concentration constants' apply to the given ionic strength. 

For example, consider the formation of species AmBn from components A and B: 
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mA + nB — > AmBn log(K°) (4) 

K° is the formation constant for this reaction and is expressed in terms of activities (U 
= 0 ) : 
Kc is the formation constant expressed in terms of concentrations (U = C). 

(A)m.(B)n (5) 

K° is converted to Kc as follows: 

K 0 (A)".(B)° (fA)m.(fB)"[A]m.[B]" K c (fA)m(fB)" ( 6 ) 

(AmBn) fAB[AmBJ ' fAB 

fA 

IAR 

the activity coefficient of component A 
the activity coefficient of component B 
the activity coefficient of species AmBn 

In order to solve the equilibrium problem - the distribution of A and B over the species 
A, B and AmBn - the mass balances of the components A and B need to be expressed in 
terms of component concentrations, as follows: 

A(t) = [A] + m.[AmBJ (7) 

B(t) = [B] + n.[AraBJ (8) 

The concentration of species AmBn is equal to: 

[AmBn] = [A]m.[B]".Kc Thus: 

A(t) = [A] + m.[A]m.[B]".Kc (9) 

B(t) = [B] + n.[A]ra.[B]n.Kc (10) 

If A(t), B(t) and Kc are known, these two equations can be solved, because then only 
two unknown variables ([A] and [B]) are left. For solving such equations, usually a 
numerical solution method needs to be used (e.g. the Newton-Raphson method). 
Furthermore, for starting calculations, the component concentrations in the state of 
equilibrium ([A] and [B]) need to be estimated. 

In the case of practical applications, it is necessary to know what components and 
species are relevant to the system concerned, and to have reliable log(K°) values at 
one's disposal. Data on what species may be present and their log(K°) values can be 
found in handbooks on stability constants (e.g. Sillen & Martell 1971; Smith & Martell 
1976), soil chemistry (e.g. Lindsay 1979) and water chemistry (e.g. Stumm & Morgan 
1981). These constants can also be found in the databases of many computer programs 
(e.g. MINEQL (Westall et al. 1976), GEOCHEM (Sposito & Mattigod 1980) and 
ECOSAT (Keizer & van Riemsdijk 1994)). For an overview see Loeppert et al. (1995). 
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9.3 Table of species 

The classic method for describing the various mass balances of components, in which 
species concentrations are expressed in terms of component concentrations and K° 
values (equations (9) and (10)), often leads to long, confusing equations, especially if 
they include the numerical values of the various formation constants. 

A convenient alternative is a so-called 'table of species'. In a condensed form, such a 
table gives an almost complete overview of the system concerned. The structure of 
such a table is illustrated in Table 9.1, using the above example concerning a system 
with components A and B and species A, B and AmBn: 

Table 9.1. Table of species. 

Components A B log (K) 

species 
A 
B 
AmBn 

1 
0 
m 

0 
1 
n 

0 
0 
logK c 

Total A(t) B(t) 

All species present in the system are listed in the column on the far left-hand side. 
Their charges are not indicated, however, so as to keep the table orderly. The selected 
components are given in the upper row of the table, as is log(K). The numbers in the 
columns below the components indicate how often these components are present in the 
species concerned (the stoichiometric coefficient). The log(K) column gives the log(Kc) 
values for the species concerned. For components, these values equal 0. The row at the 
bottom gives the total amounts for the components (mol/1). 

The species concentration (mol/1), expressed in the concentrations of the components, 
may be derived directly from the table as: 

Read the table horizontally: 

log[A] = l.log[A] + O.logfB] + 0 (11) 
log[B] = O.logfA] + l.log[B] + 0 (12) 
log[AmBJ = m.log[A] + n.log[B] + log(Kc) (13) 

The expression for the mass balance for a certain component may also be derived di­
rectly from the table, as it is equal to the sum of the products of the numbers 
(stoichiometric coefficients) in the component column and the concentrations of the ac­
companying species, as follows : 

Read the table vertically: 

A(t) = 1.[A] + 0.[B] + m.[AraBJ (14) 
B(t) = 0.[A] + 1.[B] + n.[AmB„] (15) 
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[B]° . 
[B]1 . 

• [B]n 

10° 
10u 

. Kc 

or 
or 
or 



This table of species contains all information necessary for doing the calculations, 
namely: 
- the components and species present 
- the log Kc values for the species 
- the total amounts of the components. 

The ionic strength needs to be known (if it has not already been calculated), as well as 
the charges of the components (for calculating the activity coefficients) and the esti­
mates of the component concentrations (for starting the iteration process). 

Particular attention should be paid to the values of log Kc. Sometimes, there is 
confusion over which value is correct, for example, in the case of minerals for which 
the solubility values are unknown. Sometimes, even the correct values are unknown, 
e.g. in the case of metal-DOC complexes (DOC = Dissolved Organic Matter) or sur­
face species (parameters of a sorption model). 

9.4 H20 dissociation equilibrium 

Up until now, the solvent water (H20) has not explicitly been taken into account, 
although it is an essential part of the systems in which we are interested. Even more 
important is the fact that H20 participates in many equilibrium reactions, such as the 
dissociation of H3P04 and the formation of hydrolysis products. This means that the 
dissociation equilibrium of H20 also belongs to the basic set of equations describing the 
system. Its equation is as follows: 

H20 < —> H+ + OH" log(K°) = -14.0 (16) 

As the activity of water in many diluted solutions is practically equal to 1, the express­
ion for the ion product of water can be simplified as indicated in equation (17). 

K" = ( H ' ) ( ° H " ) « (H+).(OH) = 1(T140 

(H20) ( 1 7 ) 

The mass balances for the components H+ and OH- (H(t) and OH(t)) now include the 
concentration of water ([H20]) as a term. It is equal to 1000/18 = 55.56 mol/1 at 
25 °C. The H20 phase now appears in a separate part of the table of species, designated 
by 'phases' (see Table 9.2). The log(K) column now contains the dissociation constant 
instead of the formation constant. Horizontally, the table now includes an expression 
for the ion product of water (equation (17)) instead of the concentration of water. 
Vertically, the total amounts of the components are still expressed, including the 
components present in H20. The same procedure can be applied to minerals. In this, 
the solubility constant (Ks) is placed in the log(K) column (see section 9.6). 

The complexation of Cd2+ with CI" and OH" is given here as an example. Assume that 
0.02 mol/1 CdCl2 and 0.01 mol/1 HCl have been dissolved in water. For convenience, 
U is assumed to be equal to 0 (log(Kc) = log(Kc)). 

The following equilibrium reactions are relevant: 
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H+ 

Cd2+ 

Cd2+ 

Cd2+ 

+ OH 
+ ci-
+ 2 Cl 
+ OH 

< — > 
< —> 
< —> 
< —> 

H20 
CdCl+ 

CdCl2° 
Cd(OH) 

Cd2+ + 2 OH < —> Cd(OH)2° 

log(K°) 
14.0 
1.98 
2.60 
3.90 
7.70 

The table of species belonging to this system is represented in Table 9.2. 

Mass balance equations : 

Cd(t) = [Cd2+] + [CdCl+] + [CdCl2°] + [Cd(OH)+] + [Cd(OH)2°] 
Cl(t) = [CI"] + [CdCl+] + 2 [CdCl2°] = 0.05 mol/1 
H(t) = [H+] + [H20] = 0.01 + 55.56 = 55.57 mol/1 
OH(t) = [OH] + [H20] + [Cd(OH)+] + 2 [Cd(OH)2°] = 55.56 mol/1 

(18) 
(19) 
(20) 
(21) 
(22) 

0.02 mol/1 (23) 
(24) 
(25) 
(26) 

Table 9.2. Table of species: 0.02 mol/1 CdCl2 + 0.01 mol/1 HCl; U = 0. 

Components 

Species 
Cd 
Cl 
H 
OH 
CdCl 
CdCl2 

CdOH 
Cd(OH)2 

Phases 
H20 

Total 

Cd 

1 
0 
0 
0 
1 
1 
1 
1 

0 

Cd(t) 
0.02 

CI 

0 
1 
0 
0 
1 
2 
0 
0 

0 

Cl(t) 
0.05 

H 

0 
0 
1 
0 
0 
0 
0 
0 

1 

H(t) 
55.57 

OH 

0 
0 
0 
1 
0 
0 
1 
2 

1 

OH(t) 
55.56 

log(K) 

0 
0 
0 
0 
1.98 
2.6 
3.9 
7.7 

-14.0 

[H20] appears in the mass balances for H and OH. In both cases, this term is multi­
plied by one, because H20 is composed of a combination of one H+ unit and one OH 
unit. 

The concentration of a species may be expressed as a product of component con­
centrations and Kc values. However, this does not apply to the water phase. For diluted 
systems, the concentration of water is practically constant. In such a case, the activity 
coefficient of water is unity. This approximation may be used for most environmental 
systems. 

Because the activity coefficient of water is unity, it is possible to eliminate one of the 
components (H+ or OH) from the set by expressing one in terms of the other. Here, 
the component OH is eliminated. The set of mass balance equations can now be 
reduced by one in order to calculate the concentrations of the remaining components. In 
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other words, the system loses one degree of freedom. This reduction of the number of 
mass balance equations is done in such a way that the concentration of water (which is 
not unity!) is eliminated from the set of equations. This is possible by combining the 
mass balances of H+ and OH as follows: 

H(t) - OH(t) = [H+] - [OH] - [Cd(OH)+] - 2 [Cd(OH)2°] = 0.01 mol/1 (27) 

or with: [OH] = [H^ ' . IO 1 4 0 (28) 

H(t)-OH(t) = [H+]-[H+]-1.10'14-0-[Cd2+].[H+]-1.10-10-1- 2[Cd2+].[H+r2.10"203 (29) 

The last equation shows that the coefficients in the H+ column of the table of species 
(Table 9.2) have been changed by subtracting the coefficient in the OH" column from 
the one in the H+ column. The log(Kc) values have been adjusted by adding -14.0 times 
the coefficient in the OH" column. The value of H(t) - OH(t) is equal to the total 
amount of component H+ minus the total amount of component OH" (mol/1). The result 
of this operation is shown in Table 9.3. 

In contrast to ordinary mass balances, H(t) - OH(t) may have negative values or be 
equal to 0, because it is a linear combination of two ordinary mass balances. 

Table 9.3. Table of species. 0.02 mol/1 CdCl2 + 0.01 mol/1 HCl; U = 0. Reduction based on the 
H20 dissociation equilibrium. 

Components 

Species 
Cd 
Cl 
H 
OH 
CdCl 
CdCl2 

CdOH 
Cd(OH)2 

Total 

Cd 

1 
0 
0 
0 
1 
1 
1 
1 

Cd(t) 
0.02 

CI 

0 
1 
0 
0 
1 
2 
0 
0 

Cl(t) 
0.05 

H 

0 
0 
1 

-1 
0 
0 

-1 
-2 

H(t) - OH(t) 
0.01 

log(K) 

0 
0 
0 

-14.0 
1.98 
2.6 

-10.1 
-20.3 

If precipitates (pure solid phases or minerals) are formed, a situation arises which is 
completely analogous to the one encountered in the case of reduction with the H20 
dissociation equilibrium (see section 9.6). 

9.5 Constant component concentrations or activities 

If the concentration or activity of a component is known, that is, if it has a constant 
value (e.g. pH), the set of mass balance equations can be further reduced. In the table 
of species, the column of the component with known concentration (if the activity is 
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known, it should be converted to concentration) is then omitted, and the log(K) column 
is adjusted. 

In many practical situations, the pH has a constant, known (measured) value. The 
total amount of H(t) - OH(t) is then not relevant to the solution of the chemical 
equilibrium problem. 

Consider, for example, the dissociation of H3P04. The relevant equilibrium reactions 
are as follows: 

log(K°) 
H+ + OH" < —> H20 14.0 (30) 
H+ + P04

3' < —> HP04
2- 12.35 (31) 

2 H+ + P04
3 ' < —> H2P04- 19.55 (32) 

3 H+ + P04
3 ' < —> H3P04° 21.70 (33) 

The table of species for this system is presented in Table 9.4. It is assumed that U = 
0, H(t) - OH(t) = 0.02 mol/1 and P04(t) = 0.01 mol/1. 

Table 9.4. Table of species. Reduction based on the H20 dissociation equilibrium; U = 0. 

Components H P04 log(K) 

Species 
H 
OH 
P04 

HP04 

H2P04 

H,P04 

1 
-1 
0 
1 
2 
3 

0 
0 
1 
1 
1 
1 

0 
-14.0 

0 
12.35 
19.55 
21.70 

Total H(t) - OH(t) P04(t) 
0.02 0.01 

From Table 9.4, it can be deduced that: 

[H3P04°] = [H+]3.[PO4
3].102170 

Replace, for example, [H+] by 106, i.e. pH = 6 (U = 0). This results in the fol­
lowing: 

[H3P04°] = [PO4
3].102170.1018 = [PO4

3].10370 

Thus, the log(K) column should be adjusted by adding the product of the coefficient of 
the 'known' component column and the logarithm of the actual component concentra­
tion to the original log(K) value. In Table 9.5, this situation is elaborated upon for the 
given example with a concentration of H+ which is assumed to be known. 
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0 
0 
1 
1 
1 
1 

0 + log(H) 
-14.0 - log(H) 
0 
12.35 + log(H) 
19.55 + 2 log(H) 
21.70 + 3 log(H) 

Table 9.5. Table of species. Reduction based on the H20 dissociation equilibrium; known value for 
[H+]; U = 0. 

Components P04 log(K) 

Species 
H 
OH 
PO 4 

HP04 
H2P04 

Total P04(t) 
0.01 

The species H+ and OH" may be omitted from the table, because their values are 
known or can be calculated directly (the coefficient in the P04 column equals 0). 

9.6 Equilibria with minerals 

It is typical of minerals that their quantities do not affect the equilibrium composition of 
the solution of the system in which they are present. In other words, the activity of 
pure minerals is equal to 1 (compare this situation with that of the water phase in 
section 9.4). Based on the equilibrium reaction, the solubility constant Ks of minerals 
may be defined as follows (the equilibrium reaction for gibbsite is given as an 
example): 

Al(OH)3(s) < —> Al3+ + 3 OH" log Ks= -33.96 
3 H+ + 3 OH" < —> 3 H20 log K = 42.0 

Al(OH)3(s) + 3 H+ < —> Al3+ + 3 H20 log Ks= 8.04 (34) 

Ks = (A13+).(H+)"3 = 10804 (35) 

The product (A13+).(H+)'3 is called the ion activity product (IAP). 

Equation (35) may be written as follows: 

log [Al3+] = 8.04 - 3 pH (36) 

This simple relation can be plotted in a so-called 'solubility diagram' (Figure 9.2). 
At equilibrium, the ion activity product (IAP) equals Ks. If IAP > K,,, the solution is 

supersaturated with respect to gibbsite, and the mineral will be formed (precipitation). 
If IAP < Ks, the solution is undersaturated with respect to gibbsite, and the gibbsite 
present will dissolve until either IAP equals Ks, or all gibbsite has dissolved (see Figure 
9.2). 
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Figure 9.2. The solubility diagram for gibbsite, in which log(Al3+) is plotted against pH. 

The calculation of chemical equilibria may be complicated as a result of slow reaction 
rates, especially if solid phases are involved. Reaction rates for species in solution are 
generally rather high, so that the calculated equilibrium composition for a system with­
out solid phases, gas phase or surface sorption sites is normally reached within sec­
onds. 

One mineral is usually converted very slowly into another (dissolution and precipita­
tion of minerals). In fact, sometimes the conversion rate is so low that the system may 
be described on the basis of a partial equilibrium. Similar problems may arise in the 
case of adsorption and desorption processes, although higher conversion rates are 
involved in this. 

Handbooks on stability constants sometimes give many different log(Ks°) values for 
relationships which are basically the same, e.g. for the solubility product of 
Al(OH)3(s): (Al3+).(OH)3, or for Fe(OH)3(s) : (Fe3+).(OH)3. For the relevant equilib­
rium reactions and log(Ks°) values, refer to Table 9.6. 

Table 9.6. Equilibrium reactions and log(Ks°) values for Al(OH)3(s) and Fe(OH)3(s). 

Nr. 

1 
2 
3 
4 
5 
6 
7 

Mineral 

amorphous Al(OH)3 

boehmite 
bayerite 
gibbsite 
amorphous Fe(OH)3 

hematite 
goethite 

Reaction 

Al(OH)3(s) 
Al(OH)3(s) 
Al(OH)3(s) 
Al(OH)3(s) 
Fe(OH)3(s) 
0.5a-FeOOH(s) + 
a-Fe203(s) + H20 

1.5 H20 

< —> Al3+ + 3 OH 
< —> Al3+ + 3 OH 
< —> Al3+ + 3 OH 
< —> Al3+ + 3 OH 
< —> Fe3+ + 3 OH 
< —> Fe3+ + 3 OH 
< —> Fe3+ + 3 OH 

log(Ks°) 

-32.34 
-33.87 
-33.49 
-33.96 
-38.46 
-41.91 
-42.02 
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The reason that these values are different is that the minerals concerned have a slightly 
different crystal lattice. It will be obvious that the composition of a solution in equi­
librium with Al(OH)3(s) can correspond to only one of the four above-mentioned 
solubility relations. At complete equilibrium, the system will in principle be charac­
terised by the most stable mineral. 

Any mixture of amorphous Al(OH)3(s), boehmite and bayerite in contact with water 
will finally convert to gibbsite. The reactions involved are extremely slow. A conver­
sion may be disregarded, if its reaction rate is low compared to the time scale of inter­
est. The conversion of amorphous Al(OH)3(s) into gibbsite will in general take months, 
or even years. The equilibrium composition of the system containing water and amor­
phous Al(OH)3(s) can thus be predicted using equation (1) of Table 9.6, as long as the 
equilibrium between dissolved aluminium species and amorphous Al(OH)3(s) is 
established relatively quickly. 

9.7 Adsorption and desorption equilibria 

The behaviour of compounds in soil-water systems is often strongly influenced by ad­
sorption and desorption processes. The most important reactive surfaces are located on 
clay minerals, metal (hydr)oxides and organic matter. 

For the description of the relationship between a dissolved substance and its adsorbed 
form, various model equations may be used, such as the Langmuir equation, the 
Freundlich equation, various ion-exchange equations, and (electrostatic) models which 
take into account the (variable) charge of the reactive surfaces and the charge of the 
sorbing substance (species). 

The systematic method for solving chemical equilibria presented in the previous 
sections may also be applied to these sorption models. By considering the amount of a 
component adsorbed on the solid-phase as a species 'dissolved' in the soil solution, it is 
possible to treat adsorption and desorption equilibria in the same way that chemical 
equilibria for species in the water phase are treated. 

Equations describing adsorption or desorption processes, or describing ion exchange 
reactions, should be changed in such a way that they become comparable to 'normal' 
chemical equilibrium equations. Therefore, they need to be expressed in terms of the 
components of the system, and characterized by an equilibrium constant. This is elab­
orated upon below for two adsorption/desorption models (Langmuir and Freundlich). 
Regarding ion-exchange, an approach can be taken which is similar to the Langmuir 
model (Keizer & van Riemsdijk 1992). 

9.7.1 Langmuir model 

The Langmuir model may be represented by: 

[QJ : the concentration of the adsorbed component i in mol/kg 

K.Qffl.fi] 
[ Q i ] - (1 + K,.[i]) <37> 

[i] : concentration of component i (mol/1) 
Q(t) : the total amount of surface sites available for adsorption (mol/kg) 

149 



K| : the Langmuir sorption constant for component i (1/mol) 

with Q(t) = [Q] + [QJ 

[Q] : the concentration of surface sites still available for adsorption (mol/kg) 

After substituting Q(t) in (37), the Langmuir model may be formulated as: 

[Qi] = K,[Q].[i] (38) 

This equation is comparable to the equation for the concentration of dissolved species 
expressed in terms of component concentrations and formation constants. If the surface 
sites available for adsorption (Q) are considered a component and the adsorbed amount 
of component i is considered a species (Q), this type of adsorption/desorption equilib­
rium can be treated as a normal chemical equilibrium. Q(t) equals the mass balance for 
component Q. 

The concentrations of Q, Q; and Q(t) (expressed in mol/kg) need to be converted into 
concentrations expressed in mol/1 using either the soil solution ratio (kg/1), or the soil 
moisture content (1/kg). This is necessary in order to calculate the mass balance of the 
adsorbing component. 

If several components compete for the same sorption sites, different K; values for the 
various adsorbed components may be assumed to exist (multicomponent Langmuir 
model). The parameter values K, and Q(t) can be derived from measurement data of 
adsorption or desorption experiments, or can be estimated by applying linear regression 
analyses to the linearized Langmuir equation, as follows: 

il 
[Qi] 

1 
K,Q(t) 

[i] 
Q(t) 

(39) 

Table 9.7. Table of species. Cd sorption from a CdCl2 solution according to the Langmuir model. 
U = 0. The species are similar to those in Table 9.3. Reduction based on the H20 dissociation 
equilibrium. 

Components 

Species 
Cd 
Cl 
H 
OH 
Q 
CdCl 
CdCl2 

CdOH 
Cd(OH)2 

Qcd 

Total 

Cd 

1 
0 
0 
0 
0 

Cd(t) 

CI 

0 
1 
0 
0 
0 
1 
2 
0 
0 
0 

Cl(t) 

H 

0 
0 
1 

-1 
0 
0 
0 

-1 
-2 
0 

H(t)-OH(t) 

Q 

0 
0 
0 
0 
1 
0 
0 
0 
0 
1 

Q(t) 

log(K) 

0 
0 
0 

-14 
0 
1.98 
2.6 

-10.1 
-20.3 
log(Kcd) 
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The values found for Kj and Q(t) apply only to the specific experimental conditions 
used. Important variables are, for instance: ionic strength, temperature, pH, soil type, 
other competing components, and soil/solution ratio. 

The speciation is illustrated in Table 9.7 in the form of the table of species for 
cadmium adsorption from a CdCl2 solution (see Table 9.3). 

In soil systems, the value of H(t) - OH(t) is usually unknown. Therefore, pH should 
be measured and used as an input variable in order to eliminate the H+ column in the 
table of species (see also section 9.5). 

9.7.2 Freundlich model 

The Freundlich sorption model is very similar to a 'normal' chemical equilibrium equa­
tion, as follows: 

[Qi] = K,[if (40) 

Q,] 
[i] 
K; 

the concentration of the adsorbed component i in mol/kg 
the concentration of component i (mol/1) 
the Freundlich sorption constant for component i (1°.kg1.mol1"") 
model parameter 

The adsorbed amount of component i may be considered a 'dissolved' species. No extra 
components need to be introduced. The concentration of Qi (expressed in mol/kg) needs 
to be converted into concentration expressed in mol/1, using either the soil solution 
ratio (kg/1), or the soil moisture content (1/kg), in order to make it possible to calculate 
the mass balance. 

The values for the model parameters Kj and n can be obtained using the linearized 
Freundlich equation, which is formulated as follows: 

log([QJ) = logOQ + n log([i]) (41) 

The values can be estimated on the basis of measurement data of adsorption or desorp-
tion experiments using linear regression analyses. The values found for Kj and n apply 
only to the specific experimental conditions used. Important variables are, for instance: 
ionic strength, temperature, pH, soil type, other competing components, and soil/so­
lution ratio. 

Because the value of n is usually not equal to 1 (except in the case of a linear 
adsorption model), it is difficult to calculate the mass balance for component i. The 
species Q( has been formed by adsorption of 1 mol of i per mol of Qj, and not by 
adsorption of n mol of i per mol of Qj. This means that in calculating the species 
concentration of Q;, the actual value of n needs to be used, but in calculating the total 
amount of component i (mass balance), n should be equal to 1. To do this with a 
computer program, the calculation procedure needs to be slightly adapted (as is done in 
the ECOSAT computer program). 

Many adsorption and desorption processes (especially those of heavy metals) are pH 
dependent and can be described by a pH-dependent Freundlich model, according to the 
following formula: 
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[QJ = K,.[H]m[i]n (42) 

In this case, information about the effect of adsorption or desorption of component i on 
the mass balance H(t) - OH(t) is also necessary. Even without adsorption or desorption 
processes, the value of H(t) - OH(t) is usually unknown in soil systems. Therefore, the 
pH-dependent Freundlich model can only be applied to known (measured at equilib­
rium) pH values (see also section 9.5). In most soils, pH will be buffered to a constant 
value upon metal adsorption or desorption. 

The above is illustrated in the form of the table of species for Cd adsorption from a 
CdCl2 solution in Table 9.8. 

Table 9.8. Table of species. Cd sorption from a CdCl2 solution according to the pH-dependent 
Freundlich model. U = 0. The species are similar to those in Table 9.3. Reduction based on H20 
dissociation equilibrium. 

Components Cd Cl H log(K) 

Species 
Cd 
Cl 
H 
OH 
CdCl 
CdCL, 
CdOH 
Cd(OH)2 

Qco 

1 
0 
0 
0 
1 
1 
1 
1 
n* 

0 
1 
0 
0 
1 
2 
0 
0 
0 

0 
0 
1 

-1 
0 
0 

-1 
-2 
m 

0 
0 
0 

-14 
1.98 
2.6 

-10.1 
-20.3 
log(Kc 

Total Cd(t) Cl(t) H(t) - OH(t) 

read horizontally : n = n; m = m 
read vertically : n = 1 ; m = o 

This table can be reduced further, using the known pH value (see section 9.5). 
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