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A B S T R A C T

An important factor in a circular agricultural system is the efficient use of animal manure. Until now, the applied
quantity of manure is regulated by law at farm level, based on fixed phosphorus (P) application norms. However,
a first step towards more efficient manure application is to better balance P input and output at field level by
predicting future P yields. Machine learning techniques can be useful in this respect, because they can be trained
with many variables without prior knowledge regarding their interrelationship. This study’s objective, therefore,
was to predict P yields based on detailed records of on-farm data as recorded on an experimental farm combined
with open source weather data. The dataset contained 657 records of annual crop yields per field between 1993
and 2016, and the boosted regression model was used for model development. Validation on the final five years
of the dataset resulted in an RMSE of 7.3 kg P per ha per year, an R-squared of 0.46 and a correlation between
observed and predicted values of 0.68, outperforming legal norms. We conclude that with the limited but de-
tailed data available, prediction of P yield, and therewith, defining flexible P application norms before first
manure application, is already feasible. This conclusion, together with the expected increasing availability of
data through proximal and remote sensing technologies, opens the way to further improve nutrient management
and move towards circular agriculture in the future.

1. Introduction

Nutrients, like nitrogen (N), potassium (K) and phosphorus (P), are
essential for plant growth. Phosphate rock, the main source of P, is a
non-renewable finite resource. Proper management of the P cycle,
therefore, is necessary to guarantee future availability of P (Cordell
et al., 2009; Van Kernebeek et al., 2018) and governmental policies
have focused on P application norms for decades already (e.g., EC,
1991, 2000; MinEZ, 1986; MinLNV, 2005). Furthermore, agricultural
and societal thinking and policy making is moving towards a circular
agricultural system in which residuals of agricultural production and
food processing are kept within the food system as renewable resources
(MinLNV, 2018; WUR, 2018). An important factor in a circular agri-
cultural system is the efficient use of animal manure for growing crops,
which means balancing input and output of nutrients. Until now,
however, manure application is regulated by law at farm level, based on
fixed P application norms, with only three levels based on the P status
of the soil of the field and two types of land use, grass and arable land. A

first step towards more efficient manure application could be to better
balance P input and output at field level by predicting future P yields
based on field specific, historical data. Models predicting future P yield
may use information on fields, crops, soil parameters and open source
weather data. Machine learning techniques can be useful in this respect,
because they can be trained with many variables, without prior
knowledge regarding their interrelationship or distribution function
and with noisy data (Witten and Frank, 2005). In a review on the use of
big data in precision dairy farming, Lokhorst et al. (2019) noticed that
the vast majority of papers were on the animal sublevel and none re-
garding manure management. Recently, Nikoloski et al. (2019) showed
the feasibility of a machine learning approach to predict grass yields
under Irish circumstances, but did not include predictions into the fu-
ture.

This study’s objective is to predict future P yields based on detailed
records of an experimental farm and open source weather data and to
provide an indication for the suitability of machine learning models for
P yield predictions.
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2. Materials and methods

2.1. Data sets

Data from a twenty-four year period (between 1993 and 2016) were
available from experimental dairy farm ‘De Marke’, located on a light
sandy soil in the eastern part of the Netherlands. The soils at ‘De Marke’
are characterized by a 25–30 cm anthropogenic upper layer, with an
average organic matter content of 4.8%, overlying a layer of yellow
sand, very low in organic matter and hardly penetrable by roots (Aarts
et al., 2000). The P status of the soils was characterized with the P-AL
value (Egnér et al., 1960; NEN-ISO 15923-1, 2013; NEN 5793, 2010),
which indicates readily available P during the growing season. Over all
fields and years the P-AL value was 62.4 ± 19.1 mg P2O5 per 100 g dry
soil (mean ± standard deviation). Fields with P-AL values> 50 are
currently categorized as ‘high’ in Dutch manure policy and, therefore,
receive more strict application norms. These high levels are due to
historical high manure application rates (Reijneveld et al., 2010). At the
establishment of the experimental farm in 1989 the average P-AL value
was 75 and decreased by 25% in the subsequent 17 years (Verloop
et al., 2010). Within the period 1996–2016P-AL values decreased with
0.47 per year (P < 0.001, based on least square regression on the data
used in the current study).

Every year in the dataset consisted of 26 to 28 fields, with 24 fields
being present in all years. The average field size was 2 ha (range
0.5–4.2 ha), resulting in a total farm plan per year of 55 ha (range
51.9–56.5 ha). Six fields were permanent grassland, while the majority
of the fields were used in a rotational crop scheme. This scheme, in
general, consisted of three years grassland, two years of maize and one
year a cereal crop, although the crop rotation varied sometimes de-
pending on the farm planning and cereals were left out from 2013
onwards. During the first year maize after grass, in general, no manure
or artificial fertilizer was applied. Italian ryegrass was used as a catch
crop on maize fields and ploughed-in some months before sowing the
next crop. On grassland, fertilizer was applied from March 1st till the
end of August, whereas on second year maize, fertilizer was applied
shortly after sowing in early May (Verloop et al., 2006).

The dataset contained 657 records of annual crop yields per field
with information on N and P input and output, irrigation and soil status,
all at field scale, and local weather data. Precipitation and temperature
were measured at an on-farm weather station, whereas data on wind,
sunshine, irradiation and evaporation were from the nearest weather
station, located 21 km east of the farm (KNMI, 2018).

As most fields were present in the dataset for all, or at least several,
years, the history of each field could be derived from the dataset.
Furthermore, the dataset contained a variable stating the number of
consecutive years the specific field was already grassland or arable
land. Field inputs were reported as N and P inputs from artificial fer-
tilizer, manure application, animal excreta during grazing, deposition
and N-fixation by legumes. Data from yearly soil analyses being per-
formed in autumn, reporting N, P, K and organic matter content per
field, were used as input variables for the next year. Total dry matter
and P yields per field were split into grazing and mowing for grassland,
and, if applicable, in main and by-products for arable land. Yields of all
products were measured, or estimated in the case of grazing, and
composition, e.g. P content, was based on routine laboratory analyses.
For the data analysis, the total P yield from all products of a field, ex-
pressed as kg P per ha per year, was used as the predicted variable.
Predictions were made for a whole year before the first manure appli-
cation, without knowledge of future weather circumstances.

2.2. Data pre-processing

Initially, besides grass, seven crops were reported in the dataset,
namely maize, triticale, barley, barley combined with peas, fodder
beets, lucerne and hemp. Maize, harvested as whole plant silage or as

maize ear silage and straw, was grouped together as maize.
Furthermore, triticale, barley, and barley combined with peas were
grouped together as grains, irrespective whether the barley was har-
vested as silage or as grain and straw. Because there were only 2 records
of hemp, only 4 records of lucerne and only 7 records of fodder beets
these records were deleted together with 4 records that lacked P yield
figures, totalling to 640 records eligible for further analyses.

Field history was characterized by two lag-variables, stating the
crop in the previous year and the crop two years back. Both lag-vari-
ables were used as input variables. Field N and P balance were calcu-
lated as total inputs, thus including N fixation and deposition, minus
total outputs from main and by-products. Field balances in the past year
and averaged over the past two years were used as input variables.
Furthermore, the average P yield of grass, maize or grains in the past
seven years on a specific field was used as input variable. Field history
variables were set to missing when the required information from
previous years was not available, for example in the first years of a
field.

Weather data were available per day, but were aggregated in three
different ways. Table 1 provides an overview of which weather vari-
ables were used as input variables and in what way. All weather vari-
ables were aggregated to month by reporting their means, minimum,
maximum, sum or count. Cumulative sums were calculated starting
January 1st of every year, which is common for temperature
(Jagtenberg, 1970), and also applied to other weather variables in this
study. Furthermore, for each day the average of the preceding five days
(rolling average) was calculated for some weather variables. For cu-
mulative sums and rolling averages of weather data, only values on the
5th, 10th, 15th, 20th, 25th, 30th for each month were used as input
variables. Furthermore, data from November and December were dis-
carded as those were outside and after the growing and harvesting
season. In total, 1131 input variables were used during model devel-
opment of which 1084 were weather related.

2.3. Model development

One of the basic and probably most studied machine learning
techniques is decision tree induction (Witten and Frank, 2005). Deci-
sion trees repetitively split the data at each node into segments of

Table 1
Overview of aggregation methods for weather data (Y = yes, N = no).

Variable per day Monthly
aggregate

Cumulative sum Rolling
average

Average temperature Mean Y Y
Minimum temperature Minimum N N
Minimum temperature at 10 cm1 Minimum N Y
Maximum temperature Maximum N N
Precipitation Sum Y N
Days dry Count N N
Evaporation2 Sum Y N
Natural precipitation surplus3 Sum Y Y
Artificial precipitation surplus4 Sum Y Y
Average wind speed Mean N Y
Hours of sunshine Sum Y Y
Percentage of sunshine5 Mean N Y
Irradiation Sum Y Y
Humidity Mean N Y

1 Measured at 10 cm above field level. All other temperature variables are
measured at 1,5 m above field level.

2 Reference crop evapotranspiration (modified Makkink equation, De Bruin
and Lablans, 1998).

3 Natural precipitation surplus = Precipitation – Evaporation.
4 Artificial precipitation surplus = Precipitation + Irrigation – Evaporation;

this is the only weather variable that is field specific.
5 Percentage of maximum time possible.
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similar data points. Selecting the variable to split the data at each node
is done based on which variable reduces the squared error the most.
Advantages of decision trees are insensitiveness to the distributions of
input variables, ability to handle missing values and their robustness
against irrelevant or correlated input variables (Friedman, 2001). The
main disadvantage of decisions trees, however, is their inaccuracy in
prediction. To alleviate this problem, multiple models can be combined
using ensemble methods, like bagging, boosting and stacking, of which
boosting is considered to be the most powerful (Witten and Frank,
2005). Boosting is a stage-wise iterative method, which means that the
method obtains the predictive results of one tree, computes the error
and uses these errors to build the next tree, and thereby improves on the
mistakes made by earlier trees. In the case of a continuous outcome
variable, each iteration uses the residuals of the previous model (Witten
and Frank, 2005). In this study, the Gradient Boosting Machine (GBM;
h2o.gbm function (h2o version 3.20.0.2)) was used. Some model
parameters were adapted to speed up the analysis. Model parameters
used were 1000 trees (ntrees), i.e. number of iterations during model
building, with a maximum of 3 splits per tree (max_depth) and learning
rate of 0.01 (learn_rate). All analyses were performed in RStudio (ver-
sion 1.1.423 running R version 3.5.0).

2.4. Model validation

To validate the model on an independent validation set, we used
data from the years 1993–2011 as training data and validated on data
from 2012. Subsequently, we used 1993–2012 as training data and
validated on data from 2013, and so on for 2014, 2015 and 2016 as
validation data. Next to this independent validation on the next year,
we also split the records of the training set randomly in 70% training
and 30% test set to test the performance of the model in the same time
period as well (Fig. 1). For model testing and validation, weather data
of the growing season, March to October, were set to missing, as they
are not known at the moment of first fertilizer application.

2.5. Model performance criteria

Model performance was evaluated by plotting observed versus
predicted values (Piñeiro et al., 2008), including a y = x line and linear
regression line, and computing the root-mean-square error (RMSE),
coefficient of determination (R2) and correlation coefficient. Perfor-
mance metrics were calculated per dataset, which means separately for
the training, test and validation dataset per iteration (Fig. 1). The RMSE
was calculated as

=RMSE
y y

n
( )n

pred obs1
2

2
(1)

with ypred being the predicted value and yobs the corresponding ob-
served value (RMSE metric from h2o.performance function (h2o ver-
sion 3.20.0.2)). The R2, calculated relative to the y = x line was cal-
culated as
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with yobs being the mean of all yobs corresponding with the predicted
values and remainder as defined above (r2 metric from h2o.per-
formance function (h2o version 3.20.0.2)). By calculating the R2 re-
lative to the y = x line, the performance of the model is evaluated by
comparing the predicted values with the observed ones and tells what
fraction of the variation in observed values is covered by the predicted
values. When R2 is 1 the model is able to predict the observed values
perfectly. When R2 is 0, the model is just as good a predictor as the
mean of the observed values. And when R2 is negative, the model is a
worse predictor than the mean of the observed values. The fit of the
regression line is represented by the Pearson correlation coefficient (r),
which was calculated using the cor function from R Stats package. This
performance parameter, therefore, shows how well the trend in ob-
served values is predicted by the model. Furthermore, observed versus
predicted values of all five years of validation data were plotted to-
gether and the RMSE, R2 and correlation coefficient were calculated.
These predictions were compared to legal manure application norms for
fields classified as ‘high’ (> 50 mg P2O5 per 100 g dry soil) with regard
to available P level, as the reference for current practice. Statistical
significance of differences in performance were tested using a simple
randomization test with 1000 iterations for MSE, i.e., the squared RMSE
(Van der Voet, 1994) or using a t-test (tsum.test function in R BSDA
package, version 1.2.0) on Fisher’s-z transformed correlation coeffi-
cients (or square root of R2 values) (Cox, 2008).

3. Results

3.1. Descriptive statistics dataset

Yearly P yields ranged from 16 to 64 kg P per ha (n = 393;
36.4 ± 7.9; mean ± SD) for grassland, 11–36 kg P per ha (n = 202;
22.3 ± 4.7; mean ± SD) for maize and 18 to 43 kg P per ha (n = 45;
28.3 ± 6.2; mean ± SD) for cereal crops for all years in the dataset
(Table A.1). These data indicate that P yields with grass are higher
(P < 0.001) than with maize. P yields from cereal crops are inter-
mediate and different (P < 0.001) from P yields from both grass and
maize. It has to be notified, however, that cereal yields include yields
from grass as successive crop. Specified per validation year, figures are
shown in Table 2. These figures indicate that P yields were high in 2014
for maize (P < 0.001) and to a lesser extent also for grass (P = 0.06)
and relatively low in 2013 for grass (P < 0.001) and to a lesser extent
also for maize (P = 0.09). Variation in grass P yields was high in 2014
and 2015.

Other descriptive statistics concerning management (Table A.1) and
weather (Table A.2) related variables are shown in the Appendix.

3.2. Model performance

Model performance metrics are reported in Table 3. The correlation

Fig. 1. Model validation strategy. Five iterations of
model building on training data (dark grey; 70%
randomly selected records) and testing on test data
(light grey; remaining 30%) from the same period,
and validation on an independent dataset (dotted)
from a new year. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)
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coefficients (r) on the validation sets, all around 0.8, indicate that the
models were able to predict the trend from low to high P yield. The R2

and RMSE on the validation sets, however, indicate that the models had
difficulty with predicting the exact levels of P yield in the years 2013
and 2014, while for the other 3 years, R2 was around 0.6 and RMSE was
below 8 kg P per ha per year. The differences between observed and
predicted values, or in other words the distance of the points to the
y = x line, fully determine the RMSE (formula 1). The R2, on the other
hand, is dependent on the differences between observed and predicted
values (numerator in formula 2) and on the variation in observed values
(denominator of formula 2). As variation in observed P yields was low
in 2013 (Table 2), R2 was very low (-0.64), even negative, with a rea-
sonable RMSE (7.61), while in 2014 the variation in observed P yields
was high (Table 2), resulting in a moderate R2 (0.26), while the RMSE
was high (10.35).

Model performance on the train sets, that is the 70% of the data that
were used for model development, was very good and decreased
somewhat when the models were applied on the test sets, the 30% of
that data that was used to test the model on data from the same time
period (Table 3). Also over the years, model performance on the test
sets decreased.

When the data from all five years were plotted together (Fig. 2),
differences between years are visualised. For 2013, in general, the
model overestimated the P yields, while for 2014, the model pre-
dominantly underestimated the P yield. Model performance criteria
were also calculated for the combined results (bottom right in figure).

Furthermore, model performance criteria were calculated for the
observed values plotted against the legal P application norms (Fig. 3).
Comparison of these two plots showed that the GBM model performed
better, both with respect to predicting the trend in observed P yields
(r = 0.68 for the model compared to 0.59 for the application norms,
P < 0.001) as with respect to predicting the exact levels (R2 = 0.46 vs.
0.32 (P < 0.001) and RMSE = 7.33 vs. 8.22 (P < 0.05)).

4. Discussion

This study has shown, as a proof of principle, that it is possible to
predict P yields of individual fields before the first manure application

reasonably well with a data driven method like GBM. These predicted P
yields could be used to support decisions on manure application which
are closer to the realized yields than the current legal manure appli-
cation norms. A closer balance between P application and P yield helps
to decrease losses and leads to a more circular agricultural system.

This proof of principle, however, was based on a limited number or
records (640) from only one farm, which means, in general, one
management and one soil type. The developed prediction model,
therefore, is not directly applicable on other farms and soil types.
Furthermore, P levels in the soil were relatively high, especially in the
early years of the dataset, which was quite common in the Netherlands.
The somewhat limited range of soil P status could have diminished the
influence of this parameter in the model. In this study, we have chosen
for this particular farm, because of the availability of detailed and ac-
curate data at field scale for a long time period. To develop and validate
a model that is more widely applicable, data from many more farms on
different soil types are needed, but these farms don’t keep such detailed
records yet. Including data from farms with less detailed records could
result in a model that is applicable in a wider range of circumstances,
while, on the other hand, it is not sure whether this would result in an
improvement of the predictive performance of the final model.
Considerable improvements, however, could be expected when more
detailed information from many more farms will become available for
model development and validation as machine learning techniques
need lots of data to discover meaningful patterns. Data from other farms
can be used by the algorithm to fill gaps in the data from a specific
farm, for example situations with specific weather conditions or new
crops. When a similar approach of data collection as applied in this
study would be applied on commercial farms, this would result in
considerable costs for additional recordings by the farmer, contractors
and researchers, and costs for laboratory analyses. But in addition to
these financial costs, the feasibility of this approach heavily relies on
the willingness of farmers to spend their time on collecting the data.
With the advent of precision technologies, like in-line manure or crop
analysis sensors (Büscher et al., 2014), and proximal (Dennis et al.,
2015) and remote sensing techniques, based on satellites (Ali et al.,
2016; Cicore et al., 2016; Punalekar et al., 2018) or drones (Larsen
et al., 2018), for yield monitoring, however, new opportunities arise.
Currently, these technologies are not applied yet at a large scale on
commercial farms.

In contrast to one prediction before the first manure application, as
done in the current study, fertilizing management could be adapted
during the season for grassland, since manure is applied on grasslands
several times a year. Prediction could then be based on actual weather
and field conditions as well as weather forecasts. In this way, weather
data of March till the moment of last fertilizer application, which were
ignored in the current study, could be utilized. In this study, however,
all fields in all years, thus including use as arable land, were considered
together and, therefore, yields were aggregated to whole year level.
Results, therefore, need to be considered as a whole year fertilizing
advice at the start of the growing season. Considering all fields in all
years yielded the advantage that also information on field performance
with different land use could be considered by the model. When a larger
dataset is available it could be tested whether developing models per
crop is more appropriate and probably a within season model for
grassland could be a next step in data driven fertilizing management.

Capturing the year to year variation in P yields was difficult, as
shown by some lower R2 and higher RMSE values, especially for the
years 2013 and 2014. This was most probably caused by differences in
weather. The GBM model overestimated P yields for 2013 and under-
estimated P yields for 2014 (Fig. 2), years that were recognized by some
of the co-authors and by a colleague of the experimental farm as ‘bad’
and ‘good’ years, respectively, for growing grass and crops. Weather
data were used during model development to correct historic P yields,
but are unknown at the start of the growing season, and, therefore, set
at missing in the test and validation datasets. Deviations in predictions

Table 2
Number of records (n), mean and standard deviation (SD) of P yields per va-
lidation year and in the remainder of the dataset (1993–2011).

Year (s) Grass Maize Cereals

n Mean SD n Mean SD n mean SD

<2012 304 36.5 7.5 161 22.0 4.6 42 28.4 6.4
2012 18 34.3 5.4 7 22.6 7.1 3 26.7 1.3
2013 18 29.7 4.9 10 20.8 2.6
2014 18 42.1 12.5 9 28.1 3.2
2015 17 38.5 11.0 9 23.2 3.2
2016 18 36.0 6.5 6 22.2 5.1

Table 3
Coefficient of determination (R2), root-mean-square error and Pearson corre-
lation coefficient (r, all with P < 0.001) of the models for 2012 to 2016 on
train (70% of previous years), test (remaining 30% of previous years) and va-
lidation (listed year) datasets.

Year Train Test Validation

R2 RMSE r R2 RMSE R R2 RMSE r

2012 0.96 1.95 0.98 0.71 4.56 0.85 0.63 4.52 0.80
2013 0.96 1.86 0.98 0.70 5.33 0.84 −0.64 7.61 0.80
2014 0.95 1.93 0.98 0.70 5.18 0.85 0.26 10.35 0.80
2015 0.95 2.11 0.98 0.63 5.53 0.80 0.58 7.43 0.77
2016 0.96 1.89 0.98 0.66 5.74 0.82 0.63 5.09 0.82
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for certain years, therefore, were expected. But also when weather data
were included in the validation dataset, the picture was very much alike
(data not shown). This could have been caused by the difficulty of
capturing the weather influence, especially when yields have to be
predicted for years with weather conditions that deviate from those
present in the training dataset. However, predictions based just on
linearly extrapolated historic crop yields combined with field specific
performance (data not shown) were not adequate and performed worse
than the GBM model (P < 0.05 for RMSE and P < 0.001 for R2 and r).
To approach the influence of the weather on the yield more closely,
other variables could be searched for, like ones indicating soil water
content (Chen et al., 2014) or modelling water availability more pre-
cisely (Kroes and Van Dam, 2003).

Including the deviant years 2013 and 2014 in the train and test sets
could have caused the lower performance of the models on the test sets
in the years 2015 and 2016. Deviant data enrich the training set, but
could also add noise and as such distract from the normal patterns.
Furthermore, some input variables are defined as looking back just one
or two years, which could hamper model performance when two de-
viating years appear in a row.

Another difficulty in predicting P yields from grassland is the fact
that some fields are grazed and that grazing intensity differs greatly
among fields. In this study, grazing was captured by one input variable
stating whether a field was grazed or not during the season. Including
variables that cover grazing intensity and frequency, e.g., number and
type of animals, duration of grazing periods or estimated percentage of
yield by grazing or mowing, should be considered when developing
models on larger datasets, because different grazing systems will be

applied when more farms are included. Furthermore, the accuracy of
the observed P yield values, was lower for grazing compared to
mowing. Yield prediction during grazing is less precise, as it was based
on calculations and assumptions instead of actual measurements, and it
is more difficult to obtain a representative sample for P content de-
termination due to regrowth during long grazing periods. With, ad-
ditionally, a higher P content of younger grass (Wilman, 1975; Wilson
and McCarrick, 1967) compared to older grass, errors will be enlarged.
Additionally, the manure deposited during grazing is less well spread
than when collected in the barn and spread by a machine, which could
lead to less efficient usage of nutrients and more losses to the en-
vironment (Van Middelkoop et al., 2016).

Although we applied a data driven approach, when reflecting on the
process of this study, it became clear that domain knowledge was also
very important, next to data analytical knowledge and skills. Variables
in the input dataset have to be defined in such a way that they make
sense, but also in the interpretation of the results it became clear that
almost all outliers could tell a story. Some appeared to be from a field
with adverse conditions or a pest, information not captured by the used
input variables. Others could be explained by grazing management and
focussed attention to the fact that also the measured P yield in this
study was not always really measured; e.g., uptake by grazing was
based on a calculation of cows’ requirements instead of real yield
measurements. Even though we did not exclude these outliers, the
model still performed equal or better than the currently used applica-
tion norms in aiming for a closer balance between input and output of
nutrients at field level and, therewith, to a more circular agricultural
system.

Fig. 2. Observed versus predicted plot of P yields of all five years of validation data including linear regression line (dotted line). Models were trained per year
(different symbols), as described in Section 2.4 Model validation. Different fill colours represent different crops.
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5. Conclusions

We conclude that with the limited but detailed data available,
prediction of P yield, and therewith, defining flexible P application
norms before first manure application, is better than current fixed ap-
plication norms. This conclusion, together with the expected increasing
availability of data through proximal and remote sensing technologies,
opens the way to further improve nutrient management and move to-
wards circular agriculture in the future.
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Appendix

Appendix to COMPAG_2019_250 (Mollenhorst et al., Field and crop specific manure application on a dairy farm based on historical data and
machine learning)

Fig. 3. Observed P yields plotted against the legal P application norms of all five years of validation data including linear regression line (dotted line). Models were
trained per year (different symbols), as described in Section 2.4 Model validation. Different fill colours represent different crops.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compag.2020.105599.
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