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A B S T R A C T

Characterizing short-term variability of generated solar power is important for the integration of photovoltaic
(PV) systems into the electrical grid. Using different kinds of high frequency, in-situ observations of both irra-
diance and generated PV power, we quantify insights on temporal averaging effects on the highest observed
peaks and ramp rates, which closely relate to grid stability. We use measurements obtained at three specific
spatial scales; a single point pyranometer, two household PV systems and a PV system typical for small medium
businesses. We show that the 15-minute time resolution typically used for grid calculations significantly un-
derestimates key dynamics at high temporal resolutions, such as ramp rates and maximum power output, at the
local grid level. We find that absolute power peaks in the order of seconds are up to 18% higher compared to a
15-minute resolution for irradiance and up to 22% higher for a household PV system. For the largest PV system,
the increase is limited to 11%. Furthermore, we find that the highest peaks solely occur under mixed-cloud
conditions. Additionally, we show that the time interval-dependency of the largest power ramps is similar for all
systems under research, ranging from ~20% at a 5-second interval to stabilizing at 70–80% between 5 and
10 min, which we can explain based on meteorological arguments.

1. Introduction

The worldwide installed capacity of photovoltaic (PV) solar energy
systems is anticipated to multiply over tenfold in the next decade, from
486 GWp in 2018 (International Renewable Energy Agency, 2019) up
to between 3 and 10 TWp in 2030 (Haegel et al., 2017). As penetration
levels of photovoltaics increase, weather-induced variability in power
output of PV systems has a greater impact on the electricity grid. This
can negatively impact utility grid stability by affecting grid voltage and
frequency (Tan and Kirschen, 2007), requiring additional regulation
(Stetz et al., 2015). Because energy generation from renewable re-
sources is highly unpredictable, grid operators design their grids for
extreme power outputs such as in the case of clear sky condition.
At present, operational calculations used for grid design are limited

to a temporal resolution in the order of 5 to 15 min (Sande et al., 2017).
However, variability of solar energy due to cloud shading occurs at very
short timescales, in the order of 1 s (Lohmann and Monahan 2018).
Considering the typically used, coarser timescales the frequency and
amplitude of high-frequency power fluctuations is flattened due to time
averaging. Additionally, at short timescales cloud enhancement can

lead to irradiance exceeding clear-sky conditions (Gueymard 2017),
resulting in an increased PV power output, possibly causing grid vol-
tages to exceed safety limits (Mills et al., 2011; Shah et al., 2015),
depending on inverter clipping or preset curtailment levels (Tonkoski
and Lopes 2011).
High-frequency fluctuations of PV power output are mainly driven

by fluctuations of irradiance. While the variability of irradiance (Kleissl
and Lave 2013, Lohmann et al., 2016, Lohmann 2018) as well as the
power fluctuations of large solar parks (Perez and Hoff 2010; Marcos
et al., 2011; van Haaren et al., 2014) has been well studied, the effect
on relatively small but abundant household PV systems remains poorly
understood. It is anticipated that in the near future a significant part of
the installed PV capacity will originate from these relatively smaller PV
systems, typical for rooftops of homes and businesses (Šúri et al., 2017).
Up to this moment, research aimed at understanding the power

variability of these type of PV systems has been limited to coarse
temporal resolutions in the order of 10 min or relied on estimating PV
output power from derived irradiance observations (Widén et al., 2010,
Hansen et al., 2012a, Hansen et al., 2012b, Anvari et al., 2016).
Moreover, studies on irradiance typically concern the horizontal plane,
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whereas PV system are commonly tilted and irradiance variability on
the inclined plane is known to be greater than on the horizontal due to a
larger fraction of direct irradiance (Suri et al., 2007).
Additionally, the efficiency of solar panels depends on the tem-

perature of the solar cells in the panels (Skoplaki and Palyvos 2009),
whereas irradiance measurements do not have this temperature de-
pendency. Due to the thermal capacity of the solar panels, broken-cloud
conditions compared to clear-sky conditions can temporally lead to
lower cell temperatures resulting in a higher conversion and thus a
higher output power (Jones and Underwood 2001). As Jones and Un-
derwood found, the thermal response of a typical panel is in the order of
7 min, which is much larger than the timescales on which high-fre-
quency fluctuations dominate. Although the effect of irradiance on the
temperature of PV modules has been described in literature (Armstrong
and Hurley 2010, Tsai and Tsai 2012, Lobera and Valkealahti 2013),
this has not been connected to high-yield extremes observed at PV
systems.
To enable large-scale integration of distributed and small-scale PV

systems in the electricity grid and contain the risks of power output
peaks and possibly power outages, a better understanding is required of
the variability of generated solar power by a single or fleet of such
systems and how this can be connected to existing meteorological
knowledge of weather-induced irradiance fluctuations.
In this paper we present direct measurements of high frequency

fluctuations in power output of PV systems and radiation observations.
We show that these high frequency fluctuations have a profound impact
on power output peaks in the electricity grid. We discuss how the
physical behavior of these PV systems poses significant challenges for
power grid design. Moreover, we relate the behavior of the household
PV systems to the better understood weather-induced variability of ir-
radiance and larger PV systems, typical for small to medium enterprises
(SMEs).
Aiming to deliver insights ready for use by the utility sector, we

examine commonly observable extreme values of two parameters as a
function of time averaging interval, i.e., the maximum power and the
maximum ramp rate. These parameters are closely linked to two aspects
of grid stability: peak voltage limits and power-line flicker.
The rest of this paper is organized as follows. Section 2 presents the

definitions used throughout this work, and a description of the mea-
surement set ups. In Section 3, we present and analyze the effect of
time-averaging high-frequency observations for the systems under in-
vestigation. Finally, the work is concluded and the impact of the find-
ings presented in this work is discussed in Section 4.

2. Method

2.1. Definitions

To quantify the impact of high frequency fluctuations on power
peaks, we consider two variables in detail: the maximum instantaneous
power Pmax and maximum instantaneous ramp rate ΔPmax at a specific
time resolution . In order to not let the results be impacted by a single
high-value event, we analyze the 99.7th percentile of a given parameter
as the maximum value (R99.7, corresponding to 3σ), as we regard this to
represent the commonly observable extreme. The expressions of these
high frequency indicators read:

P P( ) R ( ( ))max 99.7 (1)

= +P P P( ) R ( ( 1) ( ))max 99.7 (2)

where time averaged power P ( ) over time interval is defined by:

=P
P t dt

( )
( )

(3)

To compare maximum power peaks and ramp rates between sys-
tems, we normalize each of the four datasets to the observed maximum

power at a 15-minute time interval as this interval is the default time
resolution of the energy industry:

P P (15 min)obs max (4)

2.2. Measurement set ups

In this research we combine high-resolution measurement data from
four set-ups: global horizontal irradiance, two household PV systems
and an SME PV system measured with response times of 5, 2, 2 and 1 s,
respectively. The set ups are located within a 40 km radius near the
center of the Netherlands.
The measurements of all systems where obtained between July 8th

and September 1st. The households PV systems where measured in
2015 whereas irradiance and the SME PV system were measured in
2018. Year-to-year variations of irradiance can be significant (Tonkoski
and Lopes 2011), therefore this work is limited to comparisons of sta-
tistical parameters on timescales where the impact of year-to-year
variations on the results is small. Furthermore, these statistical para-
meters do not require the systems to be on the same location.

2.2.1. BSRN irradiance measurement
Global horizontal irradiance is measured using a class A thermopile

CMP22 Kipp & Zonen Pyranometer, classification to ISO 9060:2018
Spectrally Flat Class A (Kipp and Zonen, 2019). The set up is part of the
Baseline Surface Radiation Network (BSRN) (Driemel, et al. 2018). For
the BSRN station we consider here the data is stored at 1 Hz. High
temporal resolution storage is not required by BSRN, the central BSRN
database stores 1 min values, but is highly recommened for e.g. PV
applications. Since the 95% response time of the device is 5 s, this is
used as the highest temporal resolution. Calibration of the device can be
directly linked to the World Radiometric Reference (World
Meteorological Organization 2016). The system is located in Cabauw,
the Netherlands (51°58′13″N, 4°55′35″E) and maintained by the Royal
Netherlands Meteorological Institute (Knap 2015). Using Eq. (4), we
find a Pobs of 0.87 kW, per m2 of sensor surface.

2.2.2. Household PV systems
Two rooftop PV systems, comprised of c-Si panels, are connected

with power measurement data loggers (Upp Energy, 2013), as part of a
larger PV system network (Elsinga and van Sark 2017). The power data
is recorded at a resolution of 0.7 W and stored at 0.5 Hz. A summary of
the technical details is given in Table 1. The two systems are oriented
due south at an inclination of 47° and 40° and show a Pobs of 2.0 kW and
2.9 kW respectively. The inverter of the 2.9 kW household system has a
rated AC power of 2.6 kW (Samil Power Co, Ltd, 2016), thereby limiting
the maximum output power of the system, even without cloud en-
hancement. The 2.9 kW system will be referred to as the ‘inverter
limited’ system. With a capacity of 2.3 kW the inverter of the second PV
system does not limit the power production. Both systems are located in
the city of Utrecht, the Netherlands (52°05′N 5°06′E).

2.2.3. SME PV system
The SME PV system is comprised of 442c-Si solar panels with a

nominal capacity of 245 Wp, arranged in a 17 × 26 panel grid, devided
into 6 subsections with a 3-phase inverter each. A summary of the
technical details is given in Table 1, where the inverter rated AC power
is the sum of the individual inverters. A remote terminal unit measures
the generated current per phase at 1 Hz using three LEM RT 500 Ro-
gowski coils (LEM 2014) on the low-voltage cable at the secondary
substation located approximately 60 m from the PV system. The gen-
erated current is nearly identical for the three phases, as all inverters
feed into each of the phases. Therefore, the generated power is calcu-
lated for one of the measured phases for which also the voltage is
measured directly. In this research we will only refer to the generated
power on the single phase, with Pobs of 27 kW. The system is located
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above a parking lot on an industrial area near the city of Duiven, the
Netherlands (51°58′N, 5°59′E).

2.3. Data preparation

All time series were prepared following the same procedure. First,
each dataset was resampled to exactly match its recording frequency.
This is done by taking the average if multiple values were recorded in
one interval, or linearly interpolating missing values, up to a limit of 5
subsequent missing values. Time intervals with a greater sparsity of
observations are omitted from further analyses. Second, days with<
95% of the expected data points between 08:00 and 16:00 UTC were
omitted. In total, 56 days of the irradiance and inverter limited PV
system were suitable, 54 days of the SME PV system and 39 days of the
other household PV system.

2.4. Classification scheme

The weather conditions found on a certain day, e.g. overcast, clear
sky or mixed, influence the maximum power output and ramp rate
observed on that day. Moreover, due to cloud enhancement temporary
extreme power output can be observed compared to clear sky condi-
tions (Gueymard 2017). To allow for comparison of these results for
different types of days, we categorize each day according to an adap-
tation of an earlier proposed classification based on Daily Clearness
Index (DCI) and Variability Index (VI) (Stein, Hansen and Reno 2012).
Instead of DCI, which requires a parametrization of clear-sky irra-
diance, we consider the surface integral (S) of the irradiance or PV
energy yield, which represents the total energy. Secondly, we normalize
VI to the day with the highest observed variability for each dataset: VIn.
We then define four classes of days as follows:

– Highly variable;
The 10 days with highest VIn

– High yield;
VIn < 0.2 & S > 2/3*max(S) + 1/3*min(S)

– Low yield;
VIn < 0.2 & S < 1/3*max(S) + 2/3*min(S)

– Mixed conditions;
All other days, they are included in our analysis

3. Results

3.1. Fluctuations in detail

Differences between data with high and low temporal resolution are
most significant when fluctuations occur, e.g. during cloud to clear-sky
transit periods. Fig. 1 shows the solar power yield of the SME system for
July 8th 2018 measured at a 1-second time resolution and time-aver-
aged to 15-minute intervals. The inset shows a period of approximately
50 min in detail. This is a mostly clear day with a few morning hours of
partially clouded conditions, ranging between 0 and 3 oktas as de-
termined by an automated KNMI weatherstation located at a distance of
13 km (KNMI 2013).
According to the classification scheme described before, this is la-

belled as a ‘mixed conditions’ day. It is clear that on a 15-minute in-
terval the absolute value of the highest peaks as well as the amplitude,
rate and number of power ramps are lower than on the 1-second in-
terval.
For the inverter limited household PV system distinct plateaus of

high values in the high-resolution yield data are observed at 3.2 and
3.0 kW. A time window with two of these steps in detail is shown in
Fig. 2. These steps occur after the output power of the solar panels has
exceeded the rated power of the inverter. This under-dimensioning of
the inverter is commonplace for both household and commercial PV
systems, most frequently due to economic reasons. We consider theseTa
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steps to be an artifact since the DC output power of the solar panels
exceed the DC rated power of the inverter and not to be caused by
meteorological effects. We do include these observations further in our
analysis since they impact the effective peak and ramp rate of the
system. The combination of downward steps with plateaus of constant
high yield are not observed in the other datasets where the inverter
rated power is greater than the installed capacity of the solar panels.

3.2. Classification

When designing the grid, operators typically perform grid calcula-
tions for a selection of extreme cases. In the case of solar energy, days
with clear-sky conditions are often assumed to represent the extreme
case characterized by the highest values of generated PV power.
However, we will quantify to which extent high-frequency fluctuations,
not present under clear-sky conditions, can lead to higher stress on the
grid in terms of peak power and ramp rate. In order to show this, we
categorize each day of each dataset according to the classification
scheme used in Section 2.4.
An overview of the days and classes for the SME PV dataset is shown

in Fig. 3, while the other datasets showed similar results. This classi-
fication result compares well to previous studies (Stein et al., 2012),
where the shape is referred to as an ‘arrowhead’; due to the absence of
days in the region with low variability index and medium surface

integral. This is what one would expect; if a day has medium yield, both
clear-sky and clouded conditions would have had to occur, meaning
variability would have to be non-zero. Moreover we find that the
highest peaks only occur on days with partial and high variability of
cloudiness.

3.3. Probability density

To assess the differences between measurements of the classes, ex-
cluding the mixed condition days, and investigate the effect of temporal
averaging, we construct the probability density distribution of the raw,
high-frequency observations and compare this to the distribution of the
15-minute averages of the same data. In addition to meteorological
effects, the diurnal cycle of the sun leads to variability in solar energy.
To focus on the meteorological effects, we only consider the time
window between 11:00 and 13:00 UTC, which corresponds to the
period around solar noon.
In addition to the probability density, kernel density estimates are

shown using a Gaussian kernel (Elsinga and van Sark 2017).

3.3.1. Irradiance
The probability density function (PDF) of the raw BSRN irradiance

measurements at Cabauw and the 15-minute averages is shown in
Fig. 4. The measurements clearly show that the highest values of irra-
diance are observed on days which are categorized as ‘highly variable’,
and not on the days with the highest total yield. On days with high
variability, irradiance values exceeding 1200 W/m2 can be observed, as
opposed to approximately 1000 W/m2 on high yield days. This beha-
vior corresponds to earlier work regarding cloud enhancement (Parzen
1962, Gueymard 2017), where even more extreme cloud enhancement
effects were reported. Additionally we find that for highly variable
days, the probability density distribution is strongly bimodal while it is
unimodal for the high yield and low yield days. This bimodal dis-
tribution on highly variable days corresponds to previous research re-
garding irradiance (Yordanov et al., 2012; Lohmann 2018). An accurate
distribution of irradiance is important for solar PV, since many factors
in converting irradiance to PV energy are non-linear, e.g. the efficiency
of the inverter or resistance losses.
Considering the 15-minute averages, we find that even though the

high yield and low yield days strongly correspond to the high resolution
observations, the PDF of the highly variable days shows a large dis-
crepancy. Both the effect of cloud enhancement and the bimodality of
the distribution are undetectable in the 15-minute time averaged data,
complementing previous work on hourly averaged data (Skartveit and
Olseth, 1992).

3.3.2. System comparison
For all PV systems in this study we observe that the probability

density distributions show great similarity to that of irradiance. The
highest measured values occur solely on highly variable days, which is
again due to enhancement of the irradiance due to the cloud radiation.
For this class of days we observe a bimodal distribution of solar power
yield at high temporal resolution (Fig. 5). Similar to irradiance, this
bimodality is completely lost when averaging the observations to a 15-
minute interval, see Fig. A1 in appendix.
Moreover, we find that for the inverter-limited system a large

number of observations correspond to the rated AC capacity of 2.6 kW.
However, especially on highly variable days, the energy output can
exceed the capacity significantly.
When considering systems of larger dimensions, a certain level of

spatial averaging is to be expected, where the total system is comprised
of smaller areas with varying irradiance conditions (Skartveit and
Olseth, 1992). Notably, even for the largest system under investigation
we find the PDF on highly variable days to be bimodal, which is in
agreement with the observation that even for the largest system, the
dimensions of clouds are much greater than the size of the system. To a

Fig. 1. (a) Example of diurnal cycle of generated PV power of the SME PV
system, showing the time-averaging effect of data with a temporal resolution of
1 s and 15 min, respectively; (b) Detail overview of a 32 min period. The 1 s
data shows switching between a maximum and minimum state, which is clearly
different from the 15-minute data.

Fig. 2. Detail view of the inverter limited household PV system yield showing
distinct step levels. The time between the two subsequent steps is approxi-
mately 10 min.

F.P.M. Kreuwel, et al. Solar Energy 206 (2020) 381–389

384



limited extent, spatial averaging effects can be observed when con-
sidering the peak of high yield on highly variable days; this is much
wider for the non-limiting household PV system compared to the SME
PV system.
If we relate this to grid impact calculations we can state that 15-

minute averages flatten the extreme values and the probability of
‘medium yield’ is exaggerated. Additionally, the probability density
distribution of PV energy yield closely corresponds to that of irradiance.

3.3.3. Possible temperature effect
For the PV household system, we observe the largest difference

between the highest values measured at highly variable days compared
to high yield days, even larger than observed for the irradiance data. To
some extent this could be caused by the higher sampling frequency of
the PV measurements compared to the irradiance measurements.
However, in Section 3.4 we show that this effect persist when the same

time averaging interval is used.
We hypothesize that in addition to the cloud reflection enhance-

ment, an inverse temperature effect occurs on highly variable days
compared to high yield days. The decreasing efficiency of solar cells
with increasing cell temperature is well-understood (van Haaren et al.,
2014). Shading induced by transient clouds could lead to a lower ef-
fective cell temperature resulting in a higher energy output, as the re-
sponse time of the temperature of the panel is much larger than the
ramp rate of irradiance and PV systems themselves are virtually inertia
less. The thermal response time of a typical PV panel is reported to be in
the order of 7 min (Skoplaki and Palyvos 2009).
The other PV systems do not show this additional increase in yield.

Possibly due to the under dimensioning of the inverter (PV limited
system) or spatial averaging effects (PV SME system).

Fig. 3. Classification into 'high yield', 'low yield', 'highly variable' (respectively top left, bottom left, right) of the SME PV system. The color indicates the highest
observed power output on the specific day. As a reference, irradiance profiles are depicted for the three mentioned classes.

Fig. 4. Probability density (areas) and kernel density estimates (curves) of the measured irradiance at the Cabauw BSRN site at 5-second resolution (left) and 15-
minute averages (right). Similar results are obtained for PV measurements.
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3.4. Averaging effect on peak power

For each of the systems under research, we have determined the
peak power observed at a specific time averaging window, normalized
to the peak power observed at the time average at 15 min. The results
are depicted in Fig. 6.
We find that for the PV household system, the peaks at the 2-second

timescale are 22% higher compared to the 15-minute average. Notably,
this is significantly larger than the increase observed for irradiance:
18% at 5-second interval. For the SME system, we find that at temporal
resolutions of 10 s or smaller, the increase stabilizes at approximately
11%. We would expect that spatial averaging would lead to smaller
increases for larger system sizes. However, this is not observed for the
household PV system in Fig. 5. As mentioned before, we conjecture that

Fig. 5. Probability density distributions of the high-frequency measurements of the PV household (left), PV household with limiting inverter (center) and SME PV
system (right).

Fig. 6. Overview of peak yield versus time-averaging interval for the four systems under investigation. Surprisingly, the largest effect of temporal averaging is found
for the PV household system.

Fig. 7. Overview of highest power ramps between sequential observations for increasing time-averaging interval, relative to the observed maximum peak power at
15 min time-averaging interval.
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the additional increase of the household system compared to the in-
crease in irradiance is due to temperature effects. For the inverter-
limited PV system, the increase is relatively small (12%). We assume
this to be determined by characteristics of the specific inverter such as
rated power and efficiency curves.
In the range between 5 s and 1 min we still observe significantly

higher peak power compared to the 15-minute averages, for all systems
under investigation. This suggests that these are the typical timescales
of cloud dynamics for which irradiance enhancement can be observed.
However, the SME PV system, is insensitive to the increase for time
resolutions higher than 10 s, indicating that irradiance enhancement is
bound in space in a region typically smaller than the surface area of the
SME PV system, which is in the order of 100 m2.

3.5. Averaging effect on ramp rate

Fig. 7 shows the power difference between sequential time steps
(power ramps) as a function of time averaging interval, normalized to
the observed peak power at the 15-minute average, e.g. the same nor-
malization is used as for Fig. 6. All systems under research show a re-
markably similar, sigmoid-like increase of normalized ramp rate with
increasing time interval, from ~20% at a 5-second interval to stabi-
lizing between 70 and 80% of the observed capacity somewhere be-
tween 5 and 15 min. Since even under completely-clouded conditions
the PV system still produces energy due to a non-zero diffuse irradiance
component, the stabilization at high time scales occurs for a value
smaller than 1.
The observed similarity between the behavior of the systems is

counterintuitive to what one might expect in the context of spatial
averaging. A large difference in surface area exists between the systems
under investigation; the surface area of the household PV systems is in
the order of 2000 times the surface area of the pyranometer, and the
SME system even in the order of 77,000. This suggests that the ramp
rate is not only determined by the transit time of the cloud edge over
the system, but also by the large-scale spatial gradient of the cloud
optical depth near the cloud edge. This gradient limits the ramp rate for
small systems, where the transit time is in the order of seconds.
Additionally, the electrical connection of the PV system may play an
important role, since a shaded module can decrease the power of the
connected string by more than the peak capacity of the module (Jones
and Underwood 2001).
The ramp rate of the inverter-limited system slightly exceeds the

other systems under research. We can provide a possible explanation:
since the peak output power of the system is limited by the inverter, the
observed maximum output power is small compared to the nominal
installed capacity of the solar panels. Increases and decreases in output
power can therefore be relatively greater than is the case for the non-
limited PV household system. Additionally, the high ramp rate shown in
Fig. 7 indicates that the ramp rate is not the limiting factor for the
relative small increase in peak power for the inverter limited system
shown in Fig. 6.

4. Discussion and conclusion

We show that for both irradiance and PV systems typical for small
and medium-sized enterprises, 15-minute time averages poorly re-
present behavior at high temporal resolutions. At small timescales, all
systems under research show at highly variable days a bimodal prob-
ability density distribution of irradiance or PV power that vanishes
under 15-minute averaging. As noted in the introduction, increased PV
power output and ramp rates increase the risk of grid voltages ex-
ceeding safety limits and threaten the stability of the electricity grid at
the local level.
Our findings indicate that the highest PV power measurements do

not occur under clear-sky conditions, but under mixed clouds and that
this information is completely filtered out at the typically used 15-

minute interval. The largest peak power at high time resolution is found
for the household PV system at 22% higher than the 15-minute average.
This is even larger than observeable for irradiance (18%). We con-
jecture based on results shown in Fig. 6 that in addition to cloud en-
hancement, temperature related efficiency effects lead to the largest
peak power observations of PV systems under mixed-cloud conditions.
For the largest system, and the system where the inverter limits the
output power, we find maximum power output increases of 11% and
12% respectively.
Notably, normalized ramp rates are very similar for all systems

under research, ranging from ~20% at a 5-second interval to stabilizing
at 70–80% between 5 and 10 min. Suggesting large-scale effects such as
the gradient of optical thickness near the cloud edge to be dominant
over the cloud-transit time over the system.
While it might be unfeasible to calculate the grid load for an entire

year using a time step in the order of seconds, the results of this work
are relevant to improve the business rules currently used to assess the
PV hosting capacity of the electricity grid.
For grid operators, it is commonplace to perform detailed power

quality calculations for a selection of ‘worst case scenarios’. At present,
the ‘worst case’ for PV is frequently assumed to be the maximum power
output under clear sky conditions. However, we observed that the
maximum power output of a PV system is up to 22% higher under
mixed-cloud conditions compared to clear sky conditions. Additionally,
the largest ramp rates are also found under mixed-cloud conditions.
Therefore we strongly recommend to include these situations as well.
Moreover, since the largest fluctuations in power output occur at

small time scales and the associated energy yield is very small, readily
available power electronics could be included in the design of inverters
to mitigate these grid-disturbing effects while only minimally impacting
the return on investment of the PV system owner.
In this work we studied temporal averaging effects on power output

characteristics of single systems. In practice, grid stability is not threa-
tened by single, smaller systems, but by fleets of systems at distinct grid
levels; e.g. low voltage cable (street), secondary substation (neighbor-
hood) and substation (city). While spatial averaging effects have been
studied for irradiance, averaging of fluctuations of generated solar power
have yet to be quantified directly. As we have shown in this work, power
peaks of household PV systems can exceed those observed for irradiance.
Possibly due to secondary effects such as an inverse relation between
temperature and efficiency, which occur for PV systems but are not
present for irradiance. While at present irradiance is frequently studied,
future research is required to determine the combined spatio-temporal
averaging effects on distributed PV system power output, given the non-
trivial relation between irradiance and PV output power.
This work quantifies the commonly observable extremes of output

power and ramp rates at very high temporal resolution, in relation to
grid stability at the local level. Whether a short-lived extreme of PV
power actually causes a grid safety or stability problem depends on
many factors such as the properties of the grid components and the
instantaneous load profile. Future research could use the relations de-
scribed in this work to quantify the increased risk in grid instability.
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