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Abstract
Key message  Multi-parent populations multi-environment QTL experiments data should be analysed jointly to 
estimate the QTL effect variation within the population and between environments.
Abstract  Commonly, QTL detection in multi-parent populations (MPPs) data measured in multiple environments (ME) is 
done by analyzing genotypic values ‘averaged’ across environments. This method ignores the environment-specific QTL 
(QTLxE) effects. Running separate single environment analyses is a possibility to measure QTLxE effects, but those analyses 
do not model the genetic covariance due to the use of the same genotype in different environments. In this paper, we propose 
methods to analyse MPP-ME QTL experiments using simultaneously the data from several environments and modelling 
the genotypic covariance. Using data from the EU-NAM Flint population, we show that these methods estimate the QTLxE 
effects and that they can improve the quality of the QTL detection. Those methods also have a larger inference power. For 
example, they can be extended to integrate environmental indices like temperature or precipitation to better understand 
the mechanisms behind the QTLxE effects. Therefore, our methodology allows the exploitation of the full MPP-ME data 
potential: to estimate QTL effect variation (a) within the MPP between sub-populations due to different genetic backgrounds 
and (b) between environments.

Introduction

The use of multi-parent populations (MPPs) becomes pro-
gressively a regular practice in plant genetics and plant 
breeding. Different MPPs have been developed like the 
nested association mapping (NAM) populations (McMul-
len et al. 2009) or the multi-parent advanced generation 
inter-cross (MAGIC) populations (Cavanagh et al. 2008). 
The collections of crosses between a set of parents used in 
breeding programs can also be analysed as MPPs (Paris-
seaux and Bernardo 2004; Würschum 2012). Different sta-
tistical approaches have been proposed to detect QTLs in 
MPPs composed of biparental crosses (Jourjon et al. 2005), 

in NAM populations (Li et al. 2011) or in MAGIC designs 
(Verbyla et al. 2014).

The plant phenotype is the result of cumulative interac-
tions between the genotype and the environment (Malosetti 
et al. 2013). Therefore, researchers have developed statisti-
cal procedures to detect QTLs taking the genotype by envi-
ronment (GxE) interactions into consideration (Boer et al. 
2007; Korte et al. 2012). Several MPPs have been tested 
in multiple environments (MPP-ME) (Buckler et al. 2009; 
Giraud et al. 2014; Saade et al. 2016), but only few studies 
have proposed a proper MPP GxE QTL detection methodol-
ogy (Piepho and Pillen 2004; Verbyla et al. 2014). Most of 
the researches average the phenotypic values by calculating 
adjusted means across the environments that represent an 
average genotypic value (Buckler et al. 2009; Giraud et al. 
2014; Poland et al. 2011). In other articles, the authors per-
formed separate analyses in each environment (e.g. Saade 
et al. 2016).

We consider that the main interest of an MPP-ME QTL 
experiment is to estimate genetic variation at two levels: (a) 
within the MPP between sub-populations due to different 
genetic backgrounds and (b) between environments. There-
fore, in this article, we extended the framework we developed 
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for QTL detection in MPPs composed of biparental crosses 
(Garin et al. 2017, 2018) to the multi-environment scenario. 
We allowed the multi-allelic QTL effects to vary between the 
environments to estimate QTL by environment (QTLxE) inter-
actions. We further extended our models to integrate environ-
mental information like temperature or precipitation to get a 
deeper understanding of the mechanisms behind the QTLxE 
effects. In the following sections, we present different meth-
ods to analyse MPP-ME QTL experiments and illustrate our 
methodology with examples coming from the EU-NAM Flint 
population.

Material and methods

Statistical methodology

In the next sections, we present four methods for QTL detec-
tion in MPP-ME experiments with increasing complexity. 
Methods one to three are two-stage analyses combining 
genotype adjusted means computation and a QTL detection 
model. Method four is a one-stage analysis on the plot data 
that simultaneously estimates experimental design and QTL 
effects. The underlined terms are considered as random with 
normal distribution and proper variance, the others as fixed.

M1: average effect across environments analysis

Method M1 performs a QTL analysis on the genotype best 
linear unbiased estimates (BLUEs) calculated across envi-
ronments with the following model

where yicep is the phenotypic value of genotype i from cross 
c in environment e measured in plot p. � is the intercept. Ee 
is the environment effect. D(e) represents the within envi-
ronment experimental design factors such as replicates and 
blocks. Gic is the genotype effect. The term GEice represents 
the genotype by environment interaction. Finally, �icep is 
the plot error. Depending on the modelling objective or the 
assumptions about the design, Gic and D(e) can be considered 
as fixed or random. Model 1 models jointly the phenotypic 
measurements of the Ne environments and calculates the 
genotype BLUEs ( ̄Gic ) treating Gic as fixed. Those BLUEs 
represent the genetic main effect across environments.

Then, we can further analyse the genotype BLUEs Ḡic 
using the following QTL model:

where Ḡic is the genotype BLUE of individual i in cross 
c. It can be partitioned into a cross effect Cc , and a QTL 

(1)y
icep

= � + Ee + D
(e)

+ Gic + GE
ice

+ �
icep

(2)Ḡ
ic
= 𝜇 + Cc + xia ∗ 𝛽a + g

ic
+ 𝜖

ic

part xia ∗ �a . xia is the number of QTL alleles (a) received 
from a parent or ancestor (see below) by individual i at the 
QTL position. �a represents the allelic substitution effect. 
The number of alleles ( na ) at the QTL varies according 
to the user assumption. A first model called ‘parental’ 
assumes that each parent contributes a unique allele to the 
MPP (Blanc et al. 2006) ( a = 1,… , np ). A second ‘ances-
tral’ model assumes that genetically similar parents inherit 
their alleles from a common ancestor (Bardol et al. 2013) 
( a = 1,… , nanc ). Finally, a bi-allelic model assumes that 
genotypes with the same single-nucleotide polymorphism 
(SNP) score, transmit the same allele (Würschum et al. 
2012) ( a = 1, 2).

xia takes values between 0 and 2. For the parental model, 
they represent the expected number of parental allele 
copies estimated using identity by descent (IBD) prob-
abilities. The ancestral model is an haplotypic IBD model 
where parental alleles corresponding to the same ances-
tral class are merged. We used the R package clusthaplo 
(Leroux et al. 2014) to determine ancestral classes along 
the genome based on local identical by state (IBS) genetic 
similarities. For the bi-allelic model, xia is equal to the 
number of SNP minor alleles. We estimated the models 
setting the NAM central parent allele as reference, and we 
interpreted the allelic substitution effects �a as deviations 
from the reference allele.

Ḡic is also composed of a residual genetic variation term 
gic and a non-genetic variation and plot error term �ic . For 
BLUEs, gic and �ic are confounded. Therefore, gic is mod-
elled as part of the non-genetic and plot error variance. We 
assume that �ic follows a normal distribution N(0, �2

�c
) . The 

error variance �2
�c

 is assumed to be cross-specific to 
account for the heterogeneity that could exist between 
crosses (Garin et al. 2017; Xu 1998). In M1, since Ḡic 
represents the main genotypic effect across environments, 
it is not possible to estimate the QTLxE effects. M1 was 
used in Buckler et  al. (2009), Poland et  al. (2011), or 
Giraud et al. (2014).

M2: within environment analyses

Method M2 models the QTLxE effects by performing 
separate QTL analyses in each environment on the geno-
type BLUEs calculated with model 1 using single environ-
ment data. Therefore, the terms Ee , and GEice are dropped. 
The design and error terms are not anymore indexed per 
environment. Using this model, it is possible to calculate 
within environment genotype BLUEs Ḡice . In a second 
step, we can further analyse each environment-specific 
BLUEs vector by performing Ne QTL analyses using 
model 2. Such separate within environment analyses are a 
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first possibility to estimate the QTLxE effects (e.g. Saade 
et al. 2016).

M3: two‑stage multi‑environment analysis

By analyzing environment data, separately M2 does not 
model the covariance due to repeated measurements on 
the same genotype. According to Piepho (2005), ignoring 
the between environment genetic covariance can increase 
the false positive rate. From a general point of view, using 
a correct variance covariance (VCOV) structure improves 
the quality of the test to detect QTLs (van Eeuwijk et al. 
2010). Therefore, in method M3, we analyse jointly the 
within environment genotype BLUEs Ḡice by extending 
model 2 to the multi-environment situation

Compared to model 2, the cross effects Cce , the QTL allelic 
effect �ae , the residual genetic variation GEice , and the non-
genetic variation plus plot error term �ice are indexed per 
environment. Here, we model environment-specific QTL 
allelic effects. For example, parental allele a in environment 
e and e′ . The QTL effects could also be partitioned into a 
main effect across environments and environment-specific 
components, an important difference with respect to M2.

Another important difference between models 2 and 3 
is the possibility to model both GEice and �ice by the use of 
Ne within environment genotype BLUEs vectors. GEice and 
�ice are confounded and are modelled jointly. The con-
founded term ( GEice + �ice ) can be modelled by assuming 
a genotypic main effect  across  environments 
( GEice ∼ N(0, �2

�g
) ) and a homogeneous or heterogeneous 

residual term, making the variance covariance matrix 
across environments of the compound symmetry (CS) 
class (Boer et  al. 2007) (Boer et  al. 2007). When we 
assume cross-specific residual terms ( �ice ∼ N(0, �2

�ce
) ), 

which contain constant genotype by environment interac-
tion contributions and a plot error-related cross-specific 
error term, we take into consideration covariances between 
environments and heterogeneities within environments.

The combination of the CS and the environment cross-
specific errors (ECSE) is a first possibility to model the 
VCOV structure in an MPP GxE QTL model. It is a sim-
ple extension of the VCOV of model 2 accounting for the 
environment effect on the error term and for the genotypic 
covariance between environments. The VCOV matrix of 
phenotypic observations coming from two different crosses 
in two different environments takes the following form:

(3)Ḡ
ice

= 𝜇 + Ee + Cce + xia ∗ 𝛽ae + GE
ice

+ 𝜖
ice

M4: one‑stage multi‑environment analysis

The last method M4 is a one-stage analysis on the plot data 
using an extension of model 1 where the genotype effect Gic 
is replaced by the environment-specific cross effect ( Cce ) and 
QTL effect ( xia ∗ �ae)

The definition of the QTL effect and of the VCOV (CS + 
ECSE) is the same as in model 3. The extension of models 
2, 3, and 4 to a multi-QTL model can be done replacing the 
QTL term by 

∑
q xia(q) ∗ �ae(q).

M4 allows the simultaneous estimation of the non-genetic 
effects due to the experimental design ( D(e) ) and of the 
QTL variation. Similar one-stage analysis models for a two 
crosses NAM population and a MAGIC population were 
presented in Piepho and Pillen (2004) and Verbyla et al. 
(2014), respectively.

Significance of the QTL effect

The Wald test (W) (McCulloch and Searle 2001, 5.39) can 
be used to test the null hypothesis of all QTL allelic substitu-
tion effects being equal to zero. W ∼ �2

df
 with the degrees of 

freedom (df) equal to na − 1 . In models 3 and 4, the null 
hypothesis will be rejected if one allelic substitution effect 
is different from zero in at least one environment. The com-
bination of four methods (M1-4) and three types of QTL 
effects (parental, ancestral, bi-allelic) represents 12 models 
to analyse MPP-ME QTL experiments.

QTL detection procedure

The QTL detection procedure was composed of a simple 
interval mapping scan to select cofactors followed by a 
composite interval mapping (CIM) scan to build a multi-
QTL model. The final list of QTLs was evaluated using a 
backward elimination. The cofactors were selected with a 
minimum in between distance of 50 cM to avoid model over-
fitting. The QTLs were selected with a minimum distance of 
20 cM. After QTL detection, we determined the number of 
unique QTL positions across methods. We considered that 
QTL positions detected by different methods represented the 
same QTL if they were separated by less than 10 cM. We 

V
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performed the QTL detection and the estimation of the QTL 
effects using the central parent as reference.

We fixed the cofactor and QTL detection thresholds to 
− log 10(p value) = 4. The choice of a fixed value for the 
QTL detection threshold allowed us to avoid computation-
ally intensive permutation tests. Even though there exist 
alternative strategies for threshold determination using 
simulation-based critical values (Lander and Botstein 1989) 
or analytical methods (Rebai et al. 1994), those methods 
have been mostly used in biparental crosses or in association 
panels. According to Rebai et al. (1994), the MPP situa-
tion is more complex. Therefore, in most of the MPP QTL 
detection studies, authors have used permutation tests or 
Bonferroni correction. The choice of − log 10(p value) = 4 
as threshold was influenced by values obtained by permuta-
tion in similar models. For example, in Giraud et al. (2014), 
the thresholds calculated for the same population and trait 
took values between 3.65 and 4.36. In our example, the use 
of a Bonferroni correction would give a threshold of 5.08. 
Varying the threshold values between 3 and 5 would have a 
small impact on the final results by only changing the list of 
positions with small or medium effects.

Modelling QTL effect in relation to environmental 
information

When a QTL position showing QTLxE effect is identi-
fied, it is possible to extend methods M3 and M4 to better 
understand the QTLxE effect by integrating environmen-
tal information. Inspired by model 16 from Malosetti et al. 
(2013), we can reformulate the QTL part of models 3 and 
4 to describe the QTL effect in terms of sensitivity to the 
environmental covariate Ze (e.g. temperature)

The environmental allelic effect ( �ae ) is decomposed into a 
main effect �a and a component �a describing the sensitiv-
ity to the environmental covariate Ze . In the MPP context, 
�a and �a will be vectors of dimension [1 × na] containing 
one element per QTL allele. �a represents the QTL effect 
of allele a when Ze is equal to zero. �a is the environmental 
sensitivity of allele a and represents the amount of change 
in trait quantity for one extra unit of Ze . �a and �a are both 
defined with respect to a reference allele (e.g. the central 
parent). Finally, �ae is the residual unexplained QTL effect.

Computation

To perform the QTL detection, we extended the R package 
mppR (Garin et al. 2018) to the multi-environment situation 
https​://githu​b.com/vince​ntgar​in/mppGx​E. The mixed mod-
els were calculated using asreml-R (Butler et al. 2009). To 

(5)xia ∗ �ae = xia ∗ (�a + Ze�a + �ae)

ensure transparency and the reproducibility of this research, 
all data files, scripts and software are available at https​://
githu​b.com/vince​ntgar​in/mppGx​E_data.

Plant material

To illustrate our methodology, we focused on examples 
showing significant and observable QTLxE interactions 
coming from the EU-NAM Flint population tested in two 
environments. The maize EU-NAM Flint population is com-
posed of 811 double haploid lines coming from 11 crosses 
( Nc ∈ [17 − 133] ) between UH007 and 11 peripheral par-
ents representative of North Europe maize diversity (Bauer 
et al. 2013; Lehermeier et al. 2014). The EU-NAM Flint 
population was evaluated as testcross in six European loca-
tions for five traits. We used: (a) the raw phenotypic data 
provided by Lehermeier et al. (2014) available at http://
www.genet​ics.org/conte​nt/198/1/3/suppl​/DC1; (b) the raw 
genotypic SNP marker data provided by Bauer et al. (2013) 
available at http://www.ncbi.nlm.nih.gov/geo/query​/acc.
cgi?acc=GSE50​558; and (c) the consensus map from Giraud 
et al. (2014) available at http://maize​gdb.org/data_cente​r/
refer​ence?id=90247​47.

We performed a quality control by removing the mark-
ers with a minor allele frequency < 0.05 or > 10% missing 
values. In the situations where several markers were located 
at the same position, we kept the most polymorphic one. 
After quality control, we kept 5949 markers spread on 10 
chromosomes for a total map length of 1584 cM. For the 
parental and the ancestral models, missing genotypic scores 
were imputed during the computation of the IBD proba-
bilities. For the bi-allelic model, we imputed randomly the 
1.2% missing values. For the ancestral model, we clustered 
the parental lines at each marker position using a two cM 
window around the marker with the R package clusthaplo 
(Leroux et al. 2014). We detected an average of 6.7 ancestral 
classes along the genome.

From the possible combinations of traits and environ-
ments, we focused on biomass dry matter yield at the whole 
plant level (DMY, decitons per hectare, dt ha−1 ) measured at 
La Coruña (Spain - CIAM) and at Roggenstein (Germany - 
TUM). This combination of trait and pair of environments 
was the one that showed the largest potential GxE effect 
with the lowest Pearson correlation between environment-
specific BLUEs.

Within a location, the trials were laid out as augmented 
p-rep designs with one-third of the genotypes replicated. 
The genotypes were laid out with parents and checks in 
160 incomplete block consisting of eight plots. Therefore, 
in models 1 and 4, D(e) = repl(e) + blockm(le) to account for 
the lth replicate, and the mth block within replicate effects. 
The replicate and block terms were considered as random 
with a unique variance term. To manage the check entries, 

https://github.com/vincentgarin/mppGxE
https://github.com/vincentgarin/mppGxE_data
https://github.com/vincentgarin/mppGxE_data
http://www.genetics.org/content/198/1/3/suppl/DC1
http://www.genetics.org/content/198/1/3/suppl/DC1
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50558
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50558
http://maizegdb.org/data_center/reference?id=9024747
http://maizegdb.org/data_center/reference?id=9024747
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we followed Boer et al. (2007) and partitioned the genotype 
term of models 1 and 4 into check and entries.

For the heritability computation (supplementary mate-
rial S1), we assumed a cross-specific GxE random term for 
GEice (model 1). We noticed that for two crosses (EZ5 and 
F283), we could not get an estimate of the cross-specific 

GxE variance. This is due to the partial genotype repli-
cation between environments. Therefore, it seems more 
appropriate to assume a homogeneous genotype by envi-
ronment variance term for GEice as we did in model 1, 3, 
and 4. The average heritability on a line mean basis within 
crossover environments was 47% . The Pearson correlation 

Fig. 1   a CIM −  log10(p values) profile of the EU-NAM M4 paren-
tal QTL analysis. b Within environment parental QTL allelic signif-
icance along the genome. Wald test p values of the parental allelic 
substitution effects after transformation into a colour code (z). If p-val 

∈ [ 10−6 ; 0.05]: z = − log 10(p − val) . If p-val < 10−6 : z = 6 to prevent 
the colour scale from being determined by high significant values. 
The colours red (positive) and blue (negative) correspond to the sign 
of the QTL effect (colour figure online)
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between the two within environment genotype BLUEs was 
equal to 0.35.

Results

QTL analyses

In Fig. 1, we plotted the CIM profile of the EU-NAM Flint 
DMY M4 ancestral analysis. Figure 1b shows the QTL 
allelic effect significance per parent and environment along 
the genome. The significance of the QTL genetic effect along 
the genome should, however, be taken with caution because 
it is based on a conditional Wald test that can change given 
the order of the tested parameters (Butler et al. 2009). We 
noticed that the QTL on chromosome six had an interesting 
allelic effect series. Indeed, many parents were grouped in 
the same ancestral class and the QTL had a genetic effect 
specific to the second environment (TUM).

Figure 2 represents the number of specific and common 
QTLs for DMY between methods (M1–M4) for each type 
of QTL effects (parental, ancestral, bi-allelic). The lists and 
plots of all detected QTL positions can be found in the sup-
plementary material S2. We detected 11, 13 and 22 unique 
QTL positions across methods using the parental, ancestral 
and bi-allelic models, respectively. We detected the larg-
est number of QTLs with M1, testing on QTL main effects 
across environments. Taken separately, the within environ-
ment M2 analyses detected the lowest number of QTLs. 
However, considered together, the two within-environments 
M2 analyses detected as many or more QTLs than M1. For 
example, in the parental model, M1 detected eight unique 
QTLs, while M2-E1 and M2-E2 detected nine QTLs. M3 
and M4 detected less QTLs than M1 and M2. For example, 
in the bi-allelic model, we detected 12, 11, 10, and nine 
unique QTLs with M1, M2, M3 and M4, respectively. 

From a general point of view, the methods showed a 
moderate level of consistency concerning the detected QTL 
positions. The number of positions common to at least two 

Fig. 2   Number of unique 
QTLs for each type of QTL 
effects (parental, ancestral and 
bi-allelic) detected specifi-
cally in M1, M2 environment 
1 (M2-E1), M2 environment 
2 (M2-E2), M2 (two environ-
ments combined), M3 and M4 
or common to different methods 
for DMY in the EU-NAM 
Flint population. The numbers 
of unique QTLs detected per 
method are in parentheses. 
QTLs detected by two methods 
were the same if they were 
separated by less than 10 cM 
(colour figure online)
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methods decreased from the parental to the bi-allelic model. 
For example, the percentage of common QTLs between M1 
and M2 decreased from 55 to 23 from the parental to the 
bi-allelic model. The overlap was stronger between M3 and 
M4 with percentage of common QTLs between 85 and 58 
from the parental to the bi-allelic model. Few positions were 
detected consistently across methods and models. For exam-
ple, a QTL on chromosome 10 around 45 cM was detected 
by the four methods in all QTL type models. The QTL on 
chromosome 6 between 82 and 86 cM was also detected by 
all methods and QTL types.

Looking at the environment-specific method M2, we 
noticed that more QTLs were detected in the CIAM (M2-
E1) compared to the TUM (M2-E2) environment. For exam-
ple, the parental model detected six QTLs in CIAM and 
only three QTLs in TUM. The QTLs detected with M2 were 
mostly environment-specific. Only two QTLs were common 
to M2-E1 and M2-E2, for example the QTL on chromosome 
10 at 45.2 cM detected by the bi-allelic model.

− log 10(p values) scatter plots

In Fig. 3, we plotted the − log 10(p values) of the CIM pro-
files obtained with M4 with respect to methods M1 to M3. 
We could observe that, in general, the − log 10(p values) 
were larger in M4. The differences between the M4 and the 
M2 profiles were the largest. Concerning M4 versus M1, an 
important fraction of the − log 10(p values) were superior 
in M4 compared to M1. However, for the most significant 
− log 10(p values), M1 gave sometimes larger − log 10(p 
values) than M4, for example for the parental model. The 
− log 10(p values) obtained with M3 and M4 were similar.

Estimation of the QTL allelic substitution effects

In Fig. 4, we represented the allelic effect series of the QTL 
detected on chromosome six at 82.1 cM in the EU-NAM 
Flint ancestral model. The estimated QTL effects were 
conditioned on the cofactors detected with the correspond-
ing final model. The allelic substitution effect values can 
be found in the supplementary material S3. In the text, the 
standard errors (SE) of the allelic effects are given in paren-
theses. In Fig. 4, we observed the differences in terms of 
estimated QTL allelic effects between M1 using BLUEs rep-
resenting a main genotypic effect, and M4, which estimates 
environment-specific QTL effects. The QTL allelic effects 
were standardized by using the ratio to their standard devia-
tion. A similar comparison between the QTL allelic effects 
obtained with all methods can be found in the supplementary 
material S4. The results obtained with M4 were comparable 
to the ones of M2 and M3.

The QTL detected on chromosome six (Fig. 4) was the 
most illustrative example of environment-specific QTL 

effects. In the second environment (TUM), an ancestral 
allele inherited by parents D152, EC49A, F03802, F2, 
F283, UH006 and DK105 had a strong negative effect of 
− 7.2 dt ha−1 ( SE = 0.8 ) with respect to the reference ances-
tral group. In the first environment (CIAM), the effect 
of the main ancestral group was substantially reduced to 
− 1.2 dt ha−1 ( SE = 0.8 ) and non-significant. In the M1 
method, the main ancestral allele took an average value 
( − 4.1 dt ha−1 , SE = 0.7 ) across the two environments.

QTL effect in relation to environmental information

To illustrate the extension of our models with environmental 
covariates (5), we re-analysed the effect of the QTL detected 
on chromosome six (84.2 cM) with the M3 ancestral model 
including the effect of water precipitation ( Ze ). This QTL 
had five alleles: allele A (UH007, central parent), allele B 
(D152, EC49A, EP44, F2, F64, UH006), allele C (F03802, 
F283), allele D (UH009, DK105) and allele E (EZ5). We 
used the final QTL model and the average water precipitation 
in mm at each location between July and August obtained 
from https​://en.clima​te-data.org/. To increase the range of 
the environmental covariate and estimate more precisely 
the QTL sensitivity, we calculated our model including the 
yield performances of two extra environments (Einbeck and 
Ploudaniel). We considered the precipitation of the driest 
location (La Coruña, 35 mm) as the reference level. The 
precipitation in the other environments was expressed with 
respect to the reference.

Table 1 contains the estimates of the QTL main effects 
( � ) and QTLxE effects ( � ) on DMY. We noticed that, in the 
driest environment (La Coruña), the allele B reduced the 
yield by 0.75 dt ha−1 compared to allele A. When the level of 
precipitation increased, this difference was increased by 0.06 
dt ha−1 mm−1 . In Table 1, we also notice a large effect and 
SE for allele E, which is probably due to its low frequency. 
In Table 2, we calculated the difference in yield between 
an homozygous genotype with allele A versus B in the four 
environments ( 2 ∗ (�B + Ze ∗ �B) ). We observed that the dif-
ference was equal to 1.5 in the driest reference environment 
(La Coruña). The extra yield given by allele A increased 
with more precipitation (e.g. 6.6 dt ha−1 at Roggenstein).

Discussion

Several MPPs have been characterized in multiple environ-
ments but, most of the time, the QTL analyses were per-
formed on genotype BLUEs calculated across environments 
representing average genotypic values (M1). M1 ignores the 
QTLxE effects. Therefore, it does not use the full informa-
tion potential of MPP-ME QTL experiments. An alterna-
tive to estimate the QTLxE effects in MPPs is to perform 

https://en.climate-data.org/
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separate QTL analyses within each environment (M2). How-
ever, this method does not model the covariance due to the 
repeated measurements on the same genotype. Therefore, 
we proposed methods M3 and M4, which used simultane-
ously the phenotypic data from multiple environments tak-
ing into consideration the genotypic covariance between 

environments. With respect to M3, M4 integrated the varia-
tion due to experimental design elements performing a one-
stage analysis. M3 and M4 can also integrate environmental 
information to characterize the QTLxE effect. We evaluated 
the methodology by analyzing DMY for the EU-NAM Flint 
population characterized in two environments.

Fig. 3   CIM − log10(p values) scatter plots of methods M1–M3 compared to M4 for the QTL analyses of DMY in the EU-NAM Flint population 
with Pearson correlation in blue (colour figure online)
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As we could observe in Fig. 2, the differences concerning 
the list of QTL positions detected by the different meth-
ods were important. A significant amount of QTL positions 
were only detected by a single method. Common QTLs 
were generally detected in a narrow windows of 0–2 cM. A 
closer look to the environment-specific analyses (M2) also 
showed differences between the two environments con-
cerning the QTL locations. The method variability could 
be explained by their different properties and could reveal 
some complementarity.

M1: QTLs with consistent effects 
across environments

In Fig. 4, we illustrated the main limitation of M1: the inac-
curate estimation of environment-specific QTL effects. 
For that particular QTL, assuming that the environmental 
specificity detected by M2, M3 and M4 was true, we could 
show that M1 estimated an ‘average’ effect between the 
two environment-specific allelic effects. In such a case, the 
QTL effects would be overestimated in one environment and 
underestimated in the other. Therefore, in the presence of 
QTLxE effect, the use of methods M2, M3 or M4 is neces-
sary. The QTL detected on chromosome 6 is a good illustra-
tion to estimate QTL variation between environments and 
between MPP sub-populations.

The use of M1 could, however, still be interesting to detect 
QTLs with a consistent effect across environments. In Fig. 2, 
we observed that M1 detected more or an equal number of 
QTLs than the other methods. In Fig. 3, we also noticed 
that for the most significant QTLs, M1 obtained the largest 
− log 10(p values). M1 could have an increased detection 
power because it uses a reduced number of df to estimate 
the QTL effect. Indeed, in M1, the QTL term uses na − 1 
df, while in M3 or M4, the QTL term uses Ne ∗ (na − 1) df. 
When the QTLxE effect is strong, the extra df are neces-
sary to capture the environmental variation. In that case, 

Fig. 4   Comparison of the allelic substitution effect series between 
M1 and M4 for the position detected on chromosome 6 at 82.1 cM in 
the EU-NAM Flint with the ancestral model. The colour intensities 
are proportional to the allelic effect. The allelic effects are deviations 
in decitons per hectare with respect to the central parent (UH007). 
The sizes of the dots are proportional to the ratio between the allelic 
effect and its standard error (colour figure online)

Table 1   Illustration of the 
yield ( dt ha−1 ) environmental 
sensitivity estimation of the 
QTL on chromosome six 
(84.2 cM)

The QTL allelic effects (A–E) are expressed in terms of main effect across environments ( �
a
 ) and sensitiv-

ity ( �
a
 ) to water precipitation (mm) with their standard errors (SE). The Wald statistics of each effect and 

their significance (P(Wald)) are also listed

Estimates s.e Units Wald df P(Wald)

�
A

0 0 0 –
�
B

− 0.75 1.07 12.5 1 < 0.001***
�
C

2.02 1.39 dt ha
−1 3.5 1 0.06

�
D

1.82 1.44 1.1 1 0.3
�
E

− 9.02 4.6 2.7 1 0.1
�
A

0 0 0 –
�
B

− 0.06 0.03 4 1 0.05*
�
C

− 0.12 0.04 dt ha
−1

mm
−1 8.4 1 0.003**

�
D

− 0.03 0.04 0.7 1 0.42
�
E

0.17 0.14 1.6 1 0.21
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M1 performs poorly. However, if the QTL effect is consist-
ent across environments, the extra df penalize methods like 
M3. With consistent QTL effects, M1 is more parsimonious.

The previous argument can be illustrated by calculating 
the W significance of an environment-specific QTL and a 
consistent QTL with a main effect and an environment-spe-
cific effect. We performed those calculations for the QTL 
detected on chromosome 6 at 84.2 cM (Q6, environment-
specific), and the QTL detected on chromosome 10 at 42.3 
cM (Q10, consistent). For Q6, W increased from 44.3 to 89.2 
when we moved from the main effect ( df = 4 ) to the envi-
ronment-specific ( df = 8 ) model and the − log 10(p value) 
increased from 8.3 to 15.2. For Q10, we could also observe 
an increase of W from 64.1 to 78.4 by moving from the main 
effect ( df = 9 ) to the environment-specific ( df = 18 ) model. 
However, in that case, the − log 10(p value) decreased from 
9.7 to 8.8. This shows that using extra df to capture QTLxE 
variation penalizes the statistical test of QTLs with consist-
ent effects across environments.

M2: separate GxE analyses

M2 is a first attempt to estimate the QTLxE effects in MPPs. 
We noticed that M2 detected the largest number of indi-
vidual QTL positions in the parental and ancestral models. 
We could also observe that those QTLs were mostly spe-
cific to one environment. Therefore, M2 can be informative 
concerning the QTLs environment specificity. However, 
the separate analyses prevent from borrowing information 
between environments, which decreases the inference power 
concerning the GxE effects.

M3 and M4: joint GxE analyses modelling the VCOV

The main advantage of methods M3 and M4 over M2 is the 
possibility to model the VCOV taking into consideration 
the genotypic covariance existing between environments. 
This strategy can improve the quality of the QTL detection 
and provide a greater understanding of the GxE interactions 
(Alimi et al. 2013; Malosetti et al. 2004).

On the one hand, modelling the genotypic covariance 
can change the structure of the VCOC, which can make it 
more sensitive to picking up QTLs. The use of a multivariate 
test (M3) is also considered to be generally more power-
ful than a univariate one (M2) when phenotype are posi-
tively correlated (Stephens 2013). For example, in the M3 
or M4 joint analyses, some QTLs that were considered to 
be environment-specific or non-significant in M2 showed 
some significant allelic effects in both environments. For 
example, the QTL on chromosome 7 at 128 cM detected in 
the M4 ancestral model (Fig. 1) was not significant in the 
two environment-specific analyses. The use of a multivariate 
analysis accounting for the genotypic VCOV could increase 
to power to detect those QTL effects in both environments.

On the other hand, removing the between environments 
genotypic covariance can also reduce the QTL effect by 
modelling some variation that would otherwise be wrongly 
considered as QTL variation. This could explain the reduced 
number of unique QTLs detected with M3 and M4. Indeed, 
Piepho and Pillen (2004) demonstrated that including the 
genotypic covariance between environments could substan-
tially reduce the QTL effect estimate. They also showed that 
modelling simultaneously the variation due to the experi-
mental design and the genotypic covariance could further 
reduce the QTL effect estimate. Such a result could explain 
that M4 detected slightly less QTLs than M3.

Another important advantage of M3 and M4 over M2 is 
the possibility to increase the inference power of the MPP-
ME QTL analysis. The realization of a unified QTL analysis 
compared to Ne separate analyses makes the interpretation of 
the results easier. The possibility to estimate both the QTL 
main effect across environments and the QTL environment 
specificity is another important difference between M3-M4 
and M2. Finally, as illustrated in Tables 1 and 2, M3 and 
M4 can be extended to integrate environmental information 
to better characterize and understand the QTLxE effects. 
The estimation of the water precipitation effect on a single 
QTL was a simple case, but we could imagine more complex 
models with more QTLs and/or environmental covariates. 
Introducing environmental covariate to perform the genome 
scan will increase the computation time. Therefore, in such 
a case, we advise to adopt the strategy of Millet et al. (2016) 
by selecting first QTLs and then consider candidate environ-
mental indices calculated from an eco-physiological model 
by a backward elimination on possible QTL-environmental 
covariate combinations.

QTL allelic model

In the results of Fig. 2, we noticed that the bi-allelic model 
detected a larger number of unique QTL positions. Those 
QTLs were also more specific to a single method. For exam-
ple, 27% of the QTLs detected with the bi-allelic model were 

Table 2   Extra yield in dt.ha−1 with standard error (SE) for a genotype 
carrying allele A (central parent) versus ancestral allele B (D152, 
EC49A, EP44, F2, F64, UH006) per mm of precipitation ( Z

e
 ) during 

the growing season

The precipitation is expressed per location with respect to La Coruna

Location Z
e
 (mm) Yield (Se) [dt ha−1]

La Coruna 0 1.50 (2.13)
Roggenstein 42 6.60 (1.64)
Ploudaniel 28 4.80 (1.35)
Einbeck 33 5.46 (1.40)
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detected by at least three methods. This proportion was of 54 
and 46% for the parental and ancestral models, respectively. 
Many of those extra QTLs are positions with a − log 10(p-
val) below 5. The lower number of df used by the bi-allelic 
model for the QTL term could explain the larger number of 
significant positions detected by this QTL model.

Other extensions

For M3 and M4 VCOV, we used a compound symmetry with 
environment cross-specific errors. More sophisticated struc-
tures are possible like the unstructured model using specific 
genotypic covariance terms for each pair of environments. 
We could also use a VCOV with cross-specific genotypic 
covariance terms ( �2

gc
 ), given that there is enough between 

environment replications to estimate each cross-specific 
component.

To present our methodology, we used examples from a 
NAM population but our methods and the reasoning behind 
are also valid for any MPP composed of biparental crosses 
like the designs used in breeding programs. Our methods 
could also be adapted to the multi-trait situation. The analy-
sis of longitudinal data measured at different time points 
using a VCOV reflecting the time dependence could be a 
further possibility.

For an illustration purpose, we used data coming from 
two environments, which corresponds to the situation of 
several MPPs tested in contrasting (Herzig et al. 2018) or 
treatment versus control environments (Garin 2019). The 
number of environments could be increased, but the fitting 
of mixed models on large datasets can be computationally 
intensive. For example, it took us seven hours to perform a 
M4 parental one-stage QTL detection on a personal com-
puter (Intel Core i7-3770 CPU 3.4 GHz). The use of paral-
lel or cloud computing could be a solution to reduce the 
computation time. In our article, we privileged an ‘exact’ 
(full REML) mixed model computation at each position. To 
reduce the computational time, ‘approximate’ mixed model 
computation like the EMMA algorithm (Kang et al. 2008; 
Millet et al. 2019) could also be developed.

Conclusions

We compared four methods to detect QTLs in MPP-ME 
data. M1 performed QTL detection on genotypic BLUEs 
‘averaged’ across environments, which prevents from esti-
mating the QTLxE effects. However, M1 stays interesting 
to detect QTL with consistent effects across environments. 
M2 environment-specific analyses are a first possibility to 
get information about the QTLxE effects, but they have a 
reduced inference power. To address the weaknesses of M1 
and M2, we proposed M3 and M4, which model MPP-ME 
data jointly accounting for the genotypic covariance between 

environments. Those methods could increase the QTL detec-
tion power by reducing the error term or reduce the false 
positive detection by modelling genotypic variation that 
is wrongly assigned to the QTLs. M3 and M4 can also be 
extended to integrate environmental information and better 
understand the mechanisms behind the QTLxE effects.
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