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A B S T R A C T

Variability is inherent in biology and also substantial for microbial populations. In the context of food safety risk
assessment, it refers to differences in the response of different bacterial strains (between-strain variability) and
different cells (within-strain variability) to the same condition (e.g. inactivation treatment). However, its
quantification based on empirical observations and its incorporation in predictive models is a challenge for both
experimental design and (statistical) analysis.

In this article we propose the use of multilevel models to quantify (different levels of) variability and un-
certainty and include them in the predictions. As proof of concept, we analyse the microbial inactivation of
Listeria monocytogenes to thermal treatments including different levels of variability (between-strain and within-
strain) and uncertainty. The relationship between the microbial count and time was expressed using a (non-
linear) Weibullian model. Moreover, we defined stochastic hypotheses to describe the different types of variation
at the level of the kinetic parameters, as well as in the observations (microbial counts). The model parameters
(kinetic parameters and variances) are estimated using Bayesian statistics.

The multilevel approach was compared against an analogous, single-level model. The multilevel methodology
shrinks extreme parameter estimates towards the mean according to uncertainty, thus mitigating overfitting. In
addition, this approach enables to easily incorporate different levels of variation (between-strain and/or within-
strain variability and/or uncertainty) in the predictions. On the other hand, multilevel (Bayesian) models are
more complex to define, implement, analyse and communicate than single-level models. Nevertheless, their
ability to incorporate different sources of variability in predictions make them very suitable for Quantitative
Microbial Risk Assessment.

1. Introduction

Mathematical modelling is a basic tool in food science. It is broadly
used to predict quality changes of food products (van Boekel, 2009;
González-Tejedor et al., 2017) or to describe the microbial response
(growth or inactivation) to processing or storage conditions (González-
Tejedor, Garre, Esnoz, Artés-Hernández, & Fernández, 2018; Perez-
Rodriguez & Valero, 2012). Mathematical models can be applied, for
instance, to aid in the establishment of the shelf-life of a food product or
in Quantitative Microbial Risk Assessment (QMRA) (Franz et al., 2019;
García et al., 2015; Possas, Valdramidis, García-Gimeno, & Pérez-
Rodríguez, 2019).

Most of the mathematical models employed in food science are
parametric models. Well-known examples of model parameters are the
specific growth rate (for microbial growth) or the D-value (the heating

time required for a ten-fold reduction in microbial concentration).
Besides being required for making predictions, many parameters have a
biological interpretation (e.g. the D-value can be related to stress re-
sistance). This information can be valuable for risk assessment and
process design. Examples for microbial inactivation include the com-
parison of the effectiveness of different treatments or the identification
of the most resistant bacterial population to a treatment (Ros-
Chumillas, Garre, Maté, Palop, & Periago, 2017; van Asselt &
Zwietering, 2006).

Model parameters can depend on a broad range of implicit (e.g.
bacterial strain), intrinsic (e.g. type of media) and extrinsic factors (e.g.
temperature) in a manner that is not yet entirely understood. Hence,
they must be estimated using experimental data and, because experi-
mental error is unavoidable, their values cannot be known with abso-
lute certainty. Moreover, additional variation in the observations is due
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to the pivotal role of biological variability in the microbial response. In
the context of microbial food safety, variability includes inherent
sources of variation (e.g. differences in the response of single cells or in
the composition of the food media). It is, thus, different to uncertainty,
which encompasses those sources of variation that are not considered in
the system (e.g. measurement errors or model misspecifications).
Therefore, whereas uncertainty can be reduced by gathering more ex-
perimental data of higher quality, variability is part of the process and
cannot be reduced simply by more and better experimentation (Nauta,
2000; Thompson, 2002). Although conceptually there is a clear se-
paration between variability and uncertainty, the quantification of
these terms and the incorporation in predictions is a complex problem
from the point of view of experimental design and statistical analysis.
Consequently, they are not considered in many case studies in food
science, where they are poorly quantified and/or have little impact in
the outcome. There are other applications, such as Quantitative Mi-
crobial Risk Assessment (QMRA), where variability and uncertainty can
be equally or more relevant than kinetic and process parameters, so
they must be incorporated in the analysis (den Besten, Aryani,
Metselaar, & Zwietering, 2017; EFSA Scientific Committee et al., 2018).

The study of biological variability and the quantification of its im-
pact in QMRA has gained interest during the last years (den Besten
et al., 2017; Koutsoumanis & Aspridou, 2017). This problem has been
tackled mainly from two different directions. Some studies have applied
a bottom-up approach, where probabilistic hypothesis (mechanistic or
empirical) are proposed to describe individual sources of variability
and/or uncertainty. Then, numerical simulations can be applied to
quantify the impact of the variability and uncertainty of the parameter
estimates in the variation of the variable of interest (usually the mi-
crobial count) (Aguirre, Pin, Rodriguez, & Garcia de Fernando, 2009;
Aspridou & Koutsoumanis, 2015; Garre, Egea, Esnoz, Palop, &
Fernandez, 2019; Koyama et al., 2019a). This approach, however, can
only reflect the impact of a limited number of uncertainty and/or
variability sources. Furthermore, the definition of realistic hypotheses
to describe biological variability (e.g. the distribution of D-values) can
be challenging.

Other studies have applied a top-down method to analyse variability
and uncertainty. This approach applies statistical methods to analyse
datasets of bacterial responses and tries to quantify the contribution of
different sources of variation (Aryani et al., 2015a; Aryani et al., 2015b;
Augustin et al., 2011; den Besten et al., 2017; Guillou & Membré, 2019;
Koyama et al., 2019b; Santos, Samapundo, Gülay, Van Impe, &
Sant’Ana, Devlieghere, 2018; Wells-Bennik et al., 2019). In this ap-
proach, experiments are repeated for the same condition (i.e. bacterial
strain, media…). Note that, because it is entirely data-driven, the ex-
perimental design defines what sources of variation can be quantified
and the precision of the estimates. Once the data has been gathered, the
contribution of each source of uncertainty or variability to the total
variance is usually analysed by fitting a primary model (growth or in-
activation) to each experiment, followed by an analysis of the variance
of the parameters of interest. An alternative to gathering experimental
data is the use of model parameters already available in the literature to
perform a meta-analysis (den Besten and Zwietering, 2012; Liu et al.,
2020). The main limitation of a top-down approach is that it requires a
significant amount of published experimental work, which rapidly in-
creases with the number of sources of variability/uncertainty con-
sidered. Moreover, most previous studies following this approach have
applied a post-hoc statistical analysis to quantify variability and/or
uncertainty, so errors in model fitting have an impact on the estimation
of the different sources of variance. These latter issues could be miti-
gated following a different modelling approach, where variation is in-
cluded in the first steps of modelling definition.

Multilevel models are an extension of classical regression where
coefficients can vary by group (McElreath, 2016). In the scientific lit-
erature, this type of model is also called mixed-effects model (especially
in frequentist statistics) or hierarchical models (Gelman & Hill, 2007).

We use the term “multilevel” in this article because it is consistently
used in scientific works applying a Bayesian approach. This metho-
dology is able to incorporate hypothesis explaining the causes for the
variation (variability and uncertainty) of the experimental observations
in the model definition. Multilevel models are applied in different sci-
entific fields and, in most cases, provide a better description of the
model variance (also variation at different levels), especially for data-
sets with more than one sampling per individual (technical replicates in
this context) or when there are imbalances in the dataset (McElreath,
2016). For these reasons, multilevel models can be of interest for kinetic
models relevant for predictive microbiology, where variability is in-
herent and can be very relevant (van Boekel, 2020). However, their
application in this field has been mostly used in meta-analyses or meta-
regression models, which aim to estimate model parameter (e.g. the D-
value) using published data from studies available in the literature
(Cadavez et al., 2017; Gonzales-Barron & Butler, 2011; Guillou &
Membré, 2019; Jaloustre, Guillier, Morelli, Noël, & Delignette-Muller,
2012; Liu et al., 2020; Rigaux, Denis, Albert, & Carlin, 2013). Meta-
regression models usually apply linear models to describe the re-
lationship between the variable of interest (e.g. the logarithm of the D-
value) and the explanatory variables (temperature, pH…), simplifying
parameter estimation of the multilevel model. However, the relation-
ship between the microbial count and the treatment time is rarely log-
linear (Peleg & Cole, 1998). As a result, inactivation models are not
linear, so the methods applied for fitting multilevel models linear in the
parameters are rarely applicable (Gelman, 2014).

Model fitting of a multilevel model can be done from a frequentist or
a Bayesian perspective. Although there are algorithms for model fitting
of multilevel models using a frequentist approach (e.g. the lme4 R
package (Bates, Mächler, Bolker, & Walker, 2015)), they are limited to
relatively simple models (without strong non-linearity and relatively
simple stochastic models for variability). More complex models require
the application of a Bayesian approach to model fitting. The Bayesian
approach differs from the frequentist approach already in the philo-
sophy of the fitting (Taper and Lele, 2004). The frequentist approach
assumes that there is a unique “true” value of the model parameters
(e.g. the D-value) and that the estimated value may differ from it be-
cause of the experimental error. In this context, confidence intervals
bound the true value of the model parameter based on asymptotic re-
sults (Eichelsbacher et al., 2013). On the other hand, the Bayesian ap-
proach does not consider the existence of a unique “true” value for the
model parameters. Instead, it considers that they follow an unknown
probability distribution, to be approximated based on data. Then, the
variable of interest is the conditional probability of the model para-
meter, θ, given the data available (P θ data( )). In a Bayesian context,
P θ data( ) is usually called posterior-distribution. According to Bayes
rule, (P θ data( ) is proportional to P data θ P θ( )· ( ), where P data θ( ) is
the likelihood of the data given the vector of parameters θ and P θ( ) is
the prior distribution for θ. Therefore, Bayesian parameter estimation
can be seen as a balance between prior belief and evidence from the
data. If there is very strong prior belief before making the analysis, it
can only be changed by extraordinary evidence from the data. If prior
belief is weak, the data will have a strong contribution to the condi-
tional probability of parameter θ.

In this article, we demonstrate how multilevel models can be used
for kinetic modelling in predictive microbiology accounting for dif-
ferent sources of variability and uncertainty. As proof of concept, we
use an already published dataset dealing with variability in the in-
activation of Listeria monocytogenes. The model defines contributors to
variation to describe the variability and uncertainty at different levels
(the ln D-value, the shape parameter, β, of the Weibull primary model
and log10 N) and uses a non-linear inactivation model. Therefore, it is
an extension with respect to previous models in the field that either
used simple error models (e.g. regression models) or were mixed-effect
models based on linear relationships.The basic hypotheses of the mul-
tilevel modelling approach are presented in Section 2, together with a
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detailed description of the model built for this case study. Note that,
although the article is limited to one case study, the modelling ap-
proach can be used to a broad range of phenomena to be quantified in
food science. In Section 3, the parameter estimates of the model are
compared against those obtained using an analogous single-level
model. This is followed in Section 4 by a discussion of the benefits and
limitations of the multilevel modelling approach against a “classical”
single-level approach. The article ends in Section 5, which presents the
conclusions drawn from this study.

2. Materials and methods

2.1. Case study analysed: Variability in heat resistance of Listeria
monocytogenes

The dataset on microbial inactivation of Listeria monocytogenes
published by Aryani et al. (2015a) has been used as a case study. The
goal of that research was to quantify the impact of different sources of
variability on the thermal resistance of L. monocytogenes cells. Three
different sources were described in their study: between-strain varia-
bility, within-strain variability (i.e. biological variability) and the var-
iation among experiments (the uncertainty related to experimental
variability). An experimental protocol was devised in their study to
quantify each variability source. Briefly, isothermal treatments were
performed for twenty different L. monocytogenes strains using a water
bath set at 55, 60 and 65 °C. Within-strain variability was analysed by
doing the experiment for each strain on three different days with freshly
prepared cultures. To quantify variation among experiments, each ex-
periment was performed twice in parallel using the same culture. Cul-
ture preparation and enumeration of survivors was done using standard
microbiological methods. For details on the methodology, the reader is
referred to the original article by Aryani et al. (2015a). The microbial
counts obtained in that study are plotted in Supp. Fig. 1.

2.2. Primary inactivation model

The inactivation model used by Aryani et al. (2015a) and initially
proposed by Metselaar, den Besten, Abee, Moezelaar, and Zwietering
(2013) was used in this study. This model is a reparameterization of the
Mafart isothermal inactivation model (Mafart, Couvert, Gaillard, &
Leguerinel, 2002), where it is considered that the microbial resistance
of individual cells to a thermal stress follows a Weibull probability
distribution. Consequently, the log-microbial count ( Nlog10 ) at time, t,
can be calculated as shown in Equation (1), where N0 is the initial
microbial count. The inactivation kinetics are described by the para-
meters β and DΔ. Parameter β introduces the non-linearity in the sur-
vivor curve ( <β 1 results in curves with upward concavity whereas

>β 1in downward concavity). The inactivation rate is described by DΔ,
which equals the decimal reduction time of an ideal log-linear in-
activation curve that intersects the survivor curve at Δ log-cycles of
inactivation. The approach followed here is slightly different to the one
applied by Aryani et al. (2015a), who estimated the time to reach six
log-reductions ( =t D6Â·6Δ Δ). We have decided to fit DΔ instead, to es-
timate the variability in the parameter. The parameter Δ was set to 6, as
in the study of Aryani et al. (2015a).

⎜ ⎟= − ⎛
⎝

⎞
⎠

N t N t
D T

log ( ) log Δ·
Δ· ( )

β

10 10 0
Δ (1)

2.3. Single-level modelling of microbial inactivation

For the construction of models according to a single-level approach,
the model parameters of the reparameterized Weibull model (Equation
(1)) were fitted independently to each biological replicate. The data set
consists of isothermal treatments at three different temperatures,

applied to three biological replicates of each of the 20 strains analysed.
Hence, 180 parameters (20 strains × 3 replicates × 3 parameters
[ N D βlog , ,0 Δ ]) were estimated per temperature. Note that this approach
differs slightly from the one applied by Aryani et al. (2015a), who fitted
the model individually for the two technical replicates (doubling the
number of curves). We have not disaggregated by technical replicate to
ease comparison with our multilevel model, where we assign a vector of
model parameters [D β,Δ ] for each biological replicate and include a
variable for the remaining variation (see Section 2.4).

The single-level model was fitted by non-linear regression with the
nls function included in the stats package of R (R Core Team, 2016)
using the Gauss-Newton algorithm (Bates & Watts, 2007). This algo-
rithm minimizes the sum squared error of the fittings with respect to the
data. As it is usual in quantitative microbiology, we have used the re-
siduals of the log-microbial count for model fitting (Eq. (1)). In non-
linear regression, this is due to the hypothesis that the error of the log-
microbial count follows a normal distribution with constant variance
σe

2. The expected value of the normal distribution is the one calculated
by the primary model (Eq. (1)). These hypotheses can be written as a
stochastic model as shown in Eq. (2), where the symbol “~” can be read
as “[…] follows a […] distribution” and Norm refers to the normal
distribution. Note that, because in the single-level approach the model
is fitted independently for each biological replicate, a parameter vector
([ N D βlog , ,0 Δ ]) is obtained by non-linear regression for each experi-
ment (strain/biological replicate/temperature), as well as the variance,
σe

2.

⎜ ⎟
⎛

⎝
⎜ − ⎛

⎝
⎞
⎠

⎞

⎠
⎟N Norm N t

D T
σlog ~ log Δ·

Δ· ( )
,

β

e10 10 0
Δ (2)

2.4. Hypotheses of multilevel models; description of the notation used in the
manuscript

The cornerstone of the multilevel modelling approach is the defi-
nition of an underlying statistical model to describe the variability of
some model parameters. Before defining the multilevel model used for
the case study, we will use a simpler example to describe the basic ideas
of this approach, as well as to describe the notation used throughout
this article. Let y be an observable quantity, such as the D-value in an
inactivation experiment (or any transformation, like its natural loga-
rithm in our example). We will write yi as the value of y observed for
observation i ( ∈ ⋯i n1, 2, , ). If we define μ as the expected value of y
for the complete data set, the difference between observation yi and μ
can be attributed to several sources of variation, as illustrated in Fig. 1.
In this example (and also in the case study), these will be limited to
three (Eq. (3)): between-strain variability, within-strain variability and
uncertainty.

= + + +

∈ ⋯ ∈ ⋯ ∈ ⋯

y μ ε ε ε

i n k n j n

;

1, 2, , ; 1, 2, , ; 1, 2, ,

i s i bio i i

b s

[ ] [ ]j j k,

(3)

The between-strain variability describes the fact that some strains
are more resistant to heat stresses than others. This variation is de-
scribed by the term εsj, which is a vector of length ns (the number of
strains). Each observation, i, corresponds unmistakable to one of the
strains included in the experimental design. Hence, εs i[ ]j can be read as
“of the ns elements of εsj, take the one corresponding to the strain used
for observation i”. Therefore, this term is constant for every observation
for the same strain and the differences between observations of the
same strain are explained by the remaining error terms.

In this context, the within-strain variability describes differences
between bacterial populations of the same strain. It is described by the
coefficient εbioj k, , which is a vector of length n n·s b (nb stands for the
number of biological replicates per strain). Similarly as for εs i[ ]j , this
parameter can be read as “of the n n·s b elements of εbioj k, , take the one
corresponding to the strain and the biological replicate for observation
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i”. These two terms describe the natural variation (variability) of the
observed variable, y (in this example, the natural logarithm of the D-
value). However, there are other factors that can cause variation in the
experimental observations (e.g. experimental uncertainty), so εsj
andεbioj k, are unlikely to describe the variation of observable, y. This
remaining variation is described by the term εi. Note that this term does
not include any bracket, indicating that it is not “grouped”; a different
value corresponds to each observation. Therefore, εis a vector of size n
(the total number of data points).

Several studies have divided the total variation of the observed
variables in a similar fashion, although they were not quantified using
multilevel models (Aryani, den Besten, Hazeleger, & Zwietering, 2015a;
Aryani, den Besten, Hazeleger, & Zwietering, 2015b; den Besten et al.,
2017). Instead, they applied a post-hoc variance analysis. The multi-
level modelling approach, on the other hand, defines a stochastic model
for the distribution of the different error terms (εs i[ ]j , εbio i[ ]j k, and εi).
Then, the model is fitted to the complete dataset considering these
probabilistic hypotheses.

2.5. A multilevel model for microbial inactivation including variability and
uncertainty

A multilevel model provides a framework to include in the model
stochastic hypotheses regarding the sources of variability. Therefore,
the hypotheses of the multilevel model are not limited to how the in-
activation rate varies (i.e. the Weibullian model in the single-level ap-
proach), but also include hypotheses regarding how different sources of
variation affect the variation of the model variables. As a basic block for
the multilevel model, we have used the primary inactivation model
proposed by Metselaar et al. (2013). Then, we have defined stochastic
hypotheses for the two sources of variability and the experimental
uncertainty considered relevant for this case study. We introduce the
first level of variability (the uncertainty, or experimental error) as a
normal distribution that describes the difference between the expected
microbial count for condition i (μi) at the specific time point ti and the
observed microbial count Nlog10 as a normal distribution with mean μi
and unknown standard deviation, σe. This hypothesis is equivalent to
the one commonly used in (non–)linear regression (Eq. (2)). Note that
this model differs slightly from the one used in the example in section
2.4, where the observed variable was the logarithm of the D-value (to

simplify the notation, the subindex Δ is omitted in the remaining of the
manuscript). These hypotheses are written in mathematical form in Eq.
(4), where a difference is made between stochastic (symbol “~”) and
deterministic (symbol “←”) relationships. In this equation, the para-
meters D and β have been ln-transformed to improve the convergence
of the Monte Carlo sampler (described in section 2.6) (Gelman, 2014).
Note that, because of the use of a Monte Carlo sampler, this transfor-
mation only improves the convergence of the algorithm and does not
influence inference. This equation uses the same notation as the one
used in the previous equations. The subindex i refers to a single ob-
servation, j refers to the strain and k to the biological replicate. When a
coefficient does not vary between replicates, the subindex i is written
within brackets (e.g. βj k i, [ ] varies between strain and biological replicate
and N j i0, [ ] only between strains).

N Norm μ σlog ~ ( , )e10

← − ⎛
⎝

⎞
⎠

μ N t
e

log Δ
Δi j i

i
D

e

10 0, [ ] ln j k i

βj k i

, [ ]

ln , [ ]

(4)

In the dataset analysed, there are three biological replicates per
strain. In the multilevel approach, we assign one D-value and one value
of β to each of the biological replicates. In this sense, it does not differ
from the single-level approach. However, whereas in the single-level
approach the model parameters calculated for different conditions are
independent, the multilevel approach enables the definition of sto-
chastic relationships (e.g. an error model; Fig. 1) between them.

The natural logarithm of the D-value ( Dln ) calculated for each
biological replicate can be written as a 3x20 matrix (3 biological re-
plicates and 20 strains), Ak j, , where component ak j, corresponds to the

Dln calculated for biological replicate k and strain j. In order to illus-
trate the assumptions behind the modelling of the within-strain varia-
bility, let us assume that the Dln for the first biological replicate for
every strain is known, i.e. the first row of Ak j, . If we repeated every
inactivation experiment, we would expect that the ln D-values calcu-
lated for a second biological replicate would be “similar” to the ones
obtained for the first replicate. For instance, the strain with the highest

Dln should be among the most resistant ones. This can be expressed as
the existence of a correlation (ρa,12) between rows a j1, and a j2, . The same
logic can be applied between any arbitrary pair of rows ofAk j, . The

Fig. 1. Illustration of the underlying concepts for the multilevel modelling approach using the D-value. Briefly, we assume the existence of a theoretical hyper-
population of Listeria strains with unknown mean and variance (Level 3; between-strain variability). Then, the expected D-value for each strain is a random draw from
this distribution. There is some variability between the biological replicates quantified by an unknown correlation between the log D-values observed for each
biological replicate (within-strain variability; Level 2). Finally, the difference between the observed ln D-value and the expected one is modelled using another
normal distribution with unknown variance (experimental uncertainty; Level 1). Note that this Figure refers to the example described in section 2.4. The model
actually used to analyse the data defines the experimental error (Level 1) in the microbial count, not the natural logarithm of the D-value (Eq. (4)).
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correlation =
⎛

⎝
⎜

⎞

⎠
⎟ρ ρ

ρ

ρ

ρ

ρ
ρ

1
1

1
a 12

13

12

23

13

23 is, then, a symmetric, square matrix with

the same number of rows as the matrix Ak j, (i.e. the number of biolo-
gical replicates).

The between-strain variability has been modelled considering that
the natural logarithm of the D-values of every Listeria strain follows a
normal distribution with mean (μa) and standard deviation (σa) (i.e.
between-strain variability), both unknown. Then, the D-values of the
observed strains are random draws from that distribution (Fig. 1). The
selection of a normal distribution can be justified using several argu-
ments. First, as an empirical argument, we inspected density plots of the
D-values estimated using the single-level model, identifying that the ln-
transformation resulted in a distribution resembling a normal dis-
tribution. As a more theoretical argument, the normal distribution has
maximum entropy among all real-valued distributions supported on
−∞ +∞( , ) with a specified variance. Therefore, from the point of view
of information theory, it is the modelling approach with the smallest
influence on the predicted posterior distributions.

The hypotheses defined to describe the within-strain and between-
strain variability can be modelled using a multivariate normal dis-
tribution (MVN), as shown in Eq. (5). Note that the correlation matrix

=
⎛

⎝
⎜

⎞

⎠
⎟ρ ρ

ρ

ρ

ρ

ρ
ρ

1
1

1
a 12

13

12

23

13

23 has three unknown parameters (ρ ρ ρ, ,12 13 23). A similar

modelling approach was followed for β, introducing the vector of
standard deviations σb and the correlation matrix ρb also with three
unknowns. Hence, the variances σa

2 and σb
2 are unknown parameters to

be estimated from the data that quantify the between-strain variability.
In a similar way, the correlation matrixes ρa and ρb are fitted to the data
to describe the within-strain variability.

⎛
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1
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2

3 (5)

The deterministic primary model (Eq. (4)) and the stochastic model
describing the variation in ln D and β (Eq. (5)) have been combined
using dummy variables. The value of Dln i and βln i in Eq. (4) can be
calculated as shown in Eq. (6), where xbk i[ ] are dummy variables that
take the value 1 if the sample corresponds to biological replicate k and 0
otherwise. The parameters aj k, and bj k, describe the values of ln D and ln
β estimated for biological replicate k, as defined in Eq. (5). For instance,
if observation i corresponds to biological replicate 1, variables xb2 and
xb3 both equal zero, and =x 1b1 . Hence, the first line of Eq. (6) reduces
to ←D aln i j,1.

← + +D a x a x a xln i j b i j b i j b i,1 1[ ] ,2 2[ ] ,3 3[ ]

← + +β b x b x b xln i j i b i j i b i i b i,1[ ] 1[ ] ,2[ ] 2[ ] 3,1[ ] 3[ ] (6)

2.6. Bayesian parameter estimation

Although, some multilevel models can be fitted using a frequentist
approach as a mixed-effects model (Gelman & Hill, 2007), a Bayesian
scheme has been used due to the model complexity. This approach
requires the definition of priors for every unknown model parameter.
Then, the posterior distribution of the model parameters is approxi-
mated balancing evidence (likelihood) and prior distribution. For every
standard deviation, an exponential prior with expected value =λ 1 has
been used. We have chosen a value larger than expected based on
available experimental data to ease the convergence of the Monte Carlo
sampler (McElreath, 2016). The analysis was repeated using different
values for λ and also a uniform prior, without observing any impact on

the parameter estimates (results not shown). The mean of the multi-
variate normal prior for the logarithm of the D-value was selected based
on the scatter plot in Supp. Fig. 1 and set to 2 ln-min (7.4 min) for the
data at 55 °C, −1 ln-min (0.37 min) at 60 °C and −4 ln-min (1.1 s) at
65 °C and to 0 for the logarithm of β for every temperature (i.e. =β 1).
For the correlation matrixes, an LKJ prior (the name of the distribution
is an acronym for the authors of the papers where it was first defined
(Lewandowski, Kurowicka, & Joe, 2009)) with parameter =τ 2 has
been selected. The family of LKJ distributions are an alternative to the
Inverse-Wishart distribution with better properties for multilevel
models. Note that covariance matrices must fulfil several requirements
(e.g. positive definite and symmetrical) that restrict the matrices that
can be a correlation matrix, so generating valid priors for them is not a
trivial problem. A complete discussion of this family of distributions is
out of the scope of this article, so we refer the interested reader to the
original article by Lewandowski et al. (2009). We have repeated the
analysis for different parameters for the prior distributions (within a
reasonable range), without observing a significant impact on the re-
sults.

The parameters of the multilevel model have been estimated using
Stan (Carpenter et al., 2017), through the interface provided in the
rethinking R package (McElreath, 2016). Stan is a programming lan-
guage specially developed for statistical inference. For model fitting, it
uses the no-U-turn sampler (NUTS), a type of Hamiltonian Monte Carlo
(HMC) sampler (Hoffman & Gelman, 2011). This sampling scheme that
is usually more efficient than the one used by Metropolis or Gibbs
samplers (Duane, Kennedy, Pendleton, & Roweth, 1987).

The convergence of the Markov chain was assessed according to
typical guidelines (Brooks, 2011; McElreath, 2016). Trace and pair
plots were visually inspected to ensure appropriate mixing and con-
vergence of the chain. Furthermore, the number of iterations was in-
creased until the parameter R was lower than 1.1, following usual
guidelines for Bayesian modelling (McElreath, 2016). Accordingly,
4000 iterations after 1000 warmup iterations were required to fulfil
these requirements.

Note that the model has been constructed with a similar scope as the
study of Aryani et al. (2015a). Different multilevel models could be
defined to analyse the same dataset. The R code implemented to define,
fit and post-process the models is openly available in the GitHub page of
one of the co-authors (https://github.com/albgarre/multilevel_
inactivation).

2.7. Modelling of the initial microbial count

Regarding the initial microbial count, Nlog10 0, two competing hy-
pothesis can be made, both of them reasonable from a biological point
of view. On the one hand, considering that the method to prepare the
strains is the same for every experiment, it seems reasonable that the
initial count of the 20 strains is the same in every experiment. On the
other hand, due to between-strain variability, it is possible that the
procedure resulted in insignificant differences in the initial count
compared to the experimental error (σe). Consequently, both models
have been constructed and fitted to the data. Then, their goodness of fit
has been compared as described in section 2.8 below. This exercise il-
lustrates the possibility to compare different modelling approaches
using multilevel models.

The first modelling approach does not consider strain variability in
the initial microbial count, assuming that it is the same for all strains
( Nlog10 0). Hence, in this model, Nlog10 0 is a scalar (i.e. a vector of length
one). A normal prior with mean eight and standard deviation one has
been used as shown in Eq. (7). A relatively large value for the standard
deviation has been chosen to reduce the impact of the prior distribution
on the posterior and to improve the convergence of the HMC sampler.

N Normlog ~ (8, 1)10 0 (7)

The second modelling approach considers that the initial count is
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the same for every experiment of each individual strain; i.e. there is
between-strain variability, but no within-strain variability. Therefore,
the parameter Nlog s i10 0, [ ] is a vector of length ns (20 in the case study).
We have hypothesized that each element of this vector is a random
draw from a normal distribution with unknown mean and variance (Eq.
(8)). For the prior distribution, we have used a normal prior with mean
8 log CFU/ml (taken by visually inspecting Supp. Fig. 1) and unknown
standard deviation σ Nlog 0, for which an exponential prior with expected
value one (Exponential (1)) has been used.

N Norm σlog ~ (8, )s logN10 0, 0

σ Exponential~ (1)Nlog 0 (8)

2.8. Model comparison

The Akaike Information Criterion (Akaike, 1974) is commonly used
for model selection and comparison. However, several hypotheses that
lead to the definition of the AIC are violated for multilevel Bayesian
models, so the use of this index should be avoided in this context
(Gelman, Hwang, & Vehtari, 2014). Consequently, models were com-
pared according to the Widely Applicable Information Criterion
(WAIC). This index, which has a similar interpretation as the Akaike
Information Criterion (models with lower WAIC are favoured), is de-
fined as = − −WAIC lppd pWAIC2( ). The term lppd is the log-pointwise
predictive density (with a similar interpretation to the log-likelihood).
The coefficient pWAIC is the effective number of parameters. This
parameter is introduced because for non-linear models the number of
degrees of freedom should not be calculated as n-p, where n is the
number of data points and p the number of model parameters. A typical
example of this is lasso regression (James et al., 2013). For further
details regarding the calculation of these indexes, please see the article
by Gelman et al. (2014).

2.9. Analysis of the posterior distributions and calculation of predictions

The HMC algorithm provides samples of the posterior distributions
of the model parameters conditional to the data. In the case studied,
(non-linear) operations on the posterior distributions are required for
making predictions. Similar transformations are also required for
comparison with the parameters estimated using the single-level ap-
proach (the D-value was ln-transformed in the multilevel, but not on the
single-level approach). In the frequentist approach, the calculation of
standard errors for the model parameters after the application of non-
linear transformations can be quite complex. That is not the case for the
HMC algorithm, where a (non-)linear transformations of the samples
from the posterior distribution follow the distribution of the trans-
formed variable (Gamerman & Lopes, 2006). This means that, for in-
stance, to calculate the standard deviation of the logarithm of a para-
meter, we can calculate the logarithm of every element of the sample.
Then, the standard deviation of the transformed values equals the one
of the logarithm of the random variable. This has been applied to
compare the D-values and βs estimated using the multilevel approach
against those estimated using the single-level approach. Then, credible
intervals have been calculated using the appropriate quantiles of the
(transformed) random samples.

A similar approach can be applied to predict the microbial count
considering different levels of variability. According to Eq. (4), Nlog10
follows a normal distribution with expected value μ and variance σe

2,
both random variables estimated from the data. This error term (esti-
mated from the data) describes the variation in this variable that is not
explained by the primary model and the sources of variability con-
sidered in upper levels of the model (within-strain and between-strain
variability). The variation due to these sources of variability is reflected
in the posterior distribution of μ, which is a non-linear combination
(the Weibull model in Eq. (4)) of the posterior distributions of the

matrices with elements aj k, and bj k, (Eq. (6)) considering the link
function (Eq. (6)). The HMC algorithm provides a sample of the ele-
ments aj k, and bj k, that can be used to obtain a vector of values that
simulates the posterior distribution of μ. This vector includes the con-
tribution of the within-strain and between-strain variabilities. This
vector of values, together with the estimates of σe (uncertainty), define a
normal distribution that can be used to predict the microbial count
accounting for the three sources of variation. Because the parameter σe
only accounts for uncertainty, the posterior of the expected value of

Nlog10 , μ, can be used to predict the microbial count omitting the
variation due to the uncertainty. This is equivalent to setting =σ 0e .
Furthermore, simulations can be made for a particular strain, S, (dis-
regarding between-strain variability) by taking only the elements aS k,
and bS k, corresponding to that strain.

3. Results

3.1. Comparison of model hypotheses regarding the initial microbial count

The mixed-effects model was fitted independently for the data ob-
tained at each treatment temperature (55, 60 and 65 °C). The fitting
was performed twice, once using random initial counts (N0 varies be-
tween strains) and using fixed initial count (N0 is constant) as described
in the materials and methods section. The complete table of parameter
estimates is provided as supplementary material. Supp. Table 1 reports
the values of the WAIC calculated for each model and the pWAIC.
Statistical indices used to evaluate the quality of the fit are also random
variables, which implies that they have an associated uncertainty
(Murdoch, Tsai, & Adcock, 2008). This includes indexes based on in-
formation theory, such as the AIC or the WAIC. However, for most of
these indexes the calculation of their uncertainty has high complexity,
requiring the application of computationally expensive resampling
techniques. The WAIC has the advantage with respect to other indexes
that it is calculated based on the posterior distribution of the likelihood
of the observations, enabling the estimation of a standard error for its
estimate. This value can be used to make inference between WAIC
calculated for different conditions under the assumption that the WAIC
follows a normal distribution. Column se(WAIC) of Supp. Table 1 re-
ports the standard error of the WAIC estimated for each model. The
results show that the hypothesis used to model the distribution of N0
had little impact on the WAIC for the three temperatures tested. For the
data at 55 °C the WAIC was lower for the model with random initial
count, whereas the opposite happened for the other two temperatures.
Nevertheless, in every case analysed, the differences between the
WAICs are lower than their standard errors. Consequently, there is high
uncertainty on what model has better predictive capabilities. In this
case, the only hypothesis that varies between models is the variability
of the initial count. The posterior distributions of the remaining model
parameters (variances, D-values and βs) obtained for each modelling
approach were compared, without observing major differences (data
not shown). Moreover, very low values have been estimated for the
variability of the microbial log count (σ Nlog 0; defined in Eq. (8)) (mean
of the posterior of 0.19 log CFU/ml at 55 °C, 0.06 at 60 °C and 0.10 at
65 °C). Hence, for the case studied, the variability of the initial count
has little practical impact on the results. For the sake of simplicity, the
initial count will be considered constant among all the strains for the
remaining of the analysis (but having an uncertainty).

Another point worth mentioning is related to the number of effec-
tive parameters of each model. The single-level modelling approach fits
one D-value, one β and one initial count for each biological replicate.
This results in 180 model parameters in total (20 strains × 3 re-
plicates × 3 parameters). Then, for making post-hoc inference on the
model, we would calculate the number of degrees of freedom of the
model as n – 180, where n is the number of observations (or some
variation thereof depending on the type of inference); i.e. 789, 594 and
694 degrees of freedom for the models fitted at 55, 60 and 65 °C,
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respectively. In the multilevel model we have defined additional model
parameters to describe variability. That is, parameter σa, for the be-
tween-strain variability of ln D; σb, for the between-strain variability of
ln β; ρa, for the within-strain variability of ln D; and ρb for the within-
strain variability of ln β. Then, the uncertainty is described by σe, that
describes the experimental error (error in log N). Moreover, we esti-
mate the uncertainty associated with these model parameters. Hence, in
the multilevel model we have used more model parameters than in the
single-level approach. However, the number of degrees of freedom is
not given by n minus the number of parameters. The multilevel model
introduces a constraint between the parameter estimates (namely, the
multi-variate normal distribution for the parameters) that may increase
the degrees of freedom of the model (McElreath, 2016). For instance,
the D-value estimated for some experiment is expected to be “similar”
to the one obtained for the other biological replicates of the same strain
(Fig. 1). As a result, the models have 115.5, 107.3 and 109.3 effective
parameters at 55, 60 and 65 °C, respectively (Supp. Table 1). This re-
sults in 853.5, 666.7 and 764.7 degrees of freedom, respectively; i.e. the
multilevel models has more degrees of freedom than the single level
model (789, 594, 694) despite having more parameters. Consequently,
it is important that for this type of models the calculation of degrees of
freedom is based on effective number of parameters, not their raw
count. This fact emphasizes that model comparison should be based on
appropriate statistical indexes. For multilevel (Bayesian) models, model
comparison should be performed only using statistical indexes able to
estimate the number of effective parameters (e.g. the WAIC).

3.2. Comparison of parameter estimates between the single-level and
multilevel models

The values and standard deviations of the posteriors of DΔ and β are
provided as supplementary material to this article. As expected, the D-
value averaged over all the strains tested was strongly affected by the
temperature of the treatment (15.4 min at 55 °C, 0.17 min at 60 °C,
0.021 min at 65 °C; Supp. Table 2). The standard deviation of the log D-
values at the between-strain level (0.13 log min at 55 °C, 0.21 log min at
60 °C, 0.21 log min at 65 °C) was much higher than the average stan-
dard deviation at the within-strain level (0.02 log min at 55 °C, 0.04 log
min at 60 °C, 0.04 log min at 65 °C; Supp. Table 2). The between-strain
variability is also much higher than the uncertainty in the estimation of
the D-value (average standard deviation of 0.01 log min at 55 °C, 0.02
log min at 60 °C, 0.02 log min at 65 °C; Supp. Table 2). Regarding β, at
55 °C almost log-linear curves are observed (averaged β of 1.02; Supp.
Table 3). Increasing the treatment temperature results in a reduction of
β (0.85 at 60 °C, 0.78 at 65 °C; Supp. Table 3), indicating the presence
of tail effects. As well as for the D-value, between-strain variability is
the most important contributor to the total variation of β (0.18 at 55 °C,
0.28 at 60 °C, 0.18 at 65 °C; Supp. Table 3), higher than the one of
within-strain variability (0.01 at 55 °C, 0.01 at 60 °C, 0.01 at 65 °C;
Supp. Table 3) and uncertainty (0.07 at 55 °C, 0.08 at 60 °C, 0.08 at
65 °C; Supp. Table 3). These results agree with those reported by Aryani
et al. (2015a) for the same dataset. Therefore, between-strain varia-
bility is the most important contributor to variation for the response of
Listeria monocytogenes to thermal treatments. As an illustration of the
between strain variability, strain LO28 has the lowest D-value at 65 °C
(0.60 s), more than six times smaller than the one of the most resistant
strain (L6, 3.89 s). Therefore, according to the model predictions, a
treatment at 65 °C able to reduce the microbial count of a population of
strain LO28 in 6 log-cycles, would not even cause a ten-fold reduction
of a population of strain L6. This result shows the importance of
quantifying the impact of different sources of variability and un-
certainty and to include them in risk assessments (den Besten, Wells-
Bennik, & Zwietering, 2018).

Figs. 2 and 3 compare the model parameters estimated for each
biological replicate using the multilevel and single-level models, as well
as their associated uncertainties. Note that both modelling approaches

make different hypotheses regarding the distribution of the model
parameters. Consequently, confidence intervals/regions are depicted at
the 68% confidence level (± 1 standard error for the single-level) to
show the central part of the distribution, avoiding the complexity in-
troduced by differences in the tail of the distributions. The results of
both approaches are comparable and the overall conclusions of the
analysis do not vary between methods. For instance, strain L6 is the
most heat resistant at the temperatures tested and between-strain
variability is higher than within-strain. Also, both models estimate the
value of β with more uncertainty than the value of DΔ. However, there
are significant differences in the parameter estimated for some of the
biological replicates. The most distinctive feature of the multilevel
model is that extreme values are rarer than for the single-level model.
This effect can be readily visualized in Fig. 4, where the solid points
illustrate the parameters estimated by the single-level model and the tip
of the arrow the estimates of the multilevel model. Hence, the longer
the arrow, the bigger the difference between both estimates. Most of the
arrows point towards the mean of all the observations (confidence el-
lipsoids illustrated with dashed lines). This effect is a well-known, po-
sitive feature of Bayesian models with regularizing priors, usually de-
nominated “shrinkage” (McElreath, 2016). Due to the multilevel nature
of the model, shrinkage also takes place at a within-strain level; para-
meter estimates for each biological repetition are “shrunk” towards the
mean of the three repetitions. This “secondary” shrinkage can be vi-
sualized, for instance, for the results obtained for strain L6 at 65 °C
(highlighted using a red square with dotted lines). The amount of
shrinkage depends on several factors, including the relative uncertainty
of the parameter estimate with respect to the other biological replicates,
its relative uncertainty with respect to the other strains, the magnitude
of the differences between the parameter estimates, and the impact that
changes in the parameter values have on the likelihood of the ob-
servations. For a linear model, the shrinkage can be calculated (under
some simplifying assumptions) as a weighted average according to the
standard deviations of the parameter estimates and the number of data
points (Gelman & Hill, 2007). However, the calculations for non-linear
models (such as the one used for this case study) are more complex and
can rarely be calculated analytically. Nevertheless, the lack of an ana-
lytical solution for more complex model does not affect the basis con-
cepts that define the direction and the magnitude of the shrinkage.

In order to compare in further detail the single-level and multilevel
approaches, we have analysed the results obtained for strain FBR12 at
55 °C, because of the large differences between the parameter estimates
obtained using either approach. The single-level model estimates for
parameter DΔ (at 55 °C), 12.5, 13.0 and 13.5 min for each biological
replicate, and 0.95, 0.87 and 2.12 for parameter β. The multilevel
model, on the other hand, estimates parameter values with lower var-
iation. For parameter DΔ it estimates 11.7, 11.9 and 12.1 min for each
biological replicate, whereas 0.83, 0.80 and 1.22 are estimated for
parameter β. Therefore, the one-level model predicts that the survivor
curve has a slight upwards curvature for two of the biological replicates
and a strong downwards curvature for the other one. Such a significant
qualitative change in the microbial response is hard to justify from a
biological point of view, as the curvature of the survivor curve is
usually explained by cell-to-cell variations in the stress resistance
(Mafart et al., 2002). The differences between models are further illu-
strated in Fig. 5, where the survivor curves fitted by the two models
(Fig. 5A for the one-level, 5B for the multilevel) are depicted together
with the microbial counts. The plot shows that for one of the biological
replicates (the one depicted with solid squares), a higher count was
observed at 30 min than at 25 min. An increase in the microbial count
during an inactivation treatment like the one shown in Fig. 5 is likely
associated with an experimental error. The single-level model only uses
the information available for one biological replicate and finds the
curve that better fits the data. Consequently, it is unable to consider the
data about the other repetitions and fits a curve with a strong down-
wards curvature, very different to the one fitted for the other two
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repetitions. On the other hand, the multilevel model uses all the data
available to fit the model (the one corresponding to other biological
replicates of the same strain, as well as the data for other strains). The
model, then, “distrusts” extreme values, such as the value of β that
differs from the one of the other two replicates by one unit. It in-
troduces a correction in the model parameters, pushing them towards
the mean (Fig. 4). In the case analysed here, two regularizing hy-
potheses have been defined, one for the between-strain variability and
another one for the within-strain variability. The parameters are, thus,
“shrunk” towards the mean of the three biological replicates and the
grand mean of all the strains with a magnitude that depends on the
uncertainty of the parameter estimates. Therefore, the multilevel
modelling approach mitigates the risk of generating spurious parameter
estimates due to model overfitting.

3.3. Quantification of variability and uncertainty: Impact on predictions

Single-level models associate a standard deviation to the model
parameters that quantifies their total uncertainty. However, in order to
separate the different sources of variation (biological variability, ex-
perimental uncertainty…), post-hoc statistical methods are required
(Aryani et al., 2015a; den Besten et al., 2017). The multilevel model
developed in this study explicitly models the between-strains and
within-strain variability of the stress response, defining specific para-
meters for their variance (standard errors and correlations; Eqs (4)–(8)).
The estimates of these parameters (or the distributions they define) can

be used to quantify and compare different sources of variability. For
instance, the parameter σe explains variations between the observed
microbial count and the one predicted that cannot be explained based
on the within-strain and between-strain variability (Eq. (4)). It includes
errors in the sampling (Poisson/Binomial error due to dilution and
plating), errors taking the time points and other sources of experimental
error, as well as model misspecifications. In our experiments, we ob-
served that the estimate of this error depended on the treatment tem-
perature. At 55 °C, it took a value of 0.45 ± 0.01 log CFU/ml, slightly
lower than the one observed at 60 °C (0.59 ± 0.02 log CFU/ml) and at
65 °C (0.61 ± 0.02 log CFU/ml). This can be justified because at
higher temperatures inactivation is faster and errors in the sampling
time (and other experimental setting) have a higher influence on the
observed microbial count. Nevertheless, this conclusion is based on a
single dataset (the one used in this investigation) and should be verified
using additional data.

In the multilevel model, we have explicitly defined a stochastic
model to describe the within-strain and between-strain variability.
Their contribution to the total variation is quantified by the parameters
σ σ ρ, ,a b a and ρb, as described in Eq. (5). However, it is hard to draw any
conclusion by simply analysing the values of these parameters (pos-
terior means: = = =σ σ ρ0.34lnmin, 0.26, 0.97a b a , =ρ 0.67b at 55 °C,

= = =σ σ ρ0.77lnmin, 0.43, 0.97a b a , =ρ 0.76b at 60 °C,
= = =σ σ ρ0.49lnmin, 0.43, 0.90a b a , =ρ 0.70b at 65 °C). Instead, Eqs.

(5) and (6) define a probability distribution for the D-value and β. In
most cases, an analysis of these distributions is more insightful than an

Fig. 2. Comparison between the values of DΔ estimated using the single-level (blue, open circles) and multilevel (orange, closed circles) at three different tem-
peratures. The error bars (dashed for the multilevel, solid for the single-level) represent the standard error for the frequentist approach and 68% credible intervals for
the Bayesian approach. Each point correspond to a biological replicate (two technical replicates) as indicated by the different shades of orange/blue.

Fig. 3. Comparison between the values of β estimated using the single-level (blue, open circles) and multilevel (orange, closed circles) at three different tem-
peratures. The error bars (dashed for the multilevel, solid for the single-level)) represent the standard error for the frequentist approach and 68% credible intervals
for the Bayesian approach. The horizontal, dashed line marks the point where =β 1. Each point correspond to a biological replicate (two technical replicates) as
indicated by the different shades of orange/blue.
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analysis of the model parameters that generate them. Fig. 6A plots the
probability density function of the decimal logarithm of the D-value of
the hyper-population at 55 °C. The mode of these distributions re-
presents the expected value for each parameter, whereas its “width”
describe the within-strain variability. This distribution is drawn based
on the values of σa that have been estimated from the experimental
data. Hence, as every model parameter, σa cannot be known exactly and
has an uncertainty associated with its estimated value. As a result, the
probability density function has an uncertainty associated. It is shown
in Fig. 6A as a shaded area, which represents a credible interval (90%
confidence) for this probability density function. Note that the un-
certainty illustrated in this plot is the one associated with the estima-
tion of the D-value, so it is different to the experimental uncertainty
(σe). A similar approach has been followed to estimate the between-
strain variability in β, reported in Fig. 6B. It is evident from these two
plots that the uncertainty associated with β is higher than the one as-
sociated with the D-value. This is reasonable for the dataset analysed, as
the parameter β is estimated with higher uncertainty than the D-value
(Figs. 2 and 3).

The model definition in the single-level approach is only based on
hypotheses regarding the model variables (a kinetic model in the case
studied). The multilevel approach also includes hypotheses for the
variation (error model), enabling to distinguish between different
sources of variability. Hence, it provides a good framework to make
predictions including different sources of variation. This is especially
interesting for QMRA, where variability is inherent to the system

studied (e.g. variability in stress response) and has to be carefully ac-
counted for in the analysis (Nauta, 2000). Fig. 6C depicts prediction
bands (90% confidence) for the inactivation of three specific strains at
55 °C. For each of the strains, these intervals are based on Monte Carlo
simulations calculated using the posterior distribution of the D-value
and β corresponding to the selected strains only (as described in Section
2.9). Hence, these predictions include the contribution of the within-
strain variability (quantified by ρa and ρb). These predictions also in-
clude the uncertainty associated with ρa and ρb. Therefore, the pre-
dictions include the uncertainty associated with the within-strain
variability, but not the experimental error. The reason for that is that
the focus of QMRA is generally the response of the microbial population
to the processing or storage conditions. In that case, the uncertainty
associated with the estimates of the D-value and β are of interest, but
not the uncertainty associated with the experimental error that largely
depends on the laboratory conditions. The multilevel model structure
proposed in this article defines a variance term for the error of the
microbial count (σe) different from the one used to describe the varia-
tion of the kinetic parameters of the model. Therefore, it is relatively
simple to make predictions of the microbial count considering different
sources of variability by selecting what variance components to include
in the Monte Carlo simulations.

The posterior distributions of the model parameters of the hyper-
population can also be used to construct prediction bands. Fig. 6D plots
the prediction interval (90% confidence) for the response of the theo-
retical hyper-population to a treatment at 55 °C. Note that this figure

Fig. 4. Shrinkage of the parameter values due to the application of a Bayesian model with regularizing priors at three different temperatures. The solid dots represent
the estimates of the single-level model and the tip of the arrows the estimates of the Bayesian model. The dashed line depict the (multi-variate normal) confidence
ellipsoids according to the single-level model with 50, 90 and 99% confidence level. The position of the parameters for strain L6 are highlighted using a red square
with dotted lines.

Fig. 5. Comparison of the survivor curves
fitted for strain FBR12 at 55 °C using the
single-level (A) and multilevel (B) modelling
approaches. The symbols (dots, triangles and
squares) indicate the observations of three
different biological replicates (different
shapes) and the dashed lines the fitted curves
for each biological replicate.
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reflects the between-strain variability and its uncertainty, but not the
within-strain variability or the experimental uncertainty. A comparison
between Fig. 6C and 6D clearly illustrates that predictions associated
with a single strain have less uncertainty than those associated with the
theoretical hyper-population. This is a reflection of the fact that, for this
case, between-strain variability is much higher than within-strain
variability, as already reported by Aryani et al. (2015a). The higher
uncertainty affects both the inactivation rate and the curvature of the
survivor curve. Due to the differences in the curvature direction of the
strains analysed, the prediction for the theoretical hyper-population
does not have a clear curvature direction. However, when the simula-
tions are restricted to a single strain, the uncertainty on the curvature
direction is largely reduced. Based on the data, it can be ensured that
strain F2365 has a downwards curvature and strain FBR1 an upwards
curvature. Regarding strain FBR12, there is some uncertainty regarding
its curvature direction (as already discussed in Fig. 5). Nevertheless, for
the dataset analysed, differences in the D-value of the strains have more
practical relevance than slight, though significant, differences in β.
Note that a correlation exists between the value of β and DΔ that can be
attributed to parameter identifiability issues (Dolan & Mishra, 2013) or
biological effects (Baranyi, Buss da Silva, & Ellouze, 2017). The para-
meter values used in the Monte Carlo simulations based on the multi-
level model are drawn from the posterior distribution of the model
parameters, which implicitly consider that correlation.

4. Discussion

Strain variability and population heterogeneities can have a

significant impact on risk assessment (den Besten et al., 2017). As il-
lustrated in Supp. Fig. 1, the effectiveness of a treatment can largely
vary depending on the bacterial strain. For instance, there is a differ-
ence of approximately 6 log-reductions after 1 min of treatment at 60 °C
between the most sensitive and the most resistant Listeria strains in-
cluded in the case study. Because of that, variance is not simply a
nuisance parameter in predictive microbiology. It is a parameter asso-
ciated with a biological characteristic of the microorganism (varia-
bility) that can be as relevant as other parameters, such as growth or
inactivation rates, for the case studied. Multilevel models are a good
framework for the analysis of variation, because they incorporate
variability and uncertainty in the first steps of the modelling process. In
this approach, model hypotheses are not limited to model kinetics; an
error model has to be defined to describe variability and uncertainty
using statistical hypothesis that can later be contested by other experts
or compared using model selection techniques. Besides, multilevel
models can define parameters (e.g. correlations and standard devia-
tions) to quantify the impact of each source of variation, enabling a
quantification and comparison of different sources of variation (varia-
bility and uncertainty). Conversely, single-level models fit model
parameter independently for each one of the different repetitions
(biological replicates or at any relevant level). Hence, the contribution
of each source of variation can only be done post-hoc, by an analysis of
the variance of the parameter estimates. It can, then, be concluded that
multilevel models are more flexible than single-level models and enable
the application of some hypothesis that cannot be easily incorporated
using other approaches. One clear example is the hypothesis that the
technical error (σe in this work) should be the same in every experiment.

Fig. 6. Illustration of the application of a multilevel Bayesian modelling approach to include variability in model predictions and quantify different sources of
variation. Distribution of the decimal logarithm of the D-value (A) and β (B) for the theoretical hyper-population. Shaded area represents the uncertainty in strain
variability (90% confidence interval. (C) Prediction intervals (90% confidence) considering within-strain variability, but not experimental uncertainty for three
different strains (FBR12, red; FBR14, green; F2365, blue). (D) Prediction interval (90% confidence) of the inactivation of the hyper-population at 55 °C where the
only source of variation considered is the between-strain variability.
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Another example is the initial microbial count. As we have illustrated in
this article, multilevel models can be used to assess the need for dif-
ferent hypotheses regarding these parameters. This added flexibility is
especially interesting for analyses where the variance is a variable of
interest, such as studies aiming to quantify the different sources of
variability and uncertainty (den Besten et al., 2017; Koutsoumanis &
Aspridou, 2017).

Besides their advantages for describing variability, multilevel
models can increase the robustness of the model from a statistical point
of view, reducing overfitting. Current microbiological procedures are
affected by experimental error (Duarte, Stockmarr, & Nauta, 2015;
Garre et al., 2019; Jarvis, 2008; Jongenburger, Reij, Boer, Gorris, &
Zwietering, 2010) that, together with other sources of uncertainty, can
introduce a bias in the estimated values of kinetic parameters. In some
situations, such as the one illustrated in Fig. 5, the existence of an ex-
perimental outlier can be easily spotted. However, in many situations
the impact of the experimental outlier in the results is more subtle,
being hard to distinguish from a biological effect (Garcés-Vega & Marks,
2014; Garre et al., 2019). Although the uncertainty of the parameter
estimates can be minimized by the application of optimum sampling
schemes (Balsa-Canto, Alonso, & Banga, 2008; Garre, González-Tejedor,
Peñalver-Soto, Fernández, & Egea, 2018), they cannot completely
eliminate the risk of spurious parameter estimates due to an experi-
mental error. The multilevel (Bayesian) approach suggested in this ar-
ticle uses all the information available in the dataset to estimate each
model parameter. As a result, the parameter estimates obtained for one
condition do not depend only on the data obtained for that condition;
they are influenced by their uncertainty, the values estimated for other
conditions and their uncertainties, and the total variation of the dataset.
Therefore, multilevel models put some “distrust” in extreme values,
which results in a “shrinkage” towards the mean (McElreath, 2016).
This philosophy can be summarized via the statement popularized by
Carl Sagan that “extraordinary claims require extraordinary evidence”
(Gillispie, Fox, & Grattan-Guiness, 1997). The multilevel Bayesian ap-
proach will certainly not fix every issue related to experimental error.
However, it provides a tool to avoid overfitting based on solid, statis-
tical arguments.

As shown in this research, the multilevel model developed allows
the analyst to select what sources of uncertainty and/or variability are
included in model predictions (Fig. 6). It also defines probability dis-
tributions to describe the thermal resistance of the theoretical hyper-
population of microbial strains, which can be used for making predic-
tions considering the between-strain variability. However, it does not
consider variability in prevalence. It is to be explored whether stress
resistance is an influencing factor for the prevalence of a particular
strain in the environment. The multilevel approach presented here is
able to estimate prediction bands for each strain individually, ac-
counting for the within-strain variability. These simulations could po-
tentially be weighted, accounting for differences in prevalence between
strains. This analysis is, nonetheless, out of the scope of this article and
is left for future works.

On the other hand, the multilevel model has several disadvantages
with respect to a single-level modelling approach. First of all, multilevel
models are more complex than single-level models. This added com-
plexity involves every step of the modelling process: model definition,
implementation, post-processing and communication. The definition of
a multilevel model requires that every underlying model assumption
must be explicitly formulated as a stochastic or deterministic relation-
ship. The complexity of this step should not be overlooked; myriad
stochastic models can be defined for complex case studies (Gelman &
Hill, 2007). Therefore, the application of model comparison and se-
lection techniques may be required to select the best modelling ap-
proach. Due to the complex non-linear relationships between model
parameters, model comparison can also be challenging in multilevel
models. Hence, it is the task of the analyst to assess whether this in-
creased complexity is required to solve the problem or a more simple

model is enough, in other words, “simple is not stupid and complex is
not always more correct” (Zwietering, 2009). Once the equation de-
scribing the stochastic and deterministic relationships of the models
have been defined, the model must be fitted to the data. Multilevel
models can be fitted applying a frequentist approach (usually called
mixed-effects) or a Bayesian approach. The frequentist approach is
more simple than the Bayesian one, but it is limited to models of low
complexity (Gelman & Hill, 2007). Although Bayesian model fitting, is
based in the “simple” Bayes rule, the conditional probability distribu-
tions can rarely be integrated analytically in most complex problems.
This requires the application of so-called Approximate Bayesian Com-
putations (ABC), which apply numerical integration (usually, some sort
of Monte Carlo integration) to estimate the posterior distributions of the
model parameters (Sunnåker et al., 2013). Although several methods
are already available for this, most of them require advanced pro-
gramming skills for their application. As an example, the one used in
this study (Stan) is a programming language on itself. Furthermore, the
results of an ABC are a sample of the posterior-distribution of the model
parameters, whose analysis and interpretation is different to the output
of frequentist analysis. Consequently, analysts able to, first, assess the
validity of an ABC and, then, interpret the posterior distributions are
required to apply this kind of models. Otherwise, the application of a
Bayesian approach for parameter estimation makes more harm than
good.

Last but not least, the results of the analysis must be communicated
in a comprehensible way to other scientists who may not be experts in
statistical modelling. As illustrated in this article, multilevel models can
be of great interest for quantitative microbial risk assessment; a very
sensitive topic where communication is an important step (ICF, Etienne,
Chirico, Gunabalasingham, Jarvis, 2018; Thompson, 2002). This mod-
elling approach applies advanced concepts (Bayesian statistics, multi-
level modelling…) that may not be easy to understand by, for instance,
managers who need to take discrete decisions (Zwietering, 2015). It is,
therefore, crucial to develop effective ways of communicating the re-
sults of the study comprehensible for scientists and non-scientist with
different backgrounds. It is, therefore, crucial the development effective
ways of communicating the results of the study comprehensible for
scientists and non-scientist with different backgrounds need to be de-
veloped.

5. Conclusions

This article has illustrated the construction of a multilevel model
accounting for different sources of variability and uncertainty in pre-
dictive microbiology. This model includes variation at different levels
(i.e. the D-value, the parameter β and log10 N) and is based on a non-
linear model. Therefore, it presents a novel approach for kinetic mod-
elling of microbial responses. This approach has several advantages
with respect to single-level models. Firstly, it is based on stochastic
hypotheses to describe different types of variation. Consequently, the
model parameter quantify each contributor to variation and one can
choose what sources of variation to include in model predictions.
Another advantage is related to the “distrust” in extreme values through
shrinkage that can mitigate the occurrence of spurious model para-
meters. On the other hand, multilevel models are harder to implement
(advanced programming languages), analyse (Markov chains and pos-
terior distributions) and communicate than single-level models. Hence,
they are unlikely to replace single-level models for every case study.
Nevertheless, considering current efforts towards quantifying varia-
bility and uncertainty of the microbial responses, multilevel models are
likely to gain popularity during the next years. Although this work has
been limited to a case study of microbial inactivation, this methodology
can potentially be applied to a broad range of problems in predictive
microbiology.

A. Garre, et al. Food Research International 137 (2020) 109374

11



CRediT authorship contribution statement

Alberto Garre: Conceptualization, Methodology, Software,
Visualization. Marcel H. Zwietering: Conceptualization, Visualization.
Heidy M.W. den Besten: Conceptualization, Visualization.

Acknowledgments

Alberto Garre was supported by a postdoctoral granted from the
Fundación Seneca (20900/PD/18) and by the European Union’s
Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie Individual Fellowship grant No 844423
(FANTASTICAL).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.foodres.2020.109374.

References

Aguirre, J. S., Pin, C., Rodriguez, M. R., & Garcia de Fernando, G. D. (2009). Analysis of
the variability in the number of viable bacteria after mild heat treatment of food.
Applied and Environmental Microbiology, 75, 6992–6997. https://doi.org/10.1128/
AEM.00452-09.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on
Automatic Control, 19, 716–723.

Aryani, D. C., den Besten, H. M. W., Hazeleger, W. C., & Zwietering, M. H. (2015a).
Quantifying variability on thermal resistance of Listeria monocytogenes. International
Journal of Food Microbiology, 193, 130–138. https://doi.org/10.1016/j.ijfoodmicro.
2014.10.021.

Aryani, D. C., den Besten, H. M. W., Hazeleger, W. C., & Zwietering, M. H. (2015b).
Quantifying strain variability in modeling growth of Listeria monocytogenes.
International Journal of Food Microbiology, 208, 19–29. https://doi.org/10.1016/j.
ijfoodmicro.2015.05.006.

Aspridou, Z., Koutsoumanis, K.P., 2015. Individual cell heterogeneity as variability source
in population dynamics of microbial inactivation. Food Microbiology, Special Issue
on Predictive modelling in food 45, Part B, 216–221. https://doi.org/10.1016/j.fm.
2014.04.008.

Augustin, J.-C., Bergis, H., Midelet-Bourdin, G., Cornu, M., Couvert, O., Denis, C., ... Stahl,
V. (2011). Design of challenge testing experiments to assess the variability of Listeria
monocytogenes growth in foods. Food Microbiology, Predictive Modeling in Foods, 28,
746–754. https://doi.org/10.1016/j.fm.2010.05.028.

Balsa-Canto, E., Alonso, A. A., & Banga, J. R. (2008). Computing optimal dynamic ex-
periments for model calibration in predictive microbiology. Journal of Food Process
Engineering, 31, 186–206. https://doi.org/10.1111/j.1745-4530.2007.00147.x.

Baranyi, J., Buss da Silva, N., & Ellouze, M. (2017). Rethinking tertiary models:
Relationships between growth parameters of Bacillus cereus strains. Frontiers in
Microbiology, 8, 1890. https://doi.org/10.3389/fmicb.2017.01890.

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models
using lme4. J. Stat. Soft. 67, pp.

Bates, D.M., Watts, D.G., 2007. Nonlinear regression analysis and its applications, 1
edition. ed. Wiley-Interscience, New York, NY.

Boekel, M.A.J.S. van, 2009. Kinetic modeling of reactions in foods, Food science and
technology. CRC Press, Boca Raton.

den Besten, H. M. W., & Zwietering, M. H. (2012). Meta-analysis for quantitative mi-
crobiological risk assessments and benchmarking data. Trends in Food Science and
Technology, 25(1), 34–39. https://doi.org/10.1016/j.tifs.2011.12.004.

Brooks, S. (2011). Handbook of Markov chain. Monte Carlo.
Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M.,

Brubaker, M., Guo, J., Li, P., Riddell, A., 2017. Stan: a probabilistic programming
language. Journal of Statistical Software 76, 1–32. https://doi.org/10.18637/jss.
v076.i01.

Cadavez, V. A. P., Rodrigues, V., & Gonzales-Barron, U. A. (2017). Microbiological Safety
of Goat Milk and Cheese: Evidences from a Meta-Analysis. In J. Simões, & C.
Gutiérrez (Vol. Eds.), Sustainable Goat Production in Adverse Environments: Vol. I, (pp.
379–390). Springer International Publishing. https://doi.org/10.1007/978-3-319-
71855-2_21.

den Besten, H. M. W., Aryani, D. C., Metselaar, K. I., & Zwietering, M. H. (2017).
Microbial variability in growth and heat resistance of a pathogen and a spoiler: All
variabilities are equal but some are more equal than others. International Journal of
Food Microbiology, 240, 24–31. https://doi.org/10.1016/j.ijfoodmicro.2016.04.025.

den Besten, H. M. W., Wells-Bennik, M. H. J., & Zwietering, M. H. (2018). Natural di-
versity in heat resistance of bacteria and bacterial spores: Impact on food safety and
quality. Annual Review of Food Science and Technology, 9, 383–410. https://doi.org/
10.1146/annurev-food-030117-012808.

Dolan, K. D., & Mishra, D. K. (2013). Parameter estimation in food science. Annual Review
of Food Science and Technology, 4, 401–422. https://doi.org/10.1146/annurev-food-
022811-101247.

Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987). Hybrid Monte Carlo.
Physics Letters B, 195, 216–222. https://doi.org/10.1016/0370-2693(87)91197-X.

Duarte, A. S. R., Stockmarr, A., & Nauta, M. J. (2015). Fitting a distribution to microbial
counts: Making sense of zeroes. International Journal of Food Microbiology, 196, 40–50.
https://doi.org/10.1016/j.ijfoodmicro.2014.11.023.

Scientific Committee, E. F. S. A., Benford, D., Halldorsson, T., Jeger, M. J., Knutsen, H. K.,
More, S., ... Hardy, A. (2018). Guidance on uncertainty analysis in scientific assess-
ments. EFSA Journal, 16, 5123. https://doi.org/10.2903/j.efsa.2018.5123.

Eichelsbacher, P., Elsner, G., Kösters, H., Löwe, M., Merkl, F., Rolles, S. (Eds.), 2013. Limit
theorems in probability, statistics and number theory: in honor of Friedrich Götze,
Springer Proceedings in Mathematics & Statistics. Springer-Verlag, Berlin Heidelberg.

Franz, C. M. A. P., den Besten, H. M. W., Böhnlein, C., Gareis, M., Zwietering, M. H., &
Fusco, V. (2019). Reprint of: Microbial food safety in the 21st century: Emerging
challenges and foodborne pathogenic bacteria. Trends in Food Science & Technology,
Keeping Food Safety on the Agenda for 15 years. The SAFE consortium, 84, 34–37.
https://doi.org/10.1016/j.tifs.2019.01.009.

Gamerman, D., Lopes, H.F., 2006. Markov chain Monte Carlo: stochastic simulation for
Bayesian inference, 2nd ed. ed, Texts in statistical science series. Taylor & Francis,
Boca Raton.

Garcés-Vega, F., & Marks, B. P. (2014). Use of simulation tools to illustrate the effect of
data management practices for low and negative plate counts on the estimated
parameters of microbial reduction models. Journal of Food Protection, 77, 1372–1379.
https://doi.org/10.4315/0362-028X.JFP-13-462.

García, M. R., Vilas, C., Herrera, J. R., Bernárdez, M., Balsa-Canto, E., & Alonso, A. A.
(2015). Quality and shelf-life prediction for retail fresh hake (Merluccius merluccius).
International Journal of Food Microbiology, 208, 65–74. https://doi.org/10.1016/j.
ijfoodmicro.2015.05.012.

Garre, A., Egea, J. A., Esnoz, A., Palop, A., & Fernandez, P. S. (2019). Tail or artefact?
Illustration of the impact that uncertainty of the serial dilution and cell enumeration
methods has on microbial inactivation. Food Research International.. https://doi.org/
10.1016/j.foodres.2019.01.059.

Garre, A., González-Tejedor, G., Peñalver-Soto, J. L., Fernández, P. S., & Egea, J. A.
(2018). Optimal characterization of thermal microbial inactivation simulating non-
isothermal processes. Food Research International, 107, 267–274. https://doi.org/10.
1016/j.foodres.2018.02.040.

Gelman, A., 2014. Bayesian data analysis, Third edition. ed, Chapman & Hall/CRC texts in
statistical science. CRC Press, Boca Raton.

Gelman, A., Hill, J., 2007. Data analysis using regression and multilevel/hierarchical
models, Analytical methods for social research. Cambridge University Press,
Cambridge ; New York.

Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information cri-
teria for Bayesian models. Statistics and Computing, 24, 997–1016. https://doi.org/10.
1007/s11222-013-9416-2.

Gillispie, C. C., Fox, R., & Grattan-Guiness, I. (1997). Pierre-Simon Laplace, 1749–1827: A
Life in Exact Science. Princeton University Press. https://doi.org/10.2307/j.ctv39x7f8.

Gonzales-Barron, U., & Butler, F. (2011). The use of meta-analytical tools in risk assess-
ment for food safety. Food Microbiology, Predictive Modeling in Foods, 28, 823–827.
https://doi.org/10.1016/j.fm.2010.04.007.

González-Tejedor, G. A., Garre, A., Esnoz, A., Artés-Hernández, F., & Fernández, P. S.
(2018). Effect of storage conditions in the response of Listeria monocytogenes in a fresh
purple vegetable smoothie compared with an acidified TSB medium. Food
Microbiology, 72, 98–105. https://doi.org/10.1016/j.fm.2017.11.005.

González-Tejedor, G. A., Martínez-Hernández, G. B., Garre, A., Egea, J. A., Fernández, P.
S., & Artés-Hernández, F. (2017). Quality changes and shelf-life prediction of a fresh
fruit and vegetable purple smoothie. Food Bioprocess Technology, 1–13. https://doi.
org/10.1007/s11947-017-1965-5.

Guillou, S., & Membré, J.-M. (2019). Inactivation of Listeria monocytogenes, Staphylococcus
aureus, and Salmonella enterica under high hydrostatic pressure: A quantitative ana-
lysis of existing literature data. Journal of Food Protection, 82, 1802–1814. https://
doi.org/10.4315/0362-028X.JFP-19-132.

Hoffman, M.D., Gelman, A., 2011. The No-U-Turn Sampler: Adaptively setting path
lengths in Hamiltonian Monte Carlo. arXiv:1111.4246 [cs, stat].

ICF, Etienne, J., Chirico, S., Gunabalasingham, T., Jarvis, A., 2018. Final report: Clear
communications and uncertainty: external scientific report. RC/EFSA/COMM/2015/
01. EFSA Supporting Publications 15. https://doi.org/10.2903/sp.efsa.2018.EN-
1412.

Jaloustre, S., Guillier, L., Morelli, E., Noël, V., & Delignette-Muller, M. L. (2012).
Modeling of Clostridium perfringens vegetative cell inactivation in beef-in-sauce pro-
ducts: A meta-analysis using mixed linear models. International Journal of Food
Microbiology, 154, 44–51. https://doi.org/10.1016/j.ijfoodmicro.2011.12.013.

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An introduction to statistical
learning: with applications in R, Edición: 1st ed. 2013, Corr. 6th printing 2016. ed.
Springer.

Jarvis, B. (2008). Statistical aspects of the microbiological examination of foods. S.l.: Elsevier
Academic Press.

Jongenburger, I., Reij, M. W., Boer, E. P. J., Gorris, L. G. M., & Zwietering, M. H. (2010).
Factors influencing the accuracy of the plating method used to enumerate low
numbers of viable micro-organisms in food. International Journal of Food Microbiology,
143, 32–40. https://doi.org/10.1016/j.ijfoodmicro.2010.07.025.

Koutsoumanis, K. P., & Aspridou, Z. (2017). Individual cell heterogeneity in Predictive
Food Microbiology: Challenges in predicting a “noisy” world. International Journal of
Food Microbiology, 240, 3–10. https://doi.org/10.1016/j.ijfoodmicro.2016.06.021.

Koyama, K., Abe, H., Kawamura, S., & Koseki, S. (2019). Stochastic simulation for death
probability of bacterial population considering variability in individual cell in-
activation time and initial number of cells. International Journal of Food Microbiology,
290, 125–131. https://doi.org/10.1016/j.ijfoodmicro.2018.10.009.

A. Garre, et al. Food Research International 137 (2020) 109374

12

https://doi.org/10.1016/j.foodres.2020.109374
https://doi.org/10.1016/j.foodres.2020.109374
https://doi.org/10.1128/AEM.00452-09
https://doi.org/10.1128/AEM.00452-09
http://refhub.elsevier.com/S0963-9969(20)30399-9/h0010
http://refhub.elsevier.com/S0963-9969(20)30399-9/h0010
https://doi.org/10.1016/j.ijfoodmicro.2014.10.021
https://doi.org/10.1016/j.ijfoodmicro.2014.10.021
https://doi.org/10.1016/j.ijfoodmicro.2015.05.006
https://doi.org/10.1016/j.ijfoodmicro.2015.05.006
https://doi.org/10.1016/j.fm.2010.05.028
https://doi.org/10.1111/j.1745-4530.2007.00147.x
https://doi.org/10.3389/fmicb.2017.01890
http://refhub.elsevier.com/S0963-9969(20)30399-9/h0045
http://refhub.elsevier.com/S0963-9969(20)30399-9/h0045
https://doi.org/10.1016/j.tifs.2011.12.004
http://refhub.elsevier.com/S0963-9969(20)30399-9/h0060
https://doi.org/10.1007/978-3-319-71855-2_21
https://doi.org/10.1007/978-3-319-71855-2_21
https://doi.org/10.1016/j.ijfoodmicro.2016.04.025
https://doi.org/10.1146/annurev-food-030117-012808
https://doi.org/10.1146/annurev-food-030117-012808
https://doi.org/10.1146/annurev-food-022811-101247
https://doi.org/10.1146/annurev-food-022811-101247
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1016/j.ijfoodmicro.2014.11.023
https://doi.org/10.2903/j.efsa.2018.5123
https://doi.org/10.1016/j.tifs.2019.01.009
https://doi.org/10.4315/0362-028X.JFP-13-462
https://doi.org/10.1016/j.ijfoodmicro.2015.05.012
https://doi.org/10.1016/j.ijfoodmicro.2015.05.012
https://doi.org/10.1016/j.foodres.2019.01.059
https://doi.org/10.1016/j.foodres.2019.01.059
https://doi.org/10.1016/j.foodres.2018.02.040
https://doi.org/10.1016/j.foodres.2018.02.040
https://doi.org/10.1007/s11222-013-9416-2
https://doi.org/10.1007/s11222-013-9416-2
https://doi.org/10.2307/j.ctv39x7f8
https://doi.org/10.1016/j.fm.2010.04.007
https://doi.org/10.1016/j.fm.2017.11.005
https://doi.org/10.1007/s11947-017-1965-5
https://doi.org/10.1007/s11947-017-1965-5
https://doi.org/10.4315/0362-028X.JFP-19-132
https://doi.org/10.4315/0362-028X.JFP-19-132
https://doi.org/10.1016/j.ijfoodmicro.2011.12.013
http://refhub.elsevier.com/S0963-9969(20)30399-9/h0200
http://refhub.elsevier.com/S0963-9969(20)30399-9/h0200
https://doi.org/10.1016/j.ijfoodmicro.2010.07.025
https://doi.org/10.1016/j.ijfoodmicro.2016.06.021
https://doi.org/10.1016/j.ijfoodmicro.2018.10.009


Koyama, K., Aspridou, Z., Koseki, S., & Koutsoumanis, K. (2019). Describing uncertainty
in Salmonella thermal inactivation using Bayesian statistical modeling. Frontiers in
Microbiology, 10. https://doi.org/10.3389/fmicb.2019.02239.

Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation ma-
trices based on vines and extended onion method. Journal of Multivariate Analysis,
100, 1989–2001. https://doi.org/10.1016/j.jmva.2009.04.008.

Liu, Y., Sun, W., Sun, T., Gorris, L. G. M., Wang, X., Liu, B., & Dong, Q. (2020). The
prevalence of Listeria monocytogenes in meat products in China: A systematic litera-
ture review and novel meta-analysis approach. International Journal of Food
Microbiology, 312, 108358. https://doi.org/10.1016/j.ijfoodmicro.2019.108358.

Mafart, P., Couvert, O., Gaillard, S., & Leguerinel, I. (2002). On calculating sterility in
thermal preservation methods: Application of the Weibull frequency distribution
model. International Journal of Food Microbiology, 72, 107–113. https://doi.org/10.
1016/S0168-1605(01)00624-9.

McElreath, R., 2016. Statistical rethinking: a Bayesian course with examples in R and
Stan, Chapman & Hall/CRC texts in statistical science series. CRC Press/Taylor &
Francis Group, Boca Raton.

Metselaar, K. I., den Besten, H. M. W., Abee, T., Moezelaar, R., & Zwietering, M. H.
(2013). Isolation and quantification of highly acid resistant variants of Listeria
monocytogenes. International Journal of Food Microbiology, 166, 508–514. https://doi.
org/10.1016/j.ijfoodmicro.2013.08.011.

Murdoch, D. J., Tsai, Y.-L., & Adcock, J. (2008). P-values are random variables. The
American Statistician, 62, 242–245. https://doi.org/10.1198/000313008X332421.

Nauta, M. J. (2000). Separation of uncertainty and variability in quantitative microbial
risk assessment models. International Journal of Food Microbiology, 57, 9–18.

Peleg, M., & Cole, M. B. (1998). Reinterpretation of Microbial Survival Curves. Critical
Reviews in Food Science and Nutrition, 38, 353–380. https://doi.org/10.1080/
10408699891274246.

Perez-Rodriguez, F., & Valero, A. (2012). Predictive Microbiology in Foods (first ed.). New
York: Springer.

Possas, A., Valdramidis, V., García-Gimeno, R. M., & Pérez-Rodríguez, F. (2019). High
hydrostatic pressure processing of sliced fermented sausages: A quantitative exposure
assessment for Listeria monocytogenes. Innovative Food Science & Emerging Technologies,
52, 406–419. https://doi.org/10.1016/j.ifset.2019.01.017.

R Core Team, 2016. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria.

Rigaux, C., Denis, J.-B., Albert, I., & Carlin, F. (2013). A meta-analysis accounting for

sources of variability to estimate heat resistance reference parameters of bacteria
using hierarchical Bayesian modeling: Estimation of D at 121.1°C and pH 7, zT and
zpH of Geobacillus stearothermophilus. International Journal of Food Microbiology, 161,
112–120. https://doi.org/10.1016/j.ijfoodmicro.2012.12.001.

Ros-Chumillas, M., Garre, A., Maté, J., Palop, A., & Periago, P. M. (2017). Nanoemulsified
D-limonene reduces the heat resistance of Salmonella Senftenberg over 50 times.
Nanomaterials, 7, 65. https://doi.org/10.3390/nano7030065.

Santos, J.L.P., Samapundo, S., Gülay, S.M., Van Impe, J., Sant’Ana, A.S., Devlieghere, F.,
2018. Inter- and intra-species variability in heat resistance and the effect of heat
treatment intensity on subsequent growth of Byssochlamys fulva and Byssochlamys
nivea. International Journal of Food Microbiology. https://doi.org/10.1016/j.ij-
foodmicro.2018.04.035.

Sunnåker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., & Dessimoz, C. (2013).
Approximate Bayesian computation. PLoS Computational Biology, 9, e1002803.
https://doi.org/10.1371/journal.pcbi.1002803.

Taper, M. L., & Lele, S. (Eds.). (2004). The nature of scientific evidence: statistical, philo-
sophical, and empirical considerations. Chicago: University of Chicago Press.

Thompson, K. M. (2002). Variability and uncertainty meet risk management and risk
communication. Risk Analysis, 22, 647–654. https://doi.org/10.1111/0272-4332.
00044.

van Asselt, E. D., & Zwietering, M. H. (2006). A systematic approach to determine global
thermal inactivation parameters for various food pathogens. International Journal of
Food Microbiology, 107, 73–82. https://doi.org/10.1016/j.ijfoodmicro.2005.08.014.

van Boekel, M. A. J. S. (2020). On the pros and cons of Bayesian kinetic modeling in food
science. Trends in Food Science & Technology, 99, 181–193. https://doi.org/10.1016/j.
tifs.2020.02.027.

Wells-Bennik, M. H. J., Janssen, P. W. M., Klaus, V., Yang, C., Zwietering, M. H., & Den
Besten, H. M. W. (2019). Heat resistance of spores of 18 strains of Geobacillus stear-
othermophilus and impact of culturing conditions. International Journal of Food
Microbiology, 291, 161–172. https://doi.org/10.1016/j.ijfoodmicro.2018.11.005.

Zwietering, M. (2015). Risk assessment and risk management for safe foods: Assessment
needs inclusion of variability and uncertainty, management needs discrete decisions.
International Journal of Food Microbiology, 213, 118–123. https://doi.org/10.1016/j.
ijfoodmicro.2015.03.032.

Zwietering, M. H. (2009). Quantitative risk assessment: Is more complex always better?
Simple is not stupid and complex is not always more correct. International Journal of
Food Microbiology, 134, 57–62. https://doi.org/10.1016/j.ijfoodmicro.2008.12.025.

A. Garre, et al. Food Research International 137 (2020) 109374

13

https://doi.org/10.3389/fmicb.2019.02239
https://doi.org/10.1016/j.jmva.2009.04.008
https://doi.org/10.1016/j.ijfoodmicro.2019.108358
https://doi.org/10.1016/S0168-1605(01)00624-9
https://doi.org/10.1016/S0168-1605(01)00624-9
https://doi.org/10.1016/j.ijfoodmicro.2013.08.011
https://doi.org/10.1016/j.ijfoodmicro.2013.08.011
https://doi.org/10.1198/000313008X332421
http://refhub.elsevier.com/S0963-9969(20)30399-9/h0255
http://refhub.elsevier.com/S0963-9969(20)30399-9/h0255
https://doi.org/10.1080/10408699891274246
https://doi.org/10.1080/10408699891274246
http://refhub.elsevier.com/S0963-9969(20)30399-9/h0270
http://refhub.elsevier.com/S0963-9969(20)30399-9/h0270
https://doi.org/10.1016/j.ifset.2019.01.017
https://doi.org/10.1016/j.ijfoodmicro.2012.12.001
https://doi.org/10.3390/nano7030065
https://doi.org/10.1371/journal.pcbi.1002803
http://refhub.elsevier.com/S0963-9969(20)30399-9/h0305
http://refhub.elsevier.com/S0963-9969(20)30399-9/h0305
https://doi.org/10.1111/0272-4332.00044
https://doi.org/10.1111/0272-4332.00044
https://doi.org/10.1016/j.ijfoodmicro.2005.08.014
https://doi.org/10.1016/j.tifs.2020.02.027
https://doi.org/10.1016/j.tifs.2020.02.027
https://doi.org/10.1016/j.ijfoodmicro.2018.11.005
https://doi.org/10.1016/j.ijfoodmicro.2015.03.032
https://doi.org/10.1016/j.ijfoodmicro.2015.03.032
https://doi.org/10.1016/j.ijfoodmicro.2008.12.025

	Multilevel modelling as a tool to include variability and uncertainty in quantitative microbiology and risk assessment. Thermal inactivation of Listeria monocytogenes as proof of concept
	Introduction
	Materials and methods
	Case study analysed: Variability in heat resistance of Listeria monocytogenes
	Primary inactivation model
	Single-level modelling of microbial inactivation
	Hypotheses of multilevel models; description of the notation used in the manuscript
	A multilevel model for microbial inactivation including variability and uncertainty
	Bayesian parameter estimation
	Modelling of the initial microbial count
	Model comparison
	Analysis of the posterior distributions and calculation of predictions

	Results
	Comparison of model hypotheses regarding the initial microbial count
	Comparison of parameter estimates between the single-level and multilevel models
	Quantification of variability and uncertainty: Impact on predictions

	Discussion
	Conclusions
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary data
	References




