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Introduction 
Members of the Poaceae family have been rewarding subjects of research in the field of 
functional-structural plant modelling (FSPM) (Fournier et al., 2007). Poaceae comprise 
important cereal crop species such as rice, wheat, and maize, and the plants usually exhibit a 
regular and co-ordinated development making them particularly suitable for FSPM. The models 
that have been reported up to now range from descriptive (e.g. Watanabe et al., 2005) to 
(partially) mechanistic (e.g. Guo et al., 2006; Wernecke et al., 2007). 

Here we report on our ongoing work on an FSPM of spring wheat (Triticum aestivum L.), 
of which simulation of growth and development, until recently, have been mainly descriptive. 
The outgrowth of tiller buds into tillers (branches in Poaceae) has been made dependent on the 
local ratio between red and far-red light (Evers et al., 2007a). Once the ‘decision’ is taken to 
develop a particular bud into a tiller, the emergent organs attain more or less predefined 
properties (e.g. dimensions, shape, etc.). The limitations to this (provisional) approach are (I) 
source activity is not included and (II) organ outgrowth and dimensions of organs are not 
subjected to modulation due to sink-source interactions. 

The general objective of the current work is to add ‘functionality’, i.e. carbon gain and 
partitioning, to the architectural model in order to obtain a complete FSPM of a canopy of 
spring wheat plants. Operational objectives of the work include the extension of the current 
architectural model of spring wheat with provisions that convert radiation absorbed by each 
element of the 3D structure into photosynthates, and distribute carbon over individual, growing 
organs. 

Approach 
The model used in this study is based on the 
concepts of Fournier et al. (2003), and has been 
calibrated and validated for spring wheat (Evers
et al., 2005, 2007b), see Fig. 1 for a 
visualisation. Details can be found in the papers 
cited. This model provides a solid basis for 
extension with sub-models for photosynthesis 
and carbon distribution. 

Data collection 
Data to realize the objectives stated, were 
gathered in two experiments conducted in 
Wageningen, the Netherlands: one outdoor 
experiment, and one in a growth chamber. In the 
outdoor experiment plants were grown at three 
plant population densities and exposed to two 
nitrogen treatments (limiting and non-limiting), Fig. 1: Visualisation of a small 

simulated wheat plot 
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and two light treatments (75% shading and full light). In this experiment data were gathered 
on the distribution of chlorophyll meter values (SPAD) in the canopy, and on plant growth 
and organ weight by harvesting plants at five stages of development. In the growth chamber 
experiment, two nitrogen treatments (limiting and non-limiting) were applied. In this 
experiment a diversity of photosynthesis parameters were assessed (both through gas 
exchange and chlorophyll fluorescence) and calculated. A calibration curve was created for 
leaf nitrogen content versus SPAD value. Details on the experimental setups and 
measurement protocols will follow in later communications. 

Source activity 
For a given hemispherical distribution of daily incoming solar radiation, the illumination of 
each plant organ of the canopy structure (leaves, internodes) can be simulated using the wheat 
architectural model in combination with the nested radiosity model for crop canopies (Chelle 
and Andrieu, 1998). Using organ-specific reflection and transmission coefficients, PAR 
absorption by the plant organs was calculated from this illumination on an hourly basis. 
Subsequently, rate of photosynthesis of each individual organ was modelled by applying an 
updated biochemical model for C3 photosynthesis (Yin et al., submitted), based on Farquhar 
et al. (1980), and extended by Yin et al. (2004). A (photosynthesis rate), Ci (intercellular CO2
concentration), and gs (stomatal conductance) were calculated using an analytical solution to a 
coupled photosynthesis - stomatal conductance model.  

The biochemical photosynthesis model was parameterized by fitting the photosynthesis 
(gas exchange and chlorophyll fluorescence) data derived from the growth chamber 
experiment, measured for the two nitrogen treatments, two leaf insertion levels and three leaf 
age categories (Yin et al., submitted). The estimated parameters were maximum 
carboxylation rate of Rubisco (Vc,max), maximum rate of linear electron transport (Jmax), 
Rubisco CO2/O2 specificity factor (Sc/o), mesophyll conductance (gm), ‘dark’ respiration rate in 
the light (Rd), residual gs at the light compensation point (g0), minimum leaf nitrogen content 
for photosynthesis (Nb), and a parameter for maximum efficiency of light conversion into 
linear electron flux on incident light basis (κ2(LL)). Remaining parameter values required by the 
model of Farquhar et al. (1980) are considered to be conservative among C3 species, and 
taken from Von Caemmerer et al. (1994) and Bernacchi et al. (2002). 

Sink strength 
Sink strength is defined as the potential capacity of sink tissues to accumulate assimilates 
(Marcelis and Heuvelink, 2007). Experimentally, the sink strength can be derived from the 
growth curve under conditions ensuring abundant source supply, either by removing 
competing sinks or by enhancing photosynthesis (high radiation and/or CO2). For the current 
work, sink strength values were derived using the GreenLab plant modelling approach (Yan et 
al., 2004). Based on several growth chamber experiments using the same wheat cultivar as in 
the present study, sink strength values for various organ types (blades, sheaths, internodes, 
spikes, root system) have been calculated by a non-linear least squares root fitting procedure 
(Kang et al., in press). These values were used in the present study. 

Sink-source relations 
To simulate the distribution of assimilates from the sources to the sinks, the semi-mechanistic 
concept of carbon allocation being determined by the relative sink strengths of competing 
sinks can be implemented (Heuvelink, 1996; Marcelis, 1996). However, bud break and the 
appearance of tillers is not straightforward: whether or not particular tillers will appear will 
not ‘automatically’ emerge as a result of the simulation. Here extra rules might be needed, 
e.g. specifying that the local assimilate production of the parent leaf has to be taken into 
account (Bos, 1999). 

It is possible to efficiently implement carbon fluxes between plant components, based on 
gradients in driving forces (i.e. Ohm’s law analogy) (Allen et al., 2005; Prusinkiewicz et al., 
2007). The virtue of that approach is that local effects and sink priorities become an emergent 
property. Sink activity is represented by Michaelis-Menten kinetics, the parameters of which 
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(Vmax and km) are being deduced from the sink strength functions, while resistance is 
proportional to distance. In the FSPM distance is deduced from organ dimensions and 
topology that are kept track of. However, it will be examined first whether the semi-
mechanistic approach can be used satisfactorily.

Nitrogen distribution 
Instead of modelling the entire nitrogen economy of a wheat plant, an empirical function was 
developed that describes the distribution of SPAD values of the individual leaf blades 
throughout the development of a wheat plant. The function is a cubic polynomial relation 
between SPAD value and thermal time, of which the four parameters are themselves linear 
functions of the cumulative phytomer number of the leaf blade (which is the total number of 
phytomers from the bottom of the plant until the leaf blade in question): 

where S is SPAD value (dimensionless), C is cumulative phytomer number of the leaf blade, t
is thermal time (ºCd), pa, qa, ra, sa, are slope parameters and pb, qb, rb, sb are intercept 
parameters fitted to the S-C-t data, for each of the treatments. Subsequently, the calculated 
SPAD values were converted into nitrogen content per surface area, using the calibration 
curve obtained from the growth chamber experimental data.  

Outlook 
The combination of an architectural plant model and sub-models for carbon assimilation and 
distribution throughout the plant is promising. The added value of taking plant geometry into 
account will show its strength when phenomena that rely on local processes are simulated 
(e.g. bud break). This is what the current work is aiming at. 
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