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Abstract
Atmospheric CO2 (ca) rise changes the physiology and possibly growth of tropical 
trees, but these effects are likely modified by climate. Such ca × climate interactions 
importantly drive CO2 fertilization effects of tropical forests predicted by global veg-
etation models, but have not been tested empirically. Here we use tree-ring analyses 
to quantify how ca rise has shifted the sensitivity of tree stem growth to annual fluc-
tuations in rainfall and temperature. We hypothesized that ca rise reduces drought 
sensitivity and increases temperature sensitivity of growth, by reducing transpiration 
and increasing leaf temperature. These responses were expected for cooler sites. 
At warmer sites, ca rise may cause leaf temperatures to frequently exceed the opti-
mum for photosynthesis, and thus induce increased drought sensitivity and stronger 
negative effects of temperature. We tested these hypotheses using measurements 
of 5,318 annual rings from 129 trees of the widely distributed (sub-)tropical tree spe-
cies, Toona ciliata. We studied growth responses during 1950–2014, a period during 
which ca rose by 28%. Tree-ring data were obtained from two cooler (mean annual 
temperature: 20.5–20.7°C) and two warmer (23.5–24.8°C) sites. We tested ca × cli-
mate interactions, using mixed-effect models of ring-width measurements. Our sta-
tistical models revealed several significant and robust ca × climate interactions. At 
cooler sites (and seasons), ca × climate interactions showed good agreement with hy-
pothesized growth responses of reduced drought sensitivity and increased tempera-
ture sensitivity. At warmer sites, drought sensitivity increased with increasing ca, as 
predicted, and hot years caused stronger growth reduction at high ca. Overall, ca rise 
has significantly modified sensitivity of Toona stem growth to climatic variation, but 
these changes depended on mean climate. Our study suggests that effects of ca rise 
on tropical tree growth may be more complex and less stimulatory than commonly 
assumed and require a better representation in global vegetation models.
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1  | INTRODUC TION

Tropical forests account for a third of global gross and net primary 
productivity, store 25% of the carbon in terrestrial ecosystems (Beer 
et al., 2010; Bonan, 2008) and drive fluctuations of the land carbon 
sink (Friedlingstein et al., 2019). Their responses to future atmo-
spheric CO2 (ca) rise and warming will thus influence the pace of cli-
mate change (Mitchard, 2018). A key challenge in model predictions 
of tropical forest responses to these changes is the uncertainty of 
the magnitude of effects of elevated CO2 levels, commonly referred 
to as ‘CO2 fertilization effects’ (Cernusak et al., 2013; Fatichi, Pappas, 
Zscheischler, & Leuzinger, 2019; Körner, 2009; Lewis, Edwards, & 
Galbraith, 2015; Settele et al., 2014; Terrer et al., 2019). Rise of ca in-
creases photosynthetic efficiency (Lloyd & Farquhar, 2008), reduces 
water use (Cernusak et al., 2013) and may thus stimulate tropical 
tree growth (Cernusak et al., 2013). These effects can mitigate neg-
ative impact of warming on tropical forest productivity, as predicted 
by dynamic global vegetation models (DGVMs; Cox et al., 2013; 
Huntingford et al., 2013). Yet, most DGVMs likely overestimate ef-
fects of CO2 rise as they do not include nutrient or hydraulic lim-
itations (Fatichi et al., 2019; Körner, 2009; Smith et al., 2014; Yang, 
Thornton, Ricciuto, & Hoffman, 2016). Model benchmarking using 
empirical studies on ca-rise effects is therefore needed (Clark et al., 
2017; Zuidema, Poulter, & Frank, 2018).

The effects of ca rise on tropical tree photosynthesis and water 
use are modified by rainfall and temperature (Cernusak et al., 2013; 
Körner, 2009; Lloyd & Farquhar, 2008) and may thus vary along cli-
matic gradients or with temporal climatic fluctuations. Such ca × cli-
mate interactions likely drive biome-specific ca responses (Baig, 
Medlyn, Mercado, & Zaehle, 2015; Hickler et al., 2008; Norby et al., 
2016). Reduced drought sensitivity under ca rise may be particularly 
important in regions with low precipitation (P) and during dry years 
(Cernusak et al., 2013; Fatichi et al., 2016; Zuidema et al., 2013). The 
effect of ca rise on photosynthesis is likely also modified by tempera-
ture (T). A positive effect of ca rise on photosynthetic efficiency can 
be stronger in warmer regions or during warmer years, as photore-
spiration increases with temperature and stronger ca-driven reduc-
tion in photorespiration is therefore expected at high temperature 
(Cernusak et al., 2013; Long, 1991). On the other hand, ca rise may 
also lead to growth reduction at high temperatures if stomatal clo-
sure reduces transpiration, leading to leaf warming beyond the opti-
mum temperature for photosynthesis (Cernusak et al., 2013; Wood, 
Cavaleri, & Reed, 2012).

Studies on ca × climate interactions of (sub-)tropical trees have 
been limited to seedling experiments under controlled conditions 
(Cernusak et al., 2011; Fauset et al., 2019; Kelly, Duursma, Atwell, 
Tissue, & Medlyn, 2016; de Oliveira & Marenco, 2019a, 2019b; 
Quentin, Barton, Crous, & Ellsworth, 2015). Responses of canopy 
trees may be different, as these experience higher irradiance, tem-
perature and vapour pressure deficit. Understanding tropical can-
opy tree responses to ca  ×  climate interactions is crucial as they 
are responsible for the main share of photosynthesis and biomass 
in tropical forests (Slik et al., 2013) and are particularly sensitive to 

drought (Phillips et al., 2009). Tree-ring analysis represents a pow-
erful method to evaluate effects of ca rise on canopy tree physi-
ology and growth (Zuidema et al., 2013). So far, tropical tree-ring 
studies have consistently shown positive trends in intrinsic wa-
ter-use efficiency (iWUE) over the past century (Hietz, Wanek, & 
Dünisch, 2005; Loader et al., 2011; Nock et al., 2011; Rahman, Islam, 
Gebrekirstos, & Bräuning, 2019; van der Sleen et al., 2015), but no 
consistent growth stimulation (Groenendijk et al., 2015; Nock et al., 
2011; Rahman et al., 2019; van der Sleen et al., 2015). These stud-
ies were conducted using trend analyses of growth or iWUE. While 
providing important information on changes in tree physiology and 
growth, such trend analyses cannot detect interactive effects of ca 
and climate on tree growth. Annual tree growth from dated tree 
rings allows evaluating modifications of sensitivity of tree growth 
to climate variation by ca rise. Such analyses can be considered as an 
observational version of ca × climate experiments in climate cham-
bers, open-top chambers or Free Air CO2 Enrichment experiments 
and may also be used to benchmark DGVMs (Baig et al., 2015). To 
our knowledge, tree-ring-based analyses of ca × climate interactions 
are very scarce (Voelker et al., 2017; Wyckoff & Bowers, 2010) and 
have not been conducted for any tropical tree species.

Here we use tree-ring-width chronologies for a long-lived 
tropical tree species (Toona ciliata) from four sites with contrast-
ing climate, to evaluate ca × climate interactions. Mean climate at 
these sites allowed comparing ca  ×  climate interactions at cooler 
and warmer sites. In Figure 1, hypothesized interactions are repre-
sented by differences in slopes: if the slope of a relation between 
growth and climate is steeper for high ca than low ca, the interaction 
is positive; if the slope is less steep at high ca, the interaction is 
negative. We tested two alternative hypotheses on ca × P interac-
tions (1a and 1b; Figure 1) and two on ca × T interactions (2a and 
2b; Figure 1):

Hypothesis 1a At higher ca, the growth reduction during dry years is 
smaller than at lower ca, because of a higher iWUE. In climate–
growth analyses of tree-ring chronologies, this would lead to 
reduced sensitivity of ring width to rainfall, causing the positive 
slope of the growth–rainfall relation to become flatter at high ca. 
This is represented by a negative ca × P interaction.

Hypothesis 1b The negative ca × P interaction of Hypothesis 1a may 
shift to a positive interaction at warm sites. At these sites, the 
negative effect of low rainfall on photosynthesis may be stron-
ger at high ca because stomatal closure (due to both ca rise and 
drought) causes leaf warming beyond optimal temperature for 
photosynthesis. Thus, at warm sites, the positive growth–rainfall 
relation may become steeper at high ca. This is represented by a 
positive ca × P interaction.

Hypothesis 2a At warm sites, ca rise is expected to enhance the neg-
ative effects of temperature on photosynthesis as stomatal 
conductance is reduced, which increases leaf temperature and 
thus increases the time that leaf temperature exceeds optimal 
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temperature for photosynthesis (Cernusak et al., 2013; Lloyd & 
Farquhar, 2008). At these sites, the commonly found negative 
growth–temperature relation may therefore become more neg-
ative at high ca. This would result in negative ca × T interactions, 
particularly for Tmax.

Hypothesis 2b At cooler sites, ca rise could enhance the positive effect 
of temperature on photosynthesis (Lloyd & Farquhar, 2008) and 

growth (Voelker et al., 2017), as ca-induced additional leaf warm-
ing increases photosynthesis. This is represented by a positive 
ca × T interaction.

Our statistical analysis of ca  ×  climate interactions of tree-ring 
width in T. ciliata revealed that recent ca rise caused a significant 
change in the sensitivity of growth to climatic variation. These 
ca × climate interactive effects varied across sites that differ in mean 

F I G U R E  1   Hypothesized interactive effects of ca with rainfall and temperature on tropical tree growth. Four Hypotheses (1a–2b) on 
ca × climate interactions are tested in this study. The graphs show hypothesized interactions as shifts in slope: if the high-ca slope is smaller 
than the low-ca slope, the interaction is negative; if the reverse is found the interaction is positive. Thus, the vertical position or the direction 
of the main effect is not relevant for the sign of the interaction. The direction of main and interactive effects depends on mean climate. For 
main effects, negative P effects are expected at wet sites; positive effects at drier sites; negative T effects are expected at warm sites and 
positive at cooler site. For interactive effects, Hypotheses 1a and 2b are expected at cooler sites; Hypotheses 1b and 2a at warmer sites. 
Tleaf = is leaf temperature; gs = stomatal conductance; iWUE = intrinsic water-use efficiency

Main effects

Higher cloud
cover reduces
irradiance

P ,llafniaR

High Tleaf
reduces
photosynthesis

T ,erutarep
meT

High Tleaf
ulates

photosynthesis

More moisture
extends annual
growing period

Po veNega e
In  effects of climate and ca

Hypothesis 1a

At high ca, higher
iWUE reduces
drought effect on
photosynthesis

P

Gr
ow

th High ca

Low ca

Hypothesis 1b

At high ca, higher
Tleaf and drought
stress reduce
photosynthesis

Hypothesis 2a

At high ca, lower
gs increases Tleaf
thus reducing
photosynthesis

Hypothesis 2b
At high ca, lower
gs increases Tleaf
thus enhancing
photosynthesis

T

Gr
ow

th High ca

Low ca

P

Gr
ow

th Low ca

High ca

Po ve interac onsNega e interac ons

T

Gr
ow

th Low ca

High ca

F I G U R E  2   Climatic characteristics and location of our study sites. (a) Climate diagrams for the study sites, from nearby climate stations 
(ATH, LAM and RKW) or based on gridded data (HKK). (b) Locations of the four study sites on a map showing mean annual temperature 
(°C) based on WorldClim 2.0 gridded data (Fick & Hijmans, 2017). Crosses indicate locations where Toona ciliata herbarium specimens were 
collected as an indication of the natural geographic range (GBIF.org, 2019)
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climate, providing support for Hypotheses 1a and 2b at cooler sites 
(2b: during the cooler dry seasons), and Hypotheses 1b and 2a at 
warmer sites.

2  | MATERIAL S AND METHODS

2.1 | Study species

We studied T. ciliata (Meliaceae), a large-stature and long-lived 
pioneer tree species distributed in South Asia, South-East Asia and 
Australia (Figure 2b). T. ciliata is usually deciduous or semi-deciduous 
but under optimal growing conditions saplings can show opportunis-
tic non-deciduous behaviour (Heinrich & Banks, 2006). This species 
is ideally suited to study ca × climate interactions as it forms growth 
rings that are reliably dated (Heinrich, Weidner, Helle, Vos, & Banks, 
2008; Rahman, Islam, & Islam, 2017; Vlam, Baker, Bunyavejchewin, & 
Zuidema, 2014), produces high-quality growth chronologies, exhib-
its clear climate–growth relations (Heinrich et al., 2008, 2009; Vlam 
et al., 2014), reaches >150 years in age (Heinrich et al., 2008; Vlam, van 
der Sleen, Groenendijk, & Zuidema, 2017) and occurs across a large 
climatic range (Figure  S1). T. ciliata forms distinct (semi) ring-porous 
growth rings, characterized by initial parenchyma and large early-wood 
vessels (Heinrich & Banks, 2005; Islam, Rahman, & Bräuning, 2018).

T. ciliata is distributed in seasonally dry tropical forests, which 
represent half of all tropical forests (Guan et al., 2015) and likely re-
spond more strongly to ca rise than wetter forests (Cernusak et al., 
2013; Fatichi et al., 2016; Norby et al., 2016). Across its range, the 
species is distinctly deciduous, with leafless periods of typically sev-
eral weeks (Rahman et al., 2017; Vlam et al., 2014) to several months 
(Heinrich & Banks, 2005).

2.2 | Study sites and climate data

We used tree-ring-width measurements from published chronolo-
gies of T. ciliata. Tree-ring data were available from four sites in 
Australia and South and South-East Asia which vary in rainfall and 
particularly in temperature (Table 1; Figure 2a). Characteristics of 
the original chronologies are included in Table S1 and show a high 
dating accuracy and a strong common response to environmental 

drivers at all sites. All sites are located in nature reserves with no 
signs of logging or silviculture. Annual rainfall distribution at all sites 
is unimodal (Figure 2a), with peaks during northern hemisphere (SE 
Asian sites) or austral summer (Australian sites). Annual temperature 
also fluctuates during the year: wet seasons are warmer and dry sea-
sons cooler (Figure 2a).

Climate data (monthly Tmax and precipitation) were obtained from 
nearby climate stations (Figure 2; Table S1). For the ATH site, station 
data for Tmax were unavailable prior to 1967; we therefore obtained 
Tmax from gridded CRU data (Harris, Jones, Osborn, & Lister, 2014) 
and rainfall from station data. For the HKK site, long-term climate 
data were available only from Nahkon Sawan (Figure S2), which is lo-
cated >85 km away, at a 500 m lower elevation, experiencing a 5°C 
higher temperature than recorded on site (Bunyavejchewin, 2009). To 
characterize this site in terms of climate, we therefore used gridded 
WorldClim data (Fick & Hijmans, 2017). Gridded average temperature 
and rainfall (Table 1) are close to those recorded at the site (MAT site: 
23.5°C; MAP site: 1,473 mm) during a 6-year period (Bunyavejchewin, 
2009). For our climate–growth analyses, Nahkon Sawan station data 
could be used as all climate data are scaled prior to analyses and ab-
solute temperature or rainfall differences do therefore not matter.

Data on ca were obtained from the Mauna Loa atmospheric CO2 
records (www.esrl.noaa.gov/gmd/ccgg/trends). Per site, the study 
period was determined by the overlapping period for which tree-
ring data (Table S1) and climate data were available (Table 1). Study 
periods varied from 49 to 64 years, all within 1950–2014 and with 
a common period of 1953–1998. During the periods covered by the 
chronologies, ca increased by 18%–28% for individual chronologies, 
by 28% for the total period and by 17% for the common period.

As climate × ca interactions may vary between wet and dry sea-
sons, we performed our analyses using seasonal climate data. For 
each site, we defined the wet season as the period composed of 
months with >100  mm precipitation on average during the study 
period. This resulted in wet seasons’ lengths of 4–7 months. Above 
100  mm/month, water limitation is considered to be small for low-
land tropical trees, and this cut-off has been used in previous stud-
ies on climate–growth relations of T. ciliata (Vlam et al., 2014). As  
T. ciliata is deciduous for only <1–2 months at our study sites, climatic 
conditions during parts of the dry season may also drive annual tree 
growth. To evaluate interactive climate × ca effects during these tran-
sitional months, we grouped the 2  months prior and following the 

Site Name Country Study period Wet season Leafless N

ATH Atherton Australia 1950–1998 Dec–Mar Jul–Aug 37

LAM Lamington Australia 1950–1999 Nov–Mar Jun–Aug 20

RKW Rema-Kalenga Bangladesh 1951–2014 Apr–Oct Jan–mid Feb 26

HKK Huai Kha 
Khaeng

Thailand 1953–2010 May–Oct 0.5 months 46

Note: Sites are ordered with increasing mean annual temperature. ‘Leafless’: period during which 
trees were observed to be deciduous; ‘Wet season’: months with >100 mm rainfall; N: number of 
sampled trees. Original publications: ATH (Heinrich et al., 2008), LAM (Heinrich et al., 2009), HKK 
(Vlam et al., 2014) and RKW (Rahman et al., 2018).

TA B L E  1   Study sites and site-specific 
characteristics of Toona ciliata

http://www.esrl.noaa.gov/gmd/ccgg/trends
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wet season and included these transitional months as the ‘Dry sea-
son’ in our analysis. We do recognize that this is not a true season, 
but retained this term for ease of communication. There were three 
reasons to implement dry-season rainfall in this way. First, combining 
climatic data for these transitional months into one dry-season value 
reduces the number of explanatory variables in our statistical mod-
els, and thus avoids overparameterization and co-linearity. Second, 
we do not expect effects of rainfall or temperature during the driest 
months when our study species is commonly leafless. Third, published 
climate–growth relations at monthly scales for our study sites and 
species show that climate effects occur both in wet season and transi-
tional months (Heinrich et al., 2008, 2009; Rahman, Islam, & Bräuning, 
2018; Vlam et al., 2014), in accordance with meta-analyses of climate–
growth relations in tropical trees (Rozendaal & Zuidema, 2011).

For all sites, we tested for linear trends in climate data within 
the study periods. Results of these tests revealed a significant 
(p < .05) increase in Tmax at the HKK site, in both wet and dry seasons 
(Figure S3), but not in any of the other sites. No significant trends in 
rainfall were found at any site. We also tested for trends in Tmin (not 
included in our statistical analyses) and found significant increases 
for all sites except LAM.

Per site we calculated the number of days in the wet and dry sea-
son during which Tmax exceeded 30°C. At this temperature, canopy 
tree leaves likely reach temperatures of >32°C (Pau, Detto, Kim, & 
Still, 2018) which is above optimal for photosynthesis (Mau, Reed, 
Wood, & Cavaleri, 2018; Pau et al., 2018). This analysis revealed that 
the incidence of such hot days was higher at warmer sites (partic-
ularly during the dry season) and also increased over time at these 
sites (Figure S4).

2.3 | Data collection and tree-ring measurements

At all sites, increment cores were collected from natural populations 
of T. ciliata in extensive forest areas (>500 ha in all cases). At ATH and 
LAM sites, sampled trees were selected to be sub-dominant or domi-
nant, with 30–40 m (ATH) or 40–50 m (LAM) in height and 80–120 
(ATH) or 80–300 cm (LAM) in diameter at breast height (DBH). At 
HKK and RKW, trees of >5 cm DBH were selected and maximum 
DBH was 115 and 25 cm DBH, respectively. Coring height was 1.0 m 
at HKK and 1.3 m at other sites. While the selection of tree sizes dif-
fered between sites, chronology statistics were similar (Table S1). A 
total of 20–46 trees were sampled per site, with 1–2 (ATH, LAM and 
RKW) or 2–3 cores per tree (HKK). Sample preparation, scanning, 
microscopy, ring measurements and cross-dating followed stand-
ard and fully exchangeable dendrochronological practices, result-
ing in ring-width measurements to the nearest 0.01 mm. Dating of 
rings at the two Australian sites followed the Schulman convention 
(Schulman, 1956), implying that the ring is dated according to the 
year in which ring formation starts. So, a growth ring at the ATH 
site that started to be formed in end of 1980 (start of austral sum-
mer) is dated ‘1980’, but continues into 1981 and is influenced by cli-
matic conditions during both 1980 and 1981: wet season (December 

1980–March 1981) and dry season (October–November 1980 and 
April–May 1981).

The raw ring-width measurements of trees that were part of the 
chronology are the basis for the analyses in this study. By using only 
these trees, we have a high certainty that only correctly dated indi-
vidual trees are included in the analyses. A total of 5,318 ring-width 
measurements were included in our analyses.

2.4 | Statistical analyses

We evaluated the significance and magnitude of ca × climate interac-
tions on T. ciliata diameter growth using mixed-effect models (MEMs; 
Zuur, Ieno, Walker, Saveliev, and Smith (2009)). We applied MEMs 
instead of more commonly used correlation analyses in tree-ring re-
search as MEMs allow (a) testing for effects of multiple and interac-
tive explanatory variables of ring-width variation at the same time, (b) 
accounting for the repeated measurement structure of the data (by 
including tree individual as a random factor) and (c) quantifying the 
degree to which variation in ring width is explained by intrinsic (within 
individual) and extrinsic (environmental factors and their interac-
tions) sources of growth variation. MEMs have recently been used to 
study climate–growth relations of tree-ring data (Galván, Camarero, & 
Gutiérrez, 2014; Gea-Izquierdo, Cherubini, & Cañellas, 2011), also for 
our study species (Vlam et al., 2014). For all sites, tree-ring width was 
log-transformed to obtain a normal distribution of residuals.

We chose not to detrend ring-width series, as this may affect the 
detection of climate–ca interactions. Instead, we accounted for ontoge-
netic effects on ring width by adding tree age at ring formation (‘Age’) as 
explanatory variable in the MEM. Age was estimated as cambial age for 
HKK (Vlam et al., 2014) or estimated by the number of rings measured in 
each series, for the other sites. The former accounts for missing distance 
to the pith; the latter does not. Means of these age estimates were 80, 
84, 46 and 58 years for ATH, LAM, RKW and HKK, respectively; maxi-
mum tree ages were 185, 144, 83 and 150 years. We also tested whether 
adding age2 to MEMs would improve model fit or alter model output, but 
this was not the case. Note that non-linear ontogenetic effects on growth 
were also accounted for by log transformation of ring width.

We accounted for growth heterogeneity within the population by 
adding TreeID as random variable (random intercept) in the MEM. We 
did not include TreeID as random slope because we did not aim to 
account for individual variation in climate–growth relations and as this 
would involve adding a large number of random slopes which results in 
highly complex models. We checked whether adding an autocorrela-
tion structure to account for temporal autocorrelation in tree growth 
(Vlam et al., 2014) would change the MEM output. This was not the 
case, and we therefore did not include autocorrelation in the analyses 
presented here.

Four groups of explanatory variables were included in our MEMs: 
(a) Tmax and P, for both the wet season and dry season; (b) ca; (c) in-
teractions of ca and season-specific Tmax and P and (d) age. All ex-
planatory variables were scaled (mean = 0, SD = 1) prior to inclusion 
in MEMs, to obtain standardized coefficients and allow for direct 
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comparison of the strength of effects. For each MEM, we evaluated 
collinearity of the explanatory seasonal climate variables; we did not 
find cases for which the variance inflation factor exceeded 5.

Per site, we constructed three sets of MEMs. Set A: to evaluate 
general sensitivity of Toona growth to climate, we performed a cli-
mate–growth analyses using only climate and age variables (groups a 
and d). Set B: to test Hypotheses 1a–2b of ca × climate interactions, 
we ran models including all variables (groups a–d), with age to ac-
count for ontogenetic effects on growth. A comparison of the model 
output of sets A and B allowed us to evaluate the extent to which 
climate–growth relations are modified by ca × climate interactions. 
Set C: as set B, but for a common period of 1953–1998 to verify 
robustness of model output to differences in duration and timing of 
study periods among the study sites.

We ran one MEM per site and did not combine sites into one 
MEM, in order to prevent modelling three-way interactions. We 
used backwards selection of explanatory variables, based on AIC 
change (ΔAIC ≥ 2), taking the simplest model in case of ΔAIC < 2. 
Analyses were performed using the lme function of the nlme pack-
age in R (R Core Team, 2019). We calculated conditional and marginal 
R2 to evaluate variation explained by fixed effects alone and fixed 
and random effects together (MuMIn package).

3  | RESULTS

3.1 | Accounting for ontogeny and individual 
heterogeneity

Ring-width data for all four sites show strong annual variation in 
growth of individual trees, with a considerable degree of common 
growth variation (Figure 3). The clear and synchronous occurrence 
of narrow and wide rings in these raw ring-width series illustrate that 
our study species are climate sensitive. The raw ring-width data also 
show that individual trees differ widely in growth.

Effects of age on ring width were significant and negative for all 
sites and for all model sets. These ontogenetic effects on (log-trans-
formed) ring-width are illustrated in Figure S5.

3.2 | Growth sensitivity to climatic variation

The set-A mixed-effects models, in which effects of climatic vari-
ation on ring width were tested (Table 2), showed positive effects 
of dry-season rainfall on growth at two sites (ATH and HKK) and 
negative wet-season rainfall effects at one site (HKK). The latter is 
possibly associated with increased cloud cover during wet years.

Effects of temperature differed between warmer (HKK and RKW) 
and cooler sites (ATH and LAM; Figure S3). At warmer sites, years with 
higher seasonal temperature (Tmax) reduced ring width in three out of four 
season × temperature combinations, and did not lead to growth stimula-
tion in any case (i.e. we did not find positive coefficients for temperature). 
These negative effects are consistent with the expected effects of high air 
temperature on photosynthesis (through high Tleaf), water stress and res-
piration (Figure 1). Analyses of daily climate values for these sites revealed 
that Tmax exceeded 30°C on up to 142 of wet-season days and up to 
71 of dry-season days (Figure S4), likely leading to temperature-induced 
reductions of photosynthesis. At one of the cooler sites (LAM), a positive 
effect of temperature (Tmax) was found during the dry season, when tem-
peratures are lower (Figure 2). Higher temperatures during these dry and 
cool months may stimulate photosynthesis and wood formation.

3.3 | Climate × ca interactions in MEMs

The effect of ca on the climate–growth relations of T. ciliata can be 
inferred by comparing results of MEM sets A and B (without or with 
ca  ×  climate interactions). First, at three of the four sites, adding 
ca × climate interactions improved model fit and increased variance 
explained by fixed variables (R2

m; Table 2). Thus, adding ca × climate 

F I G U R E  3   Raw ring-width series 
of Toona ciliata trees (grey) and their 
mean (black) at four study sites. Sites 
abbreviations are explained in Table 1; 
sites are ordered with increasing mean 
annual temperature. The mean chronology 
(without detrending) is only shown 
for illustration purposes; all statistical 
analyses were performed on ring-width 
series for individual trees
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interactions increased explained variation in annual ring width of 
our study species. Yet, change in R2

m was small (0.01–0.03; Table 2), 
which indicates a reorganization of explained variance rather than 
the explanation of additional variance.

Second, inclusion of ca × climate interactions caused shifts in the 
sets of climate effects that were significant (compare Figure S6 and 
main effects in Figure 4). While the sign of significant coefficients 
never shifted between sets A and B, significant climate effects in set 
A sometimes shifted to non-significant in set B, and vice versa. For 
instance, at the ATH site, the model including interactions (Figure 4) 
contained significant negative effects of Tmax during the dry sea-
son and rainfall during the wet season, which were absent from the 
model without interactions (Figure S6).

Third, a comparison of the standardized coefficients of climate × ca 
interactions and main climate effects show that these have a compa-
rable magnitude. The average of absolute coefficients of interactions 
equalled 0.12 (SD = 0.09), while that for main effects was 0.11 (SD 0.04). 
Overall, these comparisons show that adding ca in climate–growth 
analyses for Toona improved model fit, slightly increased explained vari-
ance, caused shifts in significant climatic drivers and yielded interactive 
effects that have comparable magnitude to main climate effects.

3.4 | Rainfall × ca interactions

Rainfall × ca interactions in MEMs (set B) differed between sites 
(Figure 4). At one of the two cooler sites (LAM), we found a 

negative interactions for wet-season precipitation. This is con-
sistent with Hypothesis 1a: the expected response of a ca-in-
duced reduction in drought sensitivity. At the two warmer sites 
(HKK and RKW), we found positive rainfall × ca interactions. This 
implies that positive slopes of the ring-width versus rainfall rela-
tions became steeper at higher ca levels or negative slopes be-
came less negative. These interactions are in accordance with 
Hypothesis 1b and are expected at warmer sites. At these sites, 
the ca-induced reduction of gs may cause Tleaf during dry years 
to frequently exceed optimum temperature for photosynthesis. 
This effect may be enhanced if dry years also tend to be warm 
years, which was the case for both warmer sites (negative cor-
relations between Tmax and P, Table  S2). In addition, these two 
sites also experienced increase in Tmin over time (Figure  S3), 
which may counteract the reduction in drought sensitivity oc-
curring with gradual ca rise. In our MEMs, such warming-induced 
change in drought sensitivity could become apparent as positive 
ca × rainfall interactions, even if the mechanism is warming. Thus, 
increase in seasonal Tmax and Tmin during the study period at RKW 
and HKK may have induced an increase in drought sensitivity that 
was stronger than the reduction in drought sensitivity induced 
by ca rise.

Analyses for the common period (Set C, Table 2; Figure  S7) 
yielded the same ca  ×  rainfall interactions for two sites (ATH and 
LAM), a seasonal shift at one site (RKW) and loss of a temperature 
interaction at the HKK site. Thus, overall ca × temperature interac-
tions were quite robust to the shift in period.

Site Model set AIC R2
m R2

c df N

ATH A. Climate effects only 3,662 .22 .35 1,541 1,580

B. With climate × ca 
interactions

3,635 .25 .38 1,537 1,580

C. As B, but for common 
period

3,416 .25 .38 1,441 1,482

LAM A. Climate effects only 1,903 .16 .45 915 939

B. With climate × ca 
interactions

1,886 .18 .47 911 939

C. As B, but for common 
period

1,738 .20 .48 846 874

RKW A. Climate effects only 2,646 .25 .37 1,051 1,079

B. With climate × ca 
interactions

2,647 .26 .37 1,050 1,079

C. As B, but for common 
period

124 .12 .22 663 692

HKK A. Climate effects only 5,327 .11 .25 2,237 2,289

B. With climate × ca 
interactions

5,299 .13 .27 2,235 2,289

C. As B, but for common 
period

3,926 .11 .28 1,686 1,738

Note: Sites ATH and LAM are cooler; RKW and HKK are warmer. For the selected models, the table 
includes AIC, marginal R2 (R2

m, based on fixed effects only), conditional R2 (R2
c, both fixed and 

random effects), degrees of freedom (df) and sample size (N). Coefficients are shown in Figure S6 
(set A), Figure 4 (set B) and Figure S7 (set C).

TA B L E  2   Results of three sets of 
mixed-effect models (A–C) evaluating 
effects of climate and ca × climate 
interactions on ring width of Toona ciliata 
at four study sites
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3.5 | Temperature × ca interactions

Temperature × ca interactions in MEMs (set B) also differed between 
sites (Figure 4). We expected positive interactions at cooler sites 
(LAM & ATH) because of the stronger reduction in photorespiration 
during warm years and because at these sites of Tleaf does not often 
exceed the optimum temperature for photosynthesis. The positive in-
teractions of ca with Tmax during the dry (=cooler) season at LAM and 
the positive interaction of ca with Tmin in the wet season at ATH are 
consistent with such a response. Yet, a negative interaction (Tmax in 

wet season) was also found at LAM, which is not expected for a rela-
tively cool site where Tmax during the wet season averages 25°C. The 
negative correlation between wet-season Tmax and rainfall may help 
explaining these interactions: hotter wet seasons also tend to be drier 
(Table S2). Another possible explanation is that the incidence of days 
during which Tmax leads to leaf temperatures exceeding optimum for 
photosynthesis is similar for cooler and warmer sites during the wet 
season. This seems to be the case for the LAM site (Figure S4).

At the two warmer sites, one negative interaction was found 
(HKK), in accordance with Hypothesis 2a. This may be explained by 

F I G U R E  4   Mixed-effect model 
results of ca × climate effects on Toona 
ciliata ring width, at four study sites. 
Shown are standardized coefficients 
(mean and 95% confidence interval) of 
main climate effects and ca × climate 
interactions (Hypotheses 1a–2b). Tested 
seasonal climate variables (wet and dry) 
are precipitation (P, blue) and maximum 
temperature (Tmax, red). Sites ATH and 
LAM are cooler; RKW and HKK are 
warmer
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the ca-induced reduction in gs and increase in Tleaf, and is supported 
by the high frequency of hot days (Tmax > 30°C; Figure S4). Yet, neg-
ative interactions at HKK may also have resulted from the significant 
warming (Figure S2), which occurred alongside ca rise. Effects of ca 
rise and warming cannot be distinguished and warming may have 
aggravated negative effects of Tmax during the wet season (HKK).

Models for the common period (set C) yielded the same ca × Tmax 
interactions for the cooler sites, a seasonal shift at one warmer site 
(HKK) and a new (positive) interaction at the other warm site (RKW). 
The latter change is not in accordance with the expected response for 
a warm site (and during the warmer season), and we do not have an 
explanation for this result. In general, the change from set B to set C 
did not cause a major shift in MEM results that could be explained by 
recent global warming and recent increase in hot years at the warmer 
sites (Figure S4).

4  | DISCUSSION

Our analysis of ring-width measurements of T. ciliata revealed that 
recent ca rise caused a significant change in the sensitivity of tree 
growth to climatic variation. This shift in sensitivity was evidenced 
by a better fit of statistical models that included ca × climate interac-
tions (at three sites), the presence of robust ca × climate interactions 
in these models, and the changes in climate–growth relations be-
tween models with and without ca × climate interactions. We found 
that ca  ×  climate interactive effects on tree growth varied across 
sites that differ in mean climate. For the two cooler sites in our data-
set, results agree with hypothesized reduction in drought sensitiv-
ity (negative interaction, Hypotheses 1a). Temperature sensitivity 
shifted in different directions: the expected positive effect of ca rise 
on ring width was found during the cooler dry season (Hypothesis 
2b), whereas negative interactions were found during the hotter wet 
season (Hypothesis 2a). For the two warmer sites, drought sensitiv-
ity increased under ca rise and temperature sensitivity shifted such 
that hot years caused a stronger growth reduction. Both responses 
were in accordance with hypotheses for warm sites (Hypotheses 1b 
and 2a).

4.1 | Climate × ca interactive effects on 
Toona growth

The studied T. ciliata trees included in this study grew during a pe-
riod when ca increased by 28%. For one of the sites (HKK), stable 
isotope analyses revealed that ca rise caused an increase in iWUE of 
approximately 35% for our study species during this period (Nock 
et al., 2011; van der Sleen et al., 2015). Thus, Toona physiology has 
responded to ca rise at that site, and similar responses are likely for 
the other sites, given the generic ca-induced iWUE increases for 
tropical tree species worldwide (van der Sleen, Zuidema, & Pons, 
2017). Increased iWUE response likely involved both a reduction 
in transpiration (due to a reduction in stomatal conductance) and 

increased photosynthesis (due to an increase in ci). Tree-ring-based 
analyses of growth trends for the RKW and HKK sites did not yield 
evidence that these physiological changes have stimulated growth 
(Groenendijk et al., 2015; Nock et al., 2011; Rahman et al., 2018; 
van der Sleen et al., 2015). This suggests that tree growth is more 
strongly limited by rainfall, heat and/or nutrient availability than 
by ca; or that trees respond to ca rise by increasing organ turn-over 
rates, respiration or investments in other tree parts (van der Sleen 
et al., 2015). One of these factors—limitation of diameter growth 
by high temperature and low rainfall—has indeed been observed of 
T. ciliata, both in the analyses included in this study and elsewhere 
(Heinrich et al., 2008; Rahman et al., 2018; Shah & Mehrotra, 2017; 
Vlam et al., 2014).

The above insights into growth-determining factors and ca 
responses lead to the expectation that ca rise would modify cli-
mate–growth relations of Toona, or—put differently—that effects 
of ca rise on Toona growth depend on its sensitivity to climatic 
fluctuations. Our results confirm that this is the case. Interactive 
effects of ca and climate on Toona growth seem to reflect a bal-
ance of ca-induced increase in water-use efficiency and decrease 
in drought sensitivity on the one hand, and ca-induced increase 
in leaf temperature beyond the temperature optimum for photo-
synthesis on the other hand. These results are in line with those 
from a mechanistic tree-growth model, parameterized for T. ciliata 
at the HKK site and forced by observed annual temperature and 
rainfall (Schippers, Sterck, Vlam, & Zuidema, 2015). Simulations of 
annual wood production using this model yielded temporal fluc-
tuations that showed high correlations with the HKK tree-ring 
chronology, but this match did not improve when effects of ca rise 
were simulated.

Overall, our results suggest that for our study species, cli-
mate × ca interactions lead to complex responses that do not neces-
sarily result in ca-induced growth stimulation and depend on season, 
site and time period considered. As a result, it seems that for our 
study species ca rise did not cause an overall ‘growth bonus’, but 
rather induced subtle and variable modifications of climate–growth 
relations (cf. Clark, Clark, & Oberbauer, 2013).

We deliberately did not interpret the main ca effects in our 
MEMs because tree age and ca both increased over time, and hence 
it is difficult to partition variance driven by ontogeny or by ca in our 
models. Furthermore, we aimed to evaluate the effects of ca rise on 
climate–growth relations, and not on growth averaged over multiple 
years. We therefore did not conduct any detrending on the tree-
ring series and we assumed a linear effect of age on log-transformed 
ring width (confirmed by significant age effects in models and clear 
ontogenetic relations, Figure 4; Figure S5). Thus, negative or positive 
effects of ca in our statistical models cannot be separated from those 
caused by ontogenetic effects and climatic trends.

Can similar results be expected for other tropical forest species? 
T. ciliata exhibits climate–growth relations that are similar to those 
obtained from other tropical forest species (Rozendaal & Zuidema, 
2011), has experienced comparable increases in iWUE compared to 
other tropical species (Nock et al., 2011; van der Sleen et al., 2015) 
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and occurs along large climatic gradients (Figure S1). We therefore 
expect that studies on other tropical tree species would reveal 
ca  ×  climate interactions that depend on mean climate in similar 
ways. The strength and abundance of these interactions may dif-
fer depending on climate envelops. For instance, ca × T interactions 
would probably be less common for specialists of warmer areas that 
possess a higher optimal leaf temperature for photosynthesis, and 
more common for specialists of cooler areas. Clearly, it is import-
ant to test this expectation and extend this analysis to other spe-
cies. Possible extensions are to include other Toona species (e.g. T. 
sinensis, T. fargesii, T. sureni and T. calantas) or setting up networks on 
other tropical tree genera with high potential for tree-ring analysis 
(e.g. Cedrela and Entandophragma). Such networks combine a large 
climatic variation with limited phylogenetically induced differences 
in climate responses.

4.2 | Results of experimental ca × climate 
manipulations

To put our results on ca × climate interactive effects on tree growth 
in context, we performed a qualitative review of ca  ×  water and 
ca × T experiments. We focused our review on (sub-)tropical spe-
cies, implying that it is not complete for extra-tropical studies. 
Our review only included studies on seedlings or small trees, as 
ca  ×  climate experiments for canopy trees or forests are absent. 
We included 12 publications, in which six tropical, two sub-tropical 
and four temperate tree species were studied (Table S3). All studies 
were conducted in a greenhouse except for one conducted in cli-
mate controlled field chambers (Quentin et al., 2015). A total of 19 
species × study combinations were included (six ca × water studies, 
seven ca × T factorial treatments and six three-way factorial experi-
ments). For each study, we evaluated whether results are consist-
ent with one of the four hypotheses (Figure 1) and summarized this 
in Table 3.

The 12 reviewed ca × water experiments yielded variable interac-
tive responses (Table 3). Increased iWUE was found for one tropical 
species, for which drought-induced reduction in photosynthesis dis-
appeared under elevated ca (de Oliveira & Marenco, 2019a, 2019b). 
No significant interactions were found for four other tropical species 

(Cernusak et al., 2011; Kelly et al., 2016). For one subtropical spe-
cies, the negative effect of drought on photosynthesis was offset by 
increased ca (Hypothesis 1a), whereas the other subtropical species 
studied did not show significant interactions (Lewis et al., 2013). For 
temperate species, only one out of four species showed a signifi-
cant interaction, where photosynthesis increased to a new maxi-
mum under high ca with increasing water availability (Hypothesis 1b; 
Duan et al., 2015). Overall, these results show a stronger support for 
Hypothesis 1a than Hypothesis 1b, although non-significant results 
dominate.

The 13 reviewed ca × T experiments yielded either positive or 
non-significant interactions (Table 3). The only study on a tropical 
species showed that photosynthetic capacity increased faster with 
temperature under elevated ca (Fauset et al., 2019). For subtropical 
species, positive ca × T interactions were found on plant dry mass 
and net photosynthesis (Ghannoum et al., 2010; Lewis et al., 2013; 
Logan et al., 2010). No significant ca × T interactions were found for 
two temperate species. Thus, all significant interactions were in line 
with Hypothesis 2b (Figure 1). A more comprehensive meta-analysis 
of ca × T experiments for tree seedlings showed that both positive 
and negative interactions are found, but overall ca × T interaction 
was non-significant (Baig et al., 2015).

These experimental results show that under elevated ca, tree 
seedlings tend to have a higher temperature sensitivity (enhancing 
photosynthesis and growth) and a lower drought sensitivity. These 
responses are consistent with our Hypotheses 1a and 2b (for cooler 
sites) and with our results for the two cooler sites (ca  ×  T for dry 
season). For the two warmer study sites, our results suggest increas-
ing drought sensitivity under elevated ca which is not in accordance 
with experimental results. This discrepancy is likely explained by the 
fact that most experimental studies are performed at lower tem-
peratures (and thus leaf temperature) and at lower irradiance levels 
(and hence air and leaf temperatures) than experienced by the trees 
included in our study. Thus, in experimental seedlings, leaf tempera-
ture likely did not exceed the optimum for photosynthesis, while this 
appears to be the case for our sampled trees (Figure S4; Mau et al., 
2018; Pau et al., 2018).

4.3 | Using tree rings to detect ca × climate 
interactions in trees

In this study, we applied tree-ring analyses to explicitly test for cli-
mate × ca interactions of large trees. This is the first study to do so 
for tropical trees, and one of the first for trees in general. Two earlier 
tree-ring studies on an oak species have evaluated shifts in climate–
growth in response to ca rise (Voelker et al., 2017; Wyckoff & Bowers, 
2010). Voelker et al. (2017) evaluated shifts in temperature sensitivity 
of oak growth under low and high ca, by comparing tree-ring series in 
paleo and modern wood. They found that temperature sensitivity was 
stronger in modern oaks that grew under high ca (positive interaction, 
Hypothesis 2b). Wyckoff and Bowers (2010) compared drought sensi-
tivity before and after 1950 and found a reduction in the sensitivity of 

TA B L E  3   Results of a qualitative literature review on tree 
responses to experimental ca × water and ca × temperature 
interactions

Interaction tested Studies supporting hypothesis N

ca × water availability 1a 1b NS  

25% 8% 67% 12

ca × temperature 2a 2b NS  

0% 62% 38% 13

Note: The review included studies from temperate, subtropical and 
tropical species, see full overview in Table S3. N is the number of 
study × species combinations.
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tree growth to drought (PDSI) with increasing ca, in line with Hypothesis 
1a. Both studies tested for time  ×  climate interactions—rather than 
ca × climate interactions as we did, but in both cases significant inter-
actions were interpreted as effects of ca rise. Other tree-ring studies 
have also reported significant shifts in climate–growth relations over 
time, but did not link these to ca rise. For instance, a global analysis of 
tree-ring studies identified large-scale shifts in the sensitivity of tree 
growth to temperature during the 20th century (Babst et al., 2019). 
The observed decrease in temperature sensitivity in cold-dry systems 
(boreal forests) and increased drought sensitivity across temperate 
and boreal forests are not in accordance with expected responses of 
ca rise for cooler sites (Hypotheses 2b and 1a) and were interpreted 
to result from warming (Babst et al., 2019). Yet, responses for other 
regions (cold-humid and temperate) are consistent with ca-induced 
responses but were not interpreted in this context. Our results and 
these examples show that ca rise may help interpreting recent shifts 
in climate–growth relations, and we suggest that tree-ring researchers 
evaluate this possibility in dendrochronological studies.

What is the potential of using tree-ring chronologies to evaluate 
ca × climate interactions on tree growth? Important virtues of tree-
ring based analyses include the flexibility in selecting locations, the 
spatial and temporal extent at which studies can be performed, and 
the fact that responses of canopy trees are evaluated (instead of seed-
lings). Species producing annual tree rings are distributed across many 
biomes and recent advances in tropical dendrochronology now allow 
such analysis for tropical forests (Brienen, Schöngart, & Zuidema, 
2016). A second advantage is the public availability of thousands of 
tree-ring chronologies in international databases (e.g. International 
Tree-Ring Data Bank [ITRDB]), albeit with limited representation of 
tropical species (Babst et al., 2019). And finally, the analysis of annual 
variation in tree growth to evaluate effects of ca rise on tree growth 
avoids methodological issues in growth trend analyses using tree rings 
(Brienen, Gloor, & Ziv, 2017; van der Sleen, Groenendijk, et al., 2017).

There are also several drawbacks of the use of tree-ring chronolo-
gies to evaluate ca × climate interactions. For instance, tree-ring-based 
inferences on ca effects are limited to the responses to past ca levels, 
which can differ from those to future ca rise. Second, chronologies 
are often constructed for the most climate-sensitive populations or 
individuals, thus overestimating climate effects (Klesse et al., 2018). 
Third, a large share of chronologies stored in international databases 
does not include growth rates in recent decades, and is thus of limited 
use (Babst et al., 2018). And finally, analyses of tree-ring chronologies 
often do not allow separating effects of concurrent ca rise and warming 
on tree growth. We therefore call for multifactorial experiments to be 
conducted on tropical tree species to quantify effects of temperature 
and ca, preferably on canopy trees (Cavaleri, Reed, Smith, & Wood, 
2015; Zuidema et al., 2013).

4.4 | Implications and concluding remarks

Overall, we conclude that tree-ring analyses can provide an important 
contribution in testing and quantifying ca × climate interactions and 

therefore in understanding effects of elevated CO2 concentrations. 
This contribution is particularly large when tree-ring studies focus on 
poorly represented biomes, include representative trees, include re-
cent growth rings, are interpreted cautiously, and are shared in public 
databases. Our approach can be extended with additional wood-based 
measurements that represent tree responses to ca × climate interac-
tions: 13C isotope analyses (to infer stomatal response) and wood ana-
tomical measurements (to infer tree hydraulic responses).

Our results suggest that effect of CO2 rise in DGVMs may be 
overestimated as these generally assume positive ca  ×  T interac-
tions and negative ca × P interactions, both of which likely enhance 
growth. For warmer sites and during warm seasons at cooler sites, 
we also found the opposite interactions, suggesting that growth re-
ductions may occur under elevated ca during warm and dry years. 
Our results provide opportunities to benchmark tree-growth rates 
predicted by vegetation models (Clark et al., 2017). In addition, our 
framework of hypothesized ca × climate interactions can be used to 
verify the geographic extent and climatic conditions for which NPP 
(or NPPstem) predictions of DGVMs agree with the four hypothesized 
interactions. We conclude that a better representation of the com-
plex ca × climate interactions in DGVMs is likely needed to reduce 
uncertainty in predicting tropical forest responses to future ca rise 
and climatic change.
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