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1 Foreword

This manual describes a stochastic (or Monte Carlo) model for dietary risk assessment of chemical
compounds based on monitoring data concerning the quality of agricultural products. Exposure
assessment is an important step in risk assessment of chemical compounds, such as agricultural
chemicals (pesticides, veterinary drugs), toxins (e.g. mycotoxins) and environmental contaminants
(e.g. dioxins). Occasionally we use the term residue when we refer to compound and the term
individual when we refer to consumer but the use of multiple names is avoided as much as possible.

The methods for probabilistic modelling described here are implemented in the program MCRA
(Monte Carlo Risk Assessment). MCRA is a computational tool for dietary risk assessment. MCRA
can calculate intake distributions for both short-term (acute) and long-term (chronic) exposures.
Basically, it simulates daily consumptions by sampling a food consumption database and combines
these with a random sample from either a compound database (empirical distribution) or a parametric
distribution of compound concentrations. The result is a full distribution of intakes, rather than
traditional deterministic methods which only provide a point estimate. Percentiles of the intake
distribution can be used to assess risks by relating them to e.g. an acute reference dose (ARfD). In a
chronic risk assessment, MCRA calculates the distribution of the usual exposure based on the average
concentration and the empirical distribution of consumption between consumers and between
different consumption days of the same consumers. Percentiles of this usual intake distribution can
then be related to e.g. the acceptable daily intake (ADI). Uncertainty of percentiles can be established
by bootstrapping. MCRA allows including processing factors (e.g. the effect of cooking on the
concentration) and variability factors (to correct for the fact that monitoring data are obtained from
composite samples, whereas consumers may eat individual units). Analyses can be done for a total
population or for a subpopulation (e.g. children, males or females or consumption-days only). The
effects of concentrations below analytical reporting limits can be assessed. Large portion consumption
and the highest compound or median compound in case of bulking or blending in the composite
sample is used in IESTI calculations.

The current MCRA system 1is internet-based and can be wused by registered users at
http://mcra.rikilt.wur.nl. It consists of a basic program to do the computations, written in the statistical
package GenStat (2005), and of additional database selection possibilities implemented in HTML and
Active Server Pages (ASP). MCRA runs with Component One Chart (1999) which offers the
possibility to manipulate graphical output after it has been obtained. An earlier version of the GenStat
MCRA program, as well as an implementation of the Monte Carlo method in @Risk (1996), have
been described in van der Voet et al. (1999), and further elaboration was given in de Boer & van der
Voet (2000, 2001) and van der Voet et al. (2001).

This manual gives a complete description and justification of the statistical methods used in the
program MCRA and offers an introduction to assist with the practical application of MCRA in dietary
risk assessment. The documentation describes MCRA Release 4. It covers the current release 4.0
(release 4 version 0) and all future updates starting with the same release number. Major updates of
the program, encompassing new or improved facilities will be released with an increased release
number and a new manual.

MCRA is a result of an ongoing co-operation between RIKILT and Biometris since 1998. RIKILT co-
ordinates the Dutch KAP programme (Quality of Agricultural Products) where results of monitoring
programs for chemical compounds in food are gathered in a national database. RIKILT also has a
recipe database to link food codes from the Dutch food consumption table to primary agricultural
products. Biometris contributes statistical models and programs for quantitative risk analysis.

Since 2005, the program is extended in collaboration with RIVM to include the models similar to
those available in the STEM (Statistical Exposure Modelling) software.


http://mcra.rikilt.wur.nl/

2 Getting started with MCRA

2.1 Introduction

The MCRA system (Monte Carlo Risk Assessment) can be used for assessment of risks due to the

intake of compounds on food products. MCRA provides the following options:

e Acute probabilistic risk assessment: MCRA will calculate the exposure distribution (mg or
microgram compound per kg body weight) from input data on consumption and compound
concentrations in the food.

e In addition, age dependent percentiles and bootstrap confidence intervals may be estimated using
simulated acute intakes as input data.

e Percentiles: the exposure distribution can be characterised by percentiles, i.e. compound
concentration levels exceeded with only a small specified probability (for example the 99"
percentile p99 is exceeded only in 1% of the cases).

e Uncertainty due to small samples: bootstrap sampling of Monte Carlo variation, of consumers and
of compound concentrations to assess the uncertainty of the percentiles in the form of an
approximate confidence interval.

e Calculation of point estimates (IESTI) and comparison with Monte Carlo results.

e Conversion of food consumption to the consumption of primary agricultural products, e.g. convert
pizza consumption to consumption of wheat, tomato, cheese, etc.

e Parametric or empirical modelling of concentrations: MCRA can resample the compound
concentration data directly (empirical model), or it can sample from a binomial-lognormal model
fitted to the concentration data (parametric model). Note: consumption data are always re-
sampled empirically from the consumer data set.

e Modelling of processing effects: sometimes it is known that concentrations are reduced by food
processing, e.g. cooking, and frying. MCRA can incorporate processing factors as fixed effects or
by sampling from a processing factor distribution. The latter possibility requires the specification
of a nominal and an upper value for the processing factor.

e Modelling of unit variability: compound concentrations are often measured in large composite
samples, thus hiding part of the variability that exists between individual units. MCRA has
extensive possibilities to model unit variability e.g. sampling from a Beta, Bernoulli or Lognormal
distribution.

e Modelling of non-detects levels: compound concentrations are often only known above a certain
limit, the Limit Of Reporting (LOR). In a worst-case analysis all non-detect measurements may
be replaced by the LOR value.

e Subset selection: extensive possibilities to select the data on age, weight or sex of consumers, day
of consumption, foods, primary products, and year, country and sampling type of concentration
data.

e Insertion of worst case values for products without concentration measurement values.

e Calculate exposure distribution for consumption-days only

e  Chronic risk assessment: MCRA calculates the usual intake distribution or chronic exposure when
the total number of consumption days per consumer is 2 or more. In MCRA, basically, two
methods are implemented: the first method is using the betabinomial distribution to model the
intake frequency. The lognormal distribution is used to model logarithmically transformed
intakes. Both distributions are integrated to estimate the usual intake distribution for the entire
population. In an extended version, the usual intake is related to age and age-dependent
percentiles and bootstrap confidence intervals are estimated. The second method follows an
approach proposed by Nusser et al. (1996, 1997) and Dodd (1996). The chronic exposure
distribution is characterised by percentiles and bootstrap confidence intervals on these percentiles.



2.2 Registration

To use MCRA, navigate your web browser to http://mcra.rikilt.wur.nl. The opening screen gives some
general information, as well as links to fixed versions of the Manual of the latest release. You can find
the latest developments and most recent information in the On Line Manual.

As a potential new user, you will first have to fill in a registration form. Click on registration-form in
the last but one sentence. The form is displayed in Figure 1. Here you have to specify your name,
organisation, address and email address, and you can choose a user name (no spaces allowed) and a
password for use of the MCRA system. Clicking the ‘OK’ button will send the request to the MCRA
webmaster at RIKILT, and you will get a response by email as soon as possible.

Address :@j hittp: fimera.rikilk, waur  nlfscriptsimcra, exefpage=newuser

iy

@ Login

» Register Apply to get access to the MCRA web application

Fill in this form and subrmit it to apply.
Within 3 working days wou will receive an e-mail message
whether you will be granted access. All fields are required.

Username
Fassword
Canfirm passward
E-mail address
Full name
Qrganisatian
Department

Fostal address

Figure 1: Registration form

Registered users can login by clicking on Login to MCRA for reqgistered users in the first line of
the home page. By specifying their username and password the first screen of the MCRA Website is
shown: MCRA Main Menu.

2.3 MCRA Main menu

In Figure 2 the possibilities within the Main menu are shown:


http://mcra.rikilt.wur.nl/
http://mcra.rikilt.wur.nl/mcra/

MCRA: Monte Carlo Risk Assessment

Stochastic modelling of chemical intake from food

Main menu

« Manage input/output

« MCRA4.0 NEW

« MCRA 4.0 (field trial data and Dutch consumption data) NEW
s Older versions

« Registered user information

+ Logoutfrom MCRA website

« Help

On line Manual of Release 4, last update: 121 572005
Manual of Release 4. Printversion date: 12152005

Figure 2: MCRA Main Menu

e Clicking ‘MCRA 4.0’ starts the preparations needed to do an MCRA analysis.

e Clicking ‘Manage input/output’ gives the possibility to upload (and download) your own data
(see 2.4) or to download output from a former MCRA analysis.

e Clicking ‘Older versions’ starts the preparations needed to do an MCRA analysis with older
versions of the program. However, older versions are not supported anymore.

e C(Clicking ‘MCRA 4.0 (field trial data and Dutch consumption data)’ also starts the
preparations needed to do an MCRA analysis. However it gives the possibility to edit your
own compound concentration data.

e Clicking ‘Registered user information’ enables you to view which information about you is
stored in the user database.

e Clicking ‘Help’ gives explanation about the possibilities of the buttons in Main menu.

e Clicking ‘Logout from MCRA website’ is the official way to leave the MCRA website. Your
personal data files, latest output files and the latest input options remain stored for later use.

2.4 Data needed

Which data do you need to have in order to run MCRA simulations? All data for MCRA are stored in
Microsoft Access database tables according to fixed formats. So, if you want to use own data, you
will need to prepare MS Access database files off-line, and then upload them to your personal user
area on the MCRA website. The ‘MCRA 4.0 (field trial data and Dutch consumption data)’ button in
the Main menu (see 2.3 ) offers some possibilities to edit your data on-line. However, on-line editing
is restricted to compound concentration values, variability and processing factors, acute reference
dose (ARfD) and average daily intake (ADI) (see Ch. 7).

In Chapter 9 a full description is given how data should be saved in MS Access database files. When
using your own databases you must have exactly the same names for tables and fields (columns).

Basically input data for MCRA originate from two sources: food consumption surveys and monitoring
programs on compound concentration data. Typically surveys on food consumption patterns provide
information on food intake or food as eaten as such. Monitoring programs measure compound
concentration levels on primary agricultural product. However MCRA estimates dietary risks for
primary agricultural products only. Therefore a recipe database is necessary to convert amount of food
as eaten to amount of primary product. In the MCRA system table ‘foodconversionmodel’ translates
consumption data to amounts of primary agricultural products. Compound concentration data are
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measured on primary agricultural products, so now the data are suited to be used in MCRA. An
important role plays table ‘products’ in which all coding and labels on both foods as well as primary
agricultural products are stored.

The MCRA system has a central database which offers a selection of example data. So it is possible to
run example analyses without having data yourself. However, MCRA is primarily designed to work
with user databases, or with a mix of user data and centrally available data. For example, you can
provide your own data on compound concentrations and combine these with the consumption survey
data in the central database to produce a risk assessment for this compound. BE CAREFUL when
using tables originating from different databases: the codes of the primary agricultural products, foods
of centrally supplied data, your own data and/or downloaded data should be consistent with each
other.

Consumption data are portions of food (consumed at different days) of consumers of whom the age,
weight and sex must be known. Food data should be converted to primary agricultural products by
means of a food conversion model. So, speaking about the food pizza, the percentages of the primarily
agricultural products wheat, tomato, cheese etc. in a pizza must be known.

The second type of data, compound concentration data, are the amounts of compound found on
monitoring samples of primarily agricultural products.

As a registered MCRA user you have complete control over the file management in your personal
area by starting ‘Manage input/output’ in the Main menu (see 2.5 ).

2.5 Manage input/output

The ‘Manage input/output’ button in the Main menu brings you to a screen where you can upload
your data files (see Figure 3). Each user has a personal data area, with two subdirectories named IN
and OUT. The IN directory can be used to upload your own MS Access database files.Files can be
uploaded directly or in zipped form. You can also zip, rename or delete files. MS Access database
files and zip files can also be downloaded. Note: subdirectories IN and OUT should never be deleted.

Listing of files folder b oerin

Help

back to main menu Mew falder

5 hoer 2 folder(=], Rename folder
ﬁ in

] 0_bfrOS01 24 mdb - 22292 5 kB 102572005 1:43:12 PM. Empty folder

L O_bfr050125 mel - 225239 kB 1/28/2005 1:458:41 PM.

50 day TEF mdb - 147 5 kB 9/7/2004 10:29:10 AM. Zip folder
{ﬁ out
\;»‘ averconcocomres dat - 0,4 kB 3232005 11:23:02 AM.
“# ayerconcoomres him - 3,7 KB 3232005 11:23:02 AM, Unload afile
2% pootstrap et - 04 KB 3232005 11:23:02 AM. Allfiletypes are allawed to upload
2% bootstrap Hm - 2,8 kB 3232005 11:23:02 AM.
\;»‘ consprobdistr dat - 0,1 kB 372302005 11:22:49 AM. M

“E# consprobdistr htm - 0,1 kB 3/23/2005 11:22:34 AM. (D Stz e i fellier Tiosi e EleEee

V cumusaldst - 01 kB 372302005 11:22:49 AWM.

Figure 3: Manage input/output

Output from MCRA will be written to your personal OUT directory. To download output for off-line
viewing do the following. Go to the central menu (see Figure 6), click the View-output button and
click DownloadOutput (see Figure 4). Output files are downloaded in a zipped format. The download
includes a file ‘viewoutput.htm’ which gives you the same options to study your output as available
on the website.

Occasionally, after pasting ComponentOne Charts into Word the chart is not displayed (at all) and
instead, an icon appears. To our experience pasting charts from the clipboard encounters no
difficulties when the Word document is opened first, then press the 'Copy to Clipboard' button and
paste the contents of the clipboard into the Word document.
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Occasionally system faults occur due to errors like incorrect database contents, queries giving empty
subsets, subset selections combining inconsistent levels or scripting errors. The best way to proceed is
to log out and enter the website again (login). Then click the ‘Manage input/output’ link in the main
menu, click your personal directory link or the ‘in’ or ‘out’ subdirectory links (a number of buttons
appear) and click the ‘Clear history’ button: all system files (files created by MCRA, but not visible)
are deleted from your personal directory. Your own files on the ‘in’ or ‘out’ subdirectory are not
cleared.

Preparing to download ...

You will get a dialog window asking what to do with a file named
MCRAresuUltsx zip (where xis a personal code). Choose "Save as”. After
downloading unzip this file, and start viewautput htm in Internet Explarer.
» Mote 1: Depending on your browser settings vou may first he asked if
ywou wantto apen ar save the file getdownloadresults j
dialog window, choose Open file from current locatio
» flote 2: Ifyou getthe message File Download "Sor
your computer... Would vou like to apen the file or sa% Do you want to open or save this file?
camputer' (MCRAresultsx zip), choose Save.

Mame: MCRAresultsZ.zip

Ifyour download does not start autamatically, click he @ Type: WinZip File, 355 KB

From: mcra.rikilt, vaur . nl

Open l [ Save l [ Cancel

potentially harm pour compuker. [F pou do not trust the source, do not

@ ‘while filez from the Intemet can be useful, thiz file wpe can
open or zave this software, What's the risk?

Figure 4: Download output for off-line viewing

2.6 Starting the MCRA program

If you want to run MCRA, click the ‘MCRA 4.0’ button in the Main menu (see Figure 2). Then
depending on whether you are a new user or not one of the 2 screens of the MCRA central menu (see
Figure 5 and Figure 6 ) is shown.

The MCRA system is essentially a cluster of activities build around a central menu. Each activity can
be started from the central menu window and after finishing the activity the user can return to the
MCRA central menu to do a new analysis.

New users are automatically brought to the MCRA central menu screen of Figure 5. Clicking the ‘go’
button starts the selection of food consumption and compound concentration tables:
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MCRA 4.0 central menu

Overview

history is cleared

start selection of consumption and compound tables go

& fourlastjob is succesfully completed

e Serveris readyto accept a job.

wigw output

hackto main menu

Figure 5: MCRA central menu, start selection of tables, survey and compound

In all subsequent cases the MCRA central menu shows the latest selection of compound and
consumption survey (see Figure 6).

MCRA 4.0 central menu

Overview

compaound:
cansumption survey:

products:

CHLORPYRIFOS
DNFCS-3

only products with positive concentration measurements

data selected on: 1172872005 10:54:38 AM

selection of consumption and compound tables

oo | show | clear |

subset selection 4o |

go to MCRA input form go

sk | clear |

# Yourlastjob is succesfully completed

« Serveris readyto accept a job.

view output

hackto main menu

Figure 6: MCRA central menu

The first thing you have to do is selection of the food consumption and compound concentration
tables. When you are a new user this is the only possibility in the MCRA central menu. (see Figure 5).
When you already have made a selection, for example in an earlier session, you can go on with the
same selections as before by clicking the go-to-MCRA-input-form ‘go’ button (see Figure 6).
However, if you want to select new data you can click the selection-of-consumption-and-compound-
tables ‘clear’ button and you get the MCRA central menu screen of Figure 5.
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2.6.1 Selection of the tables

In MCRA food consumption data are related to compound concentration data. You can select tables
from remote data servers with a central database or supply your own data by clicking the selection-of-
consumption-and-compound-tables ‘go’ button in the screen of the MCRA central menu (see Figure
6). After clicking the ‘go’ or ‘clear’ button in the central menu a screen is entered (see Figure 7)
displaying a list of data servers that are sharing data with you (according to your user credentials).
Select one or more data servers and click the ‘go’ button. In Figure 7, data server ‘Rikilt (NL)* and
“Your own databases’ are checked. In Figure 8 all databases that are available to you (according to
your user credentials) are shown. From here you can select databases for further use in the MCRA
analysis

MCRA Monte Carlo Risk Assessment

Selection of dataservers

= Inthe list below you find dataservers that are sharing data with you.

» Select one or more ofthe servers whose data you wish to use for a MCRA analysis.

select server I Italy
[~ Denmark
™ Czech Repuhblic
[ Biometris
[ Sweden
M Rikilt (ML)

M vour own databases

press oo | clear info

hack to central menu
back to main menu

Figure 7: Selection of data servers

As mentioned before coding in different tables should be consistent. Therefore the safest way to select
your data is to select them using one source. If not, convince yourself that data coming from different
sources are consistent and suited for your purposes.

From each of these sources you have to know what kind of data they include. Clicking the ‘info’
button and in the (not shown) next screen clicking the buttons with country names gives the latest
information. You can select whole databases or select tables from different databases making
combinations from centrally supplied data or user data.
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MCRA: Monte Carlo Risk Assessment

Selection of databases

+ Inthe list below you find servers and databases.

e Select one or more databases thatyou wish to use for a MCRA analysis.

select databases from list:
Rikilt (ML) W dutch pesticides.mdhb

™ meradbtest mdb
[ jiri.mdh
[ pesticides0203 . mdh

vour own data W mcradb.mdhb
I mcradbold.mdh
I mcradiox.mdb
™ meramyco2 mdb
™ mera_3.1test.mdb
I gg.mdhb
I solanin03.mdhb
[ systemft.mdhb
M wealdo.mdb

W worstcase.mdb

press Qo I clear info

backto central menu
hack to main menu

Figure 8: Selection of databases

Figure 9 displays the selected databases and shows which tables are available in each database. You
may select a whole database at once (check ‘All Tables’) or make a combination of tables from
different databases as done in Figure 9.

Note that while scrolling your mouse over the checkboxes the table name is displayed in a red, green
or grey textbox. It is compulsory to select all tables for which a red textbox appears
(Foodconsumption, Foodconversionmodel, Products, Individual, Compounds, and Country). It is also
compulsory to make a choice between one of the tables containing compound concentration data
(Concentration, Summarydata and Histogramdata). These tables have their table name displayed in a
green textbox (see also 3.2.1 ). All tables with a grey textbox are optional (Productgroup,
Productsubgroup, Agriculturaluse, Processing, Processingfactor, VariabilityProd,
VariabilityCompProd and VariabilityProcCompProd). Make sure you select all compulsory tables
otherwise the table selection menu keeps returning with a warning which tables are missing. Make
also sure that in your selection of tables each type of table is represented only once. By checking
check-columnnames MCRA performs a check whether all necessary columns are available in the
selected tables and if not, produces a report of errors found.

Click the ‘go’ button to select the checked tables.
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MCRA: Monte Carlo Risk Assessment

Table selection for MCRA analysis

Select data tables by checking the boxes below, then click the select-tables 'go’ button

Do not select mare than one tahle with the same name.

Faod Food
con con Concen  Sum  Histo
sump  wersion  Indivi Com tra mary  gram
Database: tion  model  dual  pounds tion data  data  Country
dutch
n 8 F - - W
pesticides.mdh
meradb.mdh v v v o ™ I
waldo.mdb - - ° r ™
worstcase.mdh r - ™
W check columnnames

clear all settings clear

back to main menu

Figure 9: Table selection for MCRA analysis

2.6.2 Selection of food consumption survey and of compound
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After clicking the select-tables ‘go’ button the screen of Figure 10 is shown. For this example only
‘All Tables’ of the ‘dutch pesticides.mdb’ database is checked in Figure 9.
If there are consumption data from more than one survey in the selected food consumption table you

are required to choose one survey from the scroll-down menu.

An MCRA analysis is performed on one compound separately. So, if there are more compounds in the
selected Compounds table you are required to select one compound from the scroll-down menu (see

Figure 10).
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MCRA: Monte Carlo Risk Assessment

Selected tables for MCRA

You selected the following CENTRAL files and tables:
dutch pesticides. mdh Foodconsumptian

dutch pesticides mdh Foodconversionmadel
dutch pesticides mdh Products

dutch pesticides.mdh Productaroup

dutch pesticides.mdh Product_subgroup

dutch pesticides. mdh Individual

dutch pesticides. mdh Compounds

dutch pesticides. mdh Concentration

dutch pesticides.mdh Country

dutch pesticides mdh Agriculturaluse

dutch pesticides.mdh Frocessing

dutch pesticides. mdh Processingfactor

dutch pesticides. mdh VariahilityProd

dutch pesticides. mdh VariahilityCompProd
dutch pesticides. mdh VariahilityProcCompProd

The database contains more than 1 survey, make a selection: DMNFCS-3

The database contains 325 compounds, make a selection: CHLORPRIFOS w

click after making your choice

hack to selection of tahles for MCRA
hack to main menu

Figure 10: Selection of consumption survey and of compound

2.6.3 Selection of the products

After selecting tables a check is made on the number of primary agricultural products involved. For
consumed products (determined via the foodconversionmodel table), three situations may occur:

1. on some products only positive concentration values are measured,

2. on some products only non-detects are found,

3. on some products no concentration measurements are made (i.e. no positives nor non-detects)

Now, the user is confronted with three choices (see Figure 11):
1. continue with only the products for which positive concentration measurements are available
2. continue with products for which concentration data are available i.e. positive concentrations
and/or non-detects
3. continue with all products i.e. also products without concentration measurements and let the
program check the Agriculturaluse table (see 9.4.9 )
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MCRA: Monte Carlo Risk Assessment

Table selection for MCRA analysis

The name ofthe food consumption survey is:  DNFCS-3
In this survey the number of foods is: 557
and the number of products: 118
The selected compound is:  CHLORPYRIFOS
Ofthe 118 consumed products:
for 25 products positive concentration values are available.

for 70 products measurements have been made but only nondetects were found. Include these products in
the analysis if you want to replace them with the limit of reparting (LOR).

for 23 products no measurements have heen made. Include these products in the analysis ifyou have
infarmation on concentrations for those products for which agricultural use is allowed.

selected consumption and compound tahles shiow
current suhset selection show

* Continue with 25 products (with positive concentrations)
" Continue with 25 + 70 = 95 products (measured)

" Continue with 28 + 70 + 23 = 118 products (all)

press after making your choice go

hack to select another compound
hack to selection of tables for MCRA
hack to main menu

Figure 11: Product selection for MCRA analysis

After you have made your choice and clicking the ‘go’ button you enter the MCRA central menu (see
Figure 6). Clicking the start MCRA ‘go’ button brings you to the MCRA options menu treated in
Chapter 3 .

More information about selection of the consumer population, foods and/or products can be found in
Chapter 6 .
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3 Specifying MCRA options and running a job

3.1 Overview

After a selection is made of the required and additional tables, clicking the ‘go’ button of the central
menu (see Figure 6) brings you to the MCRA input form, see Figure 12. In this chapter all options of
the input form are discussed. Often, you encounter references to paragraphs in Chapter 5 for more
theoretical background.

When the MCRA input form is entered for the first time, it looks like Figure 12 (default options
shown).

MCRA program options ne Monte Carlo Risk Assessment
Type of analysis ¢
risktype ™ acute " chranic {optianal) ; 5 :
L2 Choose default option set; LP=r2® hd submit MCRA job
i is ' MNotification o
uncertainty analysis Vas no save user defaults by E-mail? Ves no
Acute risk model Concentration data
concentration maodel | empirical v change options Processing and non-detects
nurnber of Monte Carlo iterations (190000 Additional
number of computational chunks |10 change options IESTI and consumption days only
unitvariability madel | no unit variability R g =
Uncertainty analysis
randorm seed |2 - |
_ : change options Bootstrap options
intake model | only empirical estimates w
number of bootstrap samples 190 Olltpllt

change options i
nurnber of iterations per bootstrap sample 10000 M Graphics and tables

hack to central menu

Figure 12: MCRA input form.

The input form is divided into a top, left and right section in which model options can be specified:

¢ In the top section, the type of analysis, acute or chronic, is chosen together with the option to
perform an uncertainty analysis or not.

e In the left section, a number of options related to the choices made in the top section are
specified. If an acute risk model is chosen, three more specifications have to be made
concerning the concentration and unit variability model for the concentrations and the intake
model which may be extended with a parametric function for the age effect. For a chronic risk
assessment two models have to be specified: the concentration and intake model. Note that a
unit variability model is not relevant.

e Finally, the right part of the screen displays a number of special option blocks depending on
the choices made in the top and left section. E.g. for an acute risk model at least 3 option
blocks are displayed: Concentration Data, Additional and Output. For a chronic risk model
Concentration Data and Output are shown and, depending on the chosen intake model, an
option block Intake model. In Figure 12 a fourth option block is shown: Uncertainty Analysis,
because in the top section uncertainty analysis is set to yes. By clicking a change-options
button the options of that block become visible (see Figure 13, default options shown).

After clicking any button or choosing any radio button or any item in a scroll-down menu, the screen

is rebuilt, implementing your choices. Note that after changing a value in a text box you have to leave
the field (replace the pointer) to implement the value.
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Each description (like ‘risk type’, ‘uncertainty analysis’, ‘concentration model’ etc. in Figure 12) has
its own mouse-over function revealing a screen-tip. By double-clicking the description name the on-
line user manual is opened from where you can find further information.

You can save your settings by clicking the save-user-defaults button in the top section. With the
scroll-down menu Choose-default-option-setting one of 4 settings can be chosen: Current, Previous,
System and User. By clicking the ‘previous’ setting, all program settings from the last performed
MCRA analysis are recalled and displayed in the input form. By clicking the ‘system’ setting default
system settings are recalled and by clicking the ‘user’ setting the saved user defaults are implemented.
When no MCRA analysis has been performed in the past, previous and user settings are equal to
system settings.

Concentration data

close options | Frocessing and non-detects
replace nondetects by (fraction ofy LOR | no replacement of nondetects w
processing factors | no processing w

nurnber of iterations per bootstrap sample  [10000

Additional

IESTI and consumption days
close options | only

estimation of IESTI 7 yes * no
standard body weight is |59
compare IESTIwith MonteCarlo-percentile T yes * no
MC percentage for cormparison with IESTI |99
own variahility factors 7 yes * no
select ™ all consumption " consumption days
days anly
Uncertainty analysis
close options | Bootstrap options
bootstrap consumptions ™ yes ™ no
bootstrap concentrations ™ yes ™ no
Output
cloge aptions | Graphics and tables

percentiles at percentages 50909553 93.9. 333
percentage for summandgraph of right tail of exposure distribution 95
or exposure value instead of percentage )

percentage for drill-down 1975

Figure 13: Right section after clicking the ‘change options’ buttons in the input form.

After specifying all options the MCRA analysis is started by clicking the yellow ‘submit MCRA job’
button in the top section (see 3.6 )

3.2 Acute risk analysis

If in the MCRA input form (see Figure 12) acute risk is specified, the next specifications in the left
section of the screen can be modified (see Figure 14, default options shown):
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Acute: model options

concentration model | empirical *

nurnber of Monte Carlo iterations 100000

nurmber of computational chunks |10

unit variability model | kno unit variability ~
random seed |9
intake model | only empirical estimates -

number of hootstrap samples  [100

nurnber of iterations per bootstrap sample 10000

Figure 14: Left section of the MCRA input form if type of analysis is Acute

As you can see there are scroll-down menus for the concentration model, the unit variability model
and the intake model. In 3.2.1 , 3.2.3 and 3.2.5 the settings of these models are treated. But first
some explanation about the other specifications is given.

Number of Monte Carlo iterations

Days of consumption are randomly sampled from the consumer database. Each time a consumption
day is sampled, it contributes to the probability distribution of intakes. Each individual contribution is
called an iteration. So in Figure 14, the total number of Monte Carlo iterations is 100,000 divided over
10 chunks (10.000 MC iterations per chunk). Keep in mind that the number of products, certainly
when the processing and unit variability model are applied, determine to a large extend what amount
of iterations per chunk is feasible.

Number of computational chunks

In general, the capacity of the internal memory restricts the size of the simulation. To overcome this
problem, a Monte Carlo Risk Assessment can be performed in computational chunks. The results of
each chunk are stored for later use. The chunk size (= iterations/chunks) is equal to the total number
of Monte Carlo iterations divided by the number of chunks. Chunk size and number of chunks affect
processing time. When the number of iterations within a chunk is too high, the performance of the
computer is seriously degraded and swapping will occur. You can observe this after clicking ‘show
progress’ (see Figure 31) by an extremely large processing time. Advised is to rerun the simulation
with a higher number of chunks. The estimated CPU-time in the progress bar may be an indication to
determine the optimal number of chunks. Best strategy is to keep the number of chunks as low as
possible conditional upon chunk size. Factors influencing the chunk size are: the total number of
products and/or the total number of combinations of products, processing types and unit variability.
The number of Monte Carlo iterations per chunk determines the maximum possible value for the
number of iterations per bootstrap. When this value is higher than the number of iterations per chunk,
the value is overruled by the program and reset to the maximum possible value.

Random seed

The Monte Carlo simulation uses a pseudo-random number generator that is initialised by setting the
seed. To get time-based values, set seed to zero and the generated sequence of random numbers is
based on a default value which is printed in the program output. Using this value in a second run will
result in identical simulation results provided that the model or number of iterations did not change.

Number of bootstrap samples
If an uncertainty analysis is chosen, you have to specify the number of bootstrap samples. In Figure
14 the number is 100.
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Number of iterations per bootstrap sample

If an uncertainty analysis is chosen, you also have to specify the number of iterations per bootstrap
sample. In Figure 14 the number of iterations per bootstrap sample equals the number of Monte Carlo
iterations per chunk (is 10.000).

3.2.1 Concentration model options

Compound concentration data can be present as full data (a list of compound concentrations is
available), summary data (only some summary statistics, for example means, percentiles or maxima
are available) or histogram data (only numbers of observations classified in intervals are available).
The selection between these three types of concentration data is already made by the selection of
tables in 2.6.1 .

In the probabilistic model a distribution of compound data is used to sample from. A choice can be
made between a parametric and a non-parametric (empirical) approach. Compound data may be used
as such (empirical modelling, only with full data) or fitted by binomial/lognormal distributions e.g.
parametric modelling, based on full data, summary data or histogram data.

Parametric modelling becomes important in data-scarce situations. The lognormal distribution with
parameters ¢ and o has been selected as being both theoretically sensible and practically useful
(Shimizu & Crow 1988, Van der Voet et al. 1999). The non-parametric approach requires more data
to obtain a satisfying representation of the full distribution. Summarizing, for concentration data we
have:

Type of concentration data full data summary data histogram data
Option settings in concentration model
Non-parametric: empirical X - -

Parametric: binomial/lognormal
(with or without pooling)

Table 1: Possible combinations of option settings with type of concentration data.

See also: How to deal with limited information

Possible settings in the input form for the concentration model are:
e empirical (only shown for full data) [default for full data]
e binomial/lognormal (no pooling)
e binomial/lognormal with pooling

In the next paragraphs these settings are explained.

3.2.1.1 Empirical

In the non-parametric approach we choose ‘empirical’: concentrations are sampled at random from
the available data and combined with food consumption data to generate the intake distribution of
exposure values.

See also: Non-parametric modelling of concentrations (empirical)

3.2.1.2 Binomial/lognormal (no pooling)

In the parametric approach, compound concentrations per food product are sampled from parametric
distributions based on full, histogram or summary data. Parameters u and ¢ of the lognormal
distribution are estimated using the log-transformed non-zero compound concentrations (full data) or
condensed data (summary or histogram data). You should choose this setting only when enough data
are available to estimate ’s and ¢’s for all products.

Estimation of the variance and/or mean may fail because sometimes compound measurements on
specific food products are sparse or even missing. In case of missing parameters a warning message
will be printed. MCRA should then be rerun with the setting ‘binomial/lognormal with pooling’.
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A related question is the reliability of estimates based on a few degrees of freedom. To overcome
these problems, basically, concentration data on other products are used to give sufficient data to base
estimates upon. Products are classified into groups of similar products and missing or unreliable
parameters are estimated using all concentration data in a group. This process of using concentration
data on similar products to base estimates for ¢ and ¢ upon is called pooling (see 3.2.1.3)

See also: Parametric modelling of concentrations (binomial/lognormal no pooling)

3.2.1.3 Binomial/lognormal with pooling

Specifying pooling means that products are automatically assigned to groups of products and pooled.
The identification of groups of products is based on the first 3 columns of the hierarchical product
code (productcategory, productgroup, productsubgroup). Products for which the first three columns
are equal are placed into the same group of products.

Pooling is performed in a two step procedure following the next scheme:
1. Test homogeneity of variances within the groups of products
if variances are homogeneous,
pool variances
test homogeneity of means within the groups of products
if means are homogeneous,
pool means.
2. Test homogeneity of variances of products with df < 10 against overall-variance
if variances are homogeneous,
replace variances with overall-variance

Results of step 1 and 2 are (sub) groups with:

a) pooled variances and pooled means,

b) pooled variances and the original (unpooled, heterogene) means,
c) the original (unpooled, heterogene) variances and original means.

An example of pooling is given in 10.7 .
See also: Parametric modelling of concentrations (binomial/lognormal with pooling)

3.2.2 Concentration data options

For the concentration data, you will always find an option block in the right section of the MCRA
input form. Here you can specify how to model missing data and non-detects and how to model
processing effects. The possible options in this block are shown in Figure 15 (default options shown).

Concentration data

close optiohs | Frocessing and non-detects
replace nondetects by (fraction of) LOR | ho replacement of nondetects hd
multiplication constantfor LOR |02
processing factors | no processing w

Figure 15: Option block Concentration data

3.2.2.1 Replacement of non-detects
Possible settings are:
¢ no replacement of non-detects [default]
o replace all non-detects
o replace non-detects based on crop treated
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In many cases of compound risk assessment (e.g. pesticides) the majority of the monitoring
measurements are non-detects, i.e. no quantitative measurement is reported. Only values higher than
the Limit Of Reporting (LOR) are reported. When a compound can enter the food chain only via crop
treatment, and when the percentage of crop treated is (approximately) known, then this knowledge
may be used to infer that some of the monitoring measurements should be real zeroes, contributing
nothing to the intake, whereas other non-detects in the monitoring data could have any value below
the limit of reporting.

Non-detects (all non-detects or a specified fraction) can be replaced with 0 or the LOR multiplied by a
multiplication constant. If percent crop treated data are available (table AgriculturalUse see 9.4.9 ),
then replacement by LOR can be restricted to an appropriate fraction of the non-detects by specifying
‘Replace non-detects based on crop treated’.

See also: Modelling of missing data and replacement of non-detects

3.2.2.2 Modelling processing effects

Possible settings of modelling of processing effects are:
e no processing [default]
e processing (fixed factors)
e processing (distribution based)

Concentrations in the consumed food may be different from the monitoring compound due to
processing such as peeling, washing and cooking. Usually, processing lowers the concentration in the
consumed food compared to the concentration in the raw product. The effect of processing is
modelled by multiplying the monitoring compound by a factor f; which will typically be between 0
and 1. Occasionally, the processing factor may also be > 1, e.g. for drying. Often, processing factors
are not exactly known or information is of limited quality. These uncertainties may be entered into the
model by specifying two values: f,.m, the nominal value, typically some sort of mean; and, f;,,, an
upper 95% confidence limit. Distribution based processing factors require both values whereas for
fixed factors only f; ., need to be specified. No processing implies that f; = 1.

To use processing factors f; choose Processing (fixed factors) or Processing (distribution based).
Processing factors are read from table ‘Processingfactor’ (fi..» = proc_nom, f,,, = proc_upp) and
processing codes and labels from table ‘Processing’. Note that specifying no processing is a worst
case scenario (fi = frup = 1).

The program multiplies concentrations with fixed processing factors (in which case the conservative
value f = fiupp 15 used), or with random values sampled from a normal distribution with parameters u
and o. The mean and standard deviation are based on transformed values of f; ,,, and fi ,om. The type of
transformation for each processing type is specified in the last column of table Processing. Choose
disttype = 1 for a logistic-normal distribution or disttype = 2 for a log-normal distribution. To process
simultaneously some products using fixed factors and others distribution based, choose ‘Processing
(distribution based)’. Now, fixed factors f; are obtained by providing only f;,,, whereas random
factors f are sampled when both f; ,,,, and f ..., are given.

It is not necessary to fill out a complete list of processing factors for all products. Missing values of
Jinomand fr.,, are, by default, replaced by the value 1.

See also: Modelling of processing effects

3.2.3 Unit variability model options

Possible settings of unit variability are are:
no unit variability [default]

beta distribution

lognormal distribution
bernoulli distribution

Monitoring measurements are typically made on homogenised composite samples. Each sample is
composed of nuy units with nominal unit weight wuy each. The weight of a composite sample is often
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larger than a daily consumer portion. This implies that the mean level of the monitoring compound

may be a fair estimate of the mean level of the raw product, but the variability of the monitoring

measurements is certainly not appropriate to estimate the variance. Therefore, acute risks may be

higher than would follow from a direct use of the composite sample data. This problem has been

addressed by modelling unit variability.

In MCRA the following three models for unit variability can be selected:

1. Beta model, requires knowledge of the number of units in a composite sample, and of the
variability between units (realistic or conservative estimates);

2. Bernoulli model, requires only knowledge of the number of units in a composite sample (results
are always conservative);

3. Lognormal model requires only knowledge of the variability between units (realistic or
conservative estimates).

See also: Modelling of unit variability

3.2.3.1 Estimated parameters for unit variability

When parameters for unit variability based on empirical studies are available, these are used to
simulate concentrations for a unit, assuming a parametric form for the unit-to-unit variability within a
batch e.g. the beta or lognormal distribution.

Table 2 describes the four options when a parametric form for unit variability is specified.
Compounds are simulated for a new unit in the batch using a lognormal distribution or for a unit
belonging to the composite sample leading to the use of the beta distribution.

Simulate for new unit in batch Simulate for unit belonging to
composite sample
(lognormal distribution) (beta distribution)
Estimates of unit e no censoring at cmy e no censoring at cmy
variability are e 1o upper limit to the unit e unit values never higher than
realistic (R) concentration nu, -cm,
Estimates of unit e unit values will be left-censored | ¢ unit values will be left-censored at
variability are at cmy, cmy,
conservative (C) e no upper limit to the unit e unit values never higher than
concentration nu, -cm,

Table 2: Choices for estimated variability factors. cm, = value of composite sample
concentration, nux = number of units in composite sample.

See also: Approaches to unit variability in probabilistic modelling: specifying distributions

3.2.3.2 Beta distribution

When choosing this setting an option block Unit variability: Beta distribution appears in the right
section of the MCRA input form (see Figure 16, default options shown).

Unit variability: Beta distribution
close options | Beta

unitweight == 25 |1
25 = unit weight == 250 |7
unitweight = 250 |2

parameteris ™ variahility factor " coefficient of variation
estimates are ™ realistic estimates ¢ conservative estimates
unit variability is compoundiprocessing dependent ™ no ™ yas

unit wariability is compound dependent ™ no ™ yas

Figure 16: Option block Unit variability: Beta distribution
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The parameter for unit variability is specified as a variability factor v or as a coefficient of variation cv
of the unit values in the composite sample. Variability factors v (97.5" percentile divided by mean),
coefficient of variation cv (standard deviation divided by mean) and number of units nu in the
composite sample are retrieved from table VariabilityProd when unit variability is independent of the
compound and processing type. If the variability factor is dependent on compound and/or processing
type data are expected in tables VariabilityCompProd or VariabilityProcCompProd, respectively. The
following variability factors v are recommended: for large crops (wu; > 250g) value v = 5; for medium
crops (wuy 25- 250g) v = 7; and for small crops (wu, < 25g) v =1 (FAO/WHO, 1997). For products
which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree, v = 1. The latter
information is specified in field bulkingblending of table Processing (see 9.3.5 ). If the parameter for
variability is missing, zero variability is assumed, and the unit concentrations are equal to the sampled
composite sample concentrations.

A choice to be made is whether the supplied values for variability are realistic or conservative
estimates. In the latter case, unit values are left-censored at the value of the mean (composite sample
concentration). If there are no user-defined values for the number of units in the composite sample
these are taken using a default scheme of nominal unit weights. This scheme follows in principle the
definition of FAO/WHO (1997), as illustrated in Figure 16, but can be modified by the user.

See also: Beta model for unit variability

3.2.3.3 Lognormal distribution

When choosing this setting an option block Unit variability: Lognormal distribution appears in the
right section of the MCRA input form (see Figure 17, default options shown).

Unit variability: Lognormal distribution
close options | Legnormal

parameteris ™ variahility factor " coeficient of variation

estimates are  * realistic estimates { conservative estimates
unit variahility is campoundipracessing dependent ™ no " yes

unitvariahility is compound dependent ™ no I yes

Figure 17: Option block: Unit variability: Lognormal distribution

In Figure 17 a parametric form for the unit-to-unit variability is specified. Concentrations are
simulated for new units in the batch leading to the lognormal distribution. The parameter for unit
variability is specified as a coefficient of variation cv or as a variability factor v.

The conversion of a variability factor into parameters of the lognormal distribution requires an exact
definition of what is meant. Here, the variability factor is defined as the 97.5™ percentile of the
concentration in the individual measurements divided by the corresponding mean concentration seen
in the composite sample. Finally a choice is made whether a realistic or a conservative approach is
modelled. In the conservative approach, unit concentrations of the composite sample are left-censored
at the value of the monitoring compound. When a realistic approach is defined, the unit value may be
lower than the value of the monitoring compound.

See also: Lognormal model for unit variability

3.2.3.4 Bernoulli distribution

When choosing this setting an option block, Unit variability: Bernoulli distribution, appears in the
right section of the MCRA input form (see Figure 18, default options shown).
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Unit variability: Bernoulli distribution

close options | Bernoulli
unitweight == 25 |1
25 = unitweight == 250 |7
unitweight = 250 |5
unit variahility is compoundiprocessing dependent ™ no " yag

unit variahility is compaound dependant ™ no " yas

Figure 18: Option block Unit variability: Bernoulli distribution

In practice, measurements on individual units to obtain a measure for unit variability are not very
common. Therefore, the number of units nu; in the composite sample is used to define the parameter
for unit variability (see van der Voet et al. 2001). When the number of units nu, in the composite
sample is missing, the nominal unit weight wu is used to calculate the parameter for unit variability.
The following variability factors v are recommended: for large crops (wu; > 250g) value v = 5; for
medium crops (wuy 25- 250g) v = 7; and for small crops (wuy < 25g) v =1 (FAO/WHO, 1997). For
products which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree, v = 1. The
latter information is specified in field bulkingblending of table Processing (see 9.3.5 ). The number of
units within a consumption is calculated and for each unit a Bernoulli distribution is used to sample
the monitoring compound itself with probability (v-1)/v or a multiple v of it with probability 1/v (see
Figure 18).

See also: Bernoulli model for unit variability

3.2.4 Additional options concerning IESTI and consumption days

For the acute risk model there is always an option block of Additional options in the right section of
the MCRA input form that handles IESTI and consumption days (see Figure 19, default options
shown).

Additional

IESTI and consumption days
close options |on|y

estimation of IESTI  { yes * no
standard body weightjs 150
campare |[EST] with ManteCarlo-percentile  © wes * o

MC percentage for carmparison with IEST] 129

own variability factars O ves * ng
select ™ all consumption " consumption days
days anly

Figure 19: Option block Additional in the third section of the MCRA input form screen

The IESTI (International Estimated Short-Term Intake) is a prediction of the short-term intake of a
compound on the basis of the assumptions of high daily food consumption per consumer and highest
compounds and, in case of blending and bulking, the median compound from supervised trials. The
IESTI is expressed in microgr/kg body weight/day and estimated per product.

IESTI estimates are requested when estimation of IESTTI is set to yes. Standard unit variability factors
and a standard body weight of 60 kg are specified. The IESTI is compared with estimates of a
specified percentile (per product) of the Monte Carlo simulation. In the output (not shown) two kinds
of estimates of the Monte Carlo percentile are given: one for “All days” and one for “Consumption
days only”. Be aware that specification of option ‘consumption days only’ may alter the interpretation
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(and estimate) of the percentile for “All days”. In the latter case the estimate refers to a smaller subset
containing consumption days only. However, note that still not every product is eaten on every
consumption day. The interpretation and estimate of the percentile for “Consumption days only” is
not affected by setting option ‘consumption days only’.

The IESTI calculations correspond to the definition of FAO/WHO (2002) that may be considered as
the deterministic counterpart of the probabilistic approach used in Monte Carlo Risk Assessment.

In 10.3 output of IESTI calculations are shown.

See also: Additional: Comparison of probabilistic with deterministic estimates of acute risk

3.2.5 Intake model options

Possible settings of the intake model are:
o only empirical estimates [default]
e empirical estimates and betabinomial/lognormal with age

3.2.5.1 Only empirical estimates
This is a straightforward acute risk analysis.

3.2.5.2 Empirical estimates and betabinomial/lognormal with age

When choosing this setting an option block Intake model appears in the right section of the MCRA
input form (see Figure 20, default options shown).

Intake model

tlose options | Betabinomial/lognormal with age
age effect for intake frequency model ™ yes ™ no
function to model effect ™ spline " polynomial

testing method ™ bhackward ¢ forward
minitmum degrees of freedam [0%

maximum degrees of freedam |4 W

testing at level |0.01

age effect for intake amount model ™ ves " no
function to model effect ™ spline " polynomial
testing method ™ hackward O forward
minimum degrees of freedom ' 0w

maximum degrees of freedom | 4w

testing at level 901

Figure 20: Option block Intake model in the right section of the MCRA input form screen

Note that estimation of an age effect for an acute risk assessment is additional to the standard analysis.
The simulated intake values of an acute analysis are used as input and: 1) an intake frequency function
is estimated with a betabinomial model using a spline or polynomial function to model age effects; 2)
non-zero intakes are log transformed and the transformed intake amounts are analysed using REML,
again, using a spline or polynomial function to model age effects, and; 3) the information of both
analyses is combined to estimate an age dependent acute intake distribution and to derive the
requested age dependent percentiles.

See also: Empirical estimates and betabinomial/lognormal with age

Intake frequency
The intake frequency function models the probability of a consumer of having an intake. Depending
on the consumption pattern, we have regular, less regular and incidental consumers. So each
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consumer has his own probability of having an intake. For many foods, there may be a relation with
age (or sex or, if available, other demographic data). So the probability of having an intake may be
related to the age of the consumer. The betabinomial distribution is very suited to sample consumer
probabilities of having an intake using age as explanatory variable.

In Figure 20, first, we have to decide on modelling the age effect or not. The next choice is between
using a spline function or a polynomial. A smoothing spline is a complicated function, constructed
from segments of cubic polynomials with constraints to ensure smoothness. A polynomial function is
based on orthogonal quadratic, cubic or quartic curves. The degree of smoothness of the spline or
polynomial function is controlled by increasing or decreasing the degrees of freedom. A spline with
the maximum degrees of freedom is less smooth than a spline with the minimal degrees of freedom.
We also have to decide on the method of testing: backward means that testing starts with a spline or
polynomial of the highest degree. In each elimation round the number of degrees of freedom was
decreased one at a time, and was stopped when the resulting decrease in fit was significant at the
specified significance level as judged on the basis of a deviance test. Forward selection means that the
evaluation of the degree of the spline or polynomial is started with a function of the lowest degree. In
all evaluations the testing level is 0.01 (see Figure 20).

See also: Modelling the intake frequency distribution

Intake amount distribution

The non-zero intakes are logarithmically transformed and the In(intakes) are analysed with REML
using a spline or polynomial function to model age effects. The analysis provides us with age
dependent mean intakes and the standard deviation of the In(intake) distribution. In Figure 20, second
part, we decide on modelling the age effect or not; the use of a spline or polynomial function;
backward or forward selection; the degrees of freedom; and the testing level. For the In(intake)
amount model choosing the spline function implies that the degree is automatically selected by the
algorithm. For a polynomial function, the user has to decide on the degrees of freedom and method.
See also: Modelling In(intake) amounts

Estimation of age dependent percentiles

The intake frequency is used to sample age dependent intake probabilities. Together with the age
dependent mean In(intakes) and the estimated standard deviation of the second analysis, we now have
all what is nessecary to estimate an acute intake distribution with a parametric age effect. The number
of simulated age dependent intakes is set equal to the number or iterations supplied in the MCRA
input form. After simulating the age dependent intake distribution, the requested percentiles are
estimated.

See also: Estimating the acute intake distribution

3.3 Chronic risk analysis

Specify in the MCRA input form (see Figure 12) chronic risk and uncertainty, then the specifications
in the left section of the screen can be modified (see Figure 21, default options shown):

Chronic risk model
concentration model | empinical W

intake model | betabinomiallognormal b

nurnber of hootstrap samplas 100

randorn seed Y

Figure 21: Left section of the MCRA input form if type of analysis is Chronic
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In dietary risk assessment, chronic exposure is defined as the long-run average of daily intakes of a
dietary component by an individual consumer. In the MCRA program, for chronic risk assessment,
the intake is calculated as the consumption on each day of each consumer multiplied by the average
value of the compounds (non-detects and detects) divided by body weight and, if specified, applying
processing and/or replacing zeros with the LOR (based on percent crop treated). Note, unit variability
is not relevant in chronic risk assessment. Compound data for a chronic risk assessment may be
present as full, summary or histogram data. For full data, a choice can be made between a parametric
and a non-parametric (empirical) approach. For summary or histogram data a parametric approach is
obligatory. Note, that option consumption-days only is not relevant for chronic risks and that chronic
risk assessment is only performed when the total number of days per consumer is 2 or more.

See also: Chronic risk assessment

Random seed
This option is only visible when uncertainty is specified. In that case the settings are the same as for
the acute risk model. See 3.2

Number of bootstrap samples
This option is only visible when uncertainty is specified. In that case the settings are the same as for
the acute risk model. See 3.2

3.3.1 Concentration model options

The same settings as for the acute risk model are available:
o empirical [default] (see 3.2.1.1)
e binomial/lognormal (no pooling) (see 3.2.1.2)
e bhinomial/lognormal with pooling ( see 3.2.1.3)

and also the options of the concentration data are the same (see 3.2.2)

3.3.2 Intake model options

The possible settings here are:
e Dbetabinomial/lognormal [default]
e betabinomial/lognormal (with age)
o discrete/semiparametric (Nusser)

In the next subparagraphs these settings are discussed.

3.3.2.1 Betabinomial/lognormal

Input for a chronic risk assessment is the intake calculated as the consumption on each day of each
consumer multiplied by the average value of the compounds divided by body weight (see 3.3 ).
Applying the betabinomial/lognormal model, 1) an intake frequency function is estimated using the
betabinomial model; 2) non-zero intakes are log transformed, the transformed intake amounts are
analysed using REML and parameters of the usual intake distribution are estimated; 3) the
information of both analyses is combined to estimate a usual intake distribution which is used to
derive the requested usual intake percentiles.

See also: Betabinomial/lognormal

Intake frequency

The intake frequency function models the probability of a consumer of having an intake. Depending
on the consumption pattern, we have regular, less regular and incidental consumers. So each
consumer has his own probability of having an intake. The betabinomial distribution is very suited to
sample consumer probabilities of having an intake.

See also: Modelling the intake frequency distribution
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Intake amount distribution

The non-zero intakes are logarithmically transformed and the In(intakes) are analysed with REML
estimating the parameters of the non-zero usual intake distribution. The total variance of the non-zero
daily intakes is divided into a between-consumer component and a within-consumer component. The
variance of the between-consumer variance component is the basis for the estimation of the the usual
intake distribution.

See also: Modelling In(intake) amounts

Estimation of usual intake percentiles

The intake frequency is used to sample intake probabilities. Together with the non-zero usual intake
distribution a usual intake distribution is estimated for the entire population, e.g. both consumers as
non-consumers. This is the distribution that is used for the estimation of the usual intake percentiles.
See also: Estimating usual intake distributions

3.3.2.2 Betabinomial/lognormal (with age)

When choosing this setting an option block Intake model appears in the right section of the MCRA
input form (see Figure 22, default options shown).

Intake model

close options | Betabinomial/lognormal with age
age effect for intake frequency model ™ yes ™ no
function to model efiect ™ spline " palynarmial

testing method ™ backward  © forward
minimum degrees offreedom |0 w

maximutm dedgrees of freedam | 4w

testing at lewel |9-01

age effect for intake amount model  © yes " no
function to maodel effect ™ spline " polynomial
testing methad ™ backward T forward
minitnum degrees of freedom |0 »

maximum degrees of freedam | 4

testing at level 00

Figure 22: Option block Intake model if intake model is betabinomial/lognormal (with age)

Input for a chronic risk assessment is the intake calculated as the consumption on each day of each
consumer multiplied by the average value of the compounds divided by body weight (see 3.3 ).
Applying the betabinomial/lognormal with age model 1) an intake frequency function is estimated
with a betabinomial model using a spline or polynomial function to model age effects; 2) non-zero
intakes are log transformed and the transformed intake amounts are analysed using REML, again
using a spline or polynomial function to model age effects, and; 3) the information of both analyses is
combined to estimate an age dependent usual intake distribution and to derive the requested age
dependent usual intake percentiles.

See also: Betabinomial/lognormal with age

Intake frequency

The intake frequency function models the probability of a consumer of having an intake. Depending
on the consumption pattern, we have regular, less regular and incidental consumers. So each
consumer has his own probability of having an intake. For many foods, there may be a relation with
age (or sex or, if available, other demographic data). So the probability of having an intake may be
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related to the age of the consumer. The betabinomial distribution is very suited to sample consumer
probabilities of having an intake using age as explanatory variable.

In Figure 22, first, we have to decide on modelling the age effect or not. The next choice is between
using a spline function or a polynomial. A smoothing spline is a complicated function, constructed
from segments of cubic polynomials with constraints to ensure smoothness. A polynomial function is
based on orthogonal quadratic, cubic or quartic curves. The degree of smoothness of the spline or
polynomial function is controlled by increasing or decreasing the degrees of freedom. A spline with
the maximum degrees of freedom is less smooth than a spline with the minimal degrees of freedom.
We also have to decide on the method of testing: backward means that testing starts with a spline or
polynomial of the highest degree. In each elimation round the number of degrees of freedom was
decreased one at a time, and was stopped when the resulting decrease in fit was significant at the
specified significance level as judged on the basis of a deviance test. Forward selection means that the
evaluation of the degree of the spline or polynomial is started with a function of the lowest degree. In
all evaluations the testing level is 0.01 (see Figure 22).

See also: Modelling the intake frequency distribution

Intake amount distribution

The non-zero intakes are logarithmically transformed and the In(intakes) are analysed with REML
using a spline or polynomial function to model age effects. The analysis provides us with age
dependent In(intakes) and estimates of the parameters of the non-zero usual intake distribution. The
total variance of the non-zero In(intakes) is divided into a between-consumer component and a within-
consumer component. The variance of the between-consumer variance component is the basis for the
estimation of the distribution of the usual intake. In Figure 22, second part, we decide on modelling
the age effect or not; the use of a spline or polynomial function; backward or forward selection; the
degrees of freedom; and the testing level. For the intake amount model, choosing the spline function
implies that the degree is automatically selected by the algorithm. For a polynomial function, the user
has to decide on the degrees of freedom and method.

See also: Modelling In(intake) amounts

Estimation of age dependent percentiles

The intake frequency is used to sample age dependent intake probabilities. Together with the age
dependent mean In(intakes) and the estimated between-consumer variance component of the REML
analysis, we can estimate a usual intake distribution with a parametric age effect. The requested usual
intake percentiles are estimated using a simulated age dependent usual intake distribution.

See also: Estimating usual intake distributions

3.3.2.3 Discrete/semiparametric (Nusser)

When choosing this setting an option block Intake model appears in the right section of the MCRA
input form (see Figure 23, default options shown).

Intake model

close options | Discrete/semi-parametric {Nusser)

transformation ™ power  © logarithmic
spline fit ™ yes " ho
number of iterations to estimate frequency distribution S
nurnber of hing for digcratisation 120

Figure 23: Option block Intake model if intake model setting is discrete/semiparametric (Nusser)

Input for a chronic risk assessment is the intake calculated as the consumption on each day of each
consumer multiplied by the average value of the compounds divided by body weight (see 3.3 ).
Before estimating the chronic percentiles of the distribution applying the discrete/semi-parametric
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(Nusser) model non-normal exposure data are transformed to approximate normality following an
approach proposed by Nusser et al. (1996, 1997) and Dodd (1996).
See also: Discrete/semiparametric (Nusser)

Transformation: power or logarithmic

Transformations are specified using a power transformation or a logarithmic transformation. Usually,
a power transformation is satisfactory.

See also: Power or log transformation

Spline fit or not

After transforming the intakes, the transformation to normality is improved by fitting a spline to the
transformed intakes. A smoothing spline is a complicated function, constructed from segments of
cubic polynomials with constraints to ensure smoothness.

See also: Spline fit

Number of iterations to estimate intake frequency distribution

The algorithm to estimate the intake frequency distribution may be modified by specifying the
number of iterations. The specified number in Figure 23 is 5 so the number of iterations is 5 x 1000 =
5000.

See also: Back transformation and estimation of usual intake

Number of bins for discretisation

The resolution of the probability grid for the intake frequency distribution is equal to 20. So, the
probability mass is discretised at a grid ranging from 0 to 1 and a steplength equal to 0.05.

See also: Back transformation and estimation of usual intake

3.4 Uncertainty analysis

Choose in the top section of the MCRA input form to perform an uncertainty analysis or not.
See also: Uncertainty of risk assessments: bootstrapping data sets

3.4.1 Uncertainty analysis options for acute risks

When choosing uncertainty analysis together with an acute risk model an option block Uncertainty
analysis appears in the right section of the MCRA input form (see Figure 24, default options shown).

Uncertainty analysis

close options | Bootstrap options

bootstrap consumptions ™ yes T no
~

bootstrap concentrations ™ yes no

Figure 24: Option block Uncertainty analysis if an acute risk model is chosen

The uncertainty of output statistics (e.g. mean or percentiles of the exposure distribution) is assessed
by bootstrapping. The bootstrap can be applied on the level of fresh Monte Carlo samples, on the level
of consumers and on the level of the compounds. To examine the uncertainty due to fresh Monte
Carlo samples in each analysis only, specify ‘no’ for both bootstrap consumption data and compound
data. Applying a bootstrap for consumption and compound data means that from each level with
replacement a bootstrap sample is drawn and the corresponding intake distribution is calculated. Then,
each bootstrap sample provides a mean, maximum and percentiles according to the specified
percentages and all replicates together contain the information to make inferences from the data, e.g.
to establish the uncertainty of mean, maximum and percentiles.

The number of bootstrap samples and the number of iterations per bootstrap sample is specified in the
left section of the MCRA input form (see Figure 14). There, 100 bootstrap samples are specified and
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each bootstrap sample consists of 10,000 values. The number of values within a bootstrap sample
restricts which percentiles are displayed. Here, the highest possible percentage for which uncertainty
information can be calculated is the 99.99" percentile, for a bootstrap-sample containing 1000 values
this is the 99.9" percentile.

3.4.2 Uncertainty analysis options for chronic risks: betabinomial/lognormal and
betabinomial/lognormal (with age)

There is no difference with the uncertainty analysis for acute risks described in 3.4.1 .

3.4.3 Uncertainty analysis options for chronic risks: discrete/semiparametric (Nusser)

When choosing uncertainty analysis together with chronic risk model: discrete/semiparametric
(Nusser) an option block Uncertainty analysis appears in the right section of the MCRA input form
(see Figure 25, default options shown).

Uncertainty analysis

close options | Bootstrap and re-estimation options

bootstrap consumptions ™ wes O no

bootstrap concentrations ™ yes O no

re-estimate consumption frequency distribution @ wes ™ no
re-estimate power transfarmation ¢ wes ™ nao

re-estimate number of knots for spline ¢ yes & no

Figure 25: Option block Uncertainty analysis if a chronic risk model is chosen

The uncertainty is assessed using a bootstrap for consumption and compound data.

Option ‘re-estimate consumption frequency distribution’ is only relevant when consumptions are
bootstrapped. Note that estimation of the frequency distribution is time consuming. Options ‘re-
estimate power transformation’ and ‘re-estimate number of knots for spline’ are used in the
transformation to approximate normality of the intake distribution.

3.5 Output

Depending on the type of analysis there are different output option blocks to specify graphics and
tables.

3.5.1 Output options for acute risks: only empirical estimates

Output options can be specified in the output block. In Figure 26 (default options shown), percentages
are specified, each percentage separated by a space.

Output

closeoptions | Graphics and tables

percentiles at percentages 509095 99 99.9.99.99
percentage for summangdgraph of right tail of exposure distribution

or exposure value instead of percentage

11

percentage for drill-down 375

Figure 26: Option block Output if an acute risk model is chosen with only empirical estimates
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The next option is needed for summarising the contribution of products to the right tail of the
exposure distribution and to display a graph of the upper tail. A percentage may be specified, but
specifying an exposure value instead overrules the percentage. The percentage for drill-down option
is used to select the nine consumers lying around the percentile of the intake distribution that
corresponds to the specified percentage. For these consumers the age and weight are displayed, the
intake, the consumption and the compound contents found on each consumption. To find the upper
nine consumers, e.g. the nine consumers with the highest intake, specify percentage 100. Note that the
information on the nine selected consumers is only approximately, giving a rough indication about the
kind of consumers and their intake. The MCRA program performs an extra loop to gather the
necessary information about consumers. This extra loop is only and only used to display information
about the nine selected consumers.

3.5.2 Output options for acute risks: empirical estimates + betabinomial/lognormal with
age

Output options can be specified in the output block (see Figure 27, default options shown). See also
3.5.1 for explanation on the options. In the lower part of the screen, options related to age are shown.
The minimum and maximum age are retrieved from the database, but can be overuled by specifying
own values. The steplenght is automatically determined but can be overruled. Default, approximately
20 steps are taken and the calculated steplength is rounded to the nearest integer. To get predictions
for specific ages, specify your extra ages space separated. Extra ages may lay outside the specified
range determined by the minimum and maximum age.

Output
tlose options Graphics and tables

percentages at percentiles 0.01 0.02 0.04 006 0.08

percentiles at percentages 5090 95 99 99.9 99.99

percentage far summarggraph of right tail of exposure distibution 995
ar exposure value instead of percentage [*

percentage for drill-down  [57 2

show results frorn minimurm age 9999
with steps of |2

to maximum age 9999
extra ages |

Figure 27: Option block Output if an acute risk model is chosen with empirical estimates +
betabinomial/lognormal with age

3.5.3 Output options for chronic risks: betabinomial/lognormal

Output options can be specified in the output block (see Figure 28, default options shown). See also
3.5.1 for explanation on options.

Output
close options Graphiecs and tables

percentages at percentiles [p01 002004006008

percentiles at percentages |5 50 85 92 839 93 98

Figure 28: Option block Output if a chronic risk model is chosen with betabinomial/lognormal

3.5.4 Output options for chronic risks: betabinomial/lognormal with age

Output options can be specified in the output block (see Figure 29, default options shown). See also
3.5.1 and 3.5.2 for explanation on options.
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Output
tlose options Graphics and tables

percentages at percentiles |p01 002004 0.050.08

percentiles at percentages |5090 95 29 93 3 29.93
show results from minimum age 19993
with steps of 2
to maximum age (9999
eutra ages |

Figure 29: Option block Output if a chronic risk model is chosen with betabinomial/lognormal
with age

3.5.5 Output options for chronic risks: binomial/lognormal + discrete/semiparametric
(Nusser)

Output options can be specified in the output block (see Figure 30, default options shown). See also
3.5.1 for explanation on the options.

Output
close options Graphics and tables

percentiles at percentages |50 90 95 93 99.9 93 99

Figure 30: Option block Output if a chronic risk model is chosen with binomial/lognormal +
discrete/semiparametric (Nusser)

3.6 Running an MCRA job

After setting the options in the MCRA input form, you have to click the ‘MCRA submit job’ button in
the top section. If you wish to be notified when the MCRA analysis is completed check the radio
button to yes. After submitting the form you enter the MCRA central menu screen (see Figure 31).

3.7 Checking the processing time

After submitting the form, all model specifications are passed to the server and the analysis is
initiated. First, all data are exported to <user>data.mdb, a system file which is located on the user
directory. Export of data takes only place when data are changed e.g. after selection of new tables or
after subset selection. In all other cases, e.g. different model options, exportation of data is already
performed and this step is cancelled.

The user may follow the progress of the analysis by clicking the ‘show progress’ button in the central
menu (see Figure 31). Here also information is given about the estimated CPU time Performing an
exposure assessment may take considerable time if the data files are large and/or if the number of
iterations is high. The ‘update window’ button is used to update information coming from the server
and, when the job is completed to renew the screen. Now a button ‘view output’ appears (see Figure
33). By clicking the “kill job’ button a job is terminated with a fatal error status.
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MCRA 4.0 central menu

Overview
compound:  CHLORPYRIFOS
cansumption survey.  DNFCS-3
products:  only products with positive concentration measurements
data selected on:  12/13/2005 2:38:02 PM
gselection of consumption and compound tables go | show | clear
subset selection a0 | show | clear

go to MCRA input form oo

. odrjobis currently running anwarkstation 1. By pressing

processing time is displayed.

. Serveris husy.

. kill job

update wwindow

show progress

3 Check progress of MCRA-run - Microsoft Internet Explorer,

Computational chank (uncertainty) 20100

Estirnated cpu time (hors) elapsed ftotal : 0020 F0:2533
Lotoraatic Refresh

=

Close window

Figure 31: Central menu, show progress
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MCRA 4.0 central menu

Overview
compound:  CHLORPYRIFOS
consumption sureey.  DNFCS-3
products:  only products with positive concentration measurements
data selected on: 121132005 2:38:02 PM
selection of consumption and cornpound tables a0 | show | clear |
suhset selection a0 | show | clear |

goto MCRA input form o

. Yourjohis currently running an workstation 1. By pressing show progress |the elapsed and total expected

processing time is displayed.

3 Check progress of MCRA-run - Microsoft Internet Explorer,

. SBemeris husy,

. kill jok

Job completed. CPUT time : 0:22:33 (hours:mmir:sec) Sutomatic Refresh

.
Update window

Figure 32: Central menu, job completed, close window

After clicking ‘update window’ button you get the screen of Figure 33
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MCRA 4.0 central menu

Overview
compound: CHLORPYRIFOS
consumption survey.  DNFCS-3
products:  only products with positive concentration measuremems
data selected on: 12/13/2005 2:38:02 PM
selection of consumption and compound tables go | shiowy | clear
subset selection oo | show | clear

go to MCRA input form go

. Yourlastjob is succesfully completed

. Serveris readyto accept a job.

view output

hackto main menu

Figure 33: Central menu, job completed, view output

Clicking the ‘view output’ button gives Figure 35 in 4.1 .
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4 Output

The results of the analysis can be viewed by clicking the ‘view output’ button in Figure 33. (It is
always possible to view your output of your last job even if you left your MCRA program). This
brings you to a screen where both tabular and graphical results can be viewed. Depending on the type
of analysis there are different icons and different items in the display (see Figure 35 and Figure 40).

In 4.1 the different forms of the output are explained with an example of a basic acute risk analysis. In
4.2 an example is given of a chronic risk analysis. Other examples you can find in Ch. 10 .

If you want to download the results for off-line viewing see 2.5.

4.1 Acute risk assessment: basic analysis

In this example output is shown for an acute risk assessment for organo phosphate pesticide
chlorpyrifos which can have neurotoxic effects. This example uses the dutch pesticides database from
Rikilt (NL). It is a complete database with food survey tables, compound concentration tables and
product tables. After selection ‘All tables’ the choice of the survey DNFCS-3 and the compound
CHLORPYRIFOS a further selection is made of 12 products (see 6.2 ): GREEN BEANS, SPINACH,
POTATOES, CARROT, SWEET PEPPER, APPLE, PEACH, GRAPE, LEMON, ORANGE,
MANDARIN TANGERINES and GRAPEFRUIT.

Finally, after these selections the MCRA input form is reached (see Figure 34).

MCRA program options =
Type of analysis ¢

Monte Carlo Risk Assessment

rigktype ™ acute " chronic {optional) -
Chooge default option set: cunen. 8 submit MCRA job
" " Nofification g
uncettainty analysis ¢ yes fo pe— i yes ® no

Acute risk model
concentration model | empirical v
nurmber af Mante Garla tterations 1200000

nurmber of corng Utational chunks 10
unitvariability model | no unit variabiliy L3

randarn seed [0

intake madel | only empirical estimates v

hack to central menu

Concentration data

tinse options Processing and non-detects

replace nondetecis by (fraction of) LOR | no replacement of nondetects v
multiplication constant far LOR, ns
processing factors | no processing v
Additional
IESTI and consumption days
tiose aptions | only
estimation of IESTI ¢ vyes & na

standard hody weight is (60

compare IESTI with MonteCaro-percentile  © yes & no

MG percentage for comparison with IEST) (%9
own variability factors " yes & no

select @ allconsumption € consumption days
days only

Output

| coseopions | Graphics and tables
percentiies at percentages |5090958999.9.90.99

percentage for surnmaryigraph of right tail of exposure distribution (99
or exposure value instead of percentage ||

pertentage for dril-down |33

Figure 34: MCRA input form for basic acute risk analysis

Table 3 lists the main options of this screen for this basic analysis:

Input form

risk type

uncertainty analysis
concentration model

Number of Monte Carlo iterations

Acute

No
empirical
200000
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Number of computational chunks 10

unit variability model no unit variability
Random seed 0

Intake model only empirical estimates
concentration data system defaults
additional system defaults

output:

percentage for summary/graph 99

Table 3: Input form options: basic acute risk analysis

After clicking the ‘submit MCRA job’ in Figure 34 the analysis is started. When the analysis is
finished you can view the results using the ‘view output’ button in the central menu. This gives the
screen of Figure 35:

Ihlihu_. .

Display results of:
8 Summary of database

BACHA analwsis: 1371202005 14:45:1

Summary of simulated intakes
I Summary of upper distributian
mmu "I Summary of total distribution
Consumptions: characteristics of nine consumers
I,l"...._.. — Concentrations: characteristics of nine consumers
Diﬁ]g;@u{hut Intakes: characteristics of nine consumers
to Input Farm FPercentiles
to Central Menu Logfile
o Main Menu

Diowenload Cutput for Off line Wiewing
Info Charts

Figure 35: View output window for basic acute risk analysis

After choosing ‘Logfile’ and clicking the ‘Submit’ button in Figure 35 the logfile is shown. In Table 4
you find the main characteristics concerning this analysis taken from the logfile.

Log-file
Survey name DNFCS-3
Compound code CHLORPYRIFOS
Number of products 12
Acute reference dose (ARTD) 100
Acceptable daily intake (ADI) 10
Number of detects 364
Number of non-detects 2408
No of consumers 6250
Population characteristics,

minimum age 1

maximum age 97

minimum weight 8

maximum weight 150

sex female, male
Total no of consumption days 12191

Table 4: Information taken from the log-file
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After choosing ‘Summary of database’ and clicking the ‘Submit’ button in Figure 35 a summary is
given from the data stored in your databases (see Table 5). The upper part of the table displays all
information concerning consumption data and the lower part all information concerning compound
concentrations. For each product you will find the code and label.

In the upper part the average consumption over all consumers and all days (MeanCons) together with
the average consumption on consumption days only (MeanConsDay) is given. In addition, the number
of consumption days (NconsDays) and total number of days (Ndays) are displayed also expressed as
percentage consumption days (%PosCons). So, there are 12500 days (2 days for 6250 consumers).
Green Beans is consumed on 1266 days (10.1%). The average consumption of Green Beans on these
daysis 11.8 x 12500/1266 = 116.5 g.

Compound: CHLORPYRIFOS

SUMMARY DATABASE

Code : product code

Product : product label

MeanCons : average consumption, all consumers, all days
MeanConsDays : average consumption, consumption days only
NConsDays : number of consumption days in the data set
NDays : total number of days

%PosCons . percentage consumption days

MeanConc : mean concentration all samples (after processing)
MeanPosConc : mean concentration positives (after processing)
NPosConc : number of positive concentrations

NConc : total number of concentration measurements
%PosConc . percentage positive concentrations

FOOD CONSUMPTION DATA

Code Product MeanCons MeanConsDays NConsDays NDays %PosCons

@ @ %)

17111.10 GREEN BEANS 11.80 116.5 1266 12500 10.1
18115.20 SPINACH 8.08 223.0 453 12500 3.6
18401.10 POTATOES 138.52 173.1 10005 12500 80.0
18402.20 CARROT 12.12 36.4 4165 12500 33.3
18506.10 SWEET PEPPER 3.33 16.5 2533 12500 20.3
19201.10 APPLE 61.50 99.4 7737 12500 61.9
19304.10 PEACH 2.08 7.3 3538 12500 28.3
19401.10 GRAPE 13.23 34.2 4836 12500 38.7
19501.10 LEMON 1.54 4.2 4589 12500 36.7
19502.10 ORANGE 57.06 99.6 7163 12500 57.3
19503.10 MANDARIN TA 8.83 41.2 2677 12500 21.4
19507.10 GRAPEFRUIT 4.06 28.5 1785 12500 14.3

COMPOUND CONCENTRATION DATA

Code Product MeanConc MeanPosConc NPosConc NConc %PosConc
(mg/kg) (mg/kg) ()

17111.10 GREEN BEANS 0.0120 0.4367 6 218 2.8
18115.20 SPINACH 0.0041 0.6400 1 158 0.6
18401.10 POTATOES 0.0005 0.0600 1 119 0.8
18402.20 CARROT 0.0014 0.1100 2 161 1.2
18506.10 SWEET PEPPER 0.0023 0.2000 3 256 1.2
19201.10 APPLE 0.0014 0.0431 13 397 3.3
19304.10 PEACH 0.0065 0.1100 6 101 5.9
19401.10 GRAPE 0.0176 0.1782 68 689 9.9
19501.10 LEMON 0.0105 0.0825 8 63 12.7
19502.10 ORANGE 0.0475 0.1161 139 340 40.9
19503.10 MANDARIN TA 0.0583 0.1305 84 188 447
19507.10 GRAPEFRUIT 0.0685 0.1703 33 82 40.2

Table 5: Summary of the database, consumptions and compounds

The lower part of Table 5 displays information concerning the compound concentrations. The mean
concentrations of all samples (MeanConc) and of positives only (MeanPosConc) are calculated. The
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number of positives (NPosConc) and the total number of concentration measurements (NConc) are
given as well as the percentage of positive concentrations (%PosConc). In this example for Green
Beans 6 positive concentrations are found out of 218 samples (2.8%). The mean concentration of the
positive samples is 0.012 x 218/6 = 0.4367 mg/kg.

After choosing ‘Summary of simulated intakes’ and clicking the ‘Submit’ button in Figure 35
essentially you will find the same kind of information but all statistics are calculated using simulated
data (see Table 6). The simulation is performed by sampling N (in Table 6 200,000) times from the
days in the food consumption database (with replacement) irrespective of consumer. For each
consumed product per day a concentration is sampled from the distribution of concentrations of that
product. Multiplying consumptions and concentrations gives the intake per product. Summing up the
intakes over the products and dividing the sum by the bodyweight of the consumer of the sampled day
gives the total intake of the compound (here CHLORPYRIFOS) expressed in microgram per kg
bodyweight per day. For both the consumption and concentration part you will find one additional
statistic, DeltaC and DeltaR respectively. This statistic displays the difference expressed as percentage
between the mean (MeanCons resp. MeanConc) of the simulated data and the mean of the data as
found in your database. The better the simulation resembles the database the lower the percentages
indicating the deviation between simulated data and input data.

Compound: CHLORPYRIFOS

SUMMARY SIMULATION

Code : product code

Product : product label

MeanCons : average consumption, all consumers, all days
DeltaC : difference (%) compared to average consumption

in database
MeanConsDays : average consumption, consumption days only

NConsDays : number of consumption days in the data set

N : total number of iterations

%PosCons : percentage consumption days

MeanConc : mean concentration in simulations with positive
amount consumed (after processing)

DeltaR - difference (%) compared to average concentration
in database

NPosConc : number of positive concentrations in simulations
with positive amount consumed.

NConc : total number of concentration measurements

(detects and non-detects) in simulations with
positive amount consumed.

%PosConc . percentage positive concentrations

ProcFact : mean processing factor

FOOD CONSUMPTION DATA

Code Product MeanCons DeltaC MeanConsDays NConsDay N %PosCons
@ ) @ (D)

17111.10 GREEN BEANS 11.71 ( -0.7) 116.16 20165 200000 10.1
18115.20 SPINACH 8.01 ( -0.9) 224 .46 7133 200000 3.6
18401.10 POTATOES 138.68 ( 0.1) 173.34 160008 200000 80.0
18402.20 CARROT 12.13 ( 0.1) 36.25 66949 200000 33.5
18506.10 SWEET PEPPER 3.34 ( 0.2) 16.38 40777 200000 20.4
19201.10 APPLE 61.23 ( -0.4) 98.83 123918 200000 62.0
19304 .10 PEACH 2.08 ( 0.4) 7.30 57131 200000 28.6
19401.10 GRAPE 13.11 ( -0.8) 33.88 77407 200000 38.7
19501.10 LEMON 1.52 ( -1.7) 4.14 73296 200000 36.6
19502.10 ORANGE 56.76 ( -0.5) 98.86 114833 200000 57.4
19503.10 MANDARIN TA 8.81 ( -0.2) 40.99 42988 200000 21.5
19507.10 GRAPEFRUIT 4.03 ( -0.8) 28.01 28786 200000 14.4
COMPOUND CONCENTRATION DATA

Code Product MeanConc DeltaR NPosconc NConc %PosConc ProcFact

(mg/kg) ) Ch)

17111.10 GREEN BEANS 0.0117 ( -2.6) 555 20165 2.8 1.00
18115.20 SPINACH 0.0037 ( -9.2) 41 7133 0.6 1.00
18401.10 POTATOES 0.0005 ( -2.3) 1314 160008 0.8 1.00
18402.20 CARROT 0.0014 ( -0.1) 820 66949 1.2 1.00
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18506.10 SWEET PEPPER 0.0022 ( -6.0) 460 40777 1.1 1.00
19201.10 APPLE 0.0014 ( 1.4) 4106 123918 3.3 1.00
19304.10 PEACH 0.0064 ( -2.1) 3333 57131 5.8 1.00
19401.10 GRAPE 0.0173 ( -1.7) 7618 77407 9.8 1.00
19501.10 LEMON 0.0107 ( 2.5 9417 73296 12.8 1.00
19502.10 ORANGE 0.0475 ( 0.2) 47062 114833 41.0 1.00
19503.10 MANDARIN TA 0.0580 ( -0.6) 19073 42988 44 .4 1.00
19507.10 GRAPEFRUIT 0.0691 ( 0.8) 11594 28786 40.3 1.00

Table 6: Summary of simulated intakes

In the upper left part of Figure 35 five icons are displayed. Clicking the upper icon gives a histogram
of the simulated total intakes (see the left plot in Figure 36). Clicking the icon, two icons lower, shows
you the upper tail of this intake distribution (see the right plot of Figure 36). Here, the specified
percentage is 1%, corresponding with an intake of 1.166 microgr/kg bw/day. The acute reference
dose (ARTD) for Chlorpyrifos is equal to 100 microgr/kg bw/day.

CHLORPYRIFOS CHLORPYRIFOS

total intake distribution upper intake distribution

positive intakes (40.6%) upper tail is 1.0% (>1.166 microgr/kg bw/day)
ARfD: 100.00 ARfD: 100.00

0.00000001 0.000001 0.0001 0.01 1 100 1 10 100

Intake (microgr/kg bw/day) Intake (microgr/kg bw/day)

Figure 36: Total intake distribution and upper tail (1%)

If the intake distribution exceeds the ARfD, that part of the intake distribution is displayed in red. This
is obvious not the case in Figure 36.

Choosing ‘Summary of total distribution’ and clicking the ‘Submit’ button in Figure 35 gives the
summary displayed in Table 7. There you find the contributions expressed as percentages (RelContr)
of each product to the total intake distribution. A pie chart of the products with the 9 largest
contributions can be displayed by clicking the second icon from the top in Figure 35. This pie chart is
shown in the left plot of Figure 37. Also the mean, median and the percentiles of the 2.5% and 97.5%
(p2.5% and p97.5%) point of the total intake distribution per product are given in Table 7. The last
column (%Zeros) shows the number of zero intakes per product. If %Zeros is greater than 97.5% the
p97.5% is lower than the mean!

Let’s take Orange as an example. It contributes 65.3% to the total intake distribution and its average
concentration is 0.047 microgr/kg bw/day. The p2.5%, median, p97.5% and %Zeros of the total intake
distribution of Orange are: 0.000, 0.000, 0.512 microgr/kg bw/day and 76.6% respectively.

Compound: CHLORPYRIFOS

Contribution (%) per product to the total distribution

RelContr: relative contribution (%) per product

p2.5% - 2.5% perc. of intake distr. per product (microgr/kg bw/day)
Mean - mean of intake distr.per product (microgr/kg bw/day)

Median : median of intake distr.per product (microgr/kg bw/day)
p97.5% : 97.5% perc. of intake distr. per product (microgr/kg bw/day)
%Zeros : percentage zeros per product
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Product RelContr Mean Median p2.5% p97.5% %Zeros

% (microgr/kg  (microgr/kg (microgr/kg (microgr/kg %
bw/day) bw/day) bw/day) bw/day)
GREEN BEANS 3.3 0.002 0.000 0.000 0.000 99.7
SPINACH 0.6 0.000 0.000 0.000 0.000 100.0
POTATOES 1.7 0.001 0.000 0.000 0.000 99.3
CARROT 0.4 0.000 0.000 0.000 0.000 99.6
SWEET PEPPER 0.2 0.000 0.000 0.000 0.000 99.8
APPLE 2.4 0.002 0.000 0.000 0.000 98.0
PEACH 0.4 0.000 0.000 0.000 0.000 98.3
GRAPE 5.8 0.004 0.000 0.000 0.006 96.2
LEMON 0.4 0.000 0.000 0.000 0.001 95.3
ORANGE 65.3 0.047 0.000 0.000 0.512 76.6
MANDARIN TA 13.6 0.010 0.000 0.000 0.116 90.3
GRAPEFRUIT 5.9 0.004 0.000 0.000 0.007 94.2

Table 7: Contribution to the total intake distribution

Choosing ‘Summary of upper distribution’ and clicking the ‘Submit’ button in Figure 35 gives the
summary displayed in Table 8. There you find the contributions expressed as percentages (RelContr)
of each product to the upper tail according to the specified percentage (here 1%). A pie chart of the
products with the 9 largest contributions to the upper 1% of the intake distribution can be displayed by
clicking the fourth icon from the top in Figure 35. This pie chart is shown in the right plot of Figure
37. Also the mean, median and the percentiles of the 2.5% and 97.5% (p2.5% and p97.5%) point of
the upper 1% of the intake distribution per product are given in Table 8. This table shows the same
statistics for that part of the intakes per product that correspond with the upper 1% of the intake
distribution. So this table represents a drilldown of the upper 1% of the intake distribution and shows
statistics for the intakes per products that constitutes the upper 1%. See also Figure 38, where the
mean intake for each product in the upper tail is graphically displayed. The last column (%Zeros)
shows the number of zero intakes per product.

Let’s take Orange again as an example. It contributes 70.3% to the upper 1% of the intakes and its
average concentration is 1.525 microgr/kg bw/day. The p2.5%, median, p97.5% and %Zeros of the
upper 5% of the intakes are: 0.000, 1.404, 4.512 microgr/kg bw/day and 18.7% respectively. Note that
Mandarin Ta has the second largest contribution to the total intake distribution (see Table 7) whereas
Green Beans has the second largest to the upper 1% of the intake distribution.

Compound: CHLORPYRIFOS

Characteristics per product of the upper 1% of the distribution,
corresponding with a total intake higher than 1.1671 (microgr/kg bw/day)
RelContr: relative contribution (%) per product

p2.5% - 2.5% perc. of intake distr. per product (microgr/kg bw/day)
Mean - mean of intake distr.per product (microgr/kg bw/day)

Median : median of intake distr.per product (microgr/kg bw/day)

p97.5% : 97.5% perc. of intake distr. per product (microgr/kg bw/day)

%Zeros : percentage zeros per product
Product RelContr Mean Median p2.5% p97.5% %Zeros
% (microgr/kg  (microgr/kg (microgr/kg (microgr/kg %
bw/day) bw/day) bw/day) bw/day)

GREEN BEANS 9.5 0.207 0.000 0.000 3.490 .2
SPINACH 2.1 0.046 0.000 0.000 0.000 98.5
POTATOES 0.3 0.006 0.000 0.000 0.000 98.9
CARROT 0.1 0.002 0.000 0.000 0.000 99.4
SWEET PEPPER 0.0 0.000 0.000 0.000 0.000 99.8
APPLE 1.1 0.023 0.000 0.000 0.065 95.9
PEACH 0.1 0.002 0.000 0.000 0.000 97.2
GRAPE 6.8 0.148 0.000 0.000 1.917 88.8
LEMON 0.0 0.000 0.000 0.000 0.002 94.6
ORANGE 70.3 1.525 1.404 0.000 4.512 18.7
MANDARIN TA 5.2 0.112 0.000 0.000 1.532 82.7
GRAPEFRUIT 4.5 0.097 0.000 0.000 1.550 88.2

Table 8: Contribution to the upper tail (1%6) of the intake distribution
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In Figure 37 you find a graphical display of the figures in Table 7 and Table 8. These are obtained by
clicking the two icons in Figure 35 with a pie chart.

CHLORPYRIFOS CHLORPYRIFOS
characteristics of the total ntake distribution characteristics of the upper 1.0% of the mtake distribution
statistics of the 9 largest contiibutions upper quantile corrvesponding with intake =1.167 microgrkg bw/day

statistics of the 9 largest contributions

% Oﬂmrs%
7
Green Beans
0mlg=§

65.3%

70.3%

Figure 37: Relative contribution of products to the total intake distribution and upper tail (1%0)

By scrolling your mouse over the piechart, you find the contribution of each product at the bottom of
the chart. Here, the relative contribution for Orange is displayed.

Choosing ‘Percentiles’ and clicking the ‘Submit’ button in Figure 35 gives the summary displayed in
Table 9. The percentiles of the acute intake distribution for the percentages specified in the first line
of the Output options in the MCRA input form (see Figure 34) are shown. In this example, 0.01% of
the population has an intake higher than 7.28073 microgr/kg bw/day. Also the mean and maximum
are given.

R e e R AR R S e R R SRR R R S R R e R R e R R AR R R R R R R R SRR R SR R R R o e e e e

Random sampling is based on seed : 0
Number of iterations (consumers): 200000 out of 6250
CHLORPYRIFOS (microgr/kg bw/day) consumption: 200000 out of 200000

AE A A A A A A A A A A A A A A A A A A A AAAAAAAAAXAAAAXAAAXAAAALAAAXAAAAIAAAXAAAALAAAA A A LA XAdhhX

Compound: CHLORPYRIFOS

AE A A A A A A A A A A A A A A A A A A A AA A A AAAAAXAAAAIAAAXAAAALAAAAAAAIAAAAAAAIAAAAAAA LA XAdhAhX

Percentiles, maximum and average intake
KEEAAAAAIIAAAAA A A XA A A AAAA A A A AT A AAAAAARIEATEAAAAAARARARTEAAAAAAARAAAAAAAARALAAAAAXAX

Percentage Percentiles of CHLORPYRIFOS (microgr/kg bw/day)
50.00 0.00000
90.00 0.19172
95.00 0.38571
99.00 1.16667
99.90 3.61038
99.99 7.28073
mean 0.07234
maximum 13.34071

Table 9: Percentiles for the acute intake distribution
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In the left plot of Figure 38 you find a graphical display of the figures in Table 9. This is obtained by
clicking the corresponding icon in Figure 35. The right plot of Figure 38 is obtained by clicking the
lowest icon in Figure 35 and shows the mean intake per product in the upper tail (the third column of
Table 8).

CHLORPYRIFOS CHLORPYRIFOS
percentiles intake distribution mean intake per product in upper tail of intake distribution

0.8

0.6

Intake (microgr/kg bw/day)

0.4

0.2

b@,ﬁ

—

0, G G EAE . s,

50.00 90.00 95.00 99.00 99.90 99.99 max %, e, 0, Y, P, Vi, Y ", O, Py o, ”%5
s

%, 5
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Figure 38: Percentiles and mean intake per product of the acute intake distribution

Choosing respectively ‘Consumption: characteristics of nine consumers’, ‘Concentration:
characteristics of nine consumers’ or ‘Intake: characteristics of nine consumers’ and clicking the
‘Submit’ button in Figure 35 gives the summaries displayed in Table 10, Table 11 and Table 12. In
these tables the results of a drill down of consumers according to a specified percentage (here 97.5%)
are displayed. For the nine consumers around the specified percentage the sampled consumption,
compound concentration and intake are displayed (as well as the consumer number, weight and age
for the intake in Table 12). So for consumer number 363571 (86 kg, 33 years), the total intake is 0.664
microgr/kg bw/day. This consumer consumed 2 products (Potatoes 429.0 gr, Grapefruit 150.3 gr).
Only on Grapefruit a compound was found (0.380 mg/kg), so the total intake for this consumer is
150.3 x 0.380/86 = 0.664 microgr/kg bw/day.

Compound: CHLORPYRIFOS

Drill down: consumption (g/day) per product of the 9 consumers
around the specified percentage (97.50%) for the intake distribution

-4 -3 -2 -1 0 +1 +2 +3 +4

product

GREEN BEANS R 4.7 R R . .

SPINACH R R R R R 416.2 . . .
POTATOES 429.0 6.8 30.00 152.15 150.0 150.0 343.2 191.0 191.0
CARROT R 7.4 R . . 9.1 . .
SWEET PEPPER R 2.7 R . R . 18.0 . .
APPLE R R 296.39 9.68 R 80.0 540.0 120.0 120.0
PEACH 2.75 . 115.0 .

GRAPE 1.50 150.00 54.1 B 348.4

LEMON R . 0.48 2.34 0.7 . 4.1 . .
ORANGE R 650.0 0.70 120.00 200.0 2.2 470.0 240.0 240.0
MANDARIN TA R R 55.00 110.00 R 242 .2 30.0 30.0
GRAPEFRUIT 150.3 0.70

Table 10: Drill down of consumers for the acute intake distribution: consumptions

Compound: CHLORPYRIFOS

Drill down: compound concentrations (mg/kg) per product of the 9 consumers
around the specified percentage (97.50%) for the intake distribution
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-4 -3 -2 -1 0 +1 +2 +3 +4
product
GREEN BEANS 0.000 .
SPINACH R R R R R 0.000 . . .
POTATOES 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CARROT 0.000 0.000
SWEET PEPPER 0.160 R . . 0.000 . .
APPLE R 0.000 0.000 R 0.000 0.000 0.000 0.000
PEACH 0.000 . 0.000 B
GRAPE 0.000 0.000 0.400 0.000
LEMON . 0.000 0.000 0.040 B 0.000 B B
ORANGE 0.080 0.000 0.130 0.190 0.280 0.110 0.100 0.110
MANDARIN TA . 0.130 0.250 0.230 0.150 0.070
GRAPEFRUIT 0.380 0.210
Table 11: Drill down of consumers for the acute intake distribution:concentrations
Compound: CHLORPYRIFOS
Drill down: the 9 consumers around the specified percentage (97.50%) for the intake
distribution (microgr/kg bw/day):
-4 -3 -2 -1 0 +1 +2 +3 +4
Consumer 363571 374841 183954 345662 322991 172661 354161 372933 372933
Body Weight 86 79 11 65 90 85 78 43 43
Age 33 29 1 53 66 30 53 11 11
Total 0.664 0.664 0.663 0.663 0.663 0.663 0.663 0.663 0.663
Product
GREEN BEANS 0.000 .
SPINACH R R R R R 0.000 . . .
POTATOES 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CARROT . 0.000 B B 0.000 B B
SWEET PEPPER 0.005 . R . 0.000 . .
APPLE 0.000 0.000 . 0.000 0.000 0.000 0.000
PEACH 0.000 R 0.000 R . . .
GRAPE 0.000 0.000 0.240 0.000
LEMON . 0.000 0.000 0.000 B 0.000 B B
ORANGE 0.658 0.000 0.240 0.422 0.007 0.663 0.558 0.614
MANDARIN TA R 0.650 0.423 0.656 0.105 0.049
GRAPEFRUIT 0.664 0.013 . . .

Table 12: Drill down of consumers for the acute intake distribution: intake

4.2 Chronic risk assessment: betabinomial/lognormal

In this example, output is shown for a chronic risk assessment for antibioticum lasalocide. The
example concerns the intake via eggs. This database is not centrally supplied.
Find in Figure 39 the MCRA input form:

MCRA program options e

Type of analysis @

tisktype O acute

uncetainty analysis ¢ yes

Chronic risk model

concentration madel | empirical

intake model | betabinomial/lognamal

back to central menu

Figure 39: MCRA input form for chronic risk analysis betabinomial/lognormal

" thronic

*no

(optionaly

current v

Choose default option set:

save user defaults

close options

Monte Carlo Risk Assessment

submit MCRA job

Malification & yag o

by E-mail?

Concentration data

Output
close options
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Processing and non-detects

replace nandetects by (fraction of) LOR | no replacement of nondetects

multiplication constantfor LOR 195

processing factors | no processing

Graphics and tables

percentages at percentiies [0.010.02004008008
nercentiles al percentages |90 90 9599 99.998.99




Table 13 lists the main options:

Input form

risk type
uncertainty analysis
concentration model
intake model
concentration data
output

chronic

no

empirical
betabinomial/lognormal
system defaults
system defaults

Table 13: Input form options: betabinomial/lognormal

After clicking the ‘submit MCRA job’ the analysis is started. When the analysis is finished you can
view the results using the ‘view output’ button in the central menu. This gives the screen of Figure 40:

L
A
L

E

Display Qutput
to Input Form
to Central Menu
to Main Menu

Dowenload Qutpot far O line Wiewing

Info Charts

MCEA analysis: 21202005 10:0:29

Display resulis of:

Summary of database

Summany of intake days

Summary of intake distribution (bhefore transformations)
Technical infarmation on usual intake

Fercentiles

Logfile

Figure 40: View output window for chronic risk analysis betabinomial/lognormal

In Table 14 you find the main characteristics concerning this analysis taken from the logfile. The
intake frequency function is estimated with a betabinomial model with smoothing parameter phi. The
model for the logarithmically transformed intake amounts is based on REML.

Log-file
Number of products 1
Acute reference dose (ARTD) *
Acceptable daily intake (ADI) 5
Number of detects 31
Number of non-detects 219
No of consumers 6250
Population characteristics,
minimum age 1
maximum age 97
minimum weight 8
maximum weight 150

sex

female, male

Total no of consumption days 8630

Replace all non-detects
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Multiplicationfactor for LOR 0.5

Intake Frequency: Betabinomial model

Estimates of parameters

Parameter estimate s.e. t™)
Mean probability 0.6904 0.004481 154.07
Overdispersion 0.1811 0.01295 13.99

Intake (amounts): REML model

Estimates of parameters

Parameter estimate s.e. t(™»)
Mean In(intake) -2.578 0.02017 -127.77
Between consumer variance 0.4590 0.05614 8.17
Within consumer variance 2.723 0.06470 42 .09

Table 14: Information in log-file

The Dutch National Food Consumption Survey is used, which has 2 days for 6250 consumers, so
12500 days in total. Lasalocide measurements in eggs were made in 250 cases, 31 of which had a
positive value. In this analysis the other 219 non-detects were replaced by
1LOR =10.05=0.025 mg/kg.

Choosing ‘Summary of database’ and clicking the ‘Submit’ button in Figure 40 gives the summary
displayed in Table 15.

Compound: LASALOCIDE

SUMMARY DATABASE

Code : product code

Product : product label

MeanCons : average consumption, all consumers, all days
MeanConsDays : average consumption, consumption days only
NConsDays : number of consumption days in the data set
NDays : total number of days

%PosCons . percentage consumption days

MeanConc : mean concentration all samples (after processing)
MeanPosConc : mean concentration positives (after processing)
NPosConc : number of positive concentrations

NConc : total number of concentration measurements
%PosConc : percentage positive concentrations

FOOD CONSUMPTION DATA

Code Product MeanCons MeanConsDays NConsDays NDays %PosCons
@ @ (%)
11311.00 WHOLE EGG C 18.00 26.1 8630 12500 69.0

COMPOUND CONCENTRATION DATA

Code Product MeanConc MeanPosConc NPosConc NConc %PosConc
(mg/kg) (mg/kg) (%)
11311.00 WHOLE EGG C 0.4825 3.8910 31 250 12.4

Table 15: Summary of the database, consumptions and compounds

So on average everyone consumes 18 g of egg per day. This is an average of 26.1 g on 8630
consumption days and 0 g on 12500 - 8630 = 3870 non-consumption days. The average of the 31
positive lasalocide concentrations and 219 times 0 mg/kg is 0.4825 mg/kg.
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Choosing ‘Summary of intake days’ and clicking the ‘Submit’ button in Figure 40 gives the summary
displayed in Table 16.

Compound: LASALOCIDE

LONG TERM EXPOSURE (USUAL INTAKE)

Summary of intake days in the data

proportion and number of consumers with positive intake on:
0 days 0.1346 841
1 days 0.3501 2188
2 days 0.5154 3221

All Positive

intakes intakes %
Number of observations 12500 8630 69.0
Number of consumers 6250 5409 86.5

Table 16: Summary of intake days

Choosing ‘Summary of intake distribution’ and clicking the ‘Submit’ button in Figure 40 gives the
summary displayed in Table 17.

Compound: LASALOCIDE
LONG TERM EXPOSURE (USUAL INTAKE)
Summary of all intake data (zeros included)

Number of observations = 12500
Mean = 0.154

Median = 0.031

Minimum = 0.000

Maximum = 6.368

Lower quartile = 0.000

Upper quartile = 0.181

Summary of positive intake data (without zeros)

Number of observations = 8630
Mean = 0.223

Median = 0.095

Minimum = 0.000

Maximum = 6.368

Lower quartile = 0.026

Upper quartile = 0.322

Table 17: Summary statistics of the calculated daily intakes

In the upper left part of Figure 40 seven icons are displayed. Clicking the upper icon gives the
empirical distribution of the non-zero daily intake values, calculated as daily consumption values
times average concentration (0.4825 in this case) divided by body weight (see the left plot in Figure
41). Note the spike near 0 (note that true zero intakes are already excluded here), and the bimodal
character of the rest of the distribution (possibly related to the consumption of one or two whole
eggs?). This distribution is definitely non-normal. A logarithmic transformation is requested for the
non-zero daily intakes.

Clicking the second icon from above shows you the intake distribution after a logarithmic
transformation (see the right plot of Figure 41). There is a better symmetry, but clearly the non-
normal character of the data is not removed by a simple logarithmic transformation. Compare this
figure also with the power transformed distribution in the right plot of Figure 85.
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LASALOCIDE LASALOCIDE
distribution of positive daily intakes (69.0%) distribution of In transformed positive daily intakes (69.0%)

0 1 2 3 4 5 6 7 9 3 7 -6 5 4 3 2 =il 0 1 2
Daily intake (microgr/kg bw/day) Daily intake after In transformation

Figure 41: Untransformed and In transformed intake distribution

Clicking the third icon from above shows you the intake frequency distribution (see Figure 42). The
mean probability for a consumer to have an intake is equal to 0.69 but dispersion parameter phi (=
0.181) of the betabinomial distribution provides that each consumer has its own probability to have an
intake.

LASALOCIDE

estimated intake frequency distribution
Beta distribution of intake frequency (pi=0.690 phi=0.181)

Density
=
d

0.0 0.1 02 03 0.4 05 0.6 0.7 0.8 09 10
Probability (per individual)

Figure 42: Intake frequency

Clicking the fourth and the fifth icon from above shows you respectively the left and the right plot of
Figure 43. The left plot is the cumulative usual intake distribution (black line). The green boxes
indicate the percentiles of the usual intake distribution for the entire population as requested in the
input form of Figure 39. The right plot is the density of the usual intake distribution for positives only.
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LASALOCIDE LASALOCIDE

cumulative usual intake distribution probability density function usual intake
intake days only: blue dots intake days only
entire population: green boxes between-person variation in usual (positive) intake distribution
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Figure 43: Cumulative usual intake and density function

Choosing ‘Percentiles’ and clicking the ‘Submit’ button in Figure 40 gives percentiles of the usual
intake distribution for the entire population (see Table 18).

Compound: LASALOCIDE

LONG TERM EXPOSURE (USUAL INTAKE)
Percentage Entire population

50.00 0.19760
90.00 0.50817
95.00 0.66043
99.00 1.07493
99.90 1.84598

Table 18: Percentiles of the usual intake distribution

Clicking the sixth and the seventh icon from above shows you respectively the left and the right plot
of Figure 44. In the left plot the percentiles of Table 18 are graphically displayed whereas in the right
plot percentages derived from percentiles are shown.

LASALOCIDE LASALOCIDE
percentiles usual intake distribution percentiles usual intake distribution
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Figure 44: Percentiles and percentages
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4.3 HELP on CHARTS

To view ComponentOne Charts, an ActiveX-aware browser is needed. Users can manipulate the chart
they view by right-clicking the chart, which brings up the Property Editor (see Figure 45). Some more
information is available under the link InfoCharts on the View Output screen. ComponentOne Chart
graphs can be printed, or copied to the Windows clipboard, for later inclusion in documents.
Occasionally, after pasting ComponentOne Charts into Word the chart is not displayed (at all) and
instead, an icon appears.To our experience, pasting charts from the clipboard encounters no
difficulties when the Word document is opened first, then press the 'Copy to Clipboard' button and
paste the contents of the clipboard into the Word document.

Tabular output is available in separate ASCII output text files in the output directory. Alternatively,
text can be copied and pasted from the ‘view output’ window into another document. In order to
obtain a proper lay-out the function Paste Special from the Edit menu should be used, selecting
“Unformatted text”.

ComponentOne Chart is comprised of a 2D Control (ActiveX) for use in Windows applications. The
control is stored in a so-called Cabinet-file, Olectra. CAB. A licence pack file Olectra.LPK is needed
to register the control. To be able to view a ComponentOne Chart, the cabinet file and license pack
have to be downloaded. Depending on the security level of your Internet Explorer, you may get the
chart. You can change the security settings by doing the following:

e In Internet Explorer select {Tools | Internet Options} and choose the "Security" tab.

e Then select the Web zone "Internet" or "Local Internet" depending on whether you view the
MCRA charts on the internet or local disk. Click the "Custom Level" button, and use the
following settings (you may not see all of these settings):

Automatic prompting for ActiveX Controls: Enable

Binary and script behaviors: Enable

Download signed ActiveX controls: Prompt

Download unsigned ActiveX controls: Prompt

Initialize and script ActiveX controls not marked as safe: Disable
Run ActiveX controls and plug-ins: Enable

Script ActiveX controls marked safe for scripting: Enable

Nk W=

To be sure that changes to the charts (after re-running the program) are displayed by the browser, you
may need to do the following. Click:

1. Tools.

2. Internet Options.

3. General.

4. Settings.

5. Check: every visit to the page.

6. OK

7. OK
The setting for "Download unsigned ActiveX controls" is probably the most critical one. The first
time you display an MCRA chart, you will get the Security Warning displayed here about installing
OLECTRA.CAB. Click "Install" and you are done.

On some computers another version of the "Chart" ActiveX component might be installed, giving
spurious error messages and/or no graphs when viewing this website. You then have to delete the file
"olch2x7.0cx" from the "WINDOWS\system32" directory, and restart the website. This will copy the
correct version of "olch2x7.ocx" to the "WINDOWS\system32" directory.

In Internet Explorer 6, after selecting an icon to display a chart in the View Output Menu, you may
see an "active contents" security warning in the Internet Explorer Information Bar on top of your
screen. Click on the warning, select Allow Blocked Contents and choose YES in the Security
Warning displayed on the right.
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4.3.1 To display the Property Editor

Click the right mouse button over any part of the chart and select properties of the pop-up menu.
Select the tab that corresponds to the element of the chart that you want to edit.
Click the ‘OK’ or ‘Cancel’ button to close the Property Editor (see Figure 45).

CHLORPYRIFOS
characteristics of the total intake distribution
statistics of the 9 largest contributions

Chartarea ] Flotarea ] ChartLabels ] View 3D ] M arkers ] AlarmZones ]
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Figure 45: Property editor

Interacting with Chart

You can interact with the chart as it is running to examine data more closely or visually isolate a part
of the chart. The interactions described here affect the chart displayed inside the ChartArea; other
chart elements like the header are not affected. ComponentOne Chart provides users with 2 different
mechanisms for zooming the chart: Graphics zoom and Axis zoom. Performing a Graphics zoom
enlarges the selected area of a chart, while not necessarily showing the axes. Performing an Axis
zoom changes the minimum and maximum data values to those selected, and redraws only that data
with axes. Scaling, moving, or graphics zooming the chart sets the PlotArea margin properties, so the
chart will not automatically control margins anymore when other chart properties change.

To Scale the Chart:
1. Press CTRL, and hold down both mouse buttons (or middle button on 3-button mouse).
2. Move the mouse down to increase chart size, or move the mouse up to decrease chart size.

To Move the Chart:
1. Press SHIFT, and hold down both mouse buttons (or the middle button on 3-button mouse).
2. Move the mouse to change the positioning of the chart inside the ChartArea.
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To Graphics Zoom an Area of the Chart:
1. Press CTRL, and hold down left mouse button.
2. Drag mouse to select zoom area and release the mouse button.

To Axis Zoom the Chart:
1. Press SHIFT, and hold down left mouse button.
2. Drag the mouse to select the zoom area and release the mouse button.

To Rotate the Chart (Bar/pie charts displaying 3D effect only):

1. Hold down both mouse buttons (or middle button on 3-button mouse).

2. Move mouse up or down to change the 3D inclination.

3. On bar charts, you can also move mouse left or right to change the 3D rotation angle.

To Reset to Automatic Scale and Position:

Press the “r” key to remove all scaling, moving, and zooming effects; chart regains control of
PlotArea margins.
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5 Model description

5.1 Basic model

This chapter describes the stochastic (or Monte Carlo) models behind the MCRA program. These
models assess acute or chronic risks due to the intake of chemical compounds from food by
combining food consumption survey data and compound concentration data from e.g. monitoring
programs. The model for acute risk allows for effects of food processing between monitoring and
ingestion, it can model unit variability either from available data or using default assumptions, and it
uses information on Limit of Reporting (LOR) and percent crop treated to check whether non-detects
present a source of uncertainty.

The basic model is:

P
injk Cijk
k=l

w.

where y; is the intake by consumer i on day j (in microgram chemical compound per kg body weight),
X; 1s the consumption by consumer i on day j of food product k (in g), c;x is the concentration of the
chemical compound in product k eaten by consumer i on day j (in mg/kg, ‘ppm’), and w; is the body
weight of consumer i (in kg). Finally, p is the number of products accounted for in the model. Note
that the definition of ‘product’ is flexible: it may represent a Raw Agricultural Commodity (RAC),
e.g. ‘apple’, but it may also specify subdivisions, e.g. ‘apple, peeled’ or ‘apple, imported’.

Vi

In the stochastic model the quantities x;;, w; and c;; are assumed to arise from probability distributions
describing the variability for food consumption and weight, p(x,,...x,,w), and for compound
concentrations in each food product, pi(c). In principle, these probability distributions may be
parametric (e.g. completely defined by the specification of some parameter values) or empirical (e.g.
only implicitly defined by the availability of a representative sample).

Food consumption data may arise from different sources. Typically national food consumption
surveys or monitoring programs provide information on food intake in the general population. For
example, from the Dutch Food Consumption Survey (1997) food consumption patterns (x; ,...,x,),
body weight (w) and age (a) are available for 6250 consumers on 2 consecutive days. Depending on
the problem, Monte Carlo samples may be drawn from the complete data base, from a day- or age-
restricted subset or from consumption-days only. In some cases there is insufficient information for
specific subgroups in the population. For example, in a study on infants (age up to 12 months), a
separately constructed food consumption database has been used (Boon ef al. 2003).

In general a recipe data base is necessary to convert the amounts of food as consumed (e.g. pizza) to
amounts of products (x; ,...,x,) of primary agricultural products which are used in the model. Van
Dooren et al. (1995) provide such a conversion for the Dutch situation.

Compound concentration data may be available from different sources. In some countries national
monitoring databases exist, which are useful for the risk assessment of chemical compounds already
in use. For example the Dutch KAP database (van Klaveren 1999) stores annually more than 200,000
records of measurements originating from food monitoring programs for meat, fish, dairy products,
vegetables and fruit.

Given these probability distributions (or estimates thereof) Monte Carlo simulations can be used to
generate an estimate of the probability distribution p(y;) to assess acute risks by intake of the
compound (see 5.3 ). When dietary components are consumed on a nearly daily basis, intake values y;
may be used to estimate the probability distribution p(y;) for chronic risk assessment purposes (see
5.6).
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5.2 How to deal with limited information

In the probabilistic model, a distribution of food consumption data as well as a distribution of
compound data are used. For both components of the model, a choice can be made between a non-
parametric (see 5.3.1.1 ) or a parametric (see 5.3.1.2 and 5.3.1.3 ) approach. In a parametric approach
the data are modelled with an appropriate distributional form (e.g. lognormal with parameters ¢ and
W). In a nomn-parametric approach the empirical distribution is used to sample from directly.
Obviously the latter approach requires more data to obtain a satisfying representation of the full
distribution. Therefore, parametric modelling becomes important in data-scarce situations (see 5.2.1).

Occasionally limited information emerge not as a consequence of the amount of data but how they are
presented: data are reported using e.g. the mean and variance (see 5.2.2 ) or data are summarised as
counts of observations falling into a series of classes (see 5.2.3 ). It is evident that a parametric
approach is the only way out and that the parameters of the lognormal distribution should be inferred
using the available data.

If for some products there are far less data than for others, it may be sensible to consider pooling
procedures for means and or variances of the concentration distributions (see 5.3.1.3).

If the amount of data is limited, this may lead to a relatively large sampling uncertainty. Bootstrap
procedures may be used to assess the magnitude of this uncertainty (see 5.7 ).

Back to: Concentration model options

5.2.1 The choice between a parametric and non-parametric approach

How many compound data are required for a sensible calculation of upper-tail percentiles in the
exposure distribution based on a non-parametric approach? The rule of thumb can be used that the
chosen percentile should be contained directly in the data. For example, at least 20 measurements are
needed to estimate the 95™ percentile and at least 100 measurements to estimate the 99™ percentile.

More generally, the number of measurements per food product (n) should at least equal 1/(1-p%/100)
to allow a rough empirical estimate of the p™ percentile of the compound concentration distribution to
be made. Of course, the risk assessment is only coarse with this minimum amount of data and larger
sample sizes per food product are certainly worthwhile.

In situations where the number of measurements becomes a problem, an appropriate risk analysis
should be based on further modelling. Essentially, the lack of data is compensated by a priori
assumptions. Assuming a simple distributional form for the compound data, the number of
measurements can be smaller in principle (at least 10, say). However, non-detect measurements
provide no information about variability, and therefore we should now count the number of positive
measurements. Figure 46 shows which approach could be best used depending on the total number of
measurements and the number of non-zero measurements. In principle, such a choice could be made
separately for each food product.
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Figure 46: Use of non-parametric or parametric modelling for estimating 99%o exposure
percentile in relation to sample size and number of positive measurements.

5.2.2 Estimation based on histogram data

In EU reporting, compound data are sometimes reported in a tabulated (histogram) form: data are
expressed as counts of observations falling into a series of groups. The observed counts are n;...x,,
which fall into ¢ classes with limits c¢; . c.. The number 7, is the number of positive (defect) samples,
which are nevertheless below the LOR (= ¢;); n; is the number of positive samples that fall in between
limits ¢; and c,,...,; n. is the number of samples that fall in between limits c..; and c..

For histogram data, parameters u and o of the lognormal distribution can be obtained by fitting a
normal distribution to a set of observations n;...n.. In an iterative way, expected counts for a
standardised normal variable are calculated using the log-transformed group limits. Each round,
parameters are updated until the process converges.

5.2.3 Estimation based on summary data

Occasionally, data are reported in a very condensed form. Summary statistics like the mean, quantiles
and dispersion measures as the variance or the coefficient of variation are used to describe
characteristics of the underlying concentration distributions. The reported statistics are calculated
using all values (with concentrations below LOR sometimes replaced by 2*LOR), or using positive
values (detects) only. In order to use the binomial-lognormal model, summary statistics based on all
values must be corrected for the values replacing the concentrations below LOR. For the mean, the
correction is straightforward, taking a zero or the midpoint-value (*2*LOR). Likewise, the standard
deviation or any measure of dispersion is corrected for the sum of squares due to all zero values and
taking into account the corrected mean. The median is also corrected, but instead of correcting the
value itself, a corrected quantile z, is calculated corresponding to ¢, the lower fraction and z,
satisfying:

z,= @' {q} = D {(AN — ng)/(N - ng)}

with &(.), the cumulative probability function of the standard normal distribution, N, the total number
of samples and #ny, the number of zeroes.

The maximum is the largest order statistic. Its expected value can be approximated by taking the
appropriate population quantile, especially in large samples. Here, the problem is the other way
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around: the population quantile corresponding to the largest value given the sample size is to be
estimated. For sufficiently large N an approximation to E(g,./) is provided by the value of z,
satisfying @(z,) = N/(N+1). Blom (1958) and Harter (1961) made the following suggestions for
smaller sample sizes:

2= P{(N- @)/(N-2a+ 1)}

With a = 315065 + .057974u - .009776u° and u = log;,N. Over a wide range of N & approximates the
value 3/8. This empirical formula is a very accurate approximation to the exact value of £(g,,) and is
used to estimate appropriate population quantiles for ¢,.,.. (David, 1970; Pearson and Hartley, 1972 ;
Blom, 1958; Harter, 1961).

Three situations can be distinguished:
1) the reported information is insufficient to estimate both x and o, or
2) the reported statistics are sufficient to extract x and o, or
3) the information is redundant so various estimates for x and ¢ are available.

Here, we first consider approaches for situation 2. Situation 1 requires additional information: a
solution might be to use the information on comparable product-compound combinations to assess the
necessary estimates. Situation 3, basically, is a pooling problem how to weigh and combine estimates
that originate from different statistics.

5.2.3.1 Moments and other characteristics

A positive random variable X is said to be lognormally distributed with parameters x and ¢” if ¥ = InX
is normally distributed with mean x and variance o”. The probability density function of X is:

J(x) = 1/(N2 7o) exp(-(Inx - 1)*/26%).
The corresponding normal distribution for Y is denoted by N(u, o”).
Estimation of 1 and ¢ using summary statistics is based on equations and characteristics derived from
the moment generating function of the lognormal distribution. Required parameters are estimated by

solving the formulas of the first two moments for x and o.
The following characteristics for variable X derived from the moment generating function are given:

mean: exp(u+ 1/26%) D
variance: exp(2u + o°)(exp(a’) — 1) 2)
mode: exp(u - 0°) 3)
quantile (g,): exp(u + z,0), 4
ve, V(exp(?) - 1) (5)

with vc the coefficient of variation, g a given lower fraction and z, the corresponding standard normal
deviate. The 50™ quantile, the median, is a special case with z, = 0. The geometric mean of X is equal
to the median.

5.2.3.2 Estimation
Approach 1: estimation based on two quantiles, g,; # q4>.

Using (4) gives:
o =10g(q41/942) / (241 — z42). Substituting o yields pu.

Approach 2: estimation based on a quantile and the mean.
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Solving for o using (1) and (4) gives:
o - 2z,0 - 2log(mean/g,) = 0, with roots for o according to:
24 (z,* + 2log(meang, )) ©)

For moderate to small sample sizes the estimation of ¢ fails because the discriminant is negative, i.c.
the argument of the square root function. Empirical simulations show that a negative discriminant
happens more often for small sample sizes and for estimation based on extreme quantiles like the
maximum. Figure 47 shows the empirical relation between the sample size and the fraction of failures
for estimation methods involving the mean with respectively, the maximum and median. For the
maximum, failures occur already at sample sizes n = 30 to 40, for the median n = 15 to 20. Negative
discriminants occur when estimation is based on empirical (sampled) values instead of theoretical
(calculated) values assuming a normal underlying distribution. The amount of failures for small
sample sizes is in accordance with large sample theory. When the maximum is involved and
estimation fails, an estimate of ¢ is assessed by equating the discriminant to zero. Empirical results
show that this works out very well for sample size n > 4, although ¢ is slightly biased upwards being a
conservative estimate. In case of the median no solution to this problem is available so the estimate of
o is set to a missing value.

Simulation results
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Figure 47: Simulated fraction of failures versus sample size for estimation of o based on the
mean and respectively the maximum and median

In general, for n large enough, say n > 40, ¢ has two roots. Usually, the mean is larger than the
median. Then, o is estimated with:

zyt( zqz + 2log(mean/median)) with condition ¢ > 2z,..
In case of the mean and maximum o is estimated with:

z,-( zq2 + 2log(mean/max )) with condition o < 2z,,..
Note that max is always greater than the mean. Here, the smallest root is taken as an estimate because
empirical results show that the largest root yields unlikely high measures of dispersion and therefore
should be rejected.

Approach 3: estimation based on mean and variance or coefficient of variation.

The coefficient of variation, ve = (variance)/mean. Using (5), parameter o is estimated with:
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V(log(ve? + 1))

and x is estimated solving (1).

Approach 4: estimation based on a quantile and coefficient of variation.

For estimation of o, see approach 3. Using (4), parameter yu is estimated with:
log(quantile) - z,0

For the median, estimation of u simplifies to:

log(median)

5.3 Concentration model: modelling of compound concentrations in
consumed food

5.3.1 Distributional assumptions

Compound concentrations in the various food products are independent and therefore can be modelled
by univariate distributions.

5.3.1.1 Non-parametric modelling of concentrations (empirical)

In the empirical (non-parametric) approach, concentrations are sampled at random from the available
data and combined with the consumption data to generate a new distribution of exposure values. To
assess the risk-exposure, percentiles of the exposure distribution are estimated.

Back to: Empirical

5.3.1.2 Parametric modelling of concentrations (binomial/lognormal no pooling)

In the parametric approach, compound concentrations per food product are sampled from parametric
distributions. A special feature of compound data is that the large majority of measured concentrations
(often more than 80%) is recorded as zero (non-detects). These values may correspond to true zero
concentrations (for example because the compound is never used in the specific product), or they may
correspond to low concentrations which are below a pre-established reporting limit (LOR). In any
case, the compound concentration distribution is very skew, with a large spike at zero and an extended
tail to higher values. For statistical modelling a two-step procedure is chosen. First, the presence of a
concentration > LOR on food products is modelled with a binomial distribution with a parameter p
representing the probability of a reported concentration. Probability p depends on the chemical
compound and the product and is estimated as the fraction of detects. Secondly, the non-zero
compounds are modelled with the lognormal distribution. After consideration of several possibilities
using the program BestFit, this distribution has been selected as being both theoretically sensible and
practically useful. The parameters ¢ and o are the mean and standard deviation of the log-transformed
non-zero compound concentrations.

In the basic model (see 5.1)

Cip = Iijk - CpOS

with 7, indicating whether a compound concentration is sampled (/;;=1) or not (/;,=0), and cpos;;
the compound concentration in the subpopulation of positive values. The probability of /;, being 1 or

0 depends on the number of detects found for product k£ and [, is sampled separately for each

consumer  on occasion j.
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Back to: Binomial/lognormal (no pooling)

5.3.1.3 Parametric modelling of concentrations (binomial/lognormal with pooling)

When data are limited, it may be advantageous to apply the parametric approach for modelling of the
positive concentrations. In MCRA the positive concentrations are modelled as lognormal with
parameters x and o°, representing mean and variance of the natural logarithm of the concentrations.
However, estimation is often hampered because data on compounds in specific food products are
sparse or even missing. In those cases, grouping of products into product groups enlarges the number
of measurements per group and may give sufficient data to base estimates upon. We must assume that
concentration distributions are the same for the grouped products. A second related question is the
reliability of estimates, based on a few number of degrees of freedom. The following procedure is
designed to cope with the above problems.

1. Pooling variances within product groups. For each product the variance ¢ and mean u is
estimated. Then, products are assigned to product groups which are composed of related products,
e.g. a productgroup containing sorts of cabbages or a group containing all kind of berries.
Products where agricultural use is allowed are remained separate from products where agricultural
use is not allowed. The homogeneity of variances in the different product groups is assessed using
Bartlett's test (Snedecor & Cochran, 1980). The test statistic determines whether variances within
a group are to be pooled automatically (p > 0.05) or not (p e 0.05).

2. Pooling means within product groups. After pooling the variances, an overall test for
differences of means within each group is performed, based on analysis of variance. Means within
groups are pooled automatically if the probability p > 0.05.

3. Using overall variance if there are < 10 degrees of freedom. Estimates of variances based on
less than 10 df are considered not very reliable. Therefore, variances based on < 10 df are
compared to the overall variance (pooled over all products except the tested product itself, i.c.
corrected) and tested for equality. Variances are replaced by the overall variance (uncorrected)
whenever the hypothesis of equality of variances is not rejected; if rejected, the original variances
are maintained.

For a parametric risk assessment all variances and means must be present. This requirement implies
that very often rearrangement of products into (sub) groups preceeds the actual simulation of the
intake distribution.

To summarise, actions are:

e calculate variances and means for each product

e classify products into groups

e test homogeneity of variances and equality of means within groups of products. Results are: not
significant (p > 0.05) or significant (p < 0.05).

o take products(-groups) with df < 10

e compare variance with overall variance (corrected). Replace variance with overall variance
(uncorrected) for non-significant test results.

Back to: Binomial/lognormal with pooling

5.3.2 Modelling of missing data and replacement of non-detects

Missing data should be indicated by 9999 in the database tables. In principle such values are ignored
in the analysis.

Most monitoring measurements of chemical compounds are non-detects, i.e. no quantitative
measurement is reported. For this reason data are entered in the Concentration table by specifying the
total number of measurements made together with the limit of reporting (LOR). We use LOR to mean
exactly what the term says: measurements below LOR are not reported, whereas values equal to or
higher than LOR are represented by numerical values in the database.

In the analytical and food risk fields analytical limits are often indicated as LOD (limit of detection)
or LOQ (limit of quantification). Unfortunately, it is not always clear what is meant with these terms.
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In any case official recommendations are to always report any available numerical values even if they
are below LOD or LOQ limits (IUPAC 1995).

For legal applications of compounds data may be available about the percentage of the crop which
receives treatment. When a chemical compound can enter the food chain only via crop treatment, and
when the percentage of crop treated is (approximately) known to be 100p.p-reaes, then this
knowledge may be used to infer that 100(1-peop-srearea)o 0f the monitoring measurements should be
real zeroes, contributing nothing to pesticide intake, whereas other non-detects in the monitoring data
could have any value below the LOR. For 100(pon-detcc: T Perop-treatca - 100)% of the monitoring
measurements, 0 and LOR represent best-case and worst-case estimates. A simple way (tier 1
approach) to consider the uncertainty associated with non-detects is to compare intake distributions
for these best-case and worst-case situations.

Back to: Replacement of non-detects

5.3.3 Modelling of processing effects

Concentrations in the consumed food may be different from concentrations in the product as
measured in monitoring programs (typically raw product) due to processing, such as peeling, washing,
cooking etc.

In general, we assume the model:

CpoS ;. = S " Clk

where cry is the concentration in the raw product, and where f; is a factor for a specific combination &
of RAC and processing. Values will typically be between 0 and 1, although occasionally the
processing factor may also be >1 (e.g. drying as applied for grapes and figs).
The user of the model will have to specify processing factors for each product k as defined in the food
consumption data base. For this purpose, it is advised to maintain a data base of processing factors,
indexed by chemical compound, RAC and processing type (e.g. washing, peeling or other
processing). Before running the model, it may then be necessary to specify how the necessary
processing factors are derived from the data base entries and/or other information. Example: if there
are no processing factors known for captan in pears, it may be decided to use the corresponding
factors for apples instead.
Often the information will be of limited quality, and this may be entered in the Monte Carlo
modelling by specification of uncertainties. A practical proposal is to specify for each processing
factor two values:
1. finom: the nominal value, typically some sort of mean from an experimental study
2. frupp: an upper 95% confidence limit, which typically will be set by an expert (even if statistical
information on variability of the factor is available, there will often be uncertainty due to the
appropriateness of the processing study for the population of the risk assessment). The upper limit
should be such that experts will easily agree that it is not set too low.
A typical data base entry might thus read:
RAC processing Sinom  Jiupp
apple washing 0.5 0.7
and, confronted with the need to have processing factors for pears in a specific risk assessment, an
expert may decide upon:
RAC processing Sinom  Jicupp
pear  washing 0.5 0.8

In the Monte Carlo modelling, processing factors can be used in either of three ways (for each product
k to be chosen by the user):

5.3.3.1 No processing factor

Just take i, = 1. This is in most (though not all) cases a worst-case assumption. No data on processing
are needed and therefore this route is useful in a first tier approach.
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5.3.3.2 Processing (fixed factors)
Use fi = frup- Available information on specific processing effects is used, although still in a
cautionary way (in accordance with the precautionary principle). Note that f; ,,» values need not to be
specified.

5.3.3.3 Processing (distribution based)

Sample f; using a normal distribution. Log or logit transformed values of fi .., and f ., are used to
define the first two moments of the normal distribution. Two situations are distinguished depending
on the type of transformation.

a) The logarithms of fi ... and fi,,, are equated to the mean and the 95% one-sided upper
confidence limit of a normal distribution. This normal distribution thus is specified by a mean
In(fnom) and a standard deviation {In(fi.,,) — In(fi.om)}/1.645. Values are drawn from this
distribution in the Monte Carlo simulations. Processing factors f; will be nonnegative. Note:
Jiupp and finom values equal to 0 are replaced by a low user-specified value (e.g. 0.01); this is
useful computationally to avoid problems with logarithms.

b) The logits of fi uom and fy ., are equated to the mean and the 95% one-sided upper confidence
limit of a normal distribution. This normal distribution thus is specified by a mean logit(f; o)
and a standard deviation {logit(fy.,,,) — logit(fi,.m)}/1.645. Values are drawn from this
distribution in the Monte Carlo simulations. Processing factors f; will be between 0 and 1.
Note: fiupp and finom values equal to 0 and 1 are replaced by user-specified values (e.g. 0.01
and 0.99); this is useful computationally to avoid problems with logits.

The user should keep in mind that, in case of a lognormal distribution, f; .., defines the median,

while f; ., quantifies skewness. The same holds for the logistic. Usually, a logarithm will be the

standard transformation, but for very skew distributions (see Figure 48) occasionally values above

1 are sampled (upper row, 1™, 3™ and 5™ plot). A logit transformation should be considered

instead.

nom=0.01 upp=1.0D nom=0.3 upp=0.6 nom=0D.7 upp=0.9 nom=0.9 upp=0.92 nom=0.9 upp=1.0
. 1 L

5 10 15 0 .3 1 0 7 1 o} 91 0 91
nom=0.01 upp=1.00 nem=0.3 upp=0.6 nom=0.7 upp=0.9 nom=0.9 upp=0.92 nom=0.9 upp=1.0
0 5 10 ] 1 0 =5 10 S 17 0 5 1

Figure 48: Lognormal (upper row) and logistic (lower row) distributions for various values of
ficnom (= nom) and ficyp, (= UPP)

Back to: Modelling processing effects
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5.4 Modelling of unit variability

5.4.1 Introduction, variability in deterministic modelling

Variability in compound concentrations between individual units is a relevant factor in the assessment
of short-term dietary exposure to chemical compounds. It is addressed separately because monitoring
measurements cmy are typically made on homogenised composite samples, both in controlled field
trials and in food monitoring programs. Such a composite sample for product & is composed of nu
units with nominal unit weight wuy each. The weight of a composite sample is therefore wm; = nuy x
wuy, . This weight is often larger than a consumer portion, e.g. a typical composite sample of 20 sweet
peppers weighs 3.2 kg, whereas daily consumer portion weights in the Dutch Food Consumption
Survey 1997 ranged from 0.08 g to 458 g.

How should monitoring data be used to estimate the raw product concentration levels cry; in
consumer portions? Although the mean level of c¢m; may be a fair estimate of the mean level of cry,
the variability of cmy is not appropriate to estimate the variability of cr;. In smaller portions more
extreme values may occur more readily, and thus acute risks may be higher than would follow from a
direct use of the composite sample data.

Therefore the FAO/WHO Geneva Consultation recommended to include a variability factor (v) in the
non-probabilistic calculation of an international estimate of short-term intake (/ESTT) (FAO/WHO
1997). The IESTI has been adopted by the Joint Meeting of FAO and WHO experts on Pesticide
Compounds in food in 1999, and was modified in 2000 to reflect that the supply for actual
consumption on a given day is likely to be derived from a single lot (JMPR 1999, 2000). In both the
original and the modified definition, the variability factor is used in a similar way. The basic idea is
that the compound concentration for the first unit eaten is multiplied by v, whereas this factor is not
applied for any remaining part of the daily consumption.

In the original presentation v was meant to reflect “the ratio of a highest concentration in the
individual product unit to the corresponding concentration seen in the composite sample”
(FAO/WHO 1997). It was not clearly stated what was meant with “a highest concentration”. Should
this be the maximum concentration found or should it be a high percentile, e.g. p95 or p97.5? In
practical terms this did not matter too much, because little data were available. Therefore the
FAO/WHO Consultation recommended to take initial values of v equal to “the number of units in the
composite sample as given in Codex sampling protocols”. This will provide a conservative estimate of
the compound concentration in the first unit, based on the assumption that all of the compounds
present in the composite sample are present in this single unit. If Codex sampling protocols are used,
then the number of units per composite sample is 5 for large crops (unit weights > 250 g) and 10 for
medium crops (unit weights 25-250 g). For small crops (< 25 g) a variability factor v = 1 was
recommended. More recently, it has been proposed to replace the default value 10 with 7. For
products which are processed in large batches, e.g. juicing, marmalade/jam, sauce/puree, a variability
factor v =1 is proposed. To summarise:

unit weight, wu FAO/WHO default variability factor, v
<25g 1
25-250 g 7
>250 g 5
juicing, marmalade/jam, sauce/puree 1

Table 19: Default variability factors for IESTI calculations

The Consultation specifically recommended to replace these default values with more realistic values
obtained from studies on actually measured units. A working group of the International Conference on
Pesticide Residues Variability and Acute Dietary Risk Assessment held in York in 1998 suggested to
define v, for samples taken from controlled trials, as the 97.5™ percentile of the unit levels divided by
the sample mean (Harris et al. 2000), and this is used in the current version of MCRA as the defining
relation.
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Back to: Unit variability model options

5.4.2 Approaches to unit variability in probabilistic modelling: specifying distributions

How should variability between units be incorporated in probabilistic modelling of acute risks? In
probabilistic modelling we generate consumption amounts and compound concentrations which will
be multiplied, summed over products and divided by body weight to estimate the intake. However, the
compound concentration cmy will usually be derived from a distribution based on measurements on
composite samples. Assume that a batch of product contains N units (V large, for the statistics we
assume infinite). The monitoring measurement cmi; is made on a composite sample of nu; units (for
example, nuy; = 5). These units are assumed to be representative of the batch. Unit concentrations cr;j
are to be simulated for one or more units from this batch that will be part of a consumption portion in
the Monte Carlo simulation. Basically, there are three possibilities depending on the availability of
data:

1. use actual measurement data on individual units;

2. use variability factors or other summary statistics based on measured individual units;

3. use conservative assumptions.

In MCRA only methods under categories 2 and 3 are implemented. The first approach has been
pioneered in the context of a large UK survey on pesticides in fruit (Hamey 2000).

In MCRA the following three models, discussed below in more detail, are implemented:

1. Beta model, requires knowledge of the number of units in a composite sample, and of the
variability between units (realistic or conservative estimates);

2. Bernoulli model, requires only knowledge of the number of units in a composite sample (results
are always conservative);

3. Lognormal model, requires only knowledge of the variability between units (realistic or
conservative estimates).

Preferably realistic estimates of unit variability are to be used, either expressed as coefficients of
variation cv (standard deviation divided by mean) or as variability factors v (defined in MCRA as
97.5™ percentile divided by mean). However, often such information is not directly available. In such
cases it is customary to select high values for the variability factor, either based on collections of
variability factors for other compounds/products, or calculated as the theoretical maximum derived
from the number of units in a composite sample.

How to translate the concept of conservatism to the probabilistic model? In a non-probabilistic model
a higher value of v gives a higher /ESTI, but in a stochastic model a higher variability means more
spread around a central value. In general this means that higher values, but also lower values can be
generated. In order to retain an overall conservatism it is therefore necessary to replace all simulated
values below the monitoring level (cmy) with cmy itself.

It is common to use default conservative values, such as the FAO/WHO variability factors in Table

19. However, one should be aware that two entirely different interpretations are possible:

1. The default variability factor may be defined in the same way as a data-based variability factor (v
= 97.5th percentile/mean). For example, it may be an expert opinion based on seeing many actual
data sets from trials, that a certain value v can be used as a conservative value for other situations
(see e.g. Table 1 in Harris et al. 2000). Then we might use the beta or the lognormal model,
censoring these distributions at c¢my to guarantee conservative behaviour. For the beta model
additional information on the number of units in a composite sample is needed.

2. Alternatively, one can revert to the original definition and interpret FAO/WHO variability factors
as the number of units in the composite sample (v = nu,). In this case, without other information,
the only workable model is the Bernoulli model.

Back to: Estimated parameters for unit variability
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5.4.2.1 Beta model for unit variability

With this model MCRA will generate values for individual unmeasured units of a measured
composite sample. If cmy is the concentration measured (or simulated) for the composite sample in
monitoring for product %, then the concentration in any unit can be no larger than c,,, = nuy « cmy ,
where nuy is the number of units in the composite sample. Under the Beta model simulated unit values
are drawn from a bounded distribution on the interval (0, ¢,..). The parameter for unit variability is
specified as a coefficient of variation cv; of the unit values in the composite sample, or as a variability
factor.

The standard beta distribution is defined on the interval (0, 1) and is usually characterised by two
parameters a and b, with a>0, b>0 (see e.g. Mood et al. 1974). Alternatively, it can be parameterised
by the mean u=a/(a+b) and the variance o’=ab(a+b+1)"(a+b)?, or, as applied in MCRA, by the
mean u and the squared coefficient of variation cv’=ba”(a+b+1)". Note that the coefficient of
variation is the same for the unscaled and the scaled distributions.

For the simulated unit values in each iteration of the program we require an expected value cmy. This
scales down to a mean value u = cmy/c,ox = 1/nu; in the (standard) beta distribution. From this value
for 4 and an externally specified value for cv; the parameters a and b of the beta distribution are
calculated as:

a="b(nu, -1)"
b (nuk —1)(nuk —l—cv,f)
nu,cv;

From the second formula it can be seen that cv; should not be larger than ,/nu, —1 in order to avoid

negative values for b.

97.5
When the unit variability is specified by a variability factor v, = P71k instead of a coefficient of

cmy,
variation cv; then MCRA applies a bisection algorithm to find a such that the cumulative probability
P[Beta(a,b)]=0.975 for b= a(nuk — 1).
Sampled values from the beta distribution are rescaled by multiplication with c¢,, to unit
concentrations cry; on the interval (0,¢,4).
In the case that variability has been estimated by a conservative high value, all sampled values lower
than cmy, are replaced by cmy.
In Figure 49 for several values of the coefficient of variation and number of units the beta distribution
is shown with estimated parameters a and b. When the parameter for unit variability is high (upper
left plot) the ratio of the spikes on the extremes (3:1) represent the 75% probability at cr; = cm; and
25% probability at cryx = cyua. In the upper right plot, the parameter for unit variability is smaller and
some unit values in between the two extremes are sampled. The ratio of the spikes is about 5:1, which
is according to the number of units in the composite sample. In the lower left plot, variability is low
and unit values are sampled around the monitoring compound. In the extreme case, when unit
variability is close to zero the monitoring compound itself is sampled and a spike occurs (not shown ).
The lower right plot show an intermediate situation, moderate to high variability.
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cvi =1.732; nu=4, a=0.00005, 5=0.00015 |-, =7.20: nu.=6: a=0.4: b=2

cvi=0.62; nu;=6; a=2; b=10 cve =1.46: nu=4: a=0.1: b=0.3

Figure 49: Standard Beta distribution for different values of the coefficient of variation cv, and
number of units nu in the composite sample. x axis from 0 to 1.

Back to: Beta distribution

5.4.2.2 Lognormal model for unit variability

With the Beta and Bernoulli models, MCRA simulates concentrations for units in the composite
sample, such that the concentration of an individual unit can never be higher than the monitoring
measurement multiplied by the number of units in the composite sample ¢, = nuy « cmy, .
With the Lognormal model for unit variability MCRA simulates concentrations for new units in the
batch from which the composite sample was taken. Effectively the number of units in a batch is very
large, so in this case there is no practical upper limit to the concentration that can be present.
The lognormal distribution is considered as an appropriate model for many empirical positive
concentration distributions. With the Lognormal model MCRA assumes a lognormal distribution for
unit compound concentrations. Let this distribution be characterised by ¢ and ¢, which are the mean
and standard deviation of the log-transformed concentrations. The unit log-concentrations are drawn
from a normal distribution with mean y = ln(cmik ) .
Also for the Lognormal model MCRA allows two choices to specify the parameter for the unit
variability. The parameter is specified as a coefficient of variation (cv;) or as a variability factor (vy).
The coefficient of variation cv is turned into the standard deviation ¢ on the log-transformed scale
with:

o=7In(cV’ + 1)

A variability factor v is converted into the standard deviation o as follows:

1+1.960
_ p971.5 _ e _1.960-1/20>

2
mean e,u+1/20'

with u and o representing the mean and standard deviation of the log-transformed concentrations. So
In(v) = 1.960 — 1/2¢°

Solving for o gives: o — 2:1.960 — 2log(v) = 0, with roots for ¢ according to:
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o=1.96+(1.96* +2log(v))
The smallest positive root is taken as an estimate for o (see also 5.2.3.2).
In the case that variability has been estimated by a conservative high value, all sampled values lower

than cmy, are replaced by cmy.
Back to: Lognormal distribution

5.4.2.3 Bernoulli model for unit variability

The Bernoulli model is a limiting case of the Beta model, which can be used if no information on unit
variability is available, but only the number of units in a composite sample is known. As a worst case
approach we may take cv; as large as possible. When cv; is equal to the maximum possible

value \/nu, —1, the (unstandardised) Beta distribution simplifies to a Bernoulli distribution with

probability (nuy — 1)/nu, for the value 0 and probability 1/nuy for the value ¢, = nuy « cmy..

In MCRA values 0 are actually replaced by cmy, to keep all values on the conservative side. For
example, with nu, = 5, there will be 80% probability at cr;, = cm and 20% probability at cr = Cax.
Back to: Bernoulli distribution

5.4.2.4 Estimation of intake values using the concept of unit variability

e For each iteration i in the Monte Carlo simulation, obtain for each product & a simulated intake x;;
, and a simulated composite sample compound concentration cmy, .
e Calculate the number of unit intakes nux; in x; (round upwards) and set weights wy, equal to unit

weight wuy, except for the last partial intake, which has weight w,, = x, — (nux[k - l)wu i -
e For the Beta or Bernoulli distribution: draw nux; simulated values k;; from a Beta or Bernoulli

distribution. Calculate concentration values as ¢y = Ky * CHy, max = Kig * CH + Ny Sum to obtain
the simulated concentration in the consumed portion:

nuxy,
Cry = Zwiklcikl Xik
=1

e For the Lognormal distribution: draw nux; simulated logconcentration values /c;; from a normal
distribution with mean u = ln(cm ik) and standard deviation o. Back transform and sum to obtain

the simulated concentration in the consumed portion:

Vluxl-k
_ legy
Cry = Zwikle Xik
=1

5.4.3 Additional: Comparison of probabilistic with deterministic estimates of acute risk

The IESTI (International Estimated Short-Term Intake) is a deterministic estimate of the short-term
intake of a compound on the basis of the assumptions of high daily food consumption per consumer
and highest compounds from supervised trials. The IESTI is expressed per kg body weight and has
only been defined for single products.

MCRA calculates IESTI for comparison with Monte Carlo percentiles.

Calculations of IESTI (according to FAO 2002) recognise four different case (1, 2a, 2b and 3). In
cases 1 to 3 the following definitions are used:

LP: Highest large portion reported, calculated as the 97.5" percentile of the distribution of
consumed portions on days with positive consumption of the product (kg food/day)
HR: Highest residue (=compound) in composite sample, mg/kg
bw: Mean body weight, kg; in MCRA values may be input by the user, or weighted means
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are calculated over consumers with the number of days on which they consumed the
product as weights

U: Unit weight of the edible portion, kg.

v: Variability factor — the factor applied to the composite compound to estimate the
concentration in a high-compound unit

MR: Median residue (=compound) in product, mg/kg

Although the FAO Manual refers to supervised trials only, MCRA calculates concentrations (HR or
MR) from any compound concentration data set supplied (may also be monitoring data).
Concentrations (HR or MR) may be multiplied with a processing factor on beforehand, in MCRA this
depends on the options chosen for processing.

Case 1:
The compound in a composite sample reflects the concentration in meal-sized portion of the product
(unit weight is below 25 gr).

LP*HR

bw

IESTI =

Case 2:

The meal sized-portion, such as a single fruit or vegetable unit might have a higher concentration than
the composite (whole fruit or vegetable unit weight is above 250 gr). Case 2 is further divided into
case 2a and 2b.

Case 2a:
Unit edible weight of raw product is less than large portion weight.

U*HR*v+(LP-U)*HR
bw

IESTI =

The formula is based on the assumption that the first unit contains compounds at the HR*v level and
the next one contains compounds at the HR level, which represents the compound in the composite
from the same lot as the first one.

Case 2b:
Unit edible weight of raw product exceeds large portion weight.
LP*HR*v
[ESTI= ——
bw

The formula is based on the assumption that there is only one consumed unit and it contains
compounds at the HR*v level.

Case 3:
For those processed products where bulking or blending means that the median represents the likely
highest concentration.

LP* MR
bw

IESTI =

When an acute reference dose is available, the calculated IESTI values are also expressed as a
percentage of the acute RfD.
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IESTI is a deterministic estimate to reflect the unit variability within a composite sample. In the
probabilistic approach, unit variability is explicitly modelled and the result is an estimate of the intake
distribution (per product). These two different approaches handle the same problem, but it is
undefined to which Monte Carlo percentile the IESTI value should be compared. In MCRA the user is
free to choose a percentage point for this comparison.

A point to note is that IESTI is calculated from positive consumptions on each separate product. To
allow a fair comparison, the Monte Carlo percentiles are calculated in the same way. Note, however,
that in a multi-product Monte Carlo analysis, even if one restricts the attention to consumption days
only, the percentiles are typically based on consumption data which are partly zero (days with
consumption zero for some but not all products).

Back to: Additional options concerning IESTI and consumption days

5.5 Intake model

5.5.1 Only empirical estimates
This is an acute risk assessment using empirical compound data.

5.5.2 Empirical estimates and betabinomial/lognormal with age

An acute risk assessment may be followed by a parametric model where the intake frequency and
logarithmically transformed intake amounts are related to a spline or polynomial function of age. The
betabinomial distribution is used to estimate the intake frequency and a lognormal distribution to
model the In(intake) amounts.

Back to: Empirical estimates and betabinomial/lognormal with age

5.5.2.1 Monte Carlo data generation of intake

Through Monte Carlo sampling, a large number of intakes is generated by combining randomly
chosen consumption patterns of consumers i on day j with randomly chosen concentrations in the
consumed products. The replicates generated for consumer day ij are further indexed by & to represent
differences due to concentration variability. We ignore the finiteness of the concentration data, that is,
we ignore the identity of the chosen concentration values in the original concentration dataset.

Back to: Empirical estimates and betabinomial/lognormal with age

5.5.2.2 Modelling the intake frequency distribution

Let n; and npos,; be the total number of simulated intakes per consumer, and the number of simulated
positive intakes, respectively. Then npos; is modelled as a function of age (and/or other consumer
characteristics), using a betabinomial distribution with binomial totals 7, and overdispersion

parameter ¢ (independent of age). The fitted binomial probabilities are 7, = f (xi) , wWhere x; is the

age of consumer i, and the estimated overdispersion parameter is ¢ .
Back to: Empirical estimates and betabinomial/lognormal with age

5.5.2.3 Modelling In(intake) amounts

For the positive intakes, consider the log-transformed values y;. Average over replicates to obtain
consumer day averages y;. These values are modelled in a REML analysis with random terms
consumer and consumer.day as a function of age (and/or other consumer characteristics), with the
number of values per consumer day (n;) as weights w;; to correct for differences in the precision at the
consumer day stratum. The fitted values from the model are f = f (xi), where x; is the age of
consumer i.

Back to: Empirical estimates and betabinomial/lognormal with age
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5.5.2.4 Estimating the acute risk variability of positive intake amounts
Correct the full set of simulated positive intakes by y';; = y;;, — ,[tx(i). Estimate the variance O'j, of
y'ijk. We denote the estimated variance as 65,. Now for each selected age x the logarithmic

transformed positive intake distribution is modelled as normal with mean &, = f (x) and variance
2
o e

Back to: Empirical estimates and betabinomial/lognormal with age

5.5.2.5 Estimating the acute intake distribution
The age-dependent acute intake distribution is obtained by integrating the betabinomial (ﬁx, ¢?) and the
lognormal (ﬂx , 63 ) distributions.

Back to: Empirical estimates and betabinomial/lognormal with age

5.6 Chronic risk assessment

In the MCRA program we have 3 models available to assess chronic risks: 1) the
betabinomial/lognormal model (no age dependency); 2) in the extended version of this model, spline
or polynomial functions are used to model the effect of age or any other explanatory variable, and; 3)
the discrete/semi-parametric model according to Nusser (no age dependency).

5.6.1 Introduction

In dietary risk assessment, usual intake is defined as the long-run average of daily intakes of a dietary
component by a consumer. From a statistical point of view, assessing the usual intake can be reduced
to the problem of estimating the distribution of a random variable y; that is measured with error. A
model for the relationship between the observations y;; and the true random variable of interest y; is:

Vi = yit uy

where u; is an additive measurement error for consumer i on day j. For independent, normally
distributed y; and u;;, estimation of the distribution of y; is straightforward. When observations y;; are
non-normal and the measurement error variance is heterogeneous across sampling units, estimation is
less simple.

5.6.2 Modelling usual daily intake

Through the assumed independence of consumption data and compound concentration values (a most
reasonable assumption) the modelling of usual intake simplifies to a univariate stochastic model for
intakes.

Usually, food consumption data are available for consumers on 2 (or more) consecutive days. We
assume an equal number of days for each consumer. This is in confirmity with our method of data
entry for consumprtion (see 9.3.1 ). As a consequence, days without consumptions do have zero
intake.

For all days of all consumers the daily intake on day j is calculated as the sum over products of
consumption amount per kg body weight times average concentration. The average concentration of
all available concentration measurements on a product is taken, with non-detect measurements entered
as zero, Y5 LOR or LOR , or any other fraction of LOR as specified in the input options.

The model for the usual intake distribution is:

Vi = yituy
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with y; the observed intake of consumer i on day j, y; is the unobservable usual intake value for
consumer 7, and u;; is the unobservable measurement error for consumer i with i = /...n on day j with j
= 1...0. In the normal scale, y;~ N(y, O’Zm,”), u; ~ N(O, O’Zday).

The daily intake data are separated in a set of zero daily intakes and non-zero daily intakes. In the
following steps indices on y;; are dropped and only the non-zero daily intakes are used (this prevents
problems with a large spike of zero intake values).

Back to: Chronic risk analysis

5.6.3 Betabinomial/lognormal

The betabinomial model describes the probability of a consumer of having an intake. Log intakes are
modelled with a random effects linear model using residual maximum likelihood (REML) estimating
parameters of the usual intake distribution. By integrating the probability distribution the log amount
distribution, inference is made about the percentiles of the usual intake distribution of the entire
population.

Back to: Betabinomial/lognormal

5.6.3.1 Modelling the intake frequency distribution
Let n and npos; be the total number of days per consumer (for all consumers equal) and the number

of days with a positive intake, respectively. Then npos; is modelled using a betabinomial distribution
with binomial totals »n allowing for overdispersion. The mean and variance of the beta distribution are
alla+ ) and aff(a+ B+n)/[(a+ B)’ (a+ B+1)], respectively.

Reparameterizing by 7 =a/(a+ ) and ¢=1/(a+ +1) is a more stable and interpretable
parameterization. The mean and variance of the beta distribution are then given by 7 and
7(1—m)[1+ (n—1)@], respectively. Note that the first part of the variance 7(1—7) equals the

binomial variance; the second part is the so-called overdispersion factor. The number of consumption
days x out of n then follows a betabinomial distribution: the mean and variance of this distribution are
simply » times the mean and variance given above.

Back to: Betabinomial/lognormal

5.6.3.2 Modelling In(intake) amounts

For the positive intakes, consider the log-transformed values y;; (the natural logarithm is used). These
values are modelled in a REML analysis with random terms consumer and consumer.day to estimate
the between-consumer and within-consumer variance component.

Back to: Betabinomial/lognormal

5.6.3.3 Estimating usual intake distributions

The total variance of the daily intakes is partioned into a between-consumer component and a within-
consumer component. The between-consumer variance component parameterizes the dispersion of the
usual intake distribution of the positives only. The usual intake distribution of the entire population is

obtained by integrating the betabinomial {77, ¢?) and the lognormal ([1, 6’ ) distributions.

Back to: Betabinomial/lognormal

5.6.4 Betabinomial/lognormal with age

The betabinomial model describes the probability of a consumer of having an intake. The functional
relation between the intake frequency and age is modelled using a spline or polynomial function.

Log intakes are modelled with a random effects linear model using residual maximum likelihood
(REML) estimating parameters of the usual intake distribution. The relation between the log intake
amounts and age is modelled using a spline or polynomial. By integrating both distributions, inference
is made about age dependent percentiles of the usual intake distribution of the entire population.

Back to: Betabinomial/lognormal (with age)
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5.6.4.1 Modelling the intake frequency distribution
Let n and npos; be the total number of days per consumer (for all consumers equal) and the number

of days with a positive intake, respectively. Then npos; is modelled as a function of age (and/or other

consumer characteristics) using a betabinomial distribution with binomial totals n and overdispersion
parameter independent of age. As seen in 5.6.3 , the mean and variance of the beta distribution are
given by 7 and (1 —7)[1+ (n—1)@], respectively.

The mean probability 7z can be related to age (or any explanatory variable) by employing a logit link,
e.g. logit(7) = 6, + 6,age . Then, fitted binomial probabilities are age dependent 7= f (xl. ), where
x; is the age of consumer i.

The number of consumption days x out of n follows a betabinomial distribution: the mean and
variance of this distribution are simply » times the mean 7 and variance.

Back to: Betabinomial/lognormal (with age)

5.6.4.2 Modelling In(intake) amounts

For the positive intakes, consider the log-transformed values y;. These values are modelled in a
REML analysis with random terms consumer and consumer.day as a function of age (and/or other
consumer characteristics),. The fitted values from the model are 1 = f (xi), where x; is the age of

consumer i.
Back to: Betabinomial/lognormal (with age)

5.6.4.3 Estimating usual intake distributions

The total variance of the daily intakes is partioned into a between-consumer component and a within-
consumer component. The between-consumer variance component parameterizes the dispersion of the
usual intake distribution of the positives only. The usual intake distribution of the entire population is

obtained by integrating the betabinomial (ﬁ'x , ¢?) and the lognormal (ﬁx , 6;) distributions.

Back to: Betabinomial/lognormal (with age)

5.6.5 Discrete/semiparametric (Nusser)

Nusser et al. (1996) describe how to assess chronic risks for data sets with positive intakes (a small
fraction of zero intakes was allowed, but then replaced by a small positive value). The modelling
allowed for heterogeneity of variance, e.g. the concept that some people are more variable than others
with respect to their consumption habits. However, a disadvantage of the method was the restricted
use to contaminated products which were consumed on an almost daily basis, e.g. dioxin in fish, meat
or diary products. The estimation of usual intake from data sets with a substantial amount of zero
intakes became feasible by modelling separately zero intake on part or all of the days via the
estimation of consumption probabilities as detailed in Nusser et al. (1997) and Dodd (1996). In
MCRA, a discrete/semi-parametric model is implemented allowing for zero intake and heterogeneity
of variance following the basic ideas of Nusser et al. (1996, 1997) and Dodd (1996).

Nusser et al. (1996, 1997) describe a procedure for the assessment of chronic risks using non-normal

dietary intake data. Principally, their method consists of four steps:

1. transforming the daily intake data to approximate normality using a power function or log
transformation

2. fitting a grafted polynomial function to the power or log transformed daily intakes. The
polynomial provides some flexibility against power transformed components that are still
deviating from normality,

3. estimating the parameters of the usual intake distribution in the transformed scale, and

4. estimating the percentiles of the distribution of usual intakes in the original scale.

Back to: Discrete/semiparametric (Nusser)
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5.6.5.1 Power or log transformation

To achieve a better normality, daily intakes are transformed. The user can choose a logarithmic
transformation (7= f(y)=In(y), no parameters to be estimated) or a power transformation
(t=f(y)=y", one parameter to be estimated). In the latter case the optimal power is determined on
the grid {1 0,2, 1,%,%,%,%,%,...,%}, with a further refinement grid search around the best fitting
value. If a power g gives the best fit in this grid search, then the logarithmic transformation is
selected (Note that a logarithmic transform corresponds theoretically to y = 0). The goodness of fit is
determined by minimising the residual sum of squares: (z(i)— f3,y”)” of a regression of normal

Blom scores on the power-transformed daily intakes. Normal Blom scores are (Tukey 1962):

i3

-1
Zp =@ 781
n+l

where i is the rank of the n™ non-zero daily intake, n, the total number of non-zero intakes and®'(-) is

the inverse of the standard normal cumulative distribution function.
Back to: Discrete/semiparametric (Nusser)

5.6.5.2 Spline fit

To achieve a better normality, a second transformation (optional) is performed: a spline function
t = g(z)is fitted to the logarithmically or power transformed data ¢ as a function of the normal Blom

scores. The spline function is a grafted polynomial consisting of cubic polynomials between p = 3
joint points (knots) and linear functions in the two outer regions. The daily intakes are transformed by
interpolating from 7 to x = g7'(¢) , using the fitted spline function.

After a successful transformation the daily intakes x will resemble Blom normal scores and their mean
and total variance will therefore be approximately 0 and 1. The normality of the transformed values x
is checked with the Anderson-Darling test. In the case of a spline transformation, if normality is
rejected at the 85 % confidence level, then the number of knots p is increased and the spline fit is
repeated (until a maximum of 22 knots).

Back to: Discrete/semiparametric (Nusser)

5.6.5.3 Estimation of the parameters of the usual intake distribution

Variance components for between and within-consumer information are fitted to the transformed non-

zero daily intakes x using the model:
X, =X, U

X, ~N(u,03); u; ~N(0,s}); E(s})=05; var(s)) =0,

In this model the total variance of the daily intakes is divided into a between-consumer component
and a within-consumer component. The within-consumer variance component can be heterogeneous,
that is, it can be different for different consumers. In the model the between-consumer variance

0'12 and the mean and the variance of the within-consumer variance component distribution (O'; and
O'j) are estimated using standard statistical methods (ANOVA). Further , a test statistic MA4 is
calculated to test whether the heterogeneity of variances is significant (see Dodd 1996 for details).

The estimate slz;, of the between-consumer variance is the basis for the estimation of the distribution of

usual intake. The distribution of usual intakes on non-zero intake days in the x scale is represented by
a set of 400 normal Blom scores (which themselves represent the standard normal distribution)

multiplied by si: x; =5z, . The same calculation is applied to user-requested percentiles

z, =0 (p).
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Back to: Discrete/semiparametric (Nusser)

5.6.5.4 Back transformation and estimation of usual intake

The 400+ values x; are back-transformed to the original scale. This is simple if no spline function has
been estimated. If a spline function has been used, then it is a rather complicated procedure, because
the spline function g was developed for daily intakes, not usual intakes. The following steps are made:
1. First the 400+ values x; are expanded in a set of 9 x 400 values representing the distribution of
daily intakes around each of the 400 points;
2. These 9 x 400+ values are back transformed using the functions g and /', and the sets of 9
values are then recombined (by weighted averaging) into 400 usual intake values y; ;
3. A spline function g; ,especially adapted for usual intakes, is now fitted to the 400 data pairs

(xi, ti)v Where t,‘ = f(yl)’
4. Finally the usual intakes on non-zero intake days are represented by the back-transform using
this improved function: y, = f(g,(x,)).

The user-requested percentiles ), are the additional values (i > 400) in the 400+ set. The 400 y;

values define the cumulative distribution function by:
3
F(y i) =

I—%
400+ 1
The distribution is adapted in order to account for days with zero intake of consumers (defined here as
consumers who have a positive probability of intake on any day, and therefore a non-zero usual
intake). This is done by estimating the distribution of individual intake probabilities. This distribution
is approximated via a number of classes (e.g. 21 or 51, can be selected by the user) arranged by the
proportion of days on which there is a positive intake (p,). Using a binomial distribution for each

class, the fraction of consumers in each class (6,; m =0,..., M ) is estimated by optimising the fit
of the predicted proportions of consumers with 0, 1, 2, ... intake days to the observed proportions. The
number of parameters to be estimated is usually higher than the number of possible outcomes for a

consumer (e.g. 3 when there are two days per consumer), and therefore a smooth approximation is
made using a modified minimum chi-squared estimator. See Dodd (1996) for details. Only the

fraction of non-consumers (8,) is estimated separately with no restriction to be similar to the other
0, . It can be noted that the distribution of individual intake probabilities can be better estimated
when the number of days per consumer in the consumption survey becomes higher. With only 2 days
per consumer the procedure gives a rather artificial distribution, often with an estimated 6, of zero

This step can be time-consuming. Therefore, the number of iterations in the estimation procedure can
be limited by the user. In our experience it is not generally necessary to use 50,000 iterations as in
Dodd (1996).

The estimated distribution of individual intake probabilities (6,...,8,,) is used to transform the

distribution of usual intake on non-zero intake days (F ,) to the distribution of usual intake for

consumers ( F.) and finally to the distribution of usual intake for the entire population (£7,). These

transformations are based on the relation:

M
Fy(u)=6,+2,0,F,(u/p,)
m=1
which basically says that to obtain a certain level of usual intake u we should consider a different
level ( u/p,, ) for the class of consumers which consume only on a fraction p,, of days. See Dodd
(1996) for details of the computational procedure. Linear interpolation based on the 400 values of

the F', distribution is then used to compute representations of the cumulative distribution functions for

consumers only and the entire population.
Back to: Discrete/semiparametric (Nusser)
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5.7 Uncertainty of risk assessments: bootstrapping data sets

In probabilistic risk assessment of dietary intake we use distributions which describe the variability in
consumption within a given population of consumers and the variability of the occurrence and level of
chemical compounds on the consumed products. However, these calculations do not consider the
amount of uncertainty that is due to the limited size of the underlying datasets. Typically, in a large
number of simulations very many different combinations of consumption and compound
concentrations are made. This leads to a smooth distribution of simulated intakes, and the impression
of a very precise estimation of exposure percentiles or other quantities of interest. It is essential to
realise that the accuracy of the inference depends on the accuracy of the basic data.

A computer-based instrument to assess the reliability of outcomes is the bootstrap (Efron 1979, Efron
& Tibshirani 1993). In its most simple, non-parametric form, the bootstrap algorithm resamples a
dataset of n observations to obtain a bootstrap sample of again n observations (sampling with
replacement, that is: each observation has a probability of 1/x to be selected at any position in the new
bootstrap sample). By repeating this process B times, one can obtain B bootstrap samples, which may
be considered as alternative data sets that might have been obtained during sampling from the
population of interest. Any statistic that can be calculated from the original dataset (e.g. the mean, the
standard deviation, the 95t percentile, etc.) can also be calculated from each of the B bootstrap
samples. This generates a bootstrap distribution for the statistic under consideration. The bootstrap
distribution characterises the uncertainty of the inference due to the sampling uncertainty of the
original dataset: it shows which statistics could have been obtained if random sampling from the
population would have generated another sample than the one actually observed.

In Monte Carlo modelling of acute risks two datasets are combined: consumption data and compound
concentration data. It makes sense to apply bootstrapping to both datasets separately, in order to
characterise the uncertainty in the final exposure. In MCRA the bootstrap algorithm (when selected) is
applied to:

1. the multivariate consumption patterns and associated body weights: actually the data set of
consumer identifiers is bootstrapped, and all consumer information (consumption patterns for all
consumption days, body weight, and age) is coupled to the selected consumer identifiers.

2. the univariate compound concentration data sets: these are bootstrapped independently for all
products. In principle, the bootstrap algorithm is applied to the dataset consisting of both non-
detects and positive values; in practice, for a dataset with n, non-detects and n; positive values,
the number of positive values in a bootstrap sample is obtained as a draw from a binomial

distribution with parameter 7, / (”o + ”1) and binomial total 7, + n,. Then, this number of values

is selected randomly from the set of #; positive values.

In MCRA the resulting bootstrap distribution of percentiles of the exposure distribution is summarised
by specifying empirical 2.5" , 25" 75™ and 97.5™ percentiles. The outer percentiles constitute a
central 95% confidence interval for the variability percentiles. However, for this it is necessary that
the number of bootstrap samples B is high enough. The number of bootstrap samples should be
chosen depending on the confidence level wanted for the uncertainty interval. Typically 500-2000
bootstrap sets will be reasonable for a 95 % confidence interval (Efron & Tibshirani 1993, pp. 14-15,
275).

The same bootstrap algorithm can also be applied to deterministic estimates which are calculated from
data sets. For example the maximum concentration found in a bootstrap sample will be different, if
the actual maximum value in the original dataset has not been selected. Also data-based estimates of
large portion and average body weight will vary.

Back to: Uncertainty analysis
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5.8 Binning

Binning is a method to summarise the simulated data (total intake, intake per product, consumption
per product, concentration per product) in frequency intervals for further use in deriving the exposure
distributions. The alternative would be to store observations for subsequent use, but this would require
for moderate simulations already a large amount of storage capacity and an excessive administration.
The mean value of the observations in the first chunk of the simulation (mean) is used to define the
left limit of the central bin. For values above the mean, 1100 bins are used for storage. The upper
limits of the upper bins are defined as 1 % higher than the lower limit. So, for upper bin i the upper
limit is calculated as mean x 1.01". For values below the mean also 1100 bins are defined with lower
limits defined by mean x 1.017. After the process of binning is completed, the quantile value of a
specific percentile is determined by linear interpolation between the bin limits. These 2200 bins
together provide efficient storage for numbers spanning more than 9 decades (1.012%°=3.2x10°),
which should be amply sufficient for most practical problems.

To get accurate results, it is rather important that the mean value in the first chunk represents,
approximately, the true mean of the sampled distribution. Therefore, chunk size (defined as the total
number of simulations divided by the number of chunks) should not be chosen too small. During the
simulation, the maximum of the sampled observations in each chunk is calculated. When this value is
higher than the upper limit of the last bin, representing a potential maximum, this bin limit is replaced
by the new maximum, and a warning is issued. When the mean value is missing, e.g. due to zero
intakes, the program resorts to an average mean value, e.g. the average of the mean values of products
with nonzero intakes. Also in this case a warning is given.
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6 Selection of consumers, foods and/or products

In the next sections, the centrally supplied database ‘dutch pesticides.mdb’ is used. All tables are
selected and data for survey DNFCS-3 and compound CHLORPYRIFOS are retrieved from the
database. Find in Figure 50 the outcome of the selection. In total, 557 foods are eaten. Application of
the conversion model shows that the number of primary products is 118. Note that the selected foods
and primary agricultural products do not depend on the choice of the compound. The retrieved foods
and products are entirely determined by consumption patterns, e.g. the choice of a survey.

The information in the lower part of the screen is related with the choice of the compound. Here,
chlorpyrifos is selected and this compound is found on 25 primary agricultural products. This means
that there is at least one sample of each of the 25 products with a positive concentration. On 70
products only non-detects are found. This means that for each of the 70 products all samples were
negative, i.e. no chlorpyrifos found. For the remaining 23 products (118 — 25 — 70) there are no
samples with chlorpyrifos in the database.

By checking one of the three radio buttons you can specify which products must be used in the risk
analysis. Pressing the ‘go’ button in Figure 50 brings you for each choice to the central menu. If you
want to do the same analysis for one of the other 2 not chosen number of products you have to start
again with the selection of consumption and compound tables by clicking the selected-consumption-
and-compound-tables ‘go’ button.

Table selection for MCRA analysis
The name ofthe survey is.  DNFCS-3

The selected compound is:  CHLORPYRIFOS
The nurmber of levels for foodname is: 557
The number of levels for productname is; 118
There are 118 products:
for 25 products positive concentration values are availahle.

for 70 products measurements have heen made but only nondetects were found. Include these products in
the analysis ifyou want to replace them with the limit of reparing {LOR).

for 23 products no measurements have been made. Include these products in the analysis ifyou have
infarmation on concentrations for those products forwhich agricultural use is allowed.

selected tables, survey and compound show
current subset selection showy

f* Continue with 25 products (with positive concentrations)
" Continue with 25 + 70 = 95 products (measured)

" Continue with 25 + 70 + 23 =118 products (alh

press after making your choice oo

Figure 50: Selected products for survey DNFCS-3 and compound CHLORPYRIFOS

In the case all (here 118) products are chosen products for which no concentration measurements are
available and for which agricultural use is allowed (coded as useallowed=1) will be included in the
analysis using a user-defined worst-case value.

In the case all measured (here 95) products are chosen products for which no concentration
measurements are available will be included in the analysis using the Limit of Reporting (LOR) value.
This value can be specified using the options in the option block Concentration Data in the right
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section of the MCRA input form (see 3.2.2 and 3.2.2.1 ). If the option ‘no replacement of non-
detects’ is specified the choice of the first and second radio button in Figure 50 is equivalent but the
choice of the first button is computationally more efficient because less products are involved.

The choices are postponed until after subset selection the start-MCRA ‘go’ button in the central menu
is pressed (see Figure 51).

With the subset selection ‘go’ button in the MCRA central menu (see Figure 51) it is possible to
restrict the MCRA analysis to a subset of consumers in the food survey or to a subset of foods and/or
products.

The menus for subset selection utilise the relations between tables, offering a flexible tool to select
data according to your own wishes. Two steps are distinguished. Through the use of scroll-down
menus the user 1) selects ages, weights and sexes to define the population of consumers; 2) selects
day(s) of consumption, foods, primary agricultural products and year, country and sampling type of
the compound concentration data. The hierarchical structure of the product code may be helpful to
select a group of primary agricultural products or foods at once. In Figure 51 the subset-selection
‘show’ button shows all selected levels for those variables on which selections are active. The
corresponding ‘clear’ button removes all selections already made.

MCRA 4.0 central menu

Overview
caompaound:  CHLORPYRIFOS
consumption survey.  DNFCS-3
products:  only products with positive concentration measuremenms
data selected on: 111772005 11:13:02 AM
selection oftakles, survey and compound go | show | clear |
subset selection 9o | show | clear |

» ourlastjobis succesfully completed

» Serverisreadyto acceptajob.

wiew autput

hack to main menu

Figure 51: MCRA central menu, subset selection

6.1 Subset selection: consumers

After clicking the subset-selection ‘go’ button in the MCRA central menu (see Figure 51) the first
subset selection screen is shown (see Figure 52). In this screen you define the consumer population
based on characteristics of the consumers (age, weight, sex). The first time, the current selection is
equal to the information stored in the database, so for age the minimum and maximum values are 1
and 97 year (both current selection as database). Note that combining levels of variables occasionally
results in an empty population e.g. the result of selecting ages within the range 1 to 8 and weights in
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the range 70 kg to 150 kg is zero (0) consumers. So try to avoid making combinations of variables
that yield empty subsets. The number of consumers currently selected is always mentioned in the
screen (see Figure 52).

MCRA subset selection

Consumer population

Check individual characteristics for subset selection

check if you want to

variable levels in current selection  select levels select from:

age: min=1; rmax=97 I @ current selection  © database (min=1; max=97)
wiegight: min=8; max=150 r ™ currentselection ¢ database (min=8; max=150)
SE n=2 I~ * current selection  © database (n=2)

Mumber of individuals currently selected: 6250

show'select levels for checked variahles 0o
use tatal population (no cansumer subset selection) go

Figure 52: MCRA subset selection: consumer population

To select a population of consumers based on all variables, check all three checkboxes and click the
upper ‘go’ button. A new screen appears (see Figure 53) where you can choose minimum and
maximum values for age and weight (the unit depends on the survey you are currently using, see table
Food consumption survey in 9.3.4 ) and levels of sex. Change some levels and implement the changes
by clicking the subset-selection-based-on-chosen-levels ‘go’ button. The system automatically adjusts
the levels of all variables.

MCRA subset selection

Select levels for individuals

age hetween |1 and |9?
wigight hetween |3 and |150
Sex total nurmber of levels: 2

fernale
male

silhset selection based on chosen levels a0
hack to previous screen (no selection in this step) a0

hack ta main menu

Figure 53: MCRA subset selection: select levels for consumers
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For example, select a population between 1 and 6 years old. The minimum and maximum weight is 8
and 30 kg, respectively. The selected number of children is 530 (screens are not shown). If you want
to include previously excluded levels in a further selection step, just click the radio button labeled
‘database’ in the ‘select from:” column and the original levels in the database are retrieved again. Note
that age and weight are related, so results may be unexpected when combinations of levels are
selected that are not in correspondence with each other. So, in the children example, if you want to
return to your original population check for both variables age and weight the radio button ‘database’
and check both checkboxes, and press the go button again. Then, your original population with 6250
consumers is selected again.

6.2 Subset selection: consumption and concentration data

In the first step of the subset selection process the total population is selected. A second subset
selection screen is reached that shows you the current selected levels of each variable (see Figure 54).
Also the levels of each variable stored in the database are shown. In our example, the number of
products with positive concentration values is 25 and these products are derived from 267 foods.
Originally 118 products and 557 foods were consumed (see Figure 50). However in the database 265
products and 1574 foods are stored (see most right column of Figure 50). The reason for differences
in these numbers is that the database consists of two surveys: DNFCS-3 and EU-BABY. Apparantly
the selected survey DNFCS-3 retrieves not all products and foods found in the EU-BABY survey.

Consumption data and concentration data

Checkvariahles for subset selection

check if you want to
variable levels in current selection  select levels select from:

day: n=2 r ™ current selection " database (n=2)
foodname: n= 267 r ™ current selection " database (n=1574)
foodgroupname: n=17 u @ current selection " database (h=25)
productname: n=24 r  current selection " database (n=265)
productgroupnarme: n=3 r ™ current selection " database (h=4)
productsubgroupname: n=11 r {* current selection " database (n=46)
year: n=3 r ™ current selection ™ database (h=3)
samplingtype: n=1 u @ current selection " database (n=1)
countrenarne: n=2 r * current selection " datahase (n=247)

showiselect levels for subset selection go
continue to central menu g0

Figure 54: MCRA subset selection: consumption data and concentrations

The subset selection screen for consumption and concentration data is used to select levels for a

number of variables. Variables on which subset selection can be made are:

o food, food group: to restrict the analysis to specific foods or food groups;

e product, product group and product subgroup: to restrict the analysis to specific primary
agricultural products and (sub)groups (see also 9.2.1,9.2.3 and 9.2.4 );

e (consumption) day: to restrict typical consumption survey data to specific days (e.g. only the
first);
year: to restrict the compound concentration data to specific years;

e samplingtype: to include only compound concentration data from a specific samplingtype (i.e.
monitoring);

e country: to include only compound concentration data from products originating from specific
countries.
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In general, do not select combinations of levels which may result in empty subsets. E.g. grapefruits
are not grown in the Netherlands. So combination of these levels for productname and country will
give an empty subset. In this example it is quite clear why things go wrong. Often it is less clear what
you can expect from a combination of levels, especially when ‘current selection’ is combined with
‘database’ in order to retrieve the original levels for a variable, so be aware of empty subsets.

The example is continued by checking the checkboxes for foodnames and productnames and by
clicking the upper button. A new screen appears with scroll-down menus for foods and products (see
Figure 55) Choose the three BAMI GORENG foods in the first scroll-down menu and click the upper
‘go’ button.

Select levels

foodname  total number of levals: 267

| APPLE SYRUP Al
APPLE W SKIN :

APPLE 'w/0 SKIN

4PPLES DRIED

APRICOTS

APRICOTS DRIED

APRICOTS IN SYRUP CANNED

AVOCADOD

BABI PAMGAMG PORK CHIMESE STYLE IM SPICY SAUCE

BAKLAVA MUT-HOMEY CAKE TUREKISH
404l GOREMG CHIMESE MOODLE DIS

‘ GOREMG COOLFRESH MEAL
BARLEY PORRIDGE “ITH R&ISING
|| EEANS STRIMG BOILED W0 SALT |

productname  total number of levels: 25 "
APPLE Al
APRICOT

AVOCADD

BLEACH-CELERY

CABBAGE LETTUCE, COS LETTUCE
CARROT

GRAPE

GRAPEFRUIT

GREEM BEANS [FRESH]

KAkl

LEMON

LYCHEE

MaNDARIN, TANGERINES

MANGO

[|ECTARIME i

subset selection based on chosen levels
hackto previous screen (no selection in this step) o

Figure 55: MCRA subset selection: select levels

The system automatically adjusts the levels of all variables: all products that are not an ingredient of a
BAMI GORENG food are removed as you can check by pressing the show button in the central
menu. Here, the steps above are repeated (check productname checkbox and press upper button). In
Figure 56, the selected products are shown: CARROT, GREEN BEANS (FRESH), LEMON and
SWEET PEPPER are ingredients of BAMI GORENG foods.
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Select levels

foodname total number of levels: 3

[BAMI GORENG CHINESE NOODLE DISH CANNED
BAMI GORENG CHINESE NOODLE DISH W/0 EGG
|BAMI GORENG COOLFRESH MEAL

productname  total number of levels: 4
[caRROT
| GREEN BEANS [FRESH)
|LEMOMN
|SWEET PEPPER

subset selection based on chosen levels go

back to previous screen (no selection in this step) go ‘

continue to MCRA central menu (no selection in this step) go

Figure 56: MCRA subset selection: select levels

Find in Figure 57, the selected levels of each variable for this selection.

Select levels

Checkvariables for subset selection

check if you want to

variable levels in current selection  select levels select from
day: n=2 || * current selection " database (n=2)
foondname: n=3 v " current selection (* database (n=1474)
foodgroupnarme: n=1 ™ {* current selection " database (n=25)
productname: n=4 v {+ current selection " database (n=265)
productgroupname: n=3 ™ {* current selection " database (n=4)
productsubgroupname: n=4 E * current selection " database (n=46)
Year: n=3 || * current selection " database (n=3)
samplingtype: n=1 | ™ current selection " database (n=11
countrynarme: n=2 [ * current selection " database (n=247)

showfselect levels for checked variables
continue to MCRA central menu go
unda last selection step go

Figure 57: MCRA subset selection: consumption data and concentrations

After an MCRA analysis you can find details on the selected food consumption. In Table 20 some
output of the analysis is shown. By doing three subset selections followed by a MCRA analysis for
the three BAMI GORENG foods separately you can find that BAMI GORENG CHINESE NOODLE
DISH CANNED (with GREEN BEANS, CARROT and SWEET PEPPER) is consumed 4 times,
BAMI GORENG CHINESE NOODLE DISH W/O EGGS (with LEMON) 131 times and BAMI
GORENG COOLFRESH MEAL (with GREEN BEANS and LEMON) 11 times. Note that not all
ingredients of BAMI GORENG are shown, only products with positive concentration measurements
were requested (by specifying the first radio button in Figure 50).

FOOD CONSUMPTION DATA

Code Product MeanCons MeanConsDays NConsDays NDays %PosCons

@ @ %)

17111.10 GREEN BEANS 0.02 15.3 15 12500 0.1
18402.20 CARROT 0.01 15.7 4 12500 0.0
18506.10 SWEET PEPPER 0.00 10.9 4 12500 0.0
19501.10 LEMON 0.02 2.2 142 12500 1.1

Table 20: Consumption of primary products based on 3 BAMI GORENG foods
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The example is continued by selection of all foods that according to the foodconversion model contain
one or more of the primary agricultural products CARROT, GREEN BEANS (FRESH), LEMON and
SWEET PEPPER. To implement this, check variable productname and foodname, check database (n
= 1574) for foodname (see Figure 57) and press the upper button.

In Figure 58 all levels for foods stored in the database (n = 1574) and the current selection of products
(n = 4) are shown. Select CARROT, GREEN BEANS (FRESH), LEMON and SWEET PEPPER
from the scroll-down menu (do not select levels of foods) and press the upper button.

Select levels

foodname  total humber of levels: 1574

A4 DRIMNE MULTI MINE SPORTS DRINE RAAK, ~
ADVOCAAT EGGNOG

AGOEMEWTWIRI LEAFY VEGETABLE SURIMAM

ALMONDS PEELED

AMSOI MUSTARD LEAF SURINAM

ANCHOWY IM DIL

ANTROEWA AFRICAM EGGPLANT SURIMAM

APPLE JUICE CONCENTRATE DILUTED

APPLE JUICE CONCEWNTRATED

APPLE JUICE UMSWEETEMED

APPLE PIE DUTCH

APPLE PUFF PASTRY

APPLE PUREE /0 SUGAR CANNED

APPLE SAIICE CAMMED

APPLE SAUCE LIGHT i

productnarne  total number of levels: 4
CARROT
| GREEN BEANS [FRESH]

LE

subset selection based on chosen levels
hackto previous screen (no selection in this step) ga
continue to MCRA central menu (no selection in this step) ga

Figure 58: MCRA subset selection: select levels

In Figure 59 the resulting selection is shown. The total number of selected products is 4 and these
products are found in 22 different foods.

Select levels

Check variables for subset selaction

check if you want to

variable levels in current selection  select levels select from
day: n=2 m ™ current selaction " datahase (h=2)
foodnarme: n=22 i~ @ current selection O datahase (n=1574)
foodgroupnarme: n=1 ] | & current selection " datahase (n=25)
productnarme: n=4 v " current selaction [+ datahase (n=265)
productgroupnarne: n=3 m ™ current salaction T database (n=4)
productsubaroupname:  n=4 5 * current selaction O datahase (n=46)
year: n=3 r ™ current selection T datahase (n=3)
samplingtype: n=1 ] * current selection O datahase (n=1)
countrynare: h=2 ] | ™ current selection " datahase (n=247)

showiselect levels for checked variables
continue to MCRA central menu go
undo last selection step g

Figure 59: MCRA subset selection: consumption data and concentrations
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In Table 21 you find details on the selected food consumption as produced by MCRA. Compare this
table with Table 20, where consumption is based on 3 foods.

FOOD CONSUMPTION DATA

Code Product MeanCons MeanConsDays NConsDays NDays %PosCons

@ @ %)

17111.10 GREEN BEANS 0.07 9.7 87 12500 0.7
18402.20 CARROT 0.27 26.2 131 12500 1.0
18506.10 SWEET PEPPER 0.57 13.7 523 12500 4.2
19501.10 LEMON 0.03 1.8 212 12500 1.7

Table 21: Consumption of primary products based on 22 foods

If you are interested in all primary products that can be derived from these 22 foods, check the
checkboxes for variables foodname and productname and check database (n = 265) for productname
(see Figure 59), then select all 22 foods from the scroll-down menu (do not select levels of
productnames) and press the upper button (screens are not shown). The resulting number of products
is 5, the extra selected product is POTATOE.

6.3 User-defined worst-case values

As mentioned before, after selection of tables, compoundname and surveyname the user is confronted
with three choices concerning the presence of concentration measurements on consumed primary
agricultural products. In Figure 60 (see also Figure 50) the user decides to continue with all 118
products (products with positive concentration values = 25, products with non-detects only = 70 and
products without measurements = 23). Press the ‘g0’ button to reach the central menu.

" Continue with 25 products (with positive concentrations)
" Continue with 25 + 70 = 95 products (measured)

& Continue with 25 + 70 + 23 = 118 products (all)

press after making your choice

Figure 60: Table selection for MCRA analysis, continue with all products

After pressing the ‘start MCRA’ button (see Figure 6) a menu is reached to include user-defined
worst-case values for products without measurements (see Figure 61): only products for which
agricultural use is allowed (useallowed = 1) are included in the analysis while all other products are
deleted from the analysis. Information on agricultural use is stored in table Agriculturaluse (see 9.4.9

).
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MCRA worst case concentration

Products without residue measurements

Products have been selected for which no concentration measurements are available.
Please specify a country and year of agricultural use to search for default worst case values
(these values can be changed in the next screen).

countryname  total number of levels: 2
FRANCE v

year total number of levels: 2
2002 v

select levels for worst case concentrations go I

Figure 61: MCRA worst case concentration, scroll-down menus

In Figure 61, a choice is made from the available levels as specified in table Agriculturaluse for
countries and years. Default worst-case values are selected according to the selection criteria. In the
next window, the selected worst-case values are shown for country = FRANCE and year = 2003: only
for product SUNFLOWER SEEDS and ALMOND default worst-case value are found, e.g. 15 and 25
respectively (see Figure 62). The default worst-case values may be replaced by a user-defined values.

MCRA worst case concentration

Specify worst case value

In the selected consumption data there are 118 products in total.
Only 95 ofthese products have measured concentrations (detects and/or nondetects).

Amang the other 23 products:
e agricultural use is assumed to be not allowed for 19 products, and these products are ignored in the further MCRA analysis.

e agricultural use is allowed for 4 products (according to information in the AgriculturalUse table).
The selected products according to your criteria for year and country are listed below.
Please specify worst case values to be used in MCRA.

productname worst case value

SUNFLOWER SEEDS |15
ALMOND 5

continue o

Figure 62: MCRA worst case concentration, specify worst case value

By pressing the ‘go’ button the default worst-case values are inserted and the result in shown in
Figure 63.
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MCRA worst case concentration

Insert worst case value

for product: SUNFLOWER SEEDS worst case value 15 is inserted
for product: ALMOND worst case value 25 is inserted

moare worst case values go
delete all inserted worst case values go
continue qo '

Figure 63: MCRA worst case concentration, insert worst case value

By choosing more-worst-case-values, new worst-case values may be inserted for other products or
already inserted (default) values may be changed. To change an already inserted value, specify the
same levels for country and year (see Figure 61) as before (country = FRANCE and year = 2003). The
same screen as in Figure 62 appears and the worst-case value 25 for ALMOND (from table
Agriculturaluse) is changed in 35. The resulting screen in shown in Figure 64 and differs slightly from
the screen in Figure 63.

MCRA worst case concentration

Insert worst case value

worst case value: 15 for product: SUNFLOWER SEEDS is replaced by: 15
worst case value: 25 for product: ALMOND is replaced by. 35

more worst case values go
delete all inserted worst case values a0
continue g0

Figure 64: MCRA worst case concentration, change worst case value

Worst-case values are deleted by pressing the delete-all-inserted-worst-case-values ‘go’ button. If you
choose this option, all information on worst-case values is lost and insertion of new values has to be
repeated for all selected products without concentration measurements. By pressing the lowest ‘go’
button (see Figure 64) the input form is reached (see Figure 12).
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7 On-line editing of data

Instead of choosing your data from already formed databases as discussed in 2.6.1 you can edit data
on-line. After choosing ‘MCRA 4.0 (field trial data and Dutch consumption data)’ in the MCRA main
menu (see Figure 2) a series of menus is reached from where you can add and edit on-line your own
concentration data instead of using centrally supplied data or data stored in your own user directory.
This is a safe way to combine your concentration data with centrally supplied food consumption data
because product codes for the concentration data are automatically generated from the food
consumption data.

From the central menu (see Figure 5), click the start-selection-of-consumption-and-compound-tables
‘go’ button. Then the available databases are shown (see Figure 65).

MCRA for fieldtrial data

Selection of databases

& [nthe list below you find servers and databases.

e« Selectone or more databases that you wish to use for a MCRA analysis.

select databases from list:
Rikilt (ML v dutch pesticides.mdhb
I meradhtest mdb
™ jiri.mdb
[ pesticides0203.mdb

press 4o | clear info

hackto central menu
hack to main menu

Figure 65: Database selection menu, MCRA for field trial data

After checking one or more databases and clicking the ‘go’ button the table selection menu appears
(see Figure 66). Note that its layout is being changed displaying only tables related to consumption
e.g. Foodconsumption, Foodconversionmodel, Products and Individual. It is compulsory to select
these four tables (see also 2.6.1 ). Tables related to concentration data are not being displayed. After
checking ‘All Tables’ here the menus for on-line adding and editing data are reached.

MCRA for fieldtrial data

Table selection for MCRA analysis

Select data tables by checking the boxes below, then click the select-tables
‘g0 button
Do not select more than one table with the same name.

Food Food
con con
Sump wersion Inudivi All
Database: tion maodel Products dual Tables

dutch i~
pesticides.mdb r r r r

W check columnnames

clear all settings clear

hackto main menu

Figure 66: Table selection menu, MCRA for field trial data
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The first time a user has chosen the field trial menu a new database has to be created. Select create-
new-database from the scroll-down menu (see Figure 67). In all subsequent cases, on-line created
databases are shown in the scroll-down menu. Note that for a proper functioning of the editing menus
only buttons and links in the window screen should be used. Do not use the 'back' button in the toolbar
during editing: this will mess up the order of the products and a proper functioning of the menu is not
guaranteed anymore.

MCRA for fieldtrial data

Select database for concentration

o Create a new database or select the name of an existing database {in your own persanal directony)
« Foranaccurate functioning of the editing menu's, use only buttons and links in the window screen.

« [onot usethe "hack” button in the tool bar during editing: this wil mess up the arder ofthe products and a proper
functioning ofthe menu is not guaranteed anymaore.

create new databaze Qo reset |to last created database

Figure 67: Select database for concentration, create new database

Specify the name of the database (see Figure 68 ) and press the ‘go’ button. Note you should only use
letters and digits, no other characters are allowed.

MCRA for fieldtrial data

Select database for concentration

» Specify a new database name (in yaur own personal directonyd

festdsta] use anly letters and digits

hack to main menu

Figure 68: Select database for concentration, specify a new database name

This brings you to Figure 69 if you entered concentrations values in the past. If not the ‘list or add
variability factors’, ‘list or add processing factors’ and ‘list or edit ARfD or ADI’ buttons are not
available.

By clicking the list-or-add-concentrations button brings you to a screen with an add-records link and a
message “*** Concentration database is empty, add records ***’ if you did not enter concentration
values before.
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MCRA fieldtrial data menu

Select data

list ar add concentrations |

list ar add variahility factars |

list or add processing factors |

list or edit ARTD or ADI |

prepare data for MCRA ga

Figure 69: Select data

7.1 List or add concentrations

For adding concentration values click the ‘list or add concentrations’ button. You are requested to
specify the name of a compound (see Figure 70) if you are entering values for the first time.

MCRA for fieldtrial data

Specify compound
Datahase: testdata.mdb
Acute Reference Dose (ARTD, microgrkg bwsd) (100 9999 indicates missing value
Acceptable Daily Intake (ADI, microgrikg k) 1|:||

compound name [CHLORFYRIFOS

clear go

backto main menu
Figure 70: Specify compound name
If your selected database contains concentration values, the menu for specifying a compound name is
skipped and you are brought directly to a screen where you can choose your primary agricultural

products. Choose one of products in the scroll-down menu for which you want to add values (see
Figure 71 ) and click the enter-product ‘go’ button.

92



MCRA for fieldtrial data

Select product

» Products are selected one by one from the pull-down menu

database: testdata.mdb
compound: CHLORPYRIFOS
ORAMGE w

enter product ga
reset list ga

Figure 71: Select product

In Figure 72, for product ORANGE and compound CHLORPYRIFOS, the number of samples and the
concentration value is entered. After saving this record a message ‘*** one record added ***’ appears
and another concentration value may be entered. Alternatively, click the select-new-product ‘go’
button for entering values for a new product.

MCRA for fieldtrial data

Concentration data

Campound: CHLORPYRIFOS
Froduct: ORANGE
enter frequency if concentration occurs more
numher of samples 4 than once
concentration fmofko) 056 enter compound concentration

save this record  go
select new product oo

lizt recards
hackto fieldirial data menu

Figure 72: Enter concentration data

By clicking the list-records link (see Figure 72) an overview of the concentration values in the
database is displayed (see Figure 73).
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MCRA for fieldtrial data

Click button to modify a recard.

ho frequency concentration
1 | ORANGE 1 0.43
2 | oRANGE 1 1.23
3 | ORANGE 4 0.56
_a | oRANGE 1 0.23

add records
back to fieldtrial data menu

Figure 73: List concentration values

By clicking one of the grey buttons displaying the primary key of the rows in the database, the record
is retrieved and the value for the number of samples or the concentration value may be changed. Save
or delete the record or choose a new product (see Figure 74).

MCRA for fieldtrial data

Edit concentration value for: ORANGE

Record id: 2
number of samples |1 enter frequency if cancentration accurs more than once
concentration {mofka) |1.23 enter compaund concentration

save record Save
delete record delete
select new product o

listrecords
add records

Figure 74: Edit concentration value

7.2 List or add variability factors
After supplying all concentrations values and clicking the back-to-fieldtrial-data-menu link (see
Figure 72), the user is brought back to the select data menu (see Figure 69). At this stage, all products
are known and adding of variability factors, processing factors and ARfD/ADI doses may be started.
After entering all values, it is still possible to supply new concentrations values for old and/or new
products. The process of entering variability factors and/or processing factors for new products is
repeated as well.
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Click the ‘list or add variability factors’ button. If you did not enter variability factors before, a
message ‘*** Variability database contains no records yet ***’ is displayed. By clicking the add-
records link, the menu for adding variability factors is displayed (see Figure 75). The variability factor
itself and the number of units of the composite sample should be specified. For each product in the
concentration table, values should be supplied. Only products for which no values are supplied are
displayed and the process of supplying values is repeated until all necessary values are given. Then
and only then, the message ‘*** Variability factors are specified for all products present in the
concentration table ***’ or ‘“*** For all products, variability factors are already specified ***’ is
displayed. Records may be changed afterwards by clicking one of the grey buttons in table displaying
a listing of all values in the database.

MCRA for fieldtrial data

Variability factors

« Forevery product in the concentration table a variahility factor and the number of units
of the composite sample should he supplied.

*« This menu generates the names ofthe products forwhich concentrations are edited automatically.
After editing a product, the name of the next product will he displayed and can be edited.

« This process is repeated until variability factors for all products are supplied.

compound: CHLORPYRIFOS

add variahility factors for: - ORANGE

variability factor 3 defined as p97.4fmean

number af units | numhber of units in the composite sample

save this record
clearvalue ga

Figure 75: Variability factors

7.3 List or add processing factors

In Figure 76 the menu for entering processing factors is displayed. If you did not enter any values
before, a message “*** Processing factor database contains no records yet ***’ is displayed. Then,
click the add-records link. Choose from the scroll-down menu a processing type, enter a processing
factor and save the record. Repeat this step until the message ‘All factors for ORANGE are specified’
appears and click the select-next-product ‘go’ button.
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MCRA for fieldtrial data

Processing factors

s Faorall products in the concentration file, the processing type and processing factor may be specified.
# Processing types are selected from the list. Mot all processing types should be selacted.
= After selecting all processing tvpes for a product, the next product is displayed autamatically,

and editing is repeated.

« Byclicking the select-next-product 'go’ buttan selection of processing types is ended and the next product
is displayed. After supplyving values for all products, the editing menu is stopped automatically.

« When no products or processing types are reguired, press repeatedly the select-next-product ‘9o’ button
until the message processing is ended’ appears.

compound: CHLORPYRIFOS

add processing factars for: ORANGE

processing type | PEELING -

processing factor |:|.4| processing factor is used as fixed value

save this record

clearwvalue g
select next product oo

back ta fieldtrial data menu

Figure 76: Processing factors

If you wish to finish on-line editing for a product, click the select-next-product button and continue
entering values for the next product. There is no need to enter values for all combinations of products
and processing types: missing processing factors are by default replaced by value 1 (no processing).

If you wish to enter processing factors for only a few number of products and processing type
combinations, enter your values and click repeatedly the select-next-product button until the message
“*** Processing factors for products are specified ***’ is displayed. If you want to enter values at a
later stage, just click the ‘list or add processing factors’ button in the select data menu. A list of
processing factors found in the database is given and after clicking the add-records link, new
processing values may be entered. Note that the scroll-down menus are dependent on the product and
contain only those processing types for which no values are supplied. Records may be changed
afterwards by clicking one of the grey buttons in table displaying a listing of all values in the
database.

7.4 List or edit ARfD or ADI

Click the ‘list or edit ARfD or ADI’ button in Figure 69 if you wish to enter values for the acute
reference dose (ARfD) or average daily intake (ADI). This brings you to Figure 77.
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MCRA for fieldtrial data

Click button to modify record.

acute
reference average coumpoundname
daily intake P
dose
1 | 100 10 CHLORPYRIFOS

hack to fieldtrial data menu

Figure 77: ARfD and ADI

97



8 References

e Apex Software Corporation (1999). ComponentOne WebChart 7.0.10, Charting tool for
browser-independent Web server applications.

e  (@Risk (1996). Advanced risk analysis for spreadsheets, Windows version. Pallisade
Corporation, Newfield, NY, USA.

e Bestfit.(1997). Probability distribution fitting for Windows. Pallisade Corporation, Newfield,
NY, USA.

e Blom, G (1958). Statistical estimates and transformed beta-variables. Wiley, New York.

e Boon, PE, van der Voet, H & van Klaveren, JD (2003). Validation of a probabilistic model of
dietary exposure to selected pesticides in Dutch infants, Food Additives and Contaminants, 20,
Suppl. 1: S36-S49.

e Crossley, SJ (2000). Joint FAO/WHO Geneva consultation — acute dietary intake methodology.
Food Additives and Contaminants, 17: 557-562.

e David, HA (1970). Order statistics. John Wiley & Sons, New York.

e de Boer, WJ, van der Voet, H, PE Boon, G van Donkersgoed & JD van Klaveren (2004).
MCRA, a web-based program for Monte Carlo Risk Assessment, Release 3, User Manual. Report
March 2004. Biometris and RIKILT, Wageningen University and Research Centre, Wageningen.

o de Boer, W] & van der Voet, H (2000). Dietary risk assessment concerning acute exposure to
residues and contaminants using summary data. Note WDB-2000-01, Centre for Biometry
Wageningen, Wageningen.

e Dodd, KW (1996). A technical guide to C-SIDE. Technical Report 96-TR 32, Department of
Statistics and Center for Agricultural and Rural Development, lowa State University, Ames, lowa.
Available at http://www.card.iastate.edu/publications/DBS/PDFFiles/96tr32.pdf

e Efron, B (1979). Bootstrap methods: another look at the jackknife. Annals of Statistics, 7: 1-26.

e Efron, B & Tibshirani, RJ (1993). An introduction to the bootstrap. Chapman & Hall, New
York.

e FAO/WHO (1997). Food consumption and exposure assessment of chemicals. Report of an
FAO/WHO Consultation, Geneva, Switzerland. 10-14 February 1997.

e FAO (2002). Submission and evaluation of pesticide residues data for the estimation of
maximum residue levels in food and feed. FAO, Rome.

e GenStat (2005). GenStat for Windows. Release 8.1, eigth edition, VSN International Ltd.,
Oxford.

e Hamey, PY (2000). A practical application of probabilistic modelling in assessment of dietary
exposure of fruit consumers to pesticide residues. Food Additives and Contaminants, 17: 601-610.

e Harris, C et al. (2000). Summary report of the International Conference on pesticide residues
variability and acute dietary risk assessment. Food Additives and Contaminants, 17: 481-485.

e Harter, HL. Expected values of normal order statistics. Biometrika 48: 151-165.

e [TUPAC (1995). Nomenclature in evaluation of analytical methods including detection and
quantification capabilities IUPAC Recommendations 1995). Pure and Applied Chemistry 67:
1699-1723.

e JMPR (1999, 2000). Reports of the joint FAO/WHO meetings of experts on Pesticide residues
in food.

e Kistemaker C, Bouman M and Hulshof KFAM (1998). De consumptie van afzonderlijke
producten door Nederlandse bevolkingsgroepen - Voedselconsumptiepeiling 1997-1998. Zeist,
TNO-Voeding (Report No: 98.812).

e Nusser SM, Carriquiry AL, Dodd KW & Fuller WA (1996). A semi-parametric transformation
approach to estimating usual daily intake distributions. Journal of the American Statistical
Association, 91: 1440-1449.

e Nusser SM, Fuller WA, and Guenther PM (1997). Estimating usual dietary intake distributions:
adjusting for measurement error and nonnormality in 24-hour food intake data. In: Lyberg L,
Biemer P, Collins M, DeLeeuw E, Dippo C, Schwartz N, and Trewin D (editors), Survey
Measurement and Process Quality, Wiley, New York. p. 689-709.

98



e Pearson, ES and Hartley, HO. Biometrika tables for statisticians (1977). Vol II.

e Shimizu, K, and Crow, EL (eds). (1988). Lognormal distributions: theory and applications.
Marcel Dekker, INC. New York.

e Snedecor, GW & Cochran, WG (1980). Statistical Methods (7th edition). Iowa State University
Click, Ames, lowa.

e van der Voet, H, de Boer, WJ & Keizer, LCP (1999). Statistical instruments for dietary risk
assessment concerning acute exposure to residues and contaminants. Report August 1999, Centre
for Biometry Wageningen, Wageningen.

e van der Voet, H, de Boer, WJ & Boon, P (2001). Modelling exposure to pesticides. Note HVT-
2001-03, Centre for Biometry Wageningen, Wageningen.

e van Dooren, MMH , Boeijen, I, van Klaveren, JD and van Donkersgoed G (1995). Conversie
van consumeerbare voedingsmiddelen naar primaire agrarische produkten. RIKILT-report.
Wageningen, RIKILT-DLO (Report No: 95.17).

e van Klaveren, JD (1999). Quality programme for agricultural products. Results residue
monitoring in the Netherlands. RIKILT Institute of Food Safety, Wageningen.

99



9 APPENDIX A: Preparing the data

9.1 Overview

The internet version of MCRA requires that all information needed for an exposure assessment is
stored in a database, residing in one or more MS Access database files. The database organises data
into a number of tables. Besides the products tables the tables can be divided into 2 groups: tables
with information from the food consumption survey and those from the concentration of compounds
survey. See Table 22 for an overview. To run a Monte Carlo Risk Assessment, tables called ‘required’
should always be supplied. The needs to supply ‘additional’ tables depend on subset requirements (see
Ch. 6 ) and on the model specifications (see Ch. 3 ).

Required tables (minimal configuration)

Products product and food codes and labels, and product specific information
(see9.2.1)
Food consumption Description
Foodconsumption consumption of foods (see 9.3.1)
Foodconversionmodel conversion factors from foods into primary agricultural products
(see9.3.2)
Individual consumer characteristics (see 9.3.3 )
Concentration of compounds Description
Compounds compound codes, labels, agricultural and toxicological limits
(see 9.4.1)
Country country codes, labels (see 9.4.2 )
One of:
Concentration compound concentration data (full data) (see 9.4.3 )
Summarydata compound concentration data (as summary statistics) (see 9.4.4 )
Histogramdata compound concentration data (table of frequency counts) (see 9.4.5 )
Additional tables (for querying or specific options)
Productcategory product and food category codes and labels (see 9.2.2)
Productgroup product and food group codes and labels (see 9.2.3 )
Product_subgroup product and food subgroup codes and labels (see 9.2.4 )
Food consumption Description
Foodsurvey Name of survey (see 9.3.4)
Processing processing codes and labels (see 9.3.5)
Processingfactor processing factors (see 9.3.6 )
Concentration of compounds Description
VariabilityProd unit variability factors (see 9.4.6)
VariabilityCompProd unit variability factors, compound-specific (see 9.4.7 )
VariabilityProcCompProd unit variability factors, processing- and compound-specific
(see 9.4.8)
Agriculturaluse information on the agricultural use of compounds (e.g. use allowed,

percent crop treated, maximum compound limits) (see 9.4.9 )

Table 22: Overview of tables

A table in a database file is a collection of data about a specific subject or topic. The data in the tables
are organised into columns (called fields) and rows (called records).
In the next paragraphs, the format of tables needed for a Monte Carlo Risk Assessment is described.

General remarks:

e Table and column (field) names should be exactly as indicated in the sections below except for
tables Summarydata (see 9.4.4 ) and Histogramdata (see 9.4.5 ).

100



In tables Productcategory, Productgroup, Product subgroup and Products, the columnnames
for primary agricultural products are identical to the columnnames for foods as eaten as such
(e.g.  productcategory, productgroup, productsubgroup, product, productq and
product<category/group/subgroup>name). The distinction between primary agricultural
products and foods as eaten as such is made in column productcategory by using respectively a
1 or9.

In table Foodconsumption foods as eaten as such are coded using columnnames foodcategory
(=9), foodgroup, foodsubgroup, food and foodq.

In table Foodconversion foods as eaten as such are coded using columnnames foodcategory
(=9), foodgroup, foodsubgroup, food and foodq; primary agricultural products are coded using
columnnames productcategory (=1), productgroup, productsubgroup, product and productq.
Missing values are indicated with code 9999, unless stated otherwise. In general, an empty cell
is also interpreted as a missing value. However, occasionally the use of empty cells leads to
errors in retrieving data. Therefore, it is advised to use the code 9999 instead to indicate
missing values

Product codes and compound codes are entered in multiple columns, corresponding to a
hierarchical coding system.

Food codes are entered in multiple columns (not hierarchical).

The use of quotes () in product, compound, country or survey names is not allowed

In the next sections, the heading displays the table name, followed by block with field names and a
short description of each field. A table should contain all fields except for tables Summarydata (see
9.4.4 ) and Histogramdata (see 9.4.5 ). For each field, numbers are assumed unless stated otherwise
(in parentheses). Each section ends with some notes and a short example of the contents of the table.

9.2 Products tables

The products table is the bridge between the food consumption data and the compound concentration
data. It contains coding for both primary agricultural products and foods as eaten as such. Both items
can be distinguished by their productcategory number (1 = primary agricultural products: 9 = foods as
eaten as such).

9.2.1 Products

field name description

productcategory product category number

productgroup product group number

productsubgroup product subgroup number

product product number

productq product quality number

productname (text) product label

unitweight nominal weight of a unit (gr)

edibleportion edible portion (corrected large portion weight, gr)
largeportion weight of a large portion (gr)

When the nominal unit weight is unknown the value 0 is used.

For foods (productcategory = 9), the value for unitweight, edibleportion and largeportion is not
relevant, fill out all empty cells with value 0.

Missing values for edibleportion and largeportion: 9999.
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Example:

E Prod able Ll

productcategory | productgroup | productsubgroup | product | producty productnarme unitweight |edibleportion| largeporion
1 a a5 256 1 HARD FRUIT 30 20 a0
1 9 aiz] g7 1 S0FT FRUIT 50 9999 100
1 a =] o298 1 OTHER FRUIT, MUTS 40 35 50
1 a a5 59 1 OTHER DRIED FRUIT 50 45 35
a a a 5039 0 MILK HALF FULL YITAMIN PLUS 995 9999 2595
a a a 9600 0 QUORN 995 9999 2595
2 1] 1] 9601 0 MILK DRIMK MILKEFRUIT ORANGE 2923 9999 2593
9 1] 1] 9503 0 FRIS & FIT YOGHURT o= 9o09 eizieE]
a a a 9604 0 BREAKFAST PRODUCT WAKE-UP BRIMTA e 9999 595

9.2.2 Productcategory

field name description
productcategory product category number
productcategoryname (text) product category label

e Table Productcategory contains coding for both primary agricultural products and foods as eaten
as such. Both items can be distinguished by their productcategory number (1 = primary
agricultural products: 9 = foods as eaten as such).

e No missing values allowed.

Example:

E Productcategory : Table

productcategary productcategoryname
1 PRIM AGRICULTURAL COMMODITY
9 FOOD
0

9.2.3 Productgroup

field name description
productcategory product category number
productgroup product group number
productgroupname (text) product group label

e Table Productgroup contains coding for both primary agricultural products and foods as eaten as
such. Both items can be distinguished by their productcategory number (1 = primary agricultural
products: 9 = foods as eaten as such).

e No missing values allowed.

Example:

E Productgroup : Table

productcategory | productgroup productgroupname

B GRAINS AND GRAIN PRODUCTS

7 PULSES, SEEDS, KERMNELS AMD MUTS

8 WEGETABLES, POTATOES, BEET AMND TUBERS
9 FRUIT

0 EMRICHED FOODS

1 POTATOES

2 ALCOHOUC AMD NOK-ALCOHOLIC DRINKS
3 BREAD

4 OTHERS

5 EGGE

B FRUIT AND FRUIT PRODUCTS

+
DO O OO0 W = ==
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9.2.4 Product_subgroup

field name

description

productcategory
productgroup
productsubgroup
productsubgroupname (text)

product category number
product group number
product subgroup number
product subgroup label

Table Product subgroup contains coding for both primary agricultural products and foods as
eaten as such. Both items can be distinguished by their productcategory number (1 = primary
agricultural products: 9 = foods as eaten as such).

No missing values allowed.

Example:

=

| productcategorﬂ productgroup |prnductsubgrnu| productsubgroupname
I 1 g 2 CABBAGES
Ik 1 g 1| LEAF/STALK WEGETABLES
Ik 1 7 1/PULSES
| 1 g 1/ FRUIT, MICELLANMOUS
I 9 2 0 ALCOHOLUC AND MOMN-ALCOHOLIC DRINKS
k. 9 12 0 SPICES
Ik 9 23 0 MEAT AND POULTRY
I 9 22 0 FISH
| 9 21 0 FATS, OIL AMD SAUCES

e 9 20 0 SUGAR, CANDY

9.3 Food consumption tables

9.3.1 Foodconsumption

field name description

individualid Consumer identification number

day day (sequential number in food consumption survey)
foodcategory food category number

foodgroup food group number

foodsubgroup food subgroup number

food food number

foodq food quality number

amountconsumed consumed portion of food (g)

foodsurvey (text) name of survey

This table contains data on consumed foods (foodcategory=9). Days without consumptions are
not recorded. The number of available days per consumer is inferred from this table and is
assumed to be the same for each consumer in the survey.

Each food is characterised by a food code built from 5 numbers (not hierarchically):

1 — food category number (9 indicates food as eaten as such)

2 — food group number

3 — food subgroup number

4 — food number

5 — food quality number

Compound concentration data are usually measured on primary agricultural products. This means
that conversion from consumed food to primary agricultural products should be done before
performing an MCRA analysis (see van Dooren et al. 1995). Conversion factors should be
provided in table Foodconversionmodel (see 9.3.2 ).
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¢ No missing values allowed.

Example:

B Foodconsumption : Table

individualid | day |foodcategary| foodgroup | foodsubgroup | food | foodg | amountconsumed|  foodsurvey

320451 2 9 10 0 455 1] g DMFCE-3
320491 2 9 20 0 433 0 8 DMFCE-3
320652 1 9 20 0 377 1] g DMFCE-3
320652 1 9 20 o 522 1] g DMFCE-3
320652 2 4 13 o 21 1] g DMFCE-3
320652 2 9 20 0 377 1] g DMFCE-3
320731 1 9 15 o 207 1] g DMFCE-3

9.3.2 Foodconversionmodel

field name description

foodcategory food category number

foodgroup food group number

foodsubgroup food subgroup number

food food number

foodq food quality number

productcategory primary agricultural product category number

productgroup primary agricultural product group number

productsubgroup primary agricultural product subgroup number

product primary agricultural product number

productq primary agricultural product quality number

percentage percentage of primary agricultural product each food consists of

proccode processing code

e For each food (foodcategory=9), the composition is given in percentages of primary agricultural
products (productcategory=1).

e Each product is characterised by a code built hierarchically from 5 numbers:
1 — product category number (1 indicates primary agricultural product)

2 — product group number

3 — product subgroup number

4 — product number
5 — product quality number

European product codes are a concatenation of 2, 3 and 4.

e No missing values allowed.

Example:

B Foodconversionmodel : Table

foodcategory | foodgroup | foodsubgroup | food | foody | productcategory | productgroup| productsubgroup | product | producty| percentage | proccode

g 18 05119 0 1 7 1 1 1 8.5
9 18 05119 0 1 7 1 1 1 33
g 18 05115 0 1 g 4 1 1 30
9 18 0 5115 0 1 7 1 1 1 17
g 18 05115 0 1 7 1 1 1 3.3
9 18 0 5115 0 1 g 7 999 1 5
g 18 0 5105 0 1 g 4 2 2 222

9.3.3 Individual

field name description

individualid consumer identification number
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age age (e.g. in years, months or days)
weight body weight (e.g. in kg or g)

sex (text) gender

foodsurvey (text) name of survey

o In table Foodsurvey the unit for age and weight is defined.
e No missing values allowed.

Example:

E Individual : Table

individualid foodsurvey
+ 102 343 §.32 male EU-BABY
+ 101 347 9.23 male EU-BABY
+ 100 37 2.94 farnale EU-BABY
+ 201312 g4 70 male DMFCE-3
+ 801311 g7 B0 fernale DMNFCE-3
+ 901231 an 48 fernale DMFCS-3
+ g01192 5] B3 male DMFCE-3
+ ant191 5% RR famala MkFmS-3

9.3.4 Foodsurvey

field name description
foodsurvey (text) name of survey
year year of survey
country (text) country of survey
agein (text) unit of age
weightin (text) unit of weight

e Defines characteristics of the survey.
¢ No missing values allowed.

Example:

E Foodsurvey : Table

foodsurvey VLS country agein weeightin
DMFCS-3 1997 ML i kG
. EU-BABY 1995 ML D KG

9.3.5 Processing

field name description

proccode code of processing type
proctype (text) description of processing type
disttype indicator (1/2):

e simulated processing factors are restricted to the interval
(0,1) using a logistic-normal distribution (1),
e or simulated processing factors are restricted to positive
values using a log-normal distribution (2)
bulkingblending indicator (0/1)for types of processing applied on large batches, e.g.
juicing, sauce/puree (obligatory),
e 0= no bulking/blending ;
e 1 =bulking/blending
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e Information on bulking and blending is only relevant for modelling of processing effects in
combination with unit variability and IESTI calculations, but should always be present in the table
even when these effects are not explored.

e No missing values allowed.

Example:

E Processing : Table

procoode proctype disttype

o
=4
BT
=

=)
=
o
=
=
=

[

1 RAWW
2 PEELING
3 COOKING IN WATER
4 BAKING OF BREAD
4 CANNED/CONSERVED
B BREWING
7 DRYIMNG
g FRYING/BAKING IN FAT
9 JUICING
10 MILLING
11 MARMELADE/JAM
12 OIL EXTRACTION
13 SAUCE/PUREE
14 CLEANING
15 YWASHINGICLEANIMG
16 YWINE MAKING
99 LINKMOWN
1]

o PSP P P P P T (P O PO P A ) S U B PR P
O oo o0 = 0O =0 =000 0o0000d

9.3.6 Processingfactor

field name description

compoundgroup compound group number

compoundsubgroup compound subgroup number

compound compound number

productcategory primary agricultural product category number

productgroup primary agricultural product group number

productsubgroup primary agricultural product subgroup number

product primary agricultural product number

productq primary agricultural product quality number

proccode code of processing type

procnom nominal value (best estimate) of processing factor

procupp upper value (estimate of 97.5™ percentile or “worst case” estimate)
of processing factor

e The value for procupp should be higher than the value for procnom.

Example:

B Processingfactor : Table

ko o

1 g 4 1 1 5 0.1 0.1
1 g 4 1 1 5 023 0.24
1 5 2 5 1 1 0s& 0.56
1 4 2 5 1 2 0z 077
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9.4 Concentration of compounds tables

9.4.1 Compounds

field name description

compoundgroup compound group number (first level in hierarchy)
compoundsubgroup compound subgroup number (second level in hierarchy)
compound compound number(third level in hierarchy)

arfd ARID (acute reference dose), in microgr/kg bw/day

adi ADI (acceptable daily intake), in microgr/kg bw/day
compoundname (text) compound label (name of compound)

unit coding for specification of units for compound and intake

e Each compound is characterised by a code built hierarchically from 3 numbers.
e Missing values for ARfD and ADI: 9999.
Column unit contains a coding to determine the unit as used for compound concentration data and
dietary intake. Coding is as follows:

-6 -9
concentration: mg/kg microgram/kg
intake: microgram/kg bw/day nanogram/kg bw/day

Example:

E Compounds : Table

If column unit doesn’t exist code -6 is assumed

compound compoundygroup compoundsubgroup arfd adi compoundharme Uit
4 -] 12 7 2 0.6 MONOCROTOPHOS £
a3 12 7 2 9999 OXYDEMETON-METHYL £
34 12 7 3 0.8 FENAMIPHOS £
28 12 7 3 0.3 DISULFOTON R
B 12 99 3 0.2 FIPRONIL )
55 12 7 3 0.8 MEYINFHOS )
44 149 29 3 0.3 PROPYLEME THIOUREA 3
9.4.2 Country
field name description

country (text)
countryname (text)

code for country
name of the country, label

e No missing values allowed

Example:

country | countryname

(A EE] LINRMOWYT

AA ARUBA

AB ATERBELAN

AD ANDORRA

AE LINITED ARAB EMIRATES

AF AFGANISTAN

Al ANTIGO

Ak AFRICA,

AL ALBANIA,

AN THE METHERLAMNDS ANTILLES
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9.4.3 Concentration

field name description

compoundgroup compound group number

compoundsubgroup compound subgroup number

compound compound number

productcategory primary agricultural product category number

productgroup primary agricultural product group number

productsubgroup primary agricultural product subgroup number

product primary agricultural product number

productq primary agricultural product quality number

year sampling year

month number of month

country (text) country of sample

samplingtype (text) type of sampling (monitoring)

numberofsamples count of the number of times the specified concentration or limit of
reporting (LOR) occurs

value concentration (mg/kg) or LOR (see below)

e Concentration values are measured on primary agricultural products (productcategory=1).

e The limit of reporting (mg/kg) is specified in column value using a minus (-) sign to make the
distinction between a measured concentrations, e.g. —0.02 (see example first row).

e Concentration values are stored in column value and the number of times each value occurs in
column numberofsamples, e.g. 0.21 and 1, respectively.

e The number of non-detects for product 1 6 1 1 1 is 10, the total number of samples taken is equal
to 11 (see example, first and second row).

e Missing LORs are reported as —9999. The MCRA program replaces missing LORs with 1) the
maximum LOR found in the database, 2) if all LORs are missing, the lowest concentration found
in the database. A warning is generated when 1) and 2) are not possible.

e No missing values allowed for the other columns.

Example:

B Concentration : Table

compoundgraup | compoundsubgroup | compound | productcategary | productgroup | productsubgr
12 929 5 1 9
13 2 5 1 9
13 3] 5 1 9
13 iz] 5 1 9
1 13 5 1 9
1 ic] 5 1 9
1 93 5 1 9
1 93 5 1 9

wp | productsubgroup | product | productg month | samplingtype | country | numberofsamples

9 2 3 1) 2002 99 M IhP |
9 2 3 1) 2002 89 M IhP g
9 2 3 1) 2002 89 M IhP g
9 2 3 1) 2002 99 M IMP 3
9 4 1 1 2001 99 M ML 3
9 4 1 1 2001 89 M ML g
9 4 1 1 2001 89 M IhP g
9 4 1 11 2001 99 M IhP 3
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9.4.4 Summarydata

field name description

compoundgroup compound group number

compoundsubgroup compound subgroup number

compound compound number

productcategory primary agricultural product category number
productgroup primary agricultural product group number
productsubgroup primary agricultural product subgroup number
product primary agricultural product number

productq primary agricultural product quality number
country (text) code for country

limitofreporting limit of reporting (mg/kg)

numberofsamples size of sample (detects and non-detects)
numberofpositives number of positive concentration values (detects)
the mean: mean or meanall statistic for the mean

the median: med or medall statistic for the median

max statistic for the maximum

the variance: var or varall statistic for the variance

the percentile: perc or percall statistic for the percentile

percentile specifies the percentage of the statistics perc and percall

Summary statistics are derived from primary agricultural products (productcategory=1).

MCRA release 4 has an option to input summary data for compound concentrations. These data
are then used for estimating parameters of a parametric model (see 3.2.1).

Field names mean, meanall, med, medall, max, var, varall, perc, percall and percentile are
optional and their order is free. Not all statistics need to be present in the table. See also last
bullet.

Statistics ending on ‘all’ refer to statistics based on all samples including non-detects
(concentrations below LORSs), while statistics without suffix ‘all’ relate to statistics based on
nonzero samples (non-detects) only.

The use of equivalent statistics, like mean and meanall, for one product in the same row is not
allowed.

Be aware that statistics should be consistent e.g.: med is always smaller than mean; the
calculated mean (nonzero samples only) that is derived from statistic meanall should be smaller
than max; specifying medall implies that more than half the number of samples are detects
(numberofpositives); specifying percall implies that the number of detects (numberofpositives) is
greater than the percentage specified in column percentile.

Missing LORs are reported as —-9999. The MCRA program replaces missing LORs with 1) the
maximum LOR found in the database, 2) if all LORs are missing. A warning is generated when 1)
and 2) are not possible.

Missing statistics are reported as 9999. Columns containing only missing values are not allowed
and should be deleted.

Example:

-

compoundgroup | compoundsubgraup | compound | productcategory | pmductgmup| productsubgroup | pmduct| productq| country |

11 4 1 1 ) 4 3 1(FI
11 a 1 1 g 1 5 4 ML
11 L 1 1 g 5 2 1 DK
11 L 1 1 4 2 1 1 ML
1 5 1 1 a 4 1 1/ML
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try |Iimitc|frepc|r1ing|numhernfsamples|numhernfpc|sitives| Mean |meana|l| rmed | max | war | perc | percentile

0. 20 12 21 5999 0.2 4.1 9953 9994 5999
0.3 42 13 9999 9999 1.6 4 9999 3.2 95
5 20 15 0.4 9993 034 1 0754 99899 9999
0.3 25 20 0934 9993 9999 313 59883 9999 9999
0.3 120 25 9999 3 9999 56  1.43 9999 9999

9.4.5 Histogramdata

field name description

compoundgroup compound group number

compoundsubgroup compound subgroup number

compound compound number

productcategory primary agricultural product category number

productgroup primary agricultural product group number

productsubgroup primary agricultural product subgroup number

product primary agricultural product number

productq primary agricultural product quality number

country (text) code for country

limitofreporting limit of reporting (mg/kg)

numberofsamples size of sample (detects and non-detects)

c%01 e number of samples with a concentration between the value
c%02 extracted from the field name of the previous column
c%05 (exception: for the first column a value 0 is taken) and the
c%l value extracted from the field name in the current column
c%?2 (mg/kg).

c%S5

cl e classes (i.e. columnnames) are free to choose so c<xxx>...
c2 may be replaced with any appropriate concentration e.g.
C<XXX> ¢5, cl0 etc.

c<xxx>

Cc<xXxx>

cE10

Histogramdata are derived from primary agricultural products (productcategory=1).
e MCRA release 4 has an option to input frequency counts (histogram data) for compound
concentrations. These data are then used for estimating parameters of a parametric model (see
3.2.1).
e Field names for columns representing the number of frequency counts are constructed as follows:
¢ = indicates class limit,
% = represents the decimal point (if necessary),
xx = is the value of the class limit.
Thus: field name c%02 specifies class limit 0.02, field name c2 specifies class limit 2, field name
cE10 specifies class limit 1%¥10".
e The number of non-detects measurements is given as the difference between the
numberofsamples and the sum of frequency counts, e.g. see example first record 377 — 1 = 376,.
e Missing LORs are reported as —9999. The MCRA program replaces missing LORs with 1) the
maximum LOR found in the database, 2) if all LORs are missing...... A warning is generated
when 1) and 2) are not possible.

e For columns numberofsamples, c%02...cE10 no missing values is allowed: classes without

frequency counts are reported as 0. When no data are available for a product, delete the entire
TOW.
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Example:

B Histogramdata : Table

compoundgroup | compoundsubgroup | compound | productcategory | productgroup | productsubgroup | product | producty | coun

» 11 4 1 1 ] 5 2 1 NL
B 11 4 1 1 g 4 3 1 L
] 11 4 1 1 g 2 1 1 hL
B 11 5 1 1 8 1 5 4 ML
B 11 5 1 1 g 4 1 1 ML

country | limitofreporting | numberofsamples | c%01 | c%02 | c%05 | c%1 | c%2 | c%5| ol c2 ch | cl0 | c20| B0 | cE10

P ML -9999 1M 0o 0 0 0 0 O 0 0 0o @ 0 0o o

e 003 128 0 0o 4 6 4 s 0 0 0 O 0 0 0
e 003 1290 ol 8 17l 9/ 6 7 8 o o o o o o
. -9999 134 ] 0 D 0 0 0o o 0o 3 12 34 23 0
. 0.03 89 0 o o o 0 0 o 2 4 8 6 3 0O

9.4.6 VariabilityProd

field name description

productcategory primary agricultural product category number

productgroup primary agricultural product group number

productsubgroup primary agricultural product subgroup number

product primary agricultural product number

productq primary agricultural product quality number

varfac variability factor

coefvar coefficient of variation

nounitcomp number of units in the composite sample

e This table is used for specifying real empirical estimates of unit variability (e.g. from special
studies) for the lognormal and the beta distribution and the number of units in a composite
sample.

e Estimates for unit variability are independent of the compound.

e All columns need to be present: use code 9999 when data are not available.

e When the parameter for unit variability is a coefficient of variation and the number of units equals
1, unit variability is ignored for this product.

Example:
B VariabilityProd : Table
productcategory | productgroup | productsubgroup | product producty varfac coefrar nounitcamp

1 g 2 1 1 8 1.375 12
1 g 2 2 1 4 1.8 12

4 1 g 2 3 1 3 15 12
1 g 2 4 1 5 15 12
1 g 2 5 1 1 9959 12
1 & 2 G 1 7 1.86 12

9.4.7 VariabilityCompProd

field name description

compoundgroup compound group number

compoundsubgroup compound subgroup number

compound compound number

productcategory primary agricultural product category number
productgroup primary agricultural product group number
productsubgroup primary agricultural product subgroup number
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product primary agricultural product number
productq primary agricultural product quality number
varfac variability factor

coefvar coefficient of variation

nounitcomp number of units in the composite sample

e This table is used for specifying real empirical estimates of unit variability (e.g. from special
studies) for the lognormal and the beta distribution that are dependent on the compound. Values
for unit variability in table VariabilityProd are replaced by the new ones.

Example:
- B
compoundgroup|compoundsuhgroup| compound | productcategory |pr0ductgr0up|productsuhgroup| product | producty | varfac | coefear |n0unitcomp
| 11 5 3 1 3 2 3 3 3 034 15
| 11 5 3 3 2 3 4 4 0 56
| 13 4 3 1 2 2 1 13 5 05 0
12 1 1 1 g g 2 15 34 12 2
9.4.8 VariabilityProcCompProd
field name description
compoundgroup compound group number
compoundsubgroup compound subgroup number
compound compound number
productcategory primary agricultural product category number
productgroup primary agricultural product group number
productsubgroup primary agricultural product subgroup number
product primary agricultural product number
productq primary agricultural product quality number
proccode processing type code
varfac variability factor
coefvar coefficient of variation
nounitcomp number of units in the composite sample

e This table is used for specifying real empirical estimates of unit variability (e.g. from special
studies) for the lognormal and the beta distribution that are dependent on the combination of
processing type and compound. Values for unit variability in table VariabilityProd and
VariabilityCompProd are replaced by the new ones. This can be used for example to reset the
variability factor to 1 for grape juice and raisins (dried grapes).

Example:

= - Ol
compoundgroup| compoundsubgroup | compuund| productcategory| productgroup| praductsubgroup \ pruduct| producty | proccode| varfac | coef\rar| nounitcomp

L 1 g 1 1 3 4 3 1 3 4 025 20

L 11 7 2 2 1 18 5 24 034 25

| 2 2 1 1 4 4 il 19 5 31 0.5 10

id 7 7 1 1 ] 2 2 1 4 25 0.3 20

9.4.9 Agriculturaluse

field name description

compoundgroup compound group number

compoundsubgroup compound subgroup number

compound compound number

productcategory primary agricultural product category number
productgroup primary agricultural product group number
productsubgroup primary agricultural product subgroup number
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product
productq

country (text)

year
useallowed

perccroptreated
maximumresiduelimit

primary agricultural product number

primary agricultural product quality number

code for country

year

indicator (0/1) whether use of the compound for the product is allowed
(1) or not (0)

maximum percentage of the product that is treated with the compound
worst case value

e For combinations of compound and products that are not listed in table Agriculturaluse MCRA
will assume that use is not allowed.

Example:

B Agriculturaluse : Table

compoundgroup | compoundsubgroup | compound | productcategory | productgroup | productsubgroup | proc

1 5 1 1 7 4

N 12 4 2 1 1 4

11 5 1 1 4 4

se : Table

;gup | product [productg| country | year | useallowed | percoroptreated | maxirmumresiduelimit
4 2 1/ ML 2002 1 A0 567
4 2 12 UK 2003 1 34 23
4 2 1 FR 2007 1 g0 230
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10 APPENDIX B: Other output depending on specifications of
options

In4.1 and 4.2 the output of two examples of an MCRA analysis are shown. In this appendix the
output of more types of analysis (specified by the options in Ch. 3 ) are demonstrated.

10.1 Acute risk assessment: processing fixed factors

In this example, output is shown for an acute risk assessment and processing using fixed factors for
organo phosphate pesticide chlorpyrifos. Table 23 lists the main options:

Input form

risk type acute

uncertainty analysis no

concentration model empirical

number of Monte Carlo iterations 200000

number of computational chunks 10

unit variability model no unit variability
random seed 0

intake model only empirical estimates
concentration data:

processing factors processing (fixed factors)
additional system defaults

output system defaults

Table 23: Input form options: processing

In Table 24 you find the main characteristics concerning this analysis taken from the logfile. Note that
the number of products and processing combinations is 52 whereas the number of products is 12.

Logfile
Number of products 12
Acute reference dose (ARTD) 100
Average daily intake (ADI) 10
Number of detects 364
Number of non-detects 2408
Number of products and processing
type combinations 52
No of consumers 6250
Population characteristics,
minimum age 1
maximum age 97
minimum weight 8
maximum weight 150
sex female, male
Total no of consumption days 12191

Table 24: Information in logfile

For a summary of the data, see Table 5. In Table 25 you find a summary of the simulated intakes.
Compared to Table 6, this table contains a second section with information on processed products
only. New in the lower part is an additional column (ProcFact) with, for fixed factors, the value of the
fixed processing factor and for distribution based factors, the mean of the sampled processing factor
values.

Compound: CHLORPYRIFOS
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SUMMARY SIMULATION

Code : product code

Product : product label

MeanCons : average consumption, all consumers, all days

DeltaC : difference (%) compared to average consumption
in database

MeanConsDays : average consumption, consumption days only

NConsDays : number of consumption days in the data set

N : total number of iterations

%PosCons : percentage consumption days

MeanConc : mean concentration in simulations with positive
amount consumed (after processing)

DeltaR : difference (%) compared to average concentration
in database

NPosConc : number of positive concentrations in simulations
with positive amount consumed.

NConc : total number of concentration measurements
(detects and non-detects) in simulations with
positive amount consumed.

%PosConc : percentage positive concentrations

ProcFact : mean processing factor

FOOD CONSUMPTION DATA

Code Product MeanCons DeltaC MeanConsDays NConsDay N %PosCons
@ ) @) %)
17111.10 GREEN BEANS 11.73 ( -0.5) 116.13 20209 200000 10.1
18115.20 SPINACH 8.19 ( 1.4) 226.00 7252 200000 3.6
18401.10 POTATOES 138.40 ( -0.1) 172.95 160042 200000 80.0
18402.20 CARROT 12.19 ( 0.6) 36.35 67069 200000 33.5
18506.10 SWEET PEPPER 3.36 ( 0.7) 16.53 40620 200000 20.3
19201.10 APPLE 62.04 ( 0.9) 100.14 123909 200000 62.0
19304.10 PEACH 2.07 ( -0.4) 7.32 56502 200000 28.3
19401.10 GRAPE 13.27 ( 0.3) 34.29 77403 200000 38.7
19501.10 LEMON 1.51 ( -1.8) 4.15 73069 200000 36.5
19502.10 ORANGE 56.85 ( -0.4) 99.35 114436 200000 57.2
19503.10 MANDARIN TA 8.77 ( -0.6) 40.96 42843 200000 21.4
19507.10 GRAPEFRUIT 4.09 ( 0.5 28.77 28404 200000 14.2
COMPOUND CONCENTRATION DATA
Code Product MeanConc DeltaR  NPosconc NConc %PosConc ProcFact
(mg/kg) ) %)
17111.10 GREEN BEANS 0.01212 ( 0.8) 182 20360 0.9 1.00
18115.20 SPINACH 0.0038 ( 1.3) 12 7340 0.2 0.93
18401.10 POTATOES 0.0005 ( -3.4) 559 206500 0.3 1.00
18402.20 CARROT 0.0014 ( -0.1) 240 76793 0.3 1.00
18506.10 SWEET PEPPER 0.0023 ( -1.6) 109 46799 0.2 1.00
19201.10 APPLE 0.0011 ( -0.9) 924 172223 0.5 0.82
19304.10 PEACH 0.0065 ( -1.2) 734 60336 1.2 1.00
19401.10 GRAPE 0.0162 ( 0.2) 1467 89382 1.6 0.92
19501.10 LEMON 0.0105 ( 0.2) 3492 81571 4.3 1.00
19502.10 ORANGE 0.0347 ( 0.6) 11825 144400 8.2 0.73
19503.10 MANDARIN TA 0.0350 ( -0.4) 4016 45082 8.9 0.60
19507.10 GRAPEFRUIT 0.0697 ( 1.7) 3872 28690 13.5 1.00
++
Product & Processing MeanCons DeltaC MeanConsDays NConsDays N %PosCons ProcFact
@ W @n )
GREEN BEANS:cooking in w 7.66 ( -0.4) 11777.00 130 200000 0.1 1.00
GREEN BEANS:canned/conse 4.07 ( -0.8) 8565.00 95 200000 0.0 1.00
GREEN BEANS:washing/clea 0.00 ( 12.5) 18.00 50 200000 0.0 1.00
SPINACH: raw 0.00 ( -8.5) 128.00 3 200000 0.0 0.70
SPINACH:cooking in water 1.77 ( -0.5) 2373.00 149 200000 0.1 0.80
SPINACH: canned/conserved 6.41 ( 2.0) 4794.00 267 200000 0.1 1.00
SPINACH:washing/cleaning 0.01 (-14.1) 45.00 61 200000 0.0 1.00
POTATOES:cooking in wate 89.55 ( 0.0) 110821.00 162 200000 0.1 1.00
POTATOES: frying/baking i 45.08 ( -0.3) 50825.00 177 200000 0.1 1.00
POTATOES :unknown 3.76 ( 1.0) 44854 .00 17 200000 0.0 1.00
CARROT : raw 0.08 ( -1.1) 3560.00 4 200000 0.0 1.00
CARROT:cooking in water 8.45 ( 0.9 33324.00 51 200000 0.0 1.00
CARROT : canned/conserved 2.47 ( -0.4) 35943.00 14 200000 0.0 1.00
CARROT :washing/cleaning 1.18 ( 0.7) 3966.00 60 200000 0.0 1.00
SWEET PEPPER:raw 0.08 ( -1.1) 3560.00 4 200000 0.0 1.00
SWEET PEPPER:cooking in 2.08 ( 1.5) 18992.00 22 200000 0.0 1.00
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SWEET PEPPER:canned/cons 0.68 ( 1.7) 19729.00 7 200000 0.0 1.00
SWEET PEPPER:sauce/puree 0.02 ( 2.5 972.00 4 200000 0.0 1.00
SWEET PEPPER:washing/cle 0.50 ( -3.3) 3546.00 28 200000 0.0 1.00
APPLE:raw 0.12 ( -2.6) 6921.00 3 200000 0.0 0.70
APPLE:peeling 19.80 ( 0.6) 42641.00 93 200000 0.0 0.80
APPLE:drying 0.21 ( 0.6) 9190.00 5 200000 0.0 1.00
APPLE: juicing 17.38 ( 1.2) 69397.00 50 200000 0.0 0.70
APPLE:sauce/puree 6.67 ( 0.6) 17640.00 76 200000 0.0 1.00
APPLE:washing/cleaning 17.86 ( 1.0) 26434 .00 135 200000 0.1 1.00
PEACH: raw 0.04 ( -0.3) 1308.00 7 200000 0.0 1.00
PEACH: canned/conserved 0.48 ( 5.0) 5622.00 17 200000 0.0 1.00
PEACH: juicing 0.59 ( -0.5) 47792.00 2 200000 0.0 1.00
PEACH:marmelade/jam 0.00 ( 3.9 116.00 1 200000 0.0 1.00
PEACH:washing/cleaning 0.95 ( -2.9) 5498.00 34 200000 0.0 1.00
GRAPE: raw 0.06 ( -0.3) 1308.00 8 200000 0.0 1.00
GRAPE: canned/conserved 0.12 ( 6.7) 2369.00 10 200000 0.0 1.00
GRAPE:drying 9.08 ( -0.1) 45836.00 40 200000 0.0 1.00
GRAPE: juicing 1.54 ( 6.5) 35464.00 9 200000 0.0 0.80
GRAPE:sauce/puree 0.01 ( -3.9) 141.00 16 200000 0.0 1.00
GRAPE:washing/cleaning 2.46 ( -2.1) 4264.00 115 200000 0.1 1.00
LEMON: raw 0.07 ( -0.4) 38595.00 0 200000 0.0 1.00
LEMON:peeling 0.03 ( 0.6) 398.00 15 200000 0.0 1.00
LEMON: juicing 1.41 ( -1.9) 42578.00 7 200000 0.0 1.00
ORANGE:peeling 13.58 ( -0.1) 29811.00 91 200000 0.0 0.70
ORANGE:drying 0.03 ( 1.1) 1912.00 3 200000 0.0 1.00
ORANGE: juicing 43.06 ( -0.5) 76065.00 113 200000 0.1 0.60
ORANGE :marmelade/jam 0.16 (C 1.7) 36471.00 1 200000 0.0 1.00
ORANGE:sauce/puree 0.02 ( -2.8) 141.00 22 200000 0.0 1.00
MANDARIN, TA:peeling 8.55 ( -0.6) 32219.00 53 200000 0.0 0.60
MANDARIN, TA:canned/cons 0.10 ( 1.4 2019.00 10 200000 0.0 1.00
MANDARIN, TA:juicing 0.08 ( 1.2) 10107.00 2 200000 0.0 0.50
MANDARIN, TA:marmelade/j 0.00 ( 3.9 116.00 1 200000 0.0 1.00
MANDARIN, TA:washing/cle 0.04 ( -2.6) 621.00 14 200000 0.0 1.00
GRAPEFRUIT:peeling 1.30 ( 1.3) 2203.00 118 200000 0.1 1.00
GRAPEFRUIT:canned/conser 0.02 ( 2.7) 1407.00 3 200000 0.0 1.00
GRAPEFRUIT: juicing 2.77 ( 0.2) 25080.00 22 200000 0.0 1.00

Table 25: Summary of simulation, including processed products

For processing, all tables as found in 4.1 are extended with the additional information on the
processed product. Note that the percentiles of the acute intake distribution after applying processing
factors, see Table 26, are slighter lower than without processing (see Table 9)

Random sampling is based on seed : 0
Number of iterations (consumers): 200000 out of 6250
CHLORPYRIFOS (microgr/kg bw/day) consumption: 200000 out of 200000

Compound: CHLORPYRIFOS

Percentiles, maximum and average intake

Percentage Percentiles of CHLORPYRIFOS (microgr/kg bw/day)
50.00 0.00000
90.00 0.13440
95.00 0.26667
99.00 0.78129
99.90 2.80839
99.99 6.05685
mean 0.05109
max imum 20.40600

Table 26: Percentiles for the acute intake distribution applying processing

10.2 Acute risk assessment: unit variability, Beta distribution

In this example, output is shown for an acute risk assessment and unit variability for organo phosphate
pesticide chlorpyrifos. Table 27 lists the main options:
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Input form

risk type Acute

uncertainty analysis No

concentration model Empirical

number of Monte Carlo iterations 200000

number of computational chunks 10

unit variability model beta distribution
random seed 0

intake model only empirical estimates
concentration data system defaults
Additional system defaults
Output system defaults

Table 27: Input form options: unit variability

In Table 28 you find the main characteristics concerning this analysis taken from the logfile. The
logfile contains some information on unit variability like missing variability factors and the maximum
number of units found in a consumption.

Logfile
Number of products 12
Acute reference dose (ARTD) 100
Average daily intake (ADI) 10
Number of detects 364
Number of non-detects 2408
No of consumers 6250
Population characteristics,
minimum age 1
maximum age 97
minimum weight 8
maximum weight 150
Sex female, male
Total no of consumption days 12191

Model 1 : Beta distribution of unit concentrations.
Maximum possible unit concentration is NU times comp. sample concentration
(NU = number of units in composite sample).
Default values can be overruled by specifying NU values.
unit weight <= 25: 1
25 < unit weight <= 250: 7
unit weight > 250: 5
Estimated variability factors are p97.5/mean.
Some variability factors are missing.
For product(s): code product
18402.20 CARROT
unit variability is ignored.
Maximum number of units in a consumption: 13
for product(s): APPLE

Table 28: Information in logfile

In Table 29, the percentiles of the intake distribution after applying unit variability are shown. Note
that the percentiles are much higher (p99.99 = 116.41) than without unit variability (p99.99 = 7.11,
see Table 9) and after applying processing (p99.99 = 6.06, see Table 26).

Random sampling is based on seed : 0
Number of iterations (consumers): 200000 out of 6250
CHLORPYRIFOS (microgr/kg bw/day) consumption: 200000 out of 200000

Compound: CHLORPYRIFOS
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Percentiles, maximum and average intake

Percentage Percentiles of CHLORPYRIFOS (microgr/kg bw/day)

50.00 0.00000
90.00 0.06731
95.00 0.31501
99.00 1.99204
99.90 12.34006
99.99 116.41577

mean 0.13768

max imum 414.39878

Table 29: Percentiles for the acute intake distribution after applying unit variability

10.3 Acute risk assessment: IESTI

In this example, output is shown for an acute risk assessment and IESTI for organo phosphate
pesticide chlorpyrifos. Table 30 lists the main options:

Input form

risk type Acute

uncertainty analysis No

concentration model Empirical

number of Monte Carlo iterations 200000

number of computational chunks 10

unit variability model no unit variability
random seed 0

intake model only empirical estimates
concentration data system defaults
additional:

estimation of IESTI yes

standard body weight is 60

compare IESTI with Monte Carlo-

percentile yes

MC percentage for comparison with

1ESTI 99

use own variability factors No

Output system defaults

Table 30: Input form options: IESTI

In Table 31 you find the main characteristics concerning this analysis taken from the logfile.

Logfile
Number of products 12
Acute reference dose (ARTD) 100
Acceptable daily intake (ADI) 10
Number of detects 364
No of consumers 6250
Number of non-detects 2408
Population characteristics,
minimum age 1
maximum age 97
minimum weight 8
maximum weight 150
Sex female, male
Total no of consumption days 12191

Table 31: Information in logfile
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In Table 32 IESTI estimates are displayed together with the estimate expressed as percentage of the
ARID (%ARTD). Also a comparison is made with the Monte Carlo percentile per product for positive
consumption days only (ConsPos) as well as all consumption days (AllDays). For Orange the IESTI
estimate is 1.067 microgr/kg bw/day which is slighter lower than the Monte Carlo percentiles for
positive consumption days only (1.341 microgr/kg bw/day) and slighter higher than the Monte Carlo
percentiles for all consumption days (0.978 microgr/kg bw/day).

Compound: CHLORPYRIFOS

IESTI estimates (microgr/kg bw/day)

%oFARFD : estimates expressed as % of Acute Reference Dose

Cons_Pos: percentiles per product for positive consumptions only

Alldays : percentiles per product for all days (including days without consumption)

Note that option Consumption days only restricts the total number of days to a subset.
IT one restricts attention to Consumption days Only, percentiles are typically

based on consumption data which are partly zero (days with consumption zero for

some but not all products)

IESTI compared with Monte Carlo Percentiles for Positive Consumption Only and All days

ConsPos AllDays

Product 1ESTI %oFARTD pP99.00% p99.00%
GREEN BEANS 2.145 2.145 0.215 0.000
SPINACH 0.960 0.960 0.000 0.000
POTATOES 0.099 0.099 0.000 0.000
CARROT 0.187 0.187 0.002 0.000
SWEET PEPPER 0.960 0.960 0.003 0.000
APPLE 0.131 0.131 0.087 0.043
PEACH 0.752 0.752 0.013 0.002
GRAPE 2.360 2.360 0.232 0.069
LEMON 0.288 0.288 0.014 0.005
ORANGE 1.067 1.067 1.341 0.978
MANDARIN TA 0.950 0.950 0.634 0.256
GRAPEFRUIT 7.067 7.067 0.690 0.071

Table 32: IESTI estimates

10.4 Acute risk assessment: uncertainty

In this example, output is shown for an acute risk assessment and an uncertainty analysis for organo
phosphate pesticide chlorpyrifos. Table 33 lists the main options:

Input form

risk type acute

uncertainty analysis yes

concentration model empirical

number of Monte Carlo iterations 200000

number of computational chunks 10

unit variability model no unit variability
random seed 0

intake model only empirical estimates
number of bootstrap samples 1000

number of iterations per

bootstrap sample 20000

concentration data: system default
Additional system defaults
Output system defaults

Table 33: Input form options: uncertainty

In Table 34 you find the main characteristics concerning this analysis taken from the logfile.
Consumptions and concentration data are bootstrapped.
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Logfile

Number of products 12
Acute reference dose (ARTD) 100
Average daily intake (ADI) 10
Number of detects 364
Number of non-detects 2408
No of consumers 6250
Population characteristics,
minimum age 1
maximum age 97
minimum weight 8
maximum weight 150
Sex female, male
Total no of consumption days 12191
Total no of simulations 20000000
(uncertainty)
Bootstrap consumptions yes
Bootstrap concentration data yes

Table 34: Information in logfile

In Table 35, the percentiles of the intake distribution for the specified percentages are displayed
together with the 2.5, 25, 75, 97.5% points of the percentile uncertainty distribution. In this example,
the 95% uncertainty interval for the p99.99 (7.1128 microgr/kg bw/day) is (4.7934, 11.6237).

Random sampling is based on seed : 0
Number of iterations (consumers): 200000 out of 6250
CHLORPYRIFOS (microgr/kg bw/day) consumption: 200000 out of 200000

Compound: CHLORPYRIFOS

Percentiles, maximum and average intake

Percentage Percentiles of CHLORPYRIFOS (microgr/kg bw/day)
50.00 0.00000
90.00 0.19603
95.00 0.39706
99.00 1.16024
99.90 3.51131
99.99 7.11281
mean 0.07303
max imum 20.40600

Uncertainty of percentiles distribution

2.5% 25% 75% 97 .5%

50.00 0.0000 0.0000 0.0000 0.0000
90.00 0.1570 0.1800 0.2059 0.2330
95.00 0.3271 0.3687 0.4167 0.4605
99.00 0.9524 1.0915 1.2614 1.4790
99.90 2.5699 3.1447 3.9837 4.8936
99.99 4.7934 6.2099 8.5555 11.6237
mean 0.0589 0.0678 0.0779 0.0881

maximum 5.6234 8.0000 11.5054 20.4060

Table 35: Percentiles for the intake distribution and uncertainty

The information of Table 35 is plotted in Figure 78. The 2.5 and 97.5% points are displayed by the
small line segments, the thick bar indicates the 25 and 75% points of the percentile uncertainty
distribution. As seen, percentiles for high percentages are uncertain and have a large uncertainty
interval.
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CHLORPYRIFOS
uncertainty analysis
2.5, 25, 75 and 97.5% points of percentiles uncertainty distribution

Intake (microgr/kg bw/day)

.

-

Mean 50.00 90.00 95.00 99.00 99.90 99.99

Percentages

Figure 78: Uncertainty analysis

10.5 Acute risk assessment: diagnostics

In this example, output is shown for an acute risk assessment and an uncertainty analysis focussing on
the diagnostics for organo phosphate pesticide chlorpyrifos. For input options and information in
logfile, see Table 33 and Table 34, respectively.

Diagnostics are only available after running an acute risk analysis in combination with uncertainty
analysis. The diagnostic tools provided, focus on the stability of the percentiles, or, re-phrasing,
quantify 1) the amount of Monte Carlo variability and, 2) the amount of variability due to
bootstrapping consumption and compound data. By quantifying both quantities, we are able to assess
the influence both sources of variability have on the estimated value of the percentiles.

The diagnostics are displayed in a number of graphs (as many as the number of requested percentiles
see input screen). For each percentile a graph is available which can be used to draw inference about
the optimal number of Monte Carlo iterations, the number of iterations per bootstrap and the number
of bootstrap samples used. Recall that we ran the analysis with 200.000 Monte Carlo iterations and
1000 bootstrap samples with 20.000 iterations each.

To make inference, we divide the total number of MC-iterations in 2 samples of 100.000 iterations
each, 4 samples of 50.000 each, 8 samples of 25.000 each, ..., etc. By doing so, we get n partitions of
samples and in each partition we have 2" samples of size 200.000/2". In each partition, we estimate the
percentiles of the available samples and then the variance of the percentiles. So, in partition n = 1, the
estimate of the variance is based on 2 percentiles derived from samples of size 100.000; in partition »
= 2 the estimate of the variance is based on 4 percentiles derived from samples of size 50.000, ..., etc.
The estimated variances of each partition are plotted against the number of MC-iterations per sample
of each partition. We expect the variance to decrease as function of sample size, so for larger sample
sizes Monte Carlo variability decreases, Therefore, through the observed variances a monotone
decreasing spline function is fitted. For each variance the 90% confidence limits are calculated.

The uncertainty analysis provides an estimate of the variance of the percentiles derived from the 1000
bootstrap samples of sample size 20.000.

Now the fitted spline function is interpolated to estimate the amount of MC-variability at 20.000
iterations and to calculate the contribution of MC-variability to the total bootstrap variability at 20.000
iterations. The fitted spline function can be used to estimate the MC-contribution to the total bootstrap
variability for any arbitrary number of MC-iterations.

In the left plot of Figure 79 diagnostics are displayed for percentage point 50%. We can skip this plot
because the percentile is 0.0000 microgram/kg bw/day. For percentage point 90% in the right plot we
have an estimate of the percentile (0.19603 microgr/kg bw/day) and we are able to make inferences
about the stability of the estimate.
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On the x-axis the number of MC-iterations is displayed and on the y-axis the variance of the MC-
percentile. The estimated variances in each partition are shown as black dots, the fitted monotone
decreasing spline function as a black line. For each variance, the 90% confidence interval is indicated
by a vertical line segment. The red dotted line indicates the interpolated variance of the bootstrap
percentiles as a function of the number of iterations in each bootstrap sample. Note the horizontal
black line with the open red boxes at 20.000 iterations, which is the estimate of the variance of the
bootstrap percentiles. The black dot at 200.000 iterations is the extrapolated value for the MC-
variability using the spline fit. At 20.000 iterations the MC-variability contributes 14.8% to the total

bootstrap variability. For a theoretical bootstrap sample of size 200.000 the MC-contribution would be
0.0%.

CHLORPYRIFOS

diagnostics: percentage 50.00%

black line: fitted variance as a function of size

black dots: observed variance

red dotted line: variance of bootstrap percentiles

Monte Carlo variability contributes 0.0% to the bootstrap variability at 20000 iterations
Monte Carlo variability contributes 0.0% to the bootstrap variability at 200000 ite rations
black segments: 90% confidence limits of variance

MC iterations: 200000; number of bootstraps: 1000 with 20000 MC iterations each

CHLORPYRIFOS

diagnostics: percentage 90.00%

black line: fitted variance as a function of size

black dots: observed variance

red dotted line: variance of bootstrap percentiles

Monte Carlo variability contributes 14.8% to the bootstrap variability at 20000 iterations
Monte Carlo variability contributes 0.0% to the bootstrap variability at 200000 iterations
black segments: 90% confidence limits of variance

MC iterations: 200000; number of bootstraps: 1000 with 20000 M C iterations each
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Figure 79: Diagnostic graphs for percentage 50% and 90%

In Figure 80, the diagnostics for percentage point 95% and 99% are displayed. The contribution of the
MC-variability for p95 and p99 is 15.1% and 24.5%, respectively, indicating that a higher percentage
has a less stable percentile than a lower percentage. The confidence interval at 100.000 MC-iterations

is displayed as an arrow for graphical reasons and indicates that a cut off is used. The real confidence
interval is much higher.

CHLORPYRIFOS
diagnostics: percentage 95.00%
black line: fitted variance as a function of size
black dots: observed variance
red dotted line: variance of bootstrap percentiles
Monte Carlo variability contributes 15.1% to the bootstrap variability at 20000 iterations
Monte Carlo variability contributes 0.0% to the bootstrap variability at 200000 ite rations
black segments: 90% confidence limits of variance
MC iterations: 200000; number of bootstraps: 1000 with 20000 MC iterations each
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CHLORPYRIFOS

diagnostics: percentage 99.00%

black line: fitted variance as a function of size

black dots: observed variance

red dotted line: variance of bootstrap percentiles

Monte Carlo variability contributes 24.5% to the bootstrap variability at 20000 iterations
Monte Carlo variability contributes 0.0% to the bootstrap variability at 200000 ite rations
black segments: 90% confidence limits of variance

MC iterations: 200000; number of bootstraps: 1000 with 20000 MC iterations each
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Figure 80: Diagnostic graphs for percentage 95% and 99%

In Figure 81 the diagnostics for percentage point 99.9% and 99.99% are displayed. The contribution
of the MC-variability for p99.9 and p99.99 is 31.6% and 73.6.5%, respectively, indicating that these
percentiles are unstable. Extrapolation to 200.000 iterations shows that MC-variability contributes
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0.3% to the total bootstrap variability (p99.99 right plot). Note that in Figure 81 not all estimated
variances are displayed. As the number of samples in a partition increases, sample size decreases.
This restricts the number of available percentiles (maximum possible percentage: (100 —100/size)).

CHLORPYRIFOS

diagnostics: percentage 99.90%

black line: fitted variance as a function of size
black dots: observed variance

red dotted line: variance of bootstrap percentiles

Monte Carlo variability contributes 31.6% to the bootstrap variability at 20000 iterations
Monte Carlo variability contributes 0.0% to the bootstrap variability at 200000 ite rations

black segments: 90% confidence limits of variance

MC iterations: 200000; number of bootstraps: 1000 with 20000 MC iterations each
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CHLORPYR
diagnostics: percentage 99.99%
black line: fitted variance as a function of size
black dots: observed variance
red dotted line: variance of bootstrap percentiles
Monte Carlo variability contributes 73.6% to the bootstrap variability at 20000 ite rations
Monte Carlo variability contributes 0.3% to the bootstrap variability at 200000 ite rations
black segments: 90% confidence limits of variance
MC iterations: 200000; number of bootstraps: 1000 with 20000 MC iterations each
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Figure 81: Diagnostic graphs for percentage 99.9% and 99.99%

10.6 Acute risk assessment: betabinomial distribution with age

In this example, output is shown for an acute risk assessment followed by a betabinomial/lognormal
model to estimate age effects for organo phosphate pesticide chlorpyrifos. The estimation of an age
effect for an acute risk assessment is additional to the standard acute risk assessment (see 4.1 ). Table

36 lists the main options:

Input form

risk type

uncertainty analysis
concentration model

number of Monte Carlo iterations
number of computational chunks
unit variability model

random seed

intake model

concentration data
additional

intake model:

age effect for intake frequency
model

function to model effect
testing method

minimum degrees of freedom
maximum degrees of freedom
testing at level

age effect for intake amount
model

function to model effect
testing method

minimum degrees of freedom
maximum degrees of freedom
testing at level

Output

acute

no

empirical

200000

10

no unit variability

0

empirical estimates +
betabinomial/lognormal with age
system defaults
system defaults

yes

spline
backward
0

4

0.01
yes

spline

backward

0

4

0.01

system defaults

Table 36: Input form options: acute risk and betabinomial/lognormal with age
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In Table 37 you find the main characteristics concerning this analysis taken from the logfile. The
intake frequency function is estimated using a betabinomial model and a spline function with 4
degrees of freedom to model age effects. Backward selection is applied meaning that model selection
is started with a spline of the highest degree. The model for the logarithmic transformed intake
amounts, In(intake), is based on REML and a spline function to model age effects.

Logfile
Number of products 12
Acute reference dose (ARTD) 100
Acceptable daily intake (ADI) 10
Number of detects 364
No of consumers 6250
Number of non-detects 2408
Population characteristics,
minimum age 1
maximum age 97
minimum weight 8
maximum weight 150
Sex female, male
Total no of consumption days 12191

EXPOSURE SECTION
Acute Risk Assessment
Betabinomial/Lognormal model
Intake frequency model is based on Beta Binomial model.
Include effect of covariable (age).
Function of covariable : spline
Minimum degrees of freedom 0

Maximum degrees of freedom 1 4

DF selection : backward

Testing at : 0.01
Model for intake amounts is based on REML

Include effect of covariable (age)
Function of covariable : spline
* backward selection of degrees of freedom for spline model with Prob=0.01.

Df Ncycle Phi _2loglik ResDF Chi ChiDf  ChiProb
4 1 0.0003  30284.047 6244 0.60 1 0.439
3 2 0.0003  30284.646 6245 0.54 1 0.464
2 2 0.0003  30285.183 6246 1.20 1 0.273
1 2 0.0003  30286.386 6247 0.01 1 0.906
0 1 0.0003  30286.400 6248 - - -

* Degrees of freedom of spline according to backward deviance testing is O.

Regression analysis

Estimates of parameters

Parameter
Constant

estimate
-0.38910

s.e.
0.00458

Estimate of overdispersion parameter phi = 0.0002787

Intake Amounts: REML mode

1 with age

* Automatic selection of
Estimates of parameters
Parameter

Constant

Age

Spline(age) variance
Between consumer variance

spline model.

estimate
-3.791
-0.009126
0.0002838
0.001003

S.e.
0.009174
0.009633

0.01196

tT(™)
-84.99

with s.e.

™)
-413.24
-0.95

0.08

= 0.0004977
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Within consumer variance 6.602 0.1139 57.99
Variance of In(intake) distibution is: 6.726

Table 37: Information in logfile

As seen in Table 37, no effect for age is found for the intake frequency. A spline with 0 degrees of
freedom is fitted which is equivalent to fitting a constant. The overdispersion parameter phi is equal to
0.0002787, representing between consumer variation. The overdispersion is almost zero meaning that
variation between consumers is negligible small and each consumer has the same probability of
having an intake.

The In(intake) amounts are modelled using REML with a spline function to model the effect of age.
The degree of the spline is automatically selected. A very small age effect is found (-0.009126)
meaning dat the In(intake) of chlorpyrivos decreases with age but the effect is almost negligible. The
variance of the In(intake) distribution is 6.726.

In the left plot of Figure 82 the intake frequency is shown. For 50 age classes, the mean intake
frequencies are displayed (black dots). There is no age effect so a horizontal line is plotted through the
dots. The red dotted line indicates the 95% confidence interval for the fitted age effect. The blue lines
are the 2.5 and 97.5% percentiles of the fitted betabinomial distribution and indicate that the
probability of having an intake is between 0.388 and 0.421 with a 0.95 probability.

The right plot displays the In(intake) distribution. The age effect is very small and the 95% confidence
interval is indicated by a red dotted line. The black dots represent the mean In(intake) per age class.
To get some idea of the variation in the data, the standard deviation of the distribution is also shown
by a vertical line segment with green boxes at the end. It is obvious that the dispersion of the
In(intakes) is large.

CHLORPYR CHLORPYR
Intake frequency : spline with 0 df Ln(intake) : Spline with automatic smoothing parameter 0.000284
black line: fitted mean probabilities as function of age black line: fitted In(intake) as a function of age
black dots: observed probabilities for 50 age classes black dots: observed In(intake) for 50 age classes
red line: 95% confidence bands for estimated age effect red line: 95% confidence bands for estimated age effect
blue line: 2.5% and 97.5% percentiles of fitted Beta distribution green segment: standard deviation of In(intake) distribution
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Figure 82: Age dependent intake frequency and In(intake) distribution

In Figure 83, age dependent percentiles (derived from percentages) and percentages (derived from
percentiles) are shown. The same information is found as tabular output (not shown).
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CHLORPYR

Exposure Limits (Percentiles) for given Percentages

age dependent percentiles of intake

percentiles of the population

lower line: 50.0%; upper line: 100.0%;

percentages: 90.0%, 95.0%, 99.0%, 99.9%, are in between

CHLORPYR

Percentages for given Exposure Limits (Percentiles)
age dependent percentages of intake

percentages of the population

lower line: 0.010; upper line: 0.080;

percentiles: 0.020, 0.040, 0.060, are in between
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Figure 83: Age dependent percentiles and percentages

Find in Table 38 a short summary of an acute risk assessment using age as explanatory variable.

Compound: CHLORPYRIFOS
SHORT TERM EXPOSURE, AGE DEPENDENT PERCENTILES (ACUTE INTAKE)
Function of covariable is spline
Intake frequency model is based on Beta Binomial model
with overdispersion parameter phi = 0.0003

Degrees of freedom of spline according to 4 testing is O
The significance level is backward
Model for consumption (intake) amounts is based on REML
Function of covariable is spline
Variance components (transformed scale)

spline is 0.00

within consumers is 6.60

between consumers is 0.00

Variance In(intake) is 6.73

Table 38: Technical information

10.7 Acute risk assessment: binomial/lognormal with pooling

Example 1
In this example, output is shown for an acute risk assessment for organo phosphate pesticide
chlorpyrifos which can have neurotoxic effects. Table 39 lists the main options:

Input form

risk type acute

uncertainty analysis no

concentration model binomial/lognormal (with pooling)
number of Monte Carlo iterations 200000

number of computational chunks 10

unit variability model no unit variability

random seed 0

only empirical estimates
system defaults
system defaults
system defaults

intake model
concentration data
Additional

Output

Table 39: Input form options: binomial with pooling

For information in the logfile, tables and figures, see 4.1 .
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When specifying the binomial/lognormal distribution with pooling, a parametric form of modelling is
used to simulate data and estimate the intake percentiles. For each product, the positives samples are
taken to estimate the variance and mean on the lognormal scale. If pooling is requested, product
groups need to be formed. Each product is characterised by a product code built hierarchically from 5
numbers. The first 3 columns (productcategory, productgroup and productsubgroup) in combination
with factor Allowed define a product group used in pooling. Factor Allowed indicates whether a
chemical substance is allowed on a product or not

Table 40 illustrates the pooling procedure. There are 8 product groups (ProdGr): 6 groups with a
single product and two groups with 2 and 4 products: group 184000 contains products POTATOES
and CARROT; group 195000 contains LEMON, ORANGE, MANDARIN and GRAPEFRUIT.
Within a productgroup variances and means of products are pooled.

In the example, the original mean (Mean) and sigma (StdDev) are displayed together with the number
of observations (nos). In columns Mu and Sigma, you find the result of pooling: parameters x« and ¢ of
the lognormal distribution; the pooled number of degrees of freedom is in column Df.

In group 195000, standard deviations are 0.63, 0.63, 0.62 and 0.81. A test of homogeneity of
variances is not significant so the pooled standard deviation becomes 0.63. A test of homogeneity of
means is significant so means are not pooled. For POTATOE (and SPINACH) no standard deviation
is estimated because only one positive sample is available. In a second step, standard deviations of
products with less than 10 degrees of freedom are replaced by the overall variance if the test of
homogeneity is not signififcant. For these products, the pooled or original standard deviation is
replaced by the value 0.75. Note, that for PEACH (StdDev = 0.98, n = 6) the standard deviation is
replaced by the overall standard deviation, but for LEMON (Sigma = 0.65, StdDev = 0.63) no
replacement of sigma occurs: the test on homogeneity of variance is not significant due to the high
degrees of freedom of the pooled estimate (Df = 260). AD is the value of the Anderson-Darling test
statistic for Normality and ER indicates if the statistic is significant or not.

Compound: CHLORPYRIFOS

Summary of calculations and input of a PARAMETRIC SIMULATION

>0 : number of detects
nos : total number of measurements, detects and non-detects
Frpos : fraction of detects
Mu : parameter mu of the lognormal distribution
Mean : original means per product before pooling
Sigma : parameter sigma of the lognormal distribution
StdDev : original st.dev. per product before pooling
AD : Anderson-Darling statistic
ER : significance level of AD-statistic:
ns = hypothesis of Normality not rejected
s = hypothesis of Normality rejected
Df : degrees of freedom of pooled sigma
Group : combination of productgroup and allowed
ProdGr : productgroup
Allwd : code if residue is allowed on product (1) or not (0)
Product : productlabels
>0 nos Frpos Mu Mean Sigma StdDev AD ER Df Group ProdGr Allwd Product
6 218 0.03 -1.90 -1.90 1.63 1.63 0.70 s 5 1 171000 1 GREEN BEANS
1 158 0.01 -0.45 -0.45 0.75 - - . 352 2 181000 1 SPINACH
1 119 0.01 -2.81 -2.81 0.75 B B . 352 3 184000 1 POTATOES
2 161 0.01 -2.25 -2.25 0.75 0.40 -0.81 ns 352 3 184000 1 CARROT
3 256 0.01 -1.79 -1.79 0.75 0.75 -0.09 ns 352 4 185000 1 SWEET PEPPER
13 397 0.03 -3.17 -3.17 0.25 0.25 0.75 s 12 5 192000 1 APPLE
6 101 0.06 -2.72 -2.72 0.75 0.99 0.47 ns 352 6 193000 1 PEACH
68 689 0.10 -2.26 -2.26 0.98 0.98 0.90 s 67 7 194000 1 GRAPE
8 63 0.13 -2.70 -2.70 0.65 0.63 0.35 ns 260 8 195000 1 LEMON
139 340 0.41 -2.34 -2.34 0.65 0.63 0.44 ns 260 8 195000 1 ORANGE
84 188 0.45 -2.23 -2.23 0.65 0.62 0.43 ns 260 8 195000 1 MANDARIN TA
33 82 0.40 -2.05 -2.05 0.65 0.81 0.48 ns 260 8 195000 1 GRAPEFRUIT

Table 40: Pooling information
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In Table 41 the percentiles for a parametric model are displayed. Note that the p99.99 changed from
7.1128 to 9.5988 microgr/kg bw/day.

Random sampling is based on seed : 0
Number of iterations (consumers): 200000 out of 6250
CHLORPYRIFOS (microgr/kg bw/day) consumption: 200000 out of 200000

Compound: CHLORPYRIFOS

Percentiles, maximum and average intake

Percentage Percentiles of CHLORPYRIFOS (microgr/kg bw/day)
50.00 0.00000
90.00 0.19622
95.00 0.39365
99.00 1.21115
99.90 3.81640
99.99 9.59882
mean 0.07540
maximum 37.59130

Table 41: Percentiles for the acute intake distribution using the binomial/lognormal with
pooling

Example 2

The variances and means of products are pooled within a product group. Product groups are formed,
based on columns productcategory, productgroup and productsubgroup in combination with factor
Allowed (see example, factor Levels (= product code) and Allowed). Each product is characterised by
a product code built hierarchically from 5 numbers. The first 3 numbers define a product group used
in pooling. In the example, only the first 3 numbers (= 5 digits) are printed. Factor Allowed indicates
whether a chemical compound is allowed on a product or not.

Productgroup 10101 contains products BEAN and SPERZIEBOON. Productgroup 10201 is split into
two subgroups (according to factor Allowed): one group with CHICORY, ENDIVE, CABBAGE
LETTUCE and CURLY LETTUCE and a group with ROODLOF and SPINACH. On the last two
products the use of a chemical compound is not allowed.

In the example, the original mean and sigma are displayed together with the number of observations.
The last three columns show the parameters x# and ¢ of the lognormal distribution together with the
degrees of freedom after pooling. For BEAN and SPERZIEBOON, a pooled u (= -1.67) and o (=
1.31) are used. CHICORY, ENDIVE, CABBAGE LETTUCE and CURLY LETTUCE only sigma is
pooled (¢ = 1.47), the original means are maintained. For ROODLOF (1 observation) the overall
sigma (= 1.36) is used to estimated the variance.
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Original Automatically pooling
Labels Levels Allowed Sigma Mean Nobs Sigma mean Nobs
BEAN 10101 1 1.60 -1.17 8 1.31 -1.67 12
SPERZIEBOON 10101 1 0.75 -2.33 6 1.31 -1.67 12
CHICORY 10201 1 1.38 -2.69 4 1.47 -2.69 382
ROODLOF 10201 O * -2.3 1 1.36 -2.3 729
ENDIVE 10201 1 1.52 -0.91 92 1.47 -0.91 382
CABBAGE LETTUCE 10201 1 1.46 -1.44 286 1.47 -1.44 382
CURLY LETTUCE 10201 1 1.08 -2.14 4 1.47 -2.14 382
SPINACH 10201 O 1.18 -0.57 10 1.36 -0.57 729
BRUSSELS SPROUT 10301 0 1.14 -2.7 2 1.36 -2.7 729
CHINESE CABBAGE 10301 1 1.62 -2.32 21 1.62 -2.32 20
OXHEART/CONICAL 10301 O * -2.3 1 1.36 -2.3 729
ONION (SMALL) 10301 1 0.08 -1.66 2 0.08 -1.66 1
FENNEL 10301 1 0.16 -2.38 3 0.16 -2.38 2
POTATO 10401 O 0.62 0.19 2 0.59 0.19 50
WINTER CARROT 10401 O 0.62 -2.55 14 0.59 -2.55 50
CARROT 10401 O 0.54 -2.71 36 0.59 -2.71 50
RADISH 10401 1 1.52 -2.91 6 1.36 -2.91 729
CELERIAC 10401 0 1.31 -2.07 2 0.59 -2.07 50
GRAPE 10501 O 1.14 -1.06 25 1.14 -1.06 24
STRAWBERRY 10501 1 1.14 -1.57 169 1.14 -1.57 168
RASPBERRY 10501 1 1.73 -1.04 9 1.36 -1.04 729
BLACKBERRY 10501 1 1.15 -0.89 17 1.15 -0.89 16
BLUE BERRY 10501 1 1.83 -1.24 3 1.36 -1.24 729
CURRANT 10501 1 1.87 -0.62 30 1.87 -0.62 29
OTHER FRUIT, NUT 10601 0 * -1.51 1 1.36 -1.51 729

10.8 Chronic risk assessment: discrete/semiparametric (Nusser)

In this example output is shown for a chronic risk assessment for antibioticum lasalocide. The
example concerns the intake via eggs. Table 42 lists the main options:

Input form

risk type chronic

uncertainty analysis no

concentration model empirical

intake model discrete/semiparametric (Nusser)
concentration data system defaults

intake model:

transformation power

spline fit yes

number of iterations to estimate 10

frequency distribution

number of bins for discretisation 20

Output system defaults

Table 42: Input form options: discrete/semiparametric (Nusser)

In Table 43 you find the main characteristics concerning this analysis taken from the logfile.

Logfile
Number of products 1
Acute reference dose (ARTD) *
Acceptable daily intake (ADI) 5
Number of detects 31
Number of non-detects 219
No of consumers 6250
Population characteristics,
minimum age 1
maximum age 97
minimum weight 8
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maximum weight 150

Sex female, male
Total no of consumption days 8630
Replace all non-detects
Multiplicationfactor for LOR 0.5

EXPOSURE SECTION
Chronic Risk Assessment
Discrete/semiparametric (Nusser)
Power transformation
followed by spline transformation
No. of iterations to estimate theta: 10000
No. of binomial proportions (M): 20

Table 43: Information in logfile

The Dutch national Food Consumption Survey is used, which has 2 days for 6250 consumers, so
12500 days in total. Lasalocide measurements in eggs were made in 250 cases, 31 of which had a
positive value. The other 219 non-detects were in this analysis replaced by
1 LOR =10.05=10.025 mg/kg. Find in Table 44 a summary of the database:

Compound: LASALOCIDE

SUMMARY DATABASE

Code : product code

Product : product label

MeanCons : average consumption, all consumers, all days
MeanConsDays : average consumption, consumption days only
NConsDays : number of consumption days in the data set
NDays : total number of days

%PosCons : percentage consumption days

MeanConc : mean concentration all samples (after processing)
MeanPosConc : mean concentration positives (after processing)
NPosConc : number of positive concentrations

NConc : total number of concentration measurements
%PosConc : percentage positive concentrations

FOOD CONSUMPTION DATA

Code Product MeanCons MeanConsDays NConsDays NDays %PosCons
@ @ )
11311.00 WHOLE EGG C 18.00 26.1 8630 12500 69.0

COMPOUND CONCENTRATION DATA

Code Product MeanConc MeanPosConc NPosConc NConc %PosConc
(mg/kg) (mg/kg) )
11311.00 WHOLE EGG C 0.4825 3.8910 31 250 12.4

Table 44: Summary of the database, consumptions and compounds

So on average everyone consumes 18 g of egg per day. This is an average of 26.1 g on 8630
consumption days and 0 g on 12500 - 8630 = 3870 non-consumption days. The average of the 31
positive lasalocide concentrations and 219 times 0.025 mg/kg is 0.4825 mg/kg.

In Table 45 some counting information about the intake calculated from the data is listed.

Compound: LASALOCIDE

LONG TERM EXPOSURE (USUAL INTAKE)

Summary of intake days in the data

proportion and number of consumers with positive intake on:
0 days 0.1346 841
1 days 0.3501 2188
2 days 0.5154 3221
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All Positive

intakes intakes %
Number of observations 12500 8630 69.0
Number of consumers 6250 5409 86.5

Table 45: Summary of intake days

Find in Table 45 some numerical statistics.

Compound: LASALOCIDE
LONG TERM EXPOSURE (USUAL INTAKE)
Summary of all intake data (zeros included)

Number of observations = 12500
Mean = 0.154

Median = 0.031

Minimum = 0.000

Maximum = 6.368

Lower quartile = 0.000

Upper quartile = 0.181

Summary of positive intake data (without zeros)

Number of observations = 8630
Mean = 0.223

Median = 0.095

Minimum = 0.000

Maximum = 6.368

Lower quartile = 0.026

Upper quartile = 0.322

Table 46: Summary statistics of the calculated daily intakes

In the left plot of Figure 84 the empirical distribution of the non-zero daily intake values, calculated as
daily consumption values times average concentration (0.4825 in this case) divided by body weight is
shown. Note the spike near 0 (note that true zero intakes are already excluded here), and the bimodal
character of the rest of the distribution (possibly related to the consumption of one or two whole
eggs?). This distribution is definitely non-normal. In this case a power transformation and a spline
transformation were requested for the non-zero daily intakes. The right plot shows the intake
distribution after a power transformation. The optimal power was 0.169. There is a better symmetry,
but clearly the bi- or even trimodal character of the data can not be removed by simple power or
logarithmic transforms.

LASALOCIDE LASALOCIDE
distribution of positive daily intakes (69.0%0) distribution of In transformed positive daily intakes (69.0%)

0 1 2 3 4 5 6 7 9 8 7 6 5 4 3 2 -1 0 1 2
Daily intake (microgrkg bw/day) Daily intake after In transformation

Figure 84: Untransformed and power transformed intake distribution
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Therefore, subsequently a spline function is fitted to the power transformed values as a function of the
normal Blom scores, see the left plot of Figure 85. The result of a power and spline transformation of
non-zero daily intakes is shown in the right plot.

LASALOCIDE LASALOCIDE
spline transformation of daily intakes distribution of power and spline transformed positive daily intakes (69.0%)
for an adequate transformation to normality, the spline fit (solid line)  should
approximately follow the transformed daily intakes (red dots)
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Figure 85: Transformation plot and power and spline transformed intakes

The fit seems adequate, and indeed this is confirmed by the QQ plot, which shows nicely a straight
line and the Anderson-Darling test on the transformed non-zero daily intakes, see

LASALOCIDE

estimated individual intake frequency

Normal QQ-plot of transformed daily intakes

after an adequate transformation to normality, the fitted values (red dots) should
approximately follow a straight line (solid line)

Anderson-Darling test: statistic = 0.52 (not significant at 85% confidence level)

4
3

2

Predicted normal scores

Normal scores

Figure 86: Normal probability plot

In Table 47 you find details on the spline functions (16 knots) and the Anderson-Darling test result
(0.52), which shows no significant deviation from normality for the transformed values (p-value =
0.25). In the same output section you also find a test whether there is evidence for heterogeneity of
variance between consumers, MA4=3.2620, p-value=0.2523.

Based on the daily intake the variance components are estimated, reported as within consumers is 0.84
and between consumers is 0.16. Therefore in this case the day-to-day variation in lasalocide intake is
much higher than the variation between individual consumers.

Compound: LASALOCIDE

LONG TERM EXPOSURE (USUAL INTAKE)
Transformation to normality

Power transformation : 0.169
Number of knots spline function : 16
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Anderson-Darling test for normality

Test statistic : 0.52
p-value : 0.25
Heterogeneity of variance between consumers
Test statistic (MA4) - 3.2620 (8 for homogeneous variances)
p-value - 0.2523

Variability within and between consumers
Variance components (transformed scale)

within consumers (average) : 0.84
between consumers : 0.16
ratio : 5.26

Intake frequency
Estimated fraction non-consumers (theta 0): 0.0000

Table 47: Technical information on usual intake

The next step is to estimate the intake frequency distribution. The estimated fraction of non-
consumers theta 0 (consumers with zero usual intake) is estimated to be 0.000 in this case. In output
file theta.txt (which you get after downloading results) you find the full results, see Table 48.

p theta
.00000000 (= thetal)
.00020538
.00102690
.00287533
.00636681
.01191210
.01971657
.02854796
.03881701
.04867529
.05812282
.06674882
.07475868
.08256315
.08892997
.09139454
.08934073
.08605463
07968782
.06880263
.05545287

aielelecloloofooNoooNoNoNooNoNoNoNoNo)
a1
o
[eNejojoNojojojoNoooNoNooNoNolooNoNoNe]

Table 48: Estimates of the intake frequency distribution, theta

Graphical results are shown in Figure 87. In this case the estimate is that a consumer never eats an egg
(theta 0 is estimated as 0): the occurrence of non-consumers in the data set (with only 2 days per
consumer) is easily explained as belonging to the classes of people who eat eggs in a low percentage

(e.g. 10 % - 50 %) of days.
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LASALOCIDE

estimated individual intake frequency

proportion of individuals with zero usual intake: 0.0000

warning: only 2 days per individual in the dataset

model fit will be unimodal and may be a too smooth representation of the real distribution

0.1V
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0.04

Proportion of individuals

00 01 02 03 04 05 06 07 08 0.9 1.0
Proportion of days (per individual)

Figure 87: Intake frequency distribution

Finally three cumulative distributions are estimated: for consumption days only, for consumers only,
and for the entire population. In this case, due to the estimate theta 0 = 0.000, the two latter
distributions coincide (there are no non-consumers), see the left plot of Figure 88. The same three
distributions are also shown as probability densities in the right plot.

LASALOCIDE LASALOCIDE

cumulative usual intake distributions probability density functions usual intake
consumption days only: blue dots consumption days only: blue dots
consumers only: red triangles consumers only: red triangles

entire population: green boxes .

LU

0.7

o

=
o
Y

4
&

Probability
-
&

e
o

Probability density function
-
g

S
o

0.1

. 0.0
0.01 0.1 1 0.001 0.01 0.1 1
Usual intake (microgr/kg bw/day) Usual intake (microgr/kg bw/day)

Figure 88: Cumulative usual intake and density functions

Finally, for the entire population the percentiles are calculated and shown (see Figure 89) graphically
as:
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LASALOCIDE Compound: LASALOCIDE

percentiles usual intake distribution

LY LONG TERM EXPOSURE (USUAL INTAKE)

Percentage Entire population

- 50.00 0.12341
. 90.00 0.25536
2 95.00 0.30748
g 99.00 0.42032
50 99.90 0.56824
H 99.99 0.71030

50.00 90.00 95.00 99.00 99.90

in cumulative usual intake dis

Figure 89: Percentiles usual intake distribution: entire population

In Table 49 you find information on selected percentiles for the other types of distributions.

Compound: LASALOCIDE

LONG TERM EXPOSURE (USUAL INTAKE)

Percentage Positives Consumers
only only

50.00 0.18474 0.12341
90.00 0.34882 0.25536
95.00 0.41085 0.30748
99.00 0.53754 0.42032
99.90 0.71030 0.56824
99.99 0.92162 0.71030

Table 49: Technical information on usual intake: percentiles for usual intake distribution,
positives only and consumers only

10.9 Chronic risk assessment: betabinomial/lognormal with age

In this example, output is shown for a chronic risk assessment for antibioticum lasalocide. The
example concerns the intake via eggs. Table 50 lists the main options:

Input form

risk type chronic
uncertainty analysis no
concentration model empirical
intake model betabinomial/lognormal with age
concentration data system defaults
intake model:

age effect for intake frequency yes

model

function to model effect spline

testing method backward
minimum degrees of freedom 0

maximum degrees of freedom 4

testing at level 0.01

age effect for intake amount yes

model

function to model effect spline

testing method backward
minimum degrees of freedom 0

maximum degrees of freedom 4
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testing at level 0.01
output system defaults

Table 50: Input form options: betabinomial/lognormal with age

In Table 51 you find the main characteristics concerning this analysis taken from the logfile. The
intake frequency function is estimated with a betabinomial model using a spline function with 4
degrees of freedom to model age effects and smoothing parameter phi. Backward selection is applied
meaning that model selection is started with a spline of the highest degree. The model for the
logarithmically transformed intake amounts is based on REML using a spline function to model age
effects.

Logfile
Number of products 1
Acute reference dose (ARTD) *
Acceptable daily intake (ADI) 5
Number of detects 31
Number of non-detects 219
No of consumers 6250
Population characteristics,
minimum age 1
maximum age 97
minimum weight 8
maximum weight 150
sex female, male
Total no of consumption days 8630
Replace all non-detects
Multiplicationfactor for LOR 0.5

EXPOSURE SECTION
Chronic Risk Assessment
Betabinomial/Lognormal model
Intake frequency model is based on Beta Binomial model.
Include effect of covariable (age).-

Function of covariable : spline
Minimum degrees of freedom -0
Maximum degrees of freedom 4
DF selection > backward
Testing at : 0.01

Model for intake amounts is based on REML
Include effect of covariable (age)
Function of covariable : spline

Intake Frequency: Betabinomial model with age

* backward selection of degrees of freedom for spline model with Prob=0.01.

Df Ncycle Phi _2loglik ResDF Chi ChiDFf  ChiProb
4 3 0.1776 12175.564 6244 6.31 1 0.012
3 3 0.1781 12181.874 6245 8.54 1 0.003
2 3 0.1787 12190.414 6246 - - -

* Degrees of freedom of spline according to backward deviance testing is 3.

Regression analysis

Estimates of parameters

Parameter estimate s.e. t™»)
Constant 0.6602 0.0420 15.72
age Lin 0.00386 0.00103 3.75

Estimate of overdispersion parameter phi = 0.1781 with s.e. = 0.01298
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Intake Amounts: REML model with age

* Automatic selection of spline model.
Estimates of parameters

Parameter estimate s.e. t(™)
Constant -2.583 0.02144 -120.48
Age -0.2497 0.03105 -8.04
Spline(age) variance 0.2859

Between consumer variance 0.3884 0.05505 7.06
Within consumer variance 2.727 0.06468 42 .17

Table 51: Information in logfile

The Dutch national Food Consumption Survey is used, which has 2 days for 6250 consumers, so
12500 days in total. Lasalocide measurements in eggs were made in 250 cases, 31 of which had a
positive value. The other 219 non-detects were in this analysis replaced by
1LOR =10.05=10.025 mg/kg. Find in Table 52 a summary of the database.

Compound: LASALOCIDE

SUMMARY DATABASE

Code : product code

Product : product label

MeanCons : average consumption, all consumers, all days
MeanConsDays : average consumption, consumption days only
NConsDays : number of consumption days in the data set
NDays : total number of days

%PosCons : percentage consumption days

MeanConc : mean concentration all samples (after processing)
MeanPosConc : mean concentration positives (after processing)
NPosConc : number of positive concentrations

NConc : total number of concentration measurements
%PosConc : percentage positive concentrations

FOOD CONSUMPTION DATA

Code Product MeanCons MeanConsDays NConsDays NDays %PosCons
@ @ )
11311.00 WHOLE EGG C 18.00 26.1 8630 12500 69.0

COMPOUND CONCENTRATION DATA

Code Product MeanConc MeanPosConc NPosConc NConc %PosConc
(mg/kg) (mg/kg) )
11311.00 WHOLE EGG C 0.4825 3.8910 31 250 12.4

Table 52: Summary of the database, consumptions and compounds

So on average everyone consumes 18 g of egg per day. This is an average of 26.1 g on 8630
consumption days and 0 g on 12500 - 8630 = 3870 non-consumption days. The average of the 31
positive lasalocide concentrations and 219 times 0.025 mg/kg is 0.4825 mg/kg.

In Table 53 some counting information about the intake calculated from the data is listed.

Compound: LASALOCIDE
LONG TERM EXPOSURE (USUAL INTAKE)

Summary of intake days in the data

137




proportion and number of consumers with positive intake on:
0 days 0.1346 841
1 days 0.3501 2188
2 days 0.5154 3221

All Positive

intakes intakes %
Number of observations 12500 8630 69.0
Number of consumers 6250 5409 86.5

Table 53: Summary of intake days

Find in Table 54 some numerical statistics.

Compound: LASALOCIDE
LONG TERM EXPOSURE (USUAL INTAKE)

Summary of all intake data (zeros included)

Number of observations = 12500
Mean = 0.154

Median = 0.031

Minimum = 0.000

Maximum = 6.368

Lower quartile = 0.000

Upper quartile = 0.181

Summary of positive intake data (without zeros)

Number of observations = 8630
Mean = 0.223

Median = 0.095

Minimum = 0.000

Maximum = 6.368

Lower quartile = 0.026

Upper quartile = 0.322

Table 54: Summary statistics of the calculated daily intakes

In the left plot of Figure 90 the empirical distribution of the non-zero daily intake values, calculated as
daily consumption values times average concentration (0.4825 in this case) divided by body weight is
shown. Note the spike near 0 (note that true zero intakes are already excluded here), and the bimodal
character of the rest of the distribution (possibly related to the consumption of one or two whole
eggs?). This distribution is definitely non-normal. A logarithmic transformation is requested for the
non-zero daily intakes. The right plot shows the intake distribution after a In transformation.

There is a better symmetry, but clearly the non-normal character of the data is not removed by a
simple logarithmic transformation. Compare this figure also with the power transformed distribution
in the right plot of Figure 84.
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LASALOCIDE LASALOCIDE
distribution of positive daily intakes (69.0%) distribution of In transformed positive daily intakes (69.0%)

0 1 2 3 4 5 6 7 9 3 7 6 5 4 3 2 =il 0 1 2
Daily intake (microgr/kg bw/day) Daily intake after In transformation

Figure 90: Untransformed and In transformed intake distribution

As seen in Table 51, an age effect is found for the intake frequency. A spline with 3 degrees of
freedom is fitted and overdispersion parameter phi is equal to 0.1781. Parameter phi represents
between consumer variation. So each consumer has its own probability of having an intake. This
probability is sampled from a betabinomial distribution with age dependent probabilities and
dispersion factor phi.

In the left plot of Figure 91 the intake frequency is shown. For 50 age classes the mean intake
frequencies are displayed (black dots). The fitted age effect is plotted through the dots as a black line.
As seen, the probability of having an intake increases with age. The red dotted line indicates the 95%
confidence interval for the fitted age effect. Note the wider intervals at the edges of the plot showing
the effect that for very old and young consumers less information is available. The blue lines are the
2.5 and 97.5% percentiles of the fitted betabinomial distribution: the sampled intake probability of
consumers according to the betabinomial are within these lines and may vary from about 0.25 till
almost 1 for young people and about 0.4 till 1 for old people.

The In(intake) amounts are modelled using REML with a spline function to model age effects. The
degree of the spline is automatically selected. A negative estimate for age is found (-0.2497) meaning
dat the In(intake) amount of lasalocide decreases with age. The components of variance for the
between consumers and within consumers variation are 0.3884 and 2.727, respectively.

The right plot of Figure 91 displays the In(intake) distribution. The age effect is plotted as a black line
through the observed mean In(intake) amounts per age class. The 95% confidence interval is indicated
by a red dotted line. The standard deviation of the between and within consumer variation are
indicated by the vertical blue and green line segments.
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LASALOCIDE LASALOCIDE

Intake frequency : spline with 3 df Ln(intake) : Spline with automatic smoothing parameter 0.286
black line: fitted mean probabilities as function of age black line: fitted In(intake) as a function of age

black dots: observed probabilities for 50 age classes black dots: observed In(intake) for 50 age classes

red line: 95% confidence bands for estimated age effect red line: 95% confidence bands for estimated age effect

blue line: 2.5% and 97.5% percentiles of fitted Beta distribution blue segment: between person standard deviation

green segment: between day (within person) standard deviation

M—————— e e

LU

Intake frequency
Ln(intake)

Figure 91: Age dependent intake frequency and In(intake) distribution

In Table 38, a repport of technical information on the analysis is shown.

Compound: LASALOCIDE

LONG TERM EXPOSURE, AGE DEPENDENT PERCENTILES (USUAL INTAKE)
Intake frequency model is based on Non Consumer model.
Model for consumption (intake) amounts is based on REML
Function of covariable is spline
Variance components (transformed scale)

spline is 0.09

within consumers is 0.88

between consumers is 0.12

ratio is 7.02

Table 55: Technical information on usual intake

Figure 92 shows the age dependent percentiles and percentage for the usual intake distribution.

LASALOCIDE LASALOCIDE
Exposure Limits (Percentiles) for given Percentages Percentages for given Exposure Limits (Percentiles)
age dependent percentiles of usual intake age dependent percentages of usual intake
percentiles of the population percentages of the population
lower line: 50.0%; upper line: 99.9%; lower line: 0.020; upper line: 0.100;
percentages: 90.0%, 95.0%, 99.0%, are in between percentiles: 0.040, 0.060, 0.080, are in between
30 o0
50
2.0 40
£ £
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= = 30
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=] =
10 20
10
0.0 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90
Age Age

Figure 92: Age dependent percentiles derived from percentages and percentages derived from
percentiles
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10.10 Chronic risk assessment: betabinomial/lognormal with age and
uncertainty

In this example, output is shown for a chronic risk assessment for antibioticum lasalocide. The
example concerns the intake via eggs. Table 56 lists the main options:

Input form

risk type chronic
uncertainty analysis yes

number of bootstrap samples 1000

random seed 0

concentration model empirical
intake model betabinomial/lognormal with age
concentration data system defaults
intake model:

age effect for intake frequency yes

model

function to model effect spline

testing method backward
minimum degrees of freedom 0

maximum degrees of freedom 4

testing at level 0.01

age effect for intake amount yes

model

function to model effect spline

testing method backward
minimum degrees of freedom 0

maximum degrees of freedom 4

testing at level 0.01

Output system defaults

Table 56: Input form options: betabinomial/lognormal with age and uncertainty

In Table 57 you find the main characteristics concerning this analysis taken from the logfile. The
intake frequency function is estimated with a beta binomial model using a spline function with 4
degrees of freedom to model the age effect and smoothing parameter phi. Backward selection is
applied meaning that model selection is started with a spline of the highest degree. The model for the
intake amounts is based on REML, also using a spline function to model the age effect.

Logfile
Number of products 1
Acute reference dose (ARTD) *
Acceptable daily intake (ADI) 5
Number of detects 31
Number of non-detects 219
No of consumers 6250
Population characteristics,
minimum age 1
maximum age 97
minimum weight 8
maximum weight 150
Sex female, male
Total no of consumption days 8630
Replace all non-detects
Multiplicationfactor for LOR 0.5

EXPOSURE SECTION
Chronic Risk Assessment
Betabinomial/Lognormal model
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Intake frequency model is based on Beta Binomial model.
Include effect of covariable (age).

Function of covariable : spline
Minimum degrees of freedom -0
Maximum degrees of freedom 4
DF selection : backward
Testing at : 0.01

Model for intake amounts is based on REML
Include effect of covariable (age)
Function of covariable : spline

Intake Frequency: Betabinomial model with age

* backward selection of degrees of freedom for spline model with Prob=0.01.

Df Ncycle Phi _2loglik ResDf Chi ChiDf  ChiProb
4 3 0.1776 12175.564 6244 6.31 1 0.012
3 3 0.1781 12181.874 6245 8.54 1 0.003
2 3 0.1787 12190.414 6246 - - -

* Degrees of freedom of spline according to backward deviance testing is 3.

Regression analysis

Estimates of parameters

Parameter estimate s.e. t(™»)
Constant 0.6602 0.0420 15.72
age Lin 0.00386 0.00103 3.75

Estimate of overdispersion parameter phi = 0.1781 with s.e. = 0.01298

Intake Amounts: REML model with age

* Automatic selection of spline model.
Estimates of parameters

Parameter estimate s.e. t(™»)
Constant -2.583 0.02144 -120.48
Age -0.2497 0.03105 -8.04
Spline(age) variance 0.2859

Between consumer variance 0.3884 0.05505 7.06
Within consumer variance 2.727 0.06468 42 .17

Table 57: Information in logfile

Find in Figure 93 and Figure 94 the percentiles and percentages for the 95% and 99% points and 0.04
and 0.06 percentiles of the uncertainty distribution. The blue dotted lines indicate the 2.5% and 97.5%
confidence bands. Information on percentiles and percentages is also available as tabular output (not
shown).

142




LASALOCIDE

uncertainty analysis of percentiles as function of age: 95.00%
black line: percentiles as function of age
blue line: 2.5% and 97.5% confidence bands for percentiles
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LASALOCIDE

uncertainty analysis of percentiles as function of age: 99.00%
black line: percentiles as function of age

blue line: 2.5% and 97.5% confidence bands for percentiles

o

Intake frequency

Figure 93: Age dependent percentiles derived from percentages

LASALOCIDE

uncertainty analysis of percentages as function of age: 0.0400
black line: percentages as function of age
blue line: 2.5% and 97.5% confidence bands for percentages
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LASALOCIDE

uncertainty analysis of percentages as function of age: 0.0600
black line: percentages as function of age

blue line: 2.5% and 97.5% confidence bands for percentages
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Figure 94: Age dependent percentages derived from percentiles
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11 APPENDIX C: Errors in displaying the page and scripting
errors

Occasionally, ASP-scripts crash due to inconsistencies found in tables, as a consequence of wrong
columnnames (see 9.1 ), and combinations of levels during subset selection that lead to empty subsets.

In general, the internet explorer error message is: B The page cannot be displayed
or an ASP debug-scripting-error is displayed.

When this occurs:
e try to reach the MCRA main menu (see Figure 2),
e 20 to manage input/output,
e move your mouse to directory IN or OUT or any other directory and left click,
e click the “Clear history’ button (see Figure 3).

If you cannot reach the MCRA main menu:

close the internet explorer,

login to the website again,

go to manage input/output in the MCRA main menu (see Figure 2),

move your mouse to directory IN or OUT or any other directory and left click,
clear your history first by clicking the ‘Clear history’ button (see Figure 3).
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