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An experiment was conducted to test the Greenhouse Emission Model (GEM) performance. The model 
simulates fate of plant protection products in soilless systems for a various combinations of application 
types, substrate and crop types in Dutch greenhouses. Pymetrozine and imidaclorid are applied with 
the nutrient solution in sweet pepper growing on stone-wool. Measured and simulated concentrations 
were compared for (i) simulations with experimentally derived water flows, (ii) simulated water flows 
based on weather conditions and based on computer settings of the automatic control system and 
(iii) a predefined scenario in GEM3.3.2 for sweet pepper. GEM is able to simulate water flows well, 
when these flows are based on weather conditions and computer settings. Also, the concentrations in 
the mixing tank were simulated well. Simulated concentrations in the used water reservoir were higher 
than measured concentration. The model performance improves when the cultivation compartment is 
simulated with two reservoirs instead of one, with the rationale that no complete mixing occurs in the 
cultivation compartment. The effect of plant uptake and degradation could not be assessed. The 
concentration in the recirculation water in greenhouse is sensitive to the volumes of the various 
reservoirs in the greenhouse system. It is recommended to update the reservoir volumes according to 
the latest insight on commercial greenhouse systems.  
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Samenvatting 

Het Greenhouse Emission Model (GEM) berekent concentraties in grond- en oppervlaktewater als 
gevolg van de toepassing van gewasbeschermingsmiddelen in Nederlandse kassen. Het model wordt 
gebruikt bij de milieurisicobeoordeling van deze middelen. 
 
Er is een validatie-experiment uitgevoerd om de prestatie van het Greenhouse Emission Model (GEM) 
te toetsen voor substraatteelten. GEM simuleert de gewasbeschermingsmiddel (GBM) concentraties in 
de verschillende compartimenten van een kas onder glas voor diverse combinaties van toedienings-
technieken, substraatsystemen en gewassen. De proef is uitgevoerd in paprika op steenwol waarbij 
GBM via de voedingsoplossing werd toegediend in de WUR Glastuinbouw testfaciliteit in Bleiswijk. 
Berekende en gemeten concentraties GBM in het recirculatiewater zijn daarna met elkaar vergeleken. 
Recirculatiewater wordt regelmatig geloosd op nabijgelegen sloten.  
 
Gemeten en gesimuleerde concentraties zijn vergeleken voor drie model-configuraties, i.e. waarbij de 
waterstromen in de kas zijn gegeven, waarbij de waterstromen in de kas zijn gesimuleerd op basis 
van weergegevens en ook volgens de standaard waterstromen zoals op dit moment gesimuleerd met 
GEM.  

Opzet experiment en resultaten 
Aan het begin van het experiment zijn imidacloprid en pymetrozine toegevoegd aan de voedings-
oplossing in de mengbak. Daarna is de voedingsoplossing in het leidingensysteem rondgepompt om de 
concentraties van nutriënten en middelen zo homogeen mogelijk te verdelen over de druppelaars 
alvorens het water toe te dienen aan de planten. Imidacloprid en pymetrozine zijn stoffen die 
regelmatig worden toegepast bij de teelt van paprika en andere kasgewassen. 
 
Tijdens het experiment werd elke 5 minuten de waterstroming en het waterniveau gemeten op drie 
plekken in het systeem. Het vochtgehalte in de steenwol werd elke 3 minuten gemeten. Tevens 
werden klimaatparameters en pomptijden gelogd door de computer met een interval van 5 minuten. 
Watermonsters werden in duplo genomen van het mengreservoir, afvalwaterreservoir en 
schoonwatervoorraad op dag 1 en 2 zes maal per dag genomen en op de resterende dagen een keer 
per dag.  
 
Tijdens daglicht werd regelmatig water gegeven in batches van 30 liter met een gemiddelde van 
600 liter per dag tot een totaal van 4200 liter in 7 dagen. Gedurende de nacht werd geen water 
gegeven. Gemiddeld is 73% van het toegediende water opgenomen door de planten; het volume drain 
water was ca 1100 liter over 7 dagen. Gedurende het experiment werd 3300 liter extern regenwater 
toegevoegd aan het recirculatiewater. 1900 liter aan extern water werd ingenomen en vervolgens 
gebruikt om de ozoninstallatie te spoelen en geloosd op het riool. Het totale water volume in de 
verschillende reservoirs in het systeem nam toe met ca. 300 liter gedurende de proef. 
 
Concentraties gemeten in de mengbak bij aanvang van het experiment waren 13204 en 16002 µg/L 
voor imidacloprid en 8579 en 10741 µg/L voor pymetrozine. Deze concentraties komen overeen met 
de verhouding toegediende massa en volume van de mengbak. De concentraties namen exponentieel 
af naar 1 µg/l na 120 uur voor zowel imidacloprid als pymetrozine. Na 25 uur was er een doorbraak 
van de stoffen vanuit het substraat naar het afvalwaterreservoir. De concentraties in het afvalwater-
reservoir liep op tot 739 µg/l voor imidacloprid (na 141 uur) en tot 535 µg/l voor pymetrozine (na 
77 uur). Daarna bleven de concentraties in het afvalwaterreservoir nagenoeg gelijk.  
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Vergelijking met model simulaties 
GEM simuleert de waterstroming tussen compartimenten in een kas met het onderliggende 
WATERSTROMEN model. Het WATERSTROMEN model simuleert de waterstromen in de kas goed. De 
modelmatig verkregen waterstromen liggen dicht bij de gemeten waarden. 
 
De vergelijking tussen gemeten en gesimuleerde concentraties in het recirculatiewater is gedaan 
a.d.h.v. (i) simulaties met experimenteel afgeleide waterstroming, (ii) gesimuleerde waterstroming op 
basis van weercondities en voorgeprogrammeerde instellingen van het automatische controle systeem 
en (iii) een voor-gedefinieerd scenario in GEM 3.3.2 voor paprika. Vanwege onbedoelde lozingen op 
dag 4 en 5 zijn alleen de gegevens van dag 1 tot 4 voor de model-test gebruikt.  
 
Het model simuleert de concentraties in het mengreservoir op een adequate wijze. Echter, de 
voorspelde concentratie in het afvalwaterreservoir was ca. twee maal zo hoog als de experimenteel 
verkregen concentraties, voor (i) de modelsimulatie gebaseerd op gemeten waterstroming en voor 
(ii) gesimuleerde waterstroming. Nadere analyse liet zien dat de aanname van volledige menging in 
het compartiment waar de planten groeien niet klopt. Het deel van het systeem waar de planten 
groeien inclusief buizen en drainbakken wordt gesimuleerd door GEM als één volledig gemengd 
reservoir. Doordat planten het water (met middel) als eerste opnemen voordat het verder gaat in het 
systeem zou dit de menging in de weg kunnen staan en treedt er verdringing op 
 
De gemeten concentratie in het schoonwaterreservoir lag beneden de detectielimiet door het 
ontsmetten met ozon. Dit reservoir is daarom verder niet meegenomen in deze vergelijking.  
 
Dit validatie experiment leidt tot twee aanbevelingen voor aanpassing. Deze zijn inmiddels 
geïmplementeerd in GEM4.4.3.:  
1. Aanpassing van het teelt-compartiment. Deze dient te worden verdeeld in twee 

deelcompartimenten om zo de combinatie van menging en verdringing beter te simuleren.  
2. Omdat de berekende concentraties zijn zeer gevoelig voor de veronderstelde watervolumes in de 

verschillende compartimenten in het systeem. zijn de watervolumes aangepast aan de laatste 
inzichten op het gebied van watervolumes en reservoir grootten volgens het voorstel dat hiervoor 
is gedaan in dit rapport.  

 
Samenvattend: het GEM model simuleert de concentratie in het mengreservoir op adequate wijze. De 
gesimuleerde concentratie in het afvalwaterreservoir was te hoog. Hiertoe zijn aanbevelingen gedaan 
ter verbetering van het GEM model die inmiddels zijn geimplementeerd. 
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Summary 

The Greenhouse Emission Model (GEM) calculates environmental concentrations for Plant Protection 
Products used in Dutch greenhouse horticulture. The model is used in the environmental risk 
assessment of these products. 
 
A validation experiment was conducted in order to increase the confidence in the GEM model 
outcomes for crops that are grown soilless. The experiment was conducted for a system with 
application of Plant Protection Products (PPPs) via the nutrient solution in a high vegetable crop (sweet 
pepper) growing on stone-wool in one compartment of the WUR Greenhouse Horticulture test facility 
in Bleiswijk. The GEM model simulates PPP fate in soilless systems for various combinations of 
application types, substrate and crop types. Focus of the testing of the model was on the predicted 
concentrations in the recirculation water. This recirculation water is discharged regularly to the nearby 
surface water. Measured and simulated concentrations were compared for three types of model 
configurations with increasing level of uncertainty, i.e. based on measured water flows, based on 
measured weather data and based on standard water flows as currently part of the GEM model.  

Experimental set up and results 
Imidacloprid and pymetrozine, both regularly used in sweet pepper, were applied by adding them both 
to the water in the mixing reservoir. Before application to the crops, the nutrient solution with PPPs 
was circulated under low pressure to obtain equal concentrations at all drippers. Irrigation was done 
by means of drippers and initiated by an automatic system.  
 
Water flow meters were installed at three locations and also water levels were measured in three of 
the six reservoirs in the experimental greenhouse compartment. Water flows and water levels were 
measured every 5 min. Moisture content in the stonewool slabs was measured every 3 min. The 
automatic logging system of the computer logged in-greenhouse climate parameters and pumping 
times every 5 min. Concentrations were measured in duplicate in the mixing reservoir, the used water 
reservoir and the clean water reservoir. On the day of application six samples were taken, the 
frequency of sampling was decreased to one per day after two days. The experiment covered 7 days. 
 
Water was provided to the plants in batches of 30 L during daylight with a total of ca. 4200 L in 
7 days, on average 600L per day. On average 73% of the water was taken up by the plants; the total 
volume of drain water over these 7 days was 1130 L. In total 3300 L of external rain water was taken 
in and added to the recirculation water. 1900 L of external water was taken in to be used as flushing 
water for the ozone installation and discharged to the sewage treatment system. The total of water 
volume in the reservoirs in the greenhouse increased with ca 300 L over the runtime of the 
experiment. 
 
Initial concentrations in the mixing reservoir were 13204 µg/L and 16002 µg/L for imidacloprid and 
8579 µg/L and 10741 µg/L for pymetrozine. These initial concentrations were consistent with the total 
mass applied and the water volume in the mixing tank at application. Concentrations decreased 
exponentially to 1 µg/L after 120 hr for both pymetrozine and imidacloprid. Breakthrough of the 
substances in the used water reservoir was 25 hr after application. Concentrations increased to a 
maximum for imidacloprid of 739 µg/L after 141 h and a maximum for pymetrozine of 535 µg/L after 
77 h in the used water reservoir.  

Comparison model and experiment 
The GEM model simulates the water flows within a greenhouse by running the WATERSTROMEN 
model. This is one of the underlying models in GEM. Comparison to the experimentally derived water 
flows showed that the WATERSTROMEN model is able to simulate the water flows well.  
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Model comparison between measured and simulated concentrations was done for (i) simulations with 
experimentally derived water flows, (ii) simulated water flows based on weather conditions and on 
computer settings of the automatic control system and (iii) a predefined scenario in GEM3.3.2 for 
sweet pepper. To avoid misinterpretation of the data it was decided to focus on day 1 to 4 in the 
model testing (from day 4 onward the erroneous flushing events of the ozone installation occurred).  
 
This model predicts concentrations in the mixing reservoir accurately for simulations with measured 
water flows (i) and for simulations with simulated water flows (ii). The predicted concentration in the 
used water reservoir was around twice as high as in the experiment, for the model simulations based 
on measured water flows (i) and for the model simulations based on simulated water flows (ii).  
 
Further analysis of the difference between measured and predicted concentrations revealed that the 
model assumption of complete mixing in the cultivation compartment is not correct. For the cultivation 
compartment it is likely that complete mixing does not occur, rather it is a combination of mixing and 
displacement. Plant roots will take up the first part of the incoming water flow before the remnant flow 
can move further into the system.  
 
Due to removal of the substances the concentration in the clean water reservoir remained below 
detection level, so for this reservoir comparison to model predictions were not relevant. 
 
This validation experiment lead to two concrete recommendations for improvement, which were 
implemented in GEM 4.4.3:  
1. To better simulate this process in the cultivation reservoir, the reservoir should be divided into two 

sub-reservoirs of equal size assuming that uptake of water by the plants occurs only in the first 
sub-reservoir.  

2. In view of the sensitivity of the model to reservoir sizes, it is recommended to update the 
reservoir sizes used in the model according to the latest insights and developments related to 
commercial greenhouses. Recommended reservoir sizes are given in this report.  

 
Summarizing: the GEM model simulates the concentration in the mixing reservoir accurately. The 
simulated concentration in the used water reservoir were too high. Recommendations for 
improvement were given which were implemented in the model. 
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List of Abbreviations 

GEM Greenhouse Emission Model (software tool) 
LVM Low Volume Misting 
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TSCF Transpiration Stream Concentration Factor 
TOXSWA TOXic Substances in surface Water (model) 
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1 Introduction 

1.1 Background 

Greenhouse horticulture is an important economic sector for the Netherlands. Greenhouse horticulture 
is characterised by intensive production which is largely independent of seasonal weather fluctuations. 
Typical Dutch greenhouses are permanent structures (glasshouses) with additional artificial light 
sources, automatic shading and ventilation as well as heating. Production and harvesting of 
horticultural products is highly automated.  
 
With the aim to update the aquatic exposure assessment for plant protection products (PPP) used in 
greenhouse crops, new exposure scenarios were developed for soil-bound horticulture (Wipfler et al., 
2015a) and for soilless horticulture (Van der Linden et al., 2015) and implemented in the instrument 
‘Greenhouse Emission Model’ (Wipfler et al., 2015b).  
 
Preliminary calculations showed that the new scenarios for PPPs used in soilless cultivations may lead 
to higher calculated concentrations and hence the exclusion of a large number of PPP for use in 
soilless greenhouse horticulture (Wipfler et al., 2015c). Wipfler et al. (2015c) calculated Predicted 
Environmental Concentrations (PECs) for 35 PPP- crop combinations of which 27 had a higher 
90th percentile PEC than the authorisation criterion. Although a number of worst case assumptions 
were made for the calculations, e.g. the authorisation criterion was based on a first tier Regulatory 
Acceptable Concentration, only degradation due to hydrolysis was assumed in the greenhouse 
recirculation water and no sorption to organic matter, substrate or other material was assumed, the 
calculated 90th percentile PECs gave rise to a request to better underpin the models used with 
experimental data, i.e. to test the model results against experimental data.  
 
In 2012 two experiments were conducted with the aim to compare the concentrations calculated by 
the Greenhouse Emission Model with concentrations measured in greenhouses (Van der Maas et al., 
2015). Experiments were conducted in two commercial greenhouses, one bell pepper and one 
Gerbera. The applied active ingredients were pymetrozine and propamocarb and their fate was 
followed in greenhouse water compartments. Also a laboratory experiment was conducted with 
focussing on the processes in the stone wool slabs and the plant (roots). Both experiments provided 
inside in the dynamics of PPP concentrations in soilless cultivation greenhouses, but they were 
considered not suitable for a detailed testing of the GEM model.  
 
A follow up experiment was conducted in 2014, which is partly reported by Van der Maas et al (2015). 
Three substances, imidacloprid, dimetomorph and fluopyram were applied in a standing cucumber 
crop in October 2014. Further reporting and interpretation was done by Van der Linden et al. (2017). 
The results of the experiment and the interpretations pointed to (i) complete mixing in the cultivation 
compartment may not occur, (ii) plant uptake results in an increase of the concentration in the 
cultivation unit. One important additional outcome of the study was a list of recommendations for a 
good experiment to enable the validation of the GEM model. This list has been used to design the 
study which is discussed in this report (See Annex 1 for the list of recommendations and how they 
were implemented in the study design).  

1.2 Soilless cultivation 

Soilless cultivation is common practice in Europe. Especially in the Netherlands crops are grown in 
stonewool slabs or in other growing media. Nearly 80% of the greenhouse production area in the 
Netherlands is used for soilless cultivation. For soilless cultivation reuse of the recirculation water is 
compulsory. It is also compulsory to collect rainwater and condensation water from the roofs of the 
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greenhouses and reuse this water as preferred water source. Discharge of recirculation water occurs 
mainly due to the release of filter rinsing water or due to the discharge of deteriorated water. This 
water may have a high sodium concentration which hinders crop growth. Discharge of deteriorated 
recirculation water is allowed but is limited to a maximum amount of annual nitrogen emission. The 
limits for emission become lower every three year and approach zero-emission in 2027 (Regulation 
considering the environment referred to as: Activiteitenbesluit 2013, 2018).  
 
Soilless cultivated crops are mostly vegetables (e.g. tomato, bell pepper, cucumber, strawberry and 
aubergine), but also floriculture (e.g. rose, gerbera, anthurium and cymbidium) is grown soilless and 
in pot plants. The area associated with these crop groups is given in Figure 1.1. 3200 ha is used for 
vegetables, 1200 ha for potplants and and 2150 ha for floriculture. This crop groups are grown in 
various substrates among which stone wool, coir and perlite or peat and bark or lava. Stone wool and 
coir are mostly used for vegetables whereas potplants are mostly grown in peat-like substrates.  
 
Various application techniques are used to apply the PPPs. PPPs may be applied with the nutrient 
solution via drip irrigation or via downward spraying (low crops) or sideways spraying (high crops). 
Areal treatments such as Low Volume Misting (LVM) or fogging are used as alternatives for both 
downward spraying in low crops and sideways spraying in high crops. Fogging can be used as an 
alternative for downward spraying in low crops but this application method is rarely used. Except for 
potplants grown on tables, which receive water via an ebb/flow irrigation or overhead irrigation 
(Phaleanopsis), all plants receive water via drip irrigation.  
 
 

 

Figure 1.1 Overview of possible combinations of crops, substrate systems and application methods 
in Dutch soilless cultivation. DS-LC = downward spraying in low crops SS-HC = sideways spraying in 
high crops, DI = application in drip irrigation. The numbers in the crops and substrate parts indicate 
the surface area in ha and the percentages in the application-methods part indicate the relative 
importance of this application method for this crop-substrate combination. Source: Vermeulen (2013). 
The numbers next to the crops and the growth systems indicate the associated area in ha. 
 

1.3 Summary of the soilless cultivation scenarios in GEM 

The Greenhouse Emission Model (GEM) calculates the Predicted Environmental Concentrations for 
soilless cultivation. The soilless cultivation scenario applied enables the calculation of PPP 
concentrations in the nearby (edge-of-field) ditch due discharge of deteriorated water or filter rinsing 
water from a greenhouse. This discharged water may contain PPPs after treatment against a pest or a 
decease. The GEM model calculates the concentration in the receiving ditch due to PPPs used in all 
crops grown soilless in the Netherlands as well as all cultivation systems and application techniques. 
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When starting the simulation of one assessment in GEM, three models are run in consecutive order. 
First the WATERSTROMEN model is run (Voogt et al., 2012) to calculate the incoming (irrigation) 
water volumes based on the crop demand and greenhouse atmospheric conditions, the water 
discharge of deteriorated water and filter rinsing water. The volumes and frequency of discharged 
water differs per crop and the maximum amount of annual nitrogen emission allowed. The Substance 
Emission Model uses the water fluxes from the WATERSTROMEN model. The model calculates the 
concentration in the greenhouse recirculation water, including the discharged water after PPP 
application. Application may be via the drip irrigation or via spraying, fogging or LVM.  
 
The volumes of discharged water and the PPP mass are input to the TOXSWA model that calculates 
the PPP fate in the receiving ditch. Further elaboration on the parameterisation of the different 
scenarios can be found in Van der Linden et al. (2015).  

1.4 Problem definition 

The working group was asked by the Ministry of Agriculture, Nature and Food Quality and the Ministry 
of Infrastructure and the Water Management to test the GEM model against experimental data. This 
was interpreted by the working Group as a request to assess the Predicted Environmental 
Concentration (PEC) calculated by GEM against concentration measured under realistic conditions. The 
GEM model enables the calculation of PECs for all possible crop-cultivation and pesticide application 
options (see Figure 1.1). One experiment can only test the crop-substrate-application combinations 
that is selected as being part of the experimental set up. A preselection was done by the working 
group based in acreage and pesticide use and discussed with the ministries (Figure 1.2).  
 
 

 

Figure 1.2 Preselected combinations of crop, system and application method.  
 
 
The working group selected five possible combinations that could be addressed in the validation study. 
The preselected combinations are marked red in Figure 1.2. In consultation with main stakeholders 
the ministries decided to select the high vegetables-stone wool – drip irrigation combination.  
 
As the TOXSWA model that calculates the concentration in the ditch is a well-established model, for 
which model tests have been done in the past (see Section 9.1.3 in Ter Horst et al., 2016), the focus 
of the model testing was on the predicted concentration in the recirculation water, which is discharged 
to the ditch.  
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1.5 Reading guidance  

In Chapter 2 the experimental design is presented including the lay-out and dimensions, the 
application method and selection of substances and the data collection. Also the model testing 
methodology is discussed. Chapter 3 discussed the results of the experiment based on the testing 
steps as presented in Chapter 2. In Chapter 4 conclusions and recommendations are given.  
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2 Materials and methods 

2.1 Set-up of the experiment 

2.1.1 Lay-out and dimensions of the system 

The experimental study was executed in one compartment of the WUR experimental site in Bleiswijk, 
which is referred to as no. 6.12. The greenhouse has climate control based on incoming radiation and 
other weather parameters. The Bleiswijk experimental compartment covers 120 m2 net and 144 m2 
gross in which sweet pepper, cultivar Marinello (RZ) plants of seven weeks were planted. Planting date 
was January 7th, 2016. The last harvesting date was early November 2016. The plants had been raised 
before planting in Grodan Plantop Delta blocks, 10x10x7.5 cm. The sowing date of the plants was 
November 17th, 2015. The experiment was executed in the period from May 31 to June 7, 2016. At the 
start of the experiment the sweet pepper crop was considered mature (Fig. 2.1). Pest and diseases 
are firstly tackled by the input of biological predators. If not available or sufficient the plants were 
chemically treated with various types of pesticides before the start of the experiment. 
 
Plants were grown in stone wool slabs of the brand and type Grodan Grotop Expert. The slabs had a 
size of 100x12x7.5 cm and were planted in rows of 2.5 plants per m2. In total 300 plants were grown 
in the compartment in 12 rows with 25 plants each and 8.3 slabs per row. Figure 2.1 depicts the 
configuration of the slabs in the compartment.  
 
 

  

Figure 2.1  (a) The mature sweet pepper plants at the start of the experiment. (b) the configuration 
of the slabs and dripping system in the compartment 6.12. 
 
 
The plants received irrigation water via drip irrigation. The drip irrigation in the greenhouse 
compartment 6.12 consists of 16 mm lines with pressure compensated nozzles with a capacity of 
3L/h. The settings of the system were such that 100 ml per 200 J/cm2 radiation was realised. Distance 
between drippers is 25 cm. Rainwater added with a minor reverse osmosis water and with a total 
sodium concentration of less than 0.1 mmol/L was used as irrigation water. The water from the drains 
is collected and reused via the recirculation system. 
 
Dosing of fertilizers took place via a dosing unit with a traditional A and B dosing system (each 40 L 
stock, 100 times concentrated) and an acid container that pumped fertilizers into a mixing reservoir. 
The dosing unit is shown in Figure 2.2a including the pumps that pump the fertilizers to the mixing 
reservoir, the dosing containers A and B in Figure 2.2b. The settings of the dosing system were such 
that an EC of was 2.5 was realised and a pH of 6.2.  
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Figure 2.2  (a) on the left side: the dosing unit, in blue the mixing reservoir with pumps to dose the 
A and B fertilizers and on the right side the filtration unit, (b) Containers A and B with 100x 
concentrated fertilizer and acid container (in black) to feed the dosing unit on foreground. Right the 
used drain reservoir with nutrient solution to be disinfected and in background the blue mixing 
reservoir. 
 
 
Floaters determined whether renewed filling of the mixing reservoir was required. If after an irrigation 
event the water level was considered too low, filling with fresh water started followed by adding 
nutrient solution from A and B reservoir up to the set-point EC.  
 
After each renewed filling of the mixing reservoir the nutrient solution was circulated via the driplines 
and the mixing reservoir under low pressure (below 0.8 bar) in order to achieve a constant mixture of 
nutrient solution over the dripline system. During low pressure circulation the drippers were closed. 
Circulation under low pressure took between 1 en 5 minutes. The advantage of using a drip irrigation 
system with low pressure circulation is that the plants receive water with the same mixture of 
nutrients and with the same concentration of pesticides. Note, that this system is currently not 
commonly applied in soilless cultivation. 
 
Condensation water is collected for all greenhouse compartments and returned to general rainwater 
basin. 
 
Drainwater was collected via coated metal troughs into a pvc pipe which discharges by gravity into the 
drain water reservoir. From the drain water reservoir, the water was pumped via a valve system to 
the filtration unit. In the filtration unit the water is filtrated through a 3 µm fibre filter. Rinsing water 
of the filter is discharged to the stock in batches of ca. 28 L. In the stock the solid particles precipitate. 
The total volume of the filtration unit is 193 L. In Figure 2.2a the filtration unit including the stock is 
shown on the right. 
 
From the filtration unit the water was pumped to the used water reservoir in batches of ca. 35 L.  
 
Disinfection of the water took place with ozone treatment. The ozone unit is from Agrozone and has a 
capacity of 2.1 mg/L per minute. The installation works as a batch reactor in which the water is 
treated to a redox value of 800 mV. The batch volume is ca. 38 L and the minimum treatment time is 
2.5 minutes. After treatment the water is stored in a clean water reservoir to be reused and mixed 
with fresh rainwater. The first ozone treatment was a hand started treatment (1st of June). The ozone 
installation works for two compartments, between switching from one to the other the installation is 
flushed, the flushing water is sent to the sewage system.  
 
During the experiment there was no discharge of recirculation water. 
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Figure 2.3  (a) Ozone installation from Agrozone used for disinfection of the recirculation water. The 
installation has a capacity of 2.1 mg/L per minute (b) Clean water and used water reservoir. Both 
have a maximum volume of 940 L. 
 
 
An overview of the lay out of the water flows in the experimental compartment 6.12 is provided in 
Figure 2.4. 
 
 

 

Figure 2.4 Schematisation of the water flows in experimental compartment 6.12. Rainwater mixed 
with osmosis water is added to the mixing reservoir, in which it is mixed with nutrient solution by a 
fertilizer system using the reservoirs A and B. From the mixing reservoir it is pumped to the dripping 
system via drip lines to the plants. The drain water is collected via troughs in the drain system to the 
drain water reservoir and added to the recirculation system. Before reuse the water is filtrated and 
disinfected. 
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The dimensions of the pipes and reservoirs in the system are summarized in Table 2.1 and Table 2.2 
respectively. 
 
 
Table 2.1 Dimensions of the pipes in the experimental compartment. 

Item Dimensions Volume 

Mixing reservoir to drip lines Length: 15m 

Internal diameter: 28mm 

9.2L 

Drip lines Length: 13.2m 

Internal diameter: 16mm 

31.8L 

Main pipe Length: 15m 

Internal diameter:28mm 

Externa diameter:32mm 

9.2L 

Flexible hose from drain reservoir to 

filtration unit 

Length: 15m 

Internal diameter:19mm 

5.6L 

Pipe form filter to used water reservoir Length: 6m 

Internal diameter:19mm 

2.3L 

Used drain reservoir to ozone unit Length: 5m 

Internal diameter:19mm 

1.9L 

Ozone unit to clean water reservoir Length: 2m 

Internal diameter:19mm 

0.75L 

Clean water reservoir to mixing 

reservoir 

Length: 2m 

Internal diameter:19mm 

0.75L 

 
 
Table 2.2  Maximum volumes of the reservoirs in the experimental compartment. 

Reservoir (max) Volume 

Mixing water reservoir 314L (48x80x82 cm)1 

Dosing system (A and B) 40L each 

Drain water reservoir 14L 

Filtration unit 193L 

Used water reservoir 940L 

Ozone unit  38L intake 

Clean water reservoir 940L 
 

2.1.2 Application of the active ingredients  

The active ingredients Pymetrozine and Imidacloprid were added both to the solution in the mixing 
reservoir according to the dose recommended on the labels of the corresponding products, i.e. Plenum 
and Admire, respectively. Both active ingredients were applied on 30 May 2016 just before 10.00 h to 
the mixing reservoir. These substances were selected based on their frequency of use and whether 
they were allowed to be used in sweet pepper crops (Kruijne et al., 2011). The most important active 
ingredients (in terms of the total amounts applied) used in greenhouses and applied via drip irrigation 
are: Etridiazole, Fosetyl, Imidacloprid, Propamocarb, Propamocarb-hydrochloride and Pymetrozine.  
 
Pymetrozine (Plenum) was added as water dispersible granulate (suspended particles). These 
granulates contain 50% Pymetrozine. The applied dose was according to the label, i.e. 15 g granulate 
per 1000 plants. The applied mass of Pymetrozine to the 300 plants in the compartment was 2.25 g. 
Pymetrozine has a molar mass of 217.23 g/mol. The solubility is 320 mg/L at 25 °C and pH 5. The 
vapour pressure is < 4.2 x 10–6 Pa at 25 °C (EFSA, 2014). The substance is degradable via photolysis. 
In a buffer solution the degradation rate is <1day (continuous irradiation corresponding to 1day of 
UK/US summer sunlight). The degradation rate due to hydrolysis is 5-12 d at 25 °C (EFSA, 2014). The 
octanol-water coefficient of Pymetrozine is 0.646 which corresponds to a TSCF factor of 0.16 (Lewis 
et al. 2016). 
 

 
1  The level of the water in the mixing reservoir varies between 15 and 82 cm. 
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Imidacloprid (Admire) was also added as water dispersible granulate. These granulates contain 70% 
Imidacloprid. The applied dose was according to the label (against whitefly), i.e. 14 g granulate per 
1000 plants. The applied mass of Imidacloprid to the 300 plants was 2.94 g. Imidacloprid has a molar 
mass of 255.7 g/mol. The solubility is 610 mg/L and the vapour pressure is 4.0 X 10-07 mPa both 
measured at 20 °C (Lewis et al., 2016). Imidacloprid has a photolytic half-life in water of 0.2 d. The 
substance is hydrologically stable at a pH of 5-7. The octanol-water coefficient of Imidacloprid is 3.71 
which corresponds to a TSCF factor of 0.47 (Lewis et al., 2016).  
 
Before application the initial volumes in the reservoirs were measured. The day before application, 
i.e. 29 May 2016, the automatic irrigation was stopped at 16.00 h in order to let the plant to take up 
water from the slabs and to have a better retention of water and PPPs at the moment of application 
(see overview in Annex 2). These are standard practices in Dutch greenhouses. 
 
At 10.00 PM an extra-long irrigation is given by manual control of 5 min. In total 75 L is given to the 
300 plants in the compartment. The remainder of the active ingredients stays in mixing container and 
was applied in next irrigations. Hereafter, irrigations of 2 minutes (30 L) were given at hand start. 
After Day 1 irrigation schedule was set on ‘automatic’ again. For the automatic irrigation system the 
timing of the irrigation is based on incoming radiation. 
 
 

   

Figure 2.5 Substances to be added (left), sampling of water in the mixing reservoir and 
administrative procedures (right). 
 

2.1.3 Data collection and frequency 

During the experiment data were collected as listed below. The data is also provided in Annex 2 and 3. 
The location where the measurements were taken is depicted in Figure 2.5. 
 
• The water level was measured manually in the mixing reservoir, the used water reservoir and the 

clean water reservoir every two hours on first two days and once a day up to June 7. 
• The water pressure counters were used to measure the water level in the mixing reservoir, the used 

water reservoir and the clean water reservoir. Pressure counters are equipped with a data-logger 
which was read out after the experiment ended. 

• Water flow meters measured cumulative water flows every five minutes. Three water flow meters 
were installed, i.e. one flow meter measured the cumulative irrigation water volumes to the plants, 
one flow meters measured the cumulative water volumes from the drain water reservoir to the filter 
reservoir and one flow meter measured the cumulative water volumes flowing from the external 
water reservoir to the mixing reservoir (see also Figure 2.4 for location of the flow meters). 

• Grosens sensors measured the volumic water content in the slabs as percentage of the pore volume 
with a frequency of 3 minutes. 

• Climate parameters were collected from the Lets Grow database, these parameters include water 
supply, drain water flow, external rainwater intake, radiation outside (W/m2), realized temperature 
and relative humidity in greenhouse compartment Registration occurred automatically per 
5 minutes. Experimental data is published on-line (Van Os et al. 2020). 

• Samples for analysis of pesticide concentration were taken in duplo from the mixing reservoir, the 
used water reservoir and the clean water reservoir every two hours during working hours on first 
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two days. After two days samples were only taken once a day up to June 7 (Annex 2). Samples were 
brought to the Wageningen Environmental Research lab for analysis and stored at 1oC before 
analysis (Measured concentrations are listed in Annex 3). 

 
 

 

Figure 2.6  Schematisation of the measurement locations in the experimental greenhouse 
compartment. A water flow meter was installed at three locations, and the pressure sensors were also 
installed at three locations. The reservoirs with a red star were also sampled and the samples were 
analysed on pesticide concentration. The circuit mixing system takes care for circulating the irrigation 
water (with PPPs) over the dripping system such that all drippers give the same concentration of PPP 
to the plants at the same time. 
 

2.1.4 Representativeness of the experimental site as compared to commercial 
greenhouses 

The concentration in the recirculation water of a greenhouse is very much determined by volume of 
water in the system. Because, the experimental site may have other relative reservoir sizes than 
regular greenhouses we assessed the relative volume of water in the recirculation system 
compartments as compared to the reservoir sizes commercial greenhouses. Sizes are given per plant. 
 
The sizes of the reservoirs in the scenarios of the greenhouse emission model (GEM) were chosen 
such that they reflect current practices and are based on expert knowledge. It is also of interest 
whether the volumes used in the model comply with current greenhouse practices. 
 
In Table 2.3 an overview is given of the volumes as used in the experiment, the GEM model 
version 3.3.2, and based on a (limited anecdotal) survey among growers. These interviews were done 
to support the development of the WATERSTROMEN model. The table shows that commercial 
greenhouses have a wide range of reservoir sizes. All reservoir volumes of the experimental site are 
within the range of the commercial greenhouses, however the mixing reservoir and the used water 
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reservoir are relatively small. The mixing reservoir generally consists of a daily storage part and a 
mixing part and is generally larger than assumed in the GEM3.3.2 scenarios. Also the clean water 
reservoir is currently larger to enable the storage of e.g. osmosis water. The GEM 3.3.2 model has a 
relatively large cultivation reservoir volume and the mixing reservoir is relatively small. 
 
 
Table 2.3  Volumes of reservoirs in the experimental compartment, the GEM model and commercial 
greenhouses, scaled to m3/ha. 

Volumes (m3) per ha of greenhouse area 

 Experimental 

compartment2 

GEM model,  

version 3.3.2 

Commercial 

greenhouse minimum 

Commercial 

greenhouse maximum 

Cultivation  75 125 79 108 

Used water reservoir 15 50 20 70 

Clean water reservoir 48 50 20 70 

Mixing reservoir/incl. 

day storage 

16 10 2 143 

Total 223 235 121 391 

 
 
The experimental compartment has a drip irrigation system with low pressure circulation. The 
advantage of using such as system is that the plants receive water with the same mixture of nutrients 
and with the same concentration of pesticides. However, the system is currently not commonly applied 
in soilless cultivation. 

2.2 Model testing  

2.2.1 Model testing approach 

The model testing is done in four steps:  
1. Assess the consistency of the water flow volumes measured in the experiment and translate the 

measured data to varying water flows and reservoir volumes, with a frequency of 5 min. The 
result of step (i) is a time-series of water flows between reservoir reservoirs for which the 
consistency is checked.  

2. Assess the simulated PPP fate processes. The calculated PPP concentrations were tested against 
measured concentrations at three locations in the system, i.e. the mixing reservoir, the used 
water reservoir and the clean water reservoir. The model is adapted such that the reservoir sizes 
and water volumes in the reservoirs are the same as in the experiment. Model adaptions are 
explained in Section 2.2.2. The outcome of this step is a comparison of simulated and 
experimentally obtained concentrations in three reservoirs.  

3. Assess the water flows simulated by the WATERSTROMEN model and the simulated concentrations 
based on the outcome of the WATERSTROMEN model. During the experiment no discharge of 
recirculation water occurred, neither of filter rinsing water nor of discharge of deteriorated water. 
The WATERSTROMEN model calculates the plant water need based on the weather conditions and 
atmospheric conditions in the greenhouse. Based on this calculated water need the irrigation water 
flow is calculated as well as the water surplus (drain water). The outcome of this step is a 
comparison of simulated and experimentally obtained water flows and concentrations. 

4. A predefined combination WATERSTROMEN model and the SEM, as used in the regulatory 
scenario, is used to calculate the concentrations in the mixing reservoir, the used water reservoir 
and the clean water reservoir. This scenario is part of the current instrument GEM3.3.2. The 
outcome of this step is again a comparison of simulated and experimentally obtained 
concentrations in order to assess the model performance of an uncalibrated model chain.  

 

 
2  We used the initial volumes at the start of the experiment. 
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2.2.2 Model adaptions and pesticide properties to support step (ii) of the model 
testing steps  

The Substance Emission Model is basically a model that simulates a series of connected reservoirs. 
Each reservoir has a known volume of water and the water is assumed to be perfectly mixed. The 
recirculation water flows between the reservoirs. External water is added to some of the reservoirs 
(e.g. the mixing reservoir) and other reservoirs discharge water on a regular basis to a sewage system 
or to surface water (e.g. the filter cleaning unit). One reservoir, referred to as the cultivation 
reservoir, simulates plant uptake. 
 
In case of drip irrigation the PPP may be added via drip irrigation. For each of the reservoirs the model 
calculates or reads the water flow per time-step and the water volumes in the reservoir. Next, the 
concentration in each reservoir is simulated based on in- an outflowing pesticide mass, assuming 
instant mixing, first order degradation and plant uptake. The half-life in a reservoir may be reservoir-
specific. For example, the half-life in the disinfection unit may be shorter due to increased degradation 
under UV light conditions. Degradation is temperature-dependent, which is simulated using the 
Arrhenius equation. Uptake of pesticides by the crop along with the water is simulated with the 
Transpiration Stream Concentration Factor (TSCF) which is calculated using Briggs’ formula (Briggs 
et al. 1982).We refer for further detail on the Substance Emission Model to Van der Linden et al. 
(2015). Sorption to either plastic pipes, the slabs or the plant roots is not part of the SEM model.  
 
In GEM the SEM model is parameterised such that the volumes of the reservoirs and the 
interconnection between the reservoirs are considered representative for Dutch greenhouses with 
substrate cultivation in the Netherlands. For the model testing the configuration of the reservoirs was 
adapted in line with the experimental situation, whereby the drain water reservoir was taken together 
with the cultivation reservoir to be one reservoir. The configuration and reservoir sizes in the model is 
further explained in Section 3.3. 
 
Substance properties relevant for the calculation are listed in Table 2.4. In absence of information on 
half-lives in the recirculation water the half-lives the half-life due to hydrolysis were used. For 
pymetrozine, which has a DT50 due to hydrolysis between 5-12 d at pH=5 (EFSA, 2014) the averaged 
value of 5 and 12 was used, i.e. 8.5 d. There is some uncertainty in the estimation of this DT50 
because at pH=7 no hydrolysis occurs and the pH of the water of the mixing reservoir is controlled to 
be 6.2. Other properties were taken from EFSA (2014) and Lewis (2016) for imidacloprid and 
pymetrozine, respectively. The Transpiration Stream Concentration Factors corresponding to Briggs 
are 0.43 and 0.16 for Imidacloprid and Pymetrozine, respectively. 
 
 
Table 2.4  Substance properties relevant for the simulation. 

Substance property Imidacloprid Pymetrozine 

Molar Mass (g/mol) 255.7 217.3 

Half-life in recirculation water at 25 C (d) 1000 8.5 

Molar enthalpy for half-life (kJ.mol-1) 65.4  65.4 

Octanol- water coefficient (-) 3.71 0.646 
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3 Results and discussion 

3.1 Overview of measured data and initial checks 

3.1.1 Water flow meters  

Water flows were measured every five minutes by three flow meters, one measuring the irrigation 
water flow, one measuring the incoming external water and one the flow from the drain water 
reservoir to the filtration unit. In Figure 3.1 the measured cumulative volumes are given for these 
three flow meters. The cumulative drain water volumes correspond to 27 percent of the total water 
given to the plants over the course of the experiment, this is consistent with the settings of the 
automatic control system. The external input of water including the ozone flushing is larger than the 
irrigation water minus the drain water.  
 
 

 

Figure 3.1  Cumulative water volumes measured by the water flow meters every five minutes. 
Irrigation water refers to the measured cumulative volume by the flow meter between the mixing 
reservoir and the cultivation compartment, external water and ozone flushing refers to the flow meter 
between the external water reservoir and the mixing reservoir, drainage water refers to the flow 
meter between the drain reservoir and the filter reservoir. 
 
 
Figure 3.2 zooms in on the first two days of the experiment (31 May - 1 June 2016). The irrigation 
events during daylight are clearly visible as incremental increases. In the night, the cumulative 
irrigation line remains horizontal, confirming that no water is given to the plants. The drain water 
volume increments follow the irrigation events with a short delay of ca 10-20 min. Hence, after a 
water supply, the water volume takes approximately 10-20 min to move via the slabs and the drain 
water reservoir to the flow meter.  
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Figure 3.2  Cumulative volumes of irrigation and drain water over the first two days of the 
experiment. 
 

3.1.2 Logging data automatic system 

Total displaced volumes were also measured by the automatic logging and control system that 
controls the greenhouse climate and irrigation schemes. This automatic control system calculates plant 
water need based on temperature, incoming radiation and air humidity and activates the pump to 
transport water to the drippers. The system is set up such that each time the pump is activated the 
pump runs for 2 minutes with a total discharge of 15 L/min. The time logger of the pump activation 
can be used to quantify the total volume of water that is pumped to the drippers.  
 
In Figure 3.3 both the cumulative volumes measured by the water meter and the volumes according 
to the time logger are plotted. Measured cumulative volumes are very similar. The automatic logging 
system shows a slightly higher cumulative volume flow up to ca 90 L after seven days on June 7, 2016 
(2% of the total displaced volume).  
 
The first irrigation event was started manually. The corresponding total volume provided to the plants 
was 76 L. After the manual start, the automatic system was activated. Water volumes measured by 
the logger were around 28-38 L per event, with an average of 31 L. Based on expert opinion the 
logging data were considered as more accurate as compared to the water flow meter and further used 
for the model testing.  
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Figure 3.3  Cumulative volumes of irrigation water given to the plants measured by the automatic 
logger and the water flow meter. 
 
 
The regular flushing events of the ozone installation were also logged (pers. comm. Van Ruijven). 
Flushing was done with collected rainwater in order to clean the ozone installation. The flushing water 
discharges to the central sewage system. Cumulative flushing volumes are provided in Figure 3.4. 
Flushing occurred regularly and the frequency was ca. 3-4 times per day depending on the quality of 
the water (e.g. clarity). The volume used for flushing was ca 38 m3 per flush. These flushes were 
measured by the flow meters, but the water displacement was independent of the water flow of the 
recirculation water and the water volumes did not influence the PPP concentrations.  
 
On 4 and 5 June 2016, two large events were measured. After inquiry it was found that these were 
unintended flushing events caused by a defect in the automatic control system. For these events the 
water was not discharged to the sewage system but was in fact added to the recirculation water just 
after the ozone installation. The accidental erroneous flushes took place at midnight. On the 4th of 
June between 2:30 – 3:20 hr, 645 L was added to the recirculation water and on the 5th of June 275 L 
was added (between 2:40 -3:05 hr).  
 
In Figure 3.4 the cumulative volumes measured by the external water flow meter are shown. This flow 
meter measures the cumulative displaced volume from the external water as well as the flushing 
events and the two accidental additions of external water. Both the flushing events and the accidental 
additions are shown in the figure as separate lines. Comparison of Figure 3.1 and 3.4 shows that the 
total intake of external water, when excluding the flush water, is lower than the total volume of 
irrigation water minus the drain water. This means that the total volume of water in the system 
decreases over the runtime of the experiment. 
 
 

 

Figure 3.4  Cumulative volumes of water measured by the flow meter which includes the regular 
flushes of the ozone installation as well as two accidental flushes. The flush water was discharged to 
the sewage system and had not contact with the recirculation water. The two accidental flushes were 
additions to the recirculation water via the ozone installation. 
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3.1.3 Moisture dynamics in the slabs 

Moisture content in the slabs 
The moisture content in the slabs was measured by Grosens sensors. These sensors measure the 
volumic water content in the slabs as percentage of the pore volume. After each irrigation event the 
moisture content in the slabs increases. Then, due to water taken up by the plant roots, the moisture 
content decreases gradually. Water is supplied only during daytime, resulting in a daily cycle of the 
moisture content with increasing values during the day and decreasing values during the night. In 
Figure 3.5 the measured volumic water content as percentage of the pore volume is given. The zigzag 
in the line is due to the individual water supplies of ca. 31 L during daylight. Both sensors show the 
same dynamics, however, the absolute moisture content differs ca 14%. Sensor 2 reacts delayed as 
compared to sensor 1 to the irrigation events. The delay time is 3-6 min. The difference between the 
sensors may be attributed to the internal variations of the slabs (weight, fibre density). Sensors are 
constructed in such a way that placement in the slab in depth is the same and the location is also the 
same (15 cm after the first plant of the slab). After day 5 of the experiment the dynamics of the soil 
moisture increases. This is most likely due to the higher day temperatures resulting in higher water 
need and evapotranspiration; the maximum greenhouse temperature increase after the 3rd of June 
from ca. 26 ∘C to 29 ∘C. 
 
 

 

Figure 3.5 Water content as percentage of pore volume measured by the two sensors located in the 
slabs. 
 

Dynamics water volume in the slabs 
The plants grow in 100 slabs divided over 12 rows. One slab has a size of 12 x 7.5 x 100 cm. Each 
slab has three plants that grow in a ‘block’ of 10 x 10 x 10 cm placed on top of the slabs. To estimate 
the volume in the slabs it was assumed that the averaged volumetric water content measured by the 
sensors is a representative measure of the volumetric water content in all slabs. It was further 
estimated that the water content in the block is half of the water content in the slabs. The total 
volume of water in the slabs (Vw,slabs) can then be calculated according to: 

 

(3.1) 

 
The Vslabs is the total volume of the slabs, i.e. 900 m3, Vblocks is the total volume of the blocks, i.e. 
300 m3 and VWC is the averaged volumetric water content over the two sensors3.  
 
The estimated water volume during the experiment is given in Figure 3.6. In case one of the two 
measurements was not available no estimation is given. 

 
3  The pore volume of stonewool slabs is approximately 96%. Note that Eq. 3.1 assumes the pore volume to be 100%. 
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Figure 3.6 Estimated water volume in the slabs. The estimation is based on the moisture content 
measurements by the two sensors and Equation 3.1. In case one of the two measurements was not 
available no estimation is given. Note that the vertical axis starts at 720 L. 
 

3.1.4 Temperatures and air humidity 

Inside-greenhouse temperatures as well as relative air humidity were measured every five minutes. 
Both parameters show a daily cycle with high temperatures and low relative air humidity during day 
time and low temperatures and high relative humidity during the night. The temperature fluctuates 
between 18 and 31 ◦C with increasing day temperatures in the course of the experiment. The relative 
humidity fluctuates between 42% and 94% with decreasing relative humidity during day time 
(Figure 3.7). 
 
 

 

Figure 3.7  Inside temperature and inside air humidity in the experimental greenhouse, in the 
period of the experiment. 
 

3.1.5 Water levels of the reservoirs 

Water levels of the mixing reservoir, the used water reservoir and the clean water reservoir were 
logged every 5 minutes by the automatic pressure sensors. The reservoir bottom was used as 
reference level for the sensors. The sensors were placed on the bottom of the reservoirs, hence the 
measured water levels had to be corrected for the thickness of the sensors (2.3 to 3.2 cm) to obtain 
the correct water level.  
 
Over the runtime of the experiment water levels were also measured manually using a folding rule. 
The water levels measured by the sensors were corrected based on the measurements of the folding 
rule; the average differences between sensor and folding rule was added to the sensor data with the 
rationale that this difference is due to the thickness of the sensors plus some irregularities in the 
reservoir bottom. For the mixing reservoir 2.5 cm was added, for the used water reservoir 3 cm was 
added and for the clean water reservoir 2.3 cm was added. In Figure 3.8 water levels in the reservoirs 
are shown which were measured by the water pressure meters (corrected values) and measured by 
the folding rule. The measurement on the 6th of June in the used water reservoir by the folding rule 
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was probably wrong. This value has therefore not been used in the correction procedure. The erratic 
measurement of the 6th of June is still shown in the Figure 3.8. 
 
Water levels of the mixing reservoir follow the timing of the irrigation events. Minimum and maximum 
water levels set by the automatic pumping system were 40 cm and 57 cm above the reservoir bottom, 
respectively. The used water reservoir and the clean water reservoir have no specific constrains for 
the water levels. After the first accidental nightly flushing (4th of June) the water level in the clean 
water reservoir increased rapidly up till the maximum reservoir height of 90 cm. During day time the 
volume decreased again driven by plant uptake and on the 5th of June 2016 the second accidental 
flushing caused the level of the clean water reservoir to increased again. The used water reservoir 
reacted delayed to these two nightly flushing events. The reservoir filled up till a height of 60 cm 
because it could not discharge to the clean water reservoir, which was already filled up to the 
maximum. 
 
 

 

Figure 3.8  Water level above the bottom of the reservoir as measured by the water pressure 
meters every five minutes and manually. The water levels of the pressure meters were corrected for 
the thickness of the sensors and bottom irregularities of the reservoirs. 
 
 
Figure 3.9 zooms in on day two of the experiment, i.e. June 1st. The figure shows that water levels in 
the reservoirs are unsteady. Between two pumping events, water levels fluctuate. Especially the water 
levels of the mixing reservoir are fluctuating, with a maximum difference of 1 cm. It is very unlikely 
that these fluctuations are caused by changes in water volume in the reservoir, but they are rather 
due to turbulence in the reservoir caused by the frequent pumping events. Also to circulation of 
irrigation water under low pressure, with the purpose to adjust the nutrient balance in this water, may 
have induced the turbulence. The level fluctuations in-between the pumping events in the used water 
reservoir and the clean water reservoir are much smaller, i.e. in the order of 1-2 mm.  
 
 

 

Figure 3.9  Water level above the bottom of the reservoir as measured by the water pressure 
meters on the 1st of June. The water levels fluctuate, also in-between the pumping events, probably 
due to turbulence within the reservoirs. 
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Dynamics of water volume in reservoirs measured with water pressure sensors 
The surface area of the mixing reservoir, the used water reservoir and the clean water reservoir are 
respectively, 3840 cm2, 9900 cm2, and 9900 cm2. The volumes in these reservoirs were calculated by 
multiplying the water levels measured by the automatic pressure sensors and the surface area of the 
bottom of each reservoir. Water levels were corrected for the thickness of the sensor as explained in 
Section 3.1.3. Water volumes are shown in Figure 3.10. Values are calculated per 5 min. The mixing 
reservoir has the lowest volume of around 200 m3, the used water reservoir increased over the course 
of the experiment from around 200 m3 to 480 m3. The clean water reservoir decreases initially from 
ca. 550 m3 to 375 m3 and then increases again, from the 4th of June onward the volume increases to a 
maximum of 900 m2 as well as the dynamics of the volume. 
 
 

 

Figure 3.10  Water volumes calculated from the water level sensors and the surface area of the 
reservoirs. 
 

3.1.6 Measured concentrations 

An overview of the measured concentrations is given in Annex 3. Before the start of the experiment 
concentrations were measured in duplicate in the mixing reservoir, the used water reservoir and the 
clean water reservoir. Concentrations were below the detection limit for most of the samples, except 
for imidacloprid in one of the mixing reservoir samples (1.75 µg/L) and one of the clean water 
reservoir samples (6.73 µg/L). Initial concentrations in the mixing reservoir, which were measured in 
duplicate, at time zero of the experiment were 13204 µg/L and 16002 µg/L for imidacloprid and 
8579 µg/L and 10741 µg/L for pymetrozine. After application a fast decrease in concentration was 
measured. The measured concentration of pymetrozine in the mixing reservoir is shown in 
Figure 3.11a and the concentration of imidacloprid is shown in Figure 3.11b. After 120 h (= 5 days) 
the concentration in the mixing reservoir had decreased below 1 µg/L for both pymetrozine and 
imidacloprid. All measurements were taken in duplicate. Individual measurements are shown in the 
Figures. Differences between two duplicates were that small that they cannot be distinguished in the 
figure. Measurements were taken during daylight, the larger time-gaps between the dots indicate the 
nights. By the end of the experiment the frequency of measurements was decreased to once a day 
(See for more detail of the frequency of the measurement Chapter 2). The detection limit (LOD) of 
imidacloprid and pymetrozine was 0.4 µg/L and 0.03 µg/L respectively. The limit of quantification 
(LOQ) was 0.12 µg/L and 0.10 µg/L respectively.  
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Figure 3.11  Measured concentrations in the mixing reservoir for (a) pymetrozine and 
(b) imidacloprid. 
 
 
The first moment the substances were measured in the used water reservoir was at 11.40 h on the 
1st of June, 25 hr after application of the products (see Figures 3.12a and 3.12b). Both substances 
have the same breakthrough time. The concentration of pymetrozine was 30.7 µg/L and imidacloprid 
was 24.2 µg/L. After breakthrough the concentrations increased to a maximum for imidacloprid of 
739 µg/L after 141 h (= almost 5 days) and a maximum for pymetrozine of 535 µg/L after 77 h 
(=3.2 days). After the maximum was reached the concentrations decreased slightly.  
 
Concentrations in the clean water reservoir were below the detection limit during the runtime of the 
experiment. It is highly likely that both substances were removed from the recirculation water by the 
ozone treatment. Hence, re-entry of pesticides in the mixing reservoir via the clean water reservoir did 
not take place. 
 
 

  

Figure 3.12  Measured concentrations in the used water reservoir for (a) pymetrozine and 
(b) imidacloprid. 
 
 
In Figure 3.13 concentrations were also plotted as function of the total volume of water that has been 
pumped via the drip irrigation to the plants for the mixing reservoir. The lines of pymetrozine and 
imidacloprid follow a very similar pattern. Pymetrozine starts at a lower concentration but after a 
volume of ca. 800 L was pumped to the drippers, the measured concentrations were very close. Based 
on the dosing ratio of 2.25 to 2.94 g, the expected ratio in concentration is 1 to 1.3, for pymetrozine 
and imidacloprid, respectively. 
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Figure 3.13  Measured concentrations in the mixing reservoir for pymetrozine and imidacloprid, 
plotted against the cumulative volume of water that was pumped via the drippers to the plants. In the 
figure to the right the concentrations are plotted on a logaritmic scale. 
 
 
In Figure 3.14 the measured concentrations of the used water reservoir are plotted against the total 
cumulative drain water volume (the blue line in Figure 3.1). Breakthrough occurred after a cumulative 
volume of 100L of drain water. After ca. 200 L of drain water had passed a decrease in the measured 
pymetrozine concentration occurred (i.e. ca. 45 hr after the start of the experiment). The imidacloprid 
concentration remained constant. It is unclear what may be the reason for this decrease. Note also 
that the concentration of pymetrozine decreases earlier than imidacloprid and that the highest 
measured concentration is lower. 
 
 

 

Figure 3.14 Measured concentrations in the used water reservoir for (a) pymetrozine and 
(b) imidacloprid, plotted against the cumulative volume of water that was measured by the water 
meter measuring the drain water volume. 
 
 
In Figure 3.15 the concentration in the used water reservoir is again plotted against the cumulative 
volume of drain water but now the pymetrozine concentration is scaled to exclude the effect of the 
difference in initially applied mass4. The figure shows that the plots for imidacloprid and pymetrozine 
are very similar, irrespective of their substance properties.  
 
 

 
4  The pymetrozine concentration was multiplied with a factor 2.94 /2.25. 
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Figure 3.15  Measured concentrations in the used water reservoir for (a) pymetrozine and 
(b) imidacloprid, plotted against the cumulative volume of water that was measured by the water 
meter measuring the drain water volume. Pymetrozine was scaled to exclude the effect of the 
difference in applied mass between imidacloprid and pymetrozine. 
 

3.2 Step 1: Consistency check and translation to model 
input data 

Although measurements were taken at various locations and at high frequencies, not all water flows 
and water volumes of the recirculation system were measured and some of the data were considered 
more reliable than other data. In this section it is described how the water volumes and water flows in 
all elements of the recirculation system were derived from the available data. The derived data were 
used in the further testing of the Greenhouse Emission Model, i.e. step (ii): the calculated 
concentrations are tested against measured concentrations at three locations in the system, i.e. the 
mixing reservoir, the used water reservoir and the clean water reservoir. The model is adapted such 
that the reservoir sizes and water volumes in the reservoirs are the same as in the experiment.  
 
For practical reasons it was decided to only derive a consistent set of water flows and reservoir 
volumes for the first four days of the experiment; after day 4 in the experiment, two accidental 
discharge events took place that would take a lot of effort to correctly simulate the experiment. With 
the rationale that the first four days of the experiment are considered of most interest to assess the 
model performance, it was decided to focus on the first four days of the experiment, while saving 
effort to get the data from day four onwards right. 
 
Also, focus was set on that part of the system that was considered to be of most interest, i.e. starting 
from the mixing reservoir and ending at the used water. As all the substances were removed by the 
ozone installation, the concentration in the clean water reservoir was below the detection limit over 
the entire experimental period. The part of the greenhouse that lays between the ozone layer and the 
mixing reservoir was therefore considered of no importance for the model testing.  
 
Hence the mixing reservoir, the cultivation reservoir including the drain water reservoir, the filter and 
the used water reservoir were subject to further assessment, with the final aim to derive a consistent 
set of water flows and volumes at a frequency of 5 min to be used for the model simulations in step 2.  

3.2.1 The mixing reservoir 

Water volume 
The water levels and corresponding volumes of the mixing reservoir were measured every 5 min by 
the automatic pressure meters and were corrected as discussed in Section 3.1.5. The initial volume of 
the mixing reservoir was 245 L. This includes 41 L of water corresponding to the water in the pipes 
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used for the circulation of water under low pressure (driplines: 31.8 L, pipe from mixing to drip lines: 
9.2 L). This volume was added with the rationale that every time new nutrients are added, the water 
in these pipes are circulated such that they have the same nutrient (and pesticide) concentration as 
the mixing reservoir. Therefore, the reservoir and the pipes are considered as one volume in the 
model. 

Water flowing out 
Water is pumped via the drip irrigation towards the slabs and the plants. The data from the data-
logging system as explained in Section 3.1.2 was used to derive these fluxes. Pumping times and 
volumes were manually attributed to the nearest 5-min time-step.  

Water flowing in 
Water that flows into the reservoir has three sources: (i) the external water source (rainwater plus 
some osmosis water), (ii) the fertilized water using the traditional dosing system and (iii) the 
recirculation water that passed the ozone installation and the clean water reservoir. For the fate 
simulation it is not relevant what is the water source; all sources provide water with pesticide 
concentrations below the detection limit. Hence for the fate modelling it suffices to know the incoming 
water volume, which can be derived by solving the water balance of the mixing reservoir. 
 
Comparing the measured water levels and the pumping events showed that the water levels however 
reacted with a delay to the pumping events. This means that at one moment in time e.g. 30 L is 
pumped out of the reservoir, but the automatic pressure meters only detect this change 5 min later. 
The SEM model considers instantaneous reaction of a reservoir to a pumping event. Closing the water 
balance may then results in negative inflow 5 min after the pumping event. It was decided to correct 
for this by using the following approach: (i) calculate the inflow in L per 5 min by closing the water 
balance of the reservoir, (ii) if the calculated inflow is negative (which is not realistic), then the inflow 
is set to zero and the inflow in the time step (5 min) before is decreased with this value, (iii) if for this 
earlier time step the inflow becomes also negative, repeat step (ii) etc.  
 
In Figure 3.16 the calculated water pumped into the mixing reservoir is given. The measured irrigated 
water volume is given for reference. The figure shows that the water flowing into the mixing reservoir 
reacts delayed to the water that is pumped out. The effect of the applied correction method on the 
volume in the mixing reservoir is shown in Figure 3.17. The correction method leads to a decrease in 
the water volume. There largest difference between measured volumes and calculated volumes is 
found on the 2nd of June, i.e. 29L. The correction method was considered acceptable as the differences 
in Figure 3.17 are in general small. 
 
 

 

Figure 3.16 Calculated water volume into the mixing reservoir and measured volume pumped via the 
drip irrigation towards the slabs and the plants. 
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Figure 3.17 Effect of the correction procedure to correct for the delay in the reaction of the water 
level to the pumping events on the volume of the mixing reservoir. Note that the vertical axis starts at 
120 L. 
 

3.2.2 The cultivation reservoir 

Water volume 
The cultivation reservoir, as defined by the GEM model consists of the water volume in the slabs, the 
water volume in the supply tubes and the drain water collection reservoir. Initially, this volume is: 
slabs: 741.7 L, main pipe: 9.2 L, flexible hose from drain reservoir to filtration unit (5.6 L) and the 
drain water collection reservoir: 14 L. This is in total 769.5 L. The dynamics of the water slabs in given 
in Section 3.1.3. The pipes can be considered as constantly full of water. For the drain water reservoir 
the volume of water was only measured at the start of the experiment, being 14 L. It is assumed to 
remain constant over de course of the experiment. 

Water flowing in 
This is the water that is pumped via the drip irrigation towards the slabs and the plants, measured by 
the data-logging system and attributed to the nearest 5-min time-step. 

Water flowing out 
Part of the water is taken up by the plants, part of the water leaches to the drain troughs and is 
collected in the drain water reservoir. From the drain water reservoir the water is pumped to the 
filtration unit. The water meter located between the drain water reservoir and the filtration unit 
measures the cumulative water flow. The water volume taken up by the plants was not measured and 
was derived by (i) solving the water balance of the cultivation system, (ii) using the same correction 
procedure as used for the mixing water reservoir to correct for the delay in the reaction of the system. 
 
Resulting calculated water uptake fluxes are given in Figure 3.18. The effect of the correction on the 
water volume in the slabs/cultivation reservoir is shown in Figure 3.19. The calculated volume shows 
higher peaks due to water supplies than measured. However, the differences are no more than about 
20 L, i.e. 2.5% of the total volume of about 800 L.  
 
 

 

Figure 3.18 Calculated water volume taken up by the plants measure volume pumped via the drip 
irrigation towards the cultivation reservoir. The difference between both volumes is the drain water 
volume and the difference in the water volumes in the slabs.  
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Figure 3.19  Effect of the correction procedure to correct for the delay in the reaction of the water 
uptake to the irrigation events on the volume of the cultivation reservoir. Note that the vertical axis 
starts at 750 L. 
 

3.2.3 The used water reservoir 

Although the recirculation water flows from the drain water reservoir to the filter unit before arriving 
at the used water reservoir, the used water reservoir is described first as the water balance of used 
water reservoir was used to derive the flow between the filter unit and the used water reservoir. 

Water volume 
The water level of the used water reservoir is measured by the pressure meters and corrected for the 
thickness of the pressure meter. See for further explanation Section 3.1.5. The initial volume of water 
in the used water reservoir is 182 L. 

Water flowing out 
The incoming water flux and the outflow were not measured. A water level increase however indicates 
an inflow and a water level decrease a water outflow. In case both in and outflow occurs at the same 
time, the change in water volume cannot detect the events. Hence, the water level fluctuation can be 
used as long as in- and outflow does not occur at the same time. In addition, it is known that the filter 
unit as well as the ozone disinfection unit, take in and release water with a fixed volume of 30-35 L 
and 38 L, respectively. We used this information to manually derive the incoming and outgoing 
volumes of water, while using the above explained rationale. The resulted list of incoming and 
outflowing water volumes is shown in Table 3.1 and 3.2.  
 
To check the consistency of the manually derived water flows the outflowing flux was additionally 
compared to the measured increments in water volume of the clean water reservoir (last two columns 
of Table 3.2). The time between a decrease of the water level in the used water reservoir and the rise 
of the water level in the clean water reservoir was between 1:40-2:00 hrs. The manually derived 
water flow from the used water reservoir is consistent with the increments of the clean water 
reservoir. In Figure 3.20 the cumulative flows measured by the drain water flow meter and the 
calculated flows to the used water reservoir and the ozone unit are plotted. Note that there is a delay 
in breakthrough time between the reservoirs.  
 
The effect of the applied derivation procedure on the calculated water volume of the used water 
reservoir is shown in Figure 3.21. There is a maximum difference of 10 L with the measured volume. 
This was considered acceptable as this is only about 5% of the volume. 
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Table 3.1 Volumes of water flowing into the used water reservoir derived from increments of the 
water volume of the used water reservoir. 

Date Time Water volumes into used water reservoir (L) 

31/5/2016 13:50:00 35.6 

1/6/2016 11:05:00 60.4 

1/6/2016 15:40:00 65.3 

1/6/2016 23:15:00 31.7 

2/6/2016 13:50:00 55.4 

2/6/2016 18:10:00 72.3 

3/6/2016 13:40:00 37.6 

3/6/2016 16:30:00 59.4 

 
 
Table 3.2 Volumes of water flowing out of the used water reservoir derived from drops of the water 
volume of the used water reservoir. 

Date Time Volumes drop used 

water reservoir (L) 

Time  Volumes rise in clean 

water reservoir (L) 

Time used water reservoir drop and 

increase clean water reservoir (hr) 

1/6/2016 14:45:00 34.6 16:40:00 35.6 1:55 

1/6/2016 16:50:00 32.7 18:55:00 60.4 2:05 

1/6/2016 19:05:00 35.6 21:05:00 65.3 2:00 

1/6/2016 23:20:00 32.7* 1:00:00 31.7 1:40 

2/6/2016 13:55:00 32.7* 15:45:00 55.4 1:55 

2/6/2016 18:10:00 32.7* 20:10:00 72.3 2:00 

2/6/2016 20:15:00 33.7 22:20:00 37.6 2:05 

2/6/2016 22:30:00 35.6 0:35:00 59.4 2:05 
*Estimated volume as increase and decrease occurred both in this time period 

 
 

 

Figure 3.20  Cumulative flow from the filtration unit to the used water reservoir (orange) and from the 
used water reservoir to the ozone unit (yellow). Both are derived from the increments in the used water 
reservoir levels. The drain water flow as measured by the water flow meters is added for reference. 
 
 

 

Figure 3.21  Effect of the applied derivation procedure for the inflow and outflow of the used water 
reservoir on the water volume in the reservoir. The measured volume is given for reference. Note that 
the vertical axis starts at 120 L.  
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3.2.4 The filtration unit 

Water volume 
The filtration unit consists of a filter and a reservoir. The total volume of the filtration unit is 193 L. 
Rinsing water of the filter is discharged to the stock in batches. The initial volume of water in this unit 
was not measured, only water level of the reservoir, which was 59 cm before the first irrigation on the 
1st of June. The estimated volume initially in the reservoir was 80 L. The maximum volume of the unit 
is 193 L. 

Water flowing in 
The volume of water flowing towards the filtration unit is measured by the water flow meter as 
discussed in Section 3.1.1. This cumulative water volume is also referred to as drain water.  

Water flowing out 
The water fluxes flowing out of the filtration unit were not measured. It is known however that the 
filter pumps batches of water to the used water reservoir of a maximum volume of 35 L. To quantify 
the cumulative volumes of water, the dynamics of the used water reservoir was analysed. It was also 
known that the intake of the ozone unit occurred in batches of ca. 30-35 L. In this way the increments 
of the water volume of the used water reservoir could be identified and associated to the filtration unit 
outflow. In Table 3.3 date, time and volume of water is given per event. For some events the filtration 
unit has pumped two batches of 30-35 L to the used water reservoir within 5 min. 
 
 
Table 3.3 Increments of the water volume of the used water reservoir associated with input from 
the filtration unit. 

Date Time Volumes into used water reservoir (L) 

31/5/2016 13:50:00 35.6 

1/6/2016 11:05:00 60.4 

1/6/2016 15:40:00 65.3 

1/6/2016 23:15:00 31.7 

2/6/2016 13:50:00 55.4 

2/6/2016 18:10:00 72.3 

3/6/2016 13:40:00 37.6 

3/6/2016 16:30:00 59.4 

 
 
The dynamics of the filtration unit derived from the inflow and outflow is shown in Figure 3.22. The 
water volume of the filtration unit increases over time from the estimated 80 L to ca 190 L. The 
increase in water volume, which follows from the inflow and the derived outflow, was has not been 
verified with measurements.  
 
 

 

Figure 3.22  Calculated water volume in the filtration unit based on measured inflow of drain water 
and derivation of batch-wise increases of water volume of the used water reservoir. 
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3.2.5 Initial concentrations 

Initial concentrations in the mixing reservoir, which were measured in duplo, at time zero of the 
experiment were 13204 µg/L and 16002 µg/L for imidacloprid (average is  14.6 mg/L) and 8579 µg/L 
and 10741 µg/L for pymetrozine (average is 9.7 mg/L).  
 
2.94 gram imidacloprid was added and 2.25 gram pymetrozine. The initial volume of the mixing 
reservoir was 204 L. Corresponding concentrations are 14.4 mg/L and 11.0 mg/L, respectively. Hence, 
the averaged measured concentration for imidacloprid was 3 percent higher and for pymetrozine it 
was 13 percent lower than according to the applied mass to the mixing reservoir. The solubility of 
pymetrozine is 320 mg/L and that of imidacloprid is 610 mg/L, so it is possible that pymetrozine was 
not yet completely dissolved in the water at the moment of sampling. 

3.2.6 Conclusions step 1 

We were able to derive a consistent set of water volumes and water flows for that part of the system 
that was considered of most interest for the testing of the SEM model. Lessons learned from the 
exercise were that: 
• There is a delay in the reaction of the system which is not anticipated for in the model, which makes 

interpretation of the data needed to close the water balances. The closing of the water balances 
results in differences between modelled water volumes and measured water volumes. However, 
these differences were generally small and were considered acceptable. 

• There is a considerable uncertainty in the estimation of the volume of water in the slabs. Calibration 
of the Grodan sensors to measured volumes in the slabs may decrease the level of uncertainty. 

• Also the volume of water in the infiltration unit is relatively uncertain. In future experiments it would 
be good to include a regular measurement of the water volume in the filtration unit.  

3.3 Step 2: Pesticide fate simulation 

3.3.1 Model configuration and parameterisation 

The Substance Emission Model simulates PPP fate for given water flows between a set of reservoirs. 
A detailed model description can be found in Van der Linden et al. (2015). The configuration of the 
Substance Emission Model has been adapted to follow the experimental set up closely. The 
configuration follows directly from the analysis in Step 1 and is depicted in Figure 3.23. The volumes 
indicated in the figure refer to the initial volumes of water in each of the reservoirs. The recirculation 
system (low pressure) is not simulated separately but the associated volume is added to the mixing 
reservoir, and for the cultivation reservoir the volume associated with the main pipe and the drainage 
reservoir is added. The water levels of all simulated reservoirs vary over the course of the experiment. 
Water flows are provided to the model via an input-file (the *.wat-file) every 5 min, starting at 
31 May, 9:55 hr. 
 
Only that part of the system is simulated that was considered of interest for the testing of the 
Substance Emission Model, starting from the mixing reservoir and ending at the used water reservoir. 
Hence, the model does not simulate the transport of substances between the used water reservoir and 
the mixing reservoir. The rationale behind limiting the testing to this sub-system is that the ozone unit 
removes both substances below the detection limit, which makes that assessing the model 
performance for the part of the greenhouse between the used water reservoir and the mixing reservoir 
is not relevant.  
 
Application of the two substances to the recirculation water was simulated by adding pesticide mass to 
the mixing reservoir between 9:55 hr and 10.00 hr on the 31st of May. The total mass added was 
2940 mg imidacloprid and 2250 mg pymetrozine. Substance properties used were according to 
Table 2.4. 
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The substance concentration in the water that is pumped to the mixing reservoir is set in the 
simulation to 0.0 µg/L: either it is the recirculation water that passed the ozone installation which 
removed all pesticide, or it is external water or fertilized water from the dosing system. For both 
sources it can be assumed that the concentration is below the detection limit.  
 
Plant uptake is simulated as a sink in the model. The Transpiration Stream Concentration Factor is 
applied to correct for the concentration difference in the recirculation water and the root water, using 
Briggs et al. (1982).  
 
There is no discharge of water leaking, no filter cleaning and no regular discharge of recirculation 
water.  
 
The measured temperature was input to the model (every 5 min). The calculation time-step was set to 
30 sec. 
 
 

 

Figure 3.23  Configuration of the Substance Emission Model for the model testing. The volumes in the 
boxes indicate the initial volumes. Volumes in the model are dynamic. 
 

3.3.2 The mixing reservoir 

The calculated and measured concentration in the mixing reservoir are shown in Figure 3.24 and 3.25. 
The concentrations are plotted against the total volume of water that has been pumped to the 
drippers. This is done to cancel out the effect of delayed or accelerated water flow. In the figures on 
the right-hand side the concentrations are plotted with a logarithmic scale on the y-axis. The figures 
show that measured and calculated concentrations are close. The model assumes an ideally mixed 
system with an incoming and outgoing flux. Also, degradation is considered in the model. The impact 
of degradation is small for the timescale considered. 
 
The initial concentrations calculated by the model are lower than the measured initial concentrations. 
The difference between model calculation and measurements is mostly due to the recirculation under 
low pressure before application5. In the model this is simulated by considering the responsible pipes 
as part of the mixing reservoir. Implicitly it is assumed that recirculating the water under low pressure 

 
5  In Section 3.2.5 we identified a measured lower concentration of 3 and 13% based on the original volume of the mixing 

reservoir. This model results shows a lower initial concentration as also the volume of the pipes was added to the mixing 
tank. 
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is a continuous process. During the experiment the recirculation however occurred frequently, but not 
continuously. The measurement of the initial concentration was taken before the recirculation started 
as part of the hand start done just after application, hence this is the reason for the difference 
between measurements and model simulation.  
 
The normalized Root Mean Square Error (RMSE)6 is 0.05 for imidacroprid and pymetrozine, 
respectively. We may conclude that the behaviour in the mixing reservoir is adequately simulated with 
this (simple) model. 
 
 

  

Figure 3.24  Calculated and measured concentrations of imidaloprid plotted against the cumulative 
volume of water that was pumped via the drippers to the plants. In the right figure the concentrations 
are plotted with a logarithmic scale on the y-axis. 
 
 

  

Figure 3.25  Calculated and measured concentrations of pymetrozine plotted against the cumulative 
volume of water that was pumped via the drippers to the plants. In the right figure the concentrations 
are plotted with a logaritmic scale on the y-axis. 
 

3.3.3 The used water reservoir 

Calculated and measured concentration in the used water reservoir are shown in Figure 3.26. The 
concentrations are plotted against the cumulative drain water volume flowing from the drain water 
reservoir to the filter unit. The pymetrozine concentration is scaled to allow for easy comparison 
between the two concentration profiles, i.e. by rescaling the pymetrozine concentration the effect of 
the initial dosing is cancelled out (multiplied by a factor 2.94/2.25). The figure shows that both 
calculated concentration profiles are similar, both for the measured and the simulated concentrations. 
Apparently, the impact of the larger plant uptake for imidacloprid is comparable to the impact of the 
higher degradation rate for pymetrozine.  
 
The breakthrough of both imidacloprid and pymetrozine is earlier for the simulations than for the 
measurements. The measured imidacloprid concentration after 430 L of drain water has passed is 

 
6  The RMSE is normalized to the difference between the maximum and minimum measured values. 
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598 µg/L whereas the calculated concentration is 1403 µg/L (factor 2.34 higher), for pymetrozine the 
measured concentration is 704 µg/L whereas the calculated concentration is 1318 µg/L (factor 1.87 
higher). Hence, there is a large difference between the calculated concentrations and the measured 
concentrations. The normalized RMSE for imidacroprid and pymetrozine is 0.99 and 0.84, respectively. 
 
 

 

Figure 3.26  Calculated and measured concentrations in the used water reservoir. The concentrations 
of pymetrozine are scaled to cancel out the effect of the difference in initial dose between imidacloprid 
and pymetrozine. On the x-axis the cumulative drain flow is given. 
 

3.3.4 Discussion difference simulated and measured concentrations in the used 
reservoir 

What may be the cause of the much higher modelled concentrations and the earlier breakthrough? In 
the discussion section below a number of the suitable options will be assessed.  
• The substances may have been dissipated before they arrived at the used water reservoir due to 

higher plant uptake than assumed in the model 
• The substances may have been more diluted than in the simulations, due to underestimation of the 

volume of water in the slabs 
• The substances may have been delayed due to sorption to the slabs, plastic or roots, which is not 

simulated in the model 
• The substances may have been delayed in breakthrough due to incomplete mixing in the cultivation 

unit (slabs, troughs, pipes etc). 

Plant uptake 
In the GEM model the Transpiration Stream Concentration Factor concept is applied, using Briggs 
formula (Briggs et al. 1984). Van der Linden et al (2016) showed that plant uptake is an important 
dissipation process for soilless cultivation and that the plant uptake is concentration dependent, 
thereby supporting the transpiration stream concentration approach proposed by Briggs et al.; 
Transpiration stream concentration factors far below one were found to fit experimental results best. 
They found a factor of 0.45 for imidacloprid. The factor calculated following Briggs for imidacloprid is 
0.43. This value is also used in the simulation. However, there is continuous debate going on which 
concepts to follow when simulating plant uptake in fate models and although Van der Linden et al. 
(2014) confirmed the effect of the plant uptake, additional evidence is scarce.  
 
To assess the sensitivity of the model to the plant uptake factor we calculated the concentrations of 
imidacloprid and pymetrozine for TSCF values that were either 75 or 125% of the original values. The 
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results are shown in Figure 3.27. The figure shows that the calculated concentrations are not sensitive 
to the TSCF. With a simulated TSCF of 1.25 times the original value the concentration in the used 
water reservoir is only lowered ca 6% after 430 L has passed through the drain water flow meter. It is 
very unlikely that uncertainty related to the plant uptake is causing the difference between 
measurements and model simulation.  
 
 

 

Figure 3.27  Calculated and measure concentrations in the used water reservoir. The calculated 
concentrations are the result of simulation with a higher and a lower TSCF. On the x-axis the 
cumulative drain flow is given. 
 

The volume of the cultivation reservoir 
The simulated water volume of the cultivation reservoir is equal to the sum of water volumes in the 
slabs, the troughs, the pipes and the drain water collection reservoir. The calculated volumes of water 
in the slabs is derived from the sensors measuring the water content. To derive the volumes of water 
from the sensor signals assumptions had to be made regarding the water content profile in the slabs 
(See also Section 3.1.3). To assess the sensitivity of the model to the simulated water volume, the 
volume of the initial water content was increased with 25% and decreased with 25%. The calculated 
concentrations in the used water reservoir are shown in Figure 3.28.  
 
The figure shows that the sensitivity of the simulated concentrations for the water volume of the 
cultivation reservoir is low, i.e. the concentration decreased 12-14% when increasing the water 
volume 25%, after 430L of cumulative drain water. Therefore, it is very unlikely that the uncertainty 
in the cultivation volume explains the difference in measured and simulated concentrations. 
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Figure 3.28  Calculated and measure concentrations in the used water reservoir. The calculated 
concentrations are the result of simulation with a higher and a lower water volume of the cultivation 
reservoir. The concentrations of pymetrozine are scaled to exclude the effect of the initial mass. On 
the x-axis the cumulative drain flow is given. 
 

Sorption to slabs, plastic and plant roots 
Boesten and Matser (2017) measured the sorption of dimethomorph and pymetrozine to substrate 
material and foil. They showed a positive correlation between the octanol water coefficient (Kow) and 
sorption to stonewool. Boesten et al. (2019) analysed the effect of this sorption on the water 
concentration in the slabs. An increase of 1% was expected for dimethomorph, a substance with a 
Kow of 479, hence for pymetrozine and imidacloprid with a Kow of 0.646 and 3.17, respectively, the 
effect of sorption to stonewool on the concentration will be almost negligible.  
 
The effect of the plastic pipes on the concentration of pymetrozine and imidacloprid is expected to be 
also very low (Boesten et al., 2019).  
 
Boesten and Matser (2017) found by doing exploratory calculations that partitioning to the roots of 
isomers of dimethomorph may lead to 30% decrease in concentration for a fully grown cucumber 
cropping system. For pymetrozine they calculated a 3% decrease. Imidacloprid, with a much lower 
Kow is expected to show little effect on the concentration in the water phase, but at least lower than 
dimethomorph. Hence, although some sorption may occur to the plant roots of imidacloprid, for both 
substances it is unlikely that partitioning into the plant roots is the process that explains the difference 
between modelled and measured concentrations. 

Incomplete mixing in the cultivation compartment 
SEM assumes instantaneous and complete mixing in each simulated reservoir, including the cultivation 
compartment. Drippers, which are placed into the slabs, provide water and nutrients to the plants. 
Plant roots grow directly below these drippers to enable optimal water and nutrient uptake. Hence, the 
uptake of water and substances will occur before mixing takes place with the water that is already 
available in the slabs. Therefore, the complete mixing assumption may not cover the processes 
occurring in the cultivation compartment correctly. The effect of plant uptake may be better simulated 
by assuming two reservoirs, with one reservoir for the water which is taken up rapidly in a densely 
rooted part of the slabs and the rest of the water volume, with less roots.  
 
To assess this assumption, we arbitrarily divided the cultivation compartment into two equal sized 
reservoirs. This is the simplest way to simulate two reservoirs (See Figure 3.29). Water from the 
mixing reservoir flows first to sub-reservoir 1 and then to sub-reservoir 2. From sub-reservoir 2 the 
water flows to the filter unit. Both sub-reservoirs have a dynamic water volume, i.e. the sum of the 
volumes of the reservoirs is always equal to the volume in the original reservoir. We assessed the 
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effect of just dividing the reservoir in two compartments and also the effect of the size of the 
compartments. Next the effect of plant uptake was assessed, i.e. only uptake in sub-compartment 1 
or only uptake in sub-compartment 2. The characteristics of each of the simulations is summarized in 
Table 3.4 (case A to D). 
 
 

 

Figure 3.29  Configuration of the Substance Emission Model for the model testing. To test the 
hypothesis of incomplete mixing in the cultivation reservoir, the reservoir has been divided in two sub-
compartments. 
 
 
Table 3.4  Cultivation compartment divided over two simulated sub-reservoirs, characteristics of 
simulated cases. 

Case nr Size sub-reservoir 1  

(% of cultivation reservoir) 

Size sub-reservoir 2  

(% of cultivation reservoir) 

Plant uptake 

A 50% 50% In both reservoirs, proportional to reservoir 

size 

B 83% 17% In both reservoirs, proportional to reservoir 

size 

C 50% 50% Uptake in sub-reservoir 1 only 

D 50% 50% Uptake in sub-reservoir 2 only 

 
 
In Figure 3.30 and 3.31, the simulated concentrations of Imidacloprid and Pymetrozine are plotted for 
case A to D. The measured concentrations are given for reference. The effect of dividing the 
cultivation compartment over two reservoirs in the simulation leads to limited changes in the 
concentrations profiles; it leads to a slightly delayed breakthrough and does not result in a significant 
lower concentration (case A). The ratio of the volumes of sub-reservoir 1 and 2 does not have a 
significant effect neither (case B). The location of the plant uptake has a significant effect though 
(case C and D). When the plant uptake occurs in sub-reservoir 1, the calculated concentration in the 
used water reservoir considerably decreases for both imidacloprid and pymetrozine (case C). Also the 
breakthrough timing is later for case C and more in line with the experimentally derived breakthrough 
time. The effect of the plant uptake in sub-reservoir 2 only leads to an increase of the calculated 
concentration (case D). This increase is probably caused by the lower concentration in sub-reservoir 2 
as compared to sub-reservoir 1, which leads to less plant uptake in sub-reservoir 2. The normalized 
RMSE for imidacloprid for case A, B, C and D is 0.61, 0.59, 0.17 and 0.81, respectively. The 
normalized RMSE for pymetrozine for case A, B, C and D is 0.40, 0.37, 0.11, 0.55, respectively. 
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Figure 3.30  Calculated and measure concentrations in the used water reservoir. The calculated 
concentrations correspond to case A and B as shown in Table 3.4. The concentrations of pymetrozine 
are scaled to exclude the effect of the initial mass. On the x-axis the cumulative drain flow is given. 
 
 

 

Figure 3.31  Calculated and measured concentrations in the used water reservoir. The calculated 
concentrations correspond to case C and D as shown in Table 3.4. The concentrations of pymetrozine 
are scaled to exclude the effect of the initial mass. On the x-axis the cumulative drain flow is given. 
 

3.3.5 Conclusions step 2 

The model, parameterised with a configuration in line with the water volumes and water fluxes as 
measured in the experiment, is able to simulate the concentrations in the mixing reservoir close to 
measured concentrations. The model simulates the mixing reservoir as an ideally mixed reservoir with 
an inflow of clean water. Degradation is considered negligible over the timespan of the experiment.  
 
For the used water reservoir, the simulated concentrations are higher than measured and the 
breakthrough of the simulated substances is too early. A sensitivity analyses of the modelled 
concentrations points towards incomplete mixing in the cultivation reservoir. Possibly complete mixing 
does not occur and displacement of water occurs as well. Hence, uptake of water may occur before 
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mixing takes place with the other water in the slabs. When adapting the model by dividing the 
cultivation reservoir in two sub-reservoirs and having the plant uptake at the first sub-reservoir, the 
simulated concentrations were found to be much closer to the measured concentrations. As it is 
unknown what is the exact volume of the rooted zone as compared to other volumes in the cultivation 
reservoir, we decided to add the lowest complexity to the model, i.e. just dividing the reservoir in two 
equal parts. It will require additional research to quantify the exact sizes of the sub-reservoirs and 
also to identify the optimal number of (mixed) reservoirs to simulate the fate of PPPs in the system. 
Dividing the cultivation reservoir in two equal parts already results in a considerable improvement.  

3.4 Step 3: Testing the water flows calculated by the 
WATERSTROMEN model 

3.4.1 Settings WATERSTROMEN model and model configuration 

Whereas in step 2 the SEM model uses the measured water flows and volumes to simulate PPP fate, in 
step 3 the WATERSTROMEN model simulates the water flows which are provided as input to the SEM 
model. This is more in line with how GEM3.3.4 simulates the fate in a soilless system: i.e. GEM runs 
first the WATERSTROMEN model to simulate the water system and then runs SEM to simulate the PPP 
fate in the greenhouse. The WATERSTROMEN model provides three types of water flows in m3/d to the 
SEM model) at the requested frequency, i.e. the crop water uptake, the water discharged via the filter 
and the water discharged to avoid deterioration of the recirculation water (this is sodium concentration 
related. Also temperatures in the greenhouse are provided by the WATERSTROMEN model and the 
drain water flow as percentage of the irrigation water, which is for this experimental system 27%.  
 
The SEM model calculates the water flows between the reservoirs from these WATERSTROMEN based 
flows by assuming constant volumes of water in the mixing reservoir, the cultivation reservoir, the 
drain water reservoir and the used water reservoir. The drain water flow is calculated based in the 
drain percentage. The irrigation water was taken equal to the sum of the crop water need and the 
drain water. The reservoir volumes at the start of the experiment were taken over by the model and 
considered as constant over the simulated run time. The volume associated with the circulation of the 
water under low pressure (10L) was added to the mixing reservoir.  
 
Concentrations were calculated for two configurations. The first configuration is the one shown in 
Figure 3.23. The second configuration simulates two sub-reservoirs for the cultivation compartment of 
the experiment, similar to Figure 3.29 and case C in Section 3.3.4. The sub-reservoirs are of equal 
size and uptake of water and substances occurs in the first of the two sub-reservoirs only. Substance 
properties used were according to Table 2.4. 

3.4.2 Model results 

The water uptake by the plants as calculated by the WATERSTROMEN model is shown in Figure 3.32. 
The discharges (filter and sodium related) were both zero. The simulated and experimentally derived 
plant uptake are close, although the simulated cumulative plant uptake volumes show a less 
pronounced difference between day and night as compared to the experimentally derived plant uptake 
and the individual irrigation events are not visible. Also the simulated irrigation water volumes show a 
less pronounces day and night pattern (Figure 3.33). After two days the simulated irrigation water 
volumes become lower than the measured cumulative volumes. Also the drain water volume becomes 
lower than measured (Figure 3.34). After 4 days the experimentally derived drain water volumes are 
29% of the irrigation water, this is higher than the settings of the WATERSTROMEN model which has a 
drain water volume of 27%. The simulated drain water starts directly to flow, whereas for the 
experiment, due to the manual control of the irrigation at the start of the experiment and the initially 
relatively dry slabs, it takes a while before the drain water flow meter measures a water flux.  
 
Concentrations in the mixing reservoir are shown in Figure 3.35 and 3.36 for pymetrozine and 
imidacloprid, respectively. The simulated concentrations are close to the measured concentrations and 
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deviate mainly in the 4th day of the experiment, when low values were measured. The normalized Root 
Mean Square Error (RMSE)7 is 0.07 and 0.10 for imidacroprid and pymetrozine, respectively. We may 
conclude that the behaviour in the mixing reservoir is adequately simulated with the model. 
 
For the used water reservoir, the concentrations are shown in Figure 3.37 plotted against the water 
volume flowing to the filtration unit. When simulating the cultivation compartment as one reservoir the 
calculated concentrations are much higher than the measured concentrations, the difference is more 
pronounced than in step 2 (Figure 3.26). When simulating the concentrations in the used water 
reservoir with two sub-compartments for the cultivation compartment, measured and simulated 
concentrations are much closer. The concentration line is still higher than the measured concentration.  
 
Table 3.5 shows the mass balances after 168 hr of the 4 simulations. Although the percentage of the 
applied mass in the used water reservoir is very close between imidacloprid and pymetrozine, the 
percentage transformed mass is higher for pymetrozine and the percentage taken up by the plant is 
higher for imidacloprid.  
 
 

 

Figure 3.32  Measured and calculated plant uptake volumes during the first 4 days of the experiment. 
 
 

 

Figure 3.33  Measured and calculated cumulative irrigation water volume during the first 4 days of 
the experiment 
 
 

 
7  The RMSE is normalized to the difference between the maximum and minimum measured values. 
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Figure 3.34  Measured and calculated cumulative drainage water flowing to the filtration unit during 
the first 4 days of the experiment. 
 
 

 

Figure 3.35 Calculated and measured concentrations of pymetrozine over time. 
 
 

 

Figure 3.36  Calculated and measured concentrations of imidacloprid over time. 
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Figure 3.37 Calculated and measured concentrations in the used water reservoir. The calculated 
concentrations correspond the simulation with input from the WATERSTROMEN model. The cultivation 
compartment is simulated by 1 reservoir and by 2 reservoirs. The concentrations of pymetrozine are 
scaled to exclude the effect of the initial mass. 
 
 
Table 3.5  Percentage of mass in system after 168 hr. 

 1 cultivation reservoir 2 sub-reservoirs 
 Imidacloprid Pymetrozine Imidacloprid Pymetrozine 
Simulated part of recirculation system 51% 44% 46% 58% 
Of which in use water reservoir 11% 10% 7% 7% 
Flown out of the system 14% 13% 6% 6% 
Transformed 0% 29% 0% 15% 
Taken up by plants 35% 14% 49% 21% 

 

3.4.3 Conclusions step 3 

The water flows as calculated with the WATERSTROMEN model based on the climate settings of the 
computer in the experimental greenhouse, including the derivation of the other greenhouse flows from 
these water flows, are very similar to the measured water flows. Individual irrigation events are not 
calculated by the model, neither is the manual start after the application of the PPPs.  
 
The calculated concentrations in the mixing water reservoir are consequently very close to the 
concentrations in step 2 and the measured concentrations. Also the calculated concentrations in the 
used water reservoir are very similar. Dividing the cultivation reservoir in two sub-reservoirs and 
simulating only water uptake in the first sub-reservoir decreases the difference between model results 
and measurements.  

3.5 Step 4: Testing the GEM model using the regulatory 
scenario 

3.5.1 Model settings 

In the last step of the GEM testing, step 4, the GEM 3.3.2 model as currently used in the evaluation of 
PPPs is used and model outcomes are compared with measured concentrations. This model is based 
on a number of standard scenario assumptions that deviate from the conditions of our experiment, 
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specifically with respect to reservoir sizes and water flows between the reservoirs. The model 
calculates the concentration in surface water for application of PPPs on 1 ha.  
 
For the testing we compared the measured concentrations in the used water reservoir with the 
concentration as calculated in the GEM3.3.2 model in the used water reservoir. The applied mass was 
scaled to 1 ha based on the presumption of 0.4 m2 greenhouse per plant. Hence, 245 g imidacloprid 
and 187.5 g pymetrozine was applied between 9.55 and 10.15 on 31 May 2016. Volumes of reservoirs 
were simulated as described in Van der Linden et al. (2015); volumes are listed in Table 2.3. The 
cultivation compartment was simulated by one reservoir. The crop type sweet pepper was selected 
and the simulated water regime was that of 2015-2017, with reuse of filter rinsing water, while 
arbitrarily taking the year 2000 for the simulation (GEM3.3.2 has a simulation period from 1-1-2000 to 
31-12-2006). Water flows are simulated in GEM 3.3.2 every three hours while using the 
WATERSTROMEN model. The simulated water flows have no discharge in the period between 31 May 
and 4 June 2000. We refer to Van der Linden et al (2015) and Wipfler et al. (2015b) for information on 
the soilless scenarios and the GEM3.3.2 instrument. Substance properties as given in Table 2.4 were 
used.  

3.5.2 Model results 

The simulated water uptake by the WATERSTROMEN model is shown in Figure 3.38 and 3.39 for the 
cumulative irrigation water volume and the drain water volume. The values have been scaled down to 
120 m2 to enable comparison to the experimentally obtained water flows. The water flows are ca. 
30 percent higher than measured. Differences between the simulated and measured crop uptake may 
be caused by differences in weather conditions between 2000 and 2016, however the difference is 
relatively large. The simulated drain percentage is 30%.  
 
 

 

Figure 3.38  Measured and calculated plant uptake volumes during the first 4 days of the experiment. 
The volumes for step 3 were scaled from 1 ha to 120 m2. 
 
 

 

Figure 3.39 Measured and calculated cumulative drainage water flowing to the filtration unit during 
the first 4 days of the experiment. The volumes for step 3 were scaled from 1 ha to 120 m2. 
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The concentrations in the mixing reservoir as calculated by GEM are much higher than measured. This 
is due to the relative small volume of the mixing reservoir in the model simulation, i.e. the volume of 
the mixing reservoir in the model is 120 L only, whereas for the experiment the volume was 204 L.  
 
Figure 3.40 shows the measured and calculated concentrations in the waste water reservoir, plotted 
against the drain water flow to the filtration unit. The water flows were scaled from 1 ha to 120 m2 of 
greenhouse. The calculated concentration is very close to the measured concentration. Breakthrough 
of the substances is earlier. The concentrations calculated are considerably lower than in step 2. This 
is probably because of the differences in sizes of the reservoirs. The mixing reservoir is smaller in the 
simulation (10 m3, which would have been 120 L for 120 m2) than in the experiment (245 L), whereas 
the cultivation volume is larger (50 m3, which would have been 1500 L for 120 m2) than in the 
experiment (770 L), and the used water reservoir is 600 L in the simulation and 182 L in the 
experiment. The higher volume associated with the cultivation compartment probably has reduced the 
simulated concentration in the used water reservoir. 
 
 

 

Figure 3.40 Calculated and measure concentrations in the used water reservoir. The calculated 
concentrations correspond the simulation with the GEM3.3.2 parameterisation. The WATERSTROMEN 
file corresponds to the file for sweet pepper. The concentrations of pymetrozine are scaled to exclude 
the effect of the initial mass.  
 

3.5.3 Conclusions step 4 

The water flows in the simulation of step 4, the comparison of an uncalibrated predefined 
parameterised model chain and the experimentally obtained data, are higher than in the experiment. 
The calculated concentrations in the used water reservoir are similar to the measured concentrations 
though, which can be explained by the difference in reservoir sizes between model and experiment. 
Breakthrough is earlier in the simulations.  
 
The most important lesson learned here is the impact of the sizes of the reservoirs on the 
concentration of the recirculation water. For the regulatory scenario it is therefore recommended to 
carefully reconsider the sizes of the reservoirs, also in view of the information of the sizes of 
commercial greenhouses which were discussed in Section 2.1.4.  
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4 Conclusions and recommendations 

4.1 Conclusions 

A validation experiment was conducted in order to increase the confidence in the model outcomes, 
focussing on the fate of PPP in the greenhouse system. The experiment was conducted for a system 
with application of PPPs to the nutrient solution in a high vegetable crops (sweet pepper) growing on 
stonewool. The model simulates PPP fate for more combinations of applications, substrate and crop 
types.  
 
Two substances, i.e. pymetrozine and imidacloprid regularly used in sweet pepper, were applied at the 
start of the experiment and measured in the mixing reservoir, the used water reservoir and the clean 
water reservoir. Before application, the nutrient solution with PPPs was circulated under low pressure 
to obtain equal concentrations in all drippers. During the experiment, which covered 7 days there was 
no discharge of recirculation water. 
 
Model comparison between measured and simulated concentrations was done for (i) simulations with 
experimentally derived water flows, (ii) simulated water flows based on weather conditions and based 
on computer settings of the automatic control system and (iii) a predefined scenario in GEM3.3.2 for 
sweet pepper. Concentrations in the mixing reservoir, the used water reservoir and the clean water 
reservoir were compared. 

Water flows in the greenhouse system 
The GEM model simulates the water flows by running the WATERSTROMEN model. This model 
simulates crop water uptake, which depends on temperature, incoming radiation and humidity. 
Comparison to the experimentally derived water flows showed that the WATERSTROMEN model is well 
able to simulate the water flows.  

Predicted concentrations 
The GEM model simulates PPP fate by running the SEM model. This model predicted concentration in 
the mixing reservoir adequately for simulations with measured water flows and for simulations with 
simulated water flows. In case the predefined scenario (simulation type iii), the simulated 
concentrations were not compared as the volume of the mixing reservoir was much larger in the 
simulation than in the experiment, which made comparison irrelevant. The predicted concentration in 
the used water reservoir was around twice as high as in the experiment for the model simulations 
based on measured water flows (simulation type i) and for the model simulations based on simulated 
water flows (type ii). The model simulations done with the scenario drawn from the GEM3.3.2 model 
showed concentrations (type iii) close to the measured concentrations. Due to removal of the 
substances, i.e. breakdown by the ozone treatment, the concentration in the clean water reservoir 
remained below detection level, so for this reservoir comparison to model predictions were not 
relevant. 

Fate processes 
Main processes in the greenhouse substance model are transport between the considered reservoirs, 
complete mixing in the reservoirs, degradation (mostly due to hydrolysis and/or biological 
degradation) and plant uptake.  
 
The SEM model assumes complete mixing in all of the simulated reservoirs. Also the cultivation 
compartment is simulated as one (ideally mixed) reservoir. A sensitivity analysis and comparison of 
model results with experimental results showed that, for the cultivation compartment it is likely that 
complete mixing does not occur, rather it is a combination of mixing and displacement. Plant roots will 
take up the water first before in can move further into the system. Note that also Van der Linden et al. 
(2016) reported that incomplete mixing may play a role in the cultivation compartment.  
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The run time of the experiment was too short to draw conclusions related to degradation of 
substances in the system. 
 
The ozone installation used in the testing facility unexpectedly reduced the concentration in the 
recirculation water below the detection limit. Therefore, it was not possible to assess the effect of the 
circulation of the water through the greenhouse system. Hence, the effect of plant uptake as shown in 
Van der Linden et al. (2016) could not be reproduced.  

4.2 Recommendations 

Based on the results of the model testing there are two proposals for change of the GEM model 
concepts:  

Cultivation compartment 
For the cultivation compartment it is likely that complete mixing does not occur, rather it is a 
combination of mixing and displacement. It is recommended to verify this observation and hypothesis 
experimentally by evaluating the water flow within the cultivation compartment in more detail then 
was done in the validation experiment as described in this report. In the mean time we recommend to 
divide the cultivation reservoir in two equal sub-reservoirs assuming that uptake of water by the 
plants occurs only in the first sub-reservoir. In GEM4.4.3 the proposed adaption to the model is 
implemented.  

Representativeness of the experiment 
In view of the impact on the concentration calculated by the model an inventory among greenhouses 
in the Netherlands on reservoir sizes showed that the current GEM3.3.2 predefined scenarios may 
need to be updated. We recommend to change the reservoir sizes according to Table 4.1. Note that 
the GEM model also simulated pot plants which are grown in ebb and flood systems. For these type of 
systems, data on water volumes in commercial greenhouses are limited. Therefore we recommend to 
use the data for stonewool systems for now. Both recommendations are implemented in GEM4.4.3. 
 
 
Table 4.1 Volumes of reservoirs in the GEM model and recommended volumes based on the 
inventory discussed in Chapter 2 (in m3/ha). 

 GEM current scenarios GEM proposed 

Cultivation  125 95 

Used drain reservoir 50 35 

Clean water reservoir 50 70 

Day storage/ mixing reservoir 10 50 

Total 235 250 
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 Recommendation by  
Van der Linden et al. (2016)  

Van der Linden et al. (2016) analysed and interpreted the results of an earlier experiment conducted 
by Van der Maas et al. (2015). Recommendations done by Van der Linden et al. were used to design 
the study which is described in this report. Recommendations and how they were implemented in the 
study design are listed below. 
 
 
Recommendation  Implementation in study design? 

Measure water contents of the mixing reservoir and the 

drain water reservoir continuously or on an hourly basis. 

Water levels were logged every 5 min. 

Also measure water flows to and from the mixing reservoir 

and the drain water reservoir continuously or as frequently 

as possible.  

Water flows were logged every 5 min.  

Calculate the expected concentrations, in course of time, 

before executing the experiment and develop a sampling 

scheme accordingly.  

Before designing the experiment preliminary model runs we 

done. The data loggers were tested in advance of starting 

the experiment 

Apply, when possible, masses of PPP that lead to 

concentrations that are below the solubility; these might be 

lower than the recommended dosage. 

The solubility was checked during experiment preparation 

Try to treat all plants at the same time; i.e. avoid delays 

due to transport time in the system. 

A special low pressure system was used to force 

simultaneous plant treatment. 

Take water samples from the reservoirs, i.e. at least the 

mixing reservoir and the drain water reservoir, instead of 

from the tubes so that model adaptations can be avoided. 

Plant samples were taken from three reservoirs in the 

system 

Verify that substances/products can be used in a reservoir 

mixture if more than one substance is to be used in the 

experiment. Interactions between substances, for example 

precipitation or flocculation, may influence the delivery of 

substance to the crop with time.  

Possible interaction of the active substances was checked in 

advance. 
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 Sampling scheme and contents of various reservoirs 
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 Measured concentrations of imidacloprid and pymetrozine 

 

Batch: 5juni2016 en 19juni2016 Batch: 5juni2016 en 19juni2016 Batch: 5juni2016 en 19juni2016
date time

code dilution imidacloprid pymetrozine imidacloprid pymetrozine code dilution imidaclopr
id

pymetrozi
ne

imidaclopr
id

pymetrozi
ne

code dilution imidacloprid pymetrozine imidacloprid pymetrozine

31-05-2016 samples, 9.30 hr 9:30 M1 4 <0.1 <0.1 <0.4 <0.4 V3 4 <0.1 <0.1 <0.4 <0.4 S5 4 1.6826 <0.1 6.73 <0.4
M2 4 0.4444 0.4382 1.78 1.75 V4 4 <0.1 <0.1 <0.4 <0.4 S6 4 <0.1 <0.1 <0.4 <0.4

31-05-2016 Application of Plenum and Admire just for 
irrigation

9:55 M7 400 33.0092 21.4475 13204 8579

M8 400 40.0058 26.8536 16002 10741 none none 

measuring the rest volume and mass after first 
irrigation

10:15 M13 400 21.0968 13.5681 8439 5427

M13A 400 22.9291 14.8261 9172 5930
M14 400 20.5368 13.0529 8215 5221

2-4 irrigation events, no drain 12:05 M15 400 14.7671 9.1672 5907 3667 V17 4 <0.1 <0.1 <0.4 <0.4 S19 4 <0.1 <0.1 <0.4 <0.4
M16 400 14.7413 9.2409 5897 3696 V18 4 <0.1 <0.1 <0.4 <0.4 S20 4 <0.1 <0.1 <0.4 <0.4

2-8 irrigation events, drain 13:55 M21 100 35.1796 25.5451 3518 2555 V23 4 <0.1 <0.1 <0.4 <0.4 S25 4 <0.1 <0.1 <0.4 <0.4
M22 100 34.6380 25.6083 3464 2561 V24 4 <0.1 <0.1 <0.4 <0.4 S26 4 <0.1 <0.1 <0.4 <0.4

4-16 irrigation events, drain 15:25 M27 100 26.8686 19.1128 2687 1911 V29 4 <0.1 <0.1 <0.4 <0.4 S31 4 <0.1 <0.1 <0.4 <0.4
M28 100 26.9096 18.6513 2691 1865 V30 4 <0.1 <0.1 <0.4 <0.4 S32 4 <0.1 <0.1 <0.4 <0.4

8-20 irrigation events, drain 17:20 M33 100 20.6069 14.1979 2061 1420 V35 4 <0.1 <0.1 <0.4 <0.4 S37 4 <0.1 <0.1 <0.4 <0.4
M34 100 20.5665 13.9228 2057 1392 V36 4 <0.1 <0.1 <0.4 <0.4 S38 4 <0.1 <0.1 <0.4 <0.4

01-06-2016 before first irrigation (8.30u) 7:30 M39 100 15.3246 9.8668 1532 987 V41 4 <0.1 <0.1 <0.4 <0.4 S43 4 <0.1 <0.1 <0.4 <0.4
M40 100 15.5308 9.7902 1553 979 V42 4 <0.1 <0.1 <0.4 <0.4 S44 4 <0.1 <0.1 <0.4 <0.4

1-2 irrigation events, no drain 9:30 M45 100 15.3113 9.7568 1531 976 V47 4 <0.1 <0.1 <0.4 <0.4 S49 4 <0.1 <0.1 <0.4 <0.4
M46 100 15.8266 10.1100 1583 1011 V48 4 <0.1 <0.1 <0.4 <0.4 S50 4 <0.1 <0.1 <0.4 <0.4

1-4 irrigation events, possibly drain 11:40 M51 100 8.1033 4.7303 810 473 V53 4 6.0408 7.6778 24.16 30.71 S55 4 <0.1 <0.1 <0.4 <0.4
M52 100 7.9521 4.6595 795 466 V54 4 6.2758 7.7943 25.10 31.18 S56 4 <0.1 <0.1 <0.4 <0.4

2-8 irrigation events, drain 13:40 M57 100 6.2001 4.6637 620 466 V59 4 6.1442 7.7804 24.58 31.12 S61 4 <0.1 <0.1 <0.4 <0.4
M58 100 6.1589 4.7116 616 471 V60 4 6.2185 7.8026 24.87 31.21 S62 4 <0.1 <0.1 <0.4 <0.4

4-16  irrigation events, drain 16:20 M63 4 97.5476 97.3325 390 389 V65 4 30.6960 43.2428 122.78 172.97 S67 4 <0.1 <0.1 <0.4 <0.4
M64 4 95.4472 98.7214 382 395 V66 4 30.7022 43.2690 122.81 173.08 S68 4 <0.1 <0.1 <0.4 <0.4

02-06-2016 before first irrigation (8.30u) 7:40 M75 5 48.2552 48.4410 241 242 V77 5 44.6655 75.0043 223.33 375.02 S79 5 <0.1 <0.1 <0.5 <0.5
M76 5 47.8517 48.3408 239 242 V78 5 44.0012 73.9852 220.01 369.93 S80 5 <0.1 <0.1 <0.5 <0.5

13:15 M111 5 25.4328 28.1019 127 141 V113 5 44.0846 68.8642 220.42 344.32 S115 5 <0.1 <0.1 <0.5 <0.5
M112 5 25.4804 28.6300 127 143 V114 5 43.5738 68.5760 217.87 342.88 S116 5 <0.1 <0.1 <0.5 <0.5

15:00 M117 5 14.8032 15.6104 74 78 V119 25 13.7691 12.3086 344.23 307.72 S121 5 <0.1 <0.1 <0.5 <0.5
M118 5 14.7590 15.6461 74 78 V120 25 13.8859 12.2941 347.15 307.35 S122 5 <0.1 <0.1 <0.5 <0.5

03-06-2016 before first irrigation (8.30u) M81 5 11.0879 8.1872 55 41 V83 25 20.6211 17.6468 515.53 441.17 S85 5 <0.1 <0.1 <0.5 <0.5
M82 5 10.8937 9.4614 54 47 V84 25 20.7114 17.5711 517.79 439.28 S86 5 <0.1 <0.1 <0.5 <0.5

11:30 M123 5 8.3319 7.8425 42 39 V125 25 21.3063 18.7778 532.66 469.45 S127 5 <0.1 <0.1 <0.5 <0.5
M124 5 8.4635 7.9402 42 40 V126 25 21.3302 19.5473 533.26 488.68 S128 5 <0.1 <0.1 <0.5 <0.5

15:00 M129 5 3.6742 3.1137 18 16 V131 25 24.0129 21.7051 600.32 542.63 S133 5 <0.1 <0.1 <0.5 <0.5
M130 5 3.6755 2.7686 18 14 V132 25 23.8452 21.4305 596.13 535.76 S134 5 <0.1 <0.1 <0.5 <0.5

04-06-2016 during daytime (weekend service) 10:45 M87 5 1.0277 1.1837 5.14 5.92 V89 25 27.0710 21.7516 676.78 543.79 S91 5 <0.1 <0.1 <0.5 <0.5
M88 5 0.9924 1.0554 4.96 5.28 V90 25 26.8409 21.0344 671.02 525.86 S92 5 <0.1 <0.1 <0.5 <0.5

05-06-2016 during daytime (weekend service) 9:30 M93 5 0.1083 0.1130 0.54 0.57 V95 25 29.1316 21.3895 728.29 534.74 S97 5 <0.1 <0.1 <0.5 <0.5
M94 5 0.1095 <0.1 0.55 <0.5 V96 25 29.3465 21.4391 733.66 535.98 S98 5 <0.1 <0.1 <0.5 <0.5

06-06-2016 before first irrigation 7:50 M99 5 <0.1 <0.1 <0.5 <0.5 V101 25 28.6630 19.3096 716.58 482.74 S103 5 <0.1 <0.1 <0.5 <0.5
M100 5 <0.1 <0.1 <0.5 <0.5 V102 25 28.5601 19.1437 714.00 478.59 S104 5 <0.1 <0.1 <0.5 <0.5

07-06-2016 before first irrigation 8:15 M105 5 <0.1 <0.1 <0.5 <0.5 V107 25 27.1084 15.3776 677.71 384.44 S109 5 <0.1 <0.1 <0.5 <0.5
M106 5 <0.1 0.1095 <0.5 0.55 V108 25 27.3120 14.1662 682.80 354.16 S110 5 <0.1 <0.1 <0.5 <0.5

measure concentration LC-
QQQ(µg/L)

concentration in sample 
(µg/L)

measure 
concentration LC-

QQQ(µg/L)

concentration in 
sample (µg/L)

measure concentration LC-
QQQ(µg/L)

concentration in sample 
(µg/L)
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