Geo-information Science and Remote Sensing

Thesis Report GIRS-2020-08

Assessment of tree segmentation algorithms based on UAV LiDAR
data for Above Ground Biomass estimation

Leonardo Mauri

o
AN
o
AN
1
v
o
I
©
AN

WAGENINGEN

UNIVERSITY & RESEARCH







Assessment of tree segmentation algorithms on UAV LIDAR data for
Above Ground Biomass estimation

Leonardo Mauri

Registration number 951020548010

Supervisors:

Benjamin Brede

A thesis submitted in partial fulfilment of the degree of Master of Science
at Wageningen University and Research Centre,
The Netherlands.

26 — 04 - 2020
Wageningen, The Netherlands

Thesis code number: GRS-80436

Thesis Report: GIRS-2020-08

Wageningen University and Research Centre

Laboratory of Geo-Information Science and Remote Sensing



Abstract:

Above Ground Biomass (AGB) is recognized as a critical variable for understanding the global
carbon cycle and represents a crucial feature for climate change policies. Remote Sensing
techniques can provide consistent and large-scale estimation but need ground-measured
estimates to calibrate and validate their algorithms. In this context, unmanned aerial vehicle
LiDAR data (UAV-LS) can provide an accurate 3D representation of forest stands which can be
exploited for the retrieval of AGB.

This study tested and compared three different segmentation algorithms on a tropical forest
stand in French Guyana. The results were then validated with the stem map of the area and
through a similarity analysis between identified crowns and crowns that were manually
segmented from the LiDAR point cloud. Furthermore, Tree Height and Crown Diameter were
extracted for each segmented tree and used to estimate AGB with the implementation of an
allometric model. The obtained estimates were compared with reference estimates derived from
a widely used global allometric equation.

The tested segmentation methods produced highly different numbers of trees and thus led to
different AGB estimates. The AMS3D algorithm, the only one based on the whole point cloud,
outperformed the other methods based on the Canopy Height Model for both tree matching and
similarity analysis. The method also returned the most similar AGB estimates at plot level and for
three of the four investigated DBH (Diameter at Breast Height) classes. Furthermore, AMS3D was
also able to delineate understory features which are accurately represented in the UAV-LS data.
This study demonstrates the poor result of CHM-based segmentation methods in tropical
ecosystems and confirms the added value of processing the whole point cloud for accurately
segmenting complex forest stands. The analyses also demonstrate the high-quality information
contained in UAV-LS data that can be further exploited for a better characterization of forest
structures.
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/ntroduction

Forest ecosystems are valued globally for the services they provide to society (Pan et al., 2011).
Besides wood-based products, which largely contribute to the world economy, other crucial
services range from the conservation of soil, water and biological diversity, to the modulation of
the carbon cycle (Wardle and Kaoneka, 1999). Furthermore, forests also influence climate
through exchanges of energy, water, carbon dioxide and other chemical species, modulating
complex interactions through which they can suppress or amplify anthropogenic climate change
(Bonan, 2008). During their lifetime, forests can both store and emit large amounts of carbon
which makes them a crucial variable for climate change mitigation and adaptation measures.

The importance of forest ecosystems, which cover about 30 % of our planet (Dalponte and
Coomes, 2016), is widely recognized among the scientific community. As a result, many national
and international programmes have been established to safely manage and protect all types of
forests. One of the largest and most important, is the United Nations Collaborative Programme
REDD+ which aims to reduce emission from forests through the implementation of the so-called
payments for ecosystem services (PES), which promote the conservation of natural resources
through economic incentives. Lately, to support the central role and conservation of such
ecosystems, forest biomass has been recognized as a Global Climate Observing System (GCOS)
Essential Climate Variable (ECV) and thus accurate biomass products are of great importance for
forest management and climate mitigation (Duncanson et al. 2019). However, current knowledge
of the distribution of biomass across the globe is limited and consistent data on changes over
time at both the global and regional levels are even less available (Herold et al., 2019).

Tropical forests are among the most structurally complex and carbon-rich ecosystems in the
world, and they store 40% of the total carbon stocked in forests globally(Gibbs et al., 2007).
Although a number of forest inventories have been carried out here, there remain large areas in
the tropics where such inventories are out of date, incomplete, or entirely lacking (Houghton,
2005). Consequently, the accurate estimation of structural characteristics (e.g., aboveground
biomass, AGB) of tropical vegetation remains a major obstacle (Dubayah et al., 1997), resulting
in large uncertainties. Furthermore, tropical forests play also a crucial role in climate change
policies, with atmospheric analyses that define these ecosystems as carbon neutral or carbon
sinks, highlighting their vulnerability to a warmer, drier climate, which may exacerbate global
warming through a positive feedback (Bonan, 2008). For all the mentioned reasons, there is an
urgent need for improved data sets that characterize the global distribution of AGB, especially in
the tropics (Baccini et al. 2012).



Problem definition

AGB is defined as all biomass of living vegetation above the soil, and includes stems, stumps,
branches, bark, seeds, and foliage (Eggleston et al., 2006). So far, different techniques have been
developed to estimate it, each one presenting its own limitations in accuracy or feasibility.
True biomass measurements require the physical, destructive harvesting, drying, and weighing
of trees. The process is extremely difficult in practice, and typically undesirable or in many cases
logistically impossible (Duncanson et al. 2019). In general, the overall difficulty of acquiring in-
situ measurements strongly highlights the need of new and advanced approaches to accurately
measure AGB.
A common technique to estimate biomass at large scale is through the implementation of
allometric equations. These models rely on empirical relationships between total tree biomass
and vegetation attributes, among which, tree height (TH) and tree diameter at breast height
(DBH) are the most frequently used. However, the quality of allometric models represents one
of the most important limitations in assessing AGB (Chave et al. 2014). In fact, even if allometric
equations have improved in recent years, they remain limited and they cannot always be applied
to different regions. (Lau et al. 2019). These models, which also need to be supported by
calibration data, require direct estimates of AGB and thus still involve destructive sampling of
trees (Calders et al. 2015). Another important limitation to the final reliability of allometric
models is caused by the presence of big trees, which store large quantities of carbon (Slik et al.,
2013) and can therefore strongly affect the final estimation bias. In fact, due to the model’s
dependency on field sampling and the complexity of harvesting large trees, these are usually
underrepresented. As a consequence, the resulting allometric reliability degrades as the DBH
increases, causing a strong discrepancy in model estimates for large trees (Chave et al., 2001).
To overcome this limitation, researchers have explored different relationships at tree level which
may allow to estimate biomass without the need of DBH measures. Among the tree attributes
that have been tested so far, (Hemery et al., 2005) have found crown diameter (CD) and DBH to
be strongly coupled, even in large trees, leading to new possibilities for estimating AGB. Based
on this information Jucker et al. (2017) decided to compile a global dataset recording for each
tree, DBH, CD, and TH. With the aim of developing new allometric models, the research group
also collected AGB measurements by harvesting a portion of the inspected trees. The group
showed that AGB was strongly related to TH and CD, developing a new allometric equation based
solely on these parameters which was proved to estimate AGB with low Root Mean Square Error
and bias values (RMSE = 1.70 Mg, bias = -4.3%). The discovery led to new possibilities in the field
of forest biomass estimation, filling a gap between allometric equations and remote sensing
technigues which in many cases are not able to measure DBHs.
Remote sensing is the science and practice of acquiring information about an object without
actually coming into contact with it (Horning, 2008). In recent years, with development of
environmental information science, remote sensing data have played an important role in many
research fields (Liu, 2015). This is also the case of forestry, where remote sensing offers an
efficient and economical mean for AGB monitoring by facilitating forest type and canopy density
stratification (Tsitsi, 2016). The benefit of such techniques is confirmed by the numerous diverse
technologies that can be exploited for biomass estimation, and by the level of accuracy that can
be achieved.
Acknowledging the urgent need for improved, large scale, biomass estimations the European
Space Agency is developing the first space system entirely conceived for AGB monitoring. The
BIOMASS mission, whose launch is planned for 2022, will make use of P-band synthetic aperture
radar (SAR) measurements to provide crucial information about the state of our forests (ESA,
2



n.d.). Nevertheless, it is essential that satellite missions are able to make use of accurate ground
estimates of carbon stocks to train their inversion algorithms and validate their products
(Duncanson et al., 2019). Although field measurements are expensive and time consuming, they
are essential to provide the basis for extending local measurements to larger areas using remote
sensing approaches (Zolkos et al., 2013). Among all remote sensing techniques, Light Detection
And Ranging (LiDAR) represents a valuable alternative to destructive field measurements to
provide plot-level AGB estimates in order to calibrate and validate large scale products. LiDAR
has become a valuable source of information to assess vegetation canopy structure, in particular
for complex forest canopies that limit manual and destructive sampling (Brede et al. 2017). LiDAR
remote sensing is an active technique that calculates the distance of an object by recording the
time during which the emitted laser pulse is reflected back to the sensor. In recent years, LiDAR
has emerged as a valuable technology because of the directness of its approach to measuring
canopy structure and relatively higher accuracies reported in the literature when compared to
optical and radar approaches (Zolkos et al., 2013). Furthermore, several studies have found a
strong correlation between LiDAR metrics and AGB (Drake et al., 2003) confirming its applicability
for biomass estimation.

Three different categories of LiDAR technology can be distinguished based on the platform on
which the sensors are installed: terrestrial laser scanning (TLS), airborne laser scanning (ALS) and
recently also unmanned aerial vehicle laser scanning (UAV-LS). So far, TLS produces the most
promising results, showing high accordance with destructive biomass measurements (Calders et
al., 2015; Gonzalez de Tanago et al., 2018). The level of detail contained in TLS point clouds can
be exploited in multiple ways to retrieve trees AGB. One approach makes use of the reliable
extraction of tree parameters (DBH, TH, and CD), and their subsequent application for the
development of new allometric models (Lau et al., 2019; Vaglio Laurin et al., 2019). Another
commonly used technique estimates tree volume with the use of quantitative structure models
(QSM) instead, and then converts volume to using basic density information (Calders et al., 2015;
Gonzalez de Tanago et al., 2018).

On the other hand, ALS data have been widely used for generation of bare earth digital terrain
models (DTM), as well as the estimation of forest inventory attributes (Hyyppa et al., 2008). ALS
has also been proven to provide the required spatial detail and accuracy across large areas and a
diverse range of forest types (White et al., 2016). In addition to that, recent technical advances
in laser scanning made ALS one of the most promising technologies for the retrieval of forest
information at different levels: individual tree, plot, and nationwide (Yu et al., 2010).
Nevertheless, the time consuming and expensive nature of TLS data acquisition, and the
relatively low point density achievable with ALS systems (Brede et al., 2017) is causing scientists
to look for valid alternatives, such as UAV-LS. As a matter of fact, recent improvements in small-
scale technology have enabled the use of UAVs as an alternative remote sensing platform,
offering a distinctive combination of very high resolution data captured at a significantly lower
survey cost.(Wallace et al., 2012).

At present, there are two main techniques of LiDAR forest inventory that can be applied to ALS
and UAV-LS data. Area-based approaches (ABA) retrieve forests structure at stand level, whereas
individual tree-based approaches (ITD) extract tree parameters by individual tree detecting and
modelling (Wang et al.,, 2019). ABA models are state of the art when it comes to estimating
biomass from ALS data (Coomes et al., 2017), and they have been proven to produce reliable and
consistent results (Wallace et al.,, 2014). When compared to tree-centric, ABA work better in
estimating basal area and carbon stocks in tropical forests, probably due to strong limitations of
the former methods that first need to identify and delineate individual trees (Aubry-Kientz et al.,
2019). Previous studies have found the algorithm employed to be the main factor affecting the
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accuracy of tree detection and delineation. Conversely, other studies suggested the accurate
delineation of trees to be highly dependent on the properties of the forest, including stand
density and spatial pattern of the trees (Wallace et al., 2014).

However, rapid technical advances in laser scanning has led to an increase in data point density
which is expected to improve the accuracy of the ITD techniques (Yu et al., 2010). Coomes et al.
(2017) presented several arguments supporting the idea that ITD approaches should be preferred
over AGB area-based estimates. The first benefit of ITD methods is represented by the strong
fundamental basis, conceptually similar to allometric equations, which these models are built
upon. In addition, extracting and estimating AGB at tree level allows the mapping of small, high-
value areas, the tracking of tree growth and death, and it finally reduces plot-dependent
uncertainty. The promising nature of individual tree detection methods is being supported by the
numerous recent studies that developed, tested, and compared tree-segmentation methods and
approaches in diverse biomes and with different datatypes (Dalponte and Coomes, 2016; Ferraz
et al., 2016; Wallace et al., 2014; Ferraz et al., 2012). Moreover, the fast and constant
development of both high precision sensors and unmanned aerial vehicles will continue to
provide high-quality data, which could further boost the application of tree-centric techniques
for forestry applications as already suggested by the study conducted by Wallace et al. (2014)
over an eucalyptus plantation. However, the added value of UAV high density point clouds, when
implemented in existing segmentation algorithm, has yet to be further explored and proved,
especially in dense tropical forests which could result in a massive number of returns. Finally,
while ITD methods have already been widely tested in boreal (Dalponte et al., 2018; Maltamo et
al., 2009; Paris et al., 2016; Persson et al., 2002) and temperate forests (Dalponte and Coomes,
2016; Koch et al., 2006; Popescu and Wynne, 2004), the accuracy and reliability of these
algorithms in tropical regions have not extensively been examined yet, especially when aiming at
tree attributes extraction for AGB estimation.

Research objectives and Research questions

The project explores the potential of individual tree segmentation techniques, applied on high
density LiDAR data acquired by an UAV platform, for estimating AGB at plot level. In the project
three different segmentation algorithms will be tested and their output will be used to estimate
AGB. The segmentation results and AGB estimates will then be compared in order to evaluate
which method performs the best in the area of study. This will be assessed through the following
Research Questions:

RQ1: What tree segmentation algorithm delivers the most accurate segmentation of the area of
study?

- SRQ1: What tree segmentation method returns the best statistics (Error Rate, Accuracy,
Precision, Recall, and F-score) when comparing segmented trees with the stem map?

- SRQ2: What tree segmentation method returns the most similar tree crown shapes when
compared to UAV-derived, manually segmented crowns?

RQ2: What tree segmentation algorithm returns the most similar AGB estimates to state-of-the-
art ground-based estimates, at plot level and at different DBH classes, compared to
reference AGB values in terms of RMSE and Bias?



Methodology

In the following section the various steps undertaken during the analysis are described.
Throughout the project several software were used, namely: R language (Version 3.6.1; R Core
Team, 2019) together with the Rstudio Integrated Development Environment (Version 1.2.1335;
Rstudio Team, 2018), LAStools (Version 181108; Isenburg, M., 2018), ArcGIS (Version 10.7.1; ESRI,
2019), CloudCompare (Version 2.10.2 (Zephyrus); 2014), and Computree platform (Version 5.0;
Computree Group, 2019).

Study area

Franch Guyana Study Area
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Figure 1: Map of South America highlighting French Guyana (black box) and the location of the study area (black
dot), (b) Study area site, with indicated Paracou Field Station (cross), and South-East section of plot 6 (black-white

polygon).

The study area is part of Paracou Experimental Station (https://paracou.cirad.fr/website), in the
coastal part of French Guyana (Figure 1). The station, at N5°18” and W52°53’ is approximately
100 km North-West of the capital Cayenne. The climate of the site is equatorial, characterized
by two main climatic periods determined by the movement of the Intertropical Convergence
Zone, a dry season from mid-August to mid-November and a rainy season, which is often
interrupted by a short drier period between March and April. The mean annual rainfall
recorded near Paracou station from 1979 to 2001 is 3,041 mm with a minimum during the
month of September and a maximum in May. The mean annual temperature is 26 °C. The core
area is covered with a lowland, old growth, tropical rain forest with an exceptional richness (over
750 woody species). According to previous studies the five most abundant families at the site are
the Lecythidaceae, Fabaceae, Chrysobalanaceae, Sapotaceae and Annonaceae (Aubry-Kientz et
al., 2019). A series of 16 permanent plots (fifteen with a surface of 6.25 ha plus one of 25 ha)
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have been censused (DBH>10 cm) every 1-2 years since 1984. Nine of the plots were logged and
subjected to human-induced disturbance in 1986.

Among the 16 plots, the object of the study will be a portion of Plot 6, which has not been
subjected to any disturbance and it is set as control plot.

Data acquisition

To perform the analysis different types of data were implemented. The scientific organization of
CIRAD, which manages Paracou Station, kindly provided the plots and subplots boundaries files.
Furthermore, they also shared the stem map of plot 6 which contains location and additional
information of each tree with a DBH greater than 10 cm. Plot corners were measured with
centimetric accuracy using a total station, trees were then positioned within subplots (20 x 20 m)
using a measuring tape. The location of new trees was later estimated based on their distance
from neighbouring stems. All trees, which were located by cartesian coordinates of their trunks,
have an estimates precision of +/- 2 m (Aubry-Kientz et al., 2019).

In addition to that, UAV-LiDAR data was acquired by flying the RIEGL RiCOPTER with VUX®-1UAV,
an integrated UAV and LiDAR sensor system (Brede et al., 2017). The flight campaign was carried
out between the 18" and the 20%" of October 2019 and consisted of several flights. The cruise
speed varied between 6 and 8 m/s and the flight height was set between 105 and 120 m above
the ground. In total seven flights were performed over the full study area, of which six were
successfully accomplished. Three flights were also conducted over a smaller portion of plot 6 but
will not be included in the study. In order to acquire a more detailed and complete representation
of the forest, the flights were performed following different patterns so that the laser beams
could hit the vegetation features from several directions and better penetrate the canopies. In
addition to change the principal flight direction, the pulse repetition of the laser scanner, which
influences the laser penetration and number of returns, was also varied. A brief summary of all
flights can be found in Table 1.

Table 1: For each of the performed flights, principal flight pattern, height above ground level (agl), average flight
speed and scanner pulse repetition

.. . . Pulse Repetition
Principal flight pattern Height agl (m) Speed (m/s) Rate (kHz)
N-S 110 6 550
E-W 105 7 550
NW-SE 115 6 550
NE-SW 105 6 550
N-S 120 6 300
N-S 120 6 100




Data Preprocessing

= Fjeld data

Plot 6, Study area, and Stem map
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Figure 2: Boundaries of original Plot 6 (black), boundaries and quarter hectare sections of Area Of Interest (AOI,
blue), stem map of AOI (red dots)

The analysis began with the preprocessing of the field data, namely the plot boundaries and
the stem map. These data needed to undergo a series of steps in order to select only the
required information corresponding to the area of study (AOI). After selecting plot 6 form the
plots boundaries dataset, a 200 m x 200 m section in the South-East corner of the plot 6 was
extracted and stems within the newly created plot were selected from the original stem map,
Figure 2. To preserve the true shape of those trees whose crowns exceeded the plot
boundaries each side of the AOI was increased with additional 10 m, returning a final square
plot of 4.41 ha. To conclude the preprocessing of field data, the circumference measurements
of each stem were converted to DBH values which is the commonly used measure to describe
stem size.

As a result, the obtained stem map subset, based on the new AOI, returned a dataset of 2291
stems (Figure 2), summary statistics and distribution of DBH and Estimated Tree Height values
can be found in Table 2 and Figure 3. Observing the histograms in Figure 3, it is clear that
trees with small DBH are much more frequent than big trees with the most numerous class
corresponding to tree with a DBH between 10 and 15 cm containing almost 60 % of the total
stems. The count then constantly decreases registering only 62 trees with a DBH larger than
60 cm. The distribution of estimated height followed the same pattern with almost 60 % of
the total trees estimated to be shorter than 20 m, which also corresponds to the mean value.
It is important to notice that even though the first set of trees represented in the graph (12
m < TH < 14 m) shows a much lower number of observations, it is perfectly in line with the
other data. In fact, the only reason for such a smaller count is due to the narrower range of
estimated tree height which only extends from 13.47 m to 14 m.



Table 2: Number of stems in the Area Of Study and minimum, maximum, and mean value of Diameter at Breast
Height (DBH), and Estimated Tree Height (EstTH)

N° stems Min DBH Mean Max DBH Min EstTH Mean Max
DBH EstTH
(cm) (cm) (cm) (m) stTH (m) EstTH (m)
1291 10.03 22.58 101.38 13.47 20.52 45.34
DHB distribution, Estimated TH distribution,
- Plot 6 aoi Plot 6 aoi
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Figure 3: Diameter at Breast Height (DBH) and Estimated Tree Height (Estimated TH) distributions for stems in
the Area Of Interest (AOI).

= UAV data

After the flight campaign the raw UAV data required to undergo a series of operations in
order to obtain georeferenced point clouds which could be combined and exploited during
the analysis.

The acquired UAV data were pre-processed by Benjamin Brede, a member of the UAV-LS
campaign, who provided them in their final, ready to use version. For clarity a short
description of these operations is provided.

In order to be implemented in the analysis the raw LiDAR data first needed to be converted
into point clouds in RIEGL’s RiPROCESS software which comes together with the RIEGL UAV
RiCOPTER system. During this operation the targets are detected and Multiple Time Around
Range ambiguities, which occur when one pulse is emitted before the previous one returns,
are resolved. In order to align and match point clouds from different flight lines, the flight
trajectories, need to be aligned and corrected with external GNSS data. The trajectory
preprocessing was carried out in POSpac Mobile Mapping Suite (V7.2) software with GNSS
data from a nearby permanent reference station, about 13 km away. Once the data were
corrected and georeferenced, atmospheric noise, usually detected as unexpected returns
close to the scanner, was removed and finally, the data were exported as LAZ files. All data
are projected in Universal Transverse Mercator (UTM) system, zone 22N, EPSG: 32622.



The processed dataset composed of 70 point clouds, was then further processed to obtain
the final point cloud data as described below.

e Point cloud clipping

The first operation performed on the georeferenced point clouds was intended to select
and extract only the portion of data needed in the analysis. In order to do so each point
cloud was clipped on the study area extent (200 m x 200 m SW section of plot 6). In
addition to discard the unnecessary portion of data this operation also allowed to reduce
the size of files, shortening the computation time of the following operations. With the
same goal, after clipping the single flight line point clouds, the data were also divided into
tiles of 50 m x 50 m. The tiling operation is very common when working with a large
amount of points and it is also the conventional way to store and distribute point cloud
data.

e Data quality

After having clipped the point clouds, the analysis proceeded with the data quality
assessment. For each flight, the relative tiles were merged, and the points were classified
as ground or non-ground. After the classification, ground points were used to create the
Digital Elevation Model (DEM) of the area which represents the surface of the terrain. In
addition to that, the Digital Surface Model (DSM), representation of all features on the
ground, was also created making use of all points. The generation of these models was
performed in order to compare the alignment of different flights and assess whether the
co-registration between flight lines, and the georeferencing with the external GNSS data
were successful. Finally, the point clouds of every flight were also compared with each
other. The comparison was performed in CloudCompare software (Version 2.10.2
(Zephyrus); 2014) by measuring the distance between two point clouds at a time.

e Final point cloud generation

Once the alignment between point clouds of different flights was established, it was
possible to proceed with the generation of the final point cloud. The first step consisted
in combining tiles of all flights together that were then merged creating the final point
cloud of the whole area of study. The newly created dataset was now composed of points
acquired during all the different flights and thus presented a higher point density. Merging
multiple point clouds can result in duplicate points which are points with the same exact
coordinates (X, Y, Z). Since these points contained redundant information there was no
need to keep them both, thus they were searched and one of the duplicates was
eliminated. Finally, the newly created, full density, point cloud was exploited to generate
the DEM and DSM of the AOI.

The reason behind the choice of merging the different point clouds was to exploit the
information contained in each one of them to obtain the most detailed and accurate
representation of vegetation features. In fact, each flight scanned the scene along only
one direction and thus some of the objects might have not been hit by the laser pulses or
have been hit only few times, producing a small number of returns that don’t accurately
reproduce the real shape of tree features. Exploiting point clouds acquired along several
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flight trajectories increased the chance that objects were hit by enough points, returning
a more faithful representation of submerged vegetation, now composed of a larger
amount of points.

UAV Data Down-sampling and Height Normalization

Before proceeding with the analysis, the point cloud needed to be normalized to the ground. This
step was required in order to compute the Canopy Height Model (CHM) and to be used as input
of the AMS3D segmentation. Normalizing a point cloud means that the Z values, which now
contain the absolute points height, have to be recalculated in respect to the ground. For a
successful and accurate normalization, it is required to have a sufficient number of ground points
so that a reliable ground surface can be constructed through TIN generation. Due to the limit size
and thus ground points number, some tiles firstly had to be merged so that the normalization
process could be successfully finalized. Furthermore, due to the large number of points contained
in each tile, these could not be directly exploited to generate the CHM nor used as input of the
AMS3D algorithm. In the first case the tool implemented to compute the spike free version of
the CHM could not handle such high amount of points whereas the AMS3D algorithm was found
to be so time consuming that segmenting the point cloud at its full density was not feasible. As a
result the point density of the obtained tiles had to be decreased discarding some of the points.
To better understand the thinning procedure, a brief description of the implemented tool is now
provided. Lasthin, part of LAStools software (Version 181108; Isenburg, M., 2018), works
constructing a regular grid over the 3D point cloud and successively keeping one point in each
grid cell, which was randomly selected. The level of down sampling is therefore uniquely
controlled by the resolution of the grid, with larger cells that will result in lower point densities.
The final cell size to be used was chosen after the assessment of different point densities on the
AMS3D segmentation output (further details can be found in the relative section,AMS3D

testing:).

Adaptive Mean Shift 3D segmentation

The first segmentation method to be tested was the Adaptive Mean Shift 3D or AMS3D (Ferraz
et al., 2016). The algorithm takes a normalized point cloud as input and it segments the scene
into individual point clusters which correspond to single trees. The version used in the study,
implemented in the processing platform Computree (Version 5.0; Computree Group, 2019),
where it is freely available (http://computree.onf.fr/?lang=en), will be briefly described in this
paragraph. For a more detailed description of the method and its theoretical assumptions it is
suggested to consult the works of Ferraz et al. (2012) and Ferraz et al. (2016).

The AMS3D algorithm, processing the entire point cloud, is capable of segmenting trees within
every forest layer.

The feature that allows the algorithm to accurately segment and delineate trees of different
shapes and sizes is represented by the so-called bandwidth model. As developed on Computree
platform (Version 5.0; Computree Group, 2019), the model is based on allometric relationships
between trees crown size and tree height, which determine the size of segmented structures.
The segmentation algorithm works in a two-step approach that assumes the point cloud to be a
multi-modal distribution where each mode, defined as a local maximum in both density and
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height, corresponds to a single location within an individual crown (Ferraz et al., 2016). During
the first step, the algorithm, constructs a 3D-kernel (cylinder) around each point that iteratively
moves towards dense regions until it converges to the local mode.

To do so, the authors designed a 3-D kernel profile as the products of two profiles, Figure 4, a
Gaussian one for the horizontal dimension which searches for the local density maxima, and an
Epanechnikov profile (vertical dimension) that deals with the local height maxima (Ferraz et al.,
2012). To make the method more robust, the weighted distance is calculated as the product
between the two kernels. As a result, the method can separate both horizontally and vertically
interconnected crowns. In the first case, whereas the gaussian profile converge to the area where
the two crowns are both present (high point density) the vertical profile force the algorithm to
move towards the single treetops. Conversely, in the case of vertically connected crowns is the
gaussian kernel which stabilize on the undercanopy tree apex, represented by a denser point
region compared to the crown base of the higher tree (Ferraz et al., 2012). In the second step of
the segmentation, all the points that converged towards the same mode, are now gathered
together in 3D clusters which correspond to individual trees.

The definition of the kernel bandwidth has to be carefully evaluated since it strongly impacts the
segmentation results. A small cylinder will result in the identification of several distinct modes
(local basins of attraction), while a large one will aggregate small vegetation structures into larger
ones (large basins of attraction) (Ferraz et al., 2012), causing respectively over or under-
segmentation of the scene.

In the first version of the ASM3D, different bandwidth models where computed for different
vegetation strata, with larger bandwidth for thicker layers. Unfortunately, this approach is not
very suitable for tropical forest where the structural complexity does not make it possible to
distinguish different forest layers. For this reason, a more advanced bandwidth modelis required.
Ferraz et al. (2016) developed a new model based on tree allometry equations based on a sample
of large emergent trees. The 3D kernel dimension will then be calculated based on the linear
regression models obtained for Crown Width and Tree Height for the horizontal dimension and
between Crown Depth and Tree Height for the vertical dimension. For this research, there wasn’t
any need to calculate the allometric models, specific values of the intercept and slope of the
bandwidth model were already calculated for Paracou Forest and they are provided on the
AMS3D webpage (http://rdinnovation.onf.fr/projects/plugin-ams3d/wiki, personal account
needed).
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Figure 4: a) Horizontal (Gaussian profile, surface) and vertical (Epanechnikov profile, curve) kernel profiles. The point
and colour bar indicates the weight of each point for the calculation of the kernel barycentre (Ferraz et al., 2012). b)
Adaptive Mean Shift 3D segmentation of a simulated forest scene using a cylindrical kernel whose diameter and
height are defined by the bandwidth model that depends on the lidar point's height (Ferraz et al., 2016)

To carry out the AMS3D segmentation, as implemented in Computree platform (Version 5.0;
Computree Group, 2019), the user needs to manually set a list of parameters which are listed

below:

Interceptl and coefficientl: values for the bandwidth diameter model. A coefficient
value of about 0.2 is recommended for the area of study (Paracou, French Guyana). The
intercept should be set to 0 so that for height equals to 0 the crown diameter is also 0.
Intercept2 and coefficient2: values for the bandwidth height model. An intercept value
of about 0.15 is recommended for the area of study (Paracou, French Guyana). As in the
previous case, the intercept should be set to 0.

Minimum cylinder diameter and height: these values can be kept small.

Gamma for the Gaussian kernel: parameter to weight the points in the neighbour area.
It was set to five in Ferraz et al. (2012).

Maximum number of iterations: number of iterations to compute before moving to the
next point, it has to be high enough to reach the mode convergence.

Resolution of the grid for neighbouring points: size of the 3D grid used to search for
neighbouring points.

Resolution of the grid for neighbouring modes: size of the 3D grid used to search for
neighbouring modes.

Maximum distance between two modes to merge them: distance threshold for merging
modes, first parameter of DBSCAN algorithm (used to merge the modes in the
Computree version of AMS3D).

Minimum number of modes to create a cluster: minimum number of points to form a
single crown, second parameter of DBSCAN.
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Here a brief guide on how to import, set, and run the AMS3D algorithm is presented, three steps

need to be set, Figure 5:

— Point cloud loading: In the Steps window, select Load submenu, Points, Points, format
LAS(V2), and select the LAS file.
— AMS3D segmentation: select Points submenu, Detect (Crown), and AMS3D MeanShift
v2, set parameters for segmentation.

— Output file exporting: Select Export submenu, Points, Points + item, ASCII(X,Y,Z), then in
the new window select the segmentation output, tick the boxes of both Group items,

and finally tick the cluster (point scene) box.

Clusters de Points, fichier ASCII (ID, X, Y, Z)

Nuage de points, Fichiers ASCIl (parameétrable]}
Points, fichier ASCI| (XYZRGB, sans entéte, RGB [0:1]}
Points, Fichier PLY

Points, Fichier PTX

Points, Fichier XYE

Points, format LAS

Paints. format LAS W2}

Trajectoire, Fichiers ASCII

4- Loops on files sets defined in a text file
5- Loops on files in selected directory

€ steps 8
‘Sear:h for steps... | |Conﬁguraﬁon |

| Replacer & gauche ” Replacer & droite |

During Computree lzunch, place at last known position

Figure 5: Illustration of required steps (surroundded in black) for running the Adaptive Mean Shift 3D segmentation

on Computree platform.
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= Adaptive Mean Shift 3D Testing

With the aim of finding the most appropriate parameters setting for the AMS3D
segmentation, the algorithm was first run on a test tile experimenting with different values.
After running preliminary tests (Tests 1-10) and visually assessing the results, three
parameters, were identified to have an important influence on the results and were thus
chosen for further testing (Tests 11-18). The analysis focused on the effect of the Gamma for
the Gaussian kernel (Gamma), the maximum distance between two modes to merge them
(MaxDist), and the minimum number of modes to create a cluster (MinMod). Table 3 presents
an overview of the settings that were investigated. Furthermore, to inspect the influence that
point density has on the final result, the segmentation was repeated on different down-
sampled levels. The thinned tile versions, with the relative point densities, are presented in
Table 7. The procedure to process the segmentation outputs will be presented in the next
paragraph (AMS3D ITCs generation). Once the 49 outputs were generated, they were
assessed following the same framework used to compare the three segmentation algorithms
which will be described in detail in the Validation paragraph.

Table 3: AMS3D parameter settings for Test 11-18, highlighted in yellow are the tested different parameter
values (Test 14 was discarded during the analysis due to poor results).

Maximum distance . .
Minimum number
Gamma for the between two
Test k of modes to create
Gaussian kernel modes to merge
a cluster
them
Test 11 5 0.5 10
Test 12 5 1 10
Test 13 5 1.5 10
Test 15 1 1.5 10
Test 16 10 1.5 10
Test 17 5 1.5 2
Test 18 5 1.5 50
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=  Adaptive Mean Shift 3D AOI

Once the most suitable parameters values were identified the AMS3D algorithm was run on
the whole area of study with the parameter shown in Figure 6. The segmentation output
contains for each point, the X, Y, Z coordinates and an ID value which identifies the tree.
Nevertheless the algorithm’s output could not be directly exploited for the AGB estimation,
and thus several postprocessing operations were required. The first operation was to compute
the Individual Tree Canopies polygons (ITCs), that are the ground projected areas of trees. The
shape of these ITCs is very critical because it directly impacts the calculation of the tree’s CD
and thus the estimation of its biomass. For this reason it was crucial to compute the ITCs as
accurately as possible, generating the polygons that best reproduced the crown shape. To do
so, each tree cluster had to be processed to exclude those points that were found to be
significantly distant from the rest, and that would have resulted in the generation of much
larger ITCs. To automatically exclude these points the clusters’ barycentres were calculated
and then, the points whose distance from the barycentre was found to exceed a threshold
based on the average point-barycentre distance, were removed. At this point the ITCs were
generated computing the convex hull of the remaining points of each cluster. Once the
ground-projected area was calculated the analysis proceeded with the extraction of the
required tree attributes namely, TH and CD. The former was equalled to the height of the
highest point of the cluster whereas for the calculation of CD more steps needed to be taken.
In the study, considering the irregular shapes of ITCs, and in general the highly variable shape
of crowns, it has been decided that consider the ITC shape as circles would have not returned
an accurate measure of their diameter. It was instead decided that calculating the crown
diameter as the average of four polygon axes could return a more accurate approximation. By
doing so, in the case of crowns which were more elongated in one direction than another, the
final CD could better estimate the mean polygon width. Once TH and CD were calculated, the
postprocessing operations continued with the exclusion of those ITCs that did not intersect
the original AOI (200 m x 200 m) and thus were not needed to be considered. Finally, ITCs with
a surface area smaller than 1 m?or larger than 1000 m? were also excluded from the analysis
since their size was not considered in line with the one of real crowns.

N Configuration (AMS3D_StepMeanShiftV2 (4))

Intercept for the cylinder diameter model : 0.0000 5 |
Intercept for the cylinder height model: 0.0000 & Cancel
Coeffident for the cylinder diameter model: 0.2000 = |

Coeffident for the cylinder height model: 10.1500 = |

Minimum cylinder diameter: 0.2500 5 |

Minimum cylinder height: 0.2500 2]

Gamma for the Gaussien kernel: 5.0000 |

Maximum number of iteration 1000 T‘

Resolution of the grid for neighboring points 102500 = | m

Resolution of the arid for neighboring modes 0.2500 s | m

Maximum distance between two modes to merge them | 1.5 = | m

Minimum number of modes to create a duster 100 &

Figure 6: AMS3D parameters setting used to segment the point cloud of the Area Of Interest
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Canopy Height Model generation

A CHM is the digital model representing the shape of vegetation features. Normally it is
generated either keeping only the first LiDAR returns or computing the difference between the
DSM and the DEM of the area. In this project however, considering the importance of the CHM
for two of the applied segmentation methods, it has been decided to implement a more complex
framework for generating the model. Based on the work of Khosravipour et al. (2016) the CHM
was created implementing the Spike-free option of las2dem tool (Version 181108; Isenburg, M.,
2018). The algorithm instead of considering only first LIiDAR returns considers all returns, ignoring
those points which will result in the formation of a pit. The resulting spike-free CHM was proved
to work with different lidar point densities, and demonstrates a statistically significant
improvement in the accuracy of tree detection (Khosravipour et al., 2016). In the generation
process, the freeze constraint parameter plays an important role for the output result and it is
related to the expected edge-length of the last-return TIN. As suggested on the webpage of the
tool  (https://rapidlasso.com/2016/02/03/generating-spike-free-digital-surface-models-from-
lidar/), different values close to the triple of the pulse spacing were tested. The value of 0.2 was
at the end chosen to better represent the area without oversimplifying the scene nor maintaining
too many low elevation points.

In this research the spike free CHM (Sf_CHM) was first generated on single tiles and these were
then assembled to form the model of the whole area. Lastly, the resulting output was also
rasterized in order to be implemented in the Watershed segmentation. In addition to the Sf_CHM
generation, also a standard CHM (St_CHM) was produced constructing a TIN based on solely the
first returns. The two models were than compared to assess the difference between them, and
check if the implemented framework was able to avoid the formation of pits in the Sf_CHM.

itcSegment segmentation

The second segmentation algorithm that was tested is the itcSegment as implemented in the
itcLiDAR package (Dalponte, M., 2018). Contrary to AMS3D, the method segments the scene
based on the CHM instead of the whole point cloud, and consequently it is not able to identify
submerged trees and only detect those canopy that are visible in the CHM.

The delineation of individual tree crowns starts finding local maxima within the rasterized CHM,
set them as treetops, and successively grow and delineate regions around these maxima
following a multi-step procedure. Table 4 shows the function parameters with a brief description,
while the complete segmentation process is further described below.

— In the first step the rasterized CHM is smoothed through the application of a mean-low-
pass filter, which reduces the number of possible treetops.

— Local maxima are located using a variable moving window whose sides are constrained
to vary between 9 and 15 pixels, according to the current cell height. A raster pixel is
labelled as local maximum if it is higher than its neighbouring pixels, and higher than a
pre-defined threshold, set to 10 meters.

— For each treetop, the heights of the neighbouring pixels are extracted. They are then
added to the growing region if lower than the treetop, and within a user-defined range.
The range is restricted by 2 thresholds, TRESHseed and TRESHCrown, which were
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respectively set to 0.3 and 0.55. A pixel is added only if its height is greater than the
treetop height multiplied by TRESHseed, and the mean region height multiplied by
TRESHCrown.

— From each region the first LiDAR return are extracted

— Finally, a 2D convex hull is constructed around these points.

Contrary to AMS3D algorithm, the itcLiDAR function already returns the segmented trees in the
form of ITC polygons whose height is already equalled to the one of the highest LiDAR point in
the region. As a result, only CD values had to be retrieved, and they were calculated following
the same framework developed for the ASM3D output. Also in this case ITCs that were not
intersecting the original AOI were excluded from the analysis as well as ITCs with a surface area
smaller than 1 m? while none of them were found to have an excessively large area.

Table 4: itcLiDAR function settings

Parameter Value Parameter use
Epsg 322552 ;LZJL';/I Set coordinate system
Resolution 0.1m Set CHM resolution
MinSearchFilSize 9 pixels Set minimum dimension of search window
MaxSearchFilSize 25 pixels Set maximum dimension of search window
15t growing threshold. A pixel is added to the
TRESHSeed 0.3 region if its height is greater than the treetop

height multiplied by this value
2" Growing threshold. A pixel is added to a region
TRESHCrown 0.55 if its height is greater than the current mean height
of the region multiplied by this value
Minimum value of the crown diameter of a
detected tree
Maximum value of the crown diameter of a
detected tree
HeightTreshold 10m Minimum height of the trees
Weighting exponent used to increase the contrast
in the CHM used to detect the local maxima

minDIST 4m

maxDIST 40 m

cwW 2
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Watershed segmentation

The last approach to delineate tree crowns that was tested is a marker-controlled inverse
watershed segmentation. As for itcSegment algorithm the procedure started with smoothing the
input CHM to reduce the possibility of locating additional treetops, which is common in the case
of trees without a clear apex. This operation was performed applying a gaussian filter which
reduced the pixels’ height variability based on a moving window of 7 x 7 pixels. Once the input
CHM has been smoothed it was possible to proceed with the delineation of crowns. In this case,
the procedure implemented a variable window filter algorithm, as developed by Popescu and
Wynne (2004) and executed by the vmf function of ForestTools R package (Plowright, A., 2018).
The variable window size is calculated at any location as a function of the height of the current
pixel. Other parameters, such as the minimum height to consider a pixel a possible treetop, the
type of neighbouring window (Figure 7), and the maximum size of the variable window also
needed to be specified. Before selecting the final parameters for the variable window (Table 5)
several settings were tested and the resulting outputs were visually assessed to determine the
most suitable ones. The testing particularly focused of the winFun parameter, which was found
to have the most significant impact on the identification of treetops. To perform the
segmentation, a marker — controlled watershed algorithm was applied to segment the area using
the previously identified treetops as initial growing regions. The function mcwatershed, as
implemented in lidR package (Roussel, J., 2019) takes a CHM and treetop locations as inputs and
returns a raster with the individual segmented crowns. Furthermore, to avoid the understory
vegetation to be added to tree regions, all those pixels with a height value smaller than 5 m were
excluded from the segmentation. Once the segmentation was completed the obtained ITCs were
again processed to retrieve the necessary information. TH values of each ITC were set equal to
the corresponding treetop height, while CD were again calculated as the average of four ITCs
axis. Finally, ITCs which did not intersect the AOI or had a surface area either smaller than 1 m2or
larger than 1000 m? were again excluded.

Table 5: vwf function parameters overview.

Vwf parameter Value Parameter use
The function to determine the size of
winFun X *0.06 + 0.5 the window at any given location based

on the height of the current pixel (x).
The minimum height value for

minHeight 10 m a CHM pixel to be considered as a
potential treetop
maxDiameter 100 pixels Maximum window dimensions.

Define the smallest possible search

. W. N . h “ ”
minWinNeig Queen window type (Figure 7).

a b

Figure 7: Queen’s (a), and Rook’s neighbourhood windows. In dark green the central pixel that is being processed,
and in light green the pixels included for the identification of treetops.
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Above Ground Biomass estimation

= Tree reference estimates

In order to evaluate the AGB estimates of segmented ITCs, in absence of harvested-tree AGB
measures, it has been decided to compare the obtained AGB values with “reference”
estimates calculated on every stem. To maintain coherence with standard AGB estimates of
the area of study, the same approach used by the local research group was followed, making
use of the BIOMASS R package (Rejou-Mechain et al., 2017). AGB was estimated by applying
a pantropical allometric model based on DBH, TH, and Wood Density (WD). The model,
developed by Chave et al. (2014) (Equation 1), was implemented through the computeAGB
function.

AGB = —0.0673 x (WD «TH X DBH?)%97¢ Equation 1

Where WD (g/cm3) is the wood density, TH (m) is the tree height, and DBH (cm) is the
Diameter at Breast Height, parameters that were retrieved or estimated based on the
information contained in the stem map.

First, the WD of each stem was retrieved by applying the getWoodDensity function, which
estimates WD values based on Genus, Species, and Family information using the global wood
density database (Chave et al., 2009).

After that, TH values were also estimated at stem level by applying an allometric model
developed by Chave et al.,, 2014 (Equation 2). The model, implemented in the retrieveH
function, requires the DBH of stems to be specified and can either take the coordinates of
the plot or the geographic region to calculate the so-called environmental stress parameter
(E), with the first option that was preferred returning a lower Residual Standard Error (RSE)
value (0.243 m vs 5.285 m). The calculation of E (Equation 3) involves the use of three
bioclimatic variables; namely, Temperature Seasonality (TS) which represents heat stress,
Climatic Water Deficit (CWD), and Precipitation Seasonality (PS). The overall environmental
stress which Paracou forest is subjected to was estimated to equal —0.1077847.

Once all the required parameters were retrieved for each stem, AGB was finally estimated
for all trees with a DBH greater than 10 cm.

In(H) = 0.803 — E + 0.760 In(D) — 0.0340[In(D)]? Equation 2

E =(0.178 X TS —0.938 x CWD x —6.61 x PS) x 1073 Equation 3
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=  Tree derived estimates

To estimate AGB for the automatically segmented trees the allometric equation
developed in Jucker et al. (2016) was implemented. The equation is solely based on TH
and CD values, which were already computed for each ITC. The allometric model,
presented in Equation 4, was implemented by means of the agb function of itcSegment
R package(Dalponte, M., 2018), setting the species group parameter to angiosperm and
dividing the output value by 1000 to get estimates in Mg.

2
AGB = (0.016 + ag) + (TH x CD)@013+Fe) x exp(=2=) Equation 4

Where TH and CD are both expressed in meters. The terms aG, and BG are functional group-
dependent parameters which account for the difference in scaling constant and scaling
exponent between angiosperm and gymnosperm trees. In this study the most numerous tree
species are found to be angiosperms and thus the values aG, and BG need to equal 0.
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Validation

Segmentation algorithms validation

To validate and compare the segmentation results of each algorithm, two procedures were
developed. The first one aimed at validating the segmented ITCs based on the stem map by
computing a confusion matrix with relative statistics. The second procedure was developed
to assess ITCs similarity with reference crowns by calculating the Jaccard Index. Both
methodologies are explained in further details in the next paragraphs.

e Confusion matrix

Due to the nature of the ITCs and stems datasets, the generation of the confusion matrix
posed several problems that needed to be solved. In standard situations the computation
of the confusion matrix provides a straightforward mean to assess the classification of
two or more different classes based on true reference values. In image classification for
example, each pixel is valuated as correctly or wrongly classified comparing it with the
corresponding pixel in the true dataset. The reliability of such a comparison is guaranteed
by the location information embedded in each pixel. In this study, such a comparison was
not possible. While the ITCs features were in the form of polygons, the ground truth
dataset was composed of simple points, so that a conventional assessment between the
two datasets were not feasible. Furthermore, the uncertainty of stem locations added a
further challenge when assessing the segmentation outputs. In order to overcome these
limitations the comparison and match of segmented trees with the reference stems was
performed with the introduction of different thresholds.

First, to evaluate if a tree was segmented in the correct location, the distance between
the ITC centroid and the intersecting stems was calculated. If the distance was found to
be smaller than a user-defined threshold (Thresh_D), the segmented tree was considered
as a possible match with the corresponding stem. In this study the influence of three
different distances was explored, namely 0.5 m, 1 m, and 2m. Conversely, since the LiDAR
data had not been co-registered yet when testing the AMS3D algorithm, the distance
thresholds was set to 4 meters.

Moreover, the validation of AMS3D ITCs posed an extra challenge for matching stems
with the right crowns. The algorithm in fact, can also segments understory trees and thus
produced overlapping polygons that may ‘compete’ for the same stem. For some stems
it can therefore occur that the closest ITC does not represent the corresponding canopy,
leading to a wrong match that should be avoided. To this end an extra constraint had to
be set. Based on the available data, two tree attributes could be exploited to prevent
erroneous association, TH and DBH. The former, was already obtained by applying
Equation 2, while the latter could be estimated for each ITC based on CD and TH measures
applying Jucker et al. (2016) DBH allometric model, Equation 5.

DBH = 0.557 X (TH x CD )%8% X exp 0.056%/2 Equation 5

Both approaches were tested during the analysis and both showed high discrepancies
between observed and estimated values. At the end, it was decided to estimate stem
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height and use the difference with the ITC height as second constraint. The choice to
exclude estimated DBH from the validation was driven by its high dependency on CD. Even
though CD has been proved to be essential for differentiating trees of similar height but
having substantially different trunk sizes (Jucker et al., 2016), the measure may already
present a certain level of uncertainty due to the segmentation process. Furthermore, it
was preferred to exclude the influence of ITCs from the computation of the second
threshold. On the other hand, the estimation of tree height based on stem DBH was
considered to only add a small uncertainty which corresponded to an RSE of 0.243 m.
Nevertheless when deciding the most suitable threshold value to set, another
consideration had to be made. As a matter of fact the AMS3D method, when segmenting
a tree, might erroneously include points of adjacent canopies. These points, that can be
higher than any other in the current tree cluster, add an extra source of error that should
be considered.

As a result, the stems that were already found to be within the distance threshold were
inspected comparing TH with the EstTH of the current stem. In order to limit the possibility
of excluding the right match because of height difference, and exclude clearly erroneous
stem-ITC matched, two thresholds (Thresh_H) of 10 and 15 m were tested. Finally, among
the remaining possible matches that satisfied both constraints (Thresh_D and Thresh_H),
the closest stem was paired with the ITC and labelled as True Positive (TP).

After that, unmatched ITCs were labelled as False Positive (FP) whereas unmatched stems
were labelled as False Negative (FN). For the calculation of True Negatives (TN), another
issue had to be overcome. In fact, due to the nature of data again, it was not possible to
assess when the segmentation correctly had not segmented a tree at a certain location.
To solve this problem it has been decided to randomly select sample locations within the
plot that could be considered as points where no tree was present. This was achieved by
selecting points that were at a certain distance from other stems. The distance was then
set equal to the threshold previously used for validating the ITCs locations. Furthermore,
to ensure an even distribution of stems (points with a tree) and random samples (point
without a tree), the latter were selected in the same number as the stems (2291). FN ITCs
were then tested for possible matches with sample points based again on the current
distance threshold. At the end of the process, the unmatched sample points were labelled
as TN. With this information available the computation of the confusion matrix was
completed, and the analysis could proceed calculating several statistics (Equations 6-10).
The singular steps taken to compute the confusion matrix and the associated statistics are
presented below.

FP+FN

Error Rate (ERR) = ———— Equation 6
TP+TN+FP+FN
TP+TN
Accuracy (ACC) = ———— Equation 7
TP+TN+FP+FN
. TP ,
Precison (PREC) = Equation 8
TP+FP
TP
Recall (REC) = Equation 9
TP+FN
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REC*PREC
F score (Fl) =2 * RECLPREC Equation 10

With TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative.

The generation of the confusion matrix with the relative statistics was repeated on two
ITCs subsets obtained by setting a TH value of 20 m as cut-off point. Dividing the identified
crowns based on their height will provide further details regarding the accuracy of the
algorithms and their ability to segment low and high vegetation.

As an example, Figure 8 illustrates four different situations where segmented ITCs are
respectively assessed as TP (a), FP (b), TN (c), and FN (d). In the first case it can be observed
that the validation algorithm was able to match seven different ITCs (red polygons) which
partly or completely overlapped. The distance threshold allowed to pair most tree crowns
with the corresponding stems (yellow dots), the height difference threshold made sure
that no crowns were paired with a wrong stem. In case (b) instead, a FP crown is
presented. Here there were three stems within or in the surroundings of the ITC, but none
was matched. Two of them did not satisfy the distance constraint since they were further
than 2 meters, the closest stem instead exceeded the height difference threshold of 15 m
and hence was not matched either. In figure (c) a random point (light blue dot) is shown
with a 2 m buffer around, as it is visible, no stem fell within the buffer and thus the point
was labelled as TN. In the last case (d), a stem (yellow dot) is displayed with a 2 meters
buffer around. Since none of the surrounding crowns barycentres are falling within the
buffer the stem represented a FN, in other words, a tree that could not be segmented by
the algorithm or matched during the validation process.

Figure 8: (a) True Positive: Individual Tree Canopies (ITCs) matched with a stem, (b) False Positive: ITC not
matched with any stem (two stems in the upper part are further than 2 m while the stem on the right didn’t
matched the height difference constraint), (c) True Negative: random sampled point with no ITC centroid
closer than 2 meters, (d) False Negative: stem with no ITC centroid closer than 2 m. Legend: ITCs = red
polygons, ITC centroids = red dots, stems = vyellow dots, 2m_stem_buffer = yellow buffer,
random_sample_point = light blue dot, 2m_random_sample_buffer = light blue buffer.
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e Jaccard Index

To evaluate the accuracy of segmented crown shapes, a sample of five trees was
generated for each of the following tree classes.

— Tree in the emergent canopy layer (ECT)
— Tree in the main canopy layer (MCT)
— Tree in the sub-canopy layer (SCT)

The reference trees were first manually segmented from the UAV point cloud and their
convex hull (crown polygon) was then computed. The obtained crowns, shown in Figure
9, were then implemented for the calculation of the Jaccard index. The index, presented
in Equation 11, tests the similarity between two crowns computing the ratio between
their intersection and union. Following the approach of Aubry-Kientz et al. (2019), a crown
was considered correctly segmented when the Jaccard Index exceeded the threshold
value of 0.5. The presented methodology was only applied on those ITCs that had already
been assessed as correctly matched. In this way the possibility of retrieving high Jaccard
indices on wrongly identified crowns was avoided. On the other hand, it should be
considered the possibility that crowns with a higher similarity might have been labelled
as False Positive and thus not taken into consideration in the index computation. When
more TPs intersected the reference crown, the one with the biggest overlap, assumed to
be the corresponding ITC, was selected for the Jaccard Index calculation. Finally, in order
to make the validation meaningful also for the raster-based segmentations, which cannot
detect trees in the subcanopy layers, it was decided to segment low elevation trees which
were still represented in the CHM.

__|ANnB| .
J(4,B) = 1408 Equation 11

Jaccard Index Reference Trees
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Figure 9 Reference, manually segmented ITCs. The colours indicate the three different classes. ECT: red, MICT:
blue and SCT: light blue
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= Above Ground Biomass estimates comparison

To examine which segmentation algorithm produced the most reliable AGB estimates and to
investigate their ability to predict AGB at tree level two different comparisons were
performed. At first, we compared the obtained AGB estimates with the reference ones at plot
level calculating absolute error (Equation 12) and relative error (Equation 13). The
assessment can give a first indication whether the algorithms over- or underestimate the
forest biomass. Comparing AGB at tree level instead is useful to test the prediction accuracy
of the model itself and the segmentations performance for estimating biomass of small and
large trees. In the latter comparison exclusively True Positive ITCs could be considered as the
only ones with an associated stem. To test whether the adopted framework led to an over or
underestimation of AGB based on tree size, ITCs and stems were divided into four DBH
classes:

— DBH<20cm
— 20cm<DBH<40cm
— 40cm < DBH<60cm
— DBH>60cm

In order to compare the reference (AGBRef) and estimated (AGBEst) AGB values, two
measures of average error were computed: the root mean square error (RMSE, in Mg),
Equation 14, and the relative systematic error (or bias, in %), defined in Equation 15 .

AGBgyror = AGBEst — AGBRef Equation 12
AGBrei grror = % Equation 13
RMSE = \/Z?zl(AGBESt;i—AGBRef’i)Z Equation 14

AGBEst,i— AGBRef,i

B _ n
Bias = 1/N x X' ( AGBRef,i

) X 100 Equation 15
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Results

UAV Data pre-processing

As a result of the pre-processing operations performed on the raw data the obtained point cloud
for the area of study is composed of 371,034,339 points distributed over 4 hectares and returns
a final point density of 7502.31 points per square meter. Of all points, 1,666,070 have been
classified as ground returns, which is about 0.5 % of the total point count. Additional information
about the obtained point cloud dataset can be found in Table 6.

Table 6: Main characteristics for the point cloud of the Area Of Study

Attribute Min Max
X 265148 1314654
Y -152120 897390
VA 551721 799224
Intensity 0 62966
Return number 1 7
Number of returns 1 7
Classification -74 71
Point density (pts/m?) All returns: 7502.31 Last returns: 4441.31
Point spacing (m) All returns: 0.01 Last returns: 0.02
Coordinate System WGS 84 / UTM zone 22N, epsg = 32622
Number of points 371,034,339
Ground points 1,666,070

=  Data down-sampling and normalization

During the point density testing, seven down-sampled versions of the original test tile were
obtained. Resulting point densities and percentages of original points can be found in Table
7. Before proceeding to down-sample the whole point cloud and continue with the analysis,
the AMS3D segmentation was run on each thinned version of the test tile and the results
were analysed to identify at which point density the algorithm performed the best. A grid size
of 0.05 m was at the end identified as the most suitable option and the down-sample of the
whole point cloud was performed. The thinning process generated a point cloud composed
of 19,022,940 points which corresponded to 5.13 % of the original point count. The point
density dropped from 7502.31 to 384.64 (pts/m?) for all returns and from 4441.31 to 231.32
(pts/m?) for only last returns. The spacing between individual returns increased to 0.05 m
(grid size) for all returns and 0.07 m for last returns only. Figure 10 presented a horizontal
crown section before and after the down-sampling process (grid size 0.05) and gives an idea
about the inevitable loss of information when the point density is reduced. At full point
density tree branches are clearly distinguishable and well represented. In the thinned version
instead, only few main branches are still visible, however the crown boundaries seem to still
fairly represent the original ones. This is of extreme importance for the segmentation
methods, especially for those based on the CHM. In fact, when rasterizing the point cloud it
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is important that points at the borders of crowns are still present so that the corresponding
pixels will get assigned with an accurate height value. On the other hand, the lack of points
within the canopy does not represent a problem since those pixels will be calculated based
on higher points which represent the top of the canopy and that are still present

Table 7: Point density (pts/m2), and percentage of remaining original points for each down-sampled test
performed on Tile 286400_583100.Higlighted in yellow the down-sample level used to thin the final dataset.

Points density Percentage of
Test Tile Grid size original points
(pts/m?)

(%)
286400_583100 9,489 100
Test_0.0125 0.0125 1922.82 75
Test_0.025 0.025 1054.15 41
Test_0.05 0.05 350.89 13
Test_0.1 0.1 93.43 3.6
Test_0.15 0.15 42.08 1.6
Test_0.2 0.2 23.87 0.9
Test_0.3 0.3 10.71 0.4

Figure 10: Horizontal section of an emergent canopy at full point density (a), and at a point density of 350.89
pts/m? (b).
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Adaptive Mean Shift 3D Segmentation

=  AMS3D testing

When testing the AMS3D algorithm, the analysis focused on the effect of three parameters.
The first one to be inspected was the maximum distance to merge two modes (MaxDist),
which was found to control the aggregation of individual clusters. Small MaxDist values
prevent the algorithm to merge points that converge to nearby modes. On the other hand,
high values cause the grouping of individual clusters into larger ones. Merging different
modes can help to connect different regions of the same tree, avoiding over-segmentation
of the scene. However, excessively large thresholds result in the combination of far clusters
which might belong to different trees, causing under-segmentation. The MaxDist parameter
should hence be carefully selected considering the nature of the forest, the point cloud
density, and the research goal. In fact, in the presence of a dense understory layer, the
algorithm will be more prone to identify many modes segmenting a high number of trees.
The same result might result from very high-density point clouds. Finally, depending on the
goal of the project, one might decide to set a large MaxDist value, under-segment the lower
strata, but avoid over-segmentation of big emergent canopies, which are well-known to
store large quantities of carbon (Slik et al., 2013) and thus may be more relevant for biomass
estimation.

The second parameter, the gamma value for the Gaussian profile (Gamma) has a completely
different effect on the segmentation, affecting the algorithm efficiency for distinguishing
adjacent, interconnecting canopies. Low values will widen the Gaussian profile increasing its
variance and thus assigning higher weights to points that are further away in the horizontal
dimension. Consequently, the computation of the bandwidth barycentre will be more
affected by far points and the algorithm will struggle to separate adjacent crowns. On the
other hand, high Gamma values will narrow the Gaussian kernel preventing the barycentre
to move in the horizontal direction favouring the identification of a larger number of modes
and hence the under-segmentation of big trees.

The last parameter tested was the minimum number of modes to form a cluster (MinMod),
which can be thought as the minimum number of points to segment a tree. This parameter
strongly depends on the point cloud density and it is expected to primarily influence down-
sampled tiles where single trees are composed of few points. Small MinMod values will
prevent the segmentation of clusters of too few points whereas high values will cause the
fusion of different trees due to their insufficient number of points.

After running the AMS3D algorithm on the test tiles and retrieving the ITC polygons, the
effect of the above-mentioned parameters was assessed comparing different attributes of
the obtained outputs.
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e Number of ITCs

The number of segmented trees gives a first indication about the degree of the
segmentation. A large number of ITCs may be an indication of over segmentation while a
small number may suggest that trees have been under-segmented or clustered together.
Segmenting the scene with a point density of 10.71 pts/m2 and a MinMod value of 100
(Test 18_03) returned the least number of ITCs, on the contrary, the largest number was
observed when segmenting a high density point cloud (1922.82 pts/m2) with the smallest
MaxDist value (Test 11_00125).

When assessing the influence of the three parameters it was clear that MaxDist had a
greater influence than the other two parameters. Figure 11 (a), shows that increasing the
distance from 0.5 m to 1.5 m caused a reduction of ITCs which dropped from about 3700
to about 700. Conversely, an increase of Gamma (Figure 11 (b)), as expected, led the
algorithm to segment a greater number of trees. Following the same pattern of the first
graph, also the MinMod parameter resulted in fewer trees when set to larger values, but
this time the difference was not as pronounced as in the first case (Figure 11 (c)).
Furthermore, observing the different point colours it is interesting to notice how tiles that
were heavily down-sampled corresponded to smallest number of segmented ITCs.
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Figure 11: Graphs showing the relationship between the number of segmented crowns (ITCs) and the three
parameters explored during the Adaptive Mean Shift 3D algorithm testing, (a) Maximum distance to merge
two modes (MaxDist), (b) gamma value for the gaussian kernel (Gamma), and (c) Minimum number of
modes to create a cluster (MinMod). Different point colours show the point density of the down-sampled
tests.

e Understory points

Every test grouped a large number of low elevation points together, producing a large
cluster that extended over the whole area of study. The size of this big cluster, which was
composed of mainly understory points, was found to primarily depend on the MaxDist
parameter. The clustering of points from all over the plot can be explained by the fact
that in low forest layers, vegetation features form a dense, homogeneous set of points.
Here the points lead to modes that are close to each other and thus, are more prone to
be combined into single clusters when increasing the merging threshold. When inspecting
the relationship between the understory points, expressed as percentage of the total
points number, three different patterns were identified. In Figure 12 (a), the three densest
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versions of the test tile are shown (point density of 1922.82 pts/m2, 1054.15 pts/m2,
350.89 pts/m2) and they depict a clear pattern between the MaxDist parameter and the
resulting number of that populate the understory cluster. For higher values of MaxDist
the total number of points that have been grouped also increases, with test_13_0.05
(MaxDist = 1.5 m and Down-sample percentage = 13.7%) having the densest understory
cluster which contain about 10 % of the total amount of point. The second graph, Figure
12(b), illustrates the atypical case of test_13_0.1. Here the percentage of understory
points dropped from about 8% to about 4% when MaxDist increased from 0.5 mto 1 m,
and then rose again up to about 9 % for a MaxDist of 1.5 m. At first, the low percentage
of understory points of the second case might be interpreted as an error. However, when
visually assessing the three cases it was found that at this value of the merging threshold,
additional large point clusters were generated. Therefore, the typical big understory
group counted a smaller number of points and thus the lower percentage. Once MaxDist
was increased again to 1.5 m, these groups were merged again with the big cluster, that
now consisted of about 10% of the total number of points. The last graph, Figure 12 (c),
which referred to the three tests with the lowest point densities, depict a completely
opposite pattern compared to the first case. Here, the percentage of understory points
decreases with the increase of MaxDist. As in the previous case, with higher MaxDist
values more and more big clusters were segmented in the lower forest layer. As a result,
the big understory group presents, in percentage, less points than the cases with a smaller
merging threshold.
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Figure 12: Graphs showing the relationship between the percentage of points that have been segmented as
asingle, large understory cluster and the Maximum distance to merge two modes parameter (MaxDist). The
point data referred to the segmentation outputs of test 13 obtained at different down-sampling levels. (a)
test tiles at a point density of 1922.82 pts/m? 1054.15 pts/m? and 350.89 pts/m?. (b) test tile at a point
density of 93.43 pts/m?, and (c) test tiles at a point density of 42.08 pts/m?, 23.87 pts/m?, and 10.71 pts/m-.

Figure 13:Points that were clustered together with different values set for the Maximum distance to merge
two modes parameter (MaxDist) at a point density of 1054.15 pts/m?. (a) MaxDist of 0.5 m, (b) MaxDist of
1 m, and (c) MaxDist of 1.5 m.
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e Point density

The AMS3D segmentation was originally developed to segment ALS point clouds, which present
much lower point densities than the ones obtained with UAV systems. The algorithm, however,
does not evaluate the density function itself but normalized local gradients, thus the point
density at which the crowns are sampled has only a slight impact on the identification of
individual vegetation features (Ferraz et al., 2012). Nevertheless, it was decided to test this
assumption to evaluate the influence of increasing point densities on tree segmentation results.
It was found that the amount of points does affect the number of segmented ITCs, especially at
low MaxDist values, as it shown in Figure 11.

The effect of point density on the segmentation outputs is particularly clear when visually
inspecting singular trees. Figure 14, shows how the AMS3D algorithm, segmented the same tree
at increasing point densities. As it is noticeable, in each figure the tree includes part of other trees
and miss some other sections, but what is more striking is the general representation of the tree
itself. While at low densities only the crow is represented, as the number of returns gradually
increases the shape of the tree becomes more defined and new elements that were not visible
before, now become clear. From a point density of about 350 pts/m? (Figure e) the trunks start
to be visible and help to distinguish the multiple tree in the scene. The reason why at lower point
densities only the upper part of the crows was segmented is again related with the clustering of
low elevation point in one big cluster, referred as understory cluster in the previous sections. On
the other hand it is also true that denser point clouds are indeed able to segment a tree from the
trunk up to the canopy apex but also identify part of the same canopy as separated cluster,
leading to new challenges for finding the best compromise. Nevertheless, the added value of high
point densities is evident as more points enable the algorithm to easily differentiate adjacent
trees.
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Figure 14: Segmentation of the same tree obtained with test 18 at different point density levels. (a)
10.71 pts/m?, (b) 23.87 pts/m? (c) 42.08 pts/m? (d) 93.43 pts/m? (e) 350.89 pts/m? (f) 1054.15
pts/m?, and (g) 1922.82 pts/m?>.
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e Confusion matrix and statistics

To better compare the different tests outcomes, the results were also assessed with the
computation of a confusion matrix and the calculation of the relative statistics. A first
indication of the test performance can be inferred by examining the number of correctly
segmented trees, nevertheless the information is only partially meaningful. In fact, a large
number of TP may also indicate a severe over-segmentation of the area, whit many ITCs
that could be matched with a stem. For this reason the final comparison and assessment
of different tests was based on a more robust indicator which is the F-score. The latter is
a well-known measure of test accuracy which considers both precision and recall and
varies between 0 (worst performance) and 1 (perfect performance). In addition to
evaluate the segmentations based on the whole ITC dataset, two additional datasets were
created based on TH. Computing the confusion matrix and statistics on the two new
subsets helps to better understand the segmentations effectiveness in the lower part of
the canopy (TH < 20 m) and in the higher layer (TH > 20 m). Complete version of the
confusion matrices can be found in Appendix 2.

In Table 8 the five tests that obtained the highest F-score when assessing the whole ITCs
dataset are shown. Four out of the five best results were obtained by test 18 (MaxDist =
1.5, gamma =5, MinMod = 50), which generated the best statistics compared to the other
tests. The best results were obtained with a point density of 42.08 pts/m? and reached a
F-score of 0.4563.

Table 8: Statistics of the five best tests of the Adaptive Mean Shift 3D segmentation algorithm based on the
obtained F— scores for the whole dataset.

Point
Test density Error Rate Accuracy Precision Recall F-Score
(pts/m?)
Test_18 42.08 0.5679 0.4321 0.4023 0.5271 0.4563
Test_18 10.71 0.5357 0.4643 0.6000 0.3399 0.4340
Test_18 23.87 0.5661 0.4339 0.4394 0.4286 0.4339
Test_15 10.71 0.5897 0.4103 0.3904 0.4384 0.4130
Test_18 93.43 0.6292 0.3708 0.3077 0.6108 0.4092

When considering the segmentation of only high trees (Table 9), test 18 confirmed to be
one of the most accurate, generating the first and third best statistics, with test 15 which
returned the second highest F-score. It is interesting to notice that for high trees the best
segmentations have been obtained with point densities of more than 1000 pts/m?. A
possible explanation is that at high densities the upper canopies, which contain most of
the points, are finer represented and thus lead to a more accurate delineation of big trees.
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Table 9: Statistics of the five best tests of the Adaptive Mean Shift 3D segmentation algorithm based on the
obtained F—scores for the high-trees subset (Tree Height > 20 m).

Point
Test density  Error Rate Accuracy Precision Recall F-Score
(pts/m?)
Test_18 1054.15 0.5119 0.4881 0.5272 0.4778 0.5013
Test_13 1054.15 0.5278 0.4722 0.4854 0.4926 0.4890
Test_18 1922.82 0.5237 0.4763 0.5109 0.4631 0.4858
Test_17 1054.15 0.5315 0.4685 0.4806 0.4877 0.4841
Test_12 1054.15 0.5482 0.4518 0.4375 0.5172 0.4740

A similar situation occurs when considering the subset composed of short trees (TH< 20
m), with test 18 that was again found to be the most effective. As shown in Table 10, in
this case a lower point density (350 pts/m?) produced the best results, however, a
significant decrease of about 0.2 was observed in the F-scores. The poorer results
corroborate that in general, the segmentation of understory vegetation still represents a
major challenge.

In conclusion, the analysis of the obtained confusion matrices gave an unequivocal
indication on the most effective settings for segmenting the test tile. Test 18
outperformed other tests for both low and high vegetation. It is thus clear that a higher
value of MinMod can significantly improve the segmentation avoiding the creation of
small cluster of points and the consequent over-segmentation of the area.

Table 10: Statistics of the five best tests of the Adaptive Mean Shift 3D segmentation algorithm based on
the obtained F- scores for the low-trees subset (Tree Height < 20 m).

Point
Test density Error Rate Accuracy Precision Recall F-Score
(pts/m?)
Test_18 350.89 0.7129 0.2871 0.2162 0.4483 0.2917
Test_18 1054.15 0.7201 0.2799 0.2082 0.4483 0.2844
Test_15 1054.15 0.7262 0.2738 0.2018 0.4483 0.2783
Test_18 1922.82 0.7268 0.2732 0.2005 0.4286 0.2732
Test_18 93.43 0.6820 0.3180 0.2589 0.2857 0.2717
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e Jaccard Index:

The computation of the Jaccard index, despite the limited number of reference crowns,
returns a first indication of the congruency of segmented canopies. Table 11 lists, for each
reference tree, the five highest Jaccard indices and the corresponding tests. In the case of
the emergent canopy (ECT), test 15, 18, 12, and 16 generated the same ITC and thus
obtain an equal Jaccard index of 0.8467, which indicates an excellent similarity. These
tests are characterized by a MaxDist of 1.5 m except for test 12 where the parameter was
set equal to 1 m, indicating that low MaxDist values may not appropriate for segmenting
large crowns. The overlap then dropped to about 0.58 for both the remaining reference
crowns, indicating the general higher complexity of accurately segmenting trees in the
lower layers. It is interesting to notice that also in this case larger MaxDist values produced
the best results.

Table 11: List of five matched segmented ITCs with the highest Jaccard index for each reference tree.

ITC test Y Reference tree Jaccard Index
(pts/m?)
15 1054.15 ECT 0.8467
18 1054.15 ECT 0.8467
12 1054.15 ECT 0.8467
16 1054.15 ECT 0.8467
13 23.87 ECT 0.8378
15 350.89 MCT 0.5852
18 93.43 MCT 0.5840
18 350.89 MCT 0.5679
17 42.08 MCT 0.5582
13 10.71 SCT 0.5876
17 10.71 SCT 0.5876
12 10.71 SCT 0.5876
15 10.71 SCT 0.5876
18 10.71 SCT 0.5876

e Visual comparison

Finally, as in the case of point density, outputs of different tests were also compared at
tree level. The same individual tree was extracted from the point clouds and the
segmentation outcomes were visually inspected. In general, none of the test was able to
segment the investigated tree without including parts of adjacent trees or segmenting
section of the crown as different clusters. Inspecting the single trees shown in Figure 15,
it is interesting to notice how multiple tests produced quite similar clusters, with only test
15 (d) and 16 (e) that shows higly different results. These tests were respectively designed
to experiment with a lower and a higher value of gamma, which plays an important role
when differentiating adjacent trees. The tests confirm that at low gamma values, far
points in the horizontal direction still get a high weight in the computation of the
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bandwidth barycenter. As a result, the algorithm struggles to separate canopies that
interpenetrate each others, which is confirmed by the big cluster in Error! Reference
source not found. (d) that comprends parts of several canopies.

On the other hand, varying MaxDist and MinMod parameters does not generate any
appreciatable difference in the segmentation.

Figure 15: Extraction of a sample tree and the adjacent canopies obtained with different test setting at a
point density of 1054.15 pts /m?. (a) Test 11, (b) Test 12, (c) Test 13, (d) Test 15, (e) Test 16, (f) Test 17, and
(g) Test 18.
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=  Adaptive Mean Shift 3D AOI

Figure 16: Segmented scene of Area Of Study obtained with the AMS3D segmentation algorithm.

The segmentaiton of whole area (10 m buffer included), shown in Figure 16, generated a
total of 6723 ITCs of which, 967 have been excluded from the analysis since they were not
intersecting the original area of study (4 ha, no buffer) or because their size was not congrous
with a canopy. Figure 17 shows the big understory cluster (a) and others big group of points
(b) that were removed before proceeding with the segmentation assessment. The remaining
5756 segmented polygons, which are about 2.5 times more than the reference stems, ranged
from very small trees, with a minimum Crown Area of 1.03 m? and minimum Tree Height of
0.540 m, up to large trees with an area of over 500 m? and a height equal to 45.21 m.
Summary statistics of the obtained ITCs can be found in Table 12.

The understory cluster (Figure 17 (a)), whose area corresponded to the whole plot surface,
contained 694,634 points with an average height of 6.93 m. In addition to the latter cluster,
the segmentation also produced the formation of other big groups of points (Figure 17 (b))
that were removed during the post-processing operations.These large set of points ranged
from an area of 1215.86 m? to 4305.09 m? and comprended points up to 13.95 m. The
exclusion of such clusters prevented the chance of matching them with a stem but on the
other hand, it negatively affected the segmentation results removing a large number of
points and thus understory trees. Compared to the segmentation results obtained by Kientz
et al. (2019), which are an average over six different plots in Paracou, the obtained
segmentation produced more ITCs (6723 vs 2564), with in general smaller crowns (mean
area of 24.78 m? vs 32.46m?).
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Table 12: Summary statistics of Crown Area, Crown Diameter, and Tree Height of Adaptive Mean Shift 3D
algorithm-segmented trees in the Area Of Study.

Summary statistic Crown Area (CA) Crown( ICJI;a)meter Tree Height (TH)
Min 1.03 m? 0.81m 0.54 m
Mean 24.78 m? 4.68m 17.82m
Max 690.316 m? 29.21m 4521 m

Figure 17: On the left the big, understory cluster of points is shown, on the right instead, the big clusters that
were removed together with the understory points are plotted with the plot6 AOI and the quarter hectares
boundaries.
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Figure 18: Spike-free Canopy Height Model of the Area Of Study.

The generated Spike-free Canopy Height Model (CHM_Sf), Figure 18, clearly shows the natural
variability of the area of study. While few emergent trees were well-defined and easily
detectable, the rest of the canopy shows a fairly constant height which makes it more
complicated to identify and discern adjacent crowns. Observing the CHM_Sf some other patterns
are clearly visible. While the canopy in the East portion of the plot appear very dense and on
average higher than the rest of the area, the vegetation in the central section looks much sparser
and shorter. The area, which stretches from South-East to North-West, interestingly follows the
course of a small creek that crosses the forest in the same direction. The presence of the stream,
which is located at the bottom of a small valley may be somehow related to the presence of a
sparser vegetation. On the other hand, when inspecting the CHM_Sf in more detail, few more
observations can be made. Figure 19 shows a portion of the spike-free CHM (a) compared to the
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standard CHM (b) and the difference between the two (c). The standard CHM presents numerous
dark pixels that cause noise in the raster. These pits, clearly visible as dark pixels, are produced
when, in the case of LiDAR data, laser beams penetrate the canopy and are reflected by lower
objects or the ground. When converting a point cloud to raster, due to the high resolution of the
raster (0.10 m in this case) some pixels get assigned with a low Z value even if they are located
within a high canopy. As a consequence, the final raster looks noisy and would negatively affect
those segmentation algorithms that rely on the CHM. Compared to the standard CHM, the spike-
free version looks smoother and the crown looks more defined. However the vegetation features
do not appear simplified and result in a fair representation of the canopy.

Figure 19: Visual comparison of the Spike-free CHM (a) and the standard CHM (b), and their difference (c) for a test
tree.

To better quantify the difference between the two models, the raster histograms and summary
statistics were generated and are presented in Figure 20 and Table 13. While the minimum and
maximum values of the two CHM versions differ of few centimetres, the quantiles and the
median values help getting more insights of the difference between the two. In fact, the standard
CHM presents many more low-elevation pixels, which can be thought as pits in the raster. The
difference raster instead, is useful to have an indication of height variation between same pixels
in the two rasters. Figure 10 (c) and Table 9 show that pits reached a depth of 45 m, indicating
that the LiDAR laser beam probably reached the ground in that specific location. On the other
hand, the presence of spikes can also occur but, as the histogram show, it is less common.
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Figure 20: Frequency histograms of pixels height of the Spike-free Canopy Height model (a), the standard Canopy
Height Model (b), and the model of their difference (c).
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Table 13: Summary statistics of the Spike-free Canopy Height model, CHM_Sf (a), the standard Canopy Height Model,
CHM_St (b), and the difference CHM model, CHM_Diff (c).

Statistic CHM_Sf CHM_St CHM_Diff
Min 0.00 -0.04 -45.44
15t Quantile 23.92 18.41 -6.46
Median 28.63 24.32 -2.57
34 Quantile 32.30 28.95 -0.53
Max 46.33 46.21 35.40

Generating the spike-free model on single tiles, as shown in Figure 21, cause some of the points
at the edge to have lower heights compared to the rest of the scene. When the tiles were merged
and the whole scene was successively converted to raster, these points caused the formation of
pixels with low values at the edges of tiles. These height differences in pixel height, produced few
artefacts in the final raster which are detectable as straight lines, Figure 22 (a). These artefacts in
some point reached the depth of 1 meter, as it is shown by the vertical profile of a sample
transect, Figure 22 (b).

Figure 21: Spike-Free point cloud of a test tile
showing the low points at the edges.

Vertical profile, CHM_Sf
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Figure 22: Transect over a artefact section (a) and vertical profile of the transect with the location of the artefact
highlighted in light blue (b).
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itcSegment segmentation
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Figure 23: itcSegment-derived Individual Tree Canopies (red polygons) displayed above the Spike-free Canopy Height
Model (CHM_Sf)

The itcSegment algorithm generated in total 1858 ITCs, 346 of which were removed because not
intersecting the plot, returning 1512 trees within the AOI (Figure 23). As already explained in the
Methodology section, the algorithm operates on the CHM, and thus, it is only able to identify
tree crowns located in the upper canopy. This is confirmed by the fact that the average TH of
segmented canopies equals to 32.150 m, while the lowest identified tree had a height on 12.090
m. For such high trees it would be normal to expect large canopies as well, but this is not the
case. As a matter of fact, as presented by the ITCs summary statistics, (
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Table 14)it is evident how the segmentation generally produced small crowns, with a maximum
area of 49.220 m?, corresponding to a diameter of 7.872 m. As a result, large trees appear over-
segmented as it is clear in Figure 24 where a large, emergent canopy has been divided in multiple
smaller polygons. Furthermore, it is also important to mention that itcSegment was not able to
completely segment the scene, segmenting only 27.84 % of the total 4 ha area.

Table 14: Summary statistics of Crown Area, Crown Diameter, and Tree Height of itcSegment-segmented trees in the
Area Of Study.

Summary statistic Crow Area (m?) Crow Diameter (m) Tree Height (m)
Min 1.02 1.11 12.09
Mean 15.55 4.17 32.15
Max 49.22 7.87 45.03

Figure 24: (a) Portion of the Spike-free Canopy Height Model showing an emergent canopy tree, and (b) itcSegment-
segmented trees (red polygons).

43



Watershed segmentation:
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Figure 25: Watershed-derived Individual Tree Canopies (red polygons) displayed above the Spike-free Canopy Height
Model (CHM_Sf).

The last method that was tested is a marker-based watershed segmentation. It segmented 810
individual canopies, 180 were filtered out since not intersecting the study area, or because they
had an area smaller than 1 m? (Figure 25). Table 15 briefly presents the segmented ITCs summary
statistics. As it can be noticed, the watershed algorithm, which also relies on the CHM, produced
large crowns, and segmented a higher portion of the AOI than itcSegment. It is interesting to
notice that, compared to the other CHM-based algorithm, the watershed method segmented
crows with comparable heights but much larger area with a maximum area of 503.86 m2. The
reason of such big crowns (mean CA = 63.68 m?), lies in the algorithm itself, which is programmed
to segment the whole area, excluding only those pixels with a height smaller than a user-defined
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threshold. In the study the threshold was set to 5 m in order to exclude understory features.
Consequently, some of the segmented ITCs extended all the way to the border of the CHM
resulting in unnatural shapes with straight sides. In general, the algorithm undersegmented the
scene producing large ITCs as already explained, altough some crows were divided into multiple
polygons,Figure 26 (a). In fact, the main driver of the watershed segmentation is the capability
of the algorithm to accurately locate tree tops. When more than one apex is found within a
crown, the tree will result divided into multiple ITCs, on the other hand, if less tree tops than
present are identified, the segmentation will return large polygons which includes multiple trees,
Figure 26 (b). Despite the application of a gaussian smoothing filter to avoid the localization of
spurius maxima, multiple treetops were found within the same canopy. This represents one of
the main limitation of the algorithm, especially in tropical forests where trees, due to the lack of
apical dominance are prone to cause the identification of incorrect treetops.

Table 15: Summary statistics of Crown Area, Crown Diameter, and Tree Height of Watershed-segmented trees in the
Area Of Study.

Summary statistic Crow Area (m?) Crow Diameter (m) Tree Height (m)
Min 1.09 m? 1.11m 1191 m
Mean 63.68 m? 7.74m 31.04m
Max 503.86 m? 25.22 m 45.03 m

Figure 26: A portion of the Spike-free Canopy Height Model showing an emergent canopy that was over-segmented
(a), and different emergent canopies that were instead under-segmented (b).
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Algorithms comparison

Validation thresholds selection

As already presented in the relative section (Segmentation algorithms validation), the developed
framework had to implement two user-defined thresholds to assess the segmentation results,
namely Thresh_D, and Thresh_H. The choice of these two parameters can strongly affect the
validation effectiveness and thus must be carefully made.

In the study, to examine the influence of the buffer size when searching for possible ITC-stem
matches, three different radii were implemented, respectively of 0.5 m, 1 m, and 2 m. As shown
in, the selection of Thresh_D significantly impacted the validation results returning a larger
number of TP for larger thresholds. Small values in fact limit the number of possible matches with
the chance that also correct ITC will be excluded. On the other hand, large values, increasing the
allowed centroid-stem distance can lead to wrong matches. In order to choose the most
appropriate threshold, the segmentation results were visually analysed searching for ITCs that
accurately represented a crown, and the distance between the ITC centroid and the
corresponding stem was measured. For some of the inspected ITCs this distance was found to
vary between 1.5 m and 2 m. Additionally, considering the uncertainty related to the location of
stems, that was found to be +/- 2 m (Aubry-Kientz et al., 2019), the final threshold was set equal
to2m.

The same approach was also followed for the selection of the second threshold. The ITCs and
stems that were found to satisfy the distance constraint were examined and the discrepancy
between the two height measures was calculated. After the inspection of several a threshold of
15 m was determined to be more suitable than the other tested value of 10m.

The obtained statistics, relative to all segmented ITCs, based on the tested Thresh_ D and
Thresh_H values are respectively presented in Table 16: and Table 17. Examining the F-scores
values it is clear how larger Thresh_D values resulted in a more consistent improvement than
when increasing Thresh_H, confirming the higher influence of the distance threshold than the
one-off Thresh_H. Itis also interesting to notice that all the three algorithms showed the greatest
improvement in F1 values when increasing Thresh_D from 1 m to 2 m which can be explained by
the higher chance to match ITCs with a stem. A complete version of the confusion matrix can be
found in Appendix 3.

Table 16: Validation statistics for each segmentation algorithm obtained at different Distance Thresholds.

Segmentation Distance
:Igorithm Threshold ERR Acc PREC REC Fl
AMS3D 0.5 0.7711 0.2289 0.0332 0.0834 0.0475
AMS3D_ 1 0.7563 0.2437 0.1122 0.2815 0.1604
AMS3D 2 0.7042 0.2958 0.2378 0.5967 0.3400
itc_Segment_ 0.5 0.6190 0.3810 0.0304 0.0201 0.0242
itc_Segment_ 1 0.6066 0.3934 0.1171 0.0773 0.0931
itc_Segment_ 2 0.5838 0.4162 0.2784 0.1838 0.2214
Watershed_ 0.5 0.5589 0.4411 0.0238 0.0065 0.0103
Watershed 1 0.5554 0.4446 0.0905 0.0249 0.0390
Watershed_ 2 0.5272 0.4728 0.3333 0.0917 0.1438
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Table 17: Validation statistics for each segmentation algorithm obtained at different Height Thresholds.

Segmentation Height
:Igorithm Thresghold ERR Acc PREC REC Fl
AMS3D_ 15 0.7378 0.2622 0.2079 0.5216 0.2973
AMS3D_ 10 0.7042 0.2958 0.2378 0.5967 0.3400
itc_Segment_ 15 0.6325 0.3675 0.1812 0.1196 0.1441
itc_Segment_ 10 0.5838 0.4162 0.2784 0.1838 0.2214
Watershed 15 0.5555 0.4445 0.2127 0.0585 0.0917
Watershed_ 10 0.5272 0.4728 0.3333 0.0917 0.1438

Segmentations comparison

Among the tested algorithms, AMS3D was the only one that segments the whole 3D point cloud.
itcSegment and Watershed, often referred to as raster-based methods, first need to convert the
3D data into a Canopy Height Model and then perform the segmentation onto the obtained
raster. The different nature of AMS3D allows sub-canopy features identification while in the
other cases only trees belonging to the upper forest layer, and hence visible in the CHM model,
can be extracted. As a result, the AMS3D was able to segment a considerably higher number of
ITC and represents a more valid option when operating in complex, dense, multi-layered forest
as it is the case of the French Guyanese tropical forest. Although the raster-based methods are
significantly faster than AMS3D, they produced scarcer results, confirming their unsuitability on
complex forests. Several studies have proved that CHM-based algorithms have higher accuracy
in coniferous forests rather than deciduous or mixed ones (Duncanson et al., 2014; Kwak et al.,
2007; Vega et al., 2014). The main limitation of such algorithms was found to be the identification
of tree apices which strongly affect the number and size of the final segmented ITCs. Despite the
implementation of smoothing strategies to eliminate spurious maxima in the CHM, and the use
of variable moving windows to search for local maxima, both algorithms were not able to
accurately detect treetops. On the other hand, the AMS3D algorithm does not rely on treetops
identification but segments the 3D point cloud in an iterative process, clustering points that
converge to the same mode, which represents the tree apex. The method, which is also able to
distinguish intersecting canopies, was found to return the overall best results in terms of matched
stems, segmented crowns similarity, and finally AGB estimation.

Regarding the implementation of the three algorithms, some additional remarks are necessary.
While the itcSegment directly generated the ITC polygons, the watershed segmentation returned
the segmented scene in raster format that had to be converted into polygons. The conversion
however did not have any remarkable repercussion on the ITCs shapes. In the case of AMS3D
instead, further postprocessing operations were required.

The three tested algorithms produced very different numbers of segmented trees, with AMS3D
segmentation producing almost four times more ITCs than itcSegment and nine times more than
Watershed segmentation. The AMS3D algorithm also returned the highest percentage of True
Positives, matching 59.67 % of stems in the area of study, whereas the other two methods
respectively matched only 18.38 % and 9.17 % of stems. Another interesting consideration
regards the percentage of segmented area (sum of ITC surface areas), which is in line with the
different algorithm approaches. The AMS3D, which performs the segmentation on the whole
point cloud, and thus can identify trees in the under canopy, segmented a surface of about 3.5

47



times the area of study. The watershed algorithm instead, segmented a slightly bigger surface
than the original plot. This can be explained by the fact that the segmentation is carried out on
the whole CHM with the exception for pixels lower than 5 m. At the same time some canopies
extended beyond the plot borders, returning a final percentage of 100.31%. Different results
were obtained with the itcSegment algorithm which only managed to segment 58.8% of plot
surface.

When assessing the three methods based on the Jaccard Index computation, AMS3D again clearly
outperformed the other two methods with a mean value of 0.3192, which is anyway lower than
0.5, threshold value to consider a crown as correctly segmented. Among the fifteen reference
trees, AMS3D matched 3 of them, itcSegment 0, and watershed algorithm 2. Compared to the
congruence analysis performed by Kientz et al. (2019), the percentage of crowns with a match
are considerably lower for both AMS3D and itcSegment, which it can be partly explained by the
different size of reference datasets (15 vs 1598 manually segmented trees). The information is
summarized in Table 18.

Table 18: For the three segmentation algorithm, number of segmented trees (N°ITCs), percentage of correctly
segmented trees (True Positive), percentage of segmented area (Area Segmented), mean Jaccard Index, and
percentage of crowns with a Jaccard Index > 50% (Crowns with a match).

Crowns with a
Segmentatio N° ITCs True Positive Area Mean match
n algorithm (%) Segmented Jaccard Index (Jaccard Index
>50 %)
AMS3D 5756 59.67 356.65% 0.3192 20.00 %
ltcSegment 1512 18.38 58.80 % 0.1329 0.00 %
Watershed 630 9.17 100.31 % 0.1899 13.33%

Comparing the confusion matrices and statistics of each segmentation confirmed again the
higher performances achieved by AMS3D algorithm, which outperformed the other two methods
based on F-score values. Despite the highest F-score, obtained when considering the whole
dataset, reached a value of 0.34, the value is still low and indicates rather poor results when
matching ITCs and reference stems. In general, all methods returned better results when
assessing the whole dataset, with superior statistics for high trees (TH > 20 m) than short ones
(TH < 20 m). ItcSegment and Watershed, the two CHM-based algorithms presented highly
different results for the two subsets, with very low F-scores for the subcanopy layer. On the other
hand, the AMS3D returned similar values for the two datasets, with an F-score of 0.299 for short
trees and 0.322 for taller ones, confirming the ability of the algorithm in segmenting subcanopy
vegetation. Observing Table 19 it can be noticed that in most of the cases AMS3D obtained the
highest Error rate and the lowest Accuracy and Precision values. Nevertheless, when considering
Recall and F-score it returned the highest values among the three methods. The reason of that
lies in the number of identified ITCs which is far higher than the number of reference stems. On
the other hand, the higher percentage of ITCs assessed as True Positive and thus the fewer not-
matched stems (False Negative) led to higher Recall values and consequently F-scores.
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Table 19: Validation statistics for each segmentation algorithm obtained on the three different datasets. Highlighted
in yellow the segmentation datasets with the highest F-scores.

Segmentation

. Subset Error Rate Accuracy Precision Recall F-Score
algorithm
AMS3D All_Data 0.7042 0.2958 0.2378 0.5967 0.3400
AMS3D TH_u20 0.6617 0.3383 0.2382 0.4020 0.2992
AMS3D TH_o020 0.5513 0.4487 0.3569 0.2933 0.3220

itc_Segment All_Data 0.5838 0.4162 0.2784 0.1838 0.2214
itc_Segment TH_u20 0.5021 0.4979 0.1852 0.0022 0.0043
itc_Segment TH_020 0.5821 0.4179 0.2803 0.1816 0.2204
Watershed All_Data 0.5272 0.4728 0.3333 0.0917 0.1438
Watershed TH_u20 0.4996 0.5004 0.4545 0.0065 0.0129
Watershed TH_o020 0.5277 0.4723 0.3266 0.0851 0.1350

In addition to compare the algorithms based on the validation results, a visual inspection of the
different outputs was also performed. Figure 27 shows how one emergent tree with several
smaller trees in the surroundings were segmented. The Figure confirms the unique ability of
AMS3D to detect and distinguish understory features whereas itcSegment and Watershed,
computing the segmentation on the CHM, group all points that fall below an ITC in the same
cluster. Figure 27 (d,e,f) clearly shows that the main canopy was oversegmented in all the three
cases, with several ITCs polygons within the canopy. ItcSegment clearly performed the worst,
dividing the tree canopy in several small ITCs. The watershed algorithm instead produced bigger
ITCs reducing the oversegmentation of the scene but including parts of adjacent trees.
Conversely AMS3D was the algorithm which oversegmented the less the emergent canopy,
detecting and distinguishing also submerged trees, even though a level of oversegmentation is
also present in the lower layer.

Figure 27: Segmentation of one emergent tree and adjacent trees obtained by the three different segmentation
algorithms. Tree point cloud, and crown polygons segmented with: Adaptive Mean Shift 3D algorithm (a, d),
itcSegment algorithm (b, e), and Watershed algorithm (c, f).
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Above Ground Biomass comparison

At first, the amount of Above Ground Biomass (AGB) was estimated for the whole AOI and
compared among algorithms. The three methods produced highly different AGB estimates, from
554.17 Mg of itcSegment up to 2169.7 Mg of AMS3D. Comparing the predicted and reference
estimates gave a first indication of under- or overestimation at plot scale. The itcSegment
algorithm was the one that deviated most from the -67.29%. Both watershed and AMS3D
performed better. In the first case the algorithm caused an underestimation of 49.59%, whereas
the AMS3D overestimated plot AGB of 28.05%, producing the best results. Estimated, reference
and error values are summarized in Table 20.

Table 20: Estimated Above Ground Biomass (AGB_Est), reference Above Ground Biomass,
absolute error (ABG_Err), and relative error (AGB_Rel_Err) for the whole Area Of Study obtained
based on the different segmentation algorithm outputs.

Segmentation AGB_Est AGB_Ref AGB_Err AGB_Rel_Err
Algorithm (Mg) (Mg) (Mg) (%)
AMS3D 2169.7 1694.37 475.33 28.05
itcSegment 554.17 1694.37 -1140.2 -67.29
Watershed 854.04 1694.37 -840.33 -49.59

Besides comparing the AGB estimates at plot scale, the AGB similarity was also tested at tree
level. For this purpose only those ITCs that were correctly matched with a stem (True Positives)
were considered. Furthermore, to better analyse the ability of tested algorithms when
segmenting trees of different sizes, AGB was compared at four different DBH classes. The
obtained results, shown in Table 21, depict a clear picture where AMS3D returned the most
similar AGB estimates for three out of four DBH classes. That was the case for trees with DBH
smaller than 40 cm and for ones with DBH larger than 60 cm. For the remaining class (DBH
between 40 and 60 cm) the watershed algorithm returned the most comparable estimates to the
reference data. In the case of AMS3D, the retrieved estimates overestimate the amount of AGB
of 93.14 % for the smallest DBH class, and 10.99 % for trees with DBH between 20 and 40 cm.
Conversely, the estimates returned a Bias of -77 % for large trees (DBH > 60 cm). On the other
hand, the watershed-derived AGB estimates underestimate the biomass of trees with a DBH
between 40 and 60 cm of 30 %.

When interpreting the results, the prediction accuracy of the two allometric models should be
carefully considered. While the allometric model developed by Jucker et al. (2016) was proved
to return accurate estimates at tree level with a Bias of only -4.3 %, the pantropical model of
Chave et al. (2014), tested on the same dataset, was found to estimate biomass with a higher
Bias of 27.7 %. Based on this information the ITCs-derived AGB estimates can be expected to
present lower values when compared to the reference ones. Nevertheless, the obtained results
did not suggest such a relationship between estimated and reference AGB. This can be explained
by the nature of the implemented allometric model which completely relies on the accurate
extraction of tree parameters. As a matter of fact, each of the tested segmentation methods
presented a certain level of over- or under-segmentation which directly affects the extraction of
tree parameters, introducing a large level of uncertainty in AGB estimates. Even though the
inclusion of crown diameter in the allometric equation contributes to reduce the problem of
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over-segmentation at plot level (Dalponte and Coomes, 2016), inaccurate CD values strongly
affect the estimates at tree level, eliminating all the advantages of tree-based AGB estimation.
In addition to that, another drawback of inaccurate segmentation is represented by the high level
of uncertainty that is introduced by the wrong detection of subcanopy trees, which may
represent one of the most important error to correct in order to accurately measure AGB (Aubry-
Kientz et al., 2019).

Table 21: Root Mean Square Error (RMSE) and percentual Bias (Bias) of Above Ground Biomass estimated on the
different segmentation algorithm outputs, calculated based on different Diameter at Breast Height classes (DBH
class) For each DBH class the best results (based on Bias) are highlighted in yellow.

Seﬁ:;j::ﬁ:f“ DBH class (cm) RMSE (Mg) Bias (%)
AMS3D DBH < 20 0.4406 93.14
20<DBH < 40 1.4541 10.99

40 <DBH < 60 24271 -46.75

DBH > 60 5.9169 -77.09

itcSegment DBH < 20 0.1945 101.60
20<DBH <40 0.6189 -35.41

40 <DBH < 60 2.4501 -80.54

DBH > 60 6.8646 -90.62

Watershed DBH < 20 1.3882 615.80
20<DBH <40 1.9324 152.21

40 < DBH < 60 1.9785 -30.42

DBH > 60 6.3217 -81.66
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Discussion and recommendations

Validation process

In order to validate the segmentation outputs and compare the performance of the tested
algorithms a multi-step framework was developed as previously presented in the Segmentation
algorithms validation section.

The first part of the validation process exploited the information contained in the stem map,
assessing the segmented ITCs based on their location and height. The main advantage of the
developed algorithm lies in its flexibility which allows the user to easily adjust the two thresholds
in order to better define the validation process based on the structural features of the forest. In
addition to that, the implementation of a second threshold based on tree height provides a
simple but effective method to distinguish stacked trees, making the algorithm suitable for multi-
layered forests as well. Nevertheless the algorithm is not error free and its accuracy largely
depends on the threshold choice. The two thresholds should be carefully selected based on the
nature of the input data and its level of uncertainty. It is thus suggested to visually assess the
results and gradually calibrate the parameters before performing the final validation.

In the second part of the algorithm validation, the segmented crowns were instead assessed
based on their similarity with reference, manually segmented crowns. The calculation of the
Jaccard Index provides a meaningful and easy-to-implement approach to evaluate the accuracy
of crowns delineation and it does not present significant drawbacks. To obtain a more exhaustive
indication of the algorithm performance, despite the time-consuming nature of the operation, it
is suggested to create a large reference dataset so that a consistent number of crowns can be
evaluated, and more significant results can be obtained. Furthermore, when testing a
segmentation algorithm based on the 3D point cloud, even though submerged trees are difficult
to identify and extract, their inclusion in the validation is strongly recommended since it can
unearth valuable insights regarding the segmentation of subcanopy layers.

Segmentation comparison

As implemented in the current study, among the tested algorithms, AMS3D was found to perform
the most accurate segmentation of the forest stand. The results confirm the benefit of
performing the segmentation on the 3D point cloud, which allows the identification of subcanopy
trees. The segmentation on the whole point cloud is however computational intense, time
expensive and can still produce a significant over-segmentation of large crowns. When working
with large 3D datasets is suggested to down-sample the point cloud based on the project goals
and requirements.

On the other hand, even though CHM-based algorithms are considerably faster and required less
data postprocessing than the first method, they can only segment emergent canopies, failing in
the identification of all those trees that are not represented in the CHM. The use of such
algorithms is therefore unsuitable and should be avoided for complex forests where many trees
is found in subcanopy layers.
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Above Ground Biomass estimation

The estimation of AGB of single trees can strongly boost our knowledge of forest biomass
providing unprecedent information at tree level. Nevertheless, at present the implementation of
such approach still presents significant limitations which mainly depend on the segmentation
accuracy. In fact, even though the implemented allometric equation, developed by Jucker et al’s
(2017), was found to accurately predict AGB of single trees with a Bias of only -4.3 %, the results
obtained in the current study returned much larger uncertainties. This uncertainty is caused by
the inaccurate segmentation of canopies which directly affects the extraction of tree attributes
and thus the estimation of biomass. The high dependency of AGB estimation on the
segmentation result confirms again that at present area-based method should still be preferred.
Nevertheless, with the development of new and more efficient segmentation algorithms AGB
estimation at tree level is expected to become the next state of the art technique.
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Conclusion

The aim of the present research was to test the feasibility of individual tree segmentation
methods on UAV-LS data to estimate AGB in a tropical multi-layered forest. The study compared
the performance of three different algorithms, confirming the well-known limitations of ITD
approaches for AGB estimation. The results also showed the promising results of 3D methods for
segmenting a complex tropical forest, with the AMS3D algorithm that outperformed the other
two. When assessing the results with the stem map the latter correctly segmented almost 60 %
of trees whereas the second-best method only matched about 20 % of reference trees. The
AMS3D also obtained the highest result when assessing crown similarity with manually
segmented ones, correctly delineating 20 % of the reference trees.

The results clearly showed the advantage of algorithms based on the whole point clouds rather
than segmenting solely on the CHM raster. During the study the influence of increasing point
densities on AMS3D method was also tested and was proved to significantly improve trees
detection and delineation. Regarding the estimation of forest biomass, the estimates obtained
on AMS3D outcomes returned the smallest errors when compared to reference AGB values at
plot level. When considering different tree sizes the algorithm also returned the smallest bias for
three out of four DBH classes. The results of this research suggest that high-density UAV LiDAR
data can improve tree detection and in general forest structure retrieval. Moreover, the flexibility
of UAV platforms indicates that forest inventories based on such platforms may substitute other,
more expensive and time-consuming field approaches. In addition to that, they may further
boost the development of segmentation algorithms and make individual tree approaches a more
valuable option to area-based methods for AGB estimation at small scales.
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Appendix 2

AMS3D Testing:

= Confusion Matrix

Table 22: Confusion matrix for each AMS3D test.

Point
Test density TP FN FP N ERR ACC PREC REC F1
(pts/m?)
Test_11 1922.82 178 25 3541 87 0.9308 0.0692 0.0479 0.8768 0.0908
Test_11 1054.15 177 26 3015 87 0.9201 0.0799 0.0555 0.8719 0.1043
Test_11 350.89 166 37 2002 87 0.8896 0.1104 0.0766 0.8177 0.1400
Test_11 93.43 144 59 955 87 0.8145 0.1855 0.1310 0.7094 0.2212
Test_11 42.08 128 75 540 87 0.7410 0.2590 0.1916 0.6305 0.2939
Test_11 23.87 110 93 388 87 0.7094 0.2906 0.2209 0.5419 0.3138
Test_11 10.71 97 106 221 87 0.6399 0.3601 0.3050 0.4778 0.3724
Test_12 1922.82 168 35 1454 87 0.8538 0.1462 0.1036 0.8276 0.1841
Test_12 1054.15 176 27 1447 87 0.8486 0.1514 0.1084 0.8670 0.1928
Test_12 350.89 161 42 1267 87 0.8407 0.1593 0.1127 0.7931 0.1974
Test_12 93.43 152 51 880 87 0.7957 0.2043 0.1473 0.7488 0.2462
Test_12 42.08 131 72 551 87 0.7408 0.2592 0.1921 0.6453 0.2960
Test_12 23.87 112 91 415 87 0.7177 0.2823 0.2125 0.5517 0.3068
Test_12 10.71 98 105 227 87 0.6422 0.3578 0.3015 0.4828 0.3712
Test_13 1922.82 151 52 567 87 0.7223 0.2777 0.2103 0.7438 0.3279
Test_13 1054.15 160 43 579 87 0.7158 0.2842 0.2165 0.7882 0.3397
Test_13 350.89 151 52 574 87 0.7245 0.2755 0.2083 0.7438 0.3254
Test_13 93.43 139 64 558 87 0.7335 0.2665 0.1994 0.6847 0.3089
Test_13 42.08 133 70 458 87 0.7059 0.2941 0.2250 0.6552 0.3350
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Test_13 23.87 115 88 392 87 0.7038 0.2962 0.2268 0.5665 0.3239
Test_13 10.71 100 103 232 87 0.6418 0.3582 0.3012 0.4926 0.3738
Test_15 1922.82 129 74 447 87 0.7069 0.2931 0.2240 0.6355 0.3312
Test_15 1054.15 139 64 423 87 0.6830 0.3170 0.2473 0.6847 0.3634
Test_15 350.89 132 71 436 87 0.6983 0.3017 0.2324 0.6502 0.3424
Test_15 93.43 124 79 391 87 0.6902 0.3098 0.2408 0.6108 0.3454
Test_15 42.08 122 81 320 87 0.6574 0.3426 0.2760 0.6010 0.3783
Test_15 23.87 101 102 260 87 0.6582 0.3418 0.2798 0.4975 0.3582
Test_15 10.71 89 114 139 87 0.5897 0.4103 0.3904 0.4384 0.4130
Test_16 1922.82 19 184 115 87 0.7383 0.2617 0.1418 0.0936 0.1128
Test_16 1054.15 158 45 606 87 0.7266 0.2734 0.2068 0.7783 0.3268
Test_16 350.89 154 49 623 87 0.7360 0.2640 0.1982 0.7586 0.3143
Test_16 93.43 153 50 634 87 0.7403 0.2597 0.1944 0.7537 0.3091
Test_16 42.08 149 54 607 87 0.7369 0.2631 0.1971 0.7340 0.3107
Test_16 23.87 137 66 490 87 0.7128 0.2872 0.2185 0.6749 0.3301
Test_16 10.71 116 87 323 87 0.6688 0.3312 0.2642 0.5714 0.3614
Test_17 1922.82 151 52 566 87 0.7220 0.2780 0.2106 0.7438 0.3283
Test_17 1054.15 159 44 578 87 0.7166 0.2834 0.2157 0.7833 0.3383
Test_17 350.89 150 53 561 87 0.7215 0.2785 0.2110 0.7389 0.3282
Test_17 93.43 138 65 507 87 0.7177 0.2823 0.2140 0.6798 0.3255
Test_17 42.08 128 75 423 87 0.6985 0.3015 0.2323 0.6305 0.3395
Test_17 23.87 126 77 393 87 0.6881 0.3119 0.2428 0.6207 0.3490
Test_17 10.71 105 98 248 87 0.6431 0.3569 0.2975 0.5172 0.3777
Test_18 1922.82 149 54 469 87 0.6891 0.3109 0.2411 0.7340 0.3630
Test_18 1054.15 159 44 462 87 0.6729 0.3271 0.2560 0.7833 0.3859
Test_18 350.89 150 53 466 87 0.6865 0.3135 0.2435 0.7389 0.3663
Test_18 93.43 124 79 279 87 0.6292 0.3708 0.3077 0.6108 0.4092
Test_18 42.08 107 96 159 87 0.5679 0.4321 0.4023 0.5271 0.4563
Test_18 23.87 87 116 111 87 0.5661 0.4339 0.4394 0.4286 0.4339
Test_18 10.71 69 134 46 87 0.5357 0.4643 0.6000 0.3399 0.4340

61




= Jaccard Index

Table 23: Jaccard Indices for each test at different point densities and for the different reference tree classes.

Point
Test density  p_ect J2MdE i omer A tndl b gop  JaceindS
(ptafm) cT MCT cT

11 1922.82 4390  0.671074 5740  0.142707 3298 0.443498
11 1054.15 3681 0.144557 4877 0.137729 2789 0.431573
11 350.89 2587 0.155593 3403 0.119653 2069 0.548266
11 93.43 2509 0.83184 3035 0.157388 2245 0.412606
11 42.08 1839 0.817615 2165 0.132855 1705 0.468055
11 23.87 877 0.837844 1113 0.516795 745 0.428808
11 10.71 699 0.64996 837 0.300395 605 0.587576
12 1922.82 3527 0.671074 4199 0.464936 2931 0.443498
12 1054.15 11149  0.84648 11839 0446982 10593  0.431573
12 350.89 6811 0.155593 7311 0.119653 6439 0.548266
12 93.43 1537 0.83184 2001 0.157388 1283 0.412606
12 42.08 3477 0.817615 3781 0.132855 3337 0.468055
12 23.87 3785 0.837844 4037 0.516795 3645 0.428808
12 10.71 2915 0.64996 3025 0.526837 2823 0.587576
13 1922.82 3455 0.671074 3789 0.464936 3175 0.443498
13 1054.15 9648 0.84648 9984  0.446982 9382 0.431573
13 350.89 6602 0.799812 6868 0.141464 6424  0.548266
13 93.43 3586 0.83184 3906  0.157388 3410 0.412606
13 42.08 5078 0.165754 5262 0.179524 4938 0.468055
13 23.87 4901 0.101016 5115 0.516795 4765 0.428808
13 10.71 5787 0.64996 5897 0.526837 5691 0.587576
15 1922.82 2737 0.654138 2959 0.377996 2521 0.217102
15 1054.15 2293 0.600389 2539 0.371279 2099 0.203923
15 350.89 1549 0.163673 1853 0.585162 1409 0.208485
15 93.43 5027 0.18231 5223 0.546027 4887 0.203736
15 42.08 6135 0.308368 6295 0.179524 6009 0.066951
15 23.87 7393 0.599489 7537 0.533774 7295 0.26438
15 10.71 8007 0.637204 8089 0.524147 7931 0.113066
16 1922.82 20805 0.08101 20887  0.119146 0 0

16 1054.15 0 0 0 0 20385  0.458083
16 350.89 11326 0728866 11644 0567909 11146  0.500368
16 93.43 6726  0.824776 7010 0.58397 6540 0.451404
16 42.08 1337 0.168107 1507 0.179524 1133 0.434415
16 23.87 12696  0.817623 13008  0.063468 12550  0.525196
16 10.71 8804  0.597819 9034  0.037068 8744  0.061727
17 1922.82 3779 0.671074 4119 0.464936 3481 0.443498
17 1054.15 13674  0.84648 14024  0.446982 13394  0.431573
17 350.89 10242 0799812 10526  0.141464 10054  0.548266
17 93.43 8827 0.83184 9189 0.157388 8623 0.412606
17 42.08 8076  0.165754 8352 0.244561 7876 0.468055
17 23.87 1403 0.837844 1709 0.083683 1177 0.428808
17 10.71 14932 0.64996 15322 0.09728 14702 0.587576
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18 1922.82 12904 0.671074 13214 0.464936 12656 0.443498
18 1054.15 16284 0.84648 16574 0.446982 16036 0.431573
18 350.89 1425 0.799812 1637 0.141464 1387 0.039515
18 93.43 10284 0.83184 10438 0.547725 10176 0.412606
18 42.08 2272 0.165754 2376 0.558174 2210 0.468055
18 23.87 13485 0.837844 13585 0.516795 13433 0.428808
18 10.71 13807 0.64996 13833 0.526837 13769 0.587576
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Appendix 3

Algorithms validation:

= Confusion Matrix

Table 24: Confusion matrix and statistics obtain on each segmentation algorithm output and on different subsets of data.

Segmentation Subset TP FN FP TN ERR ACC PREC REC F1
AMS3D All_Data 1367 924 4382 862 0.7042 0.2958 0.2378 0.5967 0.34
AMS3D TH_u20 921 1370 2945 1285 0.6617 0.3383 0.2382 0.402 0.2992
AMS3D TH_020 672 1619 1211 1631 0.5513 0.4487 0.3569 0.2933 0.322

itc_Segment All_Data 421 1870 1091 1690 0.5838 0.4162 0.2784 0.1838 0.2214
itc_Segment TH_u20 5 2286 22 2284 0.5021 0.4979 0.1852 0.0022 0.0043
itc_Segment TH_020 416 1875 1068 1697 0.5821 0.4179 0.2803 0.1816 0.2204
Watershed All_Data 210 2081 420 2033 0.5272 0.4728 0.3333 0.0917 0.1438
Watershed TH_u20 15 2276 18 2283 0.4996 0.5004 0.4545 0.0065 0.0129
Watershed TH_020 195 2096 402 2041 0.5277 0.4723 0.3266 0.0851 0.135
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= Jaccard Index
Table 25: Jaccard Indices obtained from each segmentation algorithm for all three reference datasets.

Segmentation ITC_class ID Jaccard Index
AMS3D ECT 17985 0.1064
AMS3D ECT 21077 0.7198
AMS3D ECT 14807 0.2006
AMS3D ECT 13599 0.0945
AMS3D ECT 21703 0.7792
AMS3D MCT 11735 0.1718
AMS3D MCT 16293 0.7976
AMS3D MCT 20645 0.2064
AMS3D MCT 21477 0.4421
AMS3D MCT 11789 0.7280
AMS3D SCT 20857 0.1610
AMS3D SCT 14959 0.1815
AMS3D SCT 14317 0.1469
AMS3D SCT 14571 0.0120
AMS3D SCT 15473 0.0412

itcSegment ECT 884 0.0066
itcSegment ECT 1042 0.0803
itcSegment ECT 876 0.0616
itcSegment ECT - -

itcSegment ECT 1522 0.1418
itcSegment MCT 1202 0.0479
itcSegment MCT 242 0.2056
itcSegment MCT 548 0.0025
itcSegment MCT 1512 0.3181
itcSegment MCT 1062 0.3160
itcSegment SCT 948 0.1494
itcSegment SCT - -

itcSegment SCT - -

itcSegment SCT - -

itcSegment SCT - -

Watershed ECT 364 0.0098
Watershed ECT - -

Watershed ECT 354 0.3042
Watershed ECT 673 0.0037
Watershed ECT 76 0.3462
Watershed MCT 226 0.7650
Watershed MCT 651 0.0064
Watershed MCT 529 0.0096
Watershed MCT - -

Watershed MCT 280 0.5980
Watershed SCT - -

Watershed SCT - -

Watershed SCT 615 0.0316
Watershed SCT 286 0.0017
Watershed SCT 47 0.0131




66



	Abstract:
	List of abbreviations:
	Introduction
	Problem definition
	Research objectives and Research questions

	Methodology
	Study area
	Data acquisition
	Data Preprocessing
	 Field data
	
	 UAV data
	 Point cloud clipping
	 Data quality
	 Final point cloud generation


	UAV Data Down-sampling and Height Normalization
	Adaptive Mean Shift 3D segmentation
	 Adaptive Mean Shift 3D Testing
	 Adaptive Mean Shift 3D AOI

	Canopy Height Model generation
	itcSegment segmentation
	Watershed segmentation
	Above Ground Biomass estimation
	 Tree reference estimates
	 Tree derived estimates

	Validation
	 Segmentation algorithms validation
	 Confusion matrix
	 Jaccard Index

	 Above Ground Biomass estimates comparison


	Results
	UAV Data pre-processing
	 Data down-sampling and normalization

	Adaptive Mean Shift 3D Segmentation
	 AMS3D testing
	 Number of ITCs
	 Understory points
	 Point density
	 Confusion matrix and statistics
	 Jaccard Index:
	 Visual comparison

	 Adaptive Mean Shift 3D AOI

	Spike-free Canopy Height Model
	itcSegment segmentation
	Watershed segmentation:

	Algorithms comparison
	Validation thresholds selection
	Segmentations comparison
	Above Ground Biomass comparison

	Discussion and recommendations
	Validation process
	Segmentation comparison
	Above Ground Biomass estimation

	Conclusion
	References
	Appendix 1
	Table of Content of the zip file accompanying the thesis report

	Appendix 2
	AMS3D Testing:
	 Confusion Matrix
	 Jaccard Index
	


	Appendix 3
	Algorithms validation:
	 Confusion Matrix
	 Jaccard Index



