
i 

Geo-information Science and Remote Sensing 

Thesis Report GIRS-2020-08 

Assessment of tree segmentation algorithms based on UAV LiDAR 
data for Above Ground Biomass estimation  

Leonardo Mauri 

26
 –

 0
4 

- 2
02

0 



ii 
 

  



iii 
 

 
Assessment of tree segmentation algorithms on UAV LiDAR data for 

Above Ground Biomass estimation  
 

 
 
 

Leonardo Mauri 
 

Registration number 951020548010 
 
 
 
 
 
 
 
 
 

Supervisors: 
 

Benjamin Brede 
 
 
 
 
 
 

A thesis submitted in partial fulfilment of the degree of Master of Science 
at Wageningen University and Research Centre, 

The Netherlands. 
 

 
 
 

26 – 04 – 2020  
Wageningen, The Netherlands 

 
 
Thesis code number:  GRS-80436 
Thesis Report:    GIRS-2020-08 
Wageningen University and Research Centre 
Laboratory of Geo-Information Science and Remote Sensing   
 



iv 
 

Abstract:  
 
Above Ground Biomass (AGB) is recognized as a critical variable for understanding the global 
carbon cycle and represents a crucial feature for climate change policies. Remote Sensing 
techniques can provide consistent and large-scale estimation but need ground-measured 
estimates to calibrate and validate their algorithms. In this context, unmanned aerial vehicle 
LiDAR data (UAV-LS) can provide an accurate 3D representation of forest stands which can be 
exploited for the retrieval of AGB.  
This study tested and compared three different segmentation algorithms on a tropical forest 
stand in French Guyana. The results were then validated with the stem map of the area and 
through a similarity analysis between identified crowns and crowns that were manually 
segmented from the LiDAR point cloud. Furthermore, Tree Height and Crown Diameter were 
extracted for each segmented tree and used to estimate AGB with the implementation of an 
allometric model. The obtained estimates were compared with reference estimates derived from 
a widely used global allometric equation.  
The tested segmentation methods produced highly different numbers of trees and thus led to 
different AGB estimates. The AMS3D algorithm, the only one based on the whole point cloud, 
outperformed the other methods based on the Canopy Height Model for both tree matching and 
similarity analysis. The method also returned the most similar AGB estimates at plot level and for 
three of the four investigated DBH (Diameter at Breast Height) classes. Furthermore, AMS3D was 
also able to delineate understory features which are accurately represented in the UAV-LS data. 
This study demonstrates the poor result of CHM-based segmentation methods in tropical 
ecosystems and confirms the added value of processing the whole point cloud for accurately 
segmenting complex forest stands. The analyses also demonstrate the high-quality information 
contained in UAV-LS data that can be further exploited for a better characterization of forest 
structures. 
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Introduction 
Forest ecosystems are valued globally for the services they provide to society (Pan et al., 2011). 
Besides wood-based products, which largely contribute to the world economy, other crucial 
services range from the conservation of soil, water and biological diversity, to the modulation of 
the carbon cycle (Wardle and Kaoneka, 1999). Furthermore, forests also influence climate 
through exchanges of energy, water, carbon dioxide and other chemical species, modulating 
complex interactions through which they can suppress or amplify anthropogenic climate change 
(Bonan, 2008). During their lifetime, forests can both store and emit large amounts of carbon 
which makes them a crucial variable for climate change mitigation and adaptation measures.  

The importance of forest ecosystems, which cover about 30 % of our planet (Dalponte and 
Coomes, 2016), is widely recognized among the scientific community. As a result, many national 
and international programmes have been established to safely manage and protect all types of 
forests. One of the largest and most important, is the United Nations Collaborative Programme 
REDD+ which aims to reduce emission from forests through the implementation of the so-called 
payments for ecosystem services (PES), which promote the conservation of natural resources 
through economic incentives. Lately, to support the central role and conservation of such 
ecosystems, forest biomass has been recognized as a Global Climate Observing System (GCOS) 
Essential Climate Variable (ECV) and thus accurate biomass products are of great importance for 
forest management and climate mitigation (Duncanson et al. 2019). However, current knowledge 
of the distribution of biomass across the globe is limited and consistent data on changes over 
time at both the global and regional levels are even less available (Herold et al., 2019). 

Tropical forests are among the most structurally complex and carbon-rich ecosystems in the 
world, and they store 40% of the total carbon stocked in forests globally(Gibbs et al., 2007). 
Although a number of forest inventories have been carried out here, there remain large areas in 
the tropics where such inventories are out of date, incomplete, or entirely lacking (Houghton, 
2005). Consequently, the accurate estimation of structural characteristics (e.g., aboveground 
biomass, AGB) of tropical vegetation remains a major obstacle (Dubayah et al., 1997), resulting 
in large uncertainties. Furthermore, tropical forests play also a crucial role in climate change 
policies, with atmospheric analyses that define these ecosystems as carbon neutral or carbon 
sinks, highlighting their vulnerability to a warmer, drier climate, which may exacerbate global 
warming through a positive feedback (Bonan, 2008). For all the mentioned reasons, there is an 
urgent need for improved data sets that characterize the global distribution of AGB, especially in 
the tropics (Baccini et al. 2012). 
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Problem definition 
 
AGB is defined as all biomass of living vegetation above the soil, and includes stems, stumps, 
branches, bark, seeds, and foliage (Eggleston et al., 2006). So far, different techniques have been 
developed to estimate it, each one presenting its own limitations in accuracy or feasibility.  
True biomass measurements require the physical, destructive harvesting, drying, and weighing 
of trees. The process is extremely difficult in practice, and typically undesirable or in many cases 
logistically impossible (Duncanson et al. 2019). In general, the overall difficulty of acquiring in-
situ measurements strongly highlights the need of new and advanced approaches to accurately 
measure AGB. 
 A common technique to estimate biomass at large scale is through the implementation of 
allometric equations. These models rely on empirical relationships between total tree biomass 
and vegetation attributes, among which, tree height (TH) and tree diameter at breast height 
(DBH) are the most frequently used. However, the quality of allometric models represents one 
of the most important limitations in assessing AGB (Chave et al. 2014). In fact, even if allometric 
equations have improved in recent years, they remain limited and they cannot always be applied 
to different regions. (Lau et al. 2019). These models, which also need to be supported by 
calibration data, require direct estimates of AGB and thus still involve destructive sampling of 
trees (Calders et al. 2015). Another important limitation to the final reliability of allometric 
models is caused by the presence of big trees, which store large quantities of carbon (Slik et al., 
2013) and can therefore strongly affect the final estimation bias. In fact, due to the model’s 
dependency on field sampling and the complexity of harvesting large trees, these are usually 
underrepresented. As a consequence, the resulting allometric reliability degrades as the DBH 
increases, causing a strong discrepancy in model estimates for large trees (Chave et al., 2001). 
To overcome this limitation, researchers have explored different relationships at tree level which 
may allow to estimate biomass without the need of DBH measures. Among the tree attributes 
that have been tested so far, (Hemery et al., 2005) have found crown diameter (CD) and DBH to 
be strongly coupled, even in large trees, leading to new possibilities for estimating AGB. Based 
on this information Jucker et al. (2017) decided to compile a global dataset recording for each 
tree, DBH, CD, and TH. With the aim of developing new allometric models, the research group 
also collected AGB measurements by harvesting a portion of the inspected trees. The group 
showed that AGB was strongly related to TH and CD, developing a new allometric equation based 
solely on these parameters which was proved to estimate AGB with low Root Mean Square Error 
and bias values (RMSE = 1.70 Mg, bias = -4.3%). The discovery led to new possibilities in the field 
of forest biomass estimation, filling a gap between allometric equations and remote sensing 
techniques which in many cases are not able to measure DBHs. 
Remote sensing is the science and practice of acquiring information about an object without 
actually coming into contact with it (Horning, 2008). In recent years, with development of 
environmental information science, remote sensing data have played an important role in many 
research fields (Liu, 2015). This is also the case of forestry, where remote sensing offers an 
efficient and economical mean for AGB monitoring by facilitating forest type and canopy density 
stratification (Tsitsi, 2016). The benefit of such techniques is confirmed by the numerous diverse 
technologies that can be exploited for biomass estimation, and by the level of accuracy that can 
be achieved.  
Acknowledging the urgent need for improved, large scale, biomass estimations the European 
Space Agency is developing the first space system entirely conceived for AGB monitoring. The 
BIOMASS mission, whose launch is planned for 2022, will make use of P-band synthetic aperture 
radar (SAR) measurements to provide crucial information about the state of our forests (ESA, 
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n.d.). Nevertheless, it is essential that satellite missions are able to make use of accurate ground 
estimates of carbon stocks to train their inversion algorithms and validate their products 
(Duncanson et al., 2019). Although field measurements are expensive and time consuming, they 
are essential to provide the basis for extending local measurements to larger areas using remote 
sensing approaches (Zolkos et al., 2013). Among all remote sensing techniques, Light Detection 
And Ranging (LiDAR) represents a valuable alternative to destructive field measurements to 
provide plot-level AGB estimates in order to calibrate and validate large scale products. LiDAR 
has become a valuable source of information to assess vegetation canopy structure, in particular 
for complex forest canopies that limit manual and destructive sampling (Brede et al. 2017). LiDAR 
remote sensing is an active technique that calculates the distance of an object by recording the 
time during which the emitted laser pulse is reflected back to the sensor. In recent years, LiDAR 
has emerged as a valuable technology because of the directness of its approach to measuring 
canopy structure and relatively higher accuracies reported in the literature when compared to 
optical and radar approaches (Zolkos et al., 2013). Furthermore, several studies have found a 
strong correlation between LiDAR metrics and AGB (Drake et al., 2003) confirming its applicability 
for biomass estimation. 
Three different categories of LiDAR technology can be distinguished based on the platform on 
which the sensors are installed: terrestrial laser scanning (TLS), airborne laser scanning (ALS) and 
recently also unmanned aerial vehicle laser scanning (UAV-LS). So far, TLS produces the most 
promising results, showing high accordance with destructive biomass measurements (Calders et 
al., 2015; Gonzalez de Tanago et al., 2018). The level of detail contained in TLS point clouds can 
be exploited in multiple ways to retrieve trees AGB. One approach makes use of the reliable 
extraction of tree parameters (DBH, TH, and CD), and their subsequent application for the 
development of new allometric models (Lau et al., 2019; Vaglio Laurin et al., 2019). Another 
commonly used technique estimates tree volume with the use of quantitative structure models 
(QSM) instead, and then converts volume to  using basic density information (Calders et al., 2015; 
Gonzalez de Tanago et al., 2018). 
On the other hand, ALS data have been widely used for generation of bare earth digital terrain 
models (DTM), as well as the estimation of forest inventory attributes (Hyyppä et al., 2008). ALS 
has also been proven to provide the required spatial detail and accuracy across large areas and a 
diverse range of forest types (White et al., 2016). In addition to that, recent technical advances 
in laser scanning made ALS one of the most promising technologies for the retrieval of forest 
information at different levels: individual tree, plot, and nationwide (Yu et al., 2010). 
Nevertheless, the time consuming and expensive nature of TLS data acquisition, and the 
relatively low point density achievable with ALS systems (Brede et al., 2017) is causing scientists 
to look for valid alternatives, such as UAV-LS. As a matter of fact, recent improvements in small-
scale technology have enabled the use of UAVs as an alternative remote sensing platform, 
offering a distinctive combination of very high resolution data captured at a significantly lower 
survey cost.(Wallace et al., 2012).  
At present, there are two main techniques of LiDAR forest inventory that can be applied to ALS 
and UAV-LS data. Area-based approaches (ABA) retrieve forests structure at stand level, whereas 
individual tree-based approaches (ITD) extract tree parameters by individual tree detecting and 
modelling (Wang et al., 2019). ABA models are state of the art when it comes to estimating 
biomass from ALS data (Coomes et al., 2017), and they have been proven to produce reliable and 
consistent results (Wallace et al., 2014). When compared to tree-centric, ABA work better in 
estimating basal area and carbon stocks in tropical forests, probably due to strong limitations of 
the former methods that first need to identify and delineate individual trees (Aubry-Kientz et al., 
2019). Previous studies have found the algorithm employed to be the main factor affecting the 
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accuracy of tree detection and delineation. Conversely, other studies suggested the accurate 
delineation of trees to be highly dependent on the properties of the forest, including stand 
density and spatial pattern of the trees (Wallace et al., 2014). 
However, rapid technical advances in laser scanning has led to an increase in data point density 
which is expected to improve the accuracy of the ITD techniques (Yu et al., 2010). Coomes et al. 
(2017) presented several arguments supporting the idea that ITD approaches should be preferred 
over AGB area-based estimates. The first benefit of ITD methods is represented by the strong 
fundamental basis, conceptually similar to allometric equations, which these models are built 
upon. In addition, extracting and estimating AGB at tree level allows the mapping of small, high-
value areas, the tracking of tree growth and death, and it finally reduces plot-dependent 
uncertainty. The promising nature of individual tree detection methods is being supported by the 
numerous recent studies that developed, tested, and compared  tree-segmentation methods and 
approaches in diverse biomes and with different datatypes (Dalponte and Coomes, 2016; Ferraz 
et al., 2016; Wallace et al., 2014; Ferraz et al., 2012). Moreover, the fast and constant 
development of both high precision sensors and unmanned aerial vehicles will continue to 
provide high-quality data, which could further boost the application of tree-centric techniques 
for forestry applications as already suggested by the study conducted by Wallace et al. (2014) 
over an eucalyptus plantation. However, the added value of UAV high density point clouds, when 
implemented in existing segmentation algorithm, has yet to be further explored and proved, 
especially in dense tropical forests which could result in a massive number of returns. Finally, 
while ITD methods have already been widely tested in boreal (Dalponte et al., 2018; Maltamo et 
al., 2009; Paris et al., 2016; Persson et al., 2002) and temperate forests (Dalponte and Coomes, 
2016; Koch et al., 2006; Popescu and Wynne, 2004), the accuracy and reliability of these 
algorithms in tropical regions have not extensively been examined yet, especially when aiming at 
tree attributes extraction for AGB estimation.  
 

Research objectives and Research questions 
 
The project explores the potential of individual tree segmentation techniques, applied on high 
density LiDAR data acquired by an UAV platform, for estimating AGB at plot level. In the project 
three different segmentation algorithms will be tested and their output will be used to estimate 
AGB. The segmentation results and AGB estimates will then be compared in order to evaluate 
which method performs the best in the area of study.  This will be assessed through the following 
Research Questions:  

 

RQ1: What tree segmentation algorithm delivers the most accurate segmentation of the area of 
study?  

- SRQ1: What tree segmentation method returns the best statistics (Error   Rate, Accuracy, 
Precision, Recall, and F-score) when comparing segmented trees with the stem map?  

- SRQ2: What tree segmentation method returns the most similar tree crown shapes when 
compared to UAV-derived, manually segmented crowns? 

 

RQ2: What tree segmentation algorithm returns the most similar AGB estimates to state-of-the-
art ground-based estimates, at plot level and at different DBH classes, compared to 
reference AGB values in terms of RMSE and Bias?  
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Methodology 
 
In the following section the various steps undertaken during the analysis are described. 
Throughout the project several software were used, namely: R language (Version 3.6.1; R Core 
Team, 2019) together with the Rstudio Integrated Development Environment (Version 1.2.1335; 
Rstudio Team, 2018), LAStools (Version 181108; Isenburg, M., 2018), ArcGIS (Version 10.7.1; ESRI, 
2019), CloudCompare (Version 2.10.2 (Zephyrus); 2014), and Computree platform (Version 5.0; 
Computree Group, 2019).  
 
Study area  
 

 

Figure 1: Map of South America highlighting French Guyana (black box) and the location of the study area (black 
dot), (b) Study area site, with indicated Paracou Field Station (cross), and South-East section of plot 6 (black-white 
polygon).  

 
The study area is part of Paracou Experimental Station (https://paracou.cirad.fr/website), in the 
coastal part of French Guyana (Figure 1). The station, at N5°18’ and W52°53’ is approximately 
100 km North-West of the capital Cayenne.  The climate of the site is equatorial, characterized 
by two main climatic periods determined by the movement of the Intertropical Convergence 
Zone, a dry season from mid-August to mid-November and a rainy season, which is often 
interrupted by a short drier period between March and April. The mean annual rainfall 
recorded near Paracou station from 1979 to 2001 is 3,041 mm with a minimum during the 
month of September and a maximum in May. The mean annual temperature is 26 °C. The core 
area is covered with a lowland, old growth, tropical rain forest with an exceptional richness (over 
750 woody species). According to previous studies the five most abundant families at the site are 
the Lecythidaceae, Fabaceae, Chrysobalanaceae, Sapotaceae and Annonaceae (Aubry-Kientz et 
al., 2019).  A series of 16 permanent plots (fifteen with a surface of 6.25 ha plus one of 25 ha) 

https://paracou.cirad.fr/website
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have been censused (DBH>10 cm) every 1-2 years since 1984. Nine of the plots were logged and 
subjected to human-induced disturbance in 1986.  
Among the 16 plots, the object of the study will be a portion of Plot 6, which has not been 
subjected to any disturbance and it is set as control plot. 
 
 
Data acquisition 
 
To perform the analysis different types of data were implemented. The scientific organization of 
CIRAD, which manages Paracou Station, kindly provided the plots and subplots boundaries files. 
Furthermore, they also shared the stem map of plot 6 which contains location and additional 
information of each tree with a DBH greater than 10 cm. Plot corners were measured with 
centimetric accuracy using a total station, trees were then positioned within subplots (20 x 20 m) 
using a measuring tape. The location of new trees was later estimated based on their distance 
from neighbouring stems. All trees, which were located by cartesian coordinates of their trunks, 
have an estimates precision of +/- 2 m (Aubry-Kientz et al., 2019). 
In addition to that, UAV-LiDAR data was acquired by flying the RIEGL RiCOPTER with VUX®-1UAV, 
an integrated UAV and LiDAR sensor system (Brede et al., 2017). The flight campaign was carried 
out between the 18th and the 20th of October 2019 and consisted of several flights. The cruise 
speed varied between 6 and 8 m/s and the flight height was set between 105 and 120 m above 
the ground. In total seven flights were performed over the full study area, of which six were 
successfully accomplished. Three flights were also conducted over a smaller portion of plot 6 but 
will not be included in the study. In order to acquire a more detailed and complete representation 
of the forest, the flights were performed following different patterns so that the laser beams 
could hit the vegetation features from several directions and better penetrate the canopies. In 
addition to change the principal flight direction, the pulse repetition of the laser scanner, which 
influences the laser penetration and number of returns, was also varied. A brief summary of all 
flights can be found in Table 1. 
 
Table 1: For each of the performed flights, principal flight pattern, height above ground level (agl), average flight 
speed and scanner pulse repetition 

Principal flight pattern Height agl (m) Speed (m/s) Pulse Repetition 
Rate (kHz) 

N-S 110 6 
 

550 
E-W 

 
105 7 550 

NW-SE 
 

115 6 550 
NE-SW 

 
105 6 550 

N-S 
 

120 6 300 
N-S 

 
120 6 100 
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Data Preprocessing 
 
 Field data 
 

  
Figure 2: Boundaries of original Plot 6 (black), boundaries and quarter hectare sections of Area Of Interest (AOI, 
blue), stem map of AOI (red dots) 

The analysis began with the preprocessing of the field data, namely the plot boundaries and 
the stem map. These data needed to undergo a series of steps in order to select only the 
required information corresponding to the area of study (AOI). After selecting plot 6 form the 
plots boundaries dataset, a 200 m x 200 m section in the South-East corner of the plot 6 was 
extracted and stems within the newly created plot were selected from the original stem map, 
Figure 2. To preserve the true shape of those trees whose crowns exceeded the plot 
boundaries each side of the AOI was increased with additional 10 m, returning a final square 
plot of 4.41 ha. To conclude the preprocessing of field data, the circumference measurements 
of each stem were converted to DBH values which is the commonly used measure to describe 
stem size. 
As a result, the obtained stem map subset, based on the new AOI, returned a dataset of 2291 
stems (Figure 2), summary statistics and distribution of DBH and Estimated Tree Height values 
can be found in Table 2 and Figure 3. Observing the histograms in Figure 3, it is clear that 
trees with small DBH are much more frequent than big trees with the most numerous class 
corresponding to tree with a DBH between 10 and 15 cm containing almost 60 % of the total 
stems. The count then constantly decreases registering only 62 trees with a DBH larger than 
60 cm. The distribution of estimated height followed the same pattern with almost 60 % of 
the total trees estimated to be shorter than 20 m, which also corresponds to the mean value. 
It is important to notice that even though the first set of trees represented in the graph (12 
m < TH < 14 m) shows a much lower number of observations, it is perfectly in line with the 
other data. In fact, the only reason for such a smaller count is due to the narrower range of 
estimated tree height which only extends from 13.47 m to 14 m.  
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Table 2: Number of stems in the Area Of Study and minimum, maximum, and mean value of Diameter at Breast 
Height (DBH), and Estimated Tree Height (EstTH)  

N° stems Min DBH 
(cm) 

Mean 
DBH (cm) 

Max DBH 
(cm) 

Min EstTH 
(m) 

Mean 
EstTH (m) 

 
Max 

EstTH (m)  

1291 10.03 22.58 101.38 13.47 20.52 45.34 

 
 

Figure 3: Diameter at Breast Height (DBH) and Estimated Tree Height (Estimated TH) distributions for stems in 
the Area Of Interest (AOI).  

 
 UAV data 

 
After the flight campaign the raw UAV data required to undergo a series of operations in 
order to obtain georeferenced point clouds which could be combined and exploited during 
the analysis.  
The acquired UAV data were pre-processed by Benjamin Brede, a member of the UAV-LS 
campaign, who provided them in their final, ready to use version. For clarity a short 
description of these operations is provided. 
In order to be implemented in the analysis the raw LiDAR data first needed to be converted 
into point clouds in RIEGL’s RiPROCESS software which comes together with the RIEGL UAV 
RiCOPTER system. During this operation the targets are detected and Multiple Time Around 
Range ambiguities, which occur when one pulse is emitted before the previous one returns, 
are resolved. In order to align and match point clouds from different flight lines, the flight 
trajectories, need to be aligned and corrected with external GNSS data. The trajectory 
preprocessing was carried out in POSpac Mobile Mapping Suite (V7.2) software with GNSS 
data from a nearby permanent reference station, about 13 km away. Once the data were 
corrected and georeferenced, atmospheric noise, usually detected as unexpected returns 
close to the scanner, was removed and finally, the data were exported as LAZ files. All data 
are projected in Universal Transverse Mercator (UTM) system, zone 22N, EPSG: 32622.  
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The processed dataset composed of 70 point clouds, was then further processed to obtain 
the final point cloud data as described below. 
 

• Point cloud clipping 
 

The first operation performed on the georeferenced point clouds was intended to select 
and extract only the portion of data needed in the analysis. In order to do so each point 
cloud was clipped on the study area extent (200 m x 200 m SW section of plot 6). In 
addition to discard the unnecessary portion of data this operation also allowed to reduce 
the size of files, shortening the computation time of the following operations. With the 
same goal, after clipping the single flight line point clouds, the data were also divided into 
tiles of 50 m x 50 m. The tiling operation is very common when working with a large 
amount of points and it is also the conventional way to store and distribute point cloud 
data.  

 
• Data quality  

 
After having clipped the point clouds, the analysis proceeded with the data quality 
assessment. For each flight, the relative tiles were merged, and the points were classified 
as ground or non-ground. After the classification, ground points were used to create the 
Digital Elevation Model (DEM) of the area which represents the surface of the terrain. In 
addition to that, the Digital Surface Model (DSM), representation of all features on the 
ground, was also created making use of all points. The generation of these models was 
performed in order to compare the alignment of different flights and assess whether the 
co-registration between flight lines, and the georeferencing with the external GNSS data 
were successful. Finally, the point clouds of every flight were also compared with each 
other. The comparison was performed in CloudCompare software (Version 2.10.2 
(Zephyrus); 2014) by measuring the distance between two point clouds at a time.  

 
• Final point cloud generation 

 
Once the alignment between point clouds of different flights was established, it was 
possible to proceed with the generation of the final point cloud. The first step consisted 
in combining tiles of all flights together that were then merged creating the final point 
cloud of the whole area of study. The newly created dataset was now composed of points 
acquired during all the different flights and thus presented a higher point density. Merging 
multiple point clouds can result in duplicate points which are points with the same exact 
coordinates (X, Y, Z). Since these points contained redundant information there was no 
need to keep them both, thus they were searched and one of the duplicates was 
eliminated. Finally, the newly created, full density, point cloud was exploited to generate 
the DEM and DSM of the AOI.  
The reason behind the choice of merging the different point clouds was to exploit the 
information contained in each one of them to obtain the most detailed and accurate 
representation of vegetation features. In fact, each flight scanned the scene along only 
one direction and thus some of the objects might have not been hit by the laser pulses or 
have been hit only few times, producing a small number of returns that don’t accurately 
reproduce the real shape of tree features. Exploiting point clouds acquired along several 



10 
 

flight trajectories increased the chance that objects were hit by enough points, returning 
a more faithful representation of submerged vegetation, now composed of a larger 
amount of points. 
 
 

UAV Data Down-sampling and Height Normalization  
 
Before proceeding with the analysis, the point cloud needed to be normalized to the ground. This 
step was required in order to compute the Canopy Height Model (CHM) and to be used as input 
of the AMS3D segmentation. Normalizing a point cloud means that the Z values, which now 
contain the absolute points height, have to be recalculated in respect to the ground. For a 
successful and accurate normalization, it is required to have a sufficient number of ground points 
so that a reliable ground surface can be constructed through TIN generation. Due to the limit size 
and thus ground points number, some tiles firstly had to be merged so that the normalization 
process could be successfully finalized. Furthermore, due to the large number of points contained 
in each tile, these could not be directly exploited to generate the CHM nor used as input of the 
AMS3D algorithm. In the first case the tool implemented to compute the spike free version of 
the CHM could not handle such high amount of points whereas the AMS3D algorithm was found 
to be so time consuming that segmenting the point cloud at its full density was not feasible. As a 
result the point density of the obtained tiles had to be decreased discarding some of the points. 
To better understand the thinning procedure, a brief description of the implemented tool is now 
provided. Lasthin, part of LAStools software (Version 181108; Isenburg, M., 2018), works 
constructing a regular grid over the 3D point cloud and successively keeping one point in each 
grid cell, which was randomly selected. The level of down sampling is therefore uniquely 
controlled by the resolution of the grid, with larger cells that will result in lower point densities. 
The final cell size to be used was chosen after the assessment of different point densities on the 
AMS3D segmentation output (further details can be found in the relative section,AMS3D 
testing:). 
 
 
Adaptive Mean Shift 3D segmentation  
 
The first segmentation method to be tested was the Adaptive Mean Shift 3D or AMS3D (Ferraz 
et al., 2016). The algorithm takes a normalized point cloud as input and it segments the scene 
into individual point clusters which correspond to single trees. The version used in the study, 
implemented in the processing platform Computree (Version 5.0; Computree Group, 2019), 
where it is freely available (http://computree.onf.fr/?lang=en), will be briefly described in this 
paragraph. For a more detailed description of the method and its theoretical assumptions it is 
suggested to consult the works of Ferraz et al. (2012) and Ferraz et al. (2016). 
The AMS3D algorithm, processing the entire point cloud, is capable of segmenting trees within 
every forest layer.  
The feature that allows the algorithm to accurately segment and delineate trees of different 
shapes and sizes is represented by the so-called bandwidth model. As developed on Computree 
platform (Version 5.0; Computree Group, 2019), the model is based on allometric relationships 
between trees crown size and tree height, which determine the size of segmented structures.  
The segmentation algorithm works in a two-step approach that assumes the point cloud to be a 
multi-modal distribution where each mode, defined as a local maximum in both density and 

http://computree.onf.fr/?lang=en
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height, corresponds to a single location within an individual crown (Ferraz et al., 2016). During 
the first step, the algorithm, constructs a 3D-kernel (cylinder) around each point that iteratively 
moves towards dense regions until it converges to the local mode.   
To do so, the authors designed a 3-D kernel profile as the products of two profiles, Figure 4, a 
Gaussian one for the horizontal dimension which searches for the local density maxima, and an 
Epanechnikov profile (vertical dimension) that deals with the local height maxima (Ferraz et al., 
2012). To make the method more robust, the weighted distance is calculated as the product 
between the two kernels. As a result, the method can separate both horizontally and vertically 
interconnected crowns. In the first case, whereas the gaussian profile converge to the area where 
the two crowns are both present (high point density) the vertical profile force the algorithm to 
move towards the single treetops. Conversely, in the case of vertically connected crowns is the 
gaussian kernel which stabilize on the undercanopy tree apex, represented by a denser point 
region compared to the crown base of the higher tree (Ferraz et al., 2012). In the second step of 
the segmentation, all the points that converged towards the same mode, are now gathered 
together in 3D clusters which correspond to individual trees.  
The definition of the kernel bandwidth has to be carefully evaluated since it strongly impacts the 
segmentation results. A small cylinder will result in the identification of several distinct modes 
(local basins of attraction), while a large one will aggregate small vegetation structures into larger 
ones (large basins of attraction) (Ferraz et al., 2012), causing respectively over or under-
segmentation of the scene. 
In the first version of the ASM3D, different bandwidth models where computed for different 
vegetation strata, with larger bandwidth for thicker layers. Unfortunately, this approach is not 
very suitable for tropical forest where the structural complexity does not make it possible to 
distinguish different forest layers. For this reason, a more advanced bandwidth model is required. 
Ferraz et al. (2016) developed a new model based on tree allometry equations based on a sample 
of large emergent trees. The 3D kernel dimension will then be calculated based on the linear 
regression models obtained for Crown Width and Tree Height for the horizontal dimension and 
between Crown Depth and Tree Height for the vertical dimension. For this research, there wasn’t 
any need to calculate the allometric models,  specific values of the intercept and slope of the 
bandwidth model were already calculated for Paracou Forest and they are provided on the 
AMS3D webpage (http://rdinnovation.onf.fr/projects/plugin-ams3d/wiki, personal account 
needed).  
  

http://rdinnovation.onf.fr/projects/plugin-ams3d/wiki
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Figure 4: a) Horizontal (Gaussian profile, surface) and vertical (Epanechnikov profile, curve) kernel profiles. The point 
and colour bar indicates the weight of each point for the calculation of the kernel barycentre (Ferraz et al., 2012). b) 
Adaptive Mean Shift 3D segmentation of a simulated forest scene using a cylindrical kernel whose diameter and 
height are defined by the bandwidth model that depends on the lidar point's height (Ferraz et al., 2016) 

 
To carry out the AMS3D segmentation, as implemented in Computree platform (Version 5.0; 
Computree Group, 2019), the user needs to manually set a list of parameters which are listed 
below:  

− Intercept1 and coefficient1: values for the bandwidth diameter model. A coefficient 
value of about 0.2 is recommended for the area of study (Paracou, French Guyana). The 
intercept should be set to 0 so that for height equals to 0 the crown diameter is also 0.  

− Intercept2 and coefficient2: values for the bandwidth height model. An intercept value 
of about 0.15 is recommended for the area of study (Paracou, French Guyana). As in the 
previous case, the intercept should be set to 0. 

− Minimum cylinder diameter and height: these values can be kept small. 
− Gamma for the Gaussian kernel: parameter to weight the points in the neighbour area. 

It was set to five in Ferraz et al. (2012).  
− Maximum number of iterations: number of iterations to compute before moving to the 

next point, it has to be high enough to reach the mode convergence. 
− Resolution of the grid for neighbouring points: size of the 3D grid used to search for 

neighbouring points.  
− Resolution of the grid for neighbouring modes: size of the 3D grid used to search for 

neighbouring modes. 
− Maximum distance between two modes to merge them: distance threshold for merging 

modes, first parameter of DBSCAN algorithm (used to merge the modes in the 
Computree version of AMS3D). 

− Minimum number of modes to create a cluster: minimum number of points to form a 
single crown, second parameter of DBSCAN.  
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Here a brief guide on how to import, set, and run the AMS3D algorithm is presented, three steps 
need to be set, Figure 5:  

− Point cloud loading: In the Steps window, select Load submenu, Points, Points, format 
LAS(V2), and select the LAS file.  

− AMS3D segmentation: select Points submenu, Detect (Crown), and AMS3D MeanShift 
v2, set parameters for segmentation.   

− Output file exporting: Select Export submenu, Points, Points + item, ASCII(X,Y,Z), then in 
the new window select the segmentation output, tick the boxes of both Group items, 
and finally tick the cluster (point scene) box. 

 

Figure 5: Illustration of required steps (surroundded in black) for running the Adaptive Mean Shift 3D segmentation 
on Computree platform. 
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 Adaptive Mean Shift 3D Testing 
 

With the aim of finding the most appropriate parameters setting for the AMS3D 
segmentation, the algorithm was first run on a test tile experimenting with different values. 
After running preliminary tests (Tests 1-10) and visually assessing the results, three 
parameters, were identified to have an important influence on the results and were thus 
chosen for further testing (Tests 11-18). The analysis focused on the effect of the Gamma for 
the Gaussian kernel (Gamma), the maximum distance between two modes to merge them 
(MaxDist), and the minimum number of modes to create a cluster (MinMod). Table 3 presents 
an overview of the settings that were investigated. Furthermore, to inspect the influence that 
point density has on the final result, the segmentation was repeated on different down-
sampled levels. The thinned tile versions, with the relative point densities, are presented in 
Table 7. The procedure to process the segmentation outputs will be presented in the next 
paragraph (AMS3D ITCs generation). Once the 49 outputs were generated, they were 
assessed following the same framework used to compare the three segmentation algorithms 
which will be described in detail in the Validation paragraph.  
 
Table 3: AMS3D parameter settings for Test 11-18, highlighted in yellow are the tested different parameter 
values (Test 14 was discarded during the analysis due to poor results). 

  

Test Gamma for the 
Gaussian kernel 

Maximum distance 
between two 

modes to merge 
them 

Minimum number 
of modes to create 

a cluster 

Test 11 5 0.5 10 
Test 12 5 1 10 
Test 13 5 1.5 10 
Test 15 1 1.5 10 
Test 16 10 1.5 10 
Test 17 5 1.5 2 
Test 18 5 1.5 50 
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 Adaptive Mean Shift 3D AOI 
  

Once the most suitable parameters values were identified the AMS3D algorithm was run on 
the whole area of study with the parameter shown in Figure 6. The segmentation output 
contains for each point, the X, Y, Z coordinates and an ID value which identifies the tree. 
Nevertheless the algorithm’s output could not be directly exploited for the AGB estimation, 
and thus several postprocessing operations were required. The first operation was to compute 
the Individual Tree Canopies polygons (ITCs), that are the ground projected areas of trees. The 
shape of these ITCs is very critical because it directly impacts the calculation of the tree’s CD 
and thus the estimation of its biomass. For this reason it was crucial to compute the ITCs as 
accurately as possible, generating the polygons that best reproduced the crown shape. To do 
so, each tree cluster had to be processed to exclude those points that were found to be 
significantly distant from the rest, and that would have resulted in the generation of much 
larger ITCs. To automatically exclude these points the clusters’ barycentres were calculated 
and then, the points whose distance from the barycentre was found to exceed a threshold 
based on the average point-barycentre distance, were removed. At this point the ITCs were 
generated computing the convex hull of the remaining points of each cluster. Once the 
ground-projected area was calculated the analysis proceeded with the extraction of the 
required tree attributes namely, TH and CD. The former was equalled to the height of the 
highest point of the cluster whereas for the calculation of CD more steps needed to be taken. 
In the study, considering the irregular shapes of ITCs, and in general the highly variable shape 
of crowns, it has been decided that consider the ITC shape as circles would have not returned 
an accurate measure of their diameter. It was instead decided that calculating the crown 
diameter as the average of four polygon axes could return a more accurate approximation. By 
doing so, in the case of crowns which were more elongated in one direction than another, the 
final CD could better estimate the mean polygon width. Once TH and CD were calculated, the 
postprocessing operations continued with the exclusion of those ITCs that did not intersect 
the original AOI (200 m x 200 m) and thus were not needed to be considered. Finally, ITCs with 
a surface area smaller than 1 m2 or larger than 1000 m2 were also excluded from the analysis 
since their size was not considered in line with the one of real crowns. 

 

Figure 6: AMS3D parameters setting used to segment the point cloud of the Area Of Interest 
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Canopy Height Model generation 
 
A CHM is the digital model representing the shape of vegetation features. Normally it is 
generated either keeping only the first LiDAR returns or computing the difference between the 
DSM and the DEM of the area. In this project however, considering the importance of the CHM 
for two of the applied segmentation methods, it has been decided to implement a more complex 
framework for generating the model. Based on the work of Khosravipour et al. (2016) the CHM 
was created implementing the Spike-free option of las2dem tool (Version 181108; Isenburg, M., 
2018). The algorithm instead of considering only first LiDAR returns considers all returns, ignoring 
those points which will result in the formation of a pit. The resulting spike-free CHM was proved 
to work with different lidar point densities, and demonstrates a statistically significant 
improvement in the accuracy of tree detection (Khosravipour et al., 2016). In the generation 
process, the freeze constraint parameter plays an important role for the output result and it is 
related to the expected edge-length of the last-return TIN. As suggested on the webpage of the 
tool (https://rapidlasso.com/2016/02/03/generating-spike-free-digital-surface-models-from-
lidar/), different values close to the triple of the pulse spacing were tested. The value of 0.2 was 
at the end chosen to better represent the area without oversimplifying the scene nor maintaining 
too many low elevation points.  
In this research the spike free CHM (Sf_CHM) was first generated on single tiles and these were 
then assembled to form the model of the whole area. Lastly, the resulting output was also 
rasterized in order to be implemented in the Watershed segmentation. In addition to the Sf_CHM 
generation, also a standard CHM (St_CHM) was produced constructing a TIN based on solely the 
first returns. The two models were than compared to assess the difference between them, and 
check if the implemented framework was able to avoid the formation of pits in the Sf_CHM.  
 
 
itcSegment segmentation 
 
The second segmentation algorithm that was tested is the itcSegment as implemented in the 
itcLiDAR package (Dalponte, M., 2018). Contrary to AMS3D, the method segments the scene 
based on the CHM instead of the whole point cloud, and consequently it is not able to identify 
submerged trees and only detect those canopy that are visible in the CHM. 
The delineation of individual tree crowns starts finding local maxima within the rasterized CHM, 
set them as treetops, and successively grow and delineate regions around these maxima 
following a multi-step procedure. Table 4 shows the function parameters with a brief description, 
while the complete segmentation process is further described below.  

− In the first step the rasterized CHM is smoothed through the application of a mean-low-
pass filter, which reduces the number of possible treetops.  

− Local maxima are located using a variable moving window whose sides are constrained 
to vary between 9 and 15 pixels, according to the current cell height. A raster pixel is 
labelled as local maximum if it is higher than its neighbouring pixels, and higher than a 
pre-defined threshold, set to 10 meters.  

− For each treetop, the heights of the neighbouring pixels are extracted. They are then 
added to the growing region if lower than the treetop, and within a user-defined range.  
The range is restricted by 2 thresholds, TRESHseed and TRESHCrown, which were 

https://rapidlasso.com/2016/02/03/generating-spike-free-digital-surface-models-from-lidar/
https://rapidlasso.com/2016/02/03/generating-spike-free-digital-surface-models-from-lidar/
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respectively set to 0.3 and 0.55. A pixel is added only if its height is greater than the 
treetop height multiplied by TRESHseed, and the mean region height multiplied by 
TRESHCrown. 

− From each region the first LiDAR return are extracted  
− Finally, a 2D convex hull is constructed around these points.  

Contrary to AMS3D algorithm, the itcLiDAR function already returns the segmented trees in the 
form of ITC polygons whose height is already equalled to the one of the highest LiDAR point in 
the region. As a result, only CD values had to be retrieved, and they were calculated following 
the same framework developed for the ASM3D output. Also in this case ITCs that were not 
intersecting the original AOI were excluded from the analysis as well as ITCs with a surface area 
smaller than 1 m2 while none of them were found to have an excessively large area.  
 
Table 4: itcLiDAR function settings  

Parameter Value Parameter use 

Epsg 32622 (UTM 
Zone 22N) Set coordinate system 

Resolution 0.1 m Set CHM resolution 
MinSearchFilSize 9 pixels Set minimum dimension of search window 
MaxSearchFilSize 25 pixels Set maximum dimension of search window 

TRESHSeed 0.3 
1st growing threshold.  A pixel is added to the 
region if its height is greater than the treetop 

height multiplied by this value 

TRESHCrown 0.55 
2nd Growing threshold. A pixel is added to a region 
if its height is greater than the current mean height 

of the region multiplied by this value 

minDIST 4 m Minimum value of the crown diameter of a 
detected tree 

maxDIST 40 m Maximum value of the crown diameter of a 
detected tree 

HeightTreshold 10 m Minimum height of the trees 

cw 2 Weighting exponent used to increase the contrast 
in the CHM used to detect the local maxima 
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Watershed segmentation 
 
The last approach to delineate tree crowns that was tested is a marker-controlled inverse 
watershed segmentation. As for itcSegment algorithm the procedure started with smoothing the 
input CHM to reduce the possibility of locating additional treetops, which is common in the case 
of trees without a clear apex. This operation was performed applying a gaussian filter which 
reduced the pixels’ height variability based on a moving window of 7 x 7 pixels. Once the input 
CHM has been smoothed it was possible to proceed with the delineation of crowns. In this case, 
the procedure implemented a variable window filter algorithm, as developed by Popescu and 
Wynne (2004) and executed by the vmf function of ForestTools R package (Plowright, A., 2018).  
The variable window size is calculated at any location as a function of the height of the current 
pixel. Other parameters, such as the minimum height to consider a pixel a possible treetop, the 
type of neighbouring window (Figure 7), and the maximum size of the variable window also 
needed to be specified. Before selecting the final parameters for the variable window (Table 5) 
several settings were tested and the resulting outputs were visually assessed to determine the 
most suitable ones. The testing particularly focused of the winFun parameter, which was found 
to have the most significant impact on the identification of treetops. To perform the 
segmentation, a marker – controlled watershed algorithm was applied to segment the area using 
the previously identified treetops as initial growing regions. The function mcwatershed, as 
implemented in lidR package (Roussel, J., 2019) takes a CHM and treetop locations as inputs and 
returns a raster with the individual segmented crowns. Furthermore, to avoid the understory 
vegetation to be added to tree regions, all those pixels with a height value smaller than 5 m were 
excluded from the segmentation. Once the segmentation was completed the obtained ITCs were 
again processed to retrieve the necessary information. TH values of each ITC were set equal to 
the corresponding treetop height, while CD were again calculated as the average of four ITCs 
axis. Finally, ITCs which did not intersect the AOI or had a surface area either smaller than 1 m2or 
larger than 1000 m2 were again excluded.  
 
Table 5: vwf function parameters overview. 

Vwf parameter Value Parameter use 

winFun x * 0.06 + 0.5 
The function to determine the size of 

the window at any given location based 
on the height of the current pixel (x). 

minHeight 10 m 
The minimum height value for 

a CHM pixel to be considered as a 
potential treetop 

maxDiameter 100 pixels  Maximum window dimensions. 

minWinNeigh “Queen”  Define the smallest possible search 
window type (Figure 7).  

  

 
Figure 7: Queen’s (a), and Rook’s neighbourhood windows. In dark green the central pixel that is being processed, 
and in light green the pixels included for the identification of treetops.  
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Above Ground Biomass estimation 
 
 Tree reference estimates 

 
In order to evaluate the AGB estimates of segmented ITCs, in absence of harvested-tree AGB 
measures, it has been decided to compare the obtained AGB values with “reference” 
estimates calculated on every stem. To maintain coherence with standard AGB estimates of 
the area of study, the same approach used by the local research group was followed, making 
use of the BIOMASS R package (Rejou-Mechain et al., 2017). AGB was estimated by applying 
a pantropical allometric model based on DBH, TH, and Wood Density (WD). The model, 
developed by Chave et al. (2014) (Equation 1), was implemented through the computeAGB 
function. 
 
𝐴𝐴𝐴𝐴𝐴𝐴 =  −0.0673 × (𝑊𝑊𝑊𝑊 ∗ 𝑇𝑇𝑇𝑇 ×  𝑊𝑊𝐴𝐴𝑇𝑇2)0.976                    Equation 1 

 
Where WD (g/cm3) is the wood density, TH (m) is the tree height, and DBH (cm) is the 
Diameter at Breast Height, parameters that were retrieved or estimated based on the 
information contained in the stem map. 
First, the WD of each stem was retrieved by applying the getWoodDensity function, which 
estimates WD values based on Genus, Species, and Family information using the global wood 
density database (Chave et al., 2009). 
After that, TH values were also estimated at stem level by applying an allometric model 
developed by Chave et al., 2014 (Equation 2). The model, implemented in the retrieveH 
function, requires the DBH of stems to be specified and can either take the coordinates of 
the plot or the geographic region to calculate the so-called environmental stress parameter 
(E), with the first option that was preferred returning a lower Residual Standard Error (RSE) 
value (0.243 m vs 5.285 m). The calculation of E (Equation 3) involves the use of three 
bioclimatic variables; namely, Temperature Seasonality (TS) which represents heat stress, 
Climatic Water Deficit (CWD), and Precipitation Seasonality (PS). The overall environmental 
stress which Paracou forest is subjected to was estimated to equal – 0.1077847.  
Once all the required parameters were retrieved for each stem, AGB was finally estimated 
for all trees with a DBH greater than 10 cm. 
 
𝑙𝑙𝑙𝑙(𝑇𝑇) = 0.803 − 𝐸𝐸 + 0.760 𝑙𝑙𝑙𝑙(𝑊𝑊) − 0.0340[𝑙𝑙𝑙𝑙(𝑊𝑊)]2              Equation 2 

 
𝐸𝐸 = (0.178 × 𝑇𝑇𝑇𝑇 − 0.938 × 𝐶𝐶𝑊𝑊𝑊𝑊 × −6.61 × 𝑃𝑃𝑇𝑇) × 10−3                                      Equation 3 
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 Tree derived estimates 

To estimate AGB for the automatically segmented trees the allometric equation 
developed in Jucker et al. (2016) was implemented. The equation is solely based on TH 
and CD values, which were already computed for each ITC. The allometric model, 
presented in Equation 4, was implemented by means of the agb function of itcSegment 
R package(Dalponte, M., 2018), setting the species group parameter to angiosperm and 
dividing the output value by 1000 to get estimates in Mg. 

 

𝐴𝐴𝐴𝐴𝐴𝐴 = (0.016 +  𝛼𝛼𝐺𝐺) + (𝑇𝑇𝑇𝑇 × 𝐶𝐶𝑊𝑊)(2.013+ 𝛽𝛽𝐺𝐺)  ×  𝑒𝑒𝑒𝑒𝑒𝑒 (0.2042

2
)             Equation 4 

 
Where TH and CD are both expressed in meters. The terms αG, and βG are functional group-
dependent parameters which account for the difference in scaling constant and scaling 
exponent between angiosperm and gymnosperm trees. In this study the most numerous tree 
species are found to be angiosperms and thus the values αG, and βG need to equal 0. 
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Validation 
 
 Segmentation algorithms validation 

 
To validate and compare the segmentation results of each algorithm, two procedures were 
developed. The first one aimed at validating the segmented ITCs based on the stem map by 
computing a confusion matrix with relative statistics. The second procedure was developed 
to assess ITCs similarity with reference crowns by calculating the Jaccard Index. Both 
methodologies are explained in further details in the next paragraphs.  

 
• Confusion matrix 

 
Due to the nature of the ITCs and stems datasets, the generation of the confusion matrix 
posed several problems that needed to be solved. In standard situations the computation 
of the confusion matrix provides a straightforward mean to assess the classification of 
two or more different classes based on true reference values. In image classification for 
example, each pixel is valuated as correctly or wrongly classified comparing it with the 
corresponding pixel in the true dataset. The reliability of such a comparison is guaranteed 
by the location information embedded in each pixel. In this study, such a comparison was 
not possible. While the ITCs features were in the form of polygons, the ground truth 
dataset was composed of simple points, so that a conventional assessment between the 
two datasets were not feasible.  Furthermore, the uncertainty of stem locations added a 
further challenge when assessing the segmentation outputs. In order to overcome these 
limitations the comparison and match of segmented trees with the reference stems was 
performed with the introduction of different thresholds.  
First, to evaluate if a tree was segmented in the correct location, the distance between 
the ITC centroid and the intersecting stems was calculated. If the distance was found to 
be smaller than a user-defined threshold (Thresh_D), the segmented tree was considered 
as a possible match with the corresponding stem. In this study the influence of three 
different distances was explored, namely 0.5 m, 1 m, and 2m. Conversely, since the LiDAR 
data had not been co-registered yet when testing the AMS3D algorithm, the distance 
thresholds was set to 4 meters.  
Moreover, the validation of AMS3D ITCs posed an extra challenge for matching stems 
with the right crowns. The algorithm in fact, can also segments understory trees and thus 
produced overlapping polygons that may ‘compete’ for the same stem. For some stems 
it can therefore occur that the closest ITC does not represent the corresponding canopy, 
leading to a wrong match that should be avoided. To this end an extra constraint had to 
be set. Based on the available data, two tree attributes could be exploited to prevent 
erroneous association, TH and DBH. The former, was already obtained by applying 
Equation 2, while the latter could be estimated for each ITC based on CD and TH measures 
applying Jucker et al. (2016) DBH allometric model, Equation 5. 
 
𝑊𝑊𝐴𝐴𝑇𝑇 = 0.557 × ( 𝑇𝑇𝑇𝑇 × 𝐶𝐶𝑊𝑊 )0.809  × 𝑒𝑒𝑒𝑒𝑒𝑒 0.0562 2⁄                Equation 5 

 
Both approaches were tested during the analysis and both showed high discrepancies 
between observed and estimated values. At the end, it was decided to estimate stem 
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height and use the difference with the ITC height as second constraint. The choice to 
exclude estimated DBH from the validation was driven by its high dependency on CD. Even 
though CD has been proved to be essential for differentiating trees of similar height but 
having substantially different trunk sizes (Jucker et al., 2016), the measure may already 
present a certain level of uncertainty due to the segmentation process. Furthermore, it 
was preferred to exclude the influence of ITCs from the computation of the second 
threshold. On the other hand, the estimation of tree height based on stem DBH was 
considered to only add a small uncertainty which corresponded to an RSE of 0.243 m. 
Nevertheless when deciding the most suitable threshold value to set, another 
consideration had to be made. As a matter of fact the AMS3D method, when segmenting 
a tree, might erroneously include points of adjacent canopies. These points, that can be 
higher than any other in the current tree cluster, add an extra source of error that should 
be considered.  
As a result, the stems that were already found to be within the distance threshold were 
inspected comparing TH with the EstTH of the current stem. In order to limit the possibility 
of excluding the right match because of height difference, and exclude clearly erroneous 
stem-ITC matched, two thresholds (Thresh_H) of 10 and 15 m were tested. Finally, among 
the remaining possible matches that satisfied both constraints (Thresh_D and Thresh_H), 
the closest stem was paired with the ITC and labelled as True Positive (TP).  
After that, unmatched ITCs were labelled as False Positive (FP) whereas unmatched stems 
were labelled as False Negative (FN). For the calculation of True Negatives (TN), another 
issue had to be overcome. In fact, due to the nature of data again, it was not possible to 
assess when the segmentation correctly had not segmented a tree at a certain location. 
To solve this problem it has been decided to randomly select sample locations within the 
plot that could be considered as points where no tree was present. This was achieved by 
selecting points that were at a certain distance from other stems. The distance was then 
set equal to the threshold previously used for validating the ITCs locations. Furthermore, 
to ensure an even distribution of stems (points with a tree) and random samples (point 
without a tree), the latter were selected in the same number as the stems (2291). FN ITCs 
were then tested for possible matches with sample points based again on the current 
distance threshold. At the end of the process, the unmatched sample points were labelled 
as TN. With this information available the computation of the confusion matrix was 
completed, and the analysis could proceed calculating several statistics (Equations 6-10). 
The singular steps taken to compute the confusion matrix and the associated statistics are 
presented below. 
 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒 (𝐸𝐸𝑅𝑅𝑅𝑅) = 𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

𝑇𝑇𝐹𝐹+𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹
                                Equation 6 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝑅𝑅𝐴𝐴𝐴𝐴 (𝐴𝐴𝐶𝐶𝐶𝐶) = 𝑇𝑇𝐹𝐹+𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹+𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹
                                Equation 7 

 

𝑃𝑃𝐸𝐸𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝐸𝐸𝑙𝑙 (𝑃𝑃𝑅𝑅𝐸𝐸𝐶𝐶) = 𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹 

                             Equation 8 

 
𝑅𝑅𝑒𝑒𝐴𝐴𝑅𝑅𝑙𝑙𝑙𝑙 (𝑅𝑅𝐸𝐸𝐶𝐶) = 𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹+𝐹𝐹𝐹𝐹
                   Equation 9 
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𝐹𝐹 𝑃𝑃𝐴𝐴𝐸𝐸𝐸𝐸𝑒𝑒 (𝐹𝐹1) = 2 ∗  𝑅𝑅𝑅𝑅𝑅𝑅∗𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅+𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅

                Equation 10 

 

With TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative.  
 
The generation of the confusion matrix with the relative statistics was repeated on two 
ITCs subsets obtained by setting a TH value of 20 m as cut-off point. Dividing the identified 
crowns based on their height will provide further details regarding the accuracy of the 
algorithms and their ability to segment low and high vegetation. 
As an example, Figure 8 illustrates four different situations where segmented ITCs are 
respectively assessed as TP (a), FP (b), TN (c), and FN (d). In the first case it can be observed 
that the validation algorithm was able to match seven different ITCs (red polygons) which 
partly or completely overlapped. The distance threshold allowed to pair most tree crowns 
with the corresponding stems (yellow dots), the height difference threshold made sure 
that no crowns were paired with a wrong stem. In case (b) instead, a FP crown is 
presented. Here there were three stems within or in the surroundings of the ITC, but none 
was matched. Two of them did not satisfy the distance constraint since they were further 
than 2 meters, the closest stem instead exceeded the height difference threshold of 15 m 
and hence was not matched either. In figure (c) a random point (light blue dot) is shown 
with a 2 m buffer around, as it is visible, no stem fell within the buffer and thus the point 
was labelled as TN. In the last case (d), a stem (yellow dot) is displayed with a 2 meters 
buffer around. Since none of the surrounding crowns barycentres are falling within the 
buffer the stem represented a FN, in other words, a tree that could not be segmented by 
the algorithm or matched during the validation process. 

Figure 8: (a) True Positive: Individual Tree Canopies (ITCs) matched with a stem, (b) False Positive: ITC not 
matched with any stem (two stems in the upper part are further than 2 m while the stem on the right didn’t 
matched the height difference constraint), (c) True Negative: random sampled point with no ITC centroid 
closer than 2 meters, (d) False Negative: stem with no ITC centroid closer than 2 m. Legend: ITCs = red 
polygons, ITC_centroids = red dots, stems = yellow dots, 2m_stem_buffer = yellow buffer, 
random_sample_point = light blue dot, 2m_random_sample_buffer = light blue buffer. 
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• Jaccard Index 
 

To evaluate the accuracy of segmented crown shapes, a sample of five trees was 
generated for each of the following tree classes.  

− Tree in the emergent canopy layer (ECT)  
− Tree in the main canopy layer (MCT) 
− Tree in the sub-canopy layer (SCT) 

The reference trees were first manually segmented from the UAV point cloud and their 
convex hull (crown polygon) was then computed. The obtained crowns, shown in Figure 
9, were then implemented for the calculation of the Jaccard index. The index, presented 
in Equation 11, tests the similarity between two crowns computing the ratio between 
their intersection and union. Following the approach of Aubry-Kientz et al. (2019), a crown 
was considered correctly segmented when the Jaccard Index exceeded the threshold 
value of 0.5. The presented methodology was only applied on those ITCs that had already 
been assessed as correctly matched. In this way the possibility of retrieving high Jaccard 
indices on wrongly identified crowns was avoided. On the other hand, it should be 
considered the possibility that crowns with a higher similarity might have been labelled 
as False Positive and thus not taken into consideration in the index computation. When 
more TPs intersected the reference crown, the one with the biggest overlap, assumed to 
be the corresponding ITC, was selected for the Jaccard Index calculation. Finally, in order 
to make the validation meaningful also for the raster-based segmentations, which cannot 
detect trees in the subcanopy layers, it was decided to segment low elevation trees which 
were still represented in the CHM.  
 
𝐽𝐽 (𝐴𝐴,𝐴𝐴)  = |𝐴𝐴∩𝐵𝐵| 

|𝐴𝐴∪𝐵𝐵|
                  Equation 11 

Figure 9 Reference, manually segmented ITCs. The colours indicate the three different classes. ECT: red, MCT: 
blue and SCT: light blue  
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 Above Ground Biomass estimates comparison  
 

To examine which segmentation algorithm produced the most reliable AGB estimates and to 
investigate their ability to predict AGB at tree level two different comparisons were 
performed. At first, we compared the obtained AGB estimates with the reference ones at plot 
level calculating absolute error (Equation 12) and relative error (Equation 13). The 
assessment can give a first indication whether the algorithms over- or underestimate the 
forest biomass. Comparing AGB at tree level instead is useful to test the prediction accuracy 
of the model itself and the segmentations performance for estimating biomass of small and 
large trees. In the latter comparison exclusively True Positive ITCs could be considered as the 
only ones with an associated stem. To test whether the adopted framework led to an over or 
underestimation of AGB based on tree size, ITCs and stems were divided into four DBH 
classes:  

− DBH < 20 cm  
− 20 cm < DBH < 40 cm  
− 40 cm < DBH < 60 cm  
− DBH > 60 cm  

In order to compare the reference (AGBRef) and estimated (AGBEst) AGB values, two 
measures of average error were computed: the root mean square error (RMSE, in Mg), 
Equation 14, and the relative systematic error (or bias, in %), defined in Equation 15 . 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐸𝐸𝑃𝑃𝑅𝑅 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑒𝑒𝐴𝐴        Equation 12 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅_𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐴𝐴𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝐴𝐴𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴+𝐴𝐴𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴            Equation 13 

 

𝑅𝑅𝑅𝑅𝑇𝑇𝐸𝐸 = �∑ (𝐴𝐴𝐺𝐺𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴,𝑖𝑖−𝐴𝐴𝐺𝐺𝐵𝐵𝑅𝑅𝑅𝑅𝐴𝐴,𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
        Equation 14 

 
𝐴𝐴𝑃𝑃𝑅𝑅𝑃𝑃 =   1 𝑁𝑁 ⁄ ×  ∑ (𝐴𝐴𝐺𝐺𝐵𝐵𝑅𝑅𝐴𝐴𝐴𝐴,𝑖𝑖− 𝐴𝐴𝐺𝐺𝐵𝐵𝑅𝑅𝑅𝑅𝐴𝐴,𝑖𝑖

𝐴𝐴𝐺𝐺𝐵𝐵𝑅𝑅𝑅𝑅𝐴𝐴,𝑖𝑖
)  × 100𝑛𝑛

𝑖𝑖=1       Equation 15 
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Results 
 
UAV Data pre-processing  
 
As a result of the pre-processing operations performed on the raw data the obtained point cloud 
for the area of study is composed of 371,034,339 points distributed over 4 hectares and returns 
a final point density of 7502.31 points per square meter. Of all points, 1,666,070 have been 
classified as ground returns, which is about 0.5 % of the total point count. Additional information 
about the obtained point cloud dataset can be found in Table 6. 
 
Table 6: Main characteristics for the point cloud of the Area Of Study 

  
 
 Data down-sampling and normalization  
 
During the point density testing, seven down-sampled versions of the original test tile were 
obtained. Resulting point densities and percentages of original points can be found in Table 
7. Before proceeding to down-sample the whole point cloud and continue with the analysis, 
the AMS3D segmentation was run on each thinned version of the test tile and the results 
were analysed to identify at which point density the algorithm performed the best. A grid size 
of 0.05 m was at the end identified as the most suitable option and the down-sample of the 
whole point cloud was performed. The thinning process generated a point cloud composed 
of 19,022,940 points which corresponded to 5.13 % of the original point count. The point 
density dropped from 7502.31 to 384.64 (pts/m2) for all returns and from 4441.31 to 231.32 
(pts/m2) for only last returns. The spacing between individual returns increased to 0.05 m 
(grid size) for all returns and 0.07 m for last returns only. Figure 10 presented a horizontal 
crown section before and after the down-sampling process (grid size 0.05) and gives an idea 
about the inevitable loss of information when the point density is reduced. At full point 
density tree branches are clearly distinguishable and well represented. In the thinned version 
instead, only few main branches are still visible, however the crown boundaries seem to still 
fairly represent the original ones. This is of extreme importance for the segmentation 
methods, especially for those based on the CHM. In fact, when rasterizing the point cloud it 

Attribute Min Max 
X 265148 1314654 
Y -152120 897390 
Z 551721 799224 

Intensity 0 62966 
Return number 1 7 

Number of returns 1 7 
Classification -74 71 

Point density (pts/m2) All returns: 7502.31 Last returns: 4441.31 
Point spacing (m) All returns: 0.01 Last returns: 0.02 

Coordinate System WGS 84 / UTM zone 22N, epsg = 32622 
Number of points 371,034,339 

Ground points 1,666,070 



27 
 

is important that points at the borders of crowns are still present so that the corresponding 
pixels will get assigned with an accurate height value. On the other hand, the lack of points 
within the canopy does not represent a problem since those pixels will be calculated based 
on higher points which represent the top of the canopy and that are still present  
 
Table 7: Point density (pts/m2), and percentage of remaining original points for each down-sampled test 
performed on Tile 286400_583100.Higlighted in yellow the down-sample level used to thin the final dataset. 

Test Tile Grid size Points density 
(pts/m2) 

Percentage of 
original points 

(%) 
286400_583100  9,489 100 

Test_0.0125 0.0125 1922.82 75 
Test_0.025 0.025 1054.15 41 
Test_0.05 0.05 350.89 13 
Test_0.1 0.1 93.43 3.6 

Test_0.15 0.15 42.08 1.6 
Test_0.2 0.2 23.87 0.9 
Test_0.3 0.3 10.71 0.4 

 

 

Figure 10: Horizontal section of an emergent canopy at full point density (a), and at a point density of 350.89 
pts/m2 (b). 
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Adaptive Mean Shift 3D Segmentation 
 
 AMS3D testing 
 
When testing the AMS3D algorithm, the analysis focused on the effect of three parameters. 
The first one to be inspected was the maximum distance to merge two modes (MaxDist), 
which was found to control the aggregation of individual clusters. Small MaxDist values 
prevent the algorithm to merge points that converge to nearby modes. On the other hand, 
high values cause the grouping of individual clusters into larger ones. Merging different 
modes can help to connect different regions of the same tree, avoiding over-segmentation 
of the scene. However, excessively large thresholds result in the combination of far clusters 
which might belong to different trees, causing under-segmentation. The MaxDist parameter 
should hence be carefully selected considering the nature of the forest, the point cloud 
density, and the research goal. In fact, in the presence of a dense understory layer, the 
algorithm will be more prone to identify many modes segmenting a high number of trees. 
The same result might result from very high-density point clouds. Finally, depending on the 
goal of the project, one might decide to set a large MaxDist value, under-segment the lower 
strata, but avoid over-segmentation of big emergent canopies, which are well-known to 
store large quantities of carbon (Slik et al., 2013) and thus may be more relevant for biomass 
estimation.  
The second parameter, the gamma value for the Gaussian profile (Gamma) has a completely 
different effect on the segmentation, affecting the algorithm efficiency for distinguishing 
adjacent, interconnecting canopies. Low values will widen the Gaussian profile increasing its 
variance and thus assigning higher weights to points that are further away in the horizontal 
dimension. Consequently, the computation of the bandwidth barycentre will be more 
affected by far points and the algorithm will struggle to separate adjacent crowns. On the 
other hand, high Gamma values will narrow the Gaussian kernel preventing the barycentre 
to move in the horizontal direction favouring the identification of a larger number of modes 
and hence the under-segmentation of big trees. 
The last parameter tested was the minimum number of modes to form a cluster (MinMod), 
which can be thought as the minimum number of points to segment a tree. This parameter 
strongly depends on the point cloud density and it is expected to primarily influence down-
sampled tiles where single trees are composed of few points. Small MinMod values will 
prevent the segmentation of clusters of too few points whereas high values will cause the 
fusion of different trees due to their insufficient number of points.  
After running the AMS3D algorithm on the test tiles and retrieving the ITC polygons, the 
effect of the above-mentioned parameters was assessed comparing different attributes of 
the obtained outputs.   
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• Number of ITCs 
 

The number of segmented trees gives a first indication about the degree of the 
segmentation. A large number of ITCs may be an indication of over segmentation while a 
small number may suggest that trees have been under-segmented or clustered together. 
Segmenting the scene with a point density of 10.71 pts/m2 and a MinMod value of 100 
(Test 18_03) returned the least number of ITCs, on the contrary, the largest number was 
observed when segmenting a high density point cloud (1922.82 pts/m2) with the smallest 
MaxDist  value (Test 11_00125). 
When assessing the influence of the three parameters it was clear that MaxDist had a 
greater influence than the other two parameters. Figure 11 (a), shows that increasing the 
distance from 0.5 m to 1.5 m caused a reduction of ITCs which dropped from about 3700 
to about 700. Conversely, an increase of Gamma (Figure 11 (b)), as expected, led the 
algorithm to segment a greater number of trees. Following the same pattern of the first 
graph, also the MinMod parameter resulted in fewer trees when set to larger values, but 
this time the difference was not as pronounced as in the first case (Figure 11 (c)). 
Furthermore, observing the different point colours it is interesting to notice how tiles that 
were heavily down-sampled corresponded to smallest number of segmented ITCs.  
 

Figure 11: Graphs showing the relationship between the number of segmented crowns (ITCs) and the three 
parameters explored during the Adaptive Mean Shift 3D algorithm testing, (a) Maximum distance to merge 
two modes (MaxDist), (b) gamma value for the gaussian kernel (Gamma), and (c) Minimum number of 
modes to create a cluster (MinMod). Different point colours show the point density of the down-sampled 
tests. 

 
• Understory points 

 
Every test grouped a large number of low elevation points together, producing a large 
cluster that extended over the whole area of study. The size of this big cluster, which was 
composed of mainly understory points, was found to primarily depend on the MaxDist 
parameter. The clustering of points from all over the plot can be explained by the fact 
that in low forest layers, vegetation features form a dense, homogeneous set of points. 
Here the points lead to modes that are close to each other and thus, are more prone to 
be combined into single clusters when increasing the merging threshold. When inspecting 
the relationship between the understory points, expressed as percentage of the total 
points number, three different patterns were identified. In Figure 12 (a), the three densest 
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versions of the test tile are shown (point density of 1922.82 pts/m2, 1054.15 pts/m2, 
350.89 pts/m2) and they depict a clear pattern between the MaxDist parameter and the 
resulting number of that populate the understory cluster. For higher values of MaxDist 
the total number of points that have been grouped also increases, with test_13_0.05 
(MaxDist = 1.5 m and Down-sample percentage = 13.7%) having the densest understory 
cluster which contain about 10 % of the total amount of point. The second graph, Figure 
12(b), illustrates the atypical case of test_13_0.1. Here the percentage of understory 
points dropped from about 8% to about 4% when MaxDist increased from 0.5 m to 1 m, 
and then rose again up to about 9 % for a MaxDist of 1.5 m. At first, the low percentage 
of understory points of the second case might be interpreted as an error. However, when 
visually assessing the three cases it was found that at this value of the merging threshold, 
additional large point clusters were generated. Therefore, the typical big understory 
group counted a smaller number of points and thus the lower percentage. Once MaxDist 
was increased again to 1.5 m, these groups were merged again with the big cluster, that 
now consisted of about 10% of the total number of points. The last graph, Figure 12 (c), 
which referred to the three tests with the lowest point densities, depict a completely 
opposite pattern compared to the first case. Here, the percentage of understory points 
decreases with the increase of MaxDist. As in the previous case, with higher MaxDist 
values more and more big clusters were segmented in the lower forest layer. As a result, 
the big understory group presents, in percentage, less points than the cases with a smaller 
merging threshold.  
 

 
Figure 12: Graphs showing the relationship between the percentage of points that have been segmented as 
a single, large understory cluster and the Maximum distance to merge two modes parameter (MaxDist). The 
point data referred to the segmentation outputs of test 13 obtained at different down-sampling levels. (a) 
test tiles at a point density of 1922.82 pts/m2, 1054.15 pts/m2, and 350.89 pts/m2. (b) test tile at a point 
density of 93.43 pts/m2, and (c) test tiles at a point density of 42.08 pts/m2, 23.87 pts/m2, and 10.71 pts/m2. 

 

 
Figure 13:Points that were clustered together with different values set for the Maximum distance to merge 
two modes parameter (MaxDist) at a point density of 1054.15 pts/m2. (a) MaxDist of 0.5 m, (b) MaxDist of 
1 m, and (c) MaxDist of 1.5 m.   
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• Point density 
 

The AMS3D segmentation was originally developed to segment ALS point clouds, which present 
much lower point densities than the ones obtained with UAV systems. The algorithm, however, 
does not evaluate the density function itself but normalized local gradients, thus the point 
density at which the crowns are sampled has only a slight impact on the identification of 
individual vegetation features (Ferraz et al., 2012). Nevertheless, it was decided to test this 
assumption to evaluate the influence of increasing point densities on tree segmentation results. 
It was found that the amount of points does affect the number of segmented ITCs, especially at 
low MaxDist values, as it shown in Figure 11. 
The effect of point density on the segmentation outputs is particularly clear when visually 
inspecting singular trees. Figure 14, shows how the AMS3D algorithm, segmented the same tree 
at increasing point densities. As it is noticeable, in each figure the tree includes part of other trees 
and miss some other sections, but what is more striking is the general representation of the tree 
itself. While at low densities only the crow is represented, as the number of returns gradually 
increases the shape of the tree becomes more defined and new elements that were not visible 
before, now become clear. From a point density of about 350 pts/m2 (Figure e) the trunks start 
to be visible and help to distinguish the multiple tree in the scene. The reason why at lower point 
densities only the upper part of the crows was segmented is again related with the clustering of 
low elevation point in one big cluster, referred as understory cluster in the previous sections. On 
the other hand it is also true that denser point clouds are indeed able to segment a tree from the 
trunk up to the canopy apex but also identify part of the same canopy as separated cluster, 
leading to new challenges for finding the best compromise. Nevertheless, the added value of high 
point densities is evident as more points enable the algorithm to easily differentiate adjacent 
trees. 
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Figure 14: Segmentation of the same tree obtained with test 18 at different point density levels. (a) 
10.71 pts/m2, (b) 23.87 pts/m2, (c) 42.08 pts/m2, (d) 93.43 pts/m2, (e) 350.89 pts/m2, (f) 1054.15 
pts/m2, and (g) 1922.82 pts/m2. 
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• Confusion matrix and statistics 
 

To better compare the different tests outcomes, the results were also assessed with the 
computation of a confusion matrix and the calculation of the relative statistics. A first 
indication of the test performance can be inferred by examining the number of correctly 
segmented trees, nevertheless the information is only partially meaningful. In fact, a large 
number of TP may also indicate a severe over-segmentation of the area, whit many ITCs 
that could be matched with a stem. For this reason the final comparison and assessment 
of different tests was based on a more robust indicator which is the F-score. The latter is 
a well-known measure of test accuracy which considers both precision and recall and 
varies between 0 (worst performance) and 1 (perfect performance). In addition to 
evaluate the segmentations based on the whole ITC dataset, two additional datasets were 
created based on TH. Computing the confusion matrix and statistics on the two new 
subsets helps to better understand the segmentations effectiveness in the lower part of 
the canopy (TH < 20 m) and in the higher layer (TH > 20 m). Complete version of the 
confusion matrices can be found in Appendix 2.  
In Table 8 the five tests that obtained the highest F-score when assessing the whole ITCs 
dataset are shown. Four out of the five best results were obtained by test 18 (MaxDist = 
1.5, gamma = 5, MinMod = 50), which generated the best statistics compared to the other 
tests. The best results were obtained with a point density of 42.08 pts/m2 and reached a 
F-score of 0.4563.  

 
Table 8: Statistics of the five best tests of the Adaptive Mean Shift 3D segmentation algorithm based on the 
obtained F– scores for the whole dataset. 

Test 
Point 

density 
(pts/m2) 

Error Rate Accuracy Precision Recall F-Score 

Test_18 42.08 0.5679 0.4321 0.4023 0.5271 0.4563 
Test_18 10.71 0.5357 0.4643 0.6000 0.3399 0.4340 
Test_18 23.87 0.5661 0.4339 0.4394 0.4286 0.4339 
Test_15 10.71 0.5897 0.4103 0.3904 0.4384 0.4130 
Test_18 93.43 0.6292 0.3708 0.3077 0.6108 0.4092 

 
 

When considering the segmentation of only high trees (Table 9), test 18 confirmed to be 
one of the most accurate, generating the first and third best statistics, with test 15 which 
returned the second highest F-score. It is interesting to notice that for high trees the best 
segmentations have been obtained with point densities of more than 1000 pts/m2. A 
possible explanation is that at high densities the upper canopies, which contain most of 
the points, are finer represented and thus lead to a more accurate delineation of big trees.  
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Table 9: Statistics of the five best tests of the Adaptive Mean Shift 3D segmentation algorithm based on the 
obtained F– scores for the high-trees subset (Tree Height > 20 m). 

Test 
Point 

density 
(pts/m2) 

Error Rate Accuracy Precision Recall F-Score 

Test_18 1054.15 0.5119 0.4881 0.5272 0.4778 0.5013 
Test_13 1054.15 0.5278 0.4722 0.4854 0.4926 0.4890 
Test_18 1922.82 0.5237 0.4763 0.5109 0.4631 0.4858 
Test_17 1054.15 0.5315 0.4685 0.4806 0.4877 0.4841 
Test_12 1054.15 0.5482 0.4518 0.4375 0.5172 0.4740 

  

A similar situation occurs when considering the subset composed of short trees (TH< 20 
m), with test 18 that was again found to be the most effective. As shown in Table 10, in 
this case a lower point density (350 pts/m2) produced the best results, however, a 
significant decrease of about 0.2 was observed in the F-scores. The poorer results 
corroborate that in general, the segmentation of understory vegetation still represents a 
major challenge.  
In conclusion, the analysis of the obtained confusion matrices gave an unequivocal 
indication on the most effective settings for segmenting the test tile. Test 18 
outperformed other tests for both low and high vegetation. It is thus clear that a higher 
value of MinMod can significantly improve the segmentation avoiding the creation of 
small cluster of points and the consequent over-segmentation of the area. 

 
 

Table 10: Statistics of the five best tests of the Adaptive Mean Shift 3D segmentation algorithm based on 
the obtained F– scores for the low-trees subset (Tree Height < 20 m). 

Test 
Point 

density 
(pts/m2) 

Error Rate Accuracy Precision Recall F-Score 

Test_18 350.89 0.7129 0.2871 0.2162 0.4483 0.2917 
Test_18 1054.15 0.7201 0.2799 0.2082 0.4483 0.2844 
Test_15 1054.15 0.7262 0.2738 0.2018 0.4483 0.2783 
Test_18 1922.82 0.7268 0.2732 0.2005 0.4286 0.2732 
Test_18 93.43 0.6820 0.3180 0.2589 0.2857 0.2717 
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• Jaccard Index: 
 

The computation of the Jaccard index, despite the limited number of reference crowns, 
returns a first indication of the congruency of segmented canopies. Table 11 lists, for each 
reference tree, the five highest Jaccard indices and the corresponding tests. In the case of 
the emergent canopy (ECT), test 15, 18, 12, and 16 generated the same ITC and thus 
obtain an equal Jaccard index of 0.8467, which indicates an excellent similarity. These 
tests are characterized by a MaxDist of 1.5 m except for test 12 where the parameter was 
set equal to 1 m, indicating that low MaxDist values may not appropriate for segmenting 
large crowns. The overlap then dropped to about 0.58 for both the remaining reference 
crowns, indicating the general higher complexity of accurately segmenting trees in the 
lower layers. It is interesting to notice that also in this case larger MaxDist values produced 
the best results. 
 
Table 11: List of five matched segmented ITCs with the highest Jaccard index for each reference tree. 

 

 
 

• Visual comparison 
 

Finally, as in the case of point density, outputs of different tests were also compared at 
tree level. The same individual tree was extracted from the point clouds and the 
segmentation outcomes were visually inspected. In general, none of the test was able to 
segment the investigated tree without including parts of adjacent trees or segmenting 
section of the crown as different clusters. Inspecting the single trees shown in Figure 15, 
it is interesting to notice how multiple tests produced quite similar clusters, with only test 
15 (d) and 16 (e) that shows higly different results. These tests were respectively designed 
to experiment with a lower and a higher value of gamma, which plays an important role 
when differentiating adjacent trees. The tests confirm that at low gamma values, far 
points in the horizontal direction still get a high weight in the computation of the 

ITC test Point density 
(pts/m2) Reference tree Jaccard Index 

15 1054.15 ECT 0.8467 
18 1054.15 ECT 0.8467 
12 1054.15 ECT 0.8467 
16 1054.15 ECT 0.8467 
13 23.87 ECT 0.8378 
15 350.89 MCT 0.5852 
18 93.43 MCT 0.5840 
18 350.89 MCT 0.5679 
17 42.08 MCT 0.5582 
13 10.71 SCT 0.5876 
17 10.71 SCT 0.5876 
12 10.71 SCT 0.5876 
15 10.71 SCT 0.5876 
18 10.71 SCT 0.5876 
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bandwidth barycenter. As a result, the algorithm struggles to separate canopies that 
interpenetrate each others, which is confirmed by the big cluster in Error! Reference 
source not found. (d) that comprends parts of several canopies.  
On the other hand, varying MaxDist and MinMod parameters does not generate any 
appreciatable difference in the segmentation.  

 

Figure 15: Extraction of a sample tree and the adjacent canopies obtained with different test setting at a 
point density of 1054.15 pts /m2. (a) Test 11, (b) Test 12, (c) Test 13, (d) Test 15, (e) Test 16, (f) Test 17, and 
(g) Test 18. 
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 Adaptive Mean Shift 3D AOI 

Figure 16: Segmented scene of Area Of Study obtained with the AMS3D segmentation algorithm. 

 
The segmentaiton of whole area (10 m buffer included), shown in Figure 16, generated a 
total of 6723 ITCs of which, 967 have been excluded from the analysis since they were not 
intersecting the original area of study (4 ha, no buffer) or because their size was not congrous 
with a canopy. Figure 17 shows the big understory cluster (a) and others big group of points 
(b) that were removed before proceeding with the segmentation assessment. The remaining 
5756 segmented polygons, which are about 2.5 times more than the reference stems, ranged 
from very small trees, with a minimum Crown Area of 1.03 m2 and minimum Tree Height of 
0.540 m, up to large trees with an area of over 500 m2 and a height equal to 45.21 m. 
Summary statistics of the obtained ITCs can be found in Table 12. 
The understory cluster (Figure 17 (a)), whose area corresponded to the whole plot surface, 
contained 694,634 points with an average height of 6.93 m. In addition to the latter cluster, 
the segmentation also produced the formation of other big groups of points (Figure 17 (b)) 
that were removed during the post-processing operations.These large set of points ranged 
from an area of 1215.86 m2 to 4305.09 m2 and comprended points up to 13.95 m. The 
exclusion of such clusters prevented the chance of matching them with a stem but on the 
other hand, it negatively affected the segmentation results removing a large number of 
points and thus understory trees. Compared to the segmentation results obtained by Kientz 
et al. (2019), which are an average over six different plots in Paracou, the obtained 
segmentation produced more ITCs (6723 vs 2564), with in general smaller crowns (mean 
area of 24.78 m2 vs 32.46m2). 
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Table 12: Summary statistics of Crown Area, Crown Diameter, and Tree Height of Adaptive Mean Shift 3D 
algorithm-segmented trees in the Area Of Study. 

 
 

Figure 17: On the left the big, understory cluster of points is shown, on the right instead, the big clusters that 
were removed  together with the understory points are plotted with the plot6 AOI and the quarter hectares 
boundaries. 

 
  

Summary statistic Crown Area (CA) Crown Diameter 
(CD) Tree Height (TH) 

Min 1.03 m2 0.81 m 0.54 m 
Mean 24.78 m2 4.68 m 17.82 m 
Max 690.316 m2 29.21 m 45.21 m 
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Spike-free Canopy Height Model 
 

Figure 18: Spike-free Canopy Height Model of the Area Of Study.  

 
The generated Spike-free Canopy Height Model (CHM_Sf), Figure 18, clearly shows the natural 
variability of the area of study. While few emergent trees were well-defined and easily 
detectable, the rest of the canopy shows a fairly constant height which makes it more 
complicated to identify and discern adjacent crowns. Observing the CHM_Sf some other patterns 
are clearly visible. While the canopy in the East portion of the plot appear very dense and on 
average higher than the rest of the area, the vegetation in the central section looks much sparser 
and shorter. The area, which stretches from South-East to North-West, interestingly follows the 
course of a small creek that crosses the forest in the same direction. The presence of the stream, 
which is located at the bottom of a small valley may be somehow related to the presence of a 
sparser vegetation. On the other hand, when inspecting the CHM_Sf in more detail, few more 
observations can be made. Figure 19 shows a portion of the spike-free CHM (a) compared to the 
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standard CHM (b) and the difference between the two (c). The standard CHM presents numerous 
dark pixels that cause noise in the raster. These pits, clearly visible as dark pixels, are produced 
when, in the case of LiDAR data, laser beams penetrate the canopy and are reflected by lower 
objects or the ground. When converting a point cloud to raster, due to the high resolution of the 
raster (0.10 m in this case) some pixels get assigned with a low Z value even if they are located 
within a high canopy. As a consequence, the final raster looks noisy and would negatively affect 
those segmentation algorithms that rely on the CHM. Compared to the standard CHM, the spike-
free version looks smoother and the crown looks more defined. However the vegetation features 
do not appear simplified and result in a fair representation of the canopy. 
 
 

 
Figure 19: Visual comparison of the Spike-free CHM (a) and the standard CHM (b), and their difference (c) for a test 
tree. 

 
To better quantify the difference between the two models, the raster histograms and summary 
statistics were generated and are presented in Figure 20 and Table 13. While the minimum and 
maximum values of the two CHM versions differ of few centimetres, the quantiles and the 
median values help getting more insights of the difference between the two. In fact, the standard 
CHM presents many more low-elevation pixels, which can be thought as pits in the raster. The 
difference raster instead, is useful to have an indication of height variation between same pixels 
in the two rasters. Figure 10 (c) and Table 9 show that pits reached a depth of 45 m, indicating 
that the LiDAR laser beam probably reached the ground in that specific location. On the other 
hand, the presence of spikes can also occur but, as the histogram show, it is less common. 
 
 

 
Figure 20: Frequency histograms of pixels height of the Spike-free Canopy Height model (a), the standard Canopy 
Height Model (b), and the model of their difference (c).   
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Table 13: Summary statistics of the Spike-free Canopy Height model, CHM_Sf (a), the standard Canopy Height Model, 
CHM_St (b), and the difference CHM model, CHM_Diff (c). 

Statistic CHM_Sf CHM_St CHM_Diff 
Min 0.00 - 0.04 - 45.44 

1st Quantile 23.92 18.41 - 6.46 
Median 28.63 24.32 - 2.57 

3rd Quantile 32.30 28.95 - 0.53 
Max 46.33 46.21 35.40 

 
 
Generating the spike-free model on single tiles, as shown in Figure 21, cause some of the points 
at the edge to have lower heights compared to the rest of the scene. When the tiles were merged 
and the whole scene was successively converted to raster, these points caused the formation of 
pixels with low values at the edges of tiles. These height differences in pixel height, produced few 
artefacts in the final raster which are detectable as straight lines, Figure 22 (a). These artefacts in 
some point reached the depth of 1 meter, as it is shown by the vertical profile of a sample 
transect, Figure 22 (b).  

Figure 21:  Spike-Free point cloud of a test tile  
showing the low points at the edges.  
 
 

Figure 22: Transect over a artefact section (a) and vertical profile of the transect with the location of the artefact 
highlighted in light blue (b). 

  

a b
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itcSegment segmentation 
 
 

 
Figure 23: itcSegment-derived Individual Tree Canopies (red polygons) displayed above the Spike-free Canopy Height 
Model (CHM_Sf) 

 
The itcSegment algorithm generated in total 1858 ITCs, 346 of which were removed because not 
intersecting the plot, returning 1512 trees within the AOI (Figure 23). As already explained in the 
Methodology section, the algorithm operates on the CHM, and thus, it is only able to identify 
tree crowns located in the upper canopy. This is confirmed by the fact that the average TH of 
segmented canopies equals to 32.150 m, while the lowest identified tree had a height on 12.090 
m. For such high trees it would be normal to expect large canopies as well, but this is not the 
case. As a matter of fact, as presented by the ITCs summary statistics, ( 
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Table 14)it is evident how the segmentation generally produced small crowns, with a maximum 
area of 49.220 m2, corresponding to a diameter of 7.872 m. As a result, large trees appear over-
segmented as it is clear in Figure 24 where a large, emergent canopy has been divided in multiple 
smaller polygons. Furthermore, it is also important to mention that itcSegment was not able to 
completely segment the scene, segmenting only 27.84 % of the total 4 ha area.  
 
Table 14: Summary statistics of Crown Area, Crown Diameter, and Tree Height of itcSegment-segmented trees in the 
Area Of Study. 

 
 

 
Figure 24: (a) Portion of the Spike-free Canopy Height Model showing an emergent canopy tree, and (b) itcSegment-
segmented trees (red polygons). 

  

Summary statistic Crow Area (m2) Crow Diameter (m) Tree Height (m) 
Min 1.02  1.11  12.09  

Mean 15.55  4.17  32.15  
Max 49.22  7.87  45.03  
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Watershed segmentation:  
 
 

 
Figure 25: Watershed-derived Individual Tree Canopies (red polygons) displayed above the Spike-free Canopy Height 
Model (CHM_Sf). 

The last method that was tested is a marker-based watershed segmentation. It segmented 810 
individual canopies, 180 were filtered out since not intersecting the study area, or because they 
had an area smaller than 1 m2 (Figure 25). Table 15 briefly presents the segmented ITCs summary 
statistics. As it can be noticed, the watershed algorithm, which also relies on the CHM, produced 
large crowns, and segmented a higher portion of the AOI than itcSegment. It is interesting to 
notice that, compared to the other CHM-based algorithm, the watershed method segmented 
crows with comparable heights but much larger area with a maximum area of 503.86 m2 . The 
reason of such big crowns (mean CA = 63.68 m2), lies in the algorithm itself, which is programmed 
to segment the whole area, excluding only those pixels with a height smaller than a user-defined 
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threshold. In the study the threshold was set to 5 m in order to exclude understory features. 
Consequently, some of the segmented ITCs extended all the way to the border of the CHM 
resulting in unnatural shapes with straight sides.  In general, the algorithm undersegmented the 
scene producing large ITCs as already explained, altough some crows were divided into multiple 
polygons,Figure 26 (a). In fact, the main driver of the watershed segmentation is the capability 
of the algorithm to accurately locate tree tops. When more than one apex is found within a 
crown, the tree will result divided into multiple ITCs, on the other hand, if less tree tops than 
present are identified, the segmentation will return large polygons which includes multiple trees, 
Figure 26 (b). Despite the application of a gaussian smoothing filter to avoid the localization of 
spurius maxima,  multiple treetops were found within the same canopy. This represents one of 
the main limitation of the algorithm, especially in tropical forests where trees, due to the lack of 
apical dominance are prone to cause the identification of incorrect treetops.  
 
Table 15: Summary statistics of Crown Area, Crown Diameter, and Tree Height of Watershed-segmented trees in the 
Area Of Study. 

Summary statistic Crow Area (m2) Crow Diameter (m) Tree Height (m) 
Min 1.09 m2 1.11 m 11.91 m 

Mean 63.68 m2 7.74 m 31.04 m 
Max 503.86 m2 25.22 m 45.03 m 

 
 

 
Figure 26: A portion of the Spike-free Canopy Height Model showing an emergent canopy that was over-segmented 
(a), and different emergent canopies that were instead under-segmented (b). 
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Algorithms comparison  
 
Validation thresholds selection  
 
As already presented in the relative section (Segmentation algorithms validation), the developed 
framework had to implement two user-defined thresholds to assess the segmentation results, 
namely Thresh_D, and Thresh_H. The choice of these two parameters can strongly affect the 
validation effectiveness and thus must be carefully made.  
In the study, to examine the influence of the buffer size when searching for possible ITC-stem 
matches, three different radii were implemented, respectively of 0.5 m, 1 m, and 2 m. As shown 
in, the selection of Thresh_D significantly impacted the validation results returning a larger 
number of TP for larger thresholds. Small values in fact limit the number of possible matches with 
the chance that also correct ITC will be excluded. On the other hand, large values, increasing the 
allowed centroid-stem distance can lead to wrong matches. In order to choose the most 
appropriate threshold, the segmentation results were visually analysed searching for ITCs that 
accurately represented a crown, and the distance between the ITC centroid and the 
corresponding stem was measured. For some of the inspected ITCs this distance was found to 
vary between 1.5 m and 2 m. Additionally, considering the uncertainty related to the location of 
stems, that was found to be +/- 2 m (Aubry-Kientz et al., 2019), the final threshold was set equal 
to 2 m.  
The same approach was also followed for the selection of the second threshold. The ITCs and 
stems that were found to satisfy the distance constraint were examined and the discrepancy 
between the two height measures was calculated. After the inspection of several a threshold of 
15 m was determined to be more suitable than the other tested value of 10m.  
The obtained statistics, relative to all segmented ITCs, based on the tested Thresh_D and 
Thresh_H values are respectively presented in Table 16: and Table 17. Examining the F-scores 
values it is clear how larger Thresh_D values resulted in a more consistent improvement than 
when increasing Thresh_H, confirming the higher influence of the distance threshold than the 
one-off Thresh_H. It is also interesting to notice that all the three algorithms showed the greatest 
improvement in F1 values when increasing Thresh_D from 1 m to 2 m which can be explained by 
the higher chance to match ITCs with a stem. A complete version of the confusion matrix can be 
found in Appendix 3. 
 
Table 16: Validation statistics for each segmentation algorithm obtained at different Distance Thresholds. 

Segmentation 
algorithm 

Distance 
Threshold ERR ACC PREC REC F1 

AMS3D_ 0.5 0.7711 0.2289 0.0332 0.0834 0.0475 
AMS3D_ 1 0.7563 0.2437 0.1122 0.2815 0.1604 
AMS3D_ 2 0.7042 0.2958 0.2378 0.5967 0.3400 

itc_Segment_ 0.5 0.6190 0.3810 0.0304 0.0201 0.0242 
itc_Segment_ 1 0.6066 0.3934 0.1171 0.0773 0.0931 
itc_Segment_ 2 0.5838 0.4162 0.2784 0.1838 0.2214 
Watershed_ 0.5 0.5589 0.4411 0.0238 0.0065 0.0103 
Watershed_ 1 0.5554 0.4446 0.0905 0.0249 0.0390 
Watershed_ 2 0.5272 0.4728 0.3333 0.0917 0.1438 
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Table 17: Validation statistics for each segmentation algorithm obtained at different Height Thresholds. 

Segmentation 
algorithm 

Height 
Threshold ERR ACC PREC REC F1 

AMS3D_ 15 0.7378 0.2622 0.2079 0.5216 0.2973 
AMS3D_ 10 0.7042 0.2958 0.2378 0.5967 0.3400 

itc_Segment_ 15 0.6325 0.3675 0.1812 0.1196 0.1441 
itc_Segment_ 10 0.5838 0.4162 0.2784 0.1838 0.2214 
Watershed_ 15 0.5555 0.4445 0.2127 0.0585 0.0917 
Watershed_ 10 0.5272 0.4728 0.3333 0.0917 0.1438 

 
 
Segmentations comparison 
 
Among the tested algorithms, AMS3D was the only one that segments the whole 3D point cloud. 
itcSegment and Watershed, often referred to as raster-based methods, first need to convert the 
3D data into a Canopy Height Model and then perform the segmentation onto the obtained 
raster. The different nature of AMS3D allows sub-canopy features identification while in the 
other cases only trees belonging to the upper forest layer, and hence visible in the CHM model, 
can be extracted. As a result, the AMS3D was able to segment a considerably higher number of 
ITC and represents a more valid option when operating in complex, dense, multi-layered forest 
as it is the case of the French Guyanese tropical forest. Although the raster-based methods are 
significantly faster than AMS3D, they produced scarcer results, confirming their unsuitability on 
complex forests. Several studies have proved that CHM-based algorithms have higher accuracy 
in coniferous forests rather than deciduous or mixed ones (Duncanson et al., 2014; Kwak et al., 
2007; Vega et al., 2014). The main limitation of such algorithms was found to be the identification 
of tree apices which strongly affect the number and size of the final segmented ITCs. Despite the 
implementation of smoothing strategies to eliminate spurious maxima in the CHM, and the use 
of variable moving windows to search for local maxima, both algorithms were not able to 
accurately detect treetops. On the other hand, the AMS3D algorithm does not rely on treetops 
identification but segments the 3D point cloud in an iterative process, clustering points that 
converge to the same mode, which represents the tree apex. The method, which is also able to 
distinguish intersecting canopies, was found to return the overall best results in terms of matched 
stems, segmented crowns similarity, and finally AGB estimation.  
Regarding the implementation of the three algorithms, some additional remarks are necessary. 
While the itcSegment directly generated the ITC polygons, the watershed segmentation returned 
the segmented scene in raster format that had to be converted into polygons. The conversion 
however did not have any remarkable repercussion on the ITCs shapes. In the case of AMS3D 
instead, further postprocessing operations were required. 
The three tested algorithms produced very different numbers of segmented trees, with AMS3D 
segmentation producing almost four times more ITCs than itcSegment and nine times more than 
Watershed segmentation. The AMS3D algorithm also returned the highest percentage of True 
Positives, matching 59.67 % of stems in the area of study, whereas the other two methods 
respectively matched only 18.38 % and 9.17 % of stems. Another interesting consideration 
regards the percentage of segmented area (sum of ITC surface areas), which is in line with the 
different algorithm approaches. The AMS3D, which performs the segmentation on the whole 
point cloud, and thus can identify trees in the under canopy, segmented a surface of about 3.5 
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times the area of study. The watershed algorithm instead, segmented a slightly bigger surface 
than the original plot. This can be explained by the fact that the segmentation is carried out on 
the whole CHM with the exception for pixels lower than 5 m. At the same time some canopies 
extended beyond the plot borders, returning a final percentage of 100.31%. Different results 
were obtained with the itcSegment algorithm which only managed to segment 58.8% of plot 
surface.  
When assessing the three methods based on the Jaccard Index computation, AMS3D again clearly 
outperformed the other two methods with a mean value of 0.3192, which is anyway lower than 
0.5, threshold value to consider a crown as correctly segmented. Among the fifteen reference 
trees, AMS3D matched 3 of them, itcSegment 0, and watershed algorithm 2. Compared to the 
congruence analysis performed by Kientz et al. (2019), the percentage of crowns with a match 
are considerably lower for both AMS3D and itcSegment, which it can be partly explained by the 
different size of reference datasets (15 vs 1598 manually segmented trees). The information is 
summarized in Table 18.  
 
Table 18: For the three segmentation algorithm, number of segmented trees (N°ITCs), percentage of correctly 
segmented trees (True Positive), percentage of segmented area (Area Segmented), mean Jaccard Index, and 
percentage of crowns with a Jaccard Index > 50% (Crowns with a match). 

Segmentatio
n algorithm N° ITCs True Positive 

(%) 
Area 

Segmented 
Mean 

Jaccard Index 

Crowns with a 
match 

(Jaccard Index 
> 50 %) 

AMS3D 5756 59.67 356.65% 0.3192 20.00 % 
ItcSegment 1512 18.38 58.80 % 0.1329 0.00 % 
Watershed 630 9.17 100.31 % 0.1899 13.33 % 

 
 
Comparing the confusion matrices and statistics of each segmentation confirmed again the 
higher performances achieved by AMS3D algorithm, which outperformed the other two methods 
based on F-score values. Despite the highest F-score, obtained when considering the whole 
dataset, reached a value of 0.34, the value is still low and indicates rather poor results when 
matching ITCs and reference stems. In general, all methods returned better results when 
assessing the whole dataset, with superior statistics for high trees (TH > 20 m) than short ones 
(TH < 20 m). ItcSegment and Watershed, the two CHM-based algorithms presented highly 
different results for the two subsets, with very low F-scores for the subcanopy layer. On the other 
hand, the AMS3D returned similar values for the two datasets, with an F-score of 0.299 for short 
trees and 0.322 for taller ones, confirming the ability of the algorithm in segmenting subcanopy 
vegetation. Observing Table 19 it can be noticed that in most of the cases AMS3D obtained the 
highest Error rate and the lowest Accuracy and Precision values. Nevertheless, when considering 
Recall and F-score it returned the highest values among the three methods. The reason of that 
lies in the number of identified ITCs which is far higher than the number of reference stems. On 
the other hand, the higher percentage of ITCs assessed as True Positive and thus the fewer not-
matched stems (False Negative) led to higher Recall values and consequently F-scores.  
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Table 19: Validation statistics for each segmentation algorithm obtained on the three different datasets. Highlighted 
in yellow the segmentation datasets with the highest F-scores.  

Segmentation 
algorithm Subset Error Rate Accuracy Precision Recall F-Score 

AMS3D All_Data 0.7042 0.2958 0.2378 0.5967 0.3400 
AMS3D TH_u20 0.6617 0.3383 0.2382 0.4020 0.2992 
AMS3D TH_o20 0.5513 0.4487 0.3569 0.2933 0.3220 

itc_Segment All_Data 0.5838 0.4162 0.2784 0.1838 0.2214 
itc_Segment TH_u20 0.5021 0.4979 0.1852 0.0022 0.0043 
itc_Segment TH_o20 0.5821 0.4179 0.2803 0.1816 0.2204 
Watershed All_Data 0.5272 0.4728 0.3333 0.0917 0.1438 
Watershed TH_u20 0.4996 0.5004 0.4545 0.0065 0.0129 
Watershed TH_o20 0.5277 0.4723 0.3266 0.0851 0.1350 

 
In addition to compare the algorithms based on the validation results, a visual inspection of the 
different outputs was also performed. Figure 27 shows how one emergent tree with several 
smaller trees in the surroundings were segmented. The Figure confirms the unique ability of 
AMS3D to detect and distinguish understory features whereas itcSegment and Watershed, 
computing the segmentation on the CHM, group all points that fall below an ITC in the same 
cluster. Figure 27 (d,e,f) clearly shows that the main canopy was oversegmented in all the three 
cases, with several ITCs polygons within the canopy. ItcSegment clearly performed the worst, 
dividing the tree canopy in several small ITCs. The watershed algorithm instead produced bigger 
ITCs reducing the oversegmentation of the scene but including parts of adjacent trees. 
Conversely AMS3D was the algorithm which oversegmented the less the emergent canopy, 
detecting and distinguishing also submerged trees, even though a level of oversegmentation is 
also present in the lower layer.  
 

Figure 27: Segmentation of one emergent tree and adjacent trees obtained by the three different segmentation 
algorithms. Tree point cloud, and crown polygons segmented with: Adaptive Mean Shift 3D algorithm (a, d), 
itcSegment algorithm (b, e), and Watershed algorithm (c, f). 
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Above Ground Biomass comparison 
 
At first, the amount of Above Ground Biomass (AGB) was estimated for the whole AOI and 
compared among algorithms. The three methods produced highly different AGB estimates, from 
554.17 Mg of itcSegment up to 2169.7 Mg of AMS3D. Comparing the predicted and reference 
estimates gave a first indication of under- or overestimation at plot scale. The itcSegment 
algorithm was the one that deviated most from the -67.29%. Both watershed and AMS3D 
performed better. In the first case the algorithm caused an underestimation of 49.59%, whereas 
the AMS3D overestimated plot AGB of 28.05%, producing the best results.  Estimated, reference 
and error values are summarized in Table 20. 
 
Table 20: Estimated Above Ground Biomass (AGB_Est), reference Above Ground Biomass, 
absolute error (ABG_Err), and relative error (AGB_Rel_Err) for the whole Area Of Study obtained 
based on the different segmentation algorithm outputs. 

 
 
Besides comparing the AGB estimates at plot scale, the AGB similarity was also tested at tree 
level. For this purpose only those ITCs that were correctly matched with a stem (True Positives) 
were considered. Furthermore, to better analyse the ability of tested algorithms when 
segmenting trees of different sizes, AGB was compared at four different DBH classes. The 
obtained results, shown in Table 21, depict a clear picture where AMS3D returned the most 
similar AGB estimates for three out of four DBH classes. That was the case for trees with DBH 
smaller than 40 cm and for ones with DBH larger than 60 cm. For the remaining class (DBH 
between 40 and 60 cm) the watershed algorithm returned the most comparable estimates to the 
reference data. In the case of AMS3D, the retrieved estimates overestimate the amount of AGB 
of 93.14 % for the smallest DBH class, and 10.99 % for trees with DBH between 20 and 40 cm. 
Conversely, the estimates returned a Bias of -77 % for large trees (DBH > 60 cm). On the other 
hand, the watershed-derived AGB estimates underestimate the biomass of trees with a DBH 
between 40 and 60 cm of 30 %.  
When interpreting the results, the prediction accuracy of the two allometric models should be 
carefully considered. While the allometric model developed by Jucker et al. (2016) was proved 
to return accurate estimates at tree level with a Bias of only -4.3 %, the pantropical model of 
Chave et al. (2014), tested on the same dataset, was found to estimate biomass with a higher 
Bias of 27.7 %. Based on this information the ITCs-derived AGB estimates can be expected to 
present lower values when compared to the reference ones. Nevertheless, the obtained results 
did not suggest such a relationship between estimated and reference AGB. This can be explained 
by the nature of the implemented allometric model which completely relies on the accurate 
extraction of tree parameters. As a matter of fact, each of the tested segmentation methods 
presented a certain level of over- or under-segmentation which directly affects the extraction of 
tree parameters, introducing a large level of uncertainty in AGB estimates. Even though the 
inclusion of crown diameter in the allometric equation contributes to reduce the problem of 

Segmentation 
Algorithm 

AGB_Est  
(Mg) 

AGB_Ref  
(Mg) 

AGB_Err  
(Mg) 

AGB_Rel_Err 
(%) 

AMS3D 2169.7 1694.37 475.33 28.05 
itcSegment 554.17 1694.37 -1140.2 -67.29 
Watershed 854.04 1694.37 -840.33 -49.59 
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over-segmentation at plot level (Dalponte and Coomes, 2016), inaccurate CD values strongly 
affect the estimates at tree level, eliminating all the advantages of tree-based AGB estimation. 
In addition to that, another drawback of inaccurate segmentation is represented by the high level 
of uncertainty that is introduced by the wrong detection of subcanopy trees, which may 
represent one of the most important error to correct in order to accurately measure AGB (Aubry-
Kientz et al., 2019). 
 
Table 21: Root Mean Square Error (RMSE) and percentual Bias (Bias) of Above Ground Biomass estimated on the 
different segmentation algorithm outputs, calculated based on different Diameter at Breast Height classes (DBH 
class)  For each DBH class the best results (based on Bias) are highlighted in yellow.  

Segmentation 
Algorithm DBH class (cm) RMSE (Mg) Bias (%) 

AMS3D DBH < 20 0.4406 93.14 
20 < DBH < 40 1.4541 10.99 
40 < DBH < 60 2.4271 -46.75 

DBH > 60 5.9169 -77.09 
itcSegment DBH < 20 0.1945 101.60 

20 < DBH < 40 0.6189 -35.41 
40 < DBH < 60 2.4501 -80.54 

DBH > 60 6.8646 -90.62 
Watershed DBH < 20 1.3882 615.80 

20 < DBH < 40 1.9324 152.21 
40 < DBH < 60 1.9785 -30.42 

DBH > 60 6.3217 -81.66 
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Discussion and recommendations  
 
Validation process  
 
In order to validate the segmentation outputs and compare the performance of the tested 
algorithms a multi-step framework was developed as previously presented in the Segmentation 
algorithms validation section.  
The first part of the validation process exploited the information contained in the stem map, 
assessing the segmented ITCs based on their location and height. The main advantage of the 
developed algorithm lies in its flexibility which allows the user to easily adjust the two thresholds 
in order to better define the validation process based on the structural features of the forest. In 
addition to that, the implementation of a second threshold based on tree height provides a 
simple but effective method to distinguish stacked trees, making the algorithm suitable for multi-
layered forests as well. Nevertheless the algorithm is not error free and its accuracy largely 
depends on the threshold choice. The two thresholds should be carefully selected based on the 
nature of the input data and its level of uncertainty. It is thus suggested to visually assess the 
results and gradually calibrate the parameters before performing the final validation. 
In the second part of the algorithm validation, the segmented crowns were instead assessed 
based on their similarity with reference, manually segmented crowns. The calculation of the 
Jaccard Index provides a meaningful and easy-to-implement approach to evaluate the accuracy 
of crowns delineation and it does not present significant drawbacks. To obtain a more exhaustive 
indication of the algorithm performance, despite the time-consuming nature of the operation, it 
is suggested to create a large reference dataset so that a consistent number of crowns can be 
evaluated, and more significant results can be obtained. Furthermore, when testing a 
segmentation algorithm based on the 3D point cloud, even though submerged trees are difficult 
to identify and extract, their inclusion in the validation is strongly recommended since it can 
unearth valuable insights regarding the segmentation of subcanopy layers. 
 
Segmentation comparison  
 
As implemented in the current study, among the tested algorithms, AMS3D was found to perform 
the most accurate segmentation of the forest stand. The results confirm the benefit of 
performing the segmentation on the 3D point cloud, which allows the identification of subcanopy 
trees. The segmentation on the whole point cloud is however computational intense, time 
expensive and can still produce a significant over-segmentation of large crowns. When working 
with large 3D datasets is suggested to down-sample the point cloud based on the project goals 
and requirements.  
On the other hand, even though CHM-based algorithms are considerably faster and required less 
data postprocessing than the first method, they can only segment emergent canopies, failing in 
the identification of all those trees that are not represented in the CHM. The use of such 
algorithms is therefore unsuitable and should be avoided for complex forests where many trees 
is found in subcanopy layers.  
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Above Ground Biomass estimation 
 
The estimation of AGB of single trees can strongly boost our knowledge of forest biomass 
providing unprecedent information at tree level. Nevertheless, at present the implementation of 
such approach still presents significant limitations which mainly depend on the segmentation 
accuracy. In fact, even though the implemented allometric equation, developed by Jucker et al’s 
(2017), was found to accurately predict AGB of single trees with a Bias of only -4.3 %, the results 
obtained in the current study returned much larger uncertainties. This uncertainty is caused by 
the inaccurate segmentation of canopies which directly affects the extraction of tree attributes 
and thus the estimation of biomass. The high dependency of AGB estimation on the 
segmentation result confirms again that at present area-based method should still be preferred. 
Nevertheless, with the development of new and more efficient segmentation algorithms AGB 
estimation at tree level is expected to become the next state of the art technique. 
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Conclusion  
The aim of the present research was to test the feasibility of individual tree segmentation 
methods on UAV-LS data to estimate AGB in a tropical multi-layered forest. The study compared 
the performance of three different algorithms, confirming the well-known limitations of ITD 
approaches for AGB estimation. The results also showed the promising results of 3D methods for 
segmenting a complex tropical forest, with the AMS3D algorithm that outperformed the other 
two. When assessing the results with the stem map the latter correctly segmented almost 60 % 
of trees whereas the second-best method only matched about 20 % of reference trees. The 
AMS3D also obtained the highest result when assessing crown similarity with manually 
segmented ones, correctly delineating 20 % of the reference trees. 
The results clearly showed the advantage of algorithms based on the whole point clouds rather 
than segmenting solely on the CHM raster. During the study the influence of increasing point 
densities on AMS3D method was also tested and was proved to significantly improve trees 
detection and delineation. Regarding the estimation of forest biomass, the estimates obtained 
on AMS3D outcomes returned the smallest errors when compared to reference AGB values at 
plot level. When considering different tree sizes the algorithm also returned the smallest bias for 
three out of four DBH classes. The results of this research suggest that high-density UAV LiDAR 
data can improve tree detection and in general forest structure retrieval. Moreover, the flexibility 
of UAV platforms indicates that forest inventories based on such platforms may substitute other, 
more expensive and time-consuming field approaches.  In addition to that, they may further 
boost the development of segmentation algorithms and make individual tree approaches a more 
valuable option to area-based methods for AGB estimation at small scales.  
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Appendix 1  
 
Table of Content of the zip file accompanying the thesis report 
 

− Report (PDF)  
− Midterm & Final presentation (PPTX) 
− Input & Output Datasets 
− Tables  
− R Scripts  
− Literature (PDFs) 
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Appendix 2  
 
AMS3D Testing:  
 
 Confusion Matrix 

 
Table 22: Confusion matrix for each AMS3D test.  

Test 
Point 

density 
(pts/m2) 

TP FN FP TN ERR ACC PREC REC F1 

Test_11 1922.82 178 25 3541 87 0.9308 0.0692 0.0479 0.8768 0.0908 
Test_11 1054.15 177 26 3015 87 0.9201 0.0799 0.0555 0.8719 0.1043 
Test_11 350.89 166 37 2002 87 0.8896 0.1104 0.0766 0.8177 0.1400 
Test_11 93.43 144 59 955 87 0.8145 0.1855 0.1310 0.7094 0.2212 
Test_11 42.08 128 75 540 87 0.7410 0.2590 0.1916 0.6305 0.2939 
Test_11 23.87 110 93 388 87 0.7094 0.2906 0.2209 0.5419 0.3138 
Test_11 10.71 97 106 221 87 0.6399 0.3601 0.3050 0.4778 0.3724 
Test_12 1922.82 168 35 1454 87 0.8538 0.1462 0.1036 0.8276 0.1841 
Test_12 1054.15 176 27 1447 87 0.8486 0.1514 0.1084 0.8670 0.1928 
Test_12 350.89 161 42 1267 87 0.8407 0.1593 0.1127 0.7931 0.1974 
Test_12 93.43 152 51 880 87 0.7957 0.2043 0.1473 0.7488 0.2462 
Test_12 42.08 131 72 551 87 0.7408 0.2592 0.1921 0.6453 0.2960 
Test_12 23.87 112 91 415 87 0.7177 0.2823 0.2125 0.5517 0.3068 
Test_12 10.71 98 105 227 87 0.6422 0.3578 0.3015 0.4828 0.3712 
Test_13 1922.82 151 52 567 87 0.7223 0.2777 0.2103 0.7438 0.3279 
Test_13 1054.15 160 43 579 87 0.7158 0.2842 0.2165 0.7882 0.3397 
Test_13 350.89 151 52 574 87 0.7245 0.2755 0.2083 0.7438 0.3254 
Test_13 93.43 139 64 558 87 0.7335 0.2665 0.1994 0.6847 0.3089 
Test_13 42.08 133 70 458 87 0.7059 0.2941 0.2250 0.6552 0.3350 
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Test_13 23.87 115 88 392 87 0.7038 0.2962 0.2268 0.5665 0.3239 
Test_13 10.71 100 103 232 87 0.6418 0.3582 0.3012 0.4926 0.3738 
Test_15 1922.82 129 74 447 87 0.7069 0.2931 0.2240 0.6355 0.3312 
Test_15 1054.15 139 64 423 87 0.6830 0.3170 0.2473 0.6847 0.3634 
Test_15 350.89 132 71 436 87 0.6983 0.3017 0.2324 0.6502 0.3424 
Test_15 93.43 124 79 391 87 0.6902 0.3098 0.2408 0.6108 0.3454 
Test_15 42.08 122 81 320 87 0.6574 0.3426 0.2760 0.6010 0.3783 
Test_15 23.87 101 102 260 87 0.6582 0.3418 0.2798 0.4975 0.3582 
Test_15 10.71 89 114 139 87 0.5897 0.4103 0.3904 0.4384 0.4130 
Test_16 1922.82 19 184 115 87 0.7383 0.2617 0.1418 0.0936 0.1128 
Test_16 1054.15 158 45 606 87 0.7266 0.2734 0.2068 0.7783 0.3268 
Test_16 350.89 154 49 623 87 0.7360 0.2640 0.1982 0.7586 0.3143 
Test_16 93.43 153 50 634 87 0.7403 0.2597 0.1944 0.7537 0.3091 
Test_16 42.08 149 54 607 87 0.7369 0.2631 0.1971 0.7340 0.3107 
Test_16 23.87 137 66 490 87 0.7128 0.2872 0.2185 0.6749 0.3301 
Test_16 10.71 116 87 323 87 0.6688 0.3312 0.2642 0.5714 0.3614 
Test_17 1922.82 151 52 566 87 0.7220 0.2780 0.2106 0.7438 0.3283 
Test_17 1054.15 159 44 578 87 0.7166 0.2834 0.2157 0.7833 0.3383 
Test_17 350.89 150 53 561 87 0.7215 0.2785 0.2110 0.7389 0.3282 
Test_17 93.43 138 65 507 87 0.7177 0.2823 0.2140 0.6798 0.3255 
Test_17 42.08 128 75 423 87 0.6985 0.3015 0.2323 0.6305 0.3395 
Test_17 23.87 126 77 393 87 0.6881 0.3119 0.2428 0.6207 0.3490 
Test_17 10.71 105 98 248 87 0.6431 0.3569 0.2975 0.5172 0.3777 
Test_18 1922.82 149 54 469 87 0.6891 0.3109 0.2411 0.7340 0.3630 
Test_18 1054.15 159 44 462 87 0.6729 0.3271 0.2560 0.7833 0.3859 
Test_18 350.89 150 53 466 87 0.6865 0.3135 0.2435 0.7389 0.3663 
Test_18 93.43 124 79 279 87 0.6292 0.3708 0.3077 0.6108 0.4092 
Test_18 42.08 107 96 159 87 0.5679 0.4321 0.4023 0.5271 0.4563 
Test_18 23.87 87 116 111 87 0.5661 0.4339 0.4394 0.4286 0.4339 
Test_18 10.71 69 134 46 87 0.5357 0.4643 0.6000 0.3399 0.4340 
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Table 23: Jaccard Indices for each test at different point densities and for the different reference tree classes.  

Test 
Point 

density 
(pts/m2) 

ID_ECT Jacc_Ind_E
CT ID_MCT 

Jacc_Ind_
MCT 

ID_SCT 
Jacc_Ind_S

CT 

11 1922.82 4390 0.671074 5740 0.142707 3298 0.443498 
11 1054.15 3681 0.144557 4877 0.137729 2789 0.431573 
11 350.89 2587 0.155593 3403 0.119653 2069 0.548266 
11 93.43 2509 0.83184 3035 0.157388 2245 0.412606 
11 42.08 1839 0.817615 2165 0.132855 1705 0.468055 
11 23.87 877 0.837844 1113 0.516795 745 0.428808 
11 10.71 699 0.64996 837 0.300395 605 0.587576 
12 1922.82 3527 0.671074 4199 0.464936 2931 0.443498 
12 1054.15 11149 0.84648 11839 0.446982 10593 0.431573 
12 350.89 6811 0.155593 7311 0.119653 6439 0.548266 
12 93.43 1537 0.83184 2001 0.157388 1283 0.412606 
12 42.08 3477 0.817615 3781 0.132855 3337 0.468055 
12 23.87 3785 0.837844 4037 0.516795 3645 0.428808 
12 10.71 2915 0.64996 3025 0.526837 2823 0.587576 
13 1922.82 3455 0.671074 3789 0.464936 3175 0.443498 
13 1054.15 9648 0.84648 9984 0.446982 9382 0.431573 
13 350.89 6602 0.799812 6868 0.141464 6424 0.548266 
13 93.43 3586 0.83184 3906 0.157388 3410 0.412606 
13 42.08 5078 0.165754 5262 0.179524 4938 0.468055 
13 23.87 4901 0.101016 5115 0.516795 4765 0.428808 
13 10.71 5787 0.64996 5897 0.526837 5691 0.587576 
15 1922.82 2737 0.654138 2959 0.377996 2521 0.217102 
15 1054.15 2293 0.600389 2539 0.371279 2099 0.203923 
15 350.89 1549 0.163673 1853 0.585162 1409 0.208485 
15 93.43 5027 0.18231 5223 0.546027 4887 0.203736 
15 42.08 6135 0.308368 6295 0.179524 6009 0.066951 
15 23.87 7393 0.599489 7537 0.533774 7295 0.26438 
15 10.71 8007 0.637204 8089 0.524147 7931 0.113066 
16 1922.82 20805 0.08101 20887 0.119146 0 0 
16 1054.15 0 0 0 0 20385 0.458083 
16 350.89 11326 0.728866 11644 0.567909 11146 0.500368 
16 93.43 6726 0.824776 7010 0.58397 6540 0.451404 
16 42.08 1337 0.168107 1507 0.179524 1133 0.434415 
16 23.87 12696 0.817623 13008 0.063468 12550 0.525196 
16 10.71 8804 0.597819 9034 0.037068 8744 0.061727 
17 1922.82 3779 0.671074 4119 0.464936 3481 0.443498 
17 1054.15 13674 0.84648 14024 0.446982 13394 0.431573 
17 350.89 10242 0.799812 10526 0.141464 10054 0.548266 
17 93.43 8827 0.83184 9189 0.157388 8623 0.412606 
17 42.08 8076 0.165754 8352 0.244561 7876 0.468055 
17 23.87 1403 0.837844 1709 0.083683 1177 0.428808 
17 10.71 14932 0.64996 15322 0.09728 14702 0.587576 

  



63 
 

 

  

18 1922.82 12904 0.671074 13214 0.464936 12656 0.443498 
18 1054.15 16284 0.84648 16574 0.446982 16036 0.431573 
18 350.89 1425 0.799812 1637 0.141464 1387 0.039515 
18 93.43 10284 0.83184 10438 0.547725 10176 0.412606 
18 42.08 2272 0.165754 2376 0.558174 2210 0.468055 
18 23.87 13485 0.837844 13585 0.516795 13433 0.428808 
18 10.71 13807 0.64996 13833 0.526837 13769 0.587576 
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Appendix 3  
Algorithms validation:  
 
 Confusion Matrix 

 
Table 24: Confusion matrix and statistics obtain on each segmentation algorithm output and on different subsets of data.  

Segmentation Subset TP FN FP TN ERR ACC PREC REC F1 
AMS3D All_Data 1367 924 4382 862 0.7042 0.2958 0.2378 0.5967 0.34 
AMS3D TH_u20 921 1370 2945 1285 0.6617 0.3383 0.2382 0.402 0.2992 
AMS3D TH_o20 672 1619 1211 1631 0.5513 0.4487 0.3569 0.2933 0.322 

itc_Segment All_Data 421 1870 1091 1690 0.5838 0.4162 0.2784 0.1838 0.2214 
itc_Segment TH_u20 5 2286 22 2284 0.5021 0.4979 0.1852 0.0022 0.0043 
itc_Segment TH_o20 416 1875 1068 1697 0.5821 0.4179 0.2803 0.1816 0.2204 
Watershed All_Data 210 2081 420 2033 0.5272 0.4728 0.3333 0.0917 0.1438 
Watershed TH_u20 15 2276 18 2283 0.4996 0.5004 0.4545 0.0065 0.0129 
Watershed TH_o20 195 2096 402 2041 0.5277 0.4723 0.3266 0.0851 0.135 
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Table 25: Jaccard Indices obtained from each segmentation algorithm for all three reference datasets. 

Segmentation ITC_class ID Jaccard Index 
AMS3D ECT 17985 0.1064 
AMS3D ECT 21077 0.7198 
AMS3D ECT 14807 0.2006 
AMS3D ECT 13599 0.0945 
AMS3D ECT 21703 0.7792 
AMS3D MCT 11735 0.1718 
AMS3D MCT 16293 0.7976 
AMS3D MCT 20645 0.2064 
AMS3D MCT 21477 0.4421 
AMS3D MCT 11789 0.7280 
AMS3D SCT 20857 0.1610 
AMS3D SCT 14959 0.1815 
AMS3D SCT 14317 0.1469 
AMS3D SCT 14571 0.0120 
AMS3D SCT 15473 0.0412 

itcSegment ECT 884 0.0066 
itcSegment ECT 1042 0.0803 
itcSegment ECT 876 0.0616 
itcSegment ECT - - 
itcSegment ECT 1522 0.1418 
itcSegment MCT 1202 0.0479 
itcSegment MCT 242 0.2056 
itcSegment MCT 548 0.0025 
itcSegment MCT 1512 0.3181 
itcSegment MCT 1062 0.3160 
itcSegment SCT 948 0.1494 
itcSegment SCT - - 
itcSegment SCT - - 
itcSegment SCT - - 
itcSegment SCT - - 
Watershed ECT 364 0.0098 
Watershed ECT - - 
Watershed ECT 354 0.3042 
Watershed ECT 673 0.0037 
Watershed ECT 76 0.3462 
Watershed MCT 226 0.7650 
Watershed MCT 651 0.0064 
Watershed MCT 529 0.0096 
Watershed MCT - - 
Watershed MCT 280 0.5980 
Watershed SCT - - 
Watershed SCT - - 
Watershed SCT 615 0.0316 
Watershed SCT 286 0.0017 
Watershed SCT 47 0.0131 
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