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A B S T R A C T

Objective: Previous studies have shown that patients with hereditary fructose intolerance (HFI) are characterized by
a greater intrahepatic triglyceride content, despite a fructose-restricted diet. The present study aimed to examine the
long-term consequences of HFI on other aldolase-B-expressing organs, i.e. the kidney and vascular endothelium.
Methods: Fifteen adult HFI patients were compared to healthy control individuals matched for age, sex and

body mass index. Aortic stiffness was assessed by carotid-femoral pulse wave velocity (cf-PWV) and endothelial
function by peripheral arterial tonometry, skin laser doppler flowmetry and the endothelial function biomarkers
soluble E-selectin [sE-selectin] and von Willebrand factor. Serum creatinine and cystatin C were measured to
estimate the glomerular filtration rate (eGFR). Urinary glucose and amino acid excretion and the ratio of tubular
maximum reabsorption of phosphate to GFR (TmP/GFR) were determined as measures of proximal tubular
function. Results: Median systolic blood pressure was significantly higher in HFI patients (127 versus 122 mmHg,
p= .045). Pulse pressure and cf-PWV did not differ between the groups (p= .37 and p= .49, respectively). Of
all endothelial function markers, only sE-selectin was significantly higher in HFI patients (p = .004). eGFR was
significantly higher in HFI patients than healthy controls (119 versus 104 ml/min/1.73m2, p = .001, respec-
tively). All measurements of proximal tubular function did not differ significantly between the groups.
Conclusions: Adult HFI patients treated with a fructose-restricted diet are characterized by a higher sE-selectin

level and slightly higher systolic blood pressure, which in time could contribute to a greater cardiovascular risk.
The exact cause and, hence, clinical consequences of the higher eGFR in HFI patients, deserves further study.
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1. Introduction

Hereditary fructose intolerance (HFI; OMIM# 229600) is an auto-
somal recessive metabolic disorder [1] with an estimated incidence of 1
in every 20,000 newborns [2]. HFI is caused by mutations in the gene
encoding aldolase B (ALDOB) that is predominantly expressed in liver,
kidney and small intestine [3]. Aldolase B (EC 4.1.2.13) catalyzes the
conversion of fructose 1,6-bisphosphate and fructose 1-phosphate to
glyceraldehyde (3-phosphate) and dihydroxyacetone phosphate [4].
Fructose ingestion in HFI patients causes accumulation of fructose 1-
phosphate, and intracellular phosphate and ATP depletion, resulting in
acute and chronic cellular dysfunction. In the short term, it produces
nausea, vomiting, abdominal pain and hypoglycemia. Chronic exposure
to fructose can result in cirrhosis, liver failure, generalized proximal
tubular dysfunction (i.e. Fanconi syndrome), growth retardation or
even death [5–9].

Treatment of HFI consists of adherence to a diet that is devoid of
fructose [10]. Although this diet is adequate in providing a relatively
normal, symptom-free life, little is known about the long-term con-
sequences of HFI and its related diet.

We and others recently showed that HFI patients treated with a
fructose-restricted diet are characterized by more liver fat [11–13] and
glucose intolerance compared to healthy controls [11]. In addition, one
out of 15 HFI patients had clinically relevant liver fibrosis [11].

To date, the long-term effects of HFI on other aldolase-B-expressing
organs, such as the kidney, have not been described. Experimental
studies have shown that aldolase B is also expressed in endothelial cells
[14], vascular smooth muscle cells and aorta [15,16], and is actively
involved in vascular remodeling [15].

Therefore, the aim of the present study was to investigate blood
pressure, aortic stiffness, endothelial function, glomerular function and
proximal tubular function in adult HFI patients treated with a fructose-
restricted diet.

2. Materials and methods

2.1. Study population

Details of this study have recently been described [11]. Briefly, in
this case-control study patients with a confirmed diagnosis of HFI (ei-
ther via a fructose tolerance test, measurement of aldolase B activity in
liver biopsy tissue or DNA analysis) were recruited from several out-
patient metabolic clinics in the Netherlands and Belgium and compared
to healthy control individuals matched for age, sex and BMI. Exclusion
criteria for participation were contra-indications for magnetic re-
sonance imaging (the quantification of intrahepatic fat was the primary
outcome measurement of this study [11]) or inability to give informed
consent. Participants visited the metabolic ward after an overnight fast
of at least eight hours. All measurements were performed in the fasting
state. All participants gave written informed consent prior to inclusion
in the study. The study was performed according to the Declaration of
Helsinki [17] and approved by the medical ethical committee of
Maastricht University Medical Center.

2.2. Measurements of outcomes

2.2.1. Blood pressure, pulse wave velocity and endothelial function
Measurement of systolic and diastolic blood pressure was done

twice in sitting position on the right upper arm after 10 min of rest with
3 min interval (Omron, Hoofddorp, The Netherlands). The mean of the
two measurements was used for further analysis. Pulse pressure was
calculated as the difference between systolic and diastolic blood pres-
sure.

Aortic stiffness – i.e. the cushioning capacity of the aorta, which is a
determinant of systolic and diastolic blood pressure and, hence, a car-
diovascular risk factor [18] – was estimated by carotid-femoral pulse

wave velocity (cf-PWV) using the SphygmoCor device (AtCor Medical,
Sydney, Australia), which is based on the speed of travel of a pulse
along an arterial segment [19]. All measurements were performed in
the supine position after 10 min of rest. The median of at least three
adequate measurements was used for statistical analysis.

The function of the endothelium – the vascular barrier that regulates
the availability of nitric oxide (and, hence, vascular tone), permeability,
leukocyte adhesion, and procoagulant activity [20] – was assessed by
several function tests (peripheral arterial tonometry and skin laser
doppler flowmetry) and serum biomarkers (soluble E-selectin and von
Willebrand). First, we performed peripheral arterial tonometry (RH-
PAT; ENDOPAT Itamar Medical, Caesarea, Israel), which measures di-
gital pulsatile arterial pressure changes accompanying pulse waves
during reactive hyperemia after local ischemia [21]. For this, a blood
pressure cuff was placed on the right upper arm and a RH-PAT probe,
consisting of two finger-mounted probes, was placed on one finger
(digitus III) of both the right (test) and left (control) hand. After an
equilibration period of 5 min, the blood pressure cuff was inflated to a
suprasystolic pressure for 5 min. The cuff was subsequently deflated
and RH-PAT recording was proceeded for another 5 min. The reactive
hyperemia index (RHI) was calculated as the ratio of the relative
change in PAT signal amplitude in the test arm (= the average PAT
signal amplitude during reactive hyperemia divided by the average PAT
signal amplitude during baseline) over the control arm. Lower RHI
indicates a diminished post-occlusion hyperemia, which reflects en-
dothelial dysfunction of the small arteries. Second, we performed skin
laser doppler flowmetry (LDF) using a laser-Doppler system (Periflux
5000, Perimed, Järfalla, Sweden) accoutered with a thermostatic laser-
Doppler probe (PF457; Perimed), which measures changes in micro-
circulatory blood flow on the dorsal side of the left lower arm during
local heating, using changes in the wavelength imparted by moving
blood cells to the probing light [22]. All measurements were performed
in a climate-controlled room at 24 °C [23]. The percentage increase of
the skin blood flow (measured in perfusion units (PU)) during local
heating over the baseline skin blood flow was used to quantify the heat-
induced skin hyperemic response. Lower heat-induced skin hyperemia
reflects microvascular endothelial dysfunction [24].

In addition to RH-PAT and LDF, plasma soluble E-selectin (sE-se-
lectin; an endothelium-specific marker that facilitates leucocyte adhe-
sion) and von Willebrand factor (vWF; an endothelial marker that
regulates coagulation) were measured using a Diaclone ELISA kit
(Diaclone SAS, Besançon Cedex, France) and Sandwich ELISA with
commercially available antibodies (i.e. A0082 and P0226; Agilent
DAKO, Santa Clara, CA, US).

2.2.2. Glomerular and proximal tubular function
Serum cystatin C (Particle-enhanced nephelometric immunoassay,

Behring Nephelometer II, Siemens Healthineers AG, Munich, Germany)
and creatinine (Enzymatic colorimetric assay, Cobas 8000 instrument,
Roche Diagnostics, Mannheim, Germany) were determined for the
calculation of the eGFR, using the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) Eq. [25], based on serum crea-
tinine (eGFRcr), cystatin C (eGFRcys) and creatinine and cystatin C
combined (eGFRcr-cys). The latter was used as a primary outcome
measurement. Proteinuria was determined by measuring the total
protein concentration in twenty-four-hour urine samples collected in
pre-acidified plastic containers (Turbidimetric assay, Cobas 8000 in-
strument, Roche Diagnostics, Mannheim, Germany).

Proximal tubular dysfunction was determined by measuring the
concentration of phosphate (Colorimetric assay, Cobas 8000 instru-
ment, Roche Diagnostics, Mannheim, Germany), glucose (D-Glucose/D-
Fructose UV-method, R-Biopharm AG [produced by Roche Diagnostics,
Mannheim, Germany]) and amino acid (ultra-performance liquid
chromatography tandem mass spectrometry, Waters, Milford, MA, US
[26]) in the same twenty-four hour urine samples. To control for in-
fluential variables (e.g. diet and hormones), the tubular reabsorption of
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phosphate (TRP) and subsequently ratio of tubular maximum re-
absorption to GFR (TmP/GFR) was calculated [27].

2.3. Measurements of covariates

Dietary intake was evaluated using a three-day food journal along
with a personal interview by the clinical researcher (N.S.). The weight
of each consumed product was either provided by the participant or
estimated using average quantities per portion. Macro- and micro-
nutrient composition was determined based on the Dutch food com-
position table [28]. Fructose intake was calculated with an extensive
sugar composition table, as described previously [11,29].

Height was determined standing upright against a stadiometer and
weight was assessed in solely underwear using an electronic scale. BMI
was calculated as weight (kg) divided by height (m) squared. Waist was
measured with a measuring tape at the level of the umbilicus.

Blood was drawn for measurement of whole blood glucose (YSI,
Yellow Springs, OH, USA), plasma insulin (Human insulin kit, Meso
Scale Discovery, Rockville, MD, USA), and serum lipids (Enzymatic
colorimetric assay, Cobas 8000 instrument, Roche Diagnostics,
Mannheim, Germany).

Urinary sodium concentration (Indirect ISE-method, Cobas 8000
instrument, Roche Diagnostics, Mannheim, Germany) was determined
in the twenty-four-hour urine samples.

2.4. Statistical analyses

Data are expressed as median (interquartile range) and analyzed
with a Mann-Whitney U test.

Blood pressure, cf-PWV, endothelial function (reactive hyperemia
index, heat-induced skin hyperemia, plasma sE-selectin and vWF con-
centration), glomerular function (eGFRcr-cys and urinary total protein
concentration) and proximal tubular function (TmP/GFR, urinary glu-
cose and amino acid concentrations) were considered as the primary
outcome measurements.

The 95% confidence interval (95% CI) for the difference (Δ) be-
tween medians of HFI patients versus healthy controls as part of the
Mann-Whitney test was calculated according to the Hodges-Lehmann
method.

Linear regression analyses were conducted to explore the con-
tribution of potential mediators of any difference in the primary out-
come measures. A ≥ 25% reduction in the unstandardized beta of the
primary outcome measurement after inclusion of the potential mediator
was considered relevant. Due to the low number of study participants
(n = 30), linear regression was conducted with only one potential
mediator per analysis.

Results were considered statistically significant at p < .05. All
analyses were carried out with the IBM Statistical Package of Social
Sciences (SPSS) version 23 for Windows (SPSS inc. Chicago, IL).

3. Results

3.1. General characteristics

Fifteen HFI patients and fifteen age-, sex- and BMI-matched healthy
controls were included in this study. General characteristics are dis-
played in Table 1, as published previously [11]. HFI patients were re-
latively young (median age: 31 years), lean (median BMI: 20.4 kg/m2)
and predominantly male (73.3%). Three out of 15 HFI patients were
smokers, as opposed to none of the healthy controls. Alcohol intake was
higher among healthy controls (median units per day: 0.6 versus 0.1,
p = .04). As expected, patients consumed almost no fructose (median
intake: 1.0 g/day) and, as a consequence, protein and saturated fat
intake were higher compared to healthy controls (median intake:
113.1 g/day versus 75.4 g/day, p = .005; and 37.2 g/day versus
30.0 g/day, p = .03, respectively). Serum lipids, whole blood glucose

and plasma insulin levels did not differ significantly between both
groups. None of the participants used blood pressure-, lipid- or glucose-
lowering medication.

3.2. Blood pressure and pulse wave velocity

Both systolic and diastolic blood pressure were higher in HFI pa-
tients, of which only the former reached statistical significance
(p = .045, Δ: 10 mmHg, 95%CI: 1;20, p = .056; Δ: 8 mmHg, 95%CI:
-1;16; Fig. 1, Panel A and B, respectively). Five HFI patients had a
systolic blood pressure ≥ 140 mmHg and/or diastolic blood pres-
sure ≥ 90 mmHg, as opposed to one healthy control individual. Heart
rate was not statistically different between HFI patients and healthy
controls (p = .54, Δ: 2 bpm, 95%CI: -5;12). Pulse pressure and cf-PWV
were not different either (p = .37, Δ: 2 mmHg, 95%CI: −4;11; and
p = .49, Δ: 0.5 m/s, 95%CI: −1.4;2.9; Fig. 1, panel C and D, respec-
tively). Dietary intake of sodium was not different between HFI patients
and healthy controls (p = .56, Δ: 437 mg, 95%CI: −270;880; Fig. 1,
Panel E). In contrast, urinary sodium excretion was higher in HFI pa-
tients (p = .01, Δ: 47.1 mmol/day, 95%CI: 9.1;81.1; Fig. 1, Panel F).
Linear regression analyses were conducted to explore the role of
smoking, cf-PWV, dietary sodium intake or urinary sodium excretion in
the observed difference in systolic blood pressure. None of these had a
substantial effect on the observed difference between HFI patients and
controls (reduction in unstandardized beta of the affected state [HFI
yes/no] after addition of the potential mediator:< 25%, data not
shown).

3.3. Endothelial function

The reactive hyperemia index and percentage heat-induced skin
hyperemia were not significantly different between HFI patients and
healthy controls (p = .75, Δ: 0.09, 95%CI: −0.31;0.53; p = .43, Δ:
316%, 95%CI: −349;992; Fig. 2, Panel A and B, respectively). Plasma
sE-selectin was significantly higher in HFI patients as compared to
healthy controls (p= .004, Δ: 46 ng/ml, 95%CI: 19;71; Fig. 2, Panel C),
whereas no significant difference was found for plasma vWF (p = .95,
Δ: 1.5%, 95%CI: -19;20; Fig. 2, Panel D). Linear regression analyses
were conducted to explore the role of plasma glucose, serum lipids,

Table 1
General characteristics.

Healthy controls HFI patients

Sex (M/F) 11/4 11/4
Age (y) 28 (25–52) 31 (24–44)
BMI (kg/m2) 21.8 (21.0–23.3) 20.4 (19.3–24.8)
Waist circumference (cm) 87 (84.3–91.3) 77.5 (73.8–93.5)
IHTG content (%) 0.59 (0.29–1.65) 2.47 (0.76–4.56)*
Liver stiffness (kPa) 4.3 (3.6–5.5) 4.7 (4.1–6.2)
Whole blood glucose (mmol/L) 4.4 (4.2–4.7) 4.4 (4.3–4.8)
Insulin (pg/ml) 105 (77–159) 115 (93–175)
Total cholesterol (mmol/l) 4.1 (3.9–5.2) 5.0 (4.3–6.2)
HDL cholesterol (mmol/l) 1.4 (1.1–1.8) 1.6 (1.4–2.3)
LDL cholesterol (mmol/l) 2.4 (1.8–3.3) 3.1 (2.0–4.2)
Triglycerides (mmol/l) 0.9 (0.5–1.2) 0.8 (0.7–1.3)
Uric acid (μmol/l) 334 (285–378) 302 (229–339)
Caloric intake (kcal/day) 2058 (1552–2316) 2050 (1635–2546)
Protein intake (g/day) 75.4 (70.8–103.9) 113.1 (91.1–141.9)*
Total fat intake (g/day) 72.3 (66.9–83.1) 83.8 (70.1–131.5)
Saturated fat intake (g/day) 30.0 (20.2–33.3) 37.2 (29.1–47.2)*
Carbohydrate intake (g/day) 237.9 (156.0–287.9) 166.3 (142.2–215.4)
Dietary fructose intake (g/day) 30.6 (23.1–48.9) 1.0 (0.8–1.5)*
Alcohol intake (U/day) 0.6 (0.1–1.7) 0.1 (0.0–0.3)*
Smoking (% yes) 0% 20%

Data are expressed as median (interquartile range). * p < .05 versus healthy
controls, analyzed with a Mann-Whitney U test. Parts of this table have already
been published [11].
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liver fat, alcohol intake, blood pressure, smoking behavior and eGFRcr-

cys in the observed difference in plasma sE-selectin. None of these
caused a substantial reduction in the observed difference between HFI
patients and controls.

3.4. Glomerular and proximal tubular function

The eGFRcr and eGFRcr-cys were significantly higher in HFI patients
as compared to healthy controls (p < .001, Δ: 19 ml/min/1.73m2,
95%CI: 10;29; and p = .001, Δ: 16 ml/min/1.73m2, 95%CI: 6;24, re-
spectively; Fig. 3, panel A). Although the estimate of difference for
eGFRcys was in a similar range (Δ 11 ml/min/1.73m2, 95%CI: −2;20),
it did not reach statistical significance (p = .10). None of the partici-
pants had an eGFR<60 ml/min/1.73m2 (compatible with chronic
kidney disease stage 3a). Linear regression analyses were conducted to
explore the role of systolic blood pressure and dietary protein intake,
which are known risk factors for glomerular hyperfiltration [30,31], in
the observed difference in eGFRcr-cys. The unstandardized beta of the
HFI affected state did not substantially decline after addition of these
variables to the model (data not shown). Urinary total protein con-
centration was not statistically different between both groups (p= .26,
Δ: 0.0 g/day, 95%CI:-0.03;0.0; Fig. 3, Panel B).

TmP/GFR and urinary glucose were not statistically different be-
tween both groups, as shown in Fig. 3, panel C and D (p= .94, Δ: 0.005,
95%CI: −0.22;0.18 and p = .55; Δ: 5.9 mg/day, 95%CI: −12.4;21.8,
respectively). No statistical differences in urinary amino acid con-
centrations were found between HFI patients and healthy controls
(Fig. 3, panel E). Alanine (Ala), valine (Val), leucine (Leu) and phe-
nylalanine (Phe) concentrations tended to be higher in HFI patients
(p= .06, Δ: 7.7 μM/mM creatinine, 95%CI: −1.1;17.4, p= .08, Δ: 1.2
μM/mM creatinine, 95%CI: −0.2;2.5, p = .10, Δ: 0.6 μM/mM creati-
nine, 95%CI: −0.07;1.2, and p = .08, Δ: 1.4 μM/mM creatinine,
95%CI: −0.06;2.7, respectively).

4. Discussion

HFI is an inborn error of metabolism that can be treated with a
fructose-restricted diet. Up to now, mostly case reports on HFI at the
time of diagnosis have been published [32–34]. We and others pre-
viously showed that HFI patients treated with a fructose-restricted diet
are characterized by a greater intrahepatic triglyceride content
[11–13]. In the present study, we investigated the long-term con-
sequences of HFI on other aldolase-B-expressing organs and found that
HFI patients have a higher systolic blood pressure, eGFR and sE-selectin
levels compared to healthy controls matched for age, sex and BMI.

HFI patients displayed a higher systolic blood pressure than healthy
controls. Diastolic blood pressure tended to be higher as well
(p = .056). Five of 15 patients had systolic blood
pressure ≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg.
Since blood pressure was determined only twice during the study visit,
we cannot exclude white coat hypertension as a potential explanation
for the observed difference. Ideally, this would require 24-h blood
pressure monitoring [35]. To explore the contribution of salt intake,
which affects both systolic and diastolic blood pressure as an alternative
explanation [36], we determined dietary sodium intake and 24-h ur-
inary sodium excretion. Although the former was not statistically dif-
ferent between both groups, we did find a significantly higher 24-h
urinary sodium excretion in HFI patients. Differences between intake
and urinary excretion of sodium have been reported in other studies as
well [37,38] and is most likely the result of inaccurate food recording.
The National Academy of Medicine (formerly known as the Institute of
Medicine) considers analysis of 24-h urine collection a reliable method
of sodium intake estimation [39]. Regression analyses, however, did
not show a substantial reduction in the unstandardized beta after ad-
dition of these variables to the model. Although these analyses suggest
that dietary salt intake is not a major explanatory variable for the ob-
served difference in systolic blood pressure, these exploratory analyses
should be interpreted with caution given the relatively small study
population under investigation. Similar conclusions can be drawn for

Fig. 1. Blood pressure, aortic stiffness and sodium intake and excretion.
Systolic blood pressure (panel A), diastolic blood pressure (panel B), pulse pressure (panel C), carotid-femoral pulse wave velocity (panel D), daily sodium intake
(panel E) and 24-h urinary sodium excretion (panel F) in HFI patients (grey bars) and healthy controls (white bars).
Data are presented as medians with interquartile range. Analyzed with a Mann-Whitney U test.
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the potential mediating role of aortic stiffness (approximated by cf-
PWV) in explaining the higher systolic blood pressure in HFI. Regard-
less of the exact cause, it is clinically advisable to perform routine blood
pressure measurements in HFI patients during outpatient visits.

Previous studies have shown that ingestion of fructose by HFI pa-
tients leads to proximal tubular dysfunction (i.e. Fanconi syndrome)
and eventually to renal failure [9,40]. In the present study, proximal
tubular function, reflected by TmP/GFR, urinary glucose and amino
acid excretion, did not differ significantly between adult HFI patients
treated with a fructose-restricted diet and healthy controls. Although
the urinary alanine, valine, leucine and phenylalanine concentrations
tended to be higher in HFI patients, all were within the normal range in
comparison to the amino acid excretion as seen in patients with Fanconi
syndrome [41]. In contrast, the eGFRcr-cys was significantly higher in
HFI patients than healthy controls. It is unlikely that this difference is
explained by a difference in body (muscle) mass or diet – which affect
serum creatinine levels [42,43] – since a similar effect size was ob-
served for eGFRcys (albeit not statistically significant, p = .10).

A higher eGFR could reflect glomerular hyperfiltration, as seen in
other disease states such as diabetes mellitus [44], which could be a
precursor of chronic kidney disease [45]. In the general population, a
high GFR has been associated with an increase in albumin-to-creatinine

ratio and incident albuminuria [46]. Of interest, both dietary protein
intake and systolic blood pressure (which were found to be higher in
HFI patients) are associated with glomerular hyperfiltration [30,31]. In
addition, we previously showed that HFI patients are more glucose
intolerant [11], which might contribute to glomerular hyperfiltration as
well [47]. Regression analyses with systolic blood pressure and dietary
protein intake as potential mediators did, however, not reveal a sub-
stantial reduction in the unstandardized beta. Again, a mediating role of
these factors in explaining the higher eGFR in HFI patients cannot fully
be excluded.

On the other hand, a higher eGFR in HFI might also reflect a truly
better glomerular function. Although speculative, a hepatorenal axis in
HFI patients may account for the current observations. We and others
previously showed that HFI patients are also characterized by greater
intrahepatic triglyceride content than controls [11–13]. Detailed stu-
dies in aldolase B deficient mice suggest that an increased dissociation
of hepatic glucokinase from glucokinase regulatory protein (GKRP) may
explain the greater intrahepatic triglyceride content in HFI [48]. Of
interest, variants in the GKRP gene (that encode a GKRP protein that
binds glucokinase less effectively [49]) have been associated with both
an increased intrahepatic triglyceride content and a higher eGFR in the
general population [50,51]. The same gene variants tended to protect

Fig. 2. Endothelial function.
Ischemia induced reactive hyperemia (panel A), heat-induced skin hyperemia (panel B), plasma sE-selectin levels (panel C) and plasma von Willebrand factor levels
(panel D) in HFI patients (grey bars) and healthy controls (white bars).
Data are presented as medians with interquartile range. Analyzed with a Mann-Whitney U test.
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from chronic kidney disease as well (p = .13) [51]. Moreover, liver-
specific knockout of glucokinase results in increased kidney damage
[52]. These suggestions of a hepatorenal axis in HFI deserve further
study.

Of all measures of endothelial function, only plasma sE-selectin le-
vels, an endothelium-specific biomarker, were significantly higher in
HFI patients compared to healthy controls. The fact that plasma vWF,
LDF and RH-PAT were not statistically different between HFI patients
and healthy controls, might be due to a lack of statistical power, or
alternatively, a difference in the type of blood vessel under investiga-
tion, i.e. small arteries (RH-PAT) versus skin arterioles (LDF) versus the
microcirculation in general (plasma sE-selectin and vWF). Of note,
previous epidemiological studies have shown that sE-selectin levels
predict future type 2 diabetes and cardiovascular disease [53,54]. We
previously showed that adult HFI patients treated with a fructose-re-
stricted diet are more glucose intolerant than healthy controls [11].

This study has strengths and limitations. As hitherto mentioned, the
small patient population makes it difficult to draw conclusions on non-
significant results. Therefore, these results should be interpreted with
caution. In addition, formal mediation analyses are required to explore
the contribution of potential mediators to the difference in primary
outcomes measures between HFI patients and healthy controls. Due to
the low number of study participants, however, this was not possible.
Last, the healthy control subjects, who were matched for age, sex and
BMI, do not necessarily represent the general population.

This is the first report of HFI patients treated with a fructose-re-
stricted diet using state of the art methods. Since only case reports on
HFI at time of diagnosis have been published [32–34], this study pro-
vides useful information for the long-term management of HFI patients.

In conclusion, following our previous report on the presence of fatty
liver, liver fibrosis and glucose intolerance [11], we now show that the
adult HFI patients treated with a fructose-restricted diet are char-
acterized by a higher systolic blood pressure, eGFR and soluble E-se-
lectin level compared to age-, sex- and BMI-matched healthy controls.
Further studies are required to elucidate the exact causes of these ob-
servations, either the direct consequence of the genetic defect or sec-
ondary to its dietary treatment. These results do emphasize the need for
long-term follow-up of HFI patients, in particular with regard to blood
pressure and kidney function.
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