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A B S T R A C T

Background: Many food ingredients such as polyphenols, phenolic acids (e.g. present in fruit and vegetables) and
organosulphur compounds (e.g. present in mustard, garlic and chives) covalently interact with meat, egg, dairy
and plant-based proteins. The results of those interactions are manifold and range from altered technological
properties (in emulsions, foams, gels) to sensory changes (colour formation, altered taste and smell) and different
biological activity (allergy, antimicrobial effects, hydrolysis).
Scope and approach: The present review discusses both the positive and the negative side effects of such inter-
actions and explores the potential to fine-tune protein functionality during processing not only in model solu-
tions but also in more complex foods.
Key findings and conclusions: Traditionally, studies have focused on the negative effects of interactions between
protein and plant ingredients (e.g. discolouration and solubility changes), but more recent studies highlight
positive effects (e.g. enhanced emulsifying capacity, reduced allergy and targeted production of protein pig-
ments). By controlling food processing conditions (e.g. protein nativity) and the food matrix (e.g. presence of
antioxidative compounds or thiol groups, pH value during storage), the observed effects can be prevented or
induced. On the basis of the listed findings, future processes can be developed that take such interactions into
account to enable targeted co-processing of plant compounds with proteins. A better understanding of these
interactions opens up a wealth of novel utilization potential.

1. Introduction

Interactions between proteins and plant molecules such as poly-
phenols are common and widespread in nature. The consequences can
range from a strong astringency perception (polyphenol salivary pro-
tein binding) to an increased blood coagulation effect on wounds
(thrombin-polyphenol interaction), which speeds up wound-healing
processes (Pascal et al., 2007). Polyphenol binding to plasma and sig-
nalling proteins were found to affect different metabolic pathways in
humans (Lacroix et al., 2018). These interactions also occur in food
processing. For example, haze formation in juices and beer is a result of
a reaction between polyphenols and proteins (Siebert, 1999). Interac-
tions occur non-covalently as a weak and reversible association be-
tween protein and plant compounds, or occur irreversibly through
covalent bonds (Rawel & Rohn, 2010). The kind of interaction depends

on the plant ingredients involved and the reaction conditions. Non-
covalent interactions with proteins occur with vitamins and poly-
phenols from fruit and vegetables (Keppler, Martin, Garamus, &
Schwarz, 2015; Shpigelman, Cohen, & Livney, 2012). Due to their un-
stable nature, their effects on protein functionality during processing
are not well predictable. Covalent interactions with proteins, on the
other hand, are often observed for oxidized polyphenols, and for elec-
trophilic secondary plant compounds such as organosulphur com-
pounds from garlic, chives or papaya pulp. Covalent interactions be-
tween these reactive secondary plant compounds and proteins occur
during storage and processing of protein-ingredient mixtures (fruit,
vegetable, herbs) (Kuhn, von Oesen, Hanschen, & Rohn, 2018a; Rawel,
Huschek, Sagu, & Homann, 2019) or during extraction of plant-based
proteins (Karefyllakis, Salakou, Bitter, van der Goot, & Nikiforidis,
2018). Covalent interactions are often seen negatively because they
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alter the expected physico-chemical properties of proteins. For ex-
ample, irreversible binding often changes protein solubility (Keppler
et al., 2017) and is reported to reduce the bioavailability of essential
amino groups. But it is of an advantage with respect to inhibiting mi-
crobial degradation of proteins. The latter effect relevant in animal feed
as the amount of protein digested in the rumen is reduced, whereas the
amount available in the small intestine is increased (Mueller-Harvey,
2006). Compared with non-covalent modifications, the covalent mod-
ification can alter protein functionality irreversibly. For this reason, a
closer look at such interactions is particularly interesting.

An approach to avoid the covalent interactions described above is to
remove these plant molecules before further use of the material.
Unfortunately, such tactics are not often successful and require a lot of
resources (energy and chemicals). A better approach is therefore to
control these interactions in such a manner that they become a way to
refine the functionality of proteins during processing. So far, only a few
comprehensive overviews describe the range of functional properties
derived from covalent protein modifications through polyphenols:
Ozdal, Capanoglu, and Altay (2013) and Quan, Benjakul, Sae-leaw,
Balange, and Maqsood (2019) have summarized changes in function-
alities derived from polyphenol binding to proteins with respect to
antioxidative and emulsifying capacity in final products; Liu, Ma, Gao,
and McClements (2017a) reported possible applications such as nu-
traceutical delivery systems in combination with polysaccharides, and
Bittner (2006) focused on chemical, sensory and biological con-
sequences. The potential of other bioactive molecules has not yet been
described.

Here, we provide an overview of the possible advantages and dis-
advantages of protein modifications due to covalent reactions with
plant metabolites relevant to food processing (polyphenols as well as
sulphur compounds) and identify the process conditions under which
they can be prevented or induced. On the basis of the findings, pro-
cesses can be developed in the future that use those interactions to co-
process plant compounds with proteins. Therefore, this work is divided
into four parts. The first part summarizes the covalent reactions of
purified proteins in well-defined matrices with frequently occurring and
reactive plant compounds. These include polyphenols and iso-
thiocyanates and allyl sulphides, classes of organic sulphur compounds.
The second part assesses how these modifications affect the physico-
chemical and functional properties of different food proteins. The third
part gives a brief discussion on the biological and nutritional effects,
ranging from allergy and antimicrobial effects to hydrolysis pattern.
The fourth part provides an outlook on the consequences of processing
real food matrices in which all ingredients are present naturally. This
section also describes how it is possible to use and control reactions/
modifications between proteins and plant molecules.

2. Part I: binding reactions

2.1. Polyphenols

Detailed reviews on the covalent interaction mechanism between
proteins and polyphenols have been published (Kroll, Rawel, & Rohn,
2003; Perez-Gregorio & Simal-Gandara, 2017; Rohn, 2014; Schieber,
2018). Therefore, this section contains only a brief overview. Poly-
phenols can be oxidized enzymatically (e.g. catalysed by polyphenol
oxidases [PPO]) or by autoxidation (e.g. in an alkaline environment or
in the presence of oxidizing agents) to electrophilic o-quinones, which
can undergo various consecutive condensation reactions with other o-
quinones (i.e. dark melanin pigments) and/or bind to proteins cova-
lently (Fig. 1A). Susceptible amino acid side chains are free thiol groups
(i.e. cysteine side chains = S adducts) and amino groups (i.e. alpha and
epsilon amino groups = N adducts). Less reactive side chains include
indole groups (i.e. tryptophan side chains), amide groups (i.e. aspar-
agine and glutamine side chains), imidazole groups (i.e. histidine side
chains) and the phenolic side chain of tyrosine (Bittner, 2006; Li,

Jongberg, Andersen, Davies, & Lund, 2016; Prigent, Voragen, Visser,
van Koningsveld, & Gruppen, 2007). Quinones can also condensate and
then modify amino acid side chains with an altered reactivity. For ex-
ample, quinone-dimer condensation reactions were observed in
chlorogenic acid [CLA] or caffeic acid quinones, which significantly
increased their reactivity towards amino acid side-chain reactions
(Prigent et al., 2008).

Curcumin is a polyphenolic compound that can covalently bind to
proteins without previous oxidation due to its β-diketone moiety.
Curcumin undergoes keto-enol tautomerism and is mostly in the enol
form when in solution, allowing covalent binding to protein thiols
(Gupta et al., 2011). Kaempferol, another polyphenol, was also sug-
gested to bind covalently to proteins by means of keto-enol tauto-
merism (Kroll et al., 2003).

o-Quinone-protein adducts can be further oxidized, which leads to
cross-linked protein-polyphenol aggregates (Kroll et al., 2003)
(Fig. 1A). For example, the green tea polyphenols epigallocatechin
gallate [EGCG] and epigallocatechin can be oxidized to a catechol-
quinone with two equal nucleophilic sites on ring B, resulting in the
ability of the polyphenol to crosslink proteins (Chen, Wang, Zhang,
Ren, & Zeng, 2011). In addition, oxidation can occur simultaneously on
rings B and D of EGCG, also leading to the cross-linking of proteins.
Thus, polyphenols with higher molecular weight have a stronger pro-
pensity to form cross-links than phenolic acids, because they have
several aromatic rings and thus more sites where reactions can take
place. In addition to polyphenol oxidation, some amino acid residues
can also be oxidized, possibly inducing protein aggregation through
coupling two oxidized tyrosine residues to form an intermolecular di-
tyrosine link (Prigent et al., 2007).

The pH value determines which amino acids are primarily modified:
Cysteine has a lower pKa than the amino group of lysine (8.33 versus
10.28) and reacts faster than lysine in a moderate alkaline environment
where autoxidation reactions occur. In addition, the thiol moiety is also
more nucleophilic than the amino group Rade-Kukic, Schmitt, & Rawel,
2011). However, only a few proteins contain a free thiol moiety (e.g.
BLG or bovine serum albumin). Other amino acid residues are more
abundant for binding reactions. Enzymatic oxidation occurs near the
optimum pH value of the respective enzyme (e.g. PPO at neutral pH
6–7). At this pH value, thiol moiety reactions are slower than at alkaline
pH. No significant differences in the amino group reactivity were ob-
served between alkaline and enzymatic modifications (Ali, Keppler,
Coenye, & Schwarz, 2018; Prigent et al., 2007). Protein modifications
by autoxidation were also observed at acidic pH 4, and the rate of
protein modification generally increased with increasing polyphenol
concentration in solution (Rawel, Kroll, & Riese, 2000).

Table 1 summarizes some recently reported covalent interactions
for different food proteins with polyphenol-quinones.

Non-covalent interaction of polyphenols with proteins occurs as a
reversible association mediated via hydrogen bonds, π-π interactions
and non-specific hydrophobic interactions. In complex systems, both
covalent and non-covalent interactions are present, and the resulting
effects may overlap.

2.2. Organosulphur compounds

Allyl sulphides and isothiocyanates [ITC] are two classes of reactive
organosulphur compounds that occur frequently in many vegetables
and some fruits.

Allyl sulphides can be found in allium vegetables, especially garlic,
onions, leeks and chives. Garlic, for example, contains approximately
33 different sulphur compounds such as alliin, allicin, ajoene, allyl-
propyl disulphide, diallyl trisulphide, S-allyl cysteine, vinyldithiine, S-
allylmercaptocysteine (Omar & Al-Wabel, 2010). Thiosulphinates can
react with free thiol groups and/or disulphide bonds of proteins, re-
sulting in S-alk(en)ylthio-L-cysteine derivatives (Kusterer, Fritsch, &
Keusgen, 2011). Similar to the reaction with polyphenols, the
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Fig. 1. A) Polyphenol oxidation: (1) Proposed simplified mechanism of epigallocatechin gallate oxidation on ring B. (2) Binding of an epigallocatechin gallate-
quinone ring B to a proteins free amino or thiol group, followed by a second oxidation of EGCG at ring B. The figure was modified according to Chen et al. (2011) and
Kroll et al. (2003). B) Organosulphur compounds: Structure of some organosulphur compounds that interact with free thiol groups of proteins and amino acids.
DADS, diallyl disulphide.

Table 1
Overview of studies describing covalent binding reactions of oxidized polyphenols, phenolic acids and phenolic components with different food-derived proteins.

Protein Phenol type Modification type Reference

Animal-based proteins
β-Lactoglobulin Epicatechin-quinone Autoxidation (neutral pH) Gallo et al. (2013)
Whey protein isolate Rosmarinic acid quinone Compare enzymatic at pH 6.5 and autoxidation

(alkaline pH)
Ali et al. (2018)

Whey protein isolate Quercetin quinone, rosmarinic acid
quinone, CLA quinone

Autoxidation (alkaline pH) and enzymatic Ali (2019)

Myoglobin Ferulic acid, gallic acid Autoxidation (alkaline pH) Kroll et al. (2003)
Lysozyme, lactalbumin, bovine serum

albumin
CLA quinone Compare enzymatic at pH 5 or pH 6.0 and

autoxidation (alkaline pH)
Prigent et al. (2007)

N-terminally protected amino acids CLA quinone Compare enzymatic at pH 7 and autoxidation
(alkaline pH)

Prigent et al. (2008)

Plant-based proteins
Sunflower proteins CLA quinone Autoxidation (alkaline pH) Karefyllakis et al. (2018)
Coffee storage proteins Caffeoylquinic acid Enzymatic (acidic pH) Ali et al. (2012)
Soy protein Anthocyanin quinones Autoxidation (alkaline pH) Jiang et al., 2019; Sui et al., 2018
Flaxseed proteins Flaxseed polyphenols and ferulic acid

quinones
Autoxidation (alkaline pH) Pham, Wang, Zisu, & Adhikari,

2019a, 2019b

CLA, chlorogenic acid; EGCG, (−)-epigallocatechin gallate; GCG, gallocatechin gallate.
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organosulphur SH-conjugation reaction rate increases with increasing
pH value because deprotonation of the cysteine residue favours its re-
activity towards covalent modifications (Wilde, Keppler, Palani, &
Schwarz, 2016a).

There are few studies on the interaction of food proteins with these
sulphur compounds. Disulphide-conjugate formation can be expected to
occur during food processing or food digestion (Zhang, Li, Lee, &
Parkin, 2010). For example, the capturing capacity of different foods for
volatile sulphur compounds (diallyl disulphide [DADS] and diallyl
sulphide) was found to be high for milk (95% and 91%), as well as eggs
(84% and 88%). It was suggested that capturing occurs due to thiol
interactions with food components, especially with proteins (Negishi,
Negishi, & Ozawa, 2002). The interaction of allicin and DADS (Fig. 1B)
with BLG was described in detail recently. Both compounds reacted
with the free thiol group of the whey protein at a pH value > 7 within
24 h (Table 2) (Wilde et al., 2016a, 2016c).

Cruciferous vegetables such as broccoli, cauliflower, Brussels
sprouts, cress, and cabbage plants (and especially their fermentation
product sauerkraut) are a rich food-based source of glucosinolates and
their degradation products ITCs. Papaya pulp and seeds are another
valuable source of ITCs (Nakamura et al., 2007). In 1956, ITC reactions
with amino acids or proteins were used to determine the primary
structure of proteins (Edman, 1956). Later, Rawel, Kroll and colleagues
did extensive research on ITC food protein interactions (e.g., Kroll &
Rawel, 1996; Rade-Kukic et al., 2011).

All ITCs have the R–N]C]S functional group in common. The
electrophilic C atoms form thiocarbamoyl adducts with thiols or
thiourea adducts with amines (Nakamura, Kawai, Kitamoto, Osawa, &
Kato, 2009). Besides cysteines and amino groups (Hanschen et al.,
2012; Nakamura et al., 2009; Anantharamkrishnan & Reineccius,
2020), tryptophan, methionine and tyrosine were also found to be po-
tential targets of ITCs (Kroll & Rawel, 1996; Murthy and Rao, 1986).
Further, reactions between ITCs and other nucleophilic agents such as
β-dicarbonyls and carboxylic acids are suggested (Zhang, Wade,
Prestera, & Talalay, 1996). Similar to these reactions for polyphenols
and allyl sulphides, the rate of the ITC conjugation reaction is depen-
dent on pH, ITC concentration and available binding sites (Hanschen
et al., 2012). In addition, thiol reactions are potentially unstable,
especially at higher pH values at which cysteine exchange reactions
occur (Kuhn et al., 2018b). Therefore, the bound molecule can be lib-
erated and then irreversibly modify an amino group (Kuhn et al.,
2018b; Nakamura et al., 2009).

In addition, the allyl isothiocyanate [AITC] reaction with specific
amino acid residues of BLG was found to be controllable by changing

the protein/ITC ratio (Keppler et al., 2013; Keppler, Koudelka, Palani,
Tholey, & Schwarz, 2014a). Binding of AITC was also found to be de-
pendent on the primary structure of the proteins (local changes in the
pKa value of the amino acid residue), and on the tertiary and quaternary
structure (accessibility of the binding site of the protein as well as the
size of the ITC) (Cejpek, Valusek, & Velisek, 2000) (Table 2).

3. Part II: Influence on protein functionality in controlled systems

In controlled systems, a limited number of reactants are incubated
under defined reaction conditions so that the effects on protein func-
tionality can be traced back. Covalent and non-covalent interactions
occur simultaneously, even in model systems, although a high pH, long
incubation time or the presence of enzymes shifts the equilibrium to-
wards more covalent modification. In model systems, unbound mole-
cules are often removed by dialysis, ultrafiltration or evaporation of the
volatile sulphur compounds. These techniques can also be used to de-
crease the amount of non-covalently bound molecules. However, the
extent of protein modification varies depending on the modification
conditions or the protein used for modification. The results listed here
reflect only an average of different observations.

3.1. Interfaces: air-water and oil-water interfaces and antioxidative
capacity

Polyphenols have a predominantly positive influence on the phy-
sical and chemical emulsion stability of proteins through covalent in-
teraction.

Addition of covalent CLA quinone to whey proteins resulted in a
more open protein structure, thereby enhancing the emulsifying and
foaming properties (Xu et al., 2019). Other studies identified an altered
hydrophilic-hydrophobic balance in modified proteins as the cause of
the enhanced emulsifying properties. For example, gelatine covalently
modified with oxidized tannic acid, caffeic acid or ferulic acid resulted
in a lower hydrophobicity of the adduct, which increased the surface
activity in emulsions and lowered the size of emulsion oil droplet sizes
(Aewsiri et al., 2009). Several other studies confirmed an overall en-
hanced emulsifying capacity of modified proteins; for example, a
covalent modification of BLG with CLA increased the creaming stability
of medium-chain triglyceride-oil emulsions (Ali, Homann, Khalil, Kruse,
& Rawel, 2013). Similar effects were reported for protein-bound oxi-
dized quercetin and covalent hydroxycinnamate-protein interactions
(Rawel & Rohn, 2010). Covalent adducts of lactoferrin with CLA or
EGCG quinone also exhibited increased physical stability of β-carotene

Table 2
Overview of studies describing covalent binding reactions of sulphur containing ingredients with different food-derived proteins.

Protein Sulphur compound Binding sitesa Reference

Animal-based proteins
BLG Allicin Cys Wilde et al., 2016a, 2016c
BLG DADS Cys Wilde et al., 2016a, 2016c
BSA DADS Negishi et al. (2002)
Vimentin Ajoene Kaschula et al. (2019)
- Allicin Cys Zhou et al. (2008)
BSA BITC (ground wasabi and papaya seeds) Lys Nakamura, Kitamoto, Osawa, and Kato (2010)
BSA AITC Lys Murthy & Rao, 1979
BSA AITC Lys Nakamura et al. (2009)
Insulin, BSA, ovalbumin, lysozyme AITC (crushed Brassica seeds) Lys, Arg, Cys Kawakishi and Kaneko (1987)
Lactoglobulin AITC ε-Lys, α-Leu, Cys Keppler et al., 2013, 2014a
Lactoglobulin AITC ε-Lys, α-Leu, Cys Rade-Kukic et al. (2011)
Milk proteins in curd BITC, AITC (cress) Lys, Cys Kuhn et al. (2018a)
Plant-based proteins
Papain Allicin Cys Miron, Listowsky, and Wilchek (2010)
Proteins in broccoli sprouts Isothiocyanates Lys, Cys Hanschen et al. (2012)
Mustard 12 S AITC ε-Lys, Tyr Murthy and Rao, 1986

AITC, allyl isothiocyanate; BITC, benzyl isothiocyanate; BLG, β-lactoglobulin; BSA, bovine serum albumin; DADS, diallyl disulphide; PITC, phenyl isothiocyanate.
aNot all studies screened for all possible binding sites; often only amino and/or thiol group modifications are measured.
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bilayer emulsions under freeze-thaw, ionic strength and thermal treat-
ments (Liu, Wang, Sun, McClements, & Gao, 2016a). In addition,
covalent adducts of α-lactalbumin with EGCG or CLA showed enhanced
creaming stability (Liu et al., 2016a).

With respect to chemical stability, a positive effect on the anti-
oxidative capacity was reported for gelatine-tannic acid, gelatine-caf-
feic acid and gelatine-ferulic acid adducts (Aewsiri et al., 2009), lac-
toferrin-EGCG adducts (Liu et al., 2016a) and for BLG-CLA adducts (Ali
et al., 2013). Therefore, those studies suggested that these modifica-
tions could be useful to prevent lipid oxidation reactions in emulsions.
Likewise, a direct comparison of the surface activity and antioxidative
capacity revealed that covalent adducts of proteins were superior to
non-covalent complexes (Wei, Yang, Fan, Yuan, & Gao, 2015).

In comparison with most phenols, organosulphur compounds are
more electrophilic in nature and are much smaller (~100 Da instead of
~400 Da), which makes their accessibility to protein binding sites ea-
sier. In addition, their water solubility is lower, which strongly in-
creases the hydrophobicity of any protein adduct. It is likely that, de-
pending on the number of protein-bound molecules as well as the initial
hydrophobicity of the protein, such effects are not only positive. For
example, the covalent modification of AITC with BLG occurred at sev-
eral amino and thiol groups strongly increasing the surface hydro-
phobicity of the protein and resulting in a slight destabilization of
emulsions at pH 7 but not at pH 4 (Rade-Kukic et al., 2011). However,
the covalent modification of whey protein isolate with AITC and sub-
sequent freeze drying resulted in protein adducts with increased surface
activity and looser protein conformation at acidic pH 2 and 4 (Keppler
et al., 2017). A higher backbone flexibility of the modified protein was
suggested to increase the emulsifying capacity of AITC/whey protein
isolate complexes at acidic pH values. In addition, increased creaming
stability was observed for such AITC-BLG emulsions at pH 2–7 (Keppler
& Schwarz, 2017; Keppler, Steffen-Heins, Berton-Carabin, Ropers, &
Schwarz, 2018). Similar to the AITC modification of whey proteins, the
modification of BLG at the free thiol group with allicin or DADS also
revealed a higher hydrophobicity of the adduct, but no tests on emul-
sifying properties were conducted (Wilde et al., 2017; 2016a; 2016c).

An overview of several effects after modification with different
plant-based compounds is given in Table 3. In summary, covalent
modifications of proteins mostly exert their positive effect on the
emulsifying capacity by increasing the molecular flexibility of the

protein and affecting the hydrophilic-hydrophobic balance. For poly-
phenol modification, the increased antioxidative capacity also adds to
the chemical stability in addition to an altered physical effect on the
emulsion. Organosulphur compounds could be used when a lower
protein surface hydrophobicity is desired (Table 4).

3.2. Gelling

The covalent modification of proteins with polyphenols was also
found to increase gel strength via the reported cross-linking effects of
the oxidized polyphenols. This was found for gelatine gels that were
modified with rutin hydrate, caffeic acid, ferulic acid or with coffee or
grape juice phenols (Strauss & Gibson, 2004). Similar findings were
reported for meat gels where CLA or rosmarinic acid was covalently
attached to myofibrillar protein (Cao & Xiong, 2015; Tang et al., 2017;
Wang et al., 2018). Improved gelling properties (increased gel breaking
force and deformation) in surimi gels were observed after covalent at-
tachment of oxidized ferulic acid, tannic acid, catechin or caffeic acid to
the fish protein. Polyphenols that induced multidentate binding were
shown to be more effective than smaller phenolic acids (Balange &
Benjakul, 2009).

However, several studies reported a dose-dependent effect on gel-
ling capacity, for example, for myofibrillar proteins in meat processing.
At a higher polyphenol/protein ratio than reported above, the gel de-
formation and breaking force decreased together with the water-
holding capacity. This was caused by a significant loss of free thiol
groups of proteins because of the high degree of modification with
polyphenols and thereby a loss of intrinsic protein cross-linking ability.
In addition, self-aggregation of the phenolic compound also disturbed
homogeneous gel formation (Tang et al., 2017; Wang et al., 2018;
Zhang et al., 2018). Simultaneous non-covalent interactions with in-
creasing addition of polyphenols may also reinforce the formation of
the gel structure. To the best of our knowledge, there are no studies
available on the effect of organosulphur compounds on the gelling ca-
pacity of proteins. However, because most sulphur compounds bind to
proteins via thiol groups, their gelling ability through covalent inter-
actions is likely to be negatively affected.

Table 3
Overview of studies describing the functionality of covalently modified food-derived proteins.

Protein Plant-based molecule Functionality Reference

Animal proteins
Lactoferrin [LF]-

dextran
CLA quinone Ternary aggregates (polysaccharide + polyphenol + protein); increased freeze-thaw

stability of emulsions; enhanced creaming stability
Liu et al., 2016a

LF-dextran CLA quinone Ternary aggregates Liu, Ma, McClements, &
Gao, 2016b

LF EGCG, CLA, gallic acid
quinones

Thermal stability increased; emulsifying capacity increased; pH value-dependent increase
of solubility

Liu, Sun, Yang, Yuan, and
Gao (2015)

Gelatine Tannic acid, caffeic acid or
ferulic acid quinones

Lower surface hydrophobicity; increased surface activity; lower emulsion oil droplet size;
antioxidative stability increased

Aewsiri et al. (2009)

ALA, BLG, LF, S-Cas EGCG quinone Surface activity and antioxidative capacity enhanced Wei et al. (2015)
BLG CLA quinone Enhanced creaming stability Ali et al. (2013)
Whey protein CLA quinone Enhance emulsifying and foaming capacity; reduced allergenicity Xu et al. (2019)
Whey protein AITC Emulsion stability decreased at pH 7; foam capacity increased Rade-Kukic et al. (2011)
Whey protein AITC Surface activity increased at acidic pH values; molecular flexibility increased at acidic pH Keppler et al. (2018)
Whey protein AITC Emulsion creaming stability was enhanced at pH 2–7 Keppler and Schwarz

(2017)
Whey protein AITC Surface hydrophobicity decreased; significant conformational changes observed Keppler et al. (2017)
Plant-based proteins
SPI EGCG Enhanced emulsifying properties and creaming stability Tao et al. (2018)
SPI Anthocyanins Improved emulsifying and foaming properties Sui et al. (2018)
Flax seed protein

isolate
Flaxseed phenols (ferulic acid) Reduced emulsifying properties due to charge effects Pham et al., 2019a, 2019b

ALA, α-lactalbumin; AITC, allyl isothiocyanate; BITC, benzyl isothiocyanate; BLG, β-lactoglobulin; BSA, bovine serum albumin; CLA, chlorogenic acid; LF, lactoferrin,
CLA, chlorogenic acid; EGCG, epigallocatechin gallate; S-Cas, sodium caseinate; SPI, soy protein isolate.

J.K. Keppler, et al. Trends in Food Science & Technology 101 (2020) 38–49

42



3.3. Colour formation

The polyphenol-quinone reaction with amino acid residues can re-
sult in different coloured complexes ranging from deep brown, yellow,
to green (Bongartz et al., 2016; Iacomino et al., 2017). The resulting
colour can often be related to the preceding reaction. Condensation
reactions between unbound quinones in the absence of amino acid re-
sidues lead to a dark brown colour. Reaction of quinone with thiol
groups of amino acid residues results in discolouration, and light brown
to yellow colours can emerge as a mixture of brown quinone con-
densation products in solution together with thiol protein-bound qui-
nones (Pierpoint, 1969). More recent studies showed that green col-
ouration, as frequently observed for CLA in sunflower protein extracts
(Wildermuth, Young, & Were, 2016), are caused by semiquinone-type
radicals, which lead to dimer formation, cyclization and further reac-
tions with amino groups to the green coloured benz acridines (Namiki,

Yabuta, Koizumi, & Yano, 2001; (Bongartz et al., 2016)). Green and
yellow colours resulted from a semi-quinone radical of alkaline oxi-
dized CLA, whereas orange and brown coloured proteins occurred in
the presence of PPO at neutral pH (Ali et al., 2012). In addition to the
binding site and the oxidation mode (autoxidation or PPO mediated),
the quinone itself influences the final colour: CLA quinone resulted in
green protein solutions, and quercetin-, and catechin-quinones led to
dark orange and light brown solutions, respectively (Seczyk, Swieca,
Kapusta, & Gawlik-Dziki, 2019).

Colour intensity might be reduced by inducing more thiol than
amino group interactions with the oxidized polyphenols (Li et al.,
2016). Black/dark brown discolouration is excluded by adding reducing
agents such as ascorbic acid or by removing unbound quinone (Saltveit,
2018). The addition of polyphenol scavenging or complexing agents
such as β-cyclodextrin was also found to reduce protein-polyphenol
color formation successfully (Zhang et al., 2018) (Table 4).

Table 4
How to induce or prevent the interaction of protein with different plant-based ingredients. Summaryb of reaction parameters, physico-chemical, functional and
biological changes after covalent modification of proteins with plant-based ingredients.

Polyphenols Organosulphur

Allyl sulphides Isothiocyanates

Reaction parameters
Primary modification site S and N S S and N
Stability Irreversible S binding reversible at alkaline pH
Prerequisite Oxidation (autoxidation or catalysed by polyphenol oxidases

[PPO])
Released by enzymes in crushed cell

How to induce pH > 7, surplus reactive plant-based molecules, higher temperature, time, any processes that unfold or hydrolyse proteins
Polyphenol oxidation is induced: in high moisture
environment, high moisture ingredients, high moisture
storage, presence of oxidants

-

How to prevent Polyphenol oxidation is prevented: by reducing agents (e.g.
ascorbic acid, sulphites); PPO inactivation
Polyphenol oxidation is slowed: at low pH values, exclusion
of UV light, low oxygen levels (modified atmosphere), low
temperature

Production of reactive organosulphur compounds: is prevented by enzyme
inactivation

Covalent interactions are slowed: by acidic pH values. Avoid protein denaturation/hydrolysis. Decreased reaction temperature and incubation
time. Decreased plant-based molecules/protein ratio by complexing compounds with e.g. cyclodextrin or scavenge with L-cysteine as “sacrificial”
molecule. Blocking of binding sites (e.g. with reducing sugars via Maillard reactions).

Physico-chemical effects of the
interaction on proteins

Protein unfolding, altered hydrophobic-hydrophilic balance,
altered thermal stability

Increased molecular and
thermal protein stability

Protein unfolding, altered hydrophobic-
hydrophilic balance (mostly more
hydrophobic)

Functional properties
Emulsifying capacity Enhanced Unknown Dependent on pH
Gelling capacity Low modification level: enhanced by quinone-protein-

protein and protein-quinone-protein cross-links
High modification level: blocking of thiol groups hinders
protein-protein interactions

Blocking of thiol groups likely hinders protein-protein interactions

Colour formation Yes No
Sensory perception Depends: part of flavour formation, but also off-flavour

possible
Improved: initial sulphur taste and smell reduced

Antioxidative capacity Higher than single components Unlikely but unknown

Biological effects
Antimicrobial activity Weak or not detected Unknown No longer evident
Allergenicity Reduced Unknown Unknown
Hydrolysis Enhanced, but longer peptides because of steric hindrance Unknown, but unlikely Longer peptides because of steric hindrance

Likelihood of occurring
during processing

Alkaline extraction of plant-based proteins. Fermentation and
roasting of cocoa and coffee beans. Heating or storage of
honey. Storage of commercial milk-cocoa drinks. Air drying of
tobacco leaves. High moisture ingredients/storage, alkaline
ingredients

Alkaline ingredients, alkaline extraction of plant-based proteins. Possible to occur
in salad dressing with herbs, in sausages or eggs with mustard, garlic or chives,
herbal curd during >4 h storage.

Possible application Functional antioxidant in emulsions, foams and gels.
Texturizing capacity due to cross-linking with polyphenols/
replacer of gluten, green colorant. Blocking of protein binding
sites to modulate Maillard reactions

Enhanced bioactivity of
volatile sulphur compounds?

Enhanced emulsion creaming stability.
Blocking of protein binding sites to modulate
Maillard reactions

bThe effects reflect most of the findings so far; deviations are possible depending on the properties of the protein and the reacting plant-based molecule. N, amino
group binding site; PPO, polyphenol oxidase; S, thiol group binding site.
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As a positive outcome, these coloured complexes were even sug-
gested for use as natural green pigments in food colouration, because
natural green pigments besides chlorophyll are scarce (Iacomino et al.,
2017; Schieber, 2018). Inducing strong green colour formation could be
possible in alkaline conditions, because protein modifications and
polyphenol oxidation are favoured (Table 4). Other conditions that
promote green color formation in foods are storage at relatively high
humidity as well as the use of high moisture ingredients (Liang & Were,
2018; Rogers, Hahn, Pham, & Were, 2018).

There are no reports on colour changes of proteins after interaction
with organosulphur compounds.

3.4. Taste and smell

It can be assumed that the bitter taste of most polyphenols is masked
by binding it to a protein, because it might no longer be detectable by
receptors. This reaction could also be part of aroma development
during fermentation, roasting and drying of tea, cacao, coffee and to-
bacco (Rawel et al., 2019). Of course, off flavours can be formed as, for
example, in oxidized wines (Bittner, 2006). Accordingly, the aroma
strongly depends on the ingredient mixture and the amount of con-
densed quinones.

For organosulphur compounds, which are pungent and volatile, a
positive masking effect was observed after protein interaction. Allicin-
protein complexes can be added to a cold coffee drink without negative
sensory effects (Wilde, Keppler, Palani, & Schwarz, 2016b). The deo-
dorization of sulphur compounds (e.g. DADS) in the breath after con-
sumption of allium vegetables was also suggested to be most effective
with milk or isolated bovine serum albumin (Negishi et al., 2002). This
effect can be used positively to mask unwanted flavour, but other fla-
vour bindings (such as aldehydes) to proteins can also reduce the de-
sired aroma effects in foods (Meynier, Rampon, Dalgalarrondo, &
Genot, 2004).

3.5. Mouth feel and food texture

Protein aggregation on a mesoscopic level can result in various food
textures on a macroscopic level such as gel formation (see section on
gelling). In addition, aggregation at a microscopic level may result in
particle formation on a length scale of several micrometres with an
impact on the mouth feel. Whey protein particle formation is a well-
known effect used in dairy production to substitute the creamy mouth
feel of fat droplets. The particle formation depends on a combination of
heat- and shear stress processes. Because protein cross-linking and
gelling can be positively influenced by addition of covalent (but also
non-covalent) bound polyphenols, the controlled interaction of protein-
polyphenol aggregation may open-up new strategies for the develop-
ment of particle processing routes (see part IV).

Another application for covalent protein modifications is to prevent
hardening of the food texture. This is a phenomenon relevant for foods
with a high protein content (e.g. protein-based bars) in the presence of
reducing sugar. The accumulation of advanced glycation end-products
occurs by glycation reaction sequences. These glycation-based adducts
induce instability during the storage of protein-rich food, resulting in
browning products and hardening (Purwanti, van der Goot, Boom, &
Vereijken, 2010). The binding of phenolic compounds to lysyl residues
of the protein blocks the glycation reaction and prevents hardening of
protein-based bars. The effect was verified for cyanidin 3-O-rutinoside
and quercetin 3-O-rutinoside with whey proteins via H-bonding and π-π
interactions (Khalifa et al., 2019) and can be expected to be similar for
covalent binding reactions with lysyl residues. Blocking of amino
groups by covalent modification with polyphenols is a promising
strategy to modulate Maillard reactions in foods (Lund & Ray, 2017;
Troise et al., 2014). A similar approach might be possible with amino
group-binding sulphur compounds such as some ITCs.

4. Part III: Overview of biological effects

4.1. Bioavailability and hydrolysis

Covalent attachment of polyphenol-quinones or phenolic acid qui-
nones to protein amino groups was found to result in an increased rate
of hydrolysis mediated by partial protein unfolding due to modification
(Jiang et al., 2019). At the same time, longer peptide residues were
obtained after protein hydrolysis because the protein modification
sterically blocks cleavage sites for the enzymes (Cirkovic Velickovic &
Stanic-Vucinic, 2018). Thus, some losses of essential amino groups such
as lysine are likely. Loss of essential amino acids was also reported after
covalent attachment of organosulphur compounds to proteins. Covalent
modification of free amino groups in egg white protein with ITC re-
duced the availability of lysine significantly in animals (Hernández-
Triana, 1996). Likewise, AITC binding to BLG through lysine residues
altered the tryptic and chymotryptic digestion of the modified protein,
resulting in blocked cleavage sites and an altered peptide pattern
(Keppler et al., 2014a).

Further, trypsin digestion was affected by AITC modification of
mustard 12S protein, although papain and α-chymotrypsin showed no
altered cleavage (Murthy and Rao, 1986).

With respect to thiol group binding of organosulphur compounds,
disulphide linkages via protein thiol groups are unstable, and it is likely
that bound molecules can be liberated during digestion (Kuhn et al.,
2018b). Thus, both the amino acid value of the protein and the
bioactivity of the bound molecule might not be negatively affected in
that case. Likewise, the bioavailability of allicin covalently bound to
cysteine in BLG is reported not to be reduced (Wilde et al., 2016b). BLG-
allicin modification was even suggested to have the potential to fortify
foods with bioactive garlic compounds, because the protein reduces its
pungent smell while stabilizing the volatile organosulphur compound
without decreasing its bioavailability (Wilde et al., 2017).

In conclusion, protein modification to amino groups can lead to loss
of essential amino acid residues and changes in the hydrolysis pattern,
and the hydrolysis rate can be increased due to protein unfolding. For
thiol modifications with organosulphur compounds, enhanced bioa-
vailability is possible due to the reversible nature of this binding site
(Table 4).

4.2. Antimicrobial effects

Low antimicrobial effects on gram-positive Staphylococcus aureus
(LMG 10147 and Mu 50) were observed for rosmarinic acid quinones
that were covalently bound to BLG via PPO: In contrast, unmodified or
alkaline-induced protein modification with rosmarinic acid showed no
significant effect on the bacteria (Ali et al., 2018). It was speculated that
polymerized quinones induced by PPO could form melanin, which were
reported to have antimicrobial activity on Bacillus cereus, B. subtilis,
Micrococcus luteus and S. aureus. Another possibility is the oxidation of
tyrosine residues by PPO to l-3,4-dihydroxyphenylalanine [L-DOPA],
which could exert antimicrobial activity (Zhao, Li, Wang, & Jiang,
2007). Conjugates between lysozyme and avarone, a sesquiterpene
quinone of marine origin, were found to exert antibacterial activity
against a broad range of bacteria. Here, both compounds already have
antimicrobial activity, and it was proposed that when modified lyso-
zyme is hydrolysed by bacterial defence enzymes, the emerging pep-
tides with the quinone bound can still have an antimicrobial effect
(Novakovic, Andelkovic, Zlatovic, Gasic, & Sladic, 2012).

For organosulphur compounds such as ITCs, which are known for
their strong antimicrobial effect when unbound, it was shown that this
biological activity was lost after covalent binding to BLG. This was
expected, because the antimicrobial activity of ITC is mediated by
binding to bacterial proteins. When ITC is already protein bound, it can
no longer interact with the bacterial proteins (Keppler et al., 2017).
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4.3. Allergy

The most common type of allergy is immunoglobulin E (IgE)-asso-
ciated allergy, mediated by IgE binding to surface patches on proteins
resulting in cross-links on mast cell and basophil surfaces (Plundrich
et al., 2014). IgE binding epitopes can be linear stretches (consisting of
8–10 specific amino acids in a line) or conformational (specific sec-
ondary and tertiary structure elements). Some linear epitopes are also
present in conformational epitopes, because the secondary and tertiary
conformation results in the convergence of different amino acids that
can form a pattern that resembles those of the linear epitopes (Li, Yuan,
He, Gao, & Chen, 2015).

Covalent modification of ovalbumin with CLA quinone resulted in
reduced allergenicity in vitro (Lu et al., 2018) and similarly, the aller-
genic potential of whey protein BLG was reduced after covalent mod-
ification with EGCG and CLA in vitro (Wu et al., 2018; Xu et al., 2019).
Covalent modification of peanut proteins by quercetin (aglycone or
glycoside form) from cranberry or blueberry (Plundrich, Bansode,
Foegeding, Williams, & Lila, 2017) also resulted in decreased IgE re-
cognition. To the best of our knowledge, no studies have been con-
ducted on the allergenicity of proteins after covalent modification with
organosulphur compounds.

The reasons for the altered allergenicity are likely conformational
changes that also affect epitopes and/or steric blocking of IgE binding
sites. Further studies are needed to elucidate if this effect is only evident
in vitro or is also seen in vivo, but the use of polyphenols to reduce the
allergenic potential of proteins is certainly an interesting route for
further exploration (Table 4).

5. Part IV: Evaluation of modifications during processing and
extraction

Most of the reactions between proteins and plant constituents de-
scribed above have been studied in models or controlled systems. These
interactions are also expected to occur during food processing, i.e. ex-
traction, fermentation, roasting, crushing and mixing of ingredients and
complete foods. There are not many studies on this topic, however,
covalent protein modifications with ingredients occur constantly during
processing, and a closer look at these reactions in real foods could
provide valuable insights on how to either prevent or use such inter-
actions in food processing.

5.1. Effect of food properties on modifications

Although covalent protein modifications can be observed in foods
with acidic to neutral pH values, they are generally slowed down by
acidic pH values:

Covalent interaction of milk proteins with polyphenols was ob-
served in commercial chocolate milk drinks after 4 h at room tem-
perature, although under the given conditions (neutral pH value, short
incubation time, protein/polyphenolic ratio), only a small proportion of
the proteins were covalently altered and the loss of essential amino
acids was therefore minor (Gallo, Vinci, Graziani, Simone, & Ferranti,
2013). However, protein modifications can also occur in plants, as was
reported for covalent protein modification in broccoli sprouts with
endogenous ITCs (Hanschen et al., 2012) as well as in processed foods,
as reported for the interaction between ITCs from chopped garden cress
and milk proteins in slightly acidic herbal curd or pH neutral milk
(Kuhn et al., 2018a). Many covalent protein modifications were also
observed in meat (acidic to neutral pH), probably because addition of
rosmarine extracts or other polyphenol rich seasonings as antioxidants
is a common practice (Jongberg, Gislason, Lund, Skibsted, &
Waterhouse, 2011; Tang et al., 2017; Wang et al., 2018; Zhang et al.,
2018). However, sunflower butter cookies made with acid ingredients
(such as sour cream, buttermilk, yoghurt or honey; all pH values <
4.8) or acidifiers had a lower covalent protein modification with

oxidized chlorogenic acid and thus a lower green colour intensity than
biscuits made from neutral maple syrup or alkaline baking powder
(Liang, Tran, & Were, 2018).

Thus, the pH of the ingredients can be used to reduce covalent
modifications, but also to induce them: Egg proteins are reportedly
prone to covalent interactions with polyphenols or organosulphur
compounds during processing because of their inherent alkaline pH
value (Hanschen et al., 2012). In addition, alkaline protein extraction
from plant materials induces protein modification (Karefyllakis et al.,
2018; Karefyllakis, van der Goot, & Nikiforidis, 2019b; Wildermuth
et al., 2016). An interesting route to generate functional modified ex-
tracts was suggested previously. By adding defined, highly reactive
small cysteine-containing molecules to plant waste material in alkaline
conditions, fast and preferential binding to them was induced. These
modified extracts from plant by-products had a high antioxidative ca-
pacity and can be mixed as ingredients to other foods (Selga and Torres,
2005).

Not only the pH value but also the composition of the rest of the
food matrix determines if the protein modification is induced or hin-
dered. Excess secondary plant compounds in relation to proteins may
have negative or uncontrollable effects because the plant compound:-
protein ratio determines the grade of protein modification. The reason
is that non-covalent modifications occur increasingly besides the
covalent bonding; another reason is the increasing extent of protein
modification, which can result in complete blocking of all protein
binding sites. For example, for meat gels (see section on gelling 3.2), the
addition of polyphenol-quinone was found beneficial at a biological
(antioxidative capacity) (Jongberg et al., 2011) as well as functional
level (gel strength) (Tang et al., 2017). However, surpassing a certain
level of protein thiol modification then reversed the positive functional
effects again (Tang et al., 2017; Wang et al., 2018; Zhang et al., 2018).

A measure of control on these interactions is possible by inducing
specific protein modifications with enzymes: For example, protein-
polysaccharide networks can be achieved via enzymatic oxidation of
phenolic moieties such as tyrosine on proteins and esterified phenolic
acids in polysaccharides (e.g. ferulic acid in arabinoxylan) (Selinheimo,
Lampila, Mattinen, & Buchert, 2008). In wheat bread production, en-
zymatic oxidative cross-linking of phenolic compounds can be con-
trolled with enzyme type (laccase, tyrosinase) as well as with the sub-
strate concentration (e.g. arabinoxylan) and can lead to improved bread
quality. Such cross-linkings were found to strengthen the gluten net-
work in bread, thereby increasing the effective gluten concentration
(Selinheimo, Autio, Kruus, & Buchert, 2007).

There are other foods where, for example, a combination of in-
gredients affects covalent modification, such as honey. Maillard reac-
tions lead to sugar-protein complexes that also contain and likely co-
induce covalently protein-bound polyphenol-quinones (Brudzynski,
Sjaarda, & Maldonado-Alvarez, 2013). There are also reports on mod-
ulating or preventing Maillard reactions during thermal processing of
milk by covalently blocking protein binding sites with polyphenols
(Troise et al., 2014).

A similar competition for binding sites as in the Maillard reaction
with reducing sugars arises when oxidized polyphenols, organosulphur
compounds and proteins are present together. o-Quinones can not only
react with proteins or with themselves but can also covalently bind
organosulphur compounds (Negishi et al., 2002). It gets even more
complex when the interaction of flavour molecules
(Anantharamkrishnan & Reineccius, 2020) or secondary lipid oxidation
compounds (aldehydes) with proteins (Meissner, Keppler, Stöckmann,
Schrader, & Schwarz, 2019) are also considered, because these also
compete for free amino and thiol groups.

Blocking of protein binding sites with reducing sugars or with al-
dehydes is a possible route to prevent interactions with polyphenols or
organosulphur compounds. Another way to prevent or even reverse the
covalent polyphenol-protein interaction is the presence of reducing
agents such as ascorbic acid in foods (Landi, Degl'Innocenti,
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Guglielminetti, & Guidi, 2013) (Table 4). Those reducing agents,
however, are not expected to affect the interaction of organosulphur
compounds (e.g. allicin, DADS) with proteins.

Thus, one problem in predicting the outcome of modifications is the
complexity and rich composition of the matrices due to the presence of
several different protein and plant compound classes (ingredients), all
of which behave differently.

5.2. Effect of food processing on modifications

The interaction of ingredients is strongly influenced by the proces-
sing of food. The choice of processing parameters therefore makes it
possible to control the degree of protein modification by covalent in-
teraction within certain limits. The more complex the food matrix and
the processes, the more difficult it is to trace individual reactions and
therefore to predict functionality changes. Increased temperatures, as
they occur during roasting or cooking, can inactivate PPO and thus
inhibit enzymatic browning (Iqbal et al., 2018), but they can also de-
grade polyphenols to quinones via autoxidation in liquid solution
(Wang, Zhou, & Jiang, 2008). For example the preparation of tradi-
tional Karak Chai tea entails prolonged heating of milk and tea-poly-
phenols, which probably promotes covalent interactions.

Organosulphur compounds also degrade during heat treatment, but
many of the resulting reaction products of polysulphides can still in-
teract with amino acid residues (Rao et al., 2015). Processes that de-
nature or hydrolyse proteins often increase the number of available
protein binding sites and their accessibility for covalent (but also non-
covalent) modifications. On the other hand, process-induced protein
aggregation can in turn impair the accessibility of binding sites.

It is also worthwhile studying traditional techniques of food pro-
cessing with respect to covalent protein modifications to better un-
derstand their effects. Processes that entail prolonged storage or in-
cubation and drying in the presence of oxygen and/or PPO result in
high polyphenol oxidation (e.g. fermentation of tea, sun drying of to-
bacco) (Bittner, 2006). In addition, also high humidity processing (such
as fermentation) can accelerate polyphenol oxidation and thus protein
modifications (see the section on colour formation). Specifically, the
combination of fermentation and roasting (e.g. of cocoa (Rawel et al.,
2019) or coffee beans (Ali et al., 2012)) not only induces Maillard re-
actions but almost certainly also quinone-amino acid interactions. The
formed complexes are also part of the development of aroma and tex-
ture appreciated by consumers (Rawel et al., 2019). Other traditional
techniques involving the processing/fermentation of soy, such as the
production of tempeh, may involve protein modifications with both
sulphur compounds and oxidized polyphenols. Soya contains not only a
high protein concentration but also both classes of substances. To the
best of our knowledge, there are few studies on this topic. Maillard
reactions, organo sulphur-compounds and polyphenol-quinones mostly
compete for the same binding sites on the protein. This results also in
interesting possibilities for targeted protein modifications (see the
previous section and the section on mouth feel and food texture).

There is a lot of research interest nowadays in increasing the utili-
sation of by-products that are currently not used for human consump-
tion. Typical examples of those products are press cakes from rapeseed
and sunflower. One of the main hurdles is that the food industry is not
well suited to deal with product streams containing high quantities of
polyphenols. As described above, those product streams are struggling
with dark colour and bitter off-taste. In addition, protein modifications
cause undesirable changes in solubility. Therefore, most strategies to
incease the utilisation of those by-product streams focus on removal of
polyphenols or organosulphur compounds. Nevertheless, those by-
product streams have great potential, and this potential can even be
enhanced by controlling protein-polyphenol interactions to induce
targeted functionalization of proteins during extraction or processing
(Troise et al., 2014). Clearly, such an approach will strongly benefit
from improved scientific insights into reactions and interactions

between proteins and other plant molecules. This approach aligns with
trends to focus more on functional fractions rather than highly pure
protein isolates (Karefyllakis et al., 2019b; Karefyllakis, Octaviana, van
der Goot, & Nikiforidis, 2019a). Such an approach will contribute to a
more efficient use of plant raw materials.

6. Future outlook

In this paper, we have presented an overview of covalent interac-
tions between proteins and plant-based ingredients, especially poly-
phenols and organosulphur components, and routes to induce or pre-
vent these interactions are summarized in Table 4. It is well known that
a rich variety of reactions can occur that influence the functionality of
both the proteins and the ingredients. Most of those interactions and
reactions are studied in model systems, but interest in studying those
effects in more complex mixtures or even real food products and raw
materials is increasing. Most of the research on polyphenol-protein
interactions is on preventing those interactions, for example, by re-
moving them from raw material streams that contain both proteins and
polyphenols. However, controlling the interactions can be a route to
tune the functionalities and possibly enhance the potential of certain
underutilized products streams. In the future, more research on the
effects of the food matrix and different processes on protein-plant
compound interactions are needed for the targeted functionalization of
food proteins. Only a holistic approach that links observed functional-
ities with a broad range of molecular effects will help to elucidate the
important parameters and their interaction for the induction of certain
functionalities, even in complex processes and matrices.
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