
Science of the Total Environment 731 (2020) 139199

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Assessing seasonal nitrogen export to large tropical lakes
Goraw Goshu a,b,⁎, M. Strokal c, C. Kroeze c, A.A. Koelmans a, J.J.M. de Klein a

a Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University &Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
b College of Agriculture and Environmental Sciences, Blue Nile Water Institute, Bahir Dar University, P.O. Box 1701, Bahir Dar, Ethiopia
c Water Systems and Global Change Group, Department of Environmental Sciences, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• We integrated existing models to cap-
ture seasonality in river export of nitro-
gen to tropical lakes.

• The model was applied to a representa-
tive tropical lake: Lake Tana.

• We modelled nutrient exports to Lake
Tana, showing good agreement with
measured loads.

• We found that river export of nitrogen
to Lake Tana is highest in rainy and low-
est in dry seasons.

• We found that animal manure is the
dominant source of nitrogen in rivers
in all seasons.
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Rivers are exporting increasing amounts of nitrogen (N) to lakes, which is leading to eutrophication. However,
the seasonality apparent in nutrient loading, especially in tropical areas, is thus far only partially understood.
This study aims to better understand the seasonality and the sources of dissolved inorganic nitrogen (DIN) inputs
from sub-basins to tropical lakes. We integrated existing approaches into a seasonalmodel that accounts for sea-
sonality in human activities, meteorology and hydrology, and we applied the model to the sub-basins of a repre-
sentative tropical lake: Lake Tana, Ethiopia. The model quantifies the river export of DIN by season, source and
sub-basin and also accounts for open defecation to land as a diffuse source of N in rivers. Seasonality parameters
were calibrated, andmodel outputswere validated againstmeasured nitrogen loads in themain river outlets. The
calibrated model showed good agreement with the measured nitrogen loads at the outflow of the main rivers.
The model distinguishes four seasons: rainy (July–September), post-rainy (October–December), dry (January–
March) and pre-rainy (April–June). The river export of DIN to Lake Tana was about 9 kton in 2017 and showed
spatial and temporal variability: It was highest in the rainy and lowest in the dry seasons. Diffuse sources from
agriculture were important contributors of DIN to rivers in 2017, and animal manure was the dominant source
in all seasons. Our seasonal sub-basins and rivers model provides opportunities to identify the main nutrient
sources to the lake and to formulate effective water quality management options. An example is nutrient appli-
cation level that correspond to the crop needs in the sub-basins. Furthermore, our model can be used to analyse
future trends and serves as an example for other large tropical lakes experiencing eutrophication.
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1. Introduction
Eutrophication occurs in many aquatic systems worldwide, and the
problems associated with it such as blooms of harmful algae often
have negative consequences for the health of humans and ecosystems
alike. Eutrophication in lakes is caused by excessive loads of nutrients
delivered by rivers (Hecky, 1993; Lürling and van Oosterhout, 2013).
Nitrogen (N) is one of the nutrients driving eutrophication. Nitrogen
in rivers can result from diffuse and point sources. Diffuse sources in-
clude the use of animal manure, human waste (numerous locations of
open defecation in the study basin) and synthetic fertilisers on land; bi-
ological N2 fixation; atmospheric N deposition and erosion of organic N
in the top soil. Point sources of N in rivers often include effluents from
sewage systems via pipes. In some regions in the world, direct dis-
charges of animal manure to rivers can also be a point source of water
pollution (Strokal et al., 2016).

In tropical lakes, N is often the limiting element, thereby governing
primary production of phytoplankton (Conley et al., 2009; Jeppesen
et al., 2005; Lewis Jr, 1996; Wondie et al., 2007). This is also the case
for Lake Tana as the measured ratio DIN:DIP is around eight in most
cases. Therefore, we can conclude it is N-limited (Ptacnik et al., 2010).
Lake Tana is a representative example of a eutrophicated lake, located
in the tropical environment in Ethiopia. Lake Tana is part of the Blue
Nile basin and is an important source of water for human activities. Ag-
riculture has been developing rapidly over recent years in Ethiopia and
makes amajor contribution to the local economy. Socioeconomic devel-
opment has stimulated agriculture in the Lake Tana basin, which has
thus been identified as amajor economic corridor by the Ethiopian gov-
ernment (Stave et al., 2017). This growth of agriculture has sparked the
release of nutrients to surface and ground waters, leading to severe
water pollution (Goshu and Aynalem, 2017; Goshu et al., 2010;
Selassie, 2017). Low sanitation conditions, high population pressure
and degradation of land in the Lake Tana basin (Goshu and Aynalem,
2017; Yitaferu, 2007) further jeopardise surface water quality in the
Lake Tana basin.

Nutrient loading of rivers and lakes is a seasonal event specifically in
countries with a highly variable precipitation. Resulting eutrophication
effects importantly depend on seasonal cycles of N. Thus, a better quan-
tification of the seasonality in N export to the lake is essential to under-
stand and manage the timing and impact of eutrophication. Another
important aspect is the seasonality of human activities (e.g., crop plant-
ing periods) and climate (e.g., temperature and hydrology) that influ-
ence N export to the lake. Furthermore, for modelling shifts in lake
ecosystems, a seasonal N loading has added value compared to an aver-
age annual N loading, as it better reflects the seasonality in the effects
and the feed-backs (Janssen et al., 2019).

However, the seasonal river export of N in tropical lakes, such as
Lake Tana, is still not well understood. This holds especially for the sea-
sonal river export of N by source taking into account spatial variability
(e.g., sub-basins). This hampers the formulation of effective manage-
ment options (deKlein andKoelmans, 2011). Control and earlywarning
systems related to eutrophication need source-, sub-basin– and season-
specific data on N loads from sub-basins to rivers and lakes. Such infor-
mation (monitoring data on N loads) is limited for large tropical lakes
such as Lake Tana, especially for ungauged sub-basins. Some studies ob-
served concentrations of N in rivers draining into Lake Tana (Goshu
et al., 2017; Wondie et al., 2007), but they focused on a few rivers
only and did not provide a systematic overview of N loadings into the
lake. They did not address the sources of N in the lake by season. There-
fore, the seasonality of eutrophication in the Lake Tana basin remains
unknown.

There is a need for modelling tools to quantify the seasonal river ex-
port of N to lakes taking into account the seasonality in human activities
on the land, climate, hydrology and their spatial variability. Moreover,
the models should be able to attribute the sources of N on the scale of
sub-basins. Such modelling tools hardly exist for drainage areas of
lakes. Different models exist and have been applied to different basins
in the world to quantify river export of nutrients (Douglas-Mankin
et al., 2010; Schwarz et al., 2006; Mayorga et al., 2010). However,
those models are often coarse for lakes and most of them are annual.
Others are more detailed, however require a lot of input data implying
that they cannot be used in data-poor regions. There are two exceptions.
First, a sub-basin model has recently been developed (Strokal et al.,
2016) and successfully applied to a few lakes in China (Yang et al.,
2019; Li et al., 2019; Wang et al., 2019). This MARINA model (Model
to Assess River Inputs of Nutrients to lAkes) considers the spatial vari-
ability in human activities and hydrology (sub-basins) for river export
of nutrients to lakes. However, this model is annual and does not con-
sider the seasonality. Second, a seasonal modelling approach exists for
global rivers: Global NEWS-DIN (Nutrient Export from WaterSheds,
McCrackin et al., 2014). This modelling approach is for large basins,
however, without considering the spatial variability among basins.

The aim of this study is to assess the seasonality and sources of dis-
solved inorganic N (DIN) from sub-basins to tropical lakes using Lake
Tana as a case study. We focus on the river export of DIN in a spatially
explicit manner, by merging the sub-basin scale approach of Strokal
et al. (2016) with the seasonal approach of McCrackin et al. (2014).
This results in a seasonal model for sub-basins and rivers discharging
to tropical lakes such as lake Tana. We implement the seasonal model
to examine N exports in Lake Tana sub-basins and we validate the re-
sults with measured data in the same area.

2. Methodology

2.1. Study area

The Tana basin has a total drainage area of 16,500 km2 (Fig. 1). More
than six medium- to large-sized tributary rivers and N40 ephemeral
streams drain into Lake Tana. Among the rivers, the Gilgel Abay,
Dirma, Gumara, Gelda, Rib andMegech rivers contribute N90% of the in-
flow to the lake (Sirak, 2008). Lake Tana is the source of the Blue Nile,
which is the only surface outflow. Lake Tana is a shallow lake, with a
maximum depth of 14 m and mean depth of 8 m. This tropical lake is
non-stratifying with a mean elevation of 1800 m above sea level. The
amount of rainfall is at its maximum during July and August, when it
reaches 250–330 mm per month. Mean annual rainfall is nearly
1280 mm (Abebe and Minale, 2017). The rainy season (July–Septem-
ber) receives about two-thirds of the annual rainfall, while the dry sea-
son receives 2%; the pre-rainy season (April–June) receives 25% and the
post-rainy season 8% of annual rainfall. The average seasonal air tem-
perature reaches its maximum of 21.1 °C in the pre-rainy season and
its minimum (18.4 °C) in the rainy season, and it shows a large diurnal
but small seasonal change.

Lake Tana is the largest lake in Ethiopia, accounting for 50% of the
fresh-water resources of the country (Vijverberg et al., 2009). It has a
surface area of 3111 km2, 28.4 km3 in volume and a maximum length
of 90 km and width of 65 km. There are four administrative zones and
eight districts in the Lake Tana basin. Bahir Dar city is a state capital.
The population of the basin was projected to be 4.5 million in 2015
(CSA, 2007), with a population density of 228 persons per km2 in
2007 (Anteneh, 2017), and 70% of the basin is agricultural land
(Abebe and Minale, 2017).

In this study,we distinguished 20 sub-basins draining into Lake Tana
(Fig. 1).

2.2. Model description

2.2.1. General approach
We developed a seasonal sub-basins and rivers model, setup for the

year 2017 by combining two existing modelling approaches with mod-
ifications for our study area. The focus of the approach is the sub-basins
draining to a lake, without including the lake itself (Fig. 2). The two



Fig. 1. Ethiopia and the Amhara region (upper left); the Amhara region, the Lake Tana basin and Lake Tana (upper right); the drainage area of the Lake Tana basin and the sub-basins
draining into the lake (lower panel).

3G. Goshu et al. / Science of the Total Environment 731 (2020) 139199
existing modelling approaches were the sub-basin scale modelling ap-
proach of the MARINA model (Strokal et al., 2016; Li et al., 2019; Yang
et al., 2019; Wang et al., 2019) and the seasonal modelling approach
of the NEWS-DIN(S) model (McCrackin et al., 2014). The MARINA
model operates at the sub-basin scale on an annual basis for rivers
exporting to lakes, while the seasonal NEWS-DIN(S) model operates
at the basin scale for large rivers in the world. These models take a
mass-balance approach to quantify nutrient inputs from land to rivers.
This includes nutrient inputs to agricultural land (e.g., animal manure,
synthetic fertilisers, deposition, fixation) and export from land via
crop harvesting and grazing. The net nutrient inputs in soils (inputs
minus export) are corrected for nutrient retentions and losses in soils,
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Fig. 2. Conceptual diagram of the seasonal version of theMARINA-model for river export of dissolved inorganic nitrogen from sub-basins discharging into large tropical lakes such as Lake
Tana. The seasonal version of the MARINA-model quantifies the river export of dissolved inorganic nitrogen to Lake Tana by season, source and sub-basin for the year 2017. Details are
presented in Section 2 and Appendix 3.
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and the remainder enters rivers. Some nutrients enter rivers from sew-
age systems (e.g. from cities) and from natural areas. The humanwaste
not collected in septic tanks and pit latrines but defecated to land was
defined as open defecation and we categorized it as a diffuse source of
nutrients. Human faeces and urine are defecated at many locations to
the soil and eventually leachingN to surfacewaters in a diffuseway. Nu-
trients in rivers can be either lost or retained before reaching the river
mouth. Retentions and losses of nutrients in rivers are estimated as
functions of temperature, associated processes (e.g., denitrification),
river damming and water consumption (Fig. 2).

In our study, we added seasonality into the sub-basin scale MARINA
model based on the approach of McCrackin et al. (2014), resulting in a
seasonal version of the MARINA model for tropical lakes such as Lake
Tana. We made the following main modifications for our study area.
First, we defined seasons according to the rainfall pattern
(Table A.2.1), which differs from the approach of McCrackin et al.
(2014) who based it on temperature. Second, we used mainly local
sources of data for model inputs to represent the local situations of
the Lake Tana basin. Third, we added open defecation as a new source
of DIN pollution in rivers of Lake Tana. This is a diffuse source, because
people defecate their waste on land and not directly into water. Finally,
we recalibrated the model parameters influencing seasonality in the
Lake Tana basin. Below, we define seasons (Section 2.2.2) and explain
the seasonal model (Section 2.2.3 and A.3).

2.2.2. Definition of seasons
In our study, we defined four seasons in this climate region by rain-

fall rather than by temperature. Based on the rainfall pattern, our de-
fined seasons were pre-rainy: April, May and June (AMJ), rainy: July,
August and September (JAS), post-rainy: October, November and De-
cember (OND) and dry: January, February and March (JFM).

2.2.3. Modelling seasonal DIN export
Our seasonal model estimates river export of DIN by season from

sub-basins in three steps. First, inputs of N from diffuse and point
sources to land and rivers were estimated. Second, the river export of
DIN to the outlet of each sub-basin was estimated. Finally, the river ex-
port of DIN from sub-basin outlets to river mouths (the point at which
DIN was discharged into Lake Tana) was estimated by quantifying re-
tentions and losses of DIN within the river network.
The total load of DIN exported to the lake from each source was de-
termined per sub-basin and per season. The overall equation to quantify
annual river export over the four seasons to the rivermouthMDIN. y. j (kg
y−1) by source y from sub-basin j was as follows:

MDIN:y: j ¼
X

MDIN:y: j:S ð1Þ

whereMDIN. y. j. S is the seasonal river export of DIN to the rivermouth of
Lake Tana by source y from sub-basin j in season S (kg S−1).

MDIN. y. j. S was estimated following the approach of the MARINA
model (Strokal et al., 2016), but for seasons (modified from McCrackin
et al., 2014) as follows:

MDIN:y: j:S ¼ RSDIN:y: j:S � FEriv:DIN:outlet: j:S � FEriv:DIN:mouth: j:S ð2Þ

where RSDIN. y. j. S was the input of DIN to rivers in sub-basin j from
source y in season S (kg S−1). The DIN in rivers results from both diffuse
and point sources, the former of which include DIN that results from N
inputs to land (see steps 1 and 2 for details below).

FEriv. DIN. outlet. j. s was the fraction of RSDIN. y. j. S that was exported to
the outlet of sub-basin j from source y in season S (0–1).

FEriv. DIN. mouth. j. S was the fraction of RSDINyj. S · FEriv. DIN. outlet. j. S that
was exported to the river mouth of Lake Tana from source y and sub-
basin j in season S (0–1, see details below).

We express the river export of DIN in terms of load to the Lake
(kg S−1) or yield (kg km−2 of basin area S−1).

Step 1: Quantifying N inputs to land

Nitrogen inputs to land include the use of animal manure, synthetic
fertilisers, biological N2 fixation and atmospheric N deposition on agri-
cultural and natural areas and human waste (faeces + urine). Human
waste is not used as fertiliser in the basin. We first estimated inputs of
N to land from diffuse sources for 2017. We assumed that human
waste (human faeces and urine) that was collected in pit latrines and
septic tanks does not reach the surface waters (Van Drecht et al.,
2009). To estimate N inputs to land, seasonal data were needed for
the following aspects: hydrology, socio-economic development (popu-
lation density, gross domestic product and sewage connection), sub-
basin characteristics (land use and slope), agricultural inputs (fertiliser
use and manure excretion, crops, livestock, etc.) and meteorological
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data (rainfall and temperature).Mostmodel inputswere collected from
local information, such as the Ethiopia Central Statistical Authority,
Ethiopia Ministry of Water, Electric and Irrigation, Amhara Region Bu-
reaus of Agriculture andWater, Amhara Design and Supervision Enter-
prise, Blue NileWater Institute and Bahir Dar University and from zonal
and districts Agricultural Offices in the Lake Tana basin. In the absence of
locally available data, data for the Nile basin were used from the Global
NEWS-2model (Mayorga et al., 2010). To calculate N inputs to land and
rivers at the sub-basin scale by season, model inputs were needed for
sub-basins and seasons for 2017. For this, we used an area-weighted
method to aggregate local (often district-level) data into the sub-basin
scale data.

Annual values for N inputs to land for 2017 were available at the in-
stitutions listed above. To allocate annual N inputs to seasons, we took
into account crop phenology and climate data (rainfall and tempera-
ture) in the natural and agriculture systems (Tables A.4.5 and A.4.7).
We allocated to seasons the following inputs for 2017: synthetic
fertilisers, atmospheric N deposition and biological N2 fixation. We as-
sumed that N inputs to land from human waste (open defecation) and
animal manure was the same among the four seasons (Appendices
A.4.1 and A.4.2).

The seasonal distribution of the use of synthetic fertiliserswas consid-
ered according to the approach of McCrackin et al. (2014). We took into
account the planting area, application rate and application pattern of
representative crops (see Appendix A.4 and Table A.5).

Annual values for atmospheric N deposition on agricultural and natu-
ral areas were available from the Global NEWS-2 Model. The annual
values are distributed over seasons according to seasonal proportions
of rainfall (McCrackin et al., 2014) (see Tables A.4.5 and A.2.1).

Total seasonal biological N2 fixation was calculated by summing the
seasonal biological N2 fixation by natural vegetation and seasonal fixa-
tion by agricultural area (see Eqs. (A11)–(A15)). The seasonal biological
N2 fixation by natural vegetation was calculated from the annual biolog-
ical N2 fixation by natural vegetation with a formula that defines the re-
lationship between air temperature and nitrogenase activity ((Hijmans
et al., 2005) see Eq. (A.16)). To estimate annual biological N2 fixation in
natural vegetation, we followed the spatial distribution of non-
agricultural land use forms, and only fixation rates of tree cover areas,
shrubs cover areas, wetland and lichen/mosses/spare vegetation were
considered. The fixation rates of only these land use forms were taken
from Global NEWS-2 data (Mayorga et al., 2010).

The seasonal biological N2 fixation in agricultural areawas the sumof
biological N2 fixation by non-legumes, rice and legumes. For non-
symbiotic biological N2 fixation (non-legumes) and grassland, a fixation
rate of 5 kg ha−1 y−1, and for rice fields, a rate of 25 kg ha−1 y−1, as pro-
posed by Smil (1999), was assumed. The seasonal fixation rates were
estimated from annual rates by quantifying the annual rates as a func-
tion of air temperature based on approach of Hijmans et al. (2005).
The details can be found in Annex A.4. We calculated N2 fixation by le-
gumes as N in biomass harvested multiplied by two (for above- and
below-ground biomass), following the approach of Bouwman et al.
(2009). The total biological fixation of N2 thus depends on the total pro-
duction of legumes, as well as on the areas of grassland and cropland.
The seasonal fixation rate was computed as a function of average sea-
sonal temperature standardised by the nitrogenase activity.

The rates were calculated based on crop phenology (Houlton et al.,
2008; Sacks et al., 2010) and local information. In addition to local infor-
mation on crop calendar, the FAO crop data base (http://www.fao.org/
agriculture/seed/cropcalendar/cropcal.do) was consulted to determine
the planting and harvesting times of crops. Fixation by an individual
cropwas thus considered only for the period between planting and har-
vesting. To estimate biological N2 fixation by crops, representative crop
phenology was taken into account. We distinguished among rice, le-
gume andnon-legumegrowing areas. Since grasslandwas not fertilised,
it was not part of the agricultural area in our model. We used crop pro-
duction data compiled at a province level (CSA, 2016) and
disaggregated into sub-basins based on an area-weighted method. The
data contains crop type, number of holders, area covered, production
and crop yield.

Step 2: Quantifying DIN inputs to rivers from diffuse and point
sources (RSDIN. y. j. S)

RSDIN. y. j. S was the sum of diffuse (RSdifDIN. y. j. S) and point sources
(RSpntDIN. y. j. S) in (kg S−1).

◦ Diffuse sources

RSdifDIN. y. j. S for agricultural land was estimated following the ap-
proach of the MARINA model (Strokal et al., 2016), but for seasons, as
follows:

RSdifDIN:y: j:S ¼ WSdifN:y: j:S � GN: j:S � FEWS:DIN: j:S ð3Þ

where WSdifN.y.j,S was N input to the land from diffuse source y in sub-
basin j and season S (kg S−1). Diffuse sources are specified in step 1; see
step 1 how diffuse sources are derived for seasons and sub-basins.

GN. j. S was the fraction of N that remains in soils after crop uptake
and animal grazing in sub-basin j and season S (0–1). This fraction
was calculated following the MARINA model approach (Strokal et al.,
2016).We use this fraction to estimate the amount of N that reaches riv-
ers after correcting for N losses and retentions in the soils
(e.g., denitrification losses as a function of runoff and temperature).

FEWS.DIN.j.S was the export fraction of N from diffuse sources entering
the surface water as DIN in sub-basin j and season S (0–1). We followed
the seasonal approach ofMcCrackin et al. (2014) to quantify FEws. DIN. j. S

by season. This approach includes temperature (see Eq. (4)) to account
for the effect of temperature on N retention and losses from the soil
(e.g., denitrification).

FEws. DIN. j. S was estimated as follows (McCrackin et al., 2014):

FEws:DIN: j:S ¼ FEro: j:S � 1−Ftemp: j:S
� � ð4Þ

where FEro.j.S was the fraction of N entering the surface water as DIN in
sub-basin j and season S, taking into account the influence of the surface
runoff (0–1). FEro.j.S was calculated as a function of seasonal natural run-
off from land to streams in sub-basin j and season S (0–1) (Eq. (5));
Ftemp.j.S was the fraction of N retention in soils of sub-basin j and season
S due to effects of temperature (0–1).

Ftemp.j.S was estimated using Eq. (6), as follows (McCrackin et al.,
2014):

FEro: j:S ¼ b � Rnat j:S � 4
� �a ð5Þ

Ftemp ¼ d T j;S=100
� �c ð6Þ

where Rnatj.S was the seasonal runoff from land to streams in sub-basin
j and season S (m S−1). The natural runoff was multiplied by four, ac-
cording toMcCrackin et al. (2014), to ensure that FEro. j. Swas consistent
with the annual fraction.

The a and b parameters (Eq. (5)) are used to determine the function
of runoff (McCrackin et al., 2014). These parameters are recalibrated in
for Lake Tana, because seasonality in our study area is driven more by
rainfall rather than by temperature, as in the approach of McCrackin
et al. (2014).

Tj.S was the temperature for the sub-basin j in season S (°C), and the c
and d constants (Eq. (6)) reflect the function of air temperature
(McCrackin et al., 2014).

In Eq. (6), Tj, S is divided by 100 to fit the order of magnitude with
Rnatj. S (McCrackin et al., 2014). Tj, S for each sub-basin was calculated
by taking the average observed temperature of the respective three
months in the Lake Tana basin.

http://www.fao.org/agriculture/seed/cropcalendar/cropcal.do
http://www.fao.org/agriculture/seed/cropcalendar/cropcal.do
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◦ Point sources

The point sources of DIN in rivers (RSpntDIN. y. j. s, kg S−1) include ef-
fluents from sewage systems. RSpntDIN. y. j. s was calculated based on
Strokal et al. (2016), but for seasons, as follows:

RSpntDIN:y: j:S ¼ RSpntN:y: j:S � FEpntDIN:y: j ð7Þ

where RSpntDIN.y.j,S was DIN inputs to rivers from point source y in sub-
basin j and season S (kg S−1).

RSpntN. y. j. S was the N input from point source y to rivers of sub-
basin j in season S (kg S−1).

FEpntDIN.y.j was the export fraction of N from point source y in sub-
basin j that was exported to rivers as DIN (0–1). FEpntDIN. y. j was esti-
mated using the approach of the MARINA model (Strokal et al., 2016).

In our model, RSpntN. y. j. S was zero for 2017, as waste-water treat-
ment plants and other point sources hardly exist in the Lake Tana basin.

Step 3: Quantifying retentions and losses of DIN within the river
network

FEriv. DIN. outlet. j. S accounts for retentions and losses of DINwithin the
river network of sub-basins. This fraction was estimated based on
Strokal et al. (2016) for sub-basins and on McCrackin et al. (2014) for
seasons:

FEriv:DIN:outlet: j:S ¼ 1−DDIN: j:S
� � � 1−LDIN: j:S

� � � 1−FQremj:S
� � ð8Þ

where DDIN.j.S is the fraction of DIN retained in dammed reservoirs in
sub-basin j and season S (0–1), LDIN. j. S the fraction of DIN losses by de-
nitrification in the river network of sub-basin j and season S (0–1), and
FQremj. S the fraction of nutrients (generic for all nutrients) removed by
water consumption in sub-basin j and season S (0–1).

The annual DDIN. j. i was estimated following Strokal et al. (2016).We
assumed the same fractions for all seasons. DDIN. j. i was calculated as fol-
lows:

DDIN: j:i ¼ 0:8845� hj:i

ΔτR: j:i

� �−0:3677

ð9Þ

where hi was the depth of reservoir i in sub-basin j (m), ΔτR.i was the
water residence time for reservoir i in sub-basin j (year) (data from
Birhanu et al., 2014), and LDIN. j. S accounts for effects of temperature
andwas estimated using the approach ofMcCrackin et al. (2014), as fol-
lows:

LDIN: j:S ¼ 0:0605� ln Areaj
� �

−0:0443
� � � Q10

Tj:S−Taverage: j
� �

10 ð10Þ

where Areaj is the total area of sub-basin j (km2) andQ10 the air temper-
ature coefficient that indicates the rate of changes in denitrification as a
consequence of increasing the air temperature by 10 °C. The value of Q10

is set to 2.54 in this study (Mineau et al., 2015). Tj.S is the air tempera-
ture for season S in sub-basin j (°C) and Taverage.j the annual average
temperature for sub-basin j (°C). The maximum value of LDIN.j.S is set
at 0.65 to avoid extrapolation error (McCrackin et al., 2014).

FQremj.S is calculated following the approach of Strokal et al. (2016)
and McCrackin et al. (2014), as follows:

FQremj ¼ 1−
Qact: j:S

Qnat: j:S
ð11Þ

where Qact.j.S is the actual water discharge at the outlet of sub-basin j
after water consumption in season S (km3 S−1). Qact.j.S was collected
from the Ethiopian Ministry of Water, Electric and Irrigation for the
gauged sub-basins (daily data). The area of the gauged sub-basins
comprises about 75% of the total Tana basin. Actual water discharge at
the outlets of ungauged sub-basins, Qact.j.S, were estimated by taking
the actual water discharges of the adjacent or nearest (proximity analy-
sis) gauged station and transferring this actual discharge to a new syn-
thetic discharge for the ungauged sub-basin using the area and rainfall
of ungauged catchments based on the approach of (Yarahmadi, 2003)
(see Appendix A5 for more detail). Qnat.j.S is the natural water discharge
at the outlet of sub-basin j before water consumption in season S
(km3 S−1). Qnat.j.S is estimated by adding water consumption to Qact.j.S

for each sub-basin and season. We accounted for water consumption
for irrigation, animal watering, and surface water supply. Industries
and floriculture farms in the Lake Tana basin mainly use water either
from deep wells and/or Lake Tana or by abstracting from rivers not in-
cluded in the basin. Hence, water consumption by industries and flori-
culture farms is not accounted for in our model. We obtained the
annual water consumption from local data (see Appendix A.4 for de-
tails). Seasonal water consumption is the distribution of annual water
consumption based on the proportion and use of water in agriculture,
industry and residents in seasons.

FEriv.DIN.mouth.j.S accounts for DIN retention and loss during transport
from the outlets towards the river mouth (0–1, see Eq. (8)). FEriv.DIN.
mouth.j.S is estimated as in Strokal et al. (2016). In our seasonal model,
the distance between the hydrometric station (outlets) and the river
mouths is reasonably short. Therefore, we assumed that all the DIN
that reached the outlet will reach the river mouth, and FEriv.DIN.mouth.j.S

was thus assumed to be 1 in our seasonal model.

2.3. Monitoring water quality to estimate actual DIN loads

Water samples were collected on a monthly basis in 2017 in 500 ml
polyethylene bottles andwere kept in ice and transported to the labora-
tory for immediate analysis (APHA-AWWA-WPCF, 1981). Chemical
analysis of ammonium (NH4

+ - N), nitrate (NO3
− - N) and nitrite (NO2

−

- N) was done with colorimetry in accordance with the manufacturer
instruction (Palintest transmittance – display photometer 8000). The
DIN concentration (g m−3) was calculated by summing NH4

+ - N
(g m−3), NO3

− - N (g m−3) and NO2
− - N (g m−3). The DIN load to the

lake (g s−1) is a product of DIN concentration (g m−3) and discharge
(m3 s−1). Based on our data set, because discharge and concentration
are independent and observed regularly, the average load to the lake
can be calculated bymultiplying the average discharge and the average
concentration, and we thus preferred the straight-forward method (De
Vries and Klavers, 1994), as follows:

L ¼ ∑m
i¼1Qi

m
�∑

n
j¼1Cj
n

ð12Þ

where

L is the load of DIN (g s−1).
Qi is the discharge at the gauging stations at time i (m3 s−1),
Cj is the concentration at different time j (g m−3),
m is the number of discharge measurements,
n is the number of concentration measurements.

2.4. Model calibration and validation

We modified the modelling approach of McCrackin et al. (2014) by
re-calibrating the ‘a’ and ‘b’model parameters that determine the runoff
function (Table A.6.1 and Eq. (3) above). We found the optimum values
for parameters a and b that resulted in the minimum difference be-
tweenmodelled and observed values. To calibrate and validate the inte-
gratedmodel, we used different data sets of observed andmodelled DIN
loads and yields to the lake. Formodel calibration,we used the values of
seasonal observed andmodelled DIN at or near themouths of the Gilgel
Abay, Gelda, Gumara, Rib and Dirma rivers, all of which had DIN ob-
served at or near the river mouth. We used seasonal DIN load and
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yield data of the Arno-Garno, Megech and Infranz rivers for model vali-
dation (see Fig. 1a-c for the location of the rivers and Appendix A.6.3 for
observation data). We converted DIN to kg km−2 S−1 by dividing the
observed tons of S−1 of a sub-basin by its drainage area.

We assessed the model performance using R2
P (the Pearson's coeffi-

cient of determination, 0–1), R2
NSE (the Nash-Sutcliffe efficiency, −∞-

1) (Nash and Sutcliffe, 1970) and RSR, N0, according to Moriasi et al.
(2007). R2

P shows the proportion of the variance in the observed data
that is predictable from the modelled data, with higher values
representing better performance. R2

NSE evaluates the fitness of the ob-
served and modelled data with the 1:1 line, with higher values
representing better performance. RSR is the ratio of root mean square
error and standard deviation, with values close to zero showing very
good model performance.

3. Results

3.1. Model calibration and validation

Model calibration results showed a good performance, that is, a high
agreement between observed and modelled values of DIN load to the
lake in ton S−1 (R2P = 0.90; R2

NSE = 0.88; RSR = 0.31) and DIN yield in
ton km−2 S−1 (R2P = 0.82; R2

NSE = 0.80; RSR = 0.50; Fig. 3A, B).
For validation themodel also performedwell against measured data

for DIN loadings with R2
P = 0.88, R2

NSE = 0.81 and RSR = 0.41 (Fig. 3C).
As for DIN yields at the river mouth with observed values, goodness of
fit metrics were R2

P = 0.86, R2
NSE = 0.69 and RSR = 0.50 (Fig. 3D). The

total modelled DIN loading to the lake per season shows a good
Fig. 3.Model calibration (panels A, B) and validation (panels C, D). Graphs showmodelled versu
season. R2

P, R2
NSE and RSR are the Pearson's coefficient of determination (0–1), the Nash-Sutcliffe

respectively.
agreement with the observed loads to the lake (Fig. 3). The
abovementioned indicators imply that model performance can be con-
sidered good (Moriasi et al., 2007).
3.2. Seasonal nitrogen inputs to land in the Lake Tana basin

The total annual N inputs to land in Lake Tana basin were esti-
mated at 129 kton y−1 in 2017 (Fig. 4). The N inputs to land
(kg km−2 S−1) largely varied among seasons and sub-basins. The in-
puts were higher in the rainy season and lower in the dry season. The
rainy season contributed 36% of the total annual N inputs to land, and
the contributions of the post-rainy (21%), dry (21%) and pre-rainy
(22%) seasons were lower (Fig. 6). The total annual N inputs to
land varied between 0.1 and 51 kton y−1 and between 232 and
2464 kg km−2 y−1 among sub-basins. The highest N inputs to land
were delivered by the Gilgel Abay and the lowest by the Infranz-
Bahir Dar sub-basin.

The source attribution differs slightly among the seasons. The sea-
sonal N inputs to land for 2017 result from human excreta (open defe-
cation), animal manure, synthetic fertilisers, biological N2 fixation by
crops and natural vegetation and atmospheric N deposition on agricul-
tural and natural land (Table A.4.1; Appendix A.4). Among these diffuse
sources, animal manure was the dominant contributor of N inputs to
land in all seasons because animal grazing was assumed to occur at
the same intensity in all seasons. Synthetic fertiliser was the second
dominant N input to land, but only in the rainy season because it is
only used during the rainy growing season (Table 1).
s observedDIN load (ton S−1) and DIN yield (ton km−2 S−1) from different sub-basins per
efficiency (0–1) and the root mean square error standardised by standard deviation (N0),



Fig. 4. Modelled Nitrogen (N) inputs to land by season (left) and sub-basin (right) in 2017. The left panel shows the total N inputs to land in kton y−1 for the annual and kton S−1 for
seasons. The right map shows the share of the sub-basins to the total annual N inputs in the Tana basin (% of the total inputs to land in all sub-basins). The seasons in this study are
defined based on the rainfall pattern: pre-rainy [April, May and June (AMJ)], rainy [July, August and September (JAS)], post-rainy [October, November and December (OND)] and dry
[January, February and March (JFM)]. See Fig. 1 for the location of the sub-basins.
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3.3. Seasonal river export of DIN by sub-basin and source to Lake Tana

Themodel indicated that about 9 kton of DINwas exported by rivers
to the lake in 2017 (Fig. 5). In terms of yield, this amount is 802 kg km−2

of the total drainage area of the lake y−1. The annual DIN yields from the
sub-basins ranged from 232 to 2464 kg km−2 y−1. The lowest river ex-
port of DINwas delivered by the GemeroMakesegnit and the highest by
the Gelda sub-basin.

The six major rivers, namely, the Dirma, Gilgel Abay, Gumara, Gelda,
Megech and Rib, together exported over two-thirds of total DIN to Lake
Tana (Fig. 5). In the rainy season, about one-third of this export was
from the Gilgel Abay sub-basin, 17% from the Gumara, 8% from the
Rib, 6% from the Gelda and 6% from the Dirma. Small sub-basins such
as the Infranz-Bahir Dar are estimated to export the smallest amounts
of DIN to the lake.

River export of DIN to Lake Tanawas highest in the rainy and lowest
in the dry season. The export of DIN in the rainy seasonwas estimated to
be over half of the annual export to the lake. The DIN yields exported in
the rainy season ranged from 141 to 1393 kg km−2 S−1. The lowest
amounts of DIN to the lake were exported from the Gemero-
Makesegnit and the highest amounts from the Gelda sub-basin
(Fig. 6). The Gilgel Abay sub-basin contributed 504 kg km−2 S−1. In
the rainy season, the major sources of DIN inputs to the lake were ani-
mal manure (49%), synthetic fertiliser (37%) and biological N2 fixation
Table 1
Modelled N inputs to land by season and source for the Lake Tana basin in 2017 (kg km
watershed area−2 S−1). Ranges indicate minimum and maximum values among sub-
basins.

Sources Rainy Post-rainy Dry Pre-rainy

Animal manure 201–2904 201–2904 201–2904 201–2904
Synthetic fertilisers 260–2873 0 0 0
Human waste 37–249 37–249 37–249 37–249
Biological N2 fixationa 100–334 135–237 11–162 31–181
Atmospheric N depositiona 131–196 10–24 2–6 43–77

a Over agricultural and natural land.
(6%). Atmospheric N deposition (4%) had the lowest contribution
(Fig. 5A).

The DIN load to the lake in the post-rainy season was by far lower
than the DIN load in the rainy season (Fig. 5B). The DIN load ranged
from 0.5 to 93 ton S−1 among sub-basins. Similar to the rainy season,
the highest DIN load was exported by Gilgel Abay and the lowest by
Infranz-Bahir Dar. By contrast, the highest DIN yield (53 kg km−2 S−1)
was exported by Gelda and the lowest by Gemero-Maksegnet
(5 kg km−2 S−1) (Fig. 6).

In the dry season, Bahir Dar-Infranz exported 0.27 ton of DIN, which
is much lower compared to the Gilgel Abay sub-basin (43 ton S−1). This
sub-basin exported the largest amount of DIN to the lake in the dry sea-
son (43 ton S -1). In terms of yield, the river export of DIN ranged from 6
(Infranz _Bahir Dar) to 40 (Gelda) (kg km−2 S−1) among the sub-basins
in the dry season (Fig. 6).

The pre-rainy season was the second dominant contributor to the
annual DIN load after the rainy season (Table 1). In this season, 30% of
the annual DIN load was estimated to be exported to the lake. The DIN
export ranged from5.7 to 798 ton S -1 among sub-basins. The lowest ex-
port was by theMegech-Dirma and Gilgel Abay sub-basins. Animal ma-
nure was estimated to be a dominant source of DIN in the lake (82%),
and human waste was the second dominant source of DIN, followed
by biological N2 fixation (7%) and atmospheric N deposition (3%).

4. Discussion

4.1. Strengths and weaknesses of the seasonal modelling approach

Our model was applied for 2017, which we consider to be a repre-
sentative year because we found no significant difference in rainfall
and temperature between 2017 and the long term annual average
(1952–2015) (Wilcoxon signed-ranked test, p = 0.61 for rainfall,
p = 0.18 for temperature). Furthermore, fertiliser application
amounts (the main contributor of DIN) in the basin are fairly con-
stant over the years as they are based on fixed rates (blanket recom-
mendations). From this we assume that 2017 can be seen as a
representative year in terms of DIN sources. We also systematically
collected observed data for all months of the year 2017, giving us



Fig. 5. Totalmodelled annual river export of DIN by source (ton y−1, a), season (ton S−1, b) and the share of the sub-basins of the total annual river export of DIN (%, c) to Lake Tana in 2017.
See Fig. 1 for the location of the sub-basins.
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confidence in representativeness of the observed values for different
seasons. Although data were only available for one year, this enabled
us to calibrate and validate our seasonal model. We realise that more
years would be better, but after calibrating the seasonal parameters
(Section 2.4), model outputs were generally in good agreement
with observed data (e.g., R2

NSE N 0.65, see Fig. 3). Nevertheless, our
newly developed seasonal approach has some uncertainties that
are largely associated with model inputs and parameters. We used
Sentinel 2 land cover 2016 imagery to calculate areas of different
land cover. Sentinel 2 (20 m–by–20 m resolution) land cover imag-
ery has an overall area weighted accuracy of 65% +/− 1% (Lesiv
et al., 2017) but could nevertheless contribute to the uncertainty of
our model. The use of global scale data, which has a 0.5° by 0.5° res-
olution, to local sub-basins of Lake Tana might also introduce some
uncertainties. Nevertheless, validation results showed a good perfor-
mance of the model to quantify seasonal river export of DIN to Lake
Tana. Therefore, we consider the model uncertainties to not affect
the main messages of our study.

We developed a seasonal version of the MARINA model for large
tropical lake sub-basins and rivers by combining the sub-basin model-
ling approach (Strokal et al., 2016) with the seasonal modelling ap-
proach (Chen et al., 2019; McCrackin et al., 2014) and we did this with
Lake Tana basin for the first time. The sub-basin scale MARINA model
has been widely applied to other lakes, such as the Dianchi (Li et al.,
2018), Taihu (Wang et al., 2019) and Guanting (Yang et al., 2019)
lakes. These studies all validated themodelling approach against obser-
vations. Furthermore, Strokal et al. (2016) tested the sensitivity of
model outputs to changes in model inputs and parameters for the
sub-basin scale MARINA model. They found that the DIN export by riv-
ers was generally sensitive to changes in animal manure, synthetic
fertiliser and hydrology. McCrackin et al. (2014) also validated the sea-
sonal modelling approach against observations for large rivers in the
world. The sensitivity analyses of McCrackin et al. (2014) revealed
that river export of DIN is also generally sensitive to changes in runoff,
particularly in summer. The results of the sensitivity analysis for the
sub-basin (from Strokal et al., 2016) and seasonal (from McCrackin
et al., 2014) modelling approaches give us insights into the model in-
puts and parameters that need attention in implementing these ap-
proaches in our study area. We therefore used local information to
derivemodel inputs and parameters that reflect best the local situations
of the Lake Tana basin (see Section 2).

We argue that our seasonal model is suitable for assessing DIN ex-
port from sub-basins to Lake Tana. In general, the main advantage of
our approach is that it can provide a relatively accurate way to link
water quality with human activities, by quantifying the contribution
of separate sources seasonally. Preferably the input is from local data,
but if not available, global data can be used aswell. Furthermore, the ap-
proach enables to estimate DIN export from ungauged sub-basins. The
disadvantage is that an accurate assessment needs regional calibration
of the seasonal parameters. In addition for local analysis of water quality
(e.g., cities), more in-depth model evaluation is needed.

4.2. Seasonal patterns and sources of river export of DIN in the Lake Tana

Our study presents results of the seasonal and sub-basin analyses
of DIN export to Lake Tana. Our model enables the identification of
which season and sub-basin contributes most to lake pollution, and
from which source (e.g., agriculture or city). This provides new in-
sight into the seasonality in river export of DIN, taking into account
the socio-economic drivers, human activities, hydrological and



Fig. 6.Modelled seasonal river export of dissolved inorganic nitrogen (DIN) by sub-basin to Lake Tana (kgkm−2 S−1) and the share of the sources in the seasonal river export of DIN by sub-
basin (0–1) in 2017.

10 G. Goshu et al. / Science of the Total Environment 731 (2020) 139199
climate characteristics. This has not been done before for Lake Tana.
Our seasonal model for Lake Tana opens an opportunity to explore
solutions and future trends in DIN export by rivers. This is relevant
for science and policy-making as we provide a new tool and new in-
sights that can support the formulation of effective water pollution
strategies.

Seasonal estimates of the river export of DIN to Lake Tana in Ethiopia
are scarcely available. The available studies for the Lake Tana basin and
other bodies of water in Ethiopia are mainly based onmeasurements of
DIN concentrations in rivers, river mouths and different parts of the
lake. However, thenumber of observations is very limited. This holds es-
pecially for DIN concentrations in rivers of ungauged catchments. For
these rivers, water discharges are also often unknown, making it diffi-
cult to estimate concentrations of DIN. Our model can help fill this gap.

Our estimates of river export of DIN to Lake Tana were far higher
than the estimate for the Nile basin provided by Yasin et al. (2010).
We estimated DIN yields that ranged from 232 to 2464 kg km−2 y−1

among sub-basins of Lake Tana. Yasin et al. (2010) reported DIN yield
of 41 to 60 kg km−2y−1 for the Nile basin, on average. Our higher esti-
mates could be explained by higher population density (228 people
per km2; Anteneh, 2017) and a larger share of agricultural land (70%)
(Abebe and Minale, 2017) of the Lake Tana basin compared to the Nile
basin.We think this has to do partly with relatively high N inputs in ag-
riculture. Open animal grazing and open defecation of human excreta
likely contribute to higher loads. The Nile basin has a population density
of 13 people per km2 and an agricultural land share of 42% (Yasin et al.,
2010). Moreover, the High Aswan Dam in the Nile basin has a high nu-
trient reduction potential, which could result in lower estimates of river
export of DIN, as the DIN outlet point was chosen after the dam site
(Yasin et al., 2010).

Our estimates of the DIN loads were generally lower than the esti-
mates of the Yangtze and Pearl River basins and Baiyangdian Lake in
China (Liu et al., 2008; Strokal et al., 2016; Yang et al., 2019). This is be-
cause our study area is smaller than the basins of those rivers. In
undisturbed conditions, the DIN export from a temperate watershed is
lower than the DIN export from a tropical watershed (Kosten et al.,
2009). However, the lower DIN yields in the Lake Tana basin compared
to the Chinese basins could be explained by less human activity (for in-
stance, less intensive application of synthetic fertiliser) and by the trop-
ical climate in the Lake Tana basin (warmer temperature resulting in
more N retention). These could contribute to lower DIN export to Lake
Tana compared to river export of DIN by Yangtze and Pearl rivers. How-
ever, the warmer climate in the Lake Tana basin compared to the Yang-
tze River basin could favour an increased rate of biological N2 fixation,
though biological fixation is not a major source of DIN to the Lake Tana.

We found the highest DIN export in the rainy season and the lowest
in the dry season for the Lake Tana basin, most likely because runoff
reaches a maximum in the rainy season and a minimum in the dry sea-
son. McCrackin et al. (2014) reported that the seasonal DIN export was
positively related to runoff and negatively to temperature. Agriculture
in the Tana basin is rain-fed, and most of the agricultural activities
have been carried out in the rainy season. Therefore, in the rainy season
compared to the dry season, extensive (about two-thirds of the annual
rainfall compared to 2% in the dry season), relatively low air tempera-
ture (18.4 °C in the rainy compared to 21.1 °C in the pre-rainy) and in-
creased human activity (rain-fed agriculture) likely explain the DIN
seasonality in river export of DIN to Lake Tana.

We reported that animalmanure and synthetic fertiliserswere dom-
inant sources of DIN in Lake Tana. This could be explained by the high
livestock density and open-grazing system of animal production in the
area. In the Lake Tana sub-basin, livestock production comprises a
large portion of farming activities (Alemayehu and Tassew, 2017;
Tassew and Seifu, 2007).

Synthetic fertilisers and animal manure together explained about
half of the river export of DIN to the coastal waters of Africa (Yan
et al., 2010). Liu et al. (2008) reported that synthetic fertilisers were
the largest contributor to the basin of Lake Dianchi in China. Wang
et al. (2019) reported that diffuse sources contributed N90% of the
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total dissolved nitrogen (TDN). Strokal et al. (2016) reported that ani-
malmanure as a point source (direct discharges to rivers)was the dom-
inant source DIN in Chinese rivers.

4.3. Implications for eutrophication management

Shore areas and river mouths in the north eastern part of Lake Tana
have already experienced eutrophication in the form of algal blooms
and extensive growth ofwater hyacinth (Goshu et al., 2017). This is a re-
sult of excess N and P from the sub-basins. Negative impacts of the eu-
trophication problems on ecosystem and public health have been
reported (Goshu and Aynalem, 2017; Wondie et al., 2007). So far, at-
tempts tomanage eutrophication, for example, by controllingwater hy-
acinth, have been unsuccessful, and controlling water hyacinth and
cyanobacterial nuisance have remained key challenges.

Our model provides new insights into seasonal aspects of managing
agricultural N inputs to rivers and thus to the lake.We demonstrate that
the river export of DIN is highest in the rainy and lowest in the dry sea-
sons. This implies that the risk of N losses during a high runoff season is
higher than during a low runoff season. Therefore, farming practices
should avoid N losses to rivers, in particular for the rainy season. Con-
serving the wetlands along the shores may have a nutrient stripping
role during high runoff. This will prevent N export to the lake. Since
the major source of N is animal manure, increasing reuse possibilities,
for instance, by using animalmanure as an organic fertiliser is advisable.
Precision fertilisation of crops with respect to N demand and timing
may reduce N losses from agricultural fields to rivers and thus eutrophi-
cation in the lake.

Our study highlights the seasons (e.g. rainy) and sub-basins (e.g.
Gilgel Abay, Gumara, Rib, Gelda, Dirma and Megech) where reduction
strategies are needed to avoid future lake pollution. Furthermore, our
model identifies the causes of the lake pollution (e.g. manure). This
can help policy-makers identify adequate reduction policies for Lake
Tana.

5. Conclusions

We integrated the two existing modelling approaches into a sea-
sonal model for river export of DIN for large tropical lakes. This resulted
in a seasonal version of the MARINA model for sub-basins and rivers
discharging to tropical lakes such as Lake Tana. We applied this model
for 2017, during which annual river export of DIN to Lake Tana was
about 9 kton. River export of DIN to Lake Tana showed spatial and tem-
poral variability, being highest in the rainy and lowest in the dry sea-
sons. For example, two-thirds of the total annual DIN export was
exported by rivers in the rainy season, whereas 30%, 3% and 2% of the
DIN was exported by rivers in the pre-rainy, post rainy and dry seasons,
respectively. Diffuse sources from agriculture were important contribu-
tors of DIN in rivers. Animalmanurewas the dominant source in all sea-
sons. Synthetic fertiliser was the second dominant source in the rainy
season. Human waste on land was a substantial diffuse source of N in
all seasons in the year 2017. Over two-thirds of the annual river export
of DINwas delivered by six of the twenty rivers, namely, theGilgel Abay,
Dirma,Megech, Rib, Gumara andGelda. TheGilgel Abay sub-basin alone
exported about one-third of the annual river export of DIN to the lake.

Our study shows new insights into the seasonality in river export of
DIN to Lake Tana.We show the importance of diffuse sources in the lake
pollution. This holds especially for wet periods where pollution levels
are higher.Wealso show the areas (sub-basins)where pollution control
is needed to avoid further pollution of the lake. This information can
contribute to formulate effective management options for Lake Tana
that are area-, season- and source-specific. Furthermore, our seasonal
model can be applied to analyses of future trends in the lake pollution.
We provide a seasonal approach that might be applied to sub-basins
and rivers draining into other large tropical lakes that experience simi-
lar environmental problems.
For future research, we suggest three main directions. First, we sug-
gest setting up a new project to monitor concentrations of N in rivers
draining into the lakes. This will help to apply the model to other
years and validate it for those years. Second,we suggest conducting sen-
sitivity and uncertainty analyses to increase trust in the model perfor-
mance especially for those years for which observations are limited.
Third, we suggest applying our model to sub-basins and rivers of
other lakes for effective nutrient management. This includes also appli-
cation of the model to the future. In this future analysis, options to re-
duce lake pollution can be explored. Our model can also be applied to
other sub-basins and rivers of tropical lakes that have comparable char-
acteristics of the sub-basins and rivers of Lake Tana basin (e.g. precipita-
tion, seasons).
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