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measurement, and cross-validated with 1000 times random resampling to
determine model stability. All model R? values presented herein are from
this CV. Loading weights indicate known spectral peaks or profiles for
each model and are translated to the variable importance in projection
(VIP), calculated as the weighted sum of squares of PLS weights (Wold
et al.,2001; Farrés et al.,2015).

Temperature corrections were not applied to bring photosynthetic
parameters to a standard temperature prior to model fitting; absolute plot
temperature was not measured at the time of image capture. As such, all
leaf- and plot-level models include temperature variation. No outliers
were removed from the predictive models presented.

Infra-red gas exchange measurements

CO, response

Photosynthetic (A4) versus intercellular CO, (C) response curves were col-
lected within 30 min of the leaf spectral measurements on the same last fully
expanded leaves to determine V.. and Jigy for each leaf using a portable
leaf gas exchange system with a leaf cuvette (LI-6800; LICOR Biosciences,
Lincoln, NE, USA). Four machines were used by four operators to ensure
unbiased sampling. Leaf temperature was determined as the mean of three
measurements with a hand-held IR gun (FLIR TG54, FLIR® Systems,
Inc., Wilsonville, OR, USA). Leaf temperature for gas exchange was set to
match this mean leaf temperature prior to each CO, response curve, and
relative humidity was set to 65%. PAR was set to 1800 umol m™2s™', and
CO, concentrations were adjusted stepwise over a range of 50-2000 pmol
mol ™" in set increments as follows: 400, 200, 50, 100, 300, 400, 600, 900,
1200, 1500, 1800, and 2000. Leaves were acclimated to chamber conditions
for a minimum of 160 s prior to each A/C; curve with a minimum and
maximum wait time of 160 s and 200 s, respectively, before each individual
measurement of a response curve. V.. and Jigy were determined from
these A/C; curves according to the mechanistic model of photosynthesis
(Farquhar et al., 1980) and analyzed using a curve fitting utility developed
by Sharkey ef al. (2007). While light response curves were carried out prior
to analysis to determine saturating light intensity as ~1800 pmol m ™2 s™';
we refer to maximum electron transport as g rather than J,. to avoid
potential false claims of true maximal capacity (Sharkey, 2016). Mesophyll
conductance (g,,) was constrained according to values for tobacco at 25 °C
reported previously, with temperature dependency incorporated from the
linear relationship of g, with temperature where y=—0.44 + 0.058x (Evans
and von Caemmerer, 2013).

Light response

In performance test 2, to train the P, and $CO, PLSR models, photo-
synthetic (A) versus irradiance (Q) response curves were collected within
30 min of leaf spectral measurements, on the same leaves, with a portable
leaf gas exchange system (LI-6800; LICOR Biosciences). All environ-
mental settings matched those for A/ C; response curves (temperature to
match ambient, relative humidity 65%), but with CO, set to 400 pmol
mol . Irradiance concentrations were adjusted stepwise over a range of
2000-0 wmol m 25! in set increments as follows: 2000, 1800, 1400, 1000,
600, 400, 200, 150, 100, 75, 50, and 0.

Leaf absorption for each genotype was determined using an
integrating sphere (LI-1800; LICOR Biosciences) connected to a
spectrometer (USB-2000; Ocean Optics Inc., Dunedin, FL, USA) as
the mean absorptance of six last fully expanded leaves (Supplementary
Table S1 at JXB online) measured on the last day of performance test
2 (29 July 2018). A/Q curves were then corrected for absorbed ir-
radiance (I). pCO, was calculated as the slope of the relationship be-
tween A and absorbed irradiance below 150 pmol m™2 s~ P, .. was
calculated by a non-rectangular curve fit according to Thornley and
Johnson (1990) as:

where P, is maximum light-saturated photosynthesis, ¢ is quantum
yield, I, is absorbed irradiance, 0 is the curvature factor, and Ry is the dark
respiration rate.

Chlorophyll, carbon, and nitrogen content

In performance test 1, immediately following each leaf spectral measure-
ment,a 2.01 cm? leaf disc was destructively harvested from each leaf using
a cork borer, placed in 2 ml tubes and flash-frozen in liquid nitrogen. To
determine leaf chlorophyll (mg m™), one leaf disc from each leaf was
incubated in 96% (v/v) ethanol for 24 h at 4 °C. The bleached material
and ethanol were mixed (100 pl of solution for each sample) and analyzed
with a Synergy 2 photospectrometer (BioTek Instruments, Inc, Winooski,
VT, USA) at 470, 649, and 665 nm (Lichtenthaler and Wellburn, 1983).
To determine leaf carbon and nitrogen content (%), three more 2.01 cm?
leat discs were destructively harvested, and dried until constant mass, and
a subset of ground tissue of known mass (3£0.5 mg) was combusted
with oxygen in an elemental analyzer (Costech 4010; Costech Analytical
Technologies) and calibrated to %N and %C against an acetanilide
standard curve.

Results
Physiological and spectral characteristics

Our models captured a wide range of natural and genetically
altered trait variation over consecutive growing seasons (2017
and 2018). For performance test 1, averaged plot-level meas-
urements of observed V... Jiso0, chlorophyll content, Chl a:b,
N content, and C content (Supplementary Fig. STA-F) in-
clude variation of environmental and meteorological condi-
tions (between three and five subsamples per plot), with ..
from 13.4 pmol m™?s™" to 359.3 umol m ™ ?s™" (Supplementary
Fig. STA), Jis00 from 54.9 umol m ™% s™" to 362.1 pmol m 2 s
(Supplementary Fig. S1B), chlorophyll content from 0.1 mg m™
to 0.3 mg m™ (Supplementary Fig. S1C), Chl a:b from 1.7 to
3.7 (Fig. S1D), N content from 2.53% to 8.4% (Supplementary
Fig. S1E), and C content from 36.2% to 47.4% (Supplementay
Fig. S1F). In performance test 2, from light response curves
measured between 26 and 29 July in 2018, P, ranged be-
tween 4.1 pmol m™*s™" and 77.7 pmol m™2s™' (Supplementary
Fig. S1G), and ¢pCO, ranged between 0.024 pmol m ?s™" and
0.064 umol m™? s™" (Supplementary Fig. S1H). Hyperspectral
reflectance from all sunlit pixels per plot used to build PLSR
models for all traits exhibit a peak centering at ~550 nm and
high reflectivity in the NIR from 800 nm to 1300 nm, and
a smaller peak developing from 1440 nm to 1800 nm, fol-
lowing the expected spectral profile pattern. However reflect-
ance values are slightly lower than expected between 900nm

and 1250 nm (Fig. 3).

Plot-level PLSR predictions

The corresponding reflectance spectrum from all sunlit pixels
per plot (Fig. 3) paired with the observed, measured traits
(Supplementary Fig. S1) produced robust predictive plot-level
models for all traits other than ¢CO, Mean spectra used for
each model build in performance test 1 varied slightly, as spectra
without a paired ‘ground truth’ sample for each trait were elimin-
ated from model build data sets (Fig. 3). For example, in the SSuD
genotype, Jigoo could not be determined from gas exchange as
the low Rubisco content meant this genotype was never elec-
tron transport limited but instead always Rubisco limited. Given
that Jigy0 could not be calculated, the Jg, spectral sample size
is reduced compared with the 1/, model build (Fig. 3A, B).

,max
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Fig. 3. Mean plot-level sunlit leaf reflectance for all spectra included in plot-level PLSR models, from performance test 1, Vi max (A), J1s00 (B), chlorophyll
content and Chl a:b (C), and C and N content (D), and performance test 2, P,.« and ¢CO, (E). Spectra are obtained from our automated image analysis
pipeline with the atmospheric water absorption band at 1313-1440 nm removed, and displayed with the minimum and maximum from all data and 95%
confidence intervals. n=the number of plots the spectra represent. Sample size for each trait varies dependent on the amount of viable ground truth

samples taken for each trait.

Similarly, a small number of leaf disc samples for leaf chlorophyll,
carbon, and nitrogen content were lost in transportation, storage,
or during analysis, creating slight variation in spectral sample used
for chlorophyll (Fig. 3C), and C and N (Fig. 3D) model builds.
Using reflectance spectra from 450-900 nm only, collected
with a single VNIR hyperspectral camera, V.. (R 0.79,
RMSE% 11.9), J1500 (R* 0.59, RMSE% 11.5), chlorophyll con-
tent (R* 0.87, RMSE% 10), Chl a:b (R* 0.63, RMSE% 18.5),
and P, (R*0.54, RMSE% 10.6) were highly predictable from
PLS hyperspectral regression models (Fig. 4; Table 2). PLSR
predictions performed moderately well for C content (R* 0.47,
RMSE% 18.7, Fig. 4E) and N content (R* 0.49, RMSE%
15.9%, Fig. 4F), but offered no predictability for $CO, (R?
0.02, RMSE%, Fig. 4H; Table 2). When compared with the
single camera models, PLSR models using both hyperspectral
cameras (Fig. 5) had weakened predictive power (lower R
and increased RMSE%) for all traits, except Chl a:b (Table 2).
Using both cameras, V... (R* 0.74, RMSE% 13.1, Fig. 5B),
R? decreased by 5% and RMSE% increased by 1.9%. However,
for Chl a:b, predictability increases when both cameras are used
(R? 0.77, RMSE% 14, Fig. 5D), where R? increases by 14%,

and RMSE% decreases by 4.5% (Table 2).

Model loading weights indicate the importance of regions of
the reflectance spectra for trait variation. For plot-level PLSR
predictions with a single VNIR camera (450-900 nm), the re-
gion around 700 nm is important for all traits (Fig. 6). When
translated to aVIP score for easier interpretation (Fig. 7), 700 nm
is shown to be the most important region for V.., Jiso0, and
chlorophyll content predictions. While ~700 nm is important
for all other traits, for C and N content regions from 500 nm to
650 nm and from ~820 nm and ~870 nm in the NIR also hold
importance (Fig. 7C, D). For Chl a:b and P,,,,, the entire NIR
from 700 nm to 900 nm holds weight. When plot-level model
loadings (Fig. 6) andVIP scores (Fig. 7) are compared with those
from leaf-level PLSR models built using the same leaves that
ground truth the plot-level models, they generally follow the
same response pattern for all traits, with the exception of VIP
scores for Chl a:b (Fig. 7D) and ¢CO, (Fig. 7H).

Leaf-level PLSR models

When leaf-level PLSR models were built to include different spec-
tral ranges (500-900, 500-1700, and 500-2400 nm), only V..
N content, and P, predictability showed minor improvement
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Fig. 4. Comparison between observed photosynthetic parameters and those predicted from PLS regression of plot-level sunlit leaf reflectance using

a single VNIR hyperspectral camera (450-900 nm) for V¢, max (A), J1s00 (B), chlorophyll content (C), Chl a:b (D), C content (E), and N content (F) in
performance test 1, and P, (G) and ¢CO, (H) in performance test 2. Observed parameters are the mean of 3-5 leaf-level ground truth measurements,
and predictions are the mean of 1000 times cross-validation of the model.

with greater spectral range (Table 3). The CV R* for V. re- a 2% increase when the full spectrum was used (500-2400 nm).

c,max

mained the same when the model used reflectance from 500 nm  For P,,. CV, R? increased by 7% when the spectral bandwidth

to 1700 nm, rather than from 500 nm to 900 nm, but there was matched that of both hyperspectral cameras (500-1700 nm)
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Fig. 6. Model loadings from leaf-level and plot-level PLSR models from 450-900 nm for all traits: V max (A), J1s00 (B), chlorophyll content (C), Chl a:b (D),
C content (E), and N content (F) in performance test 1, and P, (G) and ¢CO, (H) in performance test 2.

plot-level analysis using both cameras (450—1700 nm), we re- 2015), where removal of these bands is unnecessary when
moved reflectance between 1313 nm and 1440 nm given con-  using a leaf clip with an artificial light source. Thus, it follows,
volution of reflectance spectra in that region from atmospheric ~ with the absence of reflectance at ~1400 nm, that the spec-
water absorption properties (Hill and Jones, 2000; Serbin et al.,  tral region detected by the single VNIR camera (400—900 nm)
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Fig. 7. Comparison of variable importance projection (VIP) scores from
leaf-level and plot-level PLSR models from 450-900 nm for all traits: V max
(A, J1g00 (B), chlorophyll content (C), Chl a:b (D), C content (E), and N (F) in
performance test 1, and P, (G) and ¢CO, (H) in performance test 2.

captures the most important regions for photosynthetic pre-
dictions. This offers one possible explanation for the strength
of PLSR predictions for all parameters in this study from the

single VNIR camera (Fig. 4). In addition, when reflectance
spectra from both cameras (450—-1700 nm) were used to build
predictive models,VIP scores for chlorophyll content (Fig. 8K),
Chl a:b (Fig. 8L), and P, (Fig. 8P) show that reflectance from
the NIR above 900 nm holds little or no importance (Fig. 8).
This is not surprising given that the absorption of chloro-
phyll occurs in the visible range (Ustin ef al., 2009) and that
P,..« should be highly related to pigment and pigment pool
distributions. However, for V... (Fig. 8I), Jiso0 (Fig. 8J), C
content (Fig. 8M), and N content (Fig. 8N), while VIP peaks
between 400 nm and 900 nm dominate, peaks at ~1150 nm
and 1750 nm are present, suggesting secondary importance of
these regions. Despite the known spectral properties for N and
C contents in these regions (Curran, 1989; Asner and Martin,
2008), and similarly high VIP scores around ~1100 nm in pre-
dictions of V. from airborne spectroscopy (Serbin et al.,
2015), models for these three parameters built with reflectance
from both cameras (450-1700 nm) rather than just the VNIR
(450-900 nm) are weaker (Figs 4, 5; Table 2).

Chl a:b is the only trait for which predictions improve when
two cameras (450—1700 nm) are used for the model build ra-
ther than the single VNIR (450-900 nm) camera (Figs 4D,
5D).With known chlorophyll absorption dominant only in the
visible range, supported by the low loading values for the leaf
level Chl a:b models above 900 nm (Fig. 8D), this raises ques-
tions as to the cause of improved predictability when adding
reflectance spectra above 900 nm. This is probably due to the
dilution effect for spectral regions of physiological importance
when a ratio of two physiological traits is presented. While the
Chl a:b model is unlikely to be overfit given the reliance on
the PRESS statistic in latent variable number selection, physio-
logical importance is reduced, allowing ‘statistical’ number
training rather than physiologically based ‘trait’ training. Thus
care should be taken to eliminate spectral regions shown to
hold little weight for the original trait pair when using this
PLSR technique to predict ratio values.

Leaf-level comparisons

In attempts to understand the relationship between spectral
range and predictability power of PLSR models, we built
leat-level models for all of the plot-level ground truth ma-
terial measured in this study at three different spectral ranges
(Table 3). For each trait, we built models first using reflectance
spectra measured with the Fieldspec4 from 500 nm to 900 nm,
secondly from 500 nm to 1700 nm, and thirdly from 500 nm
to 2400 nm. At the leaf level, with a single device measuring
from 400 nm to 2500 nm and an artificial light source, the only
trait prediction that improved with greater spectral range inclu-
sion was leaf N (500-900 nm CV R>=0.66, 500—1700 nm CV
R?=0.69, 500-2400 nm CV R>=0.76, Table 3). The predict-
ability of all other parameters was not increased with increased
spectral range. This may be due to the almost equal importance
of VIP peaks around 1400 nm and 1900 nm when compared
with the chlorophyll and red-edge regions from 500 nm to
800 nm for N content (Fig. 8F). In contrast, at the leaf level
for all other predicted traits in this study, the highest VIP scores
occur between 500 nm and 800 nm, with only small peaks
in the NIR and SWIR (Fig. 8A-H), which may explain the
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Table 3. PLSR models built at leaf level for all traits using three different spectral ranges (500-900, 500-1700, and 500-2400 nm)

Spectral range (nm) R? Train R%2CV RMSECYV (trait unit) RMSE (%) Model bias (trait unit) Latent variable (LV) no.
Vemax (pmol m~ s™)
500-900 0.71 0.67 48.33 13.98 0.066 7
500-1700 0.75 0.67 45.21 13.08 0.497 10
500-2400 0.79 0.69 41.67 12.06 0.646 11
J1g00 (nmol m? s7)
500-900 0.59 0.40 38.58 13.38 1.211 11
500-1700 0.58 0.39 39.15 13.57 0.454 11
500-2400 0.53 0.40 41.38 14.35 0.017 8
Chlorophyll content (mg m™)
500-900 0.82 0.78 0.02 8.82 0.00007 10
500-1700 0.78 0.74 0.03 9.76 0.00003 6
500-2400 0.80 0.77 0.03 9.32 0.00001 6
Chla:b
500-900 0.87 0.78 0.25 8.56 -0.003 14
500-1700 0.86 0.79 0.25 8.84 0.0001 15
500-2400 0.85 0.76 0.50 7.50 0.005 13
C content (%)
500-900 0.86 0.74 0.96 7.85 -0.011 15
500-1700 0.84 0.76 1.01 8.30 0.007 15
500-2400 0.86 0.75 0.95 7.84 0.016 15
N content (%)
500-900 0.80 0.66 0.57 8.50 0.011 15
500-1700 0.80 0.69 0.58 8.65 0.007 15
500-2400 0.85 0.76 0.50 7.50 0.005 15
Pax (i1mol m2s7)
500-900 0.63 0.50 8.04 10.92 0.12 9
500-1700 0.71 0.57 715 9.71 -0.04 13
500-2400 0.72 0.56 7.04 9.55 0.04 13
$CO, (quanta/A pmol m? s7)
500-900 0.76 0.62 0.004 8.82 0.000004 11
500-1700 0.77 0.63 0.003 8.63 -0.000001 12
500-2400 0.73 0.61 0.004 9.24 0.000044 9

lack of correlation between PLSR prediction power and spec-
tral range included in the leaf-level model builds for V...
Jigo0» chlorophyll content, Chl a:b, C content, P,,,,, and $CO..
While ¢pCO; is not predictable with PLSR analysis at the plot
level (Figs 4H, 5H), it is highly predictable at the leat level
(Table 3; Supplemenetary Fig. S2), highlighting the need for
high variation in observed trait values, to cover greater ‘trait
space’ (Ely et al.,2019) for building robust models (Meacham-
Hensold ef al., 2019). Where observed leaf traits are averaged
(between three and five subsamples) at the plot level for $CO,,
observed measurement repetitions are thus reduced, shrinking
the trait space and consequently the model prediction strength.

Vegetative structural reflective properties and the compara-
tive loading and VIP scores for leaf and plot-level models from
450 nm to 900 nm (Figs 6, 7) support the strength of plot-level
models built with a single VNIR camera (Fig. 4). Loadings and
VIP scores may support a lack of improved predictability when
models for the same traits are built with reflectance from two
cameras that span a greater spectral range (400-1700 nm), but
they do not explain the apparent reduction in predictive power
(Table 3). N and C content predictions, in particular, should
perhaps be improved when lower energy regions of the NIR
are included in analysis with both cameras, due to the known
absorption features properties of C and N in the NIR (Curran,

1989), and the strong VIP peaks at ~1100 nm and 1700 nm
(Fig. 8M, N). This unexpected reduced model strength with
increased spectral range is likely to be due to instrumentation
limitations. Hyperspectral imaging equipment for phenotyping
in field trials is limited. We used two hyperspectral cameras,
with different spectral resolution (Pika II, 2.1 nm; Pika NIR,
4.9 nm), different spatial resolution (Pika II, 7.4 pm pixel size;
Pika NIR, 30 um pixel size), and difterent signal to noise ratios
(Pika II1,198; Pika NIR, 1885), given the lack of affordability
and availability of a single sensor to cover the full electromag-
netic spectra. The NIR camera has greater intrinsic error.

Improving plot-level hyperspectral predictions

The quality of the signal from the Pika NIR (900-1800 nm)
camera presents a key challenge throughout this work. Model
predictions using two cameras are probably weakened due to
technical limitations rather than lack of importance of par-
ticular NIR spectral regions for physiological trait prediction.
The reflectance profile from the Pika NIR imaging system,
~900-1250 nm, 1s lower than expected when compared with
reflectance measured with a leat clip. Working with spec-
tral reflectance measured by imaging systems using sunlight
rather than a leaf clip with an artificial light source presents
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Fig. 8. PLSR model variable importance projection (VIP) scores for models built with different spectral ranges for leaf level and for V;, .y (A), J1g00 (B),
chlorophyll content (C), Chl a:b (D), C content (E), N content (F), P (G), and $CO, (H), and at the plot level for the same traits, respectively (I-P). VIP

scores for plot-level $CO, models are not shown due to the lack of predictability of this parameter at the plot level.

challenges, with light having been influenced by the atmos-
phere before reaching the leaf and again after reflection before
detection by a sensor. This results in a more complex signal

compared with reflectance from integrated full-spectrum leat-
level devices. For example, quantification of leaf angles, re-
moval of background noise from scattered reflectance at lower
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canopy levels, removal of background noise from soil (Verhoef,
1984; Gao et al., 2000), and correction for plot temperature
at the time of image capture (Serbin et al., 2015) could all
improve plot-level model strength. Our plot-level reflectance
spectra are also lower between 900 nm and 1250 nm than
those from aircraft and other proximal hyperspectral imagers.
Proximal hyperspectral imagery usually presents data captured
from nadir sensors rather than push-broom scanning plat-
forms. At the time of our data collection, for mounting ~1 m
above the target vegetation on a proximal sensing push-cart,
push-broom line sensors offered the greatest spatial resolution
and affordability. However, the camera angle rotation increases
directional anistropy and, coupled with light scattering from
background vegetation, increases our signal to noise ratio.
While our automated analysis pipeline (Fig. 3) very accur-
ately accounts for radiance at the time of image capture using
a Teflon reference panel for accurate conversion to reflectance
(Fig. 2B), the signal could probably be improved with an up-
dated nadir scanner and future incorporation of more complex
radiative transfer modelling to account for background scat-
tering. Leaf-level VIP scores show less variation than plot-level
scores (Fig. 8), particularly in the NIR. While VIP scores are
higher at the plot level, peaks do follow the same trends, thus
the variation is likely to be indicative of scattering detected by
the NIR hyperspectral camera and sensor noise rather than a
need to question the true importance of these regions for pre-
diction of a given trait.

The variation in plot-level ground truthing also presents
a known challenge as plot-level estimations are trained with
leat-level measurements. While currently this is the only real-
istic ground truth method for canopy photosynthetic measure-
ments, it is not ideal given the known limitations of applying
leat-level measurements to canopy estimations (Amthor, 1994;
Baldocchi and Harley, 1995; De Pury and Farquhar, 1997; Wu
et al., 2016) and the known variation in photosynthetic rates
and capacities within crop canopies of the same germplasm
and even within plant crowns at the highest levels of a canopy
due to variation in light environment (Niinemets, 2007).
More robust plot-level models could be trained with a greater
number of ground truth samples, but the time taken to ob-
tain gas exchange measurements of photosynthetic capacity is
a limitation. These challenges persist for the high-throughput
phenotyping and the remote-sensing community and, as
equipment develops and sensor integration capabilities ad-
vance, predictive models of the nature presented in this study
will probably improve. Despite these challenges, this study
proposes robust plot-level predictions of key photosynthetic
parameters and structural traits that are the focus of current
research efforts to increase crop yields for global food security
(Evans, 2013; Ort et al., 2015).

The challenges facing agricultural production in the face of
resource limitation and changing climate necessitates methods
for rapid screening of large field trials for productivity and
performance. The results from the automated hyperspectral
image analysis pipeline we present synthesize high-resolution
plot-level information to a single sunlit plot leaf reflectance
spectrum for use in a variety of applications. Photosynthetic
predictions from PLSR analysis of this output offers a tool

for rapid field phenotyping for photosynthetic performance.
Such synthesis of large spatial and temporal data sets with user-
friendly analysis pipelines that derive biologically relevant out-
comes will be increasingly important in the fight for increased
global food production. The success of predictive models with
a single VNIR hyperspectral camera widens the relevance and
potential application of this technique for greater utility, as re-
duced spectral bandwidth equates to reduced cost of acquisi-
tion and operation of hyperspectral imaging systems.

Supplementary data

Supplementary data are available at JXB online.

Table S1. Leat absorption values used to correct P, and
$CO, for genotypes in performance test 2.

Fig. S2.°Ground truth’ IV_,,..., Jis00, chlorophyll content, Chl
a:b, N content, C content, P, and $CO, values used to train
predictive models.

Fig. S3. Comparison between observed photosynthetic
parameters and those predicted from PLS regression of leaf-
level reflectance using ASD Fieldspec4 with leaf clip attach-
ment for $CO, from reflectance from 500 nm to 900 nm and
from 500 nm to 1700 nm.

Dataset 1. Spectrum collected with hyperspectral imaging
cameras used for model builds for each trait as presented in
Fig. 3.

Dataset 2. PLSR model predictions from a single VNIR
hyperspectral camera (450-900 nm), as shown in Fig. 4.

Dataset 3. PLSR model predictions from two hyperspectral
cameras (450—1800 nm), as shown in Fig. 5.
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