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Abstract
Introduction When analyzing the human plasma metabolome with Nuclear Magnetic Resonance (NMR) spectroscopy, the 
Carr–Purcell–Meiboom–Gill (CPMG) experiment is commonly employed for large studies. However, this process can lead 
to compromised statistical analyses due to residual macromolecule signals. In addition, the utilization of Trimethylsilylpro-
panoic acid (TSP) as an internal standard often leads to quantification issues, and binning, as a spectral summarization step, 
can result in features not clearly assignable to metabolites.
Objectives Our aim was to establish a new complete protocol for large plasma cohorts collected with the purpose of describ-
ing the comparative metabolic profile of groups of samples.
Methods We compared the conventional CPMG approach to a novel procedure that involves diffusion NMR, using the 
Longitudinal Eddy-Current Delay (LED) experiment, maleic acid (MA) as the quantification reference and peak picking for 
spectral reduction. This comparison was carried out using the ultrafiltration method as a gold standard in a simple sample 
classification experiment, with Partial Least Squares–Discriminant Analysis (PLS-DA) and the resulting metabolic signatures 
for multivariate data analysis. In addition, the quantification capabilities of the method were evaluated.
Results We found that the LED method applied was able to detect more metabolites than CPMG and suppress macromolecule 
signals more efficiently. The complete protocol was able to yield PLS-DA models with enhanced classification accuracy 
as well as a more reliable set of important features than the conventional CPMG approach. Assessment of the quantitative 
capabilities of the method resulted in good linearity, recovery and agreement with an established amino acid assay for the 
majority of the metabolites tested. Regarding repeatability, ~ 85% of all peaks had an adequately low coefficient of variation 
(< 30%) in replicate samples.
Conclusion Overall, our comparison yielded a high-throughput untargeted plasma NMR protocol for optimized data acquisi-
tion and processing that is expected to be a valuable contribution in the field of metabolic biomarker discovery.
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Abbreviations
CPMG  Carr–Purcell–Meiboom–Gill
LED  Longitudinal Eddy-current delay

NMR  Nuclear magnetic resonance
TSP  Trimethylsilylpropanoic acid
MA  Maleic acid
UF  Ultrafiltration
PCA  Principal component analysis
PLS-DA  Partial least squares–Discriminant analysis

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1130 6-020-01686 -y) contains 
supplementary material, which is available to authorized users.

 * Nikolaos G. Bliziotis 
 nick.bliziotis@radboudumc.nl

 Leo A. J. Kluijtmans 
 leo.kluijtmans@radboudumc.nl

1 Translational Metabolic Laboratory, Department 
of Laboratory Medicine, Radboudumc, Geert Grooteplein 
Zuid 10, 6525 GA Nijmegen, The Netherlands

2 Institute for Molecules and Materials, Radboud University, 
Houtlaan 4, 6525 XZ Nijmegen, The Netherlands

3 Present Address: Biometris, Wageningen UR, 
Droevendaalsesteeg 1, 6708 PB Wageningen, 
The Netherlands

4 Department of Internal Medicine, Radboudumc, Geert 
Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands

http://orcid.org/0000-0001-7775-6613
http://crossmark.crossref.org/dialog/?doi=10.1007/s11306-020-01686-y&domain=pdf
https://doi.org/10.1007/s11306-020-01686-y


 N. G. Bliziotis et al.

1 3

   64  Page 2 of 12

VIP  Variable importance to the projection
CV  Cross validation
NOESY  Nuclear overhauser effect spectroscopy
MVA  Multivariate analysis
RSD  Relative standard deviation (a.k.a. Coefficient 

of Variation)

1 Introduction

Human metabolome profiling can lead to a better under-
standing of disease mechanisms and to potential biomark-
ers for improved diagnosis (Jansson et al. 2009; Malatji 
et al. 2017; Sharma et al. 2013; Van Karnebeek et al. 2016). 
Although there is a wide variety of biomaterial for metabo-
lomics experts to choose from, human blood’s homeostatic 
ability, easy collection and the fact that it flows through 
every human organ, render it a particularly attractive option 
for investigating disease-associated pathways (Nagana 
Gowda et al. 2015).

Proton nuclear magnetic resonance (1H-NMR) spectros-
copy was the technology that kicked off the field and is one 
of the two main methods used. The technique has inher-
ent quantitative capabilities (Nagana Gowda et al. 2018), 
high reproducibility, requires minimal sample preparation, 
is non-destructive for samples and offers the possibility 
for compound identification by structure elucidation, all 
essential characteristics for biomarker discovery (Gowda 
et al. 2008). Although NMR spectroscopy is limited by low 
sensitivity compared to mass spectrometry (Gowda et al. 
2008) as well as signal overlap in spectra, it continues to 
find widespread applications (Cheng et al. 2019; Mora-Ortiz 
et al. 2019; Turkoglu et al. 2019; Yousf et al. 2019). When 
applied to plasma, a number of considerations should be 
made in regard to its performance in metabolome profiling 
with respect to optimal sample group separation that can be 
explained by a solid biochemical background.

The first of these considerations is related to the pres-
ence of proteins and lipids in plasma samples. These mac-
romolecules give rise to numerous signals that overlap with 
those originating from small polar metabolites. Hence, an 
appropriate method for polar metabolomics should be able to 
separate relevant signals from these confounders. Typically, 
when analyzing plasma with NMR spectroscopy, macromol-
ecules are analyzed using the Longitudinal Eddy-Current 
Delay (LED) (Beckonert et al. 2007), whereas low molecu-
lar weight compounds by means of precipitation (Nagana 
Gowda et  al. 2015; Nagana Gowda and Raftery 2014), 
ultrafiltration (Wevers et al. 1994) or Carr–Purcell–Mei-
boom–Gill (CPMG) (Beckonert et al. 2007). Ultrafiltration 
is an approach that requires the use of filters to remove mac-
romolecules and is capable of quantifying a larger number 
of metabolites than CPMG. Ultrafiltration has been used to 

discover inborn errors of metabolism (Engelke et al. 2008) 
and to profile the human serum metabolome (Psychogios 
et al. 2011). In the latter study, the approach led to the abso-
lute quantification of 49 metabolites, a high end point num-
ber of NMR-quantifiable human serum metabolites. The 
main limitations of this gold standard include laboriousness 
and cost (Wallmeier et al. 2017) due to the tedious filtra-
tion step that requires the use of expensive filters, which 
hamper the method’s applicability in large scale studies. An 
alternative would be protein precipitation by means of the 
methanol protocol (Nagana Gowda and Raftery 2014). This 
approach, however, retains small residual macromolecules 
and is aimed at targeted NMR. Instead, pulse programs that 
suppress unwanted compound signals (Beckonert et al. 2007; 
de Graaf et al. 2015; de Graaf and Behar 2003; Liu et al. 
2002; Wallmeier et al. 2017) are more commonly used in 
untargeted NMR studies of large cohorts. The CPMG pulse 
sequence has seen extensive use in the field of plasma 1D 
NMR metabolomics, but is limited by the number of detect-
able metabolites, signal attenuation, baseline distortion due 
to residual macromolecule signals, low resolution and lim-
ited quantification accuracy (Nagana Gowda et al. 2015). 
As for the LED method, it is possible to focus on small 
metabolites instead of large ones by recording high gradient 
diffusion spectra and subtracting them from their respective 
low gradient counterparts. This approach has been found to 
correlate well with results obtained from ultrafiltration (de 
Graaf et al. 2015; de Graaf and Behar 2003), but has not yet 
been evaluated in terms of sample classification, or quality 
of the obtained metabolite signature.

To follow up spectral data collection, data reduction is 
key for statistical analysis methods. Equidistant bucketing 
or binning is a well-known data reduction approach, where 
each spectrum is split in a predefined number of integral bins 
and the result is directly used for statistics (Bharti and Roy 
2012), but has certain well-known limitations (Beirnaert 
et al. 2018; Vu and Laukens 2013). Nevertheless, binning 
continues to know use today (Castiglione Morelli et al. 2019; 
Hanifa et al. 2019; Jiang et al. 2019; Singh et al. 2019). A 
relatively new alternative involves peak picking and group-
ing by using wavelets (Beirnaert et al. 2018). Regarding 
quantification standards, Trimethylsilylpropanoic acid (TSP) 
is the compound of choice for aqueous solutions. However, 
given its tendency to bind to protein (Wallmeier et al. 2017), 
this compound is not suitable for unfiltered samples. An 
option mostly preferred for quantitative NMR (qNMR) is 
maleic acid (Salem and Mossa 2012), but to date has not 
been utilized in metabolic studies.

We compare here three untargeted plasma NMR metab-
olomics and two spectral processing methods. Replicate 
samples representing two forms of endocrine hyperten-
sion, primary aldosteronism (PA) as well as pheochromo-
cytoma and paraganglioma (PPGL) were analyzed using 
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each method and discriminated using supervised multi-
variate statistics. The results from models separating PA 
from PPGL were used for the comparison of the methods’ 
performances in group separation. In addition, we assess 
the performance of the optimal approach in metabolite 
quantification using maleic acid as the internal quanti-
fication standard. Based on the results presented herein, 
the novel plasma NMR metabolomics procedure devel-
oped is expected to yield valuable sample stratification 
models, as well as metabolic signatures for understanding 
the underlying biochemical differences involved in the 
comparison under investigation.

2  Materials and methods

2.1  Chemicals and standards

D i - S o d i u m  hy d r o g e n  p h o s p h a t e  d i hy d r a t e 
 (Na2HPO4⋅2H2O) and Sodium azide  (NaN3) were pur-
chased from Merck,  D2O 99% and MA from Sigma-
Aldrich. Standards used (Phenylalanine, Methionine, 
Lysine, Threonine, Creatine and Hypoxanthine) were 
obtained from Sigma-Aldrich, except for Glycine which 
was obtained from Scharlab, Alanine from Fluka and Cre-
atinine from BioChemika. Deionized water was prepared 
using a Milli-Q Advantage A10 Water Purification System 
from Merck.

In order to keep pH stable and chemical shift variabil-
ity to a minimum, a buffer solution consisted of 0.43 mM 
MA, 2.18 mM  NaN3 and 2 mM  Na2HPO4 was prepared. 
The buffer’s pH was adjusted to 7.4 using HCl and NaOH 
solutions. This solution was made for samples that were 
prepared as described below, according to the protocol 
proposed by Bernini et al. (2011). A separate phosphate 
buffer solution, containing both TSP and MA as inter-
nal standards was prepared for an initial experiment to 
compare MA to TSP signal line broadening in replicate 
plasma samples. This solution consisted of 3.32 mM TSP, 
18.77 mM MA, 2.2 mM  NaN3 and 142.07 mM  Na2HPO4, 
whereas its pH was adjusted to 7.4 using HCl and NaOH 
solutions.

The master stock solution containing all selected com-
pounds was prepared by dissolution of 5.54 mM Glycine, 
2.38  mM Alanine, 4.77  mM Phenylalanine, 0.56  mM 
Methionine, 3.17 mM Lysine, 1.14 mM Threonine, 1.07 mM 
Creatine, 0.99 mM Creatinine and 0.29 mM Hypoxanthine 
in 25 mL  dH2O. Out of this master stock solution, subse-
quent dilutions of 3 ×, 5 × and 10 × were prepared. These 
standard stock solutions were prepared thusly to cover as 
much concentration range as is biologically relevant for each 
compound.

2.2  Samples

For all experiments carried out, four sets of plasma samples 
were prepared. For the proof of principle application, as 
shown in Fig. 1, a total of 18 plasma samples were collected 
from heparin blood originating anonymously from four 
patients; two patients suffered from pheochromocytoma/
paraganglioma (PPGL) and two from primary aldosteron-
ism (PA). All four patients provided informed consent. After 
collection in heparin tubes, the blood was centrifuged for 
10 min at 3000×g to separate the plasma from cells. Plasma 
was pooled per disease and aliquoted. Finally, 9 PPGL and 
9 PA replicates were prepared and stored at − 80 °C until 
analysis.

A number of replicate samples intended for internal 
standard comparison were prepared. A volume of 8 mL of 
plasma pooled from a set of anonymized patient samples 
used for clinical studies was aliquoted 8 times (350 μL each) 
to compare MA to TSP. Subsequently, four pooled plasma 
aliquots were subjected to ultrafiltration and the remaining 
four to unfiltered sample preparation for NOESY 1D NMR.

A set of 435 QC samples were prepared by pool-
ing ~ 450 mL of plasma obtained from 390 anonymized 
plasma samples. This large volume of plasma was aliquoted, 
resulting in 1 mL for each QC sample that was subsequently 
stored at − 80 °C and used for quantification experiments 
and intra- and inter-batch repeatability assessment of NMR 
plasma analyses.

Fig. 1  Sample preparation and subsequent actions for the compari-
son of the three methods, applied as described in the methods sec-
tion. Plasma collected from the two “PA” patients was pooled and 
aliquoted 9 times to create the replicate samples of the “PA” group. 
The process was repeated for the PPGL group. All 18 samples under-
went analysis by NMR using ultrafiltration and the NOESY pulse 
sequence, CPMG and the LED process. Spectra were converted 
to data tables through the processes of binning and peak picking. 
Finally, Multivariate Analysis models were employed to investigate 
differences in the signatures obtained from each method
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For the standard addition experiment, 15 plasma samples 
were prepared by adding 100 μL from each stock solution 
to 400 μL of QC plasma. Specifically, 100 μL of stock solu-
tions 1 × , 3 × , 5 × , 10 × and  dH2O were added separately 
to sets of three QCs to make up 15 samples. These samples 
were analyzed by NMR and routine ion exchange chroma-
tography for amino acid analysis (AAA).

2.3  Sample preparation

The ultrafiltration procedure was performed according to 
manufacturer’s instructions with an additional washing 
step (Wevers et al. 1994). Filters with a 10 kDa cutoff were 
obtained from Sigma-Aldrich (Centrisart I Centrifugal 
Ultrafiltration Unit) and used for macromolecule removal 
from plasma samples. Briefly, after two cycles of rinsing 
the filters with 2.5 mL  dH2O and centrifugation at 2113×g 
for 5 min to remove glycerol, 1 mL from each aliquot was 
transferred to the filter outer tube. Filters were centrifuged 
at 2113×g for 30 min, resulting in ~ 600 μL of filtrate for 
each sample. These were stored at − 80 °C until analysis 
with NMR. Before NMR analysis, both filtered and unfil-
tered samples were thawed at room temperature. A volume 
of 350 μL was transferred from each sample to an eppen-
dorf safe-lock tube (1.5 mL) to which the same volume of 
buffer solution was added. Each safe-lock tube’s contents 
were mixed using a Retsch vortex mixer and centrifuged at 
16,100×g, for 5 min. Finally, 650 μL of each sample were 
pipetted to a NMR tube.

2.4  NMR experiments

1H-NMR spectra were recorded at 298 K on a Bruker DRX 
AVANCE spectrometer equipped with a triple resonance 
inverse 5  mm probe head operating at 500.13  MHz or 
11.74 T of magnetic field strength. 1H-NMR experiments 
(Fig. 1) alternated between the NOESY pulse sequence (64 k 
data points) with water presaturation for filtered samples 
and the Carr-Purcell-Meiboom-Gill (CPMG), Longitudinal 
Encode-Decode (LED) with 2% gradient strength and LED 
with 70% gradient strength pulse sequences for unfiltered 
samples (128 k data points for both experiments). The LED 
pulse sequence had the form -RD-901-G1-1801-G1-901-G2-
T-901-G1-1801-G1-901-G2-t-901-acquire FID, where RD is 
a relaxation delay, 901 is a 901 RF pulse, G1 is the pulsed-
field gradient that is applied to allow editing, 1801 is a 1801 
RF pulse, G2 is a spoil gradient applied to remove unwanted 
magnetization components. The diffusion delay D is the time 
during which the molecules are allowed to diffuse—this is 
the period (901-G1-1801-G1-901-G2-T-); and t is a delay 
to allow the longitudinal eddy currents caused within the 
sample to decay (Beckonert et al. 2007). For CPMG experi-
ments, 300 loop counters were used to sufficiently suppress 

macromolecule signals, whereas for LED experiments a con-
stant value for receiver gain was preselected. For all experi-
ments, 256 scans were recorded after 8 dummy scans using 
a relaxation delay of 4 s, 3.25 s acquisition time and 0.3 Hz 
line broadening. In terms of time, Icon NMR required 5 min 
for loading each sample and preparation for each experi-
ment, 35 min for each LED and NOESY and 55 min for each 
CPMG experiment. Spectral resolution was assessed based 
on the peak width of MA at half height. Both the loop coun-
ters for the CPMG and the % gradient strength for the LED 
experiments were determined based on macromolecule sig-
nal suppression, using the 1D NOESY experiment’s results 
on corresponding filtered samples as reference.

2.5  Quantification assessment

Quantification performance of the method was assessed on 
the basis of linearity of response (Harmonization 1996), 
recovery, agreement with amino acid assay (Choudhary 
and Nagaraja 2007), and repeatability. Targeted metabolite 
quantification and identification according to MSI guidelines 
(Sumner et al. 2007) was performed using the Chenomx 
(Weljie et al. 2006) software (evaluation version 8.4), which 
is capable of signal deconvolution, necessary for metabolites 
Glycine, Alanine, Methionine, Threonine, Creatine and Cre-
atinine. For Phenylalanine (doublet at 7.31 ppm) direct peak 
integration using Topspin version 4.0.6 was employed, as 
this signal could be used for estimating concentration with-
out the need for deconvolution. Lysine (triplet at 3.01 ppm) 
was quantified using both methods, as the effect of signal 
convolution was unclear. Metabolites were quantified using 
each sample’s levels of formic acid, which were estimated 
using the internal standard.

Amino acids were quantified using an AminoTac Jeol 
JLC-500/V amino acid analyzer (Jeol Ltd., Japan), using a 
commercially available amino acid mixture for calibration 
and quantification.

2.6  Statistical analysis

For spectral processing, all spectra were Fourier trans-
formed, manually phase corrected and the chemical shifts 
referenced to the glucose doublet at 5.22 ppm, using Bruker 
Topspin version 3.5. As shown in Fig. 2, to obtain LED 
spectra the 70% gradient strength LED experiment recorded 
from each sample was subtracted from its respective 2% 
LED experiment to retain only small molecule signals, and 
underground signals were removed with a filter width of 
20 Hz using AMIX version 4.9.2 and the area above 10 ppm 
for noise signal estimation. UF, CPMG and LED spectra 
were subjected to bucketing as well as peak picking using 
AMIX and R package “SPEAQ” (Beirnaert et al. 2018), 
respectively. An alignment step was not utilized, due to 
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blood plasma’s inherent homeostatic ability and the use of a 
buffer solution, which keep chemical shifts to a minimum. 
All R packages were loaded on R studio (R studio team 
2016) v. 1.1.463 running R (Team 2019) v. 3.4.4. Equidistant 
bucketing was applied in the area between 0 and 10 ppm of 
all spectra, by using a bucket width of 0.02 ppm, sum of 
intensities as an integration method, with option “no scal-
ing” selected. Areas 0.73 to 0.9, 1.09 to 1.30, 1.89 to 1.92, 
3.17 to 3.27, 3.35 to 3.54, 3.67 to 3.92, 4.39 to 5.17, 5.23 
to 5.37, 5.49 to 5.98, 7.01 to 7.08 and 7.75 to 7.85 ppm, 
corresponding to macromolecules, water, glucose and urea, 
1-methylhistidine (due to chemical shift irregularities) and 
acetate (due to its presence in the blank in a concentration 
comparable to samples from one group) were excluded 
from the bucket table for all subsequent analyses. For peak 
picking, spectra were initially “read” using the command 
“readBruker” from the R package “BATMAN” (Hao et al. 
2014). The same areas as with the AMIX procedure were 
excluded. Peak picking, grouping and filling was performed 
next, using a set of functions in the “SPEAQ” R package. In 
both the AMIX bucket and SPEAQ peak tables, features not 
present in at least 80% of samples belonging to either group 
were removed, as per the recommendations of Southam et al. 
(2017), for removing any peaks that had too many missing 
values. Remaining features were scaled to the MA peak/
bucket. Next, Probabilistic Quotient Normalization (PQN) 
(Dieterle et al. 2006) was applied, using all samples to com-
pute the median spectrum ignoring non-detects and miss-
ing values were imputed using the K-nearest-neighbor algo-
rithm (KNN) (Armitage et al. 2015; Hrydziuszko and Viant 

2012; Southam et al. 2017), as implemented in R package 
“impute” (Hastie et al. 2019). Finally, the generalized log 
transformation (GLOG) (Parsons et al. 2007) based on the 
samples in the PA group (that are technical replicates) is 
applied using R package “LMGene” (Rocke et al. 2018). 
AMIX and SPEAQ data were compared using visual inspec-
tion of PCA score plots as well as signatures from PLS-DA 
models. All parameters and scripts can be found on the first 
author’s GitHub page (https ://githu b.com/NickB liz/High-
throu ghput -Untar geted -Plasm a-NMR-Metab olomi cs_Metho 
d) and data can be provided upon request.

Principal Component Analysis (PCA) was used as a 
method to discover trends and detect outliers, whereas 
Partial Least Squares Discriminant Analysis (PLS-DA) 
for separating PA from PPGL samples analyzed with each 
method. For computing the MVA models, the MixOm-
ics (Rohart et  al. 2017) R package was employed. All 
data were mean-centered. Cross-validation was used to 
optimize PLS-DA models (Szymańska et al. 2012); each 
model’s performance in sample classification was com-
puted using the leave-one-out method in order to deter-
mine the optimal number (n) of latent variables and sub-
sequently the model was recalculated with these n latent 
variables, from which the final set of important features 
was extracted. Quality of supervised models was assessed 
by double CV (Szymańska et al. 2012); each sample was 
left out once, the model was recalculated after the optimal 
number of latent variables was determined by CV and the 
left out sample was classified as either PA or PPGL. This 
process was repeated until all samples had been left out 
once and the sum of all misclassifications was calculated. 
In all models, variables were detected peaks, whereas 
observations were analyzed samples.

Linearity To assess linearity of the NMR signals, the 
results from the standard addition experiments were used. 
The levels of the selected analytes were determined by using 
MA as the internal standard. R package “gvlma” (Pena and 
Slate 2019) was used to check whether the linear model 
assumptions are met as well as package “stats” (Team 2019) 
to build the linear regression models with mass of metabo-
lite being regressed against concentration found using NMR 
spectroscopy and Chenomx. To evaluate the quality of the 
fit, the coefficient of determination  (R2), the significance 
(p-value) of the slope coefficient, the Residual Standard 
Error (RSE) and the prediction error (RSE/average concen-
tration determined by NMR) were all taken into account. 
A linear model summary is available for every metabolite 
spiked.

LOD/LOQ Limit of detection (LOD) was estimated by 
multiplying the standard error of y-intercepts of regression 
lines in the standard addition experiment by 3.3 and dividing 
by the slope. Limit of quantification (LOQ) was determined 
by multiplying the LOD by 3.3.

Fig. 2  The workflow for obtaining LED spectra, optimized for small 
molecules. a Low gradient strength (2%) LED spectrum of a sample 
in the PPGL group, b high gradient strength (70%) LED spectrum 
of the same sample, c the resulting spectrum from the subtraction 
of spectrum (b) from spectrum (a) and finally (d) the same spectrum 
as (c), but with the underground removed using the relevant tool in 
AMIX v 4.9.2, resulting in a baseline that is not affected by broad 
macromolecule signals

https://github.com/NickBliz/High-throughput-Untargeted-Plasma-NMR-Metabolomics_Method
https://github.com/NickBliz/High-throughput-Untargeted-Plasma-NMR-Metabolomics_Method
https://github.com/NickBliz/High-throughput-Untargeted-Plasma-NMR-Metabolomics_Method
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Recovery To evaluate recovery, the percentage of dif-
ference in mean of three replicate concentrations for six 
metabolites at four concentration levels in the test solution 
between the NMR method and AAA was calculated, along 
with their respective RSD values.

Agreement with Amino Acid Assay Bland–Altman 
comparison plots (based on R package “Bland–Alt-
man–Leh”(Lehnert 2015)) were used to assess the agree-
ment between the two methods for selected metabolites.

Repeatability QC samples were analyzed in 45 batches 
(one QC per batch) using the LED method and the result-
ing spectra were converted to peaks, which were scaled to 
each MA peak and normalized using PQN and the median 
spectrum of all QCs as a reference, to evaluate inter-batch 
repeatability. For intra-batch repeatability, a set of 19 QC 
samples were analyzed in one day. Inter- as well as intra-
batch RSD values were computed for each peak found in 
the QC samples.

3  Results

3.1  Method comparison and proof‑of‑principle 
application

The 18 spectra recorded from all methods had a flat base-
line and high resolution (Fig. 3), with half height peak 
width of MA having a median of 0.86 Hz and standard 
deviation of 0.08 Hz for UF, 0.85 ± 0.09 Hz for CPMG and 
0.89 ± 0.11 Hz for LED spectra. To compare signal-to-noise 
ratios between the spectra shown, the area between 8.50 and 
9.99 ppm for noise signal estimation and the maleate peak 
at 6 ppm were used, resulting in a ratio of 311.09 for the 
UF spectrum, 74.4 for CPMG and 60.75 for LED. Residual 
macromolecule signals were observed in unfiltered samples, 
with their levels being highest in CPMG spectra. Out of all 
metabolites identified, 36 were detectable by visual inspec-
tion in UF spectra, 28 in LED and 26 in CPMG. A list of 
all detectable metabolites in spectra shown in Fig. 3 can be 
found in Table 1S of the Supplementary Material.

Score plots from PCA models calculated using the AMIX 
and the SPEAQ data of all methods as shown in Fig. 4, 
indicated more outliers for the AMIX than for the SPEAQ 
datasets for all methods, with CPMG resulting in the most. 
Further, PA samples seem clearly separated from PPGLs 
according to the first two principal components when using 
the SPEAQ approach. Group separation was also observed 
in the 3rd component of the UF AMIX model (not shown) 
and according to the first two principal components (PCs) 
of the LED AMIX model (Fig. 4c), albeit to a lesser degree 
than with the respective SPEAQ-resulting model (Fig. 4f). 
According to the score plots of the same PCA models, 
the SPEAQ models result in a higher amount of variance 

explained by group separation and so the top 30 loadings 
of PC1 (Fig. 1S) are more closely related to metabolic dif-
ferences across the sample cohort. This is in contrast to the 
AMIX models, which show variance explained mainly by 
outliers and their differences from the rest of the samples. 
AMIX PLS-DA models built for discriminating PA from 
PPGL samples all resulted in samples being incorrectly 
classified (Table 2S). In fact, the CPMG method resulted 
in the highest number of misclassified samples, probably 
because of outliers (Fig. 4b) that skew sample distribution 
and limit the performance of PLS-DA. On the other hand, 
the SPEAQ models resulted in no misclassifications. In addi-
tion, the optimum number of latent variables was usually 
lower in SPEAQ models, indicating group separation as the 
dominating source of variance. Differences in signature of 
differentiation based on the UF models (AMIX and SPEAQ) 
are summarized in Table 3S. Although a higher percentage 
of variables are VIPs for the AMIX dataset, more than half 
are integrals of regions with no detectable signals (noise 
variables). Also, there are buckets of regions containing 
only parts of peaks (split peaks), a phenomenon not pos-
sible with peak picking. Finally, more variables could be 
assigned to multiple metabolites in the AMIX than in the 
SPEAQ-derived signature. In light of these differences, we 
elected to continue with analyses of solely peak data for the 
comparison of sample preparation methods to each other.

Focusing on SPEAQ results, which led to a lower number 
of both latent variables and misclassifications (Table 2S), the 
differences based on the PLS-DA VIP list are summarized 
in Table 4S. LED resulted in PLS-DA-derived signatures, 
which had more peaks as well as metabolites in common 
with UF than CPMG did. We therefore concluded that the 
LED method is a more appropriate approach for large scale 
metabolomics and we assessed its quantification capabilities.

3.2  LED quantification assessment

The initial experiment on 8 replicates samples was used 
to compare TSP to MA signals in filtered and unfiltered 
samples. The TSP signal in unfiltered samples had a lower 
intensity and had a much greater peak width than in filtered 
samples (11 Hz vs. 1 Hz, respectively). On the contrary, the 
MA peak had an peak width of ~ 1 Hz in filtered and unfil-
tered samples and in all samples the satellite peaks were 
visible (Fig. 2S). These results indicate MA does not bind to 
macromolecules (as opposed to TSP) and corroborate its use 
as an internal standard in unfiltered plasma NMR studies.

3.2.1  Linearity of Response

Results of the linearity assessment are summarized in 
Table 5S. All adjusted coefficients of determination  (R2) 
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Fig. 3  Comparison of the dif-
ferent macromolecular signal 
suppression NMR methods: dif-
fusion edited (LED), T2-relax-
ation edited (CPMG), and the 
ultrafiltration of large molecules 
NOESY NMR spectrum. a The 
aromatic region, b the area from 
3.1 to 2 ppm and c the area 
from 0.7 to 1.9 ppm. In each 
area, the peaks detectable by 
the LED method are annotated, 
whereas those only detectable 
in UF are assigned therein. 
The most striking differences 
between methods include the 
suppression of macromolecular 
signals and metabolites lysine, 
ornithine and phenylalanine that 
are detectable in LED but not in 
CPMG spectra
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were above 0.75 for all models, and significant, with a P 
value less than 0.05, indicative of a linear relationship.

3.2.2  LOD/LOQ

Metabolite LODs were all in the low micromolar range. 
All LOD and LOQ values for metabolites measured can 
be found in Table 5S.

3.2.3  Recovery

Recovery percentages can be found in Table 6S, for all 
metabolite quantities added in the standard addition 
experiments. Average recovery was higher than 65% for all 
metabolites except for creatinine. Furthermore, convoluted 
signals presented with observed recovery of above 100%, 
while, as a rule, lower concentrations were accompanied 
by lower recovery rates.

3.2.4  Agreement with amino acid assay

For threonine, a positive overall bias of 21 μM was found, 
with analyte range from − 13 to 47 μM, indicating limited 
agreement, as this bias is observed even at low concentra-
tions. A negative bias of 4 μM was found for Methionine, 
and differences range from − 9 to 2 μM, indicating accepta-
ble agreement. Glycine results seem to partially agree, since 
there is a negative average bias (indicating protein binding) 
of 20 μM and differences (− 106–65 μM) are low compared 
to the concentrations of this analyte. Lysine was quantified 
both using Chenomx and by directly integrating the peak at 
3.01 ppm, but overall agreement was low in both cases, with 
NMR results being consistently lower than AAA when using 
Chenomx and higher after direct integration. Alanine pre-
sented with an average lack of bias, which ranged from − 116 
to 82 μM and, just like glycine, small differences compared 
to this metabolite’s levels (Fig. 3S). The limited agreement 
found for lysine and threonine can be attributed to the high 
level of convolution their signals present with.

Fig. 4  PCA score plots of the first two principal components, 
obtained after the generalized logarithm was applied as a scaling 
method on the data collected from each method. a UF bucket table, b 
CPMG bucket table, c LED bucket table, d UF peak table, e CPMG 

peak table and f LED peak table. The first principal components 
mainly explain differences outliers have from the rest of the dataset in 
AMIX models, but group differences in SPEAQ models
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3.2.5  Repeatability

The inter-batch median RSD for all metabolites was found to 
be 10.8%, slightly lower than the 11.4% median intra-batch 
RSD. A total of 91 (85%) out of all 107 peaks detected had 
an inter-batch RSD < 30%, whereas 93 (87%) of all peaks 
had an intra-batch RSD below 30%. Highly variable peaks 
were either near the detection limit, high intensity or in close 
proximity to other peaks.

4  Discussion

We describe here a comparison of methods for analyzing 
plasma samples with 1H-NMR spectroscopy for large stud-
ies, with the aim of separating groups of samples on the 
basis of untargeted metabolome differences. We compare 
the performance of the proposed approach to the commonly 
used CPMG method, on the basis of detected NMR signals 
and sample classification using multivariate statistics, using 
the UF as a gold standard for the comparison. For large stud-
ies, UF is not applicable but when comparing LED to CPMG 
spectra, an important result found was the increased number 
of detectable metabolites in LED spectra combined with a 
more efficient suppression of macromolecular signals. This 
is the first time that LED is shown, experimentally, not to 
suffer from these known (de Graaf and Behar 2003) limita-
tions of the relaxation-editing CPMG method. In our cur-
rent study, we demonstrate that, when applied in a simple 
sample classification experiment (separating PA from PPGL 
replicates) using supervised MVA, the metabolic signature 
of the LED model closely resembles the one derived from 
UF results, whereas the CPMG-derived list of VIPs gives 
rise to important differences with this gold standard. Even 
so, the definitive performance of our LED-based workflow 
on a large sample set with the goal of disease biomarker 
discovery remains to be assessed, as this analysis was done 
on a relatively limited sample cohort of replicates (18 in 
total, 9 per group). A method that has been demonstrated 
to be even more accurate especially in terms of metabolite 
quantitation involves methanol precipitation (Nagana Gowda 
and Raftery 2014), but was not selected as a gold standard 
due to residual macromolecule signals and the fact that it 
is mostly aimed at targeted studies, which are difficult to 
implement to large cohorts even in plasma, given variations 
in peak widths and chemical shifts that introduce artificial 
variance when automated (Bingol 2018).

We also present optimization results of the spectral pro-
cessing pipeline. As described in the results section, a peak 
picking algorithm implemented in R package “SPEAQ” was 
selected after comparison with conventional binning. This is 
because, relative to spectral binning, the peak picking work-
flow used in our study leads to more accurate multivariate 

models for group separation by ignoring noise signals that, 
by definition, only offer information useful for analytical 
measurements. The workflow selected also results in more 
robust models that are less affected by technical outliers, 
at least based on our data. The VIP signature obtained by 
SPEAQ models, is also an advantage compared to AMIX. It 
is more closely related to metabolites (since less noise vari-
ables were found to be important) and interpretation is more 
direct, because a fewer number of peaks arise from multiple 
metabolites. These advantages are of particular importance 
for building supervised classification models since their 
accuracy (and thus their usefulness for making predictions) 
is dependent on the amount of variation explained that is 
relevant to the biological question (Westerhuis et al. 2010). 
Although there are newer and more efficient alternatives to 
binning (Emwas et al. 2018), the approach described is still 
used in recent publications (Castiglione Morelli et al. 2019; 
Hanifa et al. 2019; Jiang et al. 2019; Singh et al. 2019), 
while the method provided by the SPEAQ R package is an 
improvement, based on both our results presented here and 
the corresponding paper (Beirnaert et al. 2018). The absence 
of an alignment step can be explained by both the relatively 
stable chemical shift for peaks across samples, due to sta-
ble pH, explained by blood homeostasis and the use of a 
buffer solution. Furthermore, the SPEAQ peak picking pro-
cedure includes a peak grouping step which groups peaks 
with a slightly different chemical shift, as detected during 
peak picking (Beirnaert et al. 2018). Following peak picking 
and grouping, the workflow is made complete by a num-
ber of additional steps, which are all based on the protocol 
described by Southam et al. (2017). Given how peak picking 
is selected as a superior method to equidistant bucketing, 
this protocol and all its steps are made relevant to the data 
used in our study. Notable deviations from this workflow 
include the scaling of all detected peaks to the MA signal 
before PQN and the lack of batch correction. The use of the 
quantification reference for peak scaling was selected after 
comparison with the performance of total intensity scaling, 
which resulted in metabolite signal intensity values incon-
sistent with manual integration results (data not shown). 
Batch correction was not carried out, but any future applica-
tions of this method should include investigations of within- 
or between-batch effects. Intra-batch effects could be more 
likely, in fact, due to the absence of cooling on the carousel 
of the NMR spectrometer employed. Our results were found 
not to correlate with the order we analyzed our samples, 
due to proper randomization and an already high statistical 
power achieved when separating groups of replicate sam-
ples. However, it is recommended that the maximum number 
of samples per batch be estimated before implementation 
of the complete procedure to biomarker discovery studies.

We also introduce MA as an internal standard for untar-
geted metabolomics. As presented in this study, the MA 
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peak at 6 ppm does not broaden in unfiltered compared to 
filtered samples, unlike TSP, the internal standard most fre-
quently used. Even so, MA is a weak chemical shift axis 
calibration reference, owning to its singlet’s strong chemi-
cal shift dependency on pH. It is for this reason that plasma 
samples are calibrated to the glucose doublet at 5.22 ppm 
which is quite stable across samples and runs. Furthermore, 
the performance of MA in scaling NMR spectra has not been 
compared to that of other alternatives, such as the ERETIC 
virtual internal standard (Akoka et al. 1999; Albers et al. 
2010), DSA (Alum et al. 2008) or formic acid (Beckonert 
et al. 2007).

To evaluate quantification, previous work (de Graaf and 
Behar 2003) compared diffusion-edited NMR to ultrafiltra-
tion and found excellent correlation between the two for 
most metabolites, with the exception of glycerol and citrate 
the levels of which were influenced by the use of filters. In 
our own work, quantification was assessed using the stand-
ard addition method and by comparison to a dedicated and 
validated analytical method for amino acids. A strong lin-
ear relationship was found based on the standard addition 
experiment for all metabolites investigated. Recovery results 
were mainly limited by signal convolution and by the inher-
ent disadvantage of NMR methods in quantifying the bound 
fraction of a metabolite to protein. Method agreement was 
acceptable for most metabolites, but limited for lysine and 
threonine due to overlap with creatine and glycerol reso-
nance signals, respectively. Although ultrafiltration is infe-
rior to methanol precipitation in accurate plasma metabo-
lite quantification according to the work of (Nagana Gowda 
and Raftery 2014), our results agree with theirs. Another 
consideration that may warrant investigation is the usage 
of pooled samples of the population under study in order to 
determine the appropriate correction factors as proposed by 
Wallmeier et al. (2017), although this would be applicable 
only to studies where ample research sample volume is avail-
able for QC samples. To evaluate repeatability, both inter- 
and intra-batch RSD of all peaks was calculated. Median 
RSD for inter- as well as intra-batch was found to be well 
below the FDA cutoff of 30% (Crews 2013) for 85–87% 
of all peaks. Nevertheless, 13–15% of the total number of 
peaks were found to have relatively high intra- and inter-
batch RSD. These peaks were the result of peak picking 
errors, which can be explained by either low resolution due 
to a peak being near the detection limit, heteroscedasticity 
that results in high variance in high intensity peaks or the 
presence of nearby signals, which led to the algorithm used 
missing the peak in question in a subset of samples.

5  Conclusions

In conclusion, here we present a comparison of 1H-NMR 
approaches for analyzing the human plasma metabolome, 
using a streamlined process for generating multivariate mod-
els. Although the traditional UF still detected the largest 
number of metabolites, LED is capable of detecting more 
metabolites and leads to PLS-DA models more similar to 
UF than CPMG, an important conclusion given that CPMG 
is the method of choice for large scale NMR metabolomics. 
Thus, we propose a facile new approach that was shown to 
be a viable alternative to the laborious and time-consuming 
conventional UF, more appropriate and cost-efficient for 
large-scale studies. Overall, our results suggest that the pro-
posed approach is expected to yield valuable results in stud-
ies aimed at patient stratification and big data integration, 
and lead to new metabolites for detecting disease.
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