
v1.0.0GitLab - Everyone can contribute https://about.gitlab.com/

GIT CHEATSHEET
A. GIT INSTALLATION

For GNU/Linux distributions Git should be available in the standard
system repository. For example in Debian/Ubuntu please type in
the terminal:

If you want or need to install Git from source, you can get it from
https://git-scm.com/downloads.

An excellent Git course can be found in the great Pro Git book by
Scott Chacon and Ben Straub. The book is available online for free
at https://git-scm.com/book.

$ sudo apt-get install git

B. IGNORING FILES

$ cat .gitignore

Thanks to this file Git will ignore all files in logs directory (excluding
the .gitkeep file), whole tmp directory and all files *.swp. Described file
ignoring will work for the directory (and children directories) where .gitignore
file is placed.

/logs/*

!logs/.gitkeep

/tmp

*.swp

1. GIT CONFIGURATION

$ git config --global user.name "Your Name"

Set the name that will be attached to your commits and tags.

$ git config --global user.email "you@example.com"

Set the e-mail address that will be attached to your commits and tags.

$ git config --global color.ui auto

Enable some colorization of Git output.

2. STARTING A PROJECT

$ git init [project name]

Create new local repository. If [project name] is provided, Git will create
a new directory named [project name] and will initialize a repository inside it.
If [project name] is not provided, then a new repository is initialized in current

directory.

$ git clone [project url]

Downloads a project with entire history from the remote repository.

3. DAY-TO-DAY WORK

$ git status

See the status of your work. New, staged, modified files. Current branch.

$ git diff [file]

Show changes between working directory and staging area.

$ git diff --staged [file]

Show changes between staging area and index (repository commited status).

$ git checkout -- [file]

Discard changes in working directory. This operation is unrecoverable.

$ git add [file]

Add a file to the staging area. Use . instead of full file path, to add all
changes files from current directory down into directory tree.

$ git reset [file]

Get file back from staging area to working directory.

$ git commit [-m "message here"]

Create new commit from changes added to the staging area. Commit must
have a message! You can provide it by -m. Otherways $EDITOR will be opened.

$ git stash

Put your current changes into stash.

$ git stash pop

Apply stored stash content into working directory, and clear stash.

$ git status

Clear stash without applying it into working directory.

$ git stash drop

$ git rm [file]

Remove file from working directory and add deletion to staging area.

4. GIT BRANCHING MODEL

$ git branch [-a]

List all local branches in repository. With -a: show all branches (with remote).

$ git branch [name]

Create new branch, referencing the current HEAD.

$ git checkout [-b] [name]

Switch working directory to the specified branch. With -b: Git will create the
specified branch if it does not exist.

$ git merge [from name]

Join specified [from name] branch into your current branch (the one you are
on currenlty).

$ git branch -d [name]

Remove selected branch, if it is already merged into any other. -D instead of
-d forces deletion.

GitLab - Everyone can contribute https://about.gitlab.com/ v1.0.0

GIT CHEATSHEET

5. REVIEW YOUR WORK

$ git log [-n count]

List commit history of current branch. -n count limits list to last n commits.

$ git log --oneline --graph --decorate

An overview with references labels and history graph. One commit per line.

$ git log ref..

List commits that are present on current branch and not merged into ref.
A ref can be e.g. a branch name or a tag name.

$ git log ..ref

List commit, that are present on ref and not merged into current branch.

$ git reflog

List operations (like checkouts, commits etc.) made on local repository.

6. TAGGING KNOWN COMMITS

$ git tag

List all tags.

$ git tag [name] [commit sha]

Create a tag reference named name for current commit. Add commit sha to
tag a specific commit instead of current one.

$ git tag -a [name] [commit sha]

Create a tag object named name for current commit.

$ git tag -d [name]

Remove a tag from a local repository.

7. REVERTING CHANGES

$ git reset [--hard] [target reference]

Switch current branch to the target reference, and leaves a difference as an
uncommited changes. When --hard is used, all changes are discarded.

$ git revert [commit sha]

Create a new commit, reverting changes from the specified commit. It
generates an inversion of changes.

8. SYNCHRONIZING REPOSITORIES

$ git fetch [remote]

Fetch changes from the remote, but not update tracking branches.

$ git fetch --prune [remote]

Remove remote refs, that were removed from the remote repository.

$ git pull [remote]

Fetch changes from the remote and merge current branch with its upstream.

$ git push [--tags] [remote]

Push local changes to the remote. Use --tags to push tags.

$ git push -u [remote] [branch]

Push local branch to remote repository. Set its copy as an upstream.

C. THE ZOO OF WORKING AREAS

stash

index
(staging area)

repository

working
directory

You do all the
hacking right here!

A kind of a shelf
for the mess

you don't want to include.

git stash

git stash pop

git reset HEAD

git add

Only index will be
committed.

Choose wisely
what to add!

git commit

Changes commited here
will be safe.

If you are doing backups!
You are doing it, right!?

local repository

remote repositories

remote repo
(name: origin)

remote repo
(name: public)

Remote repository
named origin?

You've probably made
git clone from here.

Another remote repository.
Git is a distributed version conrol

system. You can have as many
remote repositories as you want.

Just remeber to update them
frequently :)

git push public mastergit pushgit fetch
or

git pull

D. COMMITS, BRANCHES AND TAGScommit an object

branch a reference to a commit; can have a tracked upstream

tag a reference (standard) or an object (annotated)

HEAD a place where your working directory is now

fi
x/a

origin/fi
x/a

This is an upstream branch

This is a local branch.
It is 3 commits ahead,
you see it, right?

This is a normal commit,
it has one parent

This is a merge commit,
it has two parents!

m
aster

H
EA

D

This is also
a local branch

Your working directory
is here

This is an initial commit,
it has no parents

v1.0.1This is a tag. It looks like a
version so it's probably an object

(annotated tag)

 A n d t h i s i s t h e p a s t . H e r e w a s c h a o s ,

 w h e r e n o v e r s i o n c o n t r o l w a s u s e d .

 D o n ' t l i v e i n c h a o s !

 U s e G i t !

w
orking-version

This is a tag. It looks like a developer's
note so it's probably a reference,

not an object.

