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A B S T R A C T

In this paper we report on improving part segmentation performance for robotic vision using convolutional
neural networks by optimising the visual realism of synthetic agricultural images. In Part I, a cycle consistent
generative adversarial network was applied to synthetic and empirical images with the objective to generate
more realistic synthetic images by translating them to the empirical domain. We hypothesise that plant part
image features (e.g. color, texture) become more similar to the empirical domain after translation of the syn-
thetic images. Results confirm this with an improved mean color distribution correlation with the empirical data
prior of 0.62 and post translation of 0.90. Furthermore, the mean image features of contrast, homogeneity,
energy and entropy moved closer to the empirical mean, post translation. In Part II, 7 experiments were per-
formed using convolutional neural networks with different combinations of synthetic, synthetic translated to
empirical and empirical images. We hypothesise that the translated images can be used for (i) improved learning
of empirical images, and (ii) that learning without any fine-tuning with empirical images is improved by
bootstrapping with translated images over bootstrapping with synthetic images.

Results confirm our hypotheses in Part II. First a maximum intersection-over-union performance was achieved
of 0.52 when bootstrapping with translated images and fine-tuning with empirical images; an 8% increase
compared to only using synthetic images. Second, training without any empirical fine-tuning resulted in an
average IOU of 0.31; a 55% performance increase over previous methods that only used synthetic images. The
key contribution of this paper to robotic vision is to provide supporting evidence that domain adaptation can be
successfully used to translate and improve synthetic data to the real empirical domain that results in improved
segmentation learning whilst lowering the dependency on manually annotated data.

1. Introduction

A key success factor of robotics performance is a robust underlying
perception methodology that can distinguish and localise object parts
(Bac et al., 2013; Gongal et al., 2015; Bac et al., 2014). In order to train
state-of-the-art machine learning methods that can achieve this feat,
large annotated empirical image datasets remain required. Synthetic
images can help bootstrapping such methods in order to reduce the
required amount of annotated empirical data (Barth et al., 2017a).
However, a gap in realism remains between the modelled synthetic
images and the empirical ones, plausibly restraining synthetic boot-
strapping performance.

The long term objective of our research is to improve plant part
segmentation performance, applied in the field of agricultural robotics.
Previous work performed synthetically bootstrapping deep

convolutional neural networks (CNN) (Barth et al., 2017a). In this
paper we report on optimising the realism of rendered synthetic images
modelled from empirical photographical data (Barth et al., 2017b) that
was used in our previous work. We first hypothesise that the dissim-
ilarity between synthetic and empirical images can be qualitatively and
quantitatively reduced using unpaired image-to-image translation by
cycle-consistent adversarial networks (Cycle-GAN) (Zhu et al., 2017).
Furthermore, we secondly hypothesise that the synthetic images
translated to the empirical domain can be used for improved learning of
empirical images, potentially further closing the performance gap that
remained previously when bootstrapping only with synthetic data
(Barth et al., 2017a). Additionally, our third hypothesis is that without
any fine-tuning with empirical images, improved learning of empirical
images can be achieved using only translated images as opposed to
using only synthetic images.
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The key contribution of this paper to robotic vision is to provide
supporting evidence that domain adaptation can be successfully used to
translate and improve synthetic data to the real empirical domain that
results in improved segmentation learning whilst lowering the de-
pendency on manually annotated data.

The contributions of this work to the field of domain adaptation are
twofold, both aimed to verify the translation performance. First, a
method is provided to analyse class color distributions and images
features such as contrast, homogeneity, energy and entropy. Second, an
approach is given to exhaustively analyse the effect of different training
paradigms and dataset compositions and sizes on classification perfor-
mance. Together, these methods support confirming the relevancy and
effectiveness of synthetic data combined with domain adaptation for
learning.

1.1. Theoretical background

Convolutional neural networks recently have shown state-of-the-art
performance on many image segmentation tasks (Chen et al., 2017;
Long et al., 2015b; Chen et al., 2018). However, CNNs require large
annotated datasets on a per-pixel level in order to successfully train the
large number of free parameters of the deep network. Moreover, in
agriculture the high amount of image variety due to a wide range of
species, illumination conditions and morphological seasonal growth
differences, leads to an increased annotated dataset size dependency.
Satisfying this requirement can quickly become a bottleneck for
learning.

One solution is to bootstrap CNNs with synthetic images including
automatically computed ground truths (Dittrich et al., 2014; Ros et al.,
2016). Consequently, the bootstrapped network can be fine-tuned with
a small set of empirical images, which can result in increased perfor-
mance over methods without synthetic bootstrapping (Barth et al.,
2017a).

Previously we have shown methods to create such a synthetic da-
taset by realistically rendering 3D modelled plants (Barth et al., 2017b).
Despite intensive manual optimisation for geometry, color and textures,
we have shown that a discrepancy remains between the synthetic and
empirical images. Although this dataset can be used for successful
synthetic bootstrapping and improved empirical learning, there re-
mained a difference between the achieved performance and the theo-
retical optimal performance (Barth et al., 2017a).

Recently, the advent of generative adversarial networks (GAN) in-
troduced another method of image data generation (Goodfellow et al.,
2014). In GANs two deep convolutional neural networks are trained
simultaneously and adversarially: a generative model G and a dis-
criminative model D. The generative model’s goal is to capture the
feature distribution of a dataset by learning to generate images thereof
from latent variables (e.g. random noise vectors). The discriminative
model in turn evaluates to what extent the generated image is a true
member of the dataset. In other words, model G is optimised to trick
model D while model D is optimising to not get fooled by model G. As
both models can be implemented as CNNs, the error can be back-pro-
pagated to minimise the loss of both models simultaneously. The result
after training is a model G that can generate new random images highly
similar to the learned dataset. This method is useful if one wants to
generate more similar images from the same domain. Given that this
does not provide a corresponding ground truth, this method was not
pursued for this paper, although as we’ll see later, it does provide a
fundamental building block towards the method that was used.

In later approaches, GANs were conditioned with an additional
input image from another domain (Isola et al., 2017), forming an image
pair that had some relation with each other (e.g. a color image and its
label or class mapping). The generator was tasked with image-to-image
translation to create a coherent image (e.g. color) from a corresponding
pair image (e.g. label map). The discriminator’s goal is then to evaluate
if input pairs are either real or generated. The loss can then be fed back

to both the discriminator and generator to improve on their tasks. The
result after training is a generator G that can translate images from one
domain X (e.g. color images) to images in another domain Y (e.g. label
maps) or more formally notated as G: X Y. Given that this method does
not provide additional novel training pairs, we also did not pursue this
method for this paper, although again this methodology provides a
useful building block for our work. A requirement for image-to-image
translation using conditional GANs, is that images from both domains
are geometrically paired. For our objective of translating images from
the synthetic domain to the empirical domain, this requirement was not
met because images from both domains did not geometrically corre-
spond one-to-one.

A recent approach aimed to dissolve this paired geometry require-
ment by investigating unpaired image-to-image translation (Zhu et al.,
2017). In cycle-consistent adversarial networks (Cycle-GAN), a map-
ping G: X Y is learned whilst at the same time also the inverse mapping
F: Y X is learned. Both domains X and Y have corresponding dis-
criminators DX and DY . Hence, DX ensures G to translate X similar to Y
whilst DY tries to safeguard a preferably indistinguishable conversion of
Y to X.

However since the domains are unpaired, the translation at this
point does not guarantee that an individual image x X is mapped to a
geometrically similar image in domain Y (or vice versa y Y to X). This
is because there are boundless mappings from x that result in the same
target distribution of Y. Therefore the mapping needs to be constrained
in a way such that the original geometry is maintained.

To achieve that, a cycle consistency loss was added to further reg-
ularise the learning (Zhu et al., 2017). Given a sample x X and y Y, a
loss was added to the optimisation such that F(G(x)) x and G(F(y))
y. Hence, the learning was therefore constrained by the intuition that if
an input image is translated from one domain to the other and then
back again, an image should result similar to the original input. This
similarity is captured by the cycle consistency loss, which forces the
generators G and F to achieve unpaired geometrically consistent image-
to-image translation from one domain to the other and vice versa.

In Fig. 1 a schematic is shown of this learning process. Note that this
method was pursued for this paper, because it allows to create a large
dataset of images in the empirical domain. Furthermore, the key utility
lies in the image pair P, in which the ground truth class mapping from
the synthetic images could also be used for the translated synthetic
images to the empirical domain. Moreover, the method does not require
any annotations of empirical images.

1.2. Related work

When it first became clear that the new generation of classifiers, e.g.
convolutional neural networks, could cope and benefit from large da-
tasets, the use of synthetic image generation was investigated (Shotton
et al., 2011; Wood et al., 2016; Qiu and Yuille, 2016; Richter et al.,
2016a,b). Although pre-training with images from the synthetic domain
was beneficial, often a performance gap remained compared to training
with equally large datasets of the real empirical domain. This gap was
thought to be caused by a dataset bias (Quionero-Candela et al., 2019),
notably in a difference in realism, that was still to large for the learning
algorithms to bridge.

Approaches to reduce this gap, intersect with the emerged specia-
lised field of domain adaptation (Saenko et al., 2010) as a part of the
larger transfer learning problem (Csurka, 2017), where labeled data in
related source domains are used to learn new or unlabelled data in a
target domain. The differences between domains may include visual
features such as lighting or color arrangements, but also camera prop-
erties and poses. Additionally, some classes may be absent in one set or
have a different distribution in another.

In the beginning, domain adaptation aligned features from both
domains using correlation distance (Sun and Saenko, 2016) or max-
imum mean discrepancy (Long et al., 2015a), but these methods were
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limited by semantic consistency. Approaches to overcome this used
generative adversarial methods and worked on the raw pixel space
(Shrivastava et al., 2017). For example by using GANs with synthetic
images as inputs instead of random vectors while preserving the an-
notation information, achieving state-of-the-art results for pose or gaze
classification (Shrivastava et al., 2017). Similarly, the opposite can also
be achieved by a reverse flow, for example in the medical domain
where adversarial training was used to make real images more like
synthetic images, and clinically-relevant features are preserved via self-
regularization (Mahmood et al., 2018). The translated images were
then interpreted by networks trained on large datasets of synthetic
medical images.

The Cycle-GAN approach, applied in this paper, expands on this
GAN approach to the domain of semantic segmentation, by allowing for
unpaired image-to-image translation whilst re-using the synthetic dense
pixel annotations. However, also this method is limited in ensuring the
transfer of semantic information and has limited domain shift cap-
ability, for example when the classes between sets differ.

Recent results in parallel to this work have shown further progress
to allow unsupervised domain adaptation for pixel-level semantic seg-
mentation for improving the realism of synthetic datasets. Currently,
novel methods are proposed that work both on the feature-level and
pixel-level. The Cycle-Consistent Adversarial Domain Adaptation model
(CyCADA) uses a cycle-consistency los similar to Cycle-GAN to ensure
the preservation of pixel information but adds a semantic labeling loss
to ensure semantic consistency (Hoffman et al., 2018). Applied to a
synthetic-to-real scenario in a semantic segmentation task, the perfor-
mance gap caused by the previous disparity in realism was almost
closed.

Another effort in this direction is a domain adaptive semantic seg-
mentation method, with the aim to learn a fully convolutional network
semantic segmentation model which is adapted for use on the un-
labelled target domain (Hoffman et al., 2016). The method uses domain
adversarial learning for global domain alignment, while using a class-
aware constrained loss for transferring the spatial layout.

The emergence of the field is further acknowledged by the recent
release of benchmarks for synthetic-to-real visual domain adaptation
(Peng et al., 2018).

1.3. Outline

The paper is structured in 2 parts, each with their corresponding
materials, methods, discussion and conclusion sections. Part I describes
the image-to-image translation from the synthetic rendered domain to
the empirical photographic domain. Part II validates the proposed ap-
proach of Part I by studying the effect on segmentation learning, using
the translated images from Part I. The paper ends with a general dis-
cussion and conclusion.

2. Part I: image-to-image translation

In this first part of the paper we describe and analyze the unpaired
image-to-image translation on agricultural images from the synthetic to
the empirical domain and vice versa. The main objective was to obtain
pairs of images P consisting of an image translated from the synthetic to
the empirical domain, and a corresponding ground truth map (see
Fig. 1).

2.1. Materials

2.1.1. Image dataset
The unpaired image dataset (Barth et al., 2017b) of Capsicum an-

nuum (sweet- or bell pepper) was used that consists of 50 empirical
images of a crop in a commercial high-tech greenhouse and 10,500
corresponding synthetic images, modelled to approximate the empirical
set visually. In both sets, 8 classes were annotated on a per-pixel level,
either manually for the empirical dataset or computed automatically for
the synthetic dataset. In Fig. 2 examples of images in the dataset are
shown. The dataset was publicly released at:

Both synthetic and empirical images were first cropped to 424x424

Fig. 1. Learning schematic of a cycle generative
adversarial network. In each learning step, gen-
erator G receives an image from domain X and
generator F receives an image from domain Y.
Each generator is trained to transform the input
image to the other domain. A discriminator Y
and discriminator X for each corresponding do-
main is trained to distinguish between generated
and original domain images. From those first set
of generated images, the opposing generator
then synthesizes the second set of images back to
its original domain (which ideally should result
in the original domain image). A cycle con-
sistency loss is then calculated by comparing the
second set of images with the initial input image.
The loss of both discriminators and cycle con-
sistency is fed back to both generators for
learning. In this example, each generator learns
to synthesise an image to the opposing domain,
whilst remaining geometrically consistent. This
example was pursued in this paper to obtain
image pair P, consisting of the label lx that cor-
responds to xy; the translated image from do-
main X to Y. Note that pair P is not input of
Discriminator Y, only the color image from
Generator G is.
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pixels to exclude the robot end-effector’s suction cup in the image,
because initial image-to-image translation experiments showed the cup
was replicated undesirably in other parts of the image. This was in line
with previous findings from the same authors where color and texture
translation often succeeded, but domains with a large geometric var-
iation were translated with less success (Zhu et al., 2017). Secondly, the
image was resampled bilinearly to a resolution of 1000 × 1000 pixels
as additional experiments during Part II showed upscaling improved the
learning.

From the Capsicum annuum dataset, the synthetic images 1–1000
were used for training the model for translation, which was applied to
translate the full dataset thereafter. For the empirical images, 50 an-
notated images of the Capsicum annuum dataset were used for testing,
whereas for training 175 non-annotated images were used that were not
part of the released dataset, but were collected during the same data
acquisition experiment.

2.1.2. Software
The Berkeley AI Research (BAIR) laboratory implementation of

unpaired image-to-image translation using cycle-consistent adversarial
networks was used (Zhu et al., 2017).

2.1.3. Hardware
Experiments were run on a NVIDIA DevBox system with 4 TITAN X

Maxwell 12 GB GPUs, Intel Core i7-5930 K and 128 GB DDR4 RAM
running Ubuntu 14.04.

2.2. Methods

The adversarial learning scheme in Fig. 1 was applied with synthetic
images as domain X and empirical images as domain Y. The hyper-
parameters of the Cycle-GAN were manually optimised by visually
evaluating the resulting images with their target domain. The number
of generative and discriminative filters were set to 50 and the learning
rate was set to 0.0002 with an ADAM (Kingma and Ba, 2017) mo-
mentum term of 0.5. The basic discriminator model was used, whereas
for the generator the RESNET 6 blocks model was used (He et al.,
2016). Weights for the cycle loss were set to 10 for each translation
direction.

2.2.1. Quantitative translation evaluation
Although the success of the translation is already quantitatively

captured by the adversarial loss, this measure is biased and mathema-
tically obfuscated. By specifically looking at key image features like
color, contrast, homogeneity, energy and entropy, it could be derived if
the translated images improved on those features. This would provide
evidence about the dissimilarity gap between the synthetic and em-
pirical domains.

For this purpose, we first compared for each object part class the
synthetic color distribution prior and post translation with those of the
empirical distribution. The color spectrum of each class was obtained
by first transforming the color images to HSI colorspace. The Hue
channel in the transformed image represented for each pixel which
color was present, regardless of illumination and saturation intensity.
The histogram of this channel was then taken to count the relative color
occurrence per class.

As we hypothesise that the color difference between the synthetic and
the empirical domain images will be reduced after translation of the
synthetic images, the correlations of the color distributions of each object
part class were compared for (i) the empirical images and the synthetic
images, and (ii) the empirical images and the translated images.

Second, to obtain additional image features, first an average gray
level co-occurrence matrix (GLCM) (Haralick et al., 1973) was calcu-
lated for each class for the first 10 images in the synthetic, synthetic
translated to empirical and empirical sets. The GLCM summarises how
often a pixel with a certain intensity value i occurs in a specific spatial
relationship to a pixel with the intensity value j. This relationship was
set to address horizontally neighbouring pixels only. From the GLCM,
the following features were derived:

Contrast = i j GLCM i j| | ( , )i j,
2 , measuring the overall difference

in luminance between neighbouring pixels.
Homogeneity = +i j

GLCM i j
i j,

( , )
1 | | , a value that measures the closeness

of the distribution of elements in the GLCM to the GLCM diagonal,
which implies that high values of homogeneity reflect the absence of
changes in the image and indicates a locally homogenous distribu-
tion in image textures.
Energy = GLCM i j( , )i j,

2, a measure of texture crudeness or dis-
order.

Fig. 2. Uncropped examples of empirical (top row)
and synthetic (bottom row) color images (left
column) and their corresponding ground truth la-
bels (right column). Part class labels: background,

leafs, peppers, peduncles, stems, shoots
and leaf stems, wires and cuts where pepper
where harvested.
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Entropy = ln GLCM i j GLCM i j( ( , ))· ( , )i j, , measuring the
amount of information or complexity in the image.

2.3. Results

In Fig. 4 the results of the image-to-image translations are shown.
The second column is of most interest to our research, as it shows the
set Xy of synthetic images which were translated to the empirical do-
main. However, as a reference also the translation from empirical to the
synthetic domain is shown in the third column.

The color distributions for each object part class for the synthetic,
empirical and translated synthetic images are shown in Fig. 3. The
corresponding correlations between the empirical images and the syn-
thetic as well as translated synthetic images are shown in Table 1.

For the image features contrast, homogeneity, energy and entropy,
the results per class for the synthetic, empirical and synthetic translated
to empirical images are shown in Fig. 5. The difference of 0.100 was
found in contrast averaged over all classes between the synthetic and
empirical set, whereas this difference was reduced to 0.015 for the
translated and the empirical set. Similarly, for homogeneity this was
reduced from 0.028 to 0.015. For the energy feature, this was reduced
from 0.126 to 0.026. Regarding entropy, the average difference was
reduced from 0.364 to 0.003.

2.4. Discussion and conclusion

Qualitative visual evaluation of the results in Fig. 4 showed a re-
markable translation of synthetic images to empirical looking images
and vice versa. Most notably the scattering of illumination and color of
each plant part were converted realistically. It also appeared that the
model learns to distinguish plant parts without any supervised in-
formation, as the (partially) ripe and unripe fruit were often translated
to the other domain with altered maturity levels. A difference in camera
focus seemed translated properly, indicating that local features (e.g.
edge blur and texture) can be mapped accurately.

Some image artifacts did arise however, especially the translation of
overexposed areas like sunshine or fruit reflections. The explanation
might be that the model cannot generate this information correctly
because any information beyond overexposure prior translation was
already collapsed to a single maximum value (e.g. 255). Furthermore,
an overlay of a checkerboard-like texture seems to have been added to
the translated local textures, which might be preventable in the future
(Odena et al., 2016).

The image-to-image translation method appeared not to be suited
when one image set contained additional objects or parts that were
absent in the other set, such as the presence of a suction cup in our
earlier experiments. We noticed in previous experiments that this part
was undesirably replicated in other areas of the image.

In Fig. 4 we can also see that large morphological features (e.g. large
plant part shape and geometry relatively to other plant parts) were not
translated, indicating a limitation of the Cycle-GAN approach. How-
ever, since geometry was not translated, this did allow for using the
underlying synthetic ground truth labels to be used with the translated
images for Part II. If also the geometry would have been translated, then
the ground truth labels would not have been translated accordingly.

In Fig. 3, the translation effect on color distribution can be seen for
each plant part and background. Quantitatively, the mean color corre-
lation of 0.62 between the synthetic and empirical images increased post
translation to 0.90 (see Table 1 for correlations per plant part and the
mean over all plant parts). Indeed this is also what we observe in Fig. 4,
where for example the color of the fruit in the translated synthetic images
matches the empirical images more than those of the synthetic images.

When we look at the averages of the image texture features contrast,
homogeneity, energy and entropy, they were closer together when
comparing the empirical images and synthetic translated images than
when comparing the empirical images and the synthetic images. For
some individual classes this did not hold however, e.g. the homogeneity
of the cuts was erroneously doubled instead. In Fig. 4 it can indeed be
observed that local level textures of the translated synthetic images
have become more similar to those of the empirical images. For

Fig. 3. Color distributions discretized to 256 values in the hue channel (x-axis) per class of the synthetic, empirical and synthetic translated to empirical images.
Integral per distribution amounts to 1 (y-axis).

Table 1
Average color distribution correlations per object part class between (i) the empirical images and synthetic images, and (ii) the empirical images and the translated
synthetic images.

backgr. leafs peppers peduncles stems shoots wires cuts mean

correlation(synthetic, empirical) 0.25 0.78 0.42 0.93 0.76 0.83 0.45 0.48 0.62
correlation(synthetic empirical, empirical) 0.86 0.94 0.93 0.93 0.92 0.98 0.81 0.79 0.90
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example, the smoothness of the fruit in the translated synthetic images
is improved towards the empirical images, as compared to the more
coarse and grainy surface texture of the fruit in the synthetic images.

Regarding our first hypothesis, we therefore confirm that image
feature differences with the empirical set were reduced after translation
of the synthetic images, using a cycle-GAN.

This part of the work contributed to the field of computer vision
(e.g. for agricultural robotics) by providing a method for optimising
realism in synthetic training data to potentially improve state-of-the-art
machine learning methods that semantically segment plant parts, as
evaluated in Part II of this paper.

3. Part II: evaluation of translation on semantic segmentation

In order to evaluate and validate the results of the translated images,
Part II evaluates the effect of using translated images on object part
segmentation learning. Our second hypothesis states that by boot-
strapping with translated images and empirical fine-tuning, the highest
empirical performance can be achieved over methods that bootstrap with
limited dataset size of (30) empirical images or a large set (8750) of
synthetic images. With our third hypothesis in this paper, we reckon that
without any empirical fine-tuning, learning can be improved with
translated images as compared to using only synthetic bootstrapping.

Fig. 4. Image-to-image translation examples using Cycle-GAN. Source domain images prior translation are shown in the outer columns; synthetic images (left) and
empirical images (right). The second column shows the set of interest Xy; the translated synthetic images to the empirical domain. The third column shows empirical
images translated to synthetic domain.
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3.1. Materials

The synthetic and empirical datasets as described in Part I (see
Section 2.1.1) were used as well as the obtained image pairs P l x( , )x y
(see Fig. 1).

3.1.1. Software
The publicly available semantic segmentation framework DeepLab

V2 was used, which implemented convolutional neural network (CNN)
models (Papandreou et al., 2015; Chen et al., 2015) on top of Caffe (Jia
et al., 2014). Specifically, the VGG-16 network was used with a mod-
ification to include à trous spatial pyramid pooling for image context at
multiple scales by convolutional feature layers with different fields-of-
view (Chen et al., 2018; He et al., 2014).

3.1.2. Hardware
Experiments were run on the same hardware as used in Part I. As a

dependency for the DeepLab V2 Caffe version, the archived version of
CUDA 7.5 was installed.

3.2. Methods

To compare performance differences, 7 experiments were per-
formed using different combinations of train, fine-tune and test sets.
The experiments were organised into 3 groups. The first group consisted
of sanity checks and benchmarks, where in Experiments A, B and C
were trained and tested with only a single type of data; empirical,
synthetic and translated images respectively. The second group of ex-
periments bootstrapped the CNN model with synthetic data and tested
on empirical data, whilst either including (D) or omitting fine-tuning
with empirical data (E). Group 3 consisted of similar experiments as
Group 2, but interchanged the synthetic data with the domain trans-
lated images. The motivation for each experiment is given below and
the used sets and image ranges for training, fine-tuning and testing are
shown between brackets.

In order to contribute to the insights of what the effects are on the
performance given the amount of training or fine-tuning images, all
experiments are replicated whilst increasing the amount of data. To
cope with the computational costs, only limited sample sizes could be
explored. For the synthetic and translated data, the number of images
per experiment have been increased each time with an order of mag-
nitude (101, 102, 103, 10 87503.94 ). Given the small dataset size of the
empirical set, the number of images were linearly increased (10, 20 and
30 samples). Below Experiments A through G are further specified

Group 1: Sanity checks and benchmarks.

A Train Sets: empirical (#1–10 or #1–20 or #1–30).
Tes Set: empirical (#31–50).
An experiment to see if the model can learn using only a small
empirical dataset. This provides a reference for comparison of
performance with other experiments that bootstrap with synthetic
or translated synthetic images and/or fine-tune with empirical
images. Given the small training size of the dataset in this ex-
periment, the performance was expected to be low, compared to
all other experiments that tested on empirical images.

B Train Sets: synthetic (#1–10 or #1–100 or #1–1000 or #1–8750).
Test Set: synthetic (#8751–8800).
This experiment was run to obtain baseline performance of the
model when having access to a large and detailed annotated
synthetic dataset. Performance is expected to be highest of all
experiments because of the combination of perfect labels, large
dataset size and relatively low image feature variance compared
to empirical or synthetic translated images.

C Train Sets: translated synthetic (#1–10 or #1–100 or #1–1000 or
#1–8750).]

Test Set: translated synthetic (#8751–8800).
This experiment was run to obtain baseline performance of the
model when having access to a large and detailed annotated
translated synthetic dataset. The performance should be similar of
that of Experiment B, though is expected to a bit lower due to the
extra variance that the empirical feature distribution might have
introduced when synthetic images were translated to the em-
pirical domain.

Group 2: Synthetic bootstrap, empirical testing.

D Train Sets: synthetic (#1–10 or #1–100 or #1–1000 or #1–8750).
Test Set: empirical (#31–50).
A reference experiment to see to what extent a network trained
on synthetic images can generalise to the empirical domain,
without fine-tuning with empirical images. Given the similarity
gap between synthetic and empirical data, the performance
should be relatively low compared to that of Experiment A or
when compared to experiments that trained on a more realistic
dataset, e.g translated synthetic as in Experiment F.

E-1 Train Sets synthetic (#1–10 or #1–100 or #1–1000 or #1–8750).
Fine-tune Set: empirical (#1–30).
Test Set: empirical (#31–50).

E-2 Train Set: synthetic (#1–8750).
Fine-tune Sets: empirical (#1–10 or #1–20 or #1–30).
Test Set: empirical (#31–50).
Similar to Experiment C, but with an extra fine-tuning step using
empirical images. Performance is expected to be higher than C,
because the network also optimises for the empirical image fea-
ture distribution. The performance of this experiment is expected
to be lower than that of Experiment G, where the synthetic
images were replaced by translated synthetic images, because the
synthetic image feature distribution is more dissimilar with the
empirical distribution than the translated synthetic distribution
with the empirical distribution is.

Group 3: Translated bootstrap, empirical testing.

F Train Sets: translated synthetic (#1–10 or #1–100 or #1–1000 or
#1–8750).
Test Set: empirical (#31–50).
With these experiments, we could check to what extent a syn-
thetic trained network with improved realism can generalise to
the empirical domain, without fine-tuning with empirical
images. This experiment should provide the main result for our
third hypothesis that states that without any fine-tuning with
empirical images, improved learning for empirical images can be
achieved using only translated images as opposed to using only
synthetic images, as evaluated in Experiment C.

G-1 Train Sets: translated synthetic (#1–10 or #1–100 or #1–1000 or
#1–8750).
Fine-tune Set: empirical (#1–30).
Test Set: empirical (#31–50).

G-2 Train Set: translated synthetic (#1–8750).
Fine-tune Sets: empirical (#1–10 or #1–20 or #1–30).
Test Set: empirical (#31–50).
These experiments should provide the main result for our second
hypothesis, that states the synthetic images translated to the
empirical domain can be used for improved learning of empirical
images, as compared to using only synthetic images for boot-
strapping (Experiment D). Performance of this experiment was
expected to be the highest amongst all our experiments that
tested on empirical data, because a large dataset with high si-
milarity with the empirical images was used in combination with
fine-tuning on empirical images.
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3.2.1. CNN training
For each experiment, a convolutional neural network was trained

and/or fine-tuned and tested according to the dataset scheme as de-
scribed in Section 3.2.

The hyperparameters of the network were manually optimised using
separate validation datasets for combination of models and data set
configurations as suggested by Goodfellow et al. (2016) and Bengio
(2012). This resulted in using Adaptive Moment Estimation (ADAM)
(Kingma and Ba, 2017) with = = =0.9, 0.999, 101 2

8 and a base
learning rate of 0.001 for 30,000 iterations with a batch size of 4. These
chosen hyper-parameters were found to be consistently optimal pre-
viously (Barth et al., 2017a) and therefore we fixed them across con-
ditions. An adjustment was made in the layer weight initialisation
procedure, by updating the model to using MSRA weight fillers (He
et al., 2015; Mishkin and Matas, 2019). Furthermore, the dropout rate
(Srivastava et al., 2014) was adjusted to 0.50 to circumvent early
overfitting and facilitate generalisation. The size of the input layer was
cropped to 929x929 pixels, which was the maximum that our GPU
memory could handle.

3.2.2. Performance evaluation
To calculate the performance of the segmentation, we used the

Jaccard Index similarity coefficient as an evaluation procedure, also
known as the intersection-over-union (IOU) (He and Garcia, 2009)
which is widely used for semantic segmentation evaluation (Gabriela
Csurka and Larlus, 2013; Everingham et al., 2010).

3.3. Results

In Fig. 8 the average IOU over all classes for Experiments A through
G is shown. The results regarding the relationship between dataset size
and performance for each experiments is shown in Fig. 7. In Fig. 6 the
performances were split over the object part classes. Qualitative results
are presented in Fig. 9.

3.4. Discussion and conclusion

3.4.1. Group 1
In Experiment A, the aim was to investigate how the model learns to

segment empirical images using only a small empirical training dataset.
This provided a benchmark result and was expected to provide a lower
bound of the learning for experiments where empirical learning or fine-
tuning was used. Indeed compared to Experiments E and G the per-
formance was lower. Furthermore, the performance of Experiment A
was expected to be higher than experiments that tested on empirical
data but did not use any during training or finetuning. Indeed this is
confirmed by the lower performance of Experiments D and F.

Regarding the effect of dataset size, we expected an increase of
performance with more empirical training samples. This is confirmed
by the results in Fig. 7. Furthermore it can be noted that the increase in
performance did not level out after 30 samples, suggesting that more
empirical data would likely increase the performance further. The latter
was anticipated, given that 30 images is a relatively small amount to
capture all the variance that occurs in the context of our use-case.

Looking at the per class performance distribution of Experiment A in
Fig. 6, it can be noted that the cut class was barely recognised having an

IOU of 0.04. Recognising all classes was previously considered as a
requirement (Barth et al., 2017a). Therefore it can be concluded that
training with a small set of empirical images alone did not suffice, al-
though qualitative results (see Fig. 9) looked promising and useful for
some tasks like fruit detection.

In Experiment B, a baseline performance of the model was obtained
when training and testing with the same large and detailed annotated
dataset. Performance was expected to be highest of all experiments
because of the perfect labels, large dataset size and because no domain
shift occurred. Furthermore, the synthetic dataset has a relatively low
image and geometric feature variance compared to empirical or syn-
thetic translated images, which was likely to increase the learnability of
the dataset. Indeed B achieved the best performance with an average
IOU of 0.64. This performance could be used as a baseline to indicate
the maximum obtainable IOU for this domain and currently used CNN
architecture. Qualitative results still showed some gaps in thin and
elongated classes like leaf stems and shoots, although results were much
improved over previous segmentations where such gaps were larger
(Barth et al., 2017a).

Concerning the effect of dataset size on performance, results in

Fig. 6. For Experiments A through G, the IOU
per class is displayed, ordered as: background,

leafs, peppers, peduncles, stems,
shoots and leaf stems, wires and cuts where
pepper where harvested.

Fig. 7. Average IOU performance over test set for Experiments A through G-2,
with increasing amounts of training or fine-tuning data (n).

 A B C  D E  F G
Experiment

0.1

0.2

0.3

0.4

0.5

0.6

0.7
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U

Fig. 8. Maximum average IOU performance over test set for Experiments A
through G for Groups 1 , 2 and 3 .
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Fig. 7 show that the model stabilised in performance around a thousand
images.

Experiment C was the last experiment from Group 1 which similar
to B trained and tested with a large dataset, but instead used the
translated images. The average IOU was expected to be relatively high,
but lower than Experiment B due to the extra variance and noise that
the empirical feature distribution introduces when synthetic images
were translated to the empirical domain. Indeed the IOU was lower
with 0.55 in C than the 0.64 in B, although the qualitatively results
looked comparable. The effect of dataset size on performance was si-
milar to B.

3.4.2. Group 2
The second group of experiments bootstrapped the CNN model with

synthetic data and tested on empirical data, whilst either including (D)
or omitting fine-tuning with empirical data (E).

Experiment D was a reference experiment to see to what extent a
network trained on synthetic images can generalise to the empirical
domain, without fine-tuning with empirical images. With an average
IOU of 0.20, the performance approximately doubled over previous

results where 424 × 424 pixel images were used (Barth et al., 2017a).
However, the performance was lower than that of Experiment A, as
expected because the synthetic data was relatively dissimilar with the
empirical images.

Looking at the per class distribution, classes like peduncle and cut
were barely recognised (IOU<0.1) and the wire class was omitted all
together. Qualitatively, results looked far from similar to the ground
truth and it can be concluded that training only with synthetic data
would not be sufficient for many tasks, given the current learning ar-
chitecture. There seems little relation between dataset size and per-
formance. It could be that the domain gap is too large; adding more
synthetic data does not help much in bridging the gap directly.

In Experiment E an extra fine-tuning step using empirical images
was included. The IOU performance on empirical images was increased
to 0.48 compared to Experiment A where no bootstrapping was applied;
a 17% increase. Furthermore, looking at Fig. 6, it can be noted that
recognition of all classes were now included, although the cut class was
barely recognised (IOU = 0.11). Qualitatively, results looked close to
the ground truth. Regarding the effect of dataset size, the performance
increases but seems to level off at 8750 synthetic images (E-1) but is

Fig. 9. Qualitative results from Experiments A
through G. In the first column, the ground truths
for synthetic translated to empirical (top), syn-
thetic (middle) and empirical (bottom) are
shown with labels: background, leafs,
peppers, peduncles, stems, shoots and
leaf stems, wires and cuts. In the second
column, their respective color images are dis-
played. Experimental results with models trained
on the maximum amount of images, are grouped
in the third and fourth column.
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expected to slightly further increase after 30 empirical images (E-2).
Hence, fine-tuning seems to benefit from increased data of both types.

3.4.3. Group 3
With the third group, similar experiments as Group 2 were per-

formed, but interchanged the synthetic data with the domain translated
images. Again a distinction was made with (F) and without (G) fine-
tuning on empirical images.

Experiment F showed to what extent a synthetic trained network
with improved realism can generalise to the empirical domain, without
yet fine-tuning with empirical images. Compared to Experiment D
(using synthetic images instead of translated ones), the performance
increased with 55% to an average IOU of 0.31. This experiment con-
firms our third hypothesis that without any fine-tuning with empirical
images, improved learning for empirical images can be achieved using
only translated images as opposed to using only synthetic images.
Although qualitatively, also improvements could be observed over
Experiment D, it can be noted from the class performance distribution
there existed still a relative poor performance on the classes wires and
cuts.

In Experiment G, the model from Experiment F was fine-tuned with
empirical images. This experiment should provide the main result for
our second hypothesis, that states that synthetic images translated to
the empirical domain can be used for improved learning of empirical
images, as compared to using only synthetic images for bootstrapping,
as evaluated in Experiment E. Our hypothesis is confirmed by achieving
the best performance on empirical data of an IOU = 0.52. This was an
increase of 27% over Experiment A (only training on empirical images)
and 8% improvement over Experiment E.

Qualitatively, results in Experiment G looked comparable to results
of Experiments A and E, but more comparable to the ground truth.
Looking at the class distribution, all classes were included. Most notably
the cut class performance increased with 118% over Experiment E and
with 600% over Experiment A to an IOU of 0.24.

To summarise, without using any annotated empirical training
images, an improved performance can be achieved by bootstrapping
with translated synthetic images (F) compared to the model that only
uses synthetic images (D). Moreover, we have shown that it ensures
improved recognition of minor object part classes like wires and cuts.
Additionally, we have shown that including fine-tuning with a small
empirical dataset, with a model that has been bootstrapped on trans-
lated data, the highest performance on empirical images can be
achieved (G).

4. General discussion and conclusion

In Part I, a cycle consistent generative adversarial network was
applied to synthetic and empirical images with the objective to generate
more realistic synthetic images by translating them to the empirical
domain. Our analysis showed that the image feature distributions of
these translated images, both in color and texture, were improved to-
wards the empirical images. Regarding our first hypothesis, it was
confirmed that the image feature difference with the empirical set was
reduced after translation of the synthetic images. Qualitatively, the
translated synthetic images looked highly similar to the real world
images. However, some translation artifacts appeared. Furthermore the
Cycle-GAN method could not improve upon geometric dissimilarities
between the synthetic and the empirical domain. The latter proved an
advantage however, as the synthetic ground truth also corresponded to
the translated color images, allowing for the experiments on improved
learning in the second part of our work.

In Part II, it was evaluated to what extent translated synthetic
images to the empirical domain could improve on CNN learning with
empirical images over other learning strategies. We confirmed our
second hypotheses that by using translated images and fine-tuning with
empirical images, the highest performance for empirical images can be

achieved (IOU = 0.52) compared to training with only empirical
(IOU = 0.41) or synthetic data (IOU = 0.48)

Besides improving segmentation performance on empirical images
using translated synthetic images instead of only empirical or synthetic
images during training, another key contribution of our work is the
further minimisation of the CNN’s dependency on annotated empirical
data. We confirmed our third hypothesis that without any empirical
image fine-tuning, learning can be improved with translated images
(IOU = 0.31), a 55% increase over just using synthetic images
(IOU = 0.20).

The work presented in this paper can be seen as an important step
towards improved computer vision for domains such as agricultural
robotics, medical support systems or autonomous navigation. It facil-
itates CNN semantic object part segmentation learning without or
minimal requirement of manually annotated images and ensures im-
proved recognition of minor parts.
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