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A B S T R A C T

Visible and near infrared spectroscopy (VNIRS) (400−1000 nm) is a key emerging non-destructive technique for
fruit quality assessment. This, because it is a unique method which allows rapid access to fruit pigments and
chemical properties linked to fruit quality. In the present work, VNIRS has been used to predict the internal
browning in ‘Keitt’ mangoes halves. The reference analysis was performed by cutting individual mango into
halves and quantifying the extent of internal browning with a standardized color imaging (CI) cabinet as a
browning index (BI). The CI provided a value for the “browning index” for each mango reflecting the presence
and severity of internal browning. The data modelling involved both regression and classification analysis. The
regression was performed to link the VNIR spectra with the BI values obtained from the internal color analysis.
The classification analysis was performed for binary classification of mango into healthy or brown. Two different
analysis techniques i.e. artificial neural network (ANN) and partial least square (PLS) were utilized. The study
shows that VNIRS combined with ANN can classify mangoes as healthy or having internal brown with an ac-
curacy of over 80 %. A robust and reliable classification system can potentially improve quality decisions
through the mango supply chain, thereby reducing post-harvest losses.

1. Introduction

Mangoes (Mangifera indica L.) are tropical fruits, originally grown in
India, where they have been cultivated for over the past 4000 years
(Tharanathan et al., 2006). Over centuries, mango production gradually
moved to other countries. Initially to Asia and later to other tropical
countries in America (Mitra, 2016). In tropical countries, mango be-
longs to one of the most economically important fruit, with 1.3 million
tons of mangoes exported from countries like Brazil, Mexico, India,
Peru and Thailand (Faostat, 2016).

The increase in commercial production areas and improved trans-
port conditions allowed the introduction of mangoes to Europe
(Morton, 2003). In Europe, mangoes first arrive at the wholesalers,
where they may be sorted based on their ripening stages. Ripe mangoes
are sold to nearby supermarkets, while unripe mangoes are either
stored under ripening conditions or can be transported to locations at
greater distances. Apart from ripeness, a major quality indicator for
mangoes is the presence of internal browning. Mangoes with internal
browning are considered as low-quality and should be identified as

early as possible in the supply chain to avoid any disappointments at
the consumer, as well as mango processing industry level. So far, de-
tection of internal browning requires destructive measurements, and is,
therefore, detected either by the processing industry (upon cutting
mangoes for the fresh-cut product) or by the consumer during con-
sumption.

The background causes of internal browning in fruits are not clearly
understood in the scientific domain. In general, internal browning
disorders in fruits are often associated with extreme storage conditions
comprising of low temperatures, low oxygen (O2) and high carbon di-
oxide (CO2) concentrations (Mellidou et al., 2014). The observed
browning is associated with increased oxidative stress and a loss of cell
membrane integrity. The loss of membrane integrity can lead to the
disruption of cellular compartmentalisation. Phenolic compounds may
be released from the vacuole and be oxidized by polyphenol oxidase to
form o-quinones and eventually brown-coloured compounds (Tomás-
Barberán and Espín, 2001). In mangos, a clear understanding of in-
ternal browning process is still lacking. A hypothesis is that mangoes
with internal browning might be at a stage of over-ripeness. Mango is a
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climacteric fruit (White, 2002), which ripen further after harvest. In
general, ripening changes the composition and structure of the primary
cell wall. Components like pectin and hemicellulose are enzymatically
altered after harvest and during ripening. Also, the changes in bonding
and rigidity cause texture changes and softening. These changes lead to
a soft and tasty mango (Posé et al., 2018). Besides structural changes,
ripening causes color changes by the conversion from chloroplasts to
chromoplasts and the accumulation of carotenoids (Klee and
Giovannoni, 2011). Mango has a high content of carotenoids in the
mesocarp tissue, causing the intense yellow color (Singh and Dwivedi,
2008). However, over-ripening might lead to loss of cell membrane
integrity (cell death) and accompanying tissue browning.

Non-destructive sensing techniques such as visible and near-infrared
spectroscopy (VNIRS) are gaining human interest for rapid quality
prediction of fresh fruits. Various applications of VNIRS related to
mango quality analysis have been described. Some applications include
the prediction of soluble solid content (SSC), firmness, dry matter (DM),
maturity and flesh color (Saranwong et al., 2004; Subedi et al., 2007;
Valente et al., 2009; Rungpichayapichet et al., 2016; Marques et al.,
2016; dos Santos Neto et al., 2017; Nordey et al., 2017; Santos Neto
et al., 2018). VNIRS prediction models (linear models) generally allow
proper prediction of one specific quality trait, in one specific cultivar
produced at one specific orchard and stored under standardized con-
ditions. However, the models often fail when they are used for practical
application in the mango supply chain dealing with different mango
cultivars and variability due to production and storage circumstances.
Therefore, robust VNIRS models, defined as models with accurate
prediction accuracy regardless of these external factors are crucial for
the application of VNIRS models in the mango chain (Nicolaï et al.,
2007). There are two approaches to obtain a robust model. In a first
case, a large sample set covering different chemical and physical var-
iations is required to provide a generalized model (Nordey et al., 2017).
However, obtaining such a wide sample set for fruits can be tedious and
sometimes not feasible. When only a limited number of samples is
available, moving to advance non-linear pattern recognition methods
which can model the complex biological, environmental and instrument
variation can be considered as a second approach to develop robust
models (Kuang et al., 2015).

VNIRS has been widely used for predicting the quality traits of
mango such as SSC, DM, flesh color and acidity (Nordey et al., 2017).
However, its potential to predict possible internal defects such as in-
ternal browning in mangoes is unexplored. VNIRS is an interesting
technique for internal defects as the spectral range of 700−1000 nm
explains the physicochemical information about the materials (Mishra,
Asaari et al. 2017). A work related to the detection of Brownheart in the
‘Braeburn’ apple showed that the NIR in range of 700−900 nm was
able to successfully predict defect with a R2

p of 0.91 (Clark, McGlone
et al. 2003). Further, a complete on-line system operating in the range
of 650−950 nm was developed and used for detecting internal
browning in ‘Braeburn’ apples (McGlone, Martinsen et al. 2005). An-
other recent study showed that the spectral range of 600−830 nm was
the most weighted information for detection internal browning in the
‘Cripps Pink’ apples during cold storage (Mogollon, Jara et al. 2020). A
study involving a spectral range of 550−1650 nm for detecting the
internal defect in apples found out that apart from the change in color
the major differences were located in the spectral range of
700−1000 nm (Huang et al., 2020). All these studies support us to use
the VNIRS (400−1000 nm) for the detection of internal browning in
mangoes.

Internal browning in mangoes is a major quality trait which requires
rapid non-destructive testing techniques to reduces the losses in the
supply chain. The present study utilizes the VNIRS for non-destructive
classification of mango with internal browning. To cover a range of
variability in mango, the study involved a broad sample set covering
576 ‘Keitt’ mangoes. harvested from different orchards at different
periods during the season, with varying levels of browning. The

reference analysis for the level of internal browning was performed by
cutting mangoes into halves and utilizing color imaging (CI). Data
modelling was performed using both linear and non-linear data mod-
elling with partial-least square (PLS) and artificial neural network
(ANN) respectively.

2. Materials and method

2.1. Mango samples

576 ‘Keitt’ mangoes were used in the experiments. Mangoes were
sourced from commercial orchards in the Petrolina area in Brazil.
Mangoes were transported to the Netherlands in reefer containers
overseas, for approximately 3 weeks at a controlled temperature of
approximately 10 °C. At arrival in The Netherlands, mangoes were de-
livered to a fresh-cut processing company where they were subject to a
primary quality check by an in-house quality expert. The checks in-
volved selecting a random subset of twenty mangoes per batch (pallet)
and cutting them in halves to visually judge internal quality. Batches
containing over 5% of mangoes with unacceptable internal browning
were rejected and either destroyed or sold at local markets (personal
communication with processing company). Batches that were con-
sidered unsuitable for processing in the period between September and
December 2017 were transported to Wageningen Food and Bio based
Research (WFBR), Wageningen for further research. Transport to
Wageningen took approximately 3 h and done under ambient condi-
tions (15−20 °C). Three different rejected batches, containing 206, 108
and 262 mangoes, respectively were used in the investigations. On each
mango halves, VNIR spectral measurement and color imaging after
cutting individual mango in halves was performed. All measurements
were done at 20 °C on mangoes that were held for at least 3 h. at 20 °C.

2.2. Spectral measurements

VNIR reflectance spectra in the range of 300–1100 nm were col-
lected on the outer peel of the intact mango at a position near the
equatorial region. The equatorial region was defined being at equal
distance from proximal and distal ends (dos Santos Neto et al., 2017). A
portable FELIX 750 handheld device was used to collect the spectra
according to the methodology described by (Subedi et al., 2007). The
FELIX 750 device utilizes a Carl Zeiss MMS-1 spectrometer with a
spectral resolution of 8−13 nm and a spectral sample size of 3 nm. This
device utilizes a xenon tungsten lamp for illumination and a white re-
ference standard. All the data were recorded with the FELIX 750 and
temporarily stored in the memory card. The data stored in the memory
card were extracted to. csv files utilizing the F750 data viewer software.
The data were automatically calibrated in the FELIX 750 and pre-pro-
cessed by estimating the absorbance and later the second derivative.
For the first rejected batch of 206 mangoes, VNIR spectra were col-
lected from one side of the mango. For the second and third batch of
108 and 206 mangoes respectively, it was decided to collect more data
by measuring VNIR at the two opposite sides of each mango. In total,
946 spectra (1×206+2×108+2×262) were collected, all at a
similar position on the equatorial region of mango.

2.3. Measurement of internal browning

The internal browning in the mango pulp was visually judged (ex-
pert panel) by estimating the surface area showing browning as a
percentage of the total surface of mango halves. In addition, objective
measurements of internal browning were performed in a light and color
standardized cabinet (Weblink: Color Cabinet, 2020). The color mea-
surements were done on mango halves; the mango was cut alongside
the pit. In total, color measurements were done on: 206 mango halves
from the first rejected batch from which only a half per mango was
measured, plus 216 mango halves from the second rejected batch
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consisting of 108 mangoes measured on both halves, and 524 mango
halves from both halves of the 262 mangoes from the third rejected
batch.

Each mango half was photographed using a digital camera mounted
inside the cabinet. The color standardized pictures were analyzed to
quantify the color information in a two-step approach. Firstly, using
color-learning software, colors of the mango pulp were determined as
either healthy mango tissue, or tissue with internal browning. Green
color was associated with the peel and was excluded from further
analysis. Secondly, using the color analysis software the ratios of the
color pixels related to healthy tissue to that of brown tissue were de-
termined. Finally, the natural logarithm (ln) of this ratio was calculated
as explained in Eq. 1.

⎜ ⎟= = ⎛
⎝

⎞
⎠

Internal browning LnHB ln
Healthy pixels
Brown pixels (1)

The level of internal browning was defined as the LnHB ratio, with
healthy being the amount of color pixels with a hue value associated to
healthy mango pulp, and brown being the amount of color pixels with a
hue value associated to brown mango pulp.

2.4. Data analysis

The VNIR spectra and the color measurement data (LnHB ratios)
were analyzed with two different modelling approaches i.e. regression
and classification. The regression modelling was performed to link the
spectra with the LnHB ratios obtained from the destructive color ana-
lysis. The classification modelling was performed to classify mangoes
into healthy or brown classes. To perform classification modelling, a
LnHB ratio below 2.5 was assigned as class 0, defined as mango with
internal browning, while a LnHB ratio of 2.5 or higher was assigned as
class 1 and defined as a healthy mango. The use of 2.5 as threshold to
distinguish mangoes with internal browning from the healthy mangoes
was based on the visual observation of the mangoes by expert panel and
by wholesalers. Applying this threshold identified 648 mango halves
with internal browning and 298 mango halves without internal
browning. PLS and ANN based modelling were performed for regression
and classification analysis. The dataset was randomly divided into ca-
libration (70 %), validation (15 %) and test set (15 %) for data analysis.
The validation set was used for optimizing and fine-tuning the cali-
bration model. The model was first tested on the 15 % test data which
were not used for training or validation. Later, the model was also
tested on an extra test set consisting of 350 mango halves. These extra
test data allowed us to have an extra test of the model performance to
check whether a mango which was predicted to have internal browning
based on the model, proved to be “truly” brown after cutting the mango
in halves. In the present work, both PLS and ANN were implemented in
MATLAB 2017b (Mathworks, Natwick, MA, USA).

2.4.1. Partial least square analysis
PLS regression (PLSR) is a popular chemometric method used to

deal with the multicollinearity in the multivariate signal (Nordey et al.,
2017). PLSR operates by identifying the latent variables (LVs) before
performing a typical multi-linear regression modelling. The LVs are
high dimensional vectors which explain the most useful variation in the
data. The PLSR identifies the LVs by exploring the subspaces which
maximizes the co-variance between the predictor and the response
variables. In the present work, the PLSR was used to link the VNIRS and
the LnHB ratios. Before feeding to PLSR, the data were mean centered.
The LVs were selected by utilizing venetian blind cross-validation (10
random splits) and the output of the regression is presented as corre-
lation coefficient's and standard errors.

2.4.2. Artificial neural networks
ANN are advanced non-linear pattern recognition methods which

can model the complex biological, environmental and instrument var-
iation (Allouche et al., 2015; Martelo-Vidal and Vázquez, 2015; Silalahi
et al., 2016). ANN’s are the mathematical simplification of the complex
biological nervous systems and consist of a net of small processing units
(neurons) that are interconnected with weighted connections. The
neuron takes the weighted sum of the inputs and passes it through a
non-linear transfer function to provide an output signal (Dębska and
Guzowska-Świder, 2011). In the present work, MATLAB’s ‘neural fit-
ting’ tool was used for performing the regression and ‘neural net pattern
recognition’ tool was used for the classification. A default ten hidden
neurons model was chosen for the task. The optimization of the re-
gression model was performed with Levenberg-Marquardt approach,
and the classification model was performed utilizing conjugate gradient
backpropagation. These approaches train the models automatically
until the generalization stops improving. The generalization perfor-
mance is judged based on the mean square error and stops when the
error starts increasing on the validation samples. There was a total of
946 samples (mango halves) of which 648 classified as brown and 298
as healthy. Prior to classification analysis a balanced dataset was pre-
pared consisting of an equal amount of brown and healthy mangoes.
The balanced dataset is needed in the classification modelling to avoid
overfitting of the model for the class having large number of samples.
Our balanced data set consists of all 298 healthy mango halves plus an
equal amount of 298 randomly chosen brown mango halves. The re-
maining 350 brown mangoes were used to test (extra testing) the model
by checking whether the model indeed predicts that these mango halves
are brown (extra testing).

3. Results

3.1. Internal quality of samples

Visual appearance of selected mango halves with different LnHB
ratios are shown in Fig. 1. Fig. 1A presents the mango halves with LnHB
ratio less than 2.5 (designated brown), Fig. 1B presents samples with
LnHB ratio of more than 2.5 (designated healthy). It can be visually
observed that with decreasing LnHB ratios the severity of internal
browning increases. The mangoes which have the most internal
browning even have a negative LnHB ratio (Fig. 1 A). The higher the
LnHB ratios, the less browning is visible. For mangoes with a LnHB ratio
of more than 2.5 the internal browning is almost negligible and these
can be defined as healthy (Fig. 1B). The decision to classify mango
halves as either brown (unacceptable) or healthy (acceptable) was
made based on visual judgements by experts from research and in-
dustry. Therefore, 2.5 was defined as the threshold to assign binary
class labels to the dataset, to enable classification of mangoes into ei-
ther “brown” or “healthy”.

In this study, 3 different rejected batches were used. To have an
understanding regarding the level of internal browning in the different
batches, the LnHB ratios are presented as frequency distributions in
Fig. 2. In Fig. 2A, the frequency distribution of the LnHB ratio of mango
halves from the first batch shows relatively more mango halves with a
LnHB ratio higher than 2.5 compared to less than 2.5. The frequency
distribution of the LnHB ratio of mango halves of the second batch
shows a relatively larger portion of mangoes having a LnHB ratio lower
than 2.5. (Fig. 2B). Most mango halves of the third batch have LnHB
ratios higher than 2.5, while mangoes with LnHB ratios lower than 2.5
are still frequently represented in this batch (Fig. 2C). Taking all three
rejected batches together the frequency of the LnHB ratios showed a
wide range of LnHB ratios (Fig. 2D) indicating that this complete da-
taset is valuable to build a classification and regression model based on
the LnHB ratios of mango halves.

3.2. Spectral profiles

The spectral profiles of the mango halves with maximum (6.53) and
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minimum (-5.31) LnHB ratios are shown in Fig. 3. This shows that the
major differences in the spectral intensities of mangoes with high versus
low LnHB ratios are in the spectral range of 700−900 nm. The region is
dominant for the 3rd stretching overtones of the OeH, C–H and NeH
bonds corresponding to a complex mix of signals emerging from the
moisture, fatty acids and amino acids respectively.

3.3. Regression modelling

The results of the PLSR analysis are presented in Fig. 4 and 5. The
evolution of root mean squared error of calibration (RMSEC in red) and

root mean squared error of cross-validation (RMSECV in blue) along
with the increasing number of LVs extracted is shown in Fig. 4. The
green line shows the number of LVs extracted. There was no clear stable
shoulder point to automatically select the number of LVs, therefore, 14
LVs were manually selected as the error showed a slight increase after
that. However, errors keep on decreasing even after 14 LVs, making it
difficult to choose between an under and an over fitted model. Finally,
the model based on 14 LVs was calibrated and tested and the corre-
sponding plots are presented in Fig. 5A and 5B, respectively.

In Fig. 5(A) the measured versus predicted values with the PLSR
model in the calibration data are presented. Analysis of the calibration

Fig. 1. Mango halves with different severity of internal browning. The numbers at the bottom of the mango halves are the LnHB values (A) Samples with LnHB ratios
less than 2.5 designated “brown”, and (B) samples with LnHB ratios greater than 2.5, designated “healthy.

Fig. 2. Frequency distribution of the LnHB ratios of mango halves in the three rejected pallets. (A) The LnHB ratios of most mangoes in batches 1 is higher than 2.5,
(B) the LnHB ratios of second batches is lower than 2.5 (C) the LnHB ratios of most mangoes in batches 3 is below 2.5. (D) Frequency distribution of the LnHB ratios
for all three batches represent a normal distribution.
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set shows that a R2 of 0.515 was obtained with a RMSEC of 1.41 and
RMSECV of 1.50. In Fig. 5(B) the measured versus predicted LnHB ra-
tios for the test samples is presented. A R2 of 0.53 was obtained for the
test set (composed of 15 % of the data) with root mean square error of
prediction (RMSEP) of 1.39. The correlation obtained with PLSR was
too low to conclude anything on the potential of VNIRS to predict the
severance of internal browning (Fig. 5). A reason for the poor perfor-
mance of PLSR can be due to the linear modelling performed by the
PLSR. It is likely that the VNIRS data maps the LnHB ratios better in the
non-linear space. To understand it, the same data was processed with
ANN regression.

The results of the ANN regression are presented in Fig. 6, where
Fig. 6A presents calibration, and Fig. 6B presents the test set. It can be

seen in Fig. 6 that the calibration R2 increased to 0.72 compared to an
PLSR R2 of 0.51 obtained with the PLSR model. The test R2 increased
from 0.53 with the PLSR model to 0.57 with ANN regression. This
shows that the relation between LnHB and the VNIR was not simply
linear as explained by a PLSR model, rather could be a non-linear one
explained by a ANN based model.

3.4. Classification modelling with ANN

The classification results from ANN classification are presented in
Table 1. The results presented are based on the calibration (Table 1-part
A) and testing (Table 1-part B) performed on the balanced dataset
consisting of 298 healthy and 298 mango halves with internal
browning. In addition, the results obtained utilizing the remaining 350
brown mango halves as an extra test set, are depicted in Table 1-part C.
An overall calibration classification accuracy of 87.1 % was obtained
with a sensitivity and specificity of 85.4 % and 88.7 % respectively
(Table 1). The sensitivity in this experiment explains the probability of
mango halves which were having internal browning and classified
correctly with the classification model. The specificity explains the
probability of mango halves which have no internal browning and
predicted having no-internal browning with the classification model.
The accuracy with the test set consisting of 15 % of the balanced data
set was 83.1 % with a sensitivity and specificity of 86.3 % and 80.0 %
respectively (Table 1). The test results showed that overall, the model
performed better in identifying mango halves with internal brown (86
% sensitivity) compared to identifying healthy mango halves (80 %
specificity).

The classification accuracy obtained on the extra test set consisting
of 350 internally brown mango halves is presented Table 1 row C. The
350 mango halves were the remaining samples which were not part of
the balanced dataset used for validating and testing the model. An ac-
curacy of 82.3 % was obtained for this extra test set. The high accuracy
levels, especially for the extra test set consisting of mango halves which
were not used to build the model, shows the potential of VNIRS to
predict internal brown in mangoes.

4. Discussion

Internal browning in mangoes is a major quality issue causing
substantial post-harvest losses, especially during inter-continent export.
There are no clear symptoms of the internal browning visible from the
outside of the mango. Further, there is a lack of scientific understanding
regarding the physiological process of internal browning in mangoes.
One hypothesis is that the internal browning could be due to the over-
ripening of the mangoes. The normal ripening process brings changes in
the physicochemical properties of the cell walls leading to composition
and structural changes in the cell wall (Posé et al., 2018). However, the
over-ripening could lead to cell death and associated tissue browning. A
link between ripeness and internal browning can be explored. However,
accurate ripeness prediction in mangoes is a challenging task as it is a
combined effect of physical and chemical changes occurring during the
ripening process. There is a large variation in quality and maturity of
mangoes depending on the time of harvest, the variety, the storage
condition and various environmental factors. In the case of inter-con-
tinental export (e.g. from South America to Europe), the time of harvest
is crucial as the growers need to account for the 2–3 weeks of overseas
transport during which the physiological stage of the mango tissue
changes (Mohammed and Brecht, 2002; Gill et al., 2017). This harvest
time in the case of inter-continental export can hugely affect the post-
harvest quality including the internal browning (Lechaudel et al.,
2010).

Currently, to judge on the quality of incoming mangoes, the
European wholesalers utilize a pre-calibrated VNIRS based model and
impact acoustics measurements to predict the firmness levels of in-
coming mangoes. The firmness values obtained from the measurements

Fig. 3. Spectral profile of mango halves with high (in red dashed line) and low
(in blue solid line) LnHB ratios. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article).

Fig. 4. Evolution of root mean squared error of calibration (RMSEC in red) and
root mean squared error of cross-validation (RMSECV in blue) with increasing
number of latent variables. 14 LVs were selected and highlighted by a vertical
green line. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article).
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are used as input to a standard linear classifier model to classify the
imported mangoes into different ripening stages. However, in around
50 % of the cases mangoes are misclassified (personal communication
with industrial partners). Poor performance of VNIRS model can be
understood as the lack of robustness in dealing with the samples with a
wide diversity such as different origin, grade, variety, among others. An
improved VNIRS based non-destructive approach, is demonstrated in
present work to predict intern browning in mango halves with accu-
racy>82 %, could directly benefit the wholesalers to judge on the
quality of incoming mangoes.

The VNIRS models lack robustness in case the models are developed
on a specific cultivar while tested on another cultivar. A reason for this
could be the differences in the absorption and scattering characteristics
due to compositional and physical structure of different cultivars
(Renfu et al., 2020). Such absorption and scattering characteristics
bring slight shifts in the spectral profile of the samples of different
cultivars, and thus, the model developed on one cultivar might under-
estimate- or overestimate- the responses. In recent work, global PLSR-
VNIRS models were used for robust prediction of mangoes quality based

Fig. 5. PLSR modelling performed with 14 latent variables. The measured and predicted LnHB ratios are presented as x and y-axis respectively. (A) Calibration set
and (B) test set.

Fig. 6. Results of ANN regression performed using VNIR spectra and LnHB ratios. (A) calibration set, and (B) test set.

Table 1
Classification accuracies (mango halves) obtained from ANN based classifica-
tion. Classification was performed into two classes with LnHB ratio< 2.5
(brown)) or LnHB ratio≥2.5 (Healthy).

(a). Calibration

Sample type Number Correctly predicted % Accuracy

Brown 206 176 85.4
Healthy 212 188 88.7
Overall accuracy 87.1
(b). Test
Brown 44 38 86.4
Healthy 45 36 80.0
Overall accuracy 83.1
(c). Extra test
Brown 350 288 82.3
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on total soluble solids, dry matter, titratable acidity and flesh color
independent of the pre- or post-harvest circumstances (Nordey et al.,
2017). However, such a global model requires huge experiments cov-
ering samples from all possible cultivars and pre- and post-harvest
conditions which can be difficult, time-consuming and costly. When
only a limited number of samples is available, moving to advance non-
linear pattern recognition methods (such as ANN’s) which can model
the complex biological, environmental and instrument variation can be
considered as a better solution to develop robust models. ANN’s have
been widely used in the VNIRS data modelling for qualitative as well as
quantitative assessment of food products (Allouche et al., 2015;
Martelo-Vidal and Vázquez, 2015; Silalahi et al., 2016). In some com-
parable work, the ANN has already outperformed the traditional PLSR
in terms of higher prediction accuracy (Benoudjit et al., 2004; Singh
et al., 2009; Bampi et al., 2013; Kuang et al., 2015).

In the present work, the ANN model (RP
2 of 0.57) outperformed the

PLS based linear regression model (RP
2 of 0.53) in predicting the level of

internal browning. A reason for this could be the inability of linear
regression to deal with non-linearity in the data set. Non-linearity in the
VNIRS data could arouse from multiple sources such as sample surface
inhomogeneity, noise in the detector, illumination inhomogeneity and
even due to ambient factors such as temperature and relative humidity.
Some of these factors can be directly observed in the acquired data as
additive and multiplicative effects. In a model like PLSR, it is highly
recommended to perform pre-processing such as normalization to re-
move these effects and make the relation between spectral data and the
response of interest as linear as possible. However, pre-processing to
remove these effects can also remove useful information such as the
scattering characteristics of the samples which often can be noticed as
additive or multiplicative effects in the raw spectral data. Unlike linear
PLSR method, the ANN does not require the data to be pre-processed as
it already assumes a non-linear relation between the predictor and the
response variable. It is highly likely that the modelling performed by
the ANN also covered the scattering characteristics of different samples
and not just the absorbance/reflectance responses of the samples.

In the present study, the VNIRS signatures showed distinct intensity
differences between the healthy and internal brown mangoes. The
major differences were dominantly in the range of 700−900 nm. In
previous research, the similar regions and nearby bands i.e. 720 nm,
750 nm, 760 nm, 780 nm and 810 nm were also identified to represent
internal defects in apple fruits (Upchurch et al., 1997; Vanoli et al.,
2010, 2014). The spectral differences showed that the internal
browning does not have much effect on the outer color of the mango, as
all the spectral bands showing major differences are in the NIR range
(> 700 nm). The spectral differences in the NIR highlight that the
mangoes with internal browning have different physicochemical
properties compared to healthy mangoes. However, it is not clear what
exactly are the changes in the composition of mangoes, as NIR captures
a mixture of effects resulting from absorption by multiple chemical
components (moisture, protein, fats) and scattering from the texture.
These differences in the spectral signature of mangoes were utilized in
the data modelling to develop regression and classification models. It
should also be noted that the internal browning is an internal defect in
mangoes and NIR light cannot penetrate deep inside food products to
directly capture the chemical and physical changes due to internal
browning. However, it is most likely that NIRS is capturing some sec-
ondary effects causing changes in the mangoes outer layers which
might reflect the internal browning. This experiment lacks reference
chemical analysis of outer layers of mangoes which limits the ex-
planation of the real dynamics captured by NIRS related to internal
browning, as, this was not the primary aim of the present experiment.

The result showed that the ANN modelling increased RP
2, however,

the VNIRS was still only able to explain 57 % of the variation in the
LnHB ratios, which is not enough to be implemented in industrial
mango sorting. However, the main aim was to be able to utilize the
VNIR for non-destructive prediction in mangoes into either mango with

internal browning or healthy mangoes, thus defining a binary classifi-
cation. The reference measurement and the consultation with the pro-
ject partners resulted in the identification of the critical threshold LnHB
ratio of 2.5 in the primary experiment. Therefore, transforming the
regression case to a binary classification was possible by setting a
threshold of 2.5 on the LnHB ratios and assigning samples with LnHB
ratios< 2.5 as brown and the samples with LnHB ratios> 2.5 as
healthy. The non-linear classification based on ANN resulted in a pre-
diction accuracy of 83.1 % for the test set with a sensitivity and spe-
cificity of 86.3 % and 80.0 %. This higher sensitivity and lower speci-
ficity values indicates that the model is slightly better in predicting
whether a mango half has internal browning rather than predicting
whether a mango half is healthy. The accuracy to detect internal
browning on the extra test set of 350 mangoes was 82.3 %, almost like
the test accuracy of the modelling set (83.1 %), These comparable re-
sults present the stability of the classification model and the potential of
the VNIRS.

The results obtained from the research cannot be directly translated
to high throughput sorting at wholesalers as the experiments were
performed with a portable VNIRS spectrometer. However, portable
VNIRS spectrometers could be sufficient for growers to estimate the
optimum harvest date. For high-throughput sorting of mangoes at
wholesalers and processing industry sites, automated VNIRS measure-
ments platforms are recommended. For further application, the
boundary of LnHB ratio could be adjusted depending on the demands
from the industry. Increasing the LnHB ratio boundary would lead to a
stricter sorting in which hardly any level of internal browning is al-
lowed during mango sorting. This would be an advantage for the pro-
cessing industry, since there is a high probability that mangoes classi-
fied as healthy will be truly healthy. However, the percentage mangoes
classified as brown while they are in fact healthy will increase and will
lead to the discarding of good quality mangoes and thus more waste
and less profit for the wholesaler. Setting the boundary to classify
mangoes depends on the desires of all players in the mango chain, in-
cluding the production and logistics. For example, if mangoes come
from orchards with adverse pre-harvest conditions due to heavy rainfall
or high humidity, or if they are transported under less optimal condi-
tions due to technical failure or delays, those mangoes are expected to
have internal defects. In that situation, a certain percentage of mis-
classification might still be economically worthwhile. Therefore, the
boundary of the LnHB ratio could be decreased allowing to have more
healthy mangoes while realizing that among those healthy mangoes
there could be a certain percentage of mangoes with internal browning
due to the setting of LnHB boundary. A robust and reliable classification
system using non-destructive methods could improve quality decisions
throughout the mango supply chain, thereby reducing post-harvest
losses. Further research using automated VNIRS measurements such as
hyperspectral camera, instead of hand-held devices, is required before
implementing high throughput classification of mangoes in industry
level, throughout the supply chain.

5. Conclusions

So far, mango quality predicted by VNIRS models were described for
traits such as dry matter, SSC-content and firmness. For the first time,
we assessedinternal browning in mangoes, and investigated prediction
of the internal browning based on VNIRS spectra. The results showed
that utilizing non-linear regression modelling such as ANN, a prediction
correlation RP

2 of 0.57 can be attained. This while PLSR based linear
modelling provided a lower prediction correlation RP

2 of 0.53. However,
the non-linear classification to classify mango halves into “brown” or
“healthy” based on ANN resulted in a prediction accuracy of> 80 %
The results indicate that a portable VNIRS spectrometer in combination
with non-linear data modelling such as ANN, can be used for non-de-
structive classification of the internal quality of mango. Reliable non-
destructive measurements of internal quality are crucial to allow proper
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decision making in the mango chain and will increase profit and de-
crease waste. Future work will involve testing the performance of the
model on mangoes in other production circumstances and in different
cultivars.
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