Exploring potential of non-destructive and noninvasive sensors in food supply chains

Bouzembrak, Y., Chauhan, A., Daniels, F., Gavai, A., Gonzalez Rojas, J., Kamphuis, C., Marvin, H., Meesters, L., Mishra, P., Mueller-Maatsch, J., Ouweltjes, W., Paillert, M., Petie, R., Petropoulou, A., Plantenga, F., Rijgersberg, H., Top, J., Tsafaras, I., Ummels, M., van Breukelen, A. and Weesepoel, Y.

Background

OnePlanet.

Food supply chains are under constant pressure to provide increasingly more food, with better quality and in a sustainable manner, while reducing food losses and delivering a safe product, leading to a healthy consumer. **Data-driven** technological advances, supported by innovations in **sensor technologies**, play a key role in addressing these challenges. We are interested in exploring the potential of sensor innovations and resulting insights to tackle different challenges across the food supply chain.

Objective

The **objective** of this project is to be able to <u>measure and make</u> better decisions based on the measured product properties. In particular, the necessity to measure non-destructively, noninvasively and on a smaller scale than is currently common: from batch level to product level; from population segment to an individual.

Five Case studies

Comprehensive surveys of sensing technologies corresponding to Case studies 1-4

Consolidating FAIR data knowledge across WUR by organizing FAIR data workshop in cooperation with WDCC Several experiments were carried out under each case study

Figure 2. Non-invasive cow lameness detection using thermographic imaging of legs and claws.

✤ No significant differences in features from thermographic images between lame and nonlame cows, likely due to small sample size. A larger study planned in 2020.

Strong correlation observed between leaf water stress and the THz reflection THz technology can provide a non-invasive tool for measuring and monitoring the water content of leaves and plants.

Figure 1. Five case-studies have been defined which address different segments of the food supply chain.

The developments and investigations in this project will be demonstrated in **five case studies**

- 1. Monitoring **animal welfare**
- 2. Sensing of crop development and performance indicators for **indoor** farming
- 3. Quality measurements of **fresh food products**
- 4. Food intake and food properties measurement for **personalized** nutritional advice
- 5. Non-invasive detection of **food adulteration**

Figure 4. Non-destructive Brix measurement of Kiwi using Hyperspectral imaging.

- High correlation found between the spectral data and the Brix content of Kiwis
- Another experiment, using Hyperspectral imaging, was carried out for **Avocado** stem-end rot detection with mixed-results.

Figure 5. Experimental setup designed for measuring food intake using RGBD sensor.

✤ An experimental setup constructed for food-intake data acquisition for content classification and volume prediction ✤ First set of data collected. Further data collection and analysis planned in 2020.

Key Activities

- Survey and inventory of sensing technologies per case study Data acquisition using novel sensors
- Data analysis and modeling
- FAIR data organization
- Cooperation with OnePlanet Research Center

Figure 6. Skimmed-milk powder adulterant detection using handheld NIR devices.

Three hand-held NIR (Near-Infrared) sensors were investigated Multi-class ML methods were used for detecting six types of adulterants in skimmed milk powder

Results demonstrated highly confident predictions reaching up to 98% accuracy

Key next steps The promising investigations from 2019 will progress into 2020 along with new investigations using novel sensing technologies identified in the surveys

Acknowledgements

Thanks to LNV, KB Data Driven & High Tech and WUR board for providing funds for this project.

Wageningen University & Research P.O. Box 123, 6700 AB Wageningen Aneesh Chauhan, aneesh.chauhan@wur.nl T + 31 (0) 317 48 56 76 www.wur.nl

OnePlanet Research Center 6708 WE Wageningen Marcel Zevenbergen: marcel.zevenbergen@imec.nl