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ABSTRACT: The occurrence of persistent organic pollutants
(POPs) in the Arctic has been of constant concern, as these
chemicals cause reproductive effects and mortality in organisms.
The Arctic acts as a chemical sink, which makes this system an
interesting case for bioaccumulation studies. However, as
conducting empirical studies for all Arctic species and POPs
individually is unfeasible, in silico methods have been developed.
Existing bioaccumulation models are predominately validated for
temperate food chains, and do not account for a large variation in
trophic levels. This study applies Monte Carlo simulations to
account for variability in trophic ecology on Svalbard when
predicting bioaccumulation of POPs using the optimal modeling
for ecotoxicological applications (OMEGA) bioaccumulation
model. Trophic magnification factors (TMFs) were calculated accordingly. Comparing our model results with monitored POP
residues in biota revealed that, on average, all predictions fell within a factor 6 of the monitored POP residues in biota. Trophic
variability did not affect model performance tremendously, with up to a 25% variability in performance metrics. To our knowledge,
we were the first to include trophic variability in predicting biomagnification in Arctic ecosystems using a mechanistic
biomagnification model. However, considerable amounts of data are required to quantify the implications of trophic variability on
biomagnification of POPs in Arctic food webs.

■ INTRODUCTION

Persistent organic pollutants (POPs) in the Arctic have been of
concern since the mid-1980s. These compounds are known to
cause adverse effects (e.g., altered reproduction and immuno-
logical effects in organisms at higher trophic levels).1−4 Despite
the banning of many of these compounds in the 1970s and
1980s, high levels of POPs are still being reported in Arctic
biota. This is due to the combination of chemical properties of
POPs in cold conditions (e.g., high thermal stability and slow
degradation) and marine currents and airflows transporting
POPs northwards.5−10 Due to the accumulation of chemicals
via limited evaporation at lower temperatures and recirculating
air and water currents,11 the Arctic is a global chemical sink.
This makes the Arctic a relevant case for bioaccumulation
studies.12−14 The magnification potential of chemicals is
evaluated by calculating trophic magnification factors
(TMFs), reflecting the degree of magnification of the chemical
throughout the food chain. These TMFs are defined as the
slopes of the log-transformed contaminant concentrations (in
lipid weight) on trophic position and rely heavily on
monitoring data or experimental studies.15 Although the
TMF concept is accepted as one of the most realistic
quantitative measures of biomagnification,16 there is a lack of

studies assessing changes of TMFs across large spatial scales
and ecosystems.17 Conducting extensive empirical studies for
all Arctic species and POPs individually is unfeasible, due to
ethical, financial, and practical constraints.18 Furthermore,
TMF measurements are retrospective and are only feasible
after a substance has already been released into the
environment.16 As TMFs are based on univariate linear
regression models, these do not account for species-specific
biotransformation of POPs.19 In silico mechanistic methods
have been developed to predict biomagnification of hazardous
compounds in food chains, including models describing
bioaccumulation kinetics.20−22 These models generally require
water concentration and the trophic position of a species in a
particular food chain as input, as well as specific species traits
(e.g., body mass and lipid content) and chemical-specific
characteristics (e.g., the octanol−water partition coefficient).
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Bioaccumulation models are predominately validated for
temperate food chains.21,23,24 The Arctic is highly influenced
by seasonality, which affects the degree of bioaccumulation of
compounds in Arctic food webs throughout the year.25−28

Seasonal differences in the Arctic are mainly driven by
fluctuations in light, temperature, and sea ice affecting
phytoplankton blooms, the species’ lipid content, and body
size. This in turn may affect the community structure and,
therefore, food and prey availability and may consequently lead
to diet shifts.25,27,28 Variation in the baseline species and
temporal and spatial differences in trophic status of species can
have substantial implications for the performance of the
biomagnification model.29,30 Although the influence of trophic
variability of species in Arctic ecosystems on the transfer of
POPs in food webs has been previously studied,17 its influence
on the performance of mechanistic biomagnification and
bioaccumulation models is yet to be examined. Intrinsic
trophic variability and diet shifts throughout the year may lead
to differences in steady-state concentrations of POPs in Arctic
species. The aim of the current study was to better predict the
bioaccumulation of POPs in Arctic food chains, which are
subjected to high trophic variability using the optimal
modeling for ecotoxicological applications (OMEGA) bio-
accumulation model. Publicly available data for one Arctic
region, i.e., Svalbard, were used as input for the mechanistic
biomagnification model to predict the transfer of POPs across
food chains, accounting for variability in the trophic position of
species by means of Monte Carlo simulations. Model
performance data were evaluated against measured POP
concentrations in the Svalbard Archipelago.

■ MATERIALS AND METHODS
The OMEGA Bioaccumulation Model. Model Ap-

proach. Biomagnification of POPs in the present study was
calculated using the OMEGA bioaccumulation model,31

combining mass balance and allometric approaches to estimate
bioaccumulation in each tropic level individually and
biomagnification throughout the food chain.24 Since its
development, OMEGA has effectively been applied in
estimating biomagnification of numerous organic compounds
and metals.23−25 We assumed a steady-state concentration of
chemical residues in aquatic organisms (Ci,x, in μg/kg lipid
weight (l.w.)), calculated as the sum of influx via water
(absorption) and uptake from food (assimilation) divided by
the total elimination rate, encompassing elimination via water,
biotransformation, excretion, and dilution through growth,
disregarding possible uptake and elimination through air. The
steady-state concentration in an organism is calculated as31

=
· + ·

∑
−C

k C k C

k

( )
i x

x w x x i x

j j x
,

0, ,in 0, , 1, ,in 1,
4

, ,out (1)

where Ci,x is defined as the final steady-state concentration of
substance x at trophic level i (in μg/kg lipid weight), k0,x,in is
the chemical absorption rate (in L/kg·d−1), C0,w,x is the initial
chemical concentration in the water (in μg/L), k1,x,in is the
chemical concentration assimilation rate in [kg/kg·d−1], Ci−1,x
is the chemical concentration in food (in μg/kg), and ∑kj,x,out
is the sum of the elimination rate constants (per day),
pertaining to water (including urine), feces, growth dilution,
and biotransformation. Concentration estimates in the model
were based on wet weights and were transformed into lipid
weight-based estimates using reported data on the whole-body

lipid content. As the Arctic is a highly dynamic system, with
algae blooms in spring and changes in the lipid content of
zooplankton and species at higher trophic levels throughout
the year, the assumption of a steady-state concentration may
not be justified in a highly dynamic system such as the Arctic,
especially for lower trophic levels.25 Furthermore, the OMEGA
model only includes the main aquatic exposure routes and does
not take into account any possible exposure of POPs through
air (Text S1 in the Supporting Information (SI)).

Including Variability in Trophic Levels in OMEGA. The
trophic level concept is predominantly used to evaluate food
webs and food chains since these levels are relatively easy to
define and allow for estimation of energy and contaminant flow
through ecosystems.32 However, the use of discrete trophic
levels fails to acknowledge complex interactions between
organisms within a food web. In contrast, stable isotopic
techniques provide a continuous measure of the trophic
position, integrating contaminant flows from all different
trophic pathways, leading to the species of interest.32 The use
of relative trophic levels based on stable nitrogen isotopes
(δ15N) allows for the ecosystem and species-specific
discrimination by means of unique nitrogen enrichment
factors, and baseline correction.17 The isotopic signature of
an organism alone does not provide sufficient information on
absolute trophic position when comparing among multiple
systems, as both the isotopic signature of baseline species and
the nitrogen enrichment factors are location and food web
specific.30 Therefore, we calculated the trophic position of
target species based on the nitrogen enrichment factors and
isotopic signatures of baseline species as reported in the
literature,33 according to the following general model32,34

δ δ
= +

−
Δ

TL TL
N N

Nconsumer baseline

15
consumer

15
baseline

15 (2)

where TLconsumer represents the tropic level of the consumer,
δ15Nconsumer represents its corresponding stable nitrogen
isotope, δ15Nbaseline represents the measured stable nitrogen
isotope of a species set at a baseline trophic level for a
particular region and study (equal to TLbaseline), and Δ15N
represents the enrichment factor of δ15N across the food chain.
As the variance in trophic levels induced by variation in
δ15Nconsumer and Δ15N between regions is higher than the
variance between individuals, samples, and studies within one
Arctic region, the present study only focused on bioaccumu-
lation of POPs in the Svalbard Archipelago.33 Species from
both pelagic and benthic food webs were considered since both
food webs are important for top predators.
For each individual data record, the mean trophic level and

its standard deviation were calculated based on eq 2, including
reported corresponding variation in δ15Nconsumer, δ

15Nbaseline,
and Δ15N by means of Monte Carlo simulation (1000
iterations). Trophic levels and standard deviations per data
record were then used in constructing trophic level
distributions per species by means of geometric averaging
and taking the pooled standard deviation based on sample size
(Table S5, Supporting Information). At each iteration, species
were distributed over six discrete trophic level bins (ranging
from 0 to 5), based on a trophic position randomly sampled
from the species-specific probability distribution of the trophic
level, which acted as direct input for 1000 biomagnification
scenarios in OMEGA in a Monte Carlo simulation (see Text
S2 in the Supporting Information).
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Parametrization of the OMEGA Model. Equations
pertaining to influxes and effluxes of the OMEGA model (eq
1) and corresponding parameter values, including the lipid
content and the compound’s octanol−water partition co-
efficient (Kow), are provided in the Supporting Information
(Text S1, Tables S1 and S2). Log-transformed Kow’s for the
compounds were obtained using the experimental data from
EPI-suite 4.1, disregarding any variation or uncertainty35 (see
Supporting Information Table S2). Estimates for the body-
weight per trophic level was obtained through Hendriks et al.31

Whole-body lipid fractions were taken from the ICES database
(http://ecosystemdata.ices.dk/). When no lipid percentage
was reported, an average whole organism lipid fraction was
taken based on the species group (see Table S3 in the
Supporting Information). For mammals, an average whole-
body lipid content of 30% was assumed. Compound-specific
biotransformation rates for higher trophic levels (TL > 2) were
based on median values reported by Arnot et al.,36 which are
standardized for a 10 g fish at a water temperature of 15 °C
(see Table S4 for all biotransformation rates).
Since biotransformation rates tend to decrease with

temperature,37,38 we accounted for their temperature depend-
ence by assuming an Arrhenius-type of equation (eq S6 in the
SI).

■ EXPOSURE AND VALIDATION DATA

Data Collection. Data on POP residues in marine biota
around Svalbard (72−85° N, 0−40° E) were compiled to
calculate TMFs and to validate the OMEGA model. POP
concentrations in both benthic and pelagic biota, transformed
to μg/kg lipid weight (l.w.), were downloaded from the
database of the International Council for the Exploration of the
Sea (ICES; http://ecosystemdata.ices.dk/) and complemented
with the data from a literature search using the Web of
Knowledge and Google Scholar. The search strings used in
queries included names of the most recognized legacy POPs
(including “p,p′-DDE”, “p,p′-DDT”, “Hexachlorobenzene”,
“Dieldrin”, or “PCB-153”) or general terms and compound
groups (“Persistent organic pollutants/compounds”, “POPs”,

“PCBs”, “DDTs”, “HCHs”, “PAHs”, “organochlorines”,
“PFASs”, or “PBDEs”). These were combined with general
terms related to Arctic food webs (“Svalbard food web”,
“Svalbard”, “Arctic”, “Arctic food web”, “Arctic ecosystem”,
“Arctic pelagic food web”, or “Arctic benthic food web”),
names of well-known Arctic pelagic and benthic species (both
scientific (e.g., “Ursus maritimus”, “Phoca hispida”, or “Calanus
hyperboreus”) and their common names (e.g., “polar bear”,
“ringed seal”, or “copepod”)).

Data Treatment. Residue concentrations of POPs in biota
were transformed to μg/kg lipid weight (l.w.) using the
reported whole-body lipid content (Table S3 in the Supporting
Information). Duplicate values were removed using the
Duplicate function in R statistics 3.4.1, based on the date of
sampling, species, sex, location, sampling tissue, compound,
and value. Although the obtained data were sampled
throughout the year, due to the lack of data sampled in
winter, only samples obtained for the months April until
October and after the year 2000 were considered in further
analysis. Three inclusion criteria were applied to the dataset to
select compounds to be included in the dataset. As the
OMEGA model is largely dependent on water concentrations,
including a sufficient amount of water data (n ≥ 5), it is crucial
for the model to reflect a natural system. However, data on
POP concentrations in Arctic coastal and marine waters is
grossly lacking in the literature. Therefore, as a first criterion
(#1), when no sufficient water concentration data were
available (n < 5), water concentrations were estimated based
on POP concentrations in zooplankton (n ≥ 5), reflecting the
second trophic level of the Arctic food chain. These estimates
were based on monitoring the data of POP residues in biota
residing at the second trophic level and corresponding species-
specific parameters. Given that, in some cases, the residue data
were below the detection limit, a second criterion (#2) was
included, relating to the fraction censored data. Chemicals for
which over 40% of the water data records fell below the
detection limit were discarded. As a third criterion (#3), we
required that at least five species were monitored per
compound to ensure that multiple species and trophic levels
were represented in the model. As a fourth and final criterion

Figure 1. Locations of data records included in the Svalbard Archipelago, encompassing POP residue concentration data in Arctic biota, after
truncation according to set criteria, obtained from a literature search. The size of the points indicates the sample size.39,40
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(#4), we required the remaining chemicals to cover at least
four trophic levels. Reported POP concentrations in biota were
geometrically averaged per species and location, and weighted
according to the reported sample size (based on the amount of
measurements) per data record (Figure 1).
Trophic Magnification Factor. The trophic magnification

factor (TMF) is a typically used metric to assess the
accumulation of contaminants in a food chain. Parallel to
modeling biomagnification of POPs using the OMEGA model,
TMFs were simulated (1000 iterations) based on the
monitored average POP residue data per species and
corresponding randomly sampled trophic levels per species
taken from the constructed species-specific trophic level
distributions, as described earlier. Unlike in the OMEGA
model, TMFs were only calculated for ectothermic biota, as
ectothermic animals are more likely to biomagnify chemicals
than endothermic species.41 Concentrations of POPs can
generally be described by a linear relationship15,17,41,42

[ ] = + ·C a blog TL (3)

where log(C) is the log10-transformed lipid-normalized
chemical concentration in ectothermic biota (phyto- and
zooplankton, bivalves, and fish), aggregated per trophic level
bin, a reflects the intercept of the regression line and accounts
for input of contaminants at the base of the food web,17 and b
is the regression slope coefficient. The TMF is then calculated
from the regression slope b

=TMF 10b (4)

Model Validation and Performance. To asses model
performance, the coefficient of efficiency (E, dimensionless)
was calculated for each persistent organic compound,
through43

= −
∑ −
∑ − ̅

=

=

E
O P

O O
1

( )

( )
i
n

i i

i
n

i

1
2

1
2

(5)

where Pi reflects the log-transformed mean residue concen-
tration per trophic level bin as predicted by the OMEGA
model for simulation i, Oi represents each corresponding log-
transformed observed residue concentration, and O̅ represents
the log-transformed mean of all observed values within each
iteration. The efficiency coefficient E ranges from minus
infinity to 1, with a value of 1 indicating a perfect model
estimation. A positive E indicates that the model estimates are
more accurate than the mean of the observed values, indicating
a good fit.23,43 To summarize both random error and
systematic bias, the root-mean-square-error for each model
iteration was computed by geometrically averaging the squared
differences between log-transformed observed and predicted
values

∑= · −
=n

O PRMSE
1

( )
i

n

i i
1

2

(6)

To summarize the relative error of the model, we computed
the median symmetric accuracy (ξ) per compound based on
results from each iteration and the trophic level (eq 7),
reflecting the typical percentage error of the predicted POP
concentrations compared to the measured concentrations,
without penalizing over- and underestimation differently,44,45

according to

ξ = · −| ̂ |e100 ( 1)M y y( ln( / ) ) (7)

in which ξ is based on the exponentiated median of the log-
transformed predicted concentrations in biota (ŷ, μg/kg) and
the log-transformed measured concentrations in biota (y, μg/
kg). ξ can be interpreted as a typical percentage error: a ξ of
200%, for example, indicates that predicted concentrations
from OMEGA will typically be within a factor of 3 of the
measured concentrations in Arctic biota.46 Finally, to assess the
prediction bias of OMEGA, accounting for likely asymmetry in
the prediction errors, we computed the symmetric signed
percentage bias (SSPB)45

= ·
̂

· −| ̂ |
i

k
jjjjjj

i

k
jjjjj

i
k
jjjjj
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zzzzz
y

{
zzzzz
y
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zzzzzzM

y
y

eSSPB 100 sgn ln ( 1)M y y( ln( / ) )

(8)

The SSPB may be interpreted similarly as the mean percentage
error, with values below 0 indicating a systematic under-
prediction. Model performance metrics, as previously
described, were compared among compound groups by
performing a one-way analysis of variance (ANOVA).
Compound groups were compared individually by performing
a Fisher’s least significant difference test. All work pertaining to
the biomagnification modeling and model validation was
performed in R statistics 3.4.1.47

■ RESULTS
Exposure and Validation Data. The initial literature

search on biota residue data resulted in 50 articles/reports,
covering over 170 individual compounds from 9 chemical
classes, encompassing 18 000 data records (Table 1).

Application of the first three inclusion criteria, related to the
number of concentration data, resulted in a secondary dataset
of approximately 16 500 data records (49 articles, encompass-
ing 90 compounds for Svalbard (Table 1)). By including data
on the trophic position, biomagnification could be modeled for
a total of 22 compounds in Svalbard, based on 44 articles and
10 000 data records (see the Supporting Information for the
full reference list).

OMEGA Model Performance. Biomagnification could be
modeled for a total of 22 compounds in the Svalbard

Table 1. Number of Data Records before and after
Truncation of the Collected Data, According to the Four
Criteria as Described in the Text (Relating to the Number
of Species and TLs, the Number of Water/Zooplankton
Data and the Amount of Censored Data) and the Presence
of Sufficient Trophic Position Data

initial
dataset

#1
water

criterion

+ #2
detection
limit

criterion

+ #3 species
concentration
data criterion

+ #4
species
TL data
criterion

number of
data
records

18 318 16 548 16 548 16 531 10 044

number of
compounds

173 91 91 90 22

number of
compound
groups

9 8 8 8 6

number of
species

67 66 66 66 63

number of
articles

50 49 49 49 44
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Archipelago (Table S6 in the Supporting Information (SI)).
Model results for each substance are shown in Figure S1 in the
SI. In total, 60.8% of all predictions fell within a factor 5 of the
observed values, with concentrations in biota being equally
underestimated (in 18.8% of the cases) as well as over-
estimated (19.9%) (Figure 2). As expected, a substantial

concentration step between the water phase (TL = 0) and
phyto- and zooplankton (TL = 1) was observed for almost all
individual compounds (Figure S1, SI). Mean efficiencies (see
eq 5) calculated for the OMEGA model, accounting for
variation in the trophic position of Arctic species, ranged from
−0.83 (CB-101) to 0.66 (CB-99) (Figure 3 left graph and
Table S6). The majority of the studied compounds (18/22)
had a positive mean efficiency value, implying that the model
predictions were more accurate than the average of the
observed concentrations. Overall, model runs for cyclodienes
had the highest calculated averaged efficiencies (0.38 < E <
0.64), followed by runs for DDTs (0.42 < E < 0.51) and
PBDEs (0.23 > E < 0.57). Lowest mean efficiencies were
calculated for HCHs (−0.38 < E < 0.57). No significant
differences in model performance were observed between
compound groups (p = 0.666, one-way ANOVA). Calculated
RMSEs were highest for CB-180 (2.72, Table S6) and lowest
for CB-28 (0.86). The highest absolute RMSEs were found for
cyclodienes (1.82 ± 0.64), followed by PBDEs (1.74 ± 0.02).
However, again, no significant differences in RMSEs were
observed among compound groups (p = 0.962, one-way
ANOVA). Median symmetric accuracies were calculated for all
individual compounds, compound groups, and trophic level

bins, reflecting the typical percentage error compared to the
measured data.46 Overall, the typical prediction error of all
model iterations was 288.49%, implying that typically
predictions were within a factor 3.9 from the observed
concentrations. The lowest typical percentage error, and thus
highest predictive power, was calculated for oxychlordane
(68.5%), while the highest typical percentage error was
calculated for CB-180 (1081%, Table S6 in the SI). Average
model accuracies were highest for PBDEs (ξ = 145.37%),
followed by HCHs (168.8%), while the highest average
percentage errors were computed for PCBs (398.84%)
(Table 2). No statistically significant differences were observed
in prediction errors among the modeled compound groups (p
= 0.378, one-way ANOVA). Evaluating model performance
per trophic level bin revealed that the typical percentage errors
were lowest for the first four trophic level bins (ranging from
110 to 220%), and highest for the fifth trophic level. Despite
the high standard deviation corresponding to the high
prediction error of the fifth bin, a statistically significant
difference in model performance, based on median symmetric
accuracies, was observed between the fifth trophic level and the
other trophic level bins (p = 0.001, one-way ANOVA with least
significant difference). The average SSPB value across all
simulations was 124.4, indicating an overestimation of the
predictions relative to the monitored concentrations. The
highest SSPB value, indicating the highest overestimation bias,
was computed for CB-180 (888.15%), while the lowest SSPB
was found for HCB (−93.6%, indicating an underestimation
bias of a factor of almost 2). The SSPB closest to 0, indicating
best model performance, was found for model results for BDE-
47 (−1.55%) and CB-28 (12%). PCBs (252.24%) showed to
have the highest SSPBs, while SSPBs closest to 0 were found
for cyclodienes (36.26%).

Including Trophic Variability. Variation in estimated
steady-state concentrations in biota was assessed by calculating
coefficients of variation (CVs) for efficiencies, RMSEs and
TMFs (Tables 1 and S6 in the SI). The highest variability in
efficiency induced by variability in trophic positions of species
was observed for γ-HCH (138%), followed by CB-194
(134%). The significantly highest CV was calculated for
HCB (130%), followed by HCHs (57.9%), while the lowest
CVs were calculated for cyclodienes (7.9%) and DDTs
(12.9%). However, no significant differences were observed
among the compound groups (p = 0.221, one-way ANOVA).
Variation in RMSEs induced by variability in the trophic
position of the included species showed to be highest for
oxychlordane (41.91%), and the lowest CVRMSE was calculated
for CB-105 (4.7%). Variability in measured POP concen-
trations (TMFs) was relatively high (14.02 ± 5.2%, Table 1).
Both the variability in efficiencies and the variability in TMFs
showed not to be correlated to the number of species included
in analysis (p = 0.47 and 0.194, respectively, linear regression
model).

Trophic Magnification Factor. Overall, average TMFs
calculated in the present study ranged from 1.5 (CB-99) to
6.84 (Oxychlordane). Cyclodienes had, on average, the highest
magnification potential, followed by DDTs and HCBs, while
lowest TMFs were found for HCHs (Table 2). TMFs did not
differ significantly across compound groups (p = 0.588, one-
way ANOVA, Table 2). All assessed compounds in the present
study are highly bioaccumulative (TMFs > 1, Log10 TMF >
048) (Figure S2 in the Supporting Information).

Figure 2. Observed POP concentrations in Svalbard biota versus
predicted model estimates (based on 1000 Monte Carlo iterations per
compound and five trophic bins per iteration). The dashed lines
represent a factor of 5 under- or overestimation by the OMEGA
model. The colors correspond to the compound groups.
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■ DISCUSSION

Our study shows how variation in the trophic position of
species influences modeling performance of a biomagnification
model when applied to modeling POPs in Arctic ecosystems.
Considerable variation in trophic position was observed for the
species included in the present study, resulting in varying
model performance across compound groups (given the large
differences in CVefficiency (Table 2)). However, this trophic
variation did not have major implications for bioaccumulation,
given the relatively low CVs found for TMF. Although
biomagnification in Arctic marine food webs has been
thoroughly examined on a relatively small temporary and
spatial scale in separate case studies, implications of intra-
specific variation in trophic levels on biomagnification on

larger scales are often disregarded.49 As in the present study,
species were binned according to their trophic level,
presumably feeding upon the previous bin, we stress that the
food webs used in the present study do not necessarily reflect
natural Arctic food webs. However, nitrogen stable isotopes of
species on the basis of the trophic level estimation were
compared to baseline species in the same system, thus
representing a representative trophic level. Furthermore, stable
nitrogen isotopic signatures of primary producers at the base of
the food web are considered to be relatively spatially and
temporally similar, hence the use of a fixed baseline trophic
position (2).50

OMEGA Model Performance. For the majority of
modeled compounds (18/22), efficiencies pertaining to
modeling biomagnification along Arctic marine food chains

Figure 3. Model efficiencies including all species (left graph), empirical TMFs, including heterothermic species (right graph), and corresponding
95% confidence intervals due to variability in the trophic position of species, calculated for multiple compounds in Svalbard. The colors correspond
to the compound groups. Additionally, the number of species included in the modeling practices per chemical is indicated for each substance
between parentheses.

Table 2. Average Efficiencies, TMFs, Root-Mean-Squared-Errors (RMSEs), Median Symmetric Accuracies (ξ), and
Coefficients of Variation for Efficiencies and TMFs per Compound Group in the Svalbard Archipelago. Different Letters
Indicate Significant Differences Between Groups (p < 0.05, ANOVA)

efficiency Log10 TMF

(±S.E.) (±S.E.)
RMSE of
OMEGA fit ξ SSPB CVefficiency CVRMSE CVTMF

PBDEs (N = 2) 0.399
(±0.243)A

0.36
(±0.03)A

1.75 (±0.02)A 145.37
(±69.19)A

60.65%
(±87.97)AB

25.7%
(±33.3)B

24.4%
(±0.8)A

16.02%
(±4.7)A

PCBs (N = 10) 0.301
(±0.405)A

0.41
(±0.11)A

1.72 (±0.54)A 398.84
(±271.14)A

252.84%
(±256.71)A

30.3%
(±45.2)B

14.1%
(±8.3)A

15.5% (±5.6)A

HCB (N = 1) 0.183A 0.41A 1.55A 251.23A −93.64%B 130%A 18.5%A 9.3%AB

DDTs (N = 2) 0.469
(±0.065)A

0.53
(±0.02)A

1.45 (±0.37)A 228.34
(±64.01)A

68.3% (±45.34)AB 12.9%
(±15.6)B

16.7%
(±5.6)A

10.9%
(±0.38)AB

cyclodienes
(N = 4)

0.535
(±0.12)A

0.65
(±0.15)A

1.83 (±0.65)A 190.55
(±110.07)A

36.26%
(±54.59)AB

7.9% (±7.7)B 25.9%
(±12.1)A

15.9% (±4.1)A

HCHs (N = 3) 0.092
(±0.47)A

0.33
(±0.08)A

1.57 (±0.40)A 168.35 (±3.71)A −33.57%
(±53.95)B

57.9%
(±70.1)AB

13.2%
(±18.6)A

8.6% (±3.9)AB

total 0.342 (±0.33) 0.45
(±0.12)

1.69 (±0.47) 284.29%
(±213.76)

124.41 (±212.75) 32.5% (±46) 18.3% (±9.6) 14.02% (±5.2)
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were positive, indicating that the mechanistic OMEGA model
fits the monitoring data more accurately than taking the
average of the observed concentrations. However, as with the
R2, the coefficient of variation E is highly sensitive to outliers.43

Concentration steps observed in the present study have been
reported in data of several previous studies focusing on both
Arctic and temperate food webs,51−53 and may be explained by
POP concentrations in biota at the base of the food web being
in (near-)equilibrium with dissolved water concentrations.51 In
the present study, no major fluctuations in modeled
concentrations at the base of the food web occurred, except
for compounds lacking sufficient concentration data on species
residing at TL = 1 (e.g., certain PBDEs, Figure S1 in the SI).
The OMEGA model predicted less well for species residing at
higher trophic positions (including fish and marine mammals)
(TL = 4 and 5, Table S7 in SI). In the present study, we
included biotransformation rates, based on values normalized
for 10 g fish and a water temperature of 15 °C.36 As
biotransformation increases with increasing temperatures,23,54

biotransformation may be lower in the Arctic. To account for
changes in biotransformation associated with lower atmos-
pheric temperatures, we transformed our biotransformation
rates using an Arrhenius function.13,55 However, biotransfor-
mation rates in all species were based on those for fish, so we
did not take into account differences in species thermal groups.
Although temperature especially affects the biotransformation
rate of poikilotherms (in this case, fish), it also has some
influence on the metabolic rate in homeotherms (mammals).56

In the present study, biotransformation rates may be different
for marine mammals residing at the higher trophic positions in
the food chain.
Overall, median prediction errors for all compounds by

OMEGA were within a factor of 6 from the observed
concentrations (ξ < 500%). An average SSPB of 124% was
observed, indicating an overestimation when concerning all
model predictions. Large standard deviations in ξs and SSPBs
were observed within all model predictions, as well as within
compound groups, and no statistically significant differences
were observed in ξs and SSPBs among the compound groups.
Overall, HCHs showed to have the lowest efficiencies,
indicating a poor fit. However, this may likely be due to the
low calculated efficiency for HCH-γ as average RMSEs, ξs and
SSPBs showed to be relatively low for these compounds. All
HCHs included in the present study had relatively low
octanol−water partition coefficients (Log Kow = 4.14, com-
pared to Kow ranging from 5.48 to 8.68 for other compounds),
limiting partitioning of a chemical from water into lipids, and
thus bioaccumulation potential.57 Although HCHs are
efficiently metabolized in vertebrates at higher trophic levels,
i.e., fish and marine mammals, gut microbial degradation may
also play a role in bioaccumulation of HCHs in the Arctic food
chain.58

Trophic Magnification Factor. Interpretation of field data
may be sensitive to bias induced by uncertainty in trophic
interactions, limited statistical power, and ecosystem-specific
factors, such as water salinity and temperature, affecting the
water solubility and organic matter partitioning of
POPs.17,19,59−61 In the present study, TMF values computed
for individual POPs had an average CV of 14.01%. These
TMFs take into account the observed variation in stable
nitrogen isotopes as well as in the nitrogen fractionation factors
used and the choice of baseline species.33 Instead of taking a
TMF based on a single food web, variability in TMFs can be

quantified by computing distributions based on TMF
simulations.15 Rather than applying numeric pass/fail criteria
to single field-TMFs, it is then possible to quantify the risk of
certain chemicals exceeding these criteria based on a more
wider background.48 However, this may not yet be applicable
in a regulatory context as knowledge is currently lacking on
whether the variability in simulated TMFs is the result of
natural variation in relevant processes or measurement errors,
poorly defined concepts, and statistical analyses.15 Given the
rule of the thumb that TMFs < 1 indicate poorly
bioaccumulative substances,48 an inadequate choice of species
in biomagnification modeling and incorrect use of trophic
levels can result in chemicals being characterized as poorly
bioaccumulative. Examples in the present study are BDE-154
and CB-99, for which 22.4 and 17.0% of all simulated TMFs
fall below 1, respectively (Table S6, SI). Problems may arise in
calculating TMFs when food webs include both poikilotherms
and homeotherms, which is often the case with the Arctic
pelagic food webs.60 This problem was avoided by including
only the first three trophic levels in the TMF calculations,
excluding birds and mammals. Variation in biomagnification
may be induced by different individual-specific covariates, such
as length or lipid content, or methodological differences
pertaining to the sampling protocol (i.e., sampling tis-
sue).25,62,63 Computed median TMFs in this study were
slightly lower thanbut within a factor of 2 ofthe
corresponding obtained TMFs gathered by Walters et al.41

(see Table S8 in the Supporting Information). While standard
errors for TMFs in the study by Walters et al. were relatively
high, our computed TMFs were not significantly different from
these measured TMFs. The analysis in the present study, as
well as the study done by Walters et al. reveals PCBs as the
compound group with the highest bioaccumulative potential.
In contrast to the present study, the study by Walters et al.
focused on TMFs measured in temperate zones. As mentioned
previously, biomagnification of nonmetabolizable POPs is
thought to be an exothermic process, implying that
biomagnification decreases with increasing temperature.64

Temperature may not only influence POP concentrations in
biota because of its influence on metabolic (biotransformation)
rate but may also affect the excretion rate by modifying the
lipid content of the animal, especially in poikilothermic
animals.56 If this is the case, measured POPs are expected to
be higher in Arctic biota, compared to temperate zones. This
was not the case in the present study, reporting lower TMFs
based on monitoring data for the Arctic than TMFs reported in
temperate zones (by Walters et al., 2016). However, next to
the climatic zone, other environmental and methodological
parameters may influence the calculation of TMF.41 In the
study by Walters et al. TMFs in the Arctic zones were based on
both ectothermic and endothermic organisms, while in the
present study, only ectothermic species were considered in the
TMF calculation. The same study found that TMFs are lower
in food webs containing only ectotherms (or when TMFs are
based on only ectothermic species, as in the present study),
independent of latitude.41 Furthermore, they found that TMFs
were more variable in marine ecosystems compared to
freshwater ecosystems.

Implications and Recommendations. Overall, OMEGA
predicted reasonably well for the compounds included in the
present study, with efficiencies for 18 out of 22 compounds
being positive. Variation in the trophic position of species, due
to both natural processes (seasonality) and methodological
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differences (choice of baseline species and nitrogen fractiona-
tion factor), accounted for up to a 25% variability in the model
performance metrics. Considerable amounts of data were
required, pertaining to both the studied chemicals (e.g.,
residues in biota and octanol−water partition coefficients) and
the species (e.g., body mass and trophic position or stable
nitrogen isotopic data) to realistically quantify the implications
of intra- and inter-specific trophic variability on biomagnifica-
tion of POPs in Arctic food webs. In particular, data on POP
concentrations in zooplankton were relatively sparse, disallow-
ing biomagnification modeling for many compounds. As
several criteria were set to increase statistical robustness
(representativeness) of the model, the demand for more data
increased accordingly.
Application of toxicokinetic mass balance biomagnification

models in Arctic ecosystems is rare, due to the variability of
metabolic rates and rates of decay at lower temperatures and
the confirmed high seasonal variability in the biological activity
of Arctic organisms and, therefore, biomagnification.25,65 To
our knowledge, we were the first to include trophic variability
in predicting biomagnification of chemicals in Arctic
ecosystems using a mechanistic biomagnification model,
including temperature-dependent biotransformation rates. As
variation in modeling performance results showed to be
relatively low, we may conclude that the variation in the
trophic position of Arctic species may not have a major
influence on the degree of biomagnification of POPs, based on
evaluation of the in silico biomagnification model, the OMEGA
model.
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T.; Koerner, M.; Durham, J.; Huff, D. W. Bioaccumulation and
trophic transfer of cyclic volatile methylsiloxanes (cVMS) in the
aquatic marine food webs of the Oslofjord, Norway. Sci. Total Environ.
2018, 622−623, 127−139.
(50) Carscallen, W. M. A.; Vandenberg, K.; Lawson, J. M.; Martinez,
N. D.; Romanuk, T. N. Estimating trophic position in marine and
estuarine food webs. Ecosphere 2012, 3, 1−20.
(51) Sobek, A.; McLachlan, M. S.; Borgå, K.; Asplund, L.;
Lundstedt-Enkel, K.; Polder, A.; Gustafsson, Ö. A comparison of
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