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A B S T R A C T

This study investigates sampling design for mapping soil classes based on multiple environmental features as-
sociated with the soil classes. Two types of sampling design for calibrating the prediction models are compared:
conditioned Latin hypercube sampling (CLHS) and feature space coverage sampling (FSCS). Simple random
sampling (SRS), which does not utilize the environmental features, is added as a reference design. The sample
sizes used are 20, 30, 40, 50, 75, and 100 points, and at each sample size 100 sample sets were drawn using each
of the three types of design. Each of these sample sets was then used to calibrate three prediction models: random
forest (RF), individual predictive soil mapping (iPSM), and multinomial logistic regression (MLR). These sam-
pling designs were compared based on the overall accuracy of predicted soil class maps obtained by these three
prediction methods. The comparison was conducted in two study areas: Ammertal (Germany) and Raffelson
(USA). For each of these two areas a detailed legacy soil class map is available. These soil class maps were used
as references in a simulation study for the comparison. Results of both study areas show that on average FSCS
outperforms CLHS and SRS for all three prediction methods. The difference in estimated medians of overall
accuracy with CLHS and SRS was marginal. Moreover, the variation in overall accuracy among sample sets of the
same size was considerably smaller for FSCS than that for CLHS. These results in the two study areas suggest that
FSCS is a more effective sampling design.

1. Introduction

Information on the spatial distribution of soil classes is of great
importance for, amongst others, agriculture management and wa-
tershed process simulation (Cook et al., 2008; Lagacherie, 2008;
McBratney et al., 2003; Sanchez et al., 2009). As the soil cannot be
observed everywhere, we need to predict the soil classes at unvisited
locations from a finite set of observations at other locations. These
observations can then be used to calibrate a model relating the soil
classes to environmental features whose spatial variation are readily
available. Subsequently the calibrated model can be used to predict the
soil classes at any unvisited location in an area. The selection of

observation locations (sample locations) for calibration is a particularly
important step (Brus, 2019) because they directly impact the calibra-
tion of the prediction model. Clearly, sampling design, which de-
termines the calibration sampling locations, directly affects the pre-
diction accuracy of the spatial distribution of soil classes. However,
sampling is labor intensive and resources demanding (Webster and
Oliver, 1990). Therefore, how to improve the sampling efficiency,
achieving a highly accurate and detailed soil class map with limited
samples, is an important issue in soil sampling.

To calibrate a model that relates soil classes to environmental fea-
tures we must select points (locations) from the multidimensional space
defined by the environmental features. Brus (2019) suggests amongst
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others conditional Latin hypercube sampling (CLHS) and feature space
coverage sampling (FSCS) for predictive mapping with environmental
features. In this paper, the term “sample” and “sample set” are the
same, they both refer to a subset from a population and are used in-
terchangeably in this paper. The term “sampling points” refers to the
individual units in a sample or a sample set, and “sample size” refers to
the number of sampling points in a sample or sample set.

CLHS is a popular design in soil mapping, see for instance (Lin et al.,
2011; Roudier et al., 2012; Schmidt et al., 2014; Stumpf et al., 2016;
Yang et al., 2020). CLHS is done by minimizing a criterion which is a
function of the number of sampling points in the marginal strata and
the correlation matrix of the environmental features. The criterion is
minimized through simulated annealing (Minasny and McBratney,
2006). Several studies have investigated the impacts of this sampling
design on the accuracy of digital soil mapping. Worsham et al. (2012)
compared simple random sampling, stratified random sampling and
CLHS for mapping soil carbon content in a forest plot using regression
kriging with sample sizes of 40, 100 and 300 points. The root mean
squared error of stratified random sampling and CLHS were about
equal. Schmidt et al. (2014) compared weighted CLHS, fuzzy k-means
sampling and response surface sampling for mapping several quanti-
tative soil properties, using multiple linear regression and random
forest, in a real-world case study and in two simulated fields. Their
study (Table 4 in that paper) showed that overall weighted CLHS and
fuzzy k-means performed comparable. However, the calibration sam-
ples were also used for validation, so that no reliable conclusions can be
drawn from this study.

With FSCS the minimization criterion is a function of the squared
shortest distances in the feature space of the sampling points to the
prediction points. The criterion is minimized by the k-means algorithm
(Brus, 2019). Recently, Wadoux et al. (2019) compared CLHS, FSCS and
Simple Random Sampling (SRS) for mapping a continuous soil prop-
erty. They did so in a simulation study, so that for each sampling design
many samples could be drawn. They concluded that the median mean
squared error (MSE) with FSCS was significantly smaller than with
CLHS for all sample sizes.

So far the comparisons are only conducted for mapping continuous
soil property and there is a need to compare these sampling approaches
for mapping soil classes. The aim of this research was to compare CLHS,
FSCS and SRS for predicting soil classes, using several commonly ap-
plied prediction methods. The focus is on the performance of the
sampling designs, not on the performance of the individual prediction
methods, but we were interested in seeing whether the relative per-
formance of the sampling designs was consistent among the prediction
methods or not.

2. Materials and methods

2.1. Experimental design

The purpose of this paper is to compare the sampling efficiency of
CLHS and FSCS for predicting soil classes in a simulation study. The
sampling efficiency is quantified by the overall accuracy of spatial
predictions of soil classes. SRS is added to our study as a reference
sampling design. Comparison of CLHS and FSCS with SRS gives insight
in how useful the environmental features are at the sampling stage. For
prediction, we selected three prediction methods: random forest (RF),
multinomial logistic regression (MLR) and individual predictive soil
mapping (iPSM) (Zhu et al., 2018, 2015).

To examine the impacts of sampling design types on prediction
model calibration a range of sample sizes was used: n = 20, 30, 40, 50,
75 and 100. For each sample size, 100 repeats were conducted for each
sampling design type, CLHS, FSCS and SRS. In other words, for each of
the sampling design types, we generated 100 sample sets at the sample
size of 20 points, 100 sample sets at the size of 30 points, and so on.
Each of these sample sets was subsequently used to calibrate (train) the

prediction models. The calibrated models were then used to predict the
soil classes. This results in 3 (design types) × 6 (sample sizes) × 100
(number of sample sets) × 3 (prediction methods) = 5400 models for
each study area in this experiment.

We conducted the simulation study in two study areas. A detailed
soil class map is available for each of the two study areas. The predicted
soil classes using the calibrated models were compared with the soil
classes as depicted on the soil class maps. The difference between the
soil classes as depicted on the legacy soil class map and the predicted
soil classes are used as the prediction errors. We are aware that the
legacy soil class maps are not error free, so that the estimated overall
accuracy of the predictions can be biased. However, we were not in-
terested in the overall accuracies per se, but in the differences of the
overall accuracies between calibration sampling designs. So, we think
that despite the errors in the soil classes as depicted on the legacy soil
class maps, these maps are still useful for comparing calibration sam-
pling designs. Our assumption is that sampling design A does not profit
more from ignoring the errors in the legacy map than sampling design
B. In other words, we assumed that the errors in the map do not favor
one calibration sampling design over another.

2.2. Study areas and soil class maps

We selected two study areas of which a detailed soil class map and
data on multiple environmental features were available. The first study
area, Ammertal (Fig. 1), covers the catchment of the river Ammer,
Germany. The Ammertal is a first order tributary to the river Neckar
and as part of the upper river Neckar basin that drains into the river
Rhine which is the second largest river in Germany. The Ammertal is
embedded in a hilly topography between the north-eastern foot of the
Black Forest in the west and the Swabian Alb in the southeast. Eleva-
tions range between 300 and 500 m above sea level. The bedrock
consists mainly of a sequence of evaporites, sandstones, and claystones
of the Upper Triassic and the Lower and Middle Jurassic (Grathwohl
et al., 2013). Land use is mainly agriculture (71%), followed by forest
(12%) and urban areas (17%). Mean annual precipitation is 920 mm,

Fig. 1. The detailed soil class map of the Ammertal study area showing soil
landscapes (in German: 'Bodengroßlandschaft') as a specific spatial context of
soil classes according to the German Soil Classification (Ad-hoc-AG Boden,
2005).
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mean annual temperature 8 °C.
The soil class map is a polygon map made by traditional soil survey

showing soil landscapes as a specific spatial context of soil types ac-
cording to the German Soil Classification (Ad-hoc-AG Boden, 2005).
There are in total 5 soil classes shown on the soil map in Fig. 1. It was
produced on the basis of the German soil mapping regulations. The
entire map was processed by one experienced soil surveyor and there
were no changes in the taxonomic system during the mapping work. We
assume that the overall accuracy is acceptable.

Table 1 lists the 20 environmental features of Ammertal, grouped
into four categories. The first three groups are terrain attributes and
some other environmental features included in this study area are soil
moisture, diffuse radiation and direct radiation in the last group. The
resolution of all environmental features is 10 m. The terrain attributes
were derived from the DEM with the common terrain analysis tools
provided in SAGA GIS 6.0 (Conrad et al., 2015).

The second study area is located in the Raffelson watershed, east of
La Crosse County, Wisconsin, USA (Fig. 2). This area is in the so-called
“driftless area” of southwestern Wisconsin, which has remained free of
direct impact from late Pleistocene era continental glaciers. The area is
approximately 4 km2 with relatively flat narrow ridges and broad flat
valleys. The elevation of the study area ranges from about 250 m to
420 m and the slope gradient ranges from 0% to 60%. Most of the
mountaintops and valleys are cultivated. The slopes are dominated by
woodlands. Only a small part is a pasture that has been transformed by
human activities (Cheng et al., 2019; Qi et al., 2008).

There are in total 16 soil classes depicted on the soil map (Fig. 2).
This map was generated with expert knowledge and fuzzy logic (Zhu
et al., 2001), with an accuracy of 83.8%. The map is a raster map with a
resolution of 10 m. In total there were more than 34,760 raster cells.

Many studies on sampling and digital soil mapping have been
conducted in this study area. Therefore, based on previous studies, we
selected seven environmental features for sampling and spatial pre-
diction (Cheng et al., 2019; Qi and Zhu, 2011; Zhu et al., 2001; Zhu and
Mackay, 2001). The selected features are elevation (EL), slope gradient
(MS), slope aspect (AS), profile curvature (PRC), planform curvature
(PLC), topographic wetness index (TWI) (Qin et al., 2007; Wang et al.,
2019), and alluvial composition ratio (ACR). The resolution of all en-
vironmental feature is 10 m.

2.3. Sampling designs

For sampling we discretised the polygon map of Ammertal by a fine
raster with a resolution of 10 m, which created about 5.5 million raster
cells in total for the study area. To reduce the computational complexity
and memory requirement for running it on a personal computer, we
used stratified simple random sampling without replacement to select
10,000 raster cells from the about 5.5 million raster cells. The five soil
classes were used as strata. The sample sizes per stratum were pro-
portional to the total number of raster cells of the soil classes, so that
each soil class is equally represented in the stratified random sample.
This master sample of 10,000 raster cells was used as the population
representing the Ammertal. We believe that such substitute (using the
10,000 raster cells in place of the 5.5 million raster cells) is reasonable.
First, 10,000 raster cells are a very large number, and all covariates and
soil classes are very well represented in the sample. We believe that
there is no effect of pre-selection. Second, both FSCS samples and CLHS
samples were selected from this master sample of 10,000 raster cells
and we expect that if there were negative effects on the sampling, the
effects should be the same to both sampling designs.

Table 1
Description and category of the environmental features in Ammertal.

Category Description, abbreviation and references

Local terrain attribute Elevation (EL), Aspect (AS)(Horn, 1981), Mean slope (MS)(Dietrich and Montgomery, 1998), Steepest slope (SS)(Tarboton, 1997), Plan curvature
(PLC), Profile curvature (PRC), Horizontal curvature(HOC)(Shary et al., 2002), and Relative elevation (RE)

Regional terrain attribute Distance to stream (DTS), Local elevation above channel network (LECN)(MacMillan et al., 2000), Elevation below culmination line for mountain
areas (EBCLM), Elevation below culmination line for lowland (EBCLL), Relative hillslope position for mountain areas (RHPM), Relative hillslope
position for lowlands (RHPL)(Hatfield, 1999), Crest index for mountain areas (CIM), and Crest index for lowlands (CIL)

Combined terrain attribute Terrain classification index (TCI)
Other Soil moisture (SM), Diffuse radiation (DFR), and Direct radiation (DRR)

Fig. 2. The detailed soil class map of the Raffelson study area.
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For Raffelson we similarily used the above strategy to select a
master sample of 10,000 raster cells out of the total 34,760 raster cells,
using the sixteen soil classes as strata. These two sample sets were
treated as the master samples from which the calibration samples were
then selected using the respective strategies: CLHS FSCS and SRS.

2.3.1. Conditioned Latin hypercube sampling (CLHS)
CLHS selects samples in a way that the marginal frequency dis-

tributions of the quantitative features (or environmental features) in the
population are reproduced by the sample as closely as possible
(Minasny and McBratney, 2006). To this end for each feature, marginal
strata are constructed using equally spaced quantiles of the marginal
distribution, so that all marginal strata contain an equal number of
pixels. The number of marginal strata per feature is equal to the sample
size. The fitness of a sample is evaluated by the sum over all np (n is
sample size, p is number of quantitative features) marginal strata of the
absolute difference between the marginal stratum sample size and the
targeted sample size of 1 raster cell per marginal stratum. This is fitness
O1. Besides CLHS aims at reproducing the population correlation ma-
trix. The fitness of a sample for this second aim is evaluated by the sum
of the absolute difference of the off-diagonal entries in the population
and sample correlation matrices (fitness O3). Finally, with qualitative
features (categorical covariates) CLHS aims at sample sizes per category
that are proportional to the area of the categories (O2 fitness). A
weighted average of the three fitnesses is used as a minimization cri-
terion. Commonly, the criterion is minimized by simulated annealing
(Minasny and McBratney, 2006). To select samples with this design we
used R package spsann, version 2.2.0 (Samuel-Rosa, 2019). The initial
temperature was chosen such that in the first chain the acceptance
probability was about 90%. The temperature decrease parameter was
0.95. The number of iterations per chain was four times the number of
sampling points. The annealing stopped when there were ten successive
chains without change of the minimization criterion. We set the argu-
ment clhs.version of the function optim.CLHS to “paper”, so that the
criterion is computed as those in the paper by Minasny and McBratney
(2006).

2.3.2. Feature space coverage sampling (FSCS)
FSCS aims at optimal coverage of the space spanned by the quan-

titative features in such way that the average distance of the population
units (raster cells) to the nearest sampling unit is as small as possible in
the feature space as defined by the prescribed set of environmental
covariates. By taking the squares of the shortest distance, the criterion
can be minimized by the k-means clustering algorithm. Brus et al.
(2007) proposed this procedure to optimize the coverage of a sample in
the geographic space (spatial coverage sampling). In feature space
coverage sampling as in this study, the feature values need to be
standardized due to the fact that the ranges of these features are largely
different from each other. The standardization is done by dividing the
values by their standard deviation. The mean squared shortest stan-
dardized distance (MSSSD) was then used as a minimization criterion
(Brus, 2019):

∑=
=

MSSSD
N

min d1 ( )
i

N

j ij
1

2

(1)

where N is the number of raster cells in the population and min d( )j ij
2

the minimum of the squared distance between the ith raster cell and all
cluster centroids in the standardized feature space. The iterative process
is stopped when the MSSSD cannot be further reduced.

The k-means algorithm is a deterministic procedure, which entails
that the final clustering is fully determined by the initial clustering.
With an unlucky start (initial clustering), it is possible to end in a sub-
optimal clustering (Berkhin, 2006). The risk of a sub-optimal clustering
can be reduced in two ways. The first solution is to repeat the clustering
many times with different initial clusters, and to save the best clustering

(Hartigan and Wong, 2006). The second solution is to select an initial
random sample that is closer to the optimal sample than a fully random
sample. This is implemented in the k-means++ algorithm (Arthur and
Vassilvitskii, 2007). The k-means++ algorithm consists of two parts,
namely the selection of the optimized initial sample and the standard k-
means. The algorithm is as follows:

(1) Choose one sampling location (raster cell) uniformly at random.
(2) For each raster cell j, compute dij, the distance in standardized

feature space between j and the nearest raster cell i that has already
been chosen.

(3) Choose one new raster cell at random as a new sampling location
with probabilities proportional to dij

2.
(4) Repeat Steps 2 and 3 until n centers have been chosen.
(5) Now that the initial centers have been chosen, proceed using

standard k-means.

We used the function kmeanspp of the R package LICORS (Goerg,
2013) to select FSCS samples with the k-means++ algorithm described
above. The argument nstart for the number of initial clusterings was set
to 100.

2.3.3. Simple random sampling (SRS)
Simple random sampling (SRS) without replacement is the simplest

random sampling method which selects independently locations from
the population with equal probability (Cochran, 1977). It does not
exploit any environmental features associated to the soil classes. So by
comparing CLHS and FSCS with SRS we can quantify the gain in ac-
curacy due to the use of the features at the sampling stage.

2.4. Prediction methods

2.4.1. Random forest (RF)
Random forest is an ensemble learning method based on decision

trees for classification or regression. This method constructs a large
number of decision trees, and outputs the class that is the mode of the
predicted classes (classification) or predicted mean (regression) of the
individual decision trees (Breiman, 2001).

An individual decision tree is built by repeating a binary recursive
partitioning of the input training data (model calibration sample). In
the root node, the training data are grouped into a single partition. All
possible binary partitions of the training data are evaluated using a
splitting metric (Louppe, 2014). The binary split that has the smallest
metric is selected. The newly created partitions undergo the same
procedure, until a stopping criterion, the minimum node size, is met.
The final prediction for a categorical variable is taken as the mode of
the class frequencies in the end nodes of the decision tree.

Subsequently, the bagging technique was introduced to reduce the
prediction error variance by establishing an ensemble of classification
trees (Breiman, 2001). A large number of trees is created based on
bootstrap samples of the training data. All tree predictions are ag-
gregated resulting in a discrete probability distribution of the classes for
each unvisited location. The class with the largest probability is used as
the predicted class.

We used function randomForest of R package randomForest (Liaw
and Wiener, 2002) for the calibration of the RF model. Three para-
meters need to be customized. The first parameter, ntree, is the number
of decision trees. To reduce computation time, we set ntree to a fixed
value of 500 as a compromise between accuracy and computational
efficiency. The second parameter is mtry, which is the number of en-
vironmental features randomly selected at each split. It is set to the
rounded value after the square root of the total number of environ-
mental features. The third parameter is the minimum terminal node
size (nodesize). It controls the minimum amount of training data re-
quired to continue the tree growth process. This parameter generally
takes the default value of 5 (which we used in the case studies).
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2.4.2. Individual predictive soil mapping (iPSM)
The basic idea of iPSM is that similar environment conditions will

result in similar soils (the Third Law of Geography, Zhu et al., 2018,
2015). The iPSM method, also referred to as similarity-based predictive
soil mapping, includes two main steps. The first step is to measure
environmental similarity values. Environmental similarity between an
unvisited location j and a sampling location i is first evaluated for the
individual environmental features, and then similarities based on all
environmental features are integrated to represent the overall similarity
between an unvisited location j and a sampling location i.

The environmental similarity between an unvisited location j and a
sampling location i with regard to the vth environmental feature is
calculated by:

=
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where xi
v and xj

v are the value of the vth environmental feature at
sampling location i and unvisited location j, σv is the standard deviation
of the vth environmental feature in the study area, and σj

v is the square
root of the mean deviation of the value of vth environmental feature at
all unvisited locations (j = 1, 2,…,k) from the value at sampling lo-
cation i, defined as follows:
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The overall environmental similarity between an unvisited location
j and a sampling location i considering all selected environmental fea-
tures, Si j, is then determined following a limiting factor approach based
on the assumption that the least favorite environmental feature, that is
the feature with the smallest similarity value, limits the development of
soil at the prediction point to the level of that at the sampling location
(c). In this paper, a minimum operator based on the Liebig’s law of the
minimum (van der Ploeg et al., 1999) are applied to take the minimum
value among all environmental similarities (i.e., Si j,

1 , Si j,
2 , … , Si j

v
, ) as the

overall environmental similarity at the soil sample level (Zhu et al.,
1997; Shi et al., 2004):

= ⋯S min S S S( , , , )i j i j i j i j
v

, ,
1

,
2

, (4)

The overall environmental similarity between an unvisited location
j and each of the n sampling locations is determined using Eq. (2)
through Eq. (4).

The second step is to predict the soil class at unvisited location j,
based on its environmental similarities to the sampling locations. In this
paper, the maximum operator is used for this step. The soil class at the
sampling location with the highest similarity to the unvisited location is
used as the predicted soil class at the unvisited location (Shi et al.,
2004).

2.4.3. Multinomial logistic regression (MLR)
In contrast to RF and iPSM, MLR starts with a statistical model of the

data. MLR assume that the data come from a multinomial distribution.
It is an extension of binomial logistic regression (BLR) assuming a bi-
nomial distribution for the data. In BLR we have two classes only, and
the log ratio of the two classes, referred to as the logit, is modelled as a
linear combination of the environmental features:

= ⎛
⎝ −

⎞
⎠

= X βπ ln π
π

logit( )
1

'

(5)

where X is a vector of environmental features, and β is a vector of
model coefficients that are typically estimated by maximum likelihood.
The Eq. (6) can be rewritten as follows:

−
= =X βπ

π
exp exp η

1
( ) ( )'

(6)

In MLR one arbitrarily chosen class is taken as a reference (Kempen
et al., 2009). For each of the other classes, the log ratio of the prob-
ability of that class to the probability of the reference class is modeled
as a linear combination of the features. Given the estimated regression
coefficients, the probability of any class can be computed by Eq. (7):

=
+ +⋯+

π
exp η

exp η exp η exp η
( )

( ) ( ) ( )i
i

k1 2 (7)

where =η 0k . So this model ensures that all probabilities are in the
interval [0, 1] and the probabilities sum to 1.

2.5. Evaluation

The performance of sampling designs and their impacts on predic-
tion models were evaluated by the overall accuracy (Brus et al., 2011).
This overall accuracy (OA) is defined as the population mean of an
indicator that has value 1 if the predicted soil class equals the true class,
and 0 else:

∑=
=

OA
N

a1

i

N

i
1 (8)

where N is the total number of population units, and ai is an in-
dicator defined as follows:


= ⎧

⎨⎩

=
≠

a
c c
c c

1,
0,i

i i

i i (9)

with ci the predicted soil class for unit i, and cithe true soil class at
that unit.

For Ammertal OA was estimated from a validation sample of 10,000
points, which was selected by stratified simple random sampling from
the 5.5 million raster cells minus the master sample of 10,000 raster
cells used for selecting the calibration samples. This ensures that none
of the model calibration sampling locations is included in the validation
sample. The validation sample was allocated proportionally to the size
of the strata. Consequently, the unweighted sample average is an un-
biased estimate of the population OA. For Raffelson OA was estimated
by predicting for a total of 34,760 – 10,000 raster cells that were not
used for the selection of calibration samples. Differences in the esti-
mated median of the calibration sampling distribution of OA were
tested using the Mann-Whitney U test (Corder and Foreman, 2014).

2.6. Selection of environmental features for sampling and prediction

Environmental feature selection is an important step both for sam-
pling and prediction. First, the relative importance of all environmental
features is computed by RF. The importance is quantified by two
measures: mean decrease in accuracy (MDA) (Genuer et al., 2010) and
mean decrease in Gini (MDG) (Calle and Urrea, 2011; Jiang et al.,
2009). We chose the set of the environmental features that are of high
importance under both MDA and MDG.

In Ammertal, Relative elevation (RE), Elevation (EL), Diffuse ra-
diation (DFR), Mean slope (MS), Elevation below culmination line for
mountain areas (EBCLM), Relative hillslope position for mountain areas
(RHPM), Elevation below culmination line for lowland (EBCLL), and
Soil moisture (SM) were selected as variables for soil sampling and
predicting by RF and iPSM. For predicting with MLR on average 4 to 5
features were selected by stepwise regression.

For the Raffelson study area, we selected elevation (EL), slope
gradient (MS), slope aspect (AS), planform curvature (PLC), topo-
graphic wetness index (TWI), and alluvial composition ratio (ACR) for
sampling and predicting using RF and iPSM. For MLR on average 2
(n = 20) to 4 (n = 100) features were selected by stepwise regression.
With the larger sample sizes more predictors become significant,
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explaining the larger number of selected features.

3. Results

3.1. Overall accuracies

For both study areas, for all sample sizes and all three prediction
methods, the order of the three sampling designs in terms of the esti-
mated median or estimated mean of OA is the same, which is FSCS,
CLHS, and SRS from high to low (Figs. 3 and 4, Tables 2 and 3). The
differences between the estimated medians and estimated means were
very small, so when we refer to the estimated median hereafter, the
statement also holds for the estimated mean. The differences between

the estimated medians with FSCS and CLHS were relatively large
compared to the difference between the estimated medians with CLHS
and SRS. The estimated median with CLHS was in most cases only
marginally larger than the estimated median with SRS. For Ammertal,
the difference in estimated medians with SRS and CLHS was significant
at the level of 0.05 for all sample sizes when using RF and iPSM as a
prediction method, but with MLR these differences were not significant
(Table 4). Contrarily, for Raffelson only for RF all differences were
significant, whereas for iPSM and MLR the estimated medians with
CLHS and SRS were not significantly different for quite a few sample
sizes. The standard deviation in OA among samples decreased with the
sample size, in both study areas, for all nine combinations of sampling
design and prediction method (Tables 2 and 3). The coefficient of

Fig. 3. Boxplots of overall accuracies for 3 * 3 combinations of sampling design
and prediction method in Ammertal. (A) RF; (B) iPSM and (C) MLR.

Fig. 4. Boxplots of overall accuracies for 3 * 3 combinations of sampling design
and prediction method in Raffelson. (A) RF; (B) iPSM and (C) MLR.
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variation, i.e. the standard deviation of OA divided by the mean OA,
was smallest for FSCS for both study areas, all prediction methods and
all sample sizes, except for n = 100 with RF and iPSM in Ammertal
(Tables 2 and 3).

3.2. Relation between minimization criterion and overall accuracy

The MSSSD values were clearly the smallest for the FSCS samples in
both study areas, which is not surprising because FSCS minimizeMSSSD
(Fig. 5). The clouds of the CLHS samples and SRS samples largely
overlap, but the average MSSSD of the CLHS samples was somewhat
smaller than that of the SRS samples.

The values of O1 + O3 are smallest for the CLHS samples in both
study areas (Fig. 6), which is again not surprising because CLHS opti-
mizes on O1 + O3.

There are weak but significant negative linear relationships between
OA from the RF predictions and the minimized MSSSD for both study
areas (Fig. 5, Table 5 and Table 6). The results from iPSM and MLR
were similar. For Ammertal the coefficient of determination, R2, of the

simple linear models fitted on the minimized MSSSD and OA for all
samples of a given size, varied from 7.11% (n = 20) to 23.02%
(n = 40) (Table 5). The estimated residual standard deviation de-
creased with the sample size from 0.031 to 0.018. For Raffelson the
linear relation between the minimized MSSSD and OA was stronger
(Table 6). R2 varied from to 17.61% (n= 100) to 48.52% (n= 30). The
residual standard deviation deceased with the sample size from 0.044
to 0.016.

There are almost no linear relationships between the minimized
O1 + O3 criterion and OA as obtained with the prediction results from
RF as shown by the nearly horizontal lines with regression slopes close
to zero (Fig. 6, Table 5 and Table 6). The two significant slopes (Am-
mertal, n = 40 and Raffelson, n = 30) were even positive, wherad
these should be negative. The results from iPSM and MLR were similar.
The coefficient of determination was about zero for all sample sizes
(Table 5 and Table 6), and the residual standard deviations were
somewhat larger compared with those of the models for OA with
MSSSD as an independent variable.

The above results and analysis show that the minimized MSSSD

Table 2
Descriptive statistics (including mean, standard deviation (SD), coefficient of variation (CV), minimum (Min), and maximum (Max)) of the overall accuracy for each
sample size in the Ammertal study area. The highest overall accuracy is in boldface in column Mean and Max, while in column SD, CV and Min the lowest overall
accuracy is in boldface.

Sizes Methods RF iPSM MLR
Mean SD CV Min Max Mean SD CV Min Max Mean SD CV Min Max

20 SRS 0.387 0.039 0.100 0.294 0.460 0.361 0.036 0.099 0.228 0.435 0.370 0.051 0.139 0.138 0.432
CLHS 0.402 0.035 0.086 0.277 0.472 0.378 0.034 0.090 0.295 0.447 0.378 0.040 0.105 0.228 0.422
FSCS 0.408 0.016 0.038 0.351 0.439 0.405 0.007 0.016 0.364 0.422 0.414 0.014 0.033 0.280 0.416

30 SRS 0.406 0.038 0.093 0.272 0.471 0.381 0.032 0.085 0.301 0.449 0.369 0.050 0.135 0.207 0.433
CLHS 0.420 0.027 0.064 0.347 0.476 0.394 0.026 0.066 0.322 0.456 0.386 0.033 0.086 0.227 0.435
FSCS 0.443 0.024 0.055 0.381 0.500 0.413 0.023 0.055 0.362 0.471 0.402 0.020 0.049 0.237 0.417

40 SRS 0.431 0.026 0.060 0.340 0.480 0.400 0.025 0.063 0.348 0.463 0.391 0.025 0.064 0.269 0.435
CLHS 0.440 0.025 0.056 0.356 0.492 0.411 0.027 0.066 0.336 0.470 0.395 0.021 0.053 0.264 0.433
FSCS 0.461 0.016 0.035 0.421 0.498 0.453 0.023 0.050 0.389 0.493 0.417 0.007 0.016 0.386 0.446

50 SRS 0.440 0.026 0.058 0.344 0.505 0.408 0.025 0.061 0.352 0.461 0.392 0.030 0.077 0.269 0.444
CLHS 0.450 0.026 0.057 0.380 0.519 0.414 0.022 0.054 0.348 0.471 0.398 0.018 0.046 0.296 0.441
FSCS 0.468 0.018 0.037 0.403 0.503 0.455 0.025 0.053 0.391 0.497 0.417 0.003 0.008 0.405 0.424

75 SRS 0.470 0.022 0.046 0.418 0.528 0.430 0.022 0.052 0.376 0.489 0.406 0.016 0.040 0.339 0.441
CLHS 0.478 0.020 0.041 0.431 0.527 0.444 0.019 0.043 0.396 0.488 0.405 0.014 0.036 0.363 0.446
FSCS 0.491 0.019 0.039 0.436 0.535 0.475 0.022 0.045 0.412 0.516 0.418 0.006 0.015 0.394 0.431

100 SRS 0.488 0.018 0.038 0.441 0.537 0.446 0.020 0.044 0.392 0.512 0.411 0.022 0.054 0.362 0.483
CLHS 0.498 0.016 0.033 0.463 0.533 0.458 0.017 0.036 0.400 0.500 0.407 0.012 0.028 0.388 0.443
FSCS 0.503 0.018 0.036 0.436 0.552 0.491 0.018 0.037 0.447 0.530 0.421 0.007 0.016 0.405 0.455

Table 3
Descriptive statistics (including mean, standard deviation (SD), coefficient of variation (CV), minimum (Min), and maximum (Max)) of the overall accuracy for each
sample size in the Raffelson study area. The highest overall accuracy is in boldface in column Mean and Max, while in column SD, CV and Min the lowest overall
accuracy is in boldface.

Sizes Methods RF iPSM MLR
Mean SD CV Min Max Mean SD CV Min Max Mean SD CV Min Max

20 SRS 0.589 0.066 0.112 0.393 0.707 0.601 0.060 0.100 0.443 0.703 0.440 0.078 0.177 0.181 0.603
CLHS 0.619 0.045 0.073 0.455 0.713 0.619 0.052 0.085 0.467 0.717 0.437 0.082 0.187 0.251 0.609
FSCS 0.676 0.016 0.023 0.622 0.710 0.647 0.004 0.007 0.634 0.656 0.442 0.083 0.187 0.331 0.585

30 SRS 0.643 0.039 0.060 0.518 0.712 0.627 0.042 0.068 0.481 0.716 0.512 0.069 0.135 0.375 0.662
CLHS 0.665 0.035 0.052 0.581 0.739 0.648 0.042 0.064 0.517 0.747 0.529 0.063 0.119 0.331 0.643
FSCS 0.713 0.017 0.023 0.661 0.745 0.695 0.021 0.030 0.618 0.740 0.550 0.064 0.117 0.382 0.675

40 SRS 0.670 0.034 0.051 0.533 0.730 0.658 0.041 0.063 0.555 0.734 0.564 0.066 0.117 0.350 0.689
CLHS 0.695 0.028 0.040 0.610 0.754 0.669 0.034 0.051 0.567 0.739 0.583 0.058 0.100 0.440 0.707
FSCS 0.719 0.013 0.018 0.673 0.743 0.725 0.014 0.019 0.686 0.754 0.600 0.061 0.102 0.479 0.711

50 SRS 0.692 0.035 0.050 0.583 0.775 0.666 0.037 0.056 0.564 0.733 0.602 0.061 0.102 0.425 0.707
CLHS 0.711 0.020 0.029 0.656 0.758 0.681 0.026 0.038 0.590 0.721 0.614 0.056 0.090 0.485 0.744
FSCS 0.731 0.013 0.018 0.697 0.772 0.730 0.016 0.022 0.671 0.751 0.630 0.059 0.093 0.477 0.718

75 SRS 0.721 0.025 0.034 0.642 0.781 0.682 0.029 0.042 0.607 0.748 0.656 0.041 0.062 0.417 0.745
CLHS 0.731 0.018 0.025 0.674 0.768 0.693 0.022 0.032 0.639 0.738 0.673 0.031 0.047 0.595 0.744
FSCS 0.748 0.015 0.020 0.709 0.775 0.730 0.016 0.021 0.685 0.759 0.677 0.042 0.062 0.539 0.758

100 SRS 0.741 0.018 0.024 0.692 0.772 0.703 0.020 0.028 0.659 0.738 0.696 0.033 0.048 0.598 0.755
CLHS 0.752 0.014 0.018 0.713 0.787 0.708 0.020 0.029 0.630 0.758 0.702 0.030 0.042 0.586 0.762
FSCS 0.759 0.017 0.022 0.699 0.785 0.735 0.014 0.019 0.695 0.764 0.719 0.022 0.030 0.651 0.756
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values have stronger linear relationships with OA than the minimized
O1 + O3 values do. This indicates that MSSSD is a more effective
minimization criterion than O1 + O3. This contributes to the fact that
FSCS behaves better than CLHS because FSCS is based on MSSSD.

4. Discussion

The most striking results of this research are the smaller mean and
median OA and the smaller variation (expressed as standard deviation

Table 4
Results of Mann-Whitney U test for differences in estimated median overall accuracy with various types of sampling design, prediction methods, and sample sizes.
Same letters within rows indicate non-significant differences at significance level α of 0.05.

Sizes Ammertal Raffelson
RF iPSM MLR RF iPSM MLR
SRS CLHS FSCS SRS CLHS FSCS SRS CLHS FSCS SRS CLHS FSCS SRS CLHS FSCS SRS CLHS FSCS

20 a b c a b c a a b a b c a a b a a a
30 a b c a b c a a b a b c a b c a a b
40 a b c a b c a a b a b c a a b a a a
50 a b c a b c a a b a b c a b c a a b
75 a b c a b c a a b a b c a b c a b b
100 a b c a b c a a b a b c a a b a a b

Fig. 5. The relationship between minimization criterion (O1 + O3 and MSSSD) and overall accuracy produced by RF for each sample size in the Ammertal study
area.
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and coefficient of variation) of OA over repeated calibration samples for
FSCS compared to those for CLHS. Apparently, the spreading of the
calibration samples in multivariate feature space through minimization
of the MSSSD criterion is better compared to the spreading in feature

space through minimization of a weighted combination of the O1 and
O3 criterion. A possible reason for this is that in CLHS the spreading is
largely enforced through spreading along the separate, univariate axes
spanning the multivariate space, and not directly in multivariate space

Fig. 6. The relationship between minimization criterion (O1 + O3 and MSSSD) and overall accuracy as obtained with RF prediction, for each sample size in the
Raffelson study area.

Table 5
Quality and estimated slopes of the simple linear regression models for the overall accuracy as obtained with RF prediction (OA), using the minimization criterion
(O1 + O3 or MSSSD) as an independent variable, for each sample size in the Ammertal study area.

Size Residual standard deviation R2 Slope Pearson's r
O1 + O3 MSSSD O1 + O3 MSSSD O1 + O3 MSSSD O1 + O3 MSSSD

20 0.032 0.031 0.0055 0.0711 −1.34 × 10-4 −0.0145 *** −0.0743 −0.2668 ***

30 0.034 0.031 0.0058 0.1775 8.96 × 10-5 −0.0299 *** 0.0762 −0.4213 ***

40 0.025 0.023 0.0137 0.2302 8.10 × 10-5 * −0.0300 *** 0.1170 * −0.4798 ***

50 0.026 0.023 0.0072 0.2112 4.67 × 10-5 −0.0326 *** 0.0851 −0.4596 ***

75 0.022 0.019 0.0038 0.1730 1.90 × 10-5 −0.0300 *** 0.0620 −0.4159 ***

100 0.018 0.018 0.0027 0.1140 −1.02 × 10-5 −0.0244 *** −0.0521 −0.3377 ***

Slopes and Pearson's r significant at 0.001, 0.01, 0.05 levels are marked by ***, **, *, respectively
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as in FSCS. Besides, the O1 criterion is a rather rough criterion for
enforcing the spreading in univariate space. A stratified sample with
points close to the boundaries of the marginal strata of some feature (so
the values are close to the equally spaced quantiles of that feature) is
not as well-spread as a stratified sample with values half-way the
stratum boundaries, but both samples have the same value for O1.

The large variation in OA with CLHS can possibly be explained by
the random selection of points within the strata (combinations of the
marginal strata). Given the strata, multiple samples may exist for the
same value of O1 and nearly for the same value of O3. In that case the
CLHS algorithm does not have a clear preference for any of these
samples: the selection probabilities of these samples are about equal.
However, the spreading of these samples along the axes spanning the
multivariate space can differ substantially, which may lead to large
differences in the calibrated models, and as a consequence a large
variation in OA. The hypothesis that the same value of O1 + O3 can
lead to a largely different OA is supported by the vertical series of points
for FSCS samples in various scatter plots of OA against of O1 + O3
(Figs. 5 and 6).

The O1 + O3 value of the optimized CLHS samples shows strong
variation, indicating that for most samples the global optimum was not
reached. However, as there is no relation between O1 + O3 and OA we
do not think that the performance of CLHS can be further improved by
increasing the values of the simulated annealing parameters and/or
using multiple starts (initial samples).

The relatively small variation of OA with FSCS compared to that
with CLHS can be explained by the small variation in MSSSD among
FSCS samples. As there is a relation between MSSSD and OA, a small
variation in MSSSD is a necessary condition, but not a sufficient con-
dition. A constant MSSSD is no guarantee for a constant OA. This de-
pends on how unique the sample with the minimized MSSSD value is.
Various samples may exist with exactly or nearly the same minimal
MSSSD value but with rather different OA values. Apparently, the dif-
ference in spreading in feature space among these FSCS samples with
the same MSSSD value is considerably smaller than that of CLHS sam-
ples with the same O1 + O3 value.

In practice we do not have the budget to select many calibration
samples with the sampling designs for comparison so that we lack in-
formation about the distribution of OA over repeated calibration sam-
pling. Besides, for a given map the OA is not known, but must be es-
timated, either by cross-validation, or preferably from a probability
sample of limited size. In that case there will be an error in the esti-
mated OA that cannot be ignored. Thus, in real-world case studies it is
impossible to draw general conclusions about the relative performance
of the calibration sampling designs. This study gives an idea of the
variation in OA that can be expected if the calibration sampling would
be repeated. If one accepts the premise that a type of sampling design,
which can provide digital soil mapping with OA values which are high
with a small variation, would be a good sampling design, then we could
reach a conclusion in these study areas FSCS is a better and more ef-
ficient sampling design than both CLHS and SRS.

Although our interest is the differences among the calibration

sampling design types, we note that in Raffelson the OAs were con-
siderably larger than in Ammertal, despite that in Raffelson the number
of soil classes was much larger than in Ammertal: sixteen in Raffelson
and only five in Ammertal. This relatively high accuracy of the pre-
dicted soil maps of Raffelson can possibly be explained by the proce-
dure that is used to construct the soil class map. This map was con-
structed with expert knowledge and fuzzy logic in the SoLIM approach
(Zhu et al., 2001), using partly the same environmental features as we
used here for sampling and prediction. On the contrary the soil class
map of Ammertal was made using the traditional soil survey approach.

5. Conclusions

This study compared conditioned Latin hypercube sampling (CLHS),
feature space coverage sampling (FSCS) and simple random sampling
(SRS) in a simulation study using the legacy soil class maps of two study
areas as references. The comparison of the three sampling design types
was based on the values and the variation of the overall accuracy of
predicted soil classes using the samples from these three sampling de-
sign types. The models used to predict the soil classes are random forest
(RF), individual predictive soil mapping (iPSM) and multinomial lo-
gistic regression (MLR). We conclude that:

• In both study areas the median overall accuracy with FSCS was
higher than those with CLHS and SRS over all sample sizes and cross
all three prediction methods. The median overall accuracy with
CLHS was only marginally larger than with SRS.

• There was a significant negative correlation between MSSSD and
overall accuracy, whereas no such correlation was found between
O1 + O3 and overall accuracy.

• The coefficient of variation in overall accuracy among samples se-
lected using FSCS was smaller than these using CLHS and SRS at the
same sample sizes.

• With CLHS the variation in overall accuracy among samples was
large, so that there is a serious risk that a particular sample might
lead to a low overall accuracy.

• FSCS-RF is the most accurate combination of sampling and predic-
tion for both study areas.
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