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Propositions

1. Most mechanical systems tend to equilibrium, while most alive systems tend to limit cycles 

(this thesis) 

2. Apparently abstract mathematical concepts, such as chaos, are an essential ingredient to 

understand natural phenomena 

(this thesis)

3. The mathematical capacities and interests of biology students tend to be greatly 

underestimated

4. Mathematics is no more and no less than organized thought

5. The publication of non-reproducible computational research is slowly evolving from 

inconvenient to unacceptable

6. The popularity of wearable health-monitoring devices opens a great opportunity for the 

prediction of health conditions

7. Abstract models are essential for guiding research into the functioning of the complex systems 

on which humanity depends

8. Society has the right of having good science communicators
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Chapter 1

Introduction



2 Introduction

1.1 Why cycles and biology?

Most of our daily experience with dynamical systems comes from

the observation of movement. The vast majority of mechanical

systems we experience in our everyday life are strongly dissipative

systems, which simply means that objects tend to stop. As we’ll

see in section 1.2, this behaviour corresponds to a point attractor.

Reaching a point attractor is thus the most common long-term

behaviour for mechanical systems.

While points seem to be the most common attractor of mechanical

systems, biological systems often reach limit cycles, the type of at-

tractor corresponding with cyclic behaviour. Just to name a few:

neuron firing, heartbeat, walking rhythm, breathing rhythm, in-

testinal peristalsis, body temperature cycle, sleep-wake cycle, men-

struation, seasonal hibernation and seasonal leaf abscission in de-

ciduous plants are all obviously rhythmic or quasi-rhythmic pro-

cesses, and thus potentially related to limit cycles.

Ancient cultures were already fascinated by periodicity and cy-

cles in nature. The regularity of astronomical cycles, such as

the day-night or the seasons, has been known since ancient times.

Herodotus’ “Histories”, written in 440 BC, already mentions the

yearly flooding of the Nile basin as an important social and agri-

cultural problem. This problem triggered some seminal early re-

search on astronomy, geometry and topography (see ch. 2 in Boyer

(1968)). Prediction of eclipses, seasons and other cyclic or almost-

cyclic astronomical events account among some of the first docu-

mented successes of deterministic forecasting (Querejeta (2011)).

Fast forwarding to modern times, we find cycles and synchroniza-

tion at the very heart of electronics, laser technology and biomedical
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sciences (see, for instance, Strogatz (2003)).

Cycles, and not to mention deterministic chaos, are obviously more

complex than point attractors. After a short introduction about

this richer behaviour of periodic systems, I will introduce the anal-

ysis tools that we need and that are not always covered in the

biologist’s syllabus.

1.2 Points, cycles and chaos

In theoretical studies, biological systems are often described by a

system of deterministic differential equations. That is, equations of

the form 1.1, where �x is a vector containing each of the states, t is

the time and �f a flow function defining the dynamics.

d�x

dt
= �f(�x, t) (1.1)

If time is not explicitly present in the flow function (as in equation

1.2), we say that our system is autonomous. Autonomous systems

are particularly easy to visualize and analyze, and are the only ones

that we are going to deal with in the present thesis.

d�x

dt
= �f(�x) (1.2)

Although cyclic behaviour in biological models is often induced by

explicitly time-depending external periodic forcings (typically rep-

resenting an astronomical phenomenon such as the day/night cycle,

the tides or the seasons), it is often possible to rewrite the equations

1



4 Introduction

as autonomous by an appropriate choice of coordinates. We’ll have

to do this later, in the equation 4.1 of chapter 4.

One of the basic problems of dynamical systems theory is to deter-

mine the behaviour of such system in the long term. This concept is

known by physicists and mathematicians as asymptotic behaviour.

The states that are reached by the system are known as attractors

(Strogatz, 1994).

In models of biological systems, three types of asymptotic behaviour

appear very often: stabilization, periodic regimes and chaos. Each

of them corresponds, respectively, to point, cyclic and chaotic at-

tractors. A quick introduction to each of them is given in the next

subsections.

1.2.1 Point attractors

The simplest possible case of asymptotic behaviour is to reach a

stable steady state, typically corresponding to a point attractor.

This corresponds with the intuitive idea of a system reaching an

equilibrium. When a dynamical system is in a steady state, it re-

mains on it indefinitely. If, additionally, the steady state is stable,

then it has associated a basin of attraction around it. Any state

contained in this basin of attraction will naturally return to the sta-

ble steady state. This property makes stable steady states resilient

to perturbations, as long as they are not strong enough to make the

state trespass the borders of the attraction basin. Unstable steady

states lack this recovery capacity, and thus, are extremely sensitive

to perturbations. The “attractor” corresponding to an unstable

steady state receives the eloquent name of point repeller (Strogatz,

1994). An example of a point attractor is given in figure 1.1.
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Figure 1.1: Example of a point attractor. The represented sys-

tem is a Rosenzweig-MacArthur predator-prey model (Rosenzweig and

MacArthur, 1963). p1 and p2 represent the populations a prey and a

predator species, respectively. The time series shown in the upper

panel corresponds to the red trajectory in the state space. Notice how

the time series stabilize, and the trajectory in the state space spirals

down to an attracting point.

Point attractors and point repellers are the two easiest examples of

a fixed point. A fixed point is a state that doesn’t experience any

change under the dynamical equations. In the context of ordinary

differential equations such as 1.2, the position of the fixed points

is thus given by the roots of the dynamical equation (that is, the

solutions to �f(�x∗) = �0).

Thanks to their relative simplicity, fixed points had a very impor-

1



6 Introduction

tant role in the historical development of dynamical systems theory.

As they are points (i.e., dimensionless objects) it is possible to an-

alyze their behaviour using an infinitesimally small region around

them. Inside this region, the dynamical equations can be replaced

by a linear Taylor expansion (Simmons, 1996) centered around the

attractor (Strogatz, 1994). Such a linear dynamical system is ana-

lytically solvable and, as always happens with linear functions, all

its properties are summarized in the list of eigenvalues and corre-

sponding eigenvectors (see Strang (2006) or any other introduction

to linear algebra). One of those eigenvalues is particularly relevant:

the one with the maximum real part. It is known as the domi-

nant eigenvalue (λmax), and can be used to measure the rate of

divergence or convergence of nearby orbits (Strogatz, 1994; Sandri,

1996). λmax contains relevant information about the stability of

the limit point. Specifically, the sign of the real part of λmax gives

the overall attractiveness/repulsiveness of the point (negative for

attractive, positive for repulsive). A λmax with a real part exactly

equal to zero is therefore not attractive nor repulsive: nearby trajec-

tories may orbit around it without getting closer nor further. The

imaginary part of any of the eigenvalues λ has the effect of introduc-

ing a rotational component to the trajectories in the phase plane.

Fixed points with imaginary eigenvalues receive the eloquent name

of spiral attractors or spiral repellers (Strogatz, 1994; Kuznetsov,

1998).

Gradient systems and stability landscapes

A particularly simple family of dynamical systems are those that

can be expressed as the gradient of a scalar function V (�x) which

is called the potential function or stability landscape (see equation
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1.3).

�f(�x) = − �∇V (1.3)

The gradient (�∇) is a generalization of the concept of derivative in

more than one dimension. It returns a vector that points in the di-

rection of maximum steep of the potential function V (�x), and a null

vector at a maximum or minimum (Marsden and Tromba, 2003).

For a two dimensional function V (x, y), the gradient is defined as

in equation 1.4:

�∇V =

(
∂V

∂x
,
∂V

∂y

)
(1.4)

More details about the gradient are available in chapter 3 of this

thesis. The relationship 1.3 allows us to use the scalar field (typ-

ically a surface) defined by V (�x) instead of the vector field �f(�x),

a more complicated mathematical object, to visualize the dynami-

cal system. The negative sign in equation 1.3 has been introduced

for historical and practical reasons: it makes stable equilibria corre-

spond with local minima of V and unstable ones with local maxima

or saddle points. This means that, if we plot the state on the sur-

face defined by V , it will just “roll downhill” until it gets trapped

in the bottom of a well. This visualization trick is often referred

to as stability landscape or ball-in-a-cup diagram (see for instance

Beisner et al. (2003)).

It can be proven that the only attractors that a gradient system

can have are non-spiraling fixed points, either attractive or re-

pulsive. As a consequence, any system showing spirals, cyclic or

chaotic attractors will be automatically non-gradient (in the sense

1



8 Introduction

that it cannot be written in the form of equation 1.3, and thus,

it is not equivalent to a stability landscape V anymore). Several

alternative approaches have been proposed to derive pseudo stabil-

ity landscapes for non-gradient systems (a complete review can be

found in Zhou et al. (2012a)), but are often misunderstood in com-

munities without a strong mathematical background (Pawlowski,

2006).

In chapter 3 I provide an accessible explanation of why a stabil-

ity landscape could fail to exist. Additionally, I introduce a novel

and simple computational tool to produce stability landscapes for

gradient and also weakly non-gradient systems.

1.2.2 Cyclic attractors

A more complicated type of asymptotic behaviour happens if our

system reaches a periodic regime. For systems like the one described

in 1.2, limit cycles are only possible if the system is non-gradient and

has two or more dimensions (Strogatz, 1994). Periodic behaviour

typically corresponds to a limit cycle attractor. Just as happens

with fixed points (cf. subsection 1.2.1), limit cycles can be attract-

ing or repelling. The repelling ones are obviously no attractors, and

are thus of limited interest in applied models. If a system’s state is

on an attracting limit cycle, it will remain periodic (and with the

same frequency and amplitude profile) after a perturbation. An

example of a limit cycle is shown in figure 1.2.

Limit cycles are curves, so we cannot surround them by an in-

finitesimally small region. This makes the linearization approach,

successfully used with point attractors, less useful here. Interest-

ingly enough, we can still make use of linearization to determine
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the eigenvalues (which are now called Lyapunov exponents), but in

this case we should sample several of them along the whole curve.

In a limit cycle, the average real part of the dominant Lyapunov

exponent converges to zero (Sandri, 1996).
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Figure 1.2: Example of a limit cycle. The represented system is a

van der Pol oscillator. x and y represent two different voltages in a

vacuum tube. The time series shown in the upper panel correspond to

the red trajectory in the state space. Notice how the time series tends

to a periodic regime, and the trajectory approaches a closed curve.

Limit cycles are easily noticed in time series by simple visual inspec-

tion. In case of requiring a more quantitative approach, several pos-

sibilities are available. The Lorenz map, for instance, is built mea-

suring the peak-to-peak distances (Strogatz, 1994; Rinaldi et al.,

1



10 Introduction

2001). If the system reaches a limit cycle, these distances should

converge to the period of the system. The Poincaré map, built

taking snapshots of the state of the system when the cycle inter-

sects with an arbitrary cross section (Strogatz, 1994; Kuznetsov,

1998). This technique transforms the continuous dynamical prob-

lem in a discrete one. The stability of the limit cycle can be de-

termined by analyzing the stability of this newly created discrete

time dynamical system (Kuznetsov, 1998). A similar technique is

that of the stroboscopic map (Guckenheimer and Holmes, 2002),

where the state of the system is observed only in fixed time in-

tervals (x(t), x(t+ T ), x(t+2T ), . . . ). This is particularly useful in

systems that are periodically forced by a perturbation of known pe-

riod T . The interaction between self-sustained cycles with external

periodic forcings gives rise to interesting phenomena such as chaos

(Vandermeer, 1993; Doveri et al., 1993) and synchronization (Stro-

gatz and Stewart, 1993; Pikovsky et al., 2003). Each phenomenon

is treated, respectively, in subsection 1.2.3 and section 1.5 of the

present chapter.

Fast Fourier transform (Press et al., 2007) can be used to identify

the dominating frequencies of a time series and thus to establish if

it is periodic. Methods designed to deal with chaotic time series,

such as the 0-1 test (Gottwald and Melbourne, 2009), are also able

to robustly detect periodic oscillations. More about the 0-1 method

can be found in the subsection 1.2.3.

1.2.3 Chaotic attractors

An even more complicated type of asymptotic behaviour is deter-

ministic chaos. If our system evolves towards a bounded region of

the phase space (i.e.: if we can “build a box” around the state in
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the state space, and the state never gets out of it) but, at the same

time, its trajectory doesn’t approach a point nor a limit cycle, then

the system may have reached a chaotic attractor.

Although they may look as a theoretical construct of limited ap-

plied interest, chaotic attractors often appear in applied problems.

Indeed, chaotic attractors were described for the first time in the

context of a simple meteorological model (Lorenz, 1963). In biology,

chaotic attractors are particularly common in population dynamics

(see subsection 1.4).

Just as happened with cyclic attractors (cf. subsection 1.2.2), and

for the same reasons, linearization is useless for studying chaotic

attractors, but we can still get information from its Lyapunov ex-

ponents. When Lyapunov exponents are sampled along a trajec-

tory in a chaotic attractor, the average of their real parts converge

to a positive number, meaning that two neighboring trajectories

will diverge exponentially in time. This leads to one of the most

important properties of chaotic continuous systems: despite being

deterministic, they are unpredictable in a practical sense due to

their extreme sensitivity on initial conditions (see Strogatz (1994),

section 9.3).

For autonomous ordinary differential equations such as 1.2, chaotic

attractors are only possible in three or more dimensions (see section

7.3 of (Strogatz, 1994)). This makes their graphical representation

on paper a bit challenging. In figure 1.3 we show a classical ex-

ample of a chaotic attractor, the Lorenz attractor (Lorenz, 1963),

projected from two different angles.

1
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Figure 1.3: Classical example of chaotic behaviour, the Lorenz sys-

tem (Lorenz, 1963). The time series shown in the upper panel corre-

sponds to the red trajectory in the state space. In this case, the state

space is three dimensional. We show two projections of the trajectory.

This attractor has become part of the popular culture, and interactive

3D models can be easily found in the Internet.

A practical problem related to chaos is how to decide if an em-

pirical time series is chaotic or not. The main challenges are to

discriminate chaos from randomness and from long, complex tran-

sients. The problem with randomness doesn’t exist if the time

series is known to have been produced by a deterministic model,

as stochasticity is automatically excluded. The problem with tran-

sients is usually solved by stabilization, i.e.: simulating for “long

enough” compared to the typical time scales of the problem. The
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chaoticity of an attractor in simple deterministic models can be

proved analytically, but this approach is rarely feasible, and cer-

tainly never practical, in complex models (cf. section 9.4 in Stro-

gatz (1994) to get an idea about how laborious this approach is

even in a simple model). The same numerical approaches we men-

tioned in the context of limit cycles (subsection 1.2.2) can be used

here, but they vary greatly in practical utility. Numerical estima-

tion of Lyapunov exponents is computationally costly and requires

exploring a significant portion of the attractor (Wolf et al., 1985),

making it an unpractical method for systems with a high number

of dimensions. The better suited numerical test for chaos detection

in a time series is Gottwald-Melbourne’s 0-1 test (Gottwald and

Melbourne, 2009). It is remarkably easy and fast to run, and it

robustly discriminates between stable equilibria, limit cycles and

chaotic attractors. As with any other numerical method for assess-

ing chaos, its performance relies on the assumptions that our time

series has a deterministic source and any transient has faded away.

An intuitive, geometrical explanation of Gottwald-Melbourne’s 0-

1 method can be found in appendix subsection 2.9.2 of chapter

2.

1.3 The dance of attractors: bifurca-

tion theory

Applied dynamical models often contain parameters. Bifurcation

theory is the branch of mathematics that deals with the effects of

varying those parameters. Bifurcation theory is particularly rele-

vant in biological systems, where most parameters in the dynamical

models implicitly depend on external, variable factors such as the

1
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temperature, the intensity of competition or the fishing pressure

(Scheffer, 2009).

A change in the value of a parameter can affect the position, sta-

bility or number of attractors and, thus, the long term behaviour

of the system. Small changes in a parameter most often will lead

to small quantitative changes in the behaviour of the system (such

as small displacements in the positions of the fixed points or small

changes in a limit cycle’s period and amplitude), but more compli-

cated phenomena can appear in this dance of attractors around the

phase space. A stable and an unstable point can collide and anni-

hilate each other, giving rise to a saddle-node bifurcation. After a

saddle-node bifurcation an ecosystem can evolve from bistability to

monostability, giving rise to hysteresis and potentially irreversible

shifts in the population composition (Scheffer et al., 2001). A stable

point attractor can develop into a limit cycle (phenomenon known

as Hopf bifurcation), or a limit cycle into a chaotic one. These

processes that qualitatively change the dynamics are known as bi-

furcations, and there is a rich taxonomy of them (Crawford, 1991;

Kuznetsov, 1998).

When a system is operating near a bifurcation, a small variation in

its parameters and/or a small perturbation in the system’s state can

give rise to a transition to a completely different dynamical regime

(Scheffer, 2009). The saddle-node bifurcation is particularly inter-

esting for several reasons. To begin with, it often appears in biolog-

ical models as diverse as water management (Van Nes et al., 2007)

or coral reef growth (van de Leemput et al., 2016). As a straightfor-

ward side effect, those systems will show alternative stable states

and, potentially, critical transitions and hysteresis (Van Nes et al.,

2007; Scheffer, 2009). Last but not least, this bifurcation is pre-

ceded by the phenomenon of critical slowing down (Scheffer et al.,
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2009; Dakos et al., 2012). This phenomenon can be numerically

detected and quantified in a time series, opening the possibility of

measuring the resilience of the system (understood as its capacity to

return to the original equilibrium state after a perturbation).

1.4 Cycles, chaos and biodiversity

One of the subfields of biology where dynamical systems theory

is intensively used is population dynamics. Experiments in ecol-

ogy are particularly costly in time and resources. The theoreti-

cal and computational study of interactions between populations,

that is, the field of population dynamics, represents a cheap alter-

native to fully experimental approaches. As often happens when

buying cheap, this has a hidden cost: many of the ideas of popula-

tion dynamics have not been experimentally confirmed. Evidence

from models should thus not be given the same status as evidence

from observations. Models in population dynamics should just be

taken as tools to help us thinking. Interestingly enough, models

proved also particularly useful when they led to the wrong predic-

tions, as that shows that the models are too simple to describe

reality. Such negative results may inspire many follow-up studies

(see 1.4.1).

Population dynamics models are often written in the form of con-

tinuous differential equations, and can thus be written in the form

of equation 1.2. Most of them describe many species, having thus

many states. Additionally, the interactions are rarely linear. Con-

sequently, they can show any of the asymptotic behaviours men-

tioned in section 1.2. A straightforward question is then: what is

the probability for these different kinds of asymptotic behaviours,

1
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given a certain model and an average interaction strength?

Observation and experiments show that the interaction between

predators and prey may lead to cycles in nature (Elton and Nichol-

son, 1942; Veilleux, 1979). This type of systems has been described

already by the famous model of Lotka and Volterra (Volterra, 1926)

and more realistically by Rosenzweig and Macarthur (Rosenzweig

and MacArthur, 1963). Another classical example worth mention-

ing is that of Ludwig (Ludwig et al., 1978) trying to shed some

light on the cyclic outbreaks of spruce budworms (Choristoneura

fumiferana), a fascinating phenomenon well known by field ecolo-

gists and naturalists.

Chaotic dynamics have been observed in models of plankton dy-

namics (May, 1974). Modelled ecosystems have been used to es-

tablish theoretical links between chaos and biodiversity (Huisman

andWeissing, 1999) and between chaos and predictability (Huisman

and Weissing, 2001). Although the role of chaos in real ecosystems

has been a controversial topic in the past (Berryman and Millstein,

1989; Scheffer et al., 2003), the appearance of chaotic dynamics in

simple ecosystems has been experimentally shown in chemostats

(Benincà et al., 2008).

1.4.1 Attractors and the competitive exclusion princi-

ple

The methods of population dynamics resemble that of physics or

mathematics, and often its results look like physical laws. The anal-

ysis of some early mathematical models, particularly those reach-

ing point attractors, popularized the idea of the competitive ex-

clusion principle, also known as Gause’s law. It briefly states that
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“complete competitors cannot coexist” (Hardin, 1960). Although it

sounds as a general law of nature, a deeper read will make anyone

with notions of epistemology raise her/his eyebrow: “The statement

given above has been very carefully constructed: every one of the

four words is ambiguous. This formulation has been chosen not out

of perversity but because of a belief that it is best to use that wording

which is least likely to hide the fact that we still do not comprehend

the exact limits of the principle” (Hardin, 1960). The precise mean-

ing of the words “principle” and “law” hardly apply here, and it

seems that actually we are talking of a conjecture. Observational

and experimental counterexamples to the “principle” were already

known at the time it was published. Even more, later mathemati-

cal models showed that the principle of competitive exclusion can

be easily violated if the system under study reaches an attractor

other than a point attractor, such as a limit cycle (Armstrong and

McGehee, 1980). The literature contains several other counterex-

amples showing violations of the principle, either theoretically or

experimentally. The “paradox of the plankton” (Hutchinson, 1961),

namely the enormous diversity of plankton species in such a remark-

ably uniform environment as lakes or open sea, deserves an honor

position.

Principle or conjecture, the idea of competitive exclusion has been

a useful cornerstone of ecological theory for more than half a cen-

tury. Interestingly enough, the intentional ambiguous definition

of the “principle” did its magic: the literature on potential mech-

anisms that could prevent competitive exclusion and explain the

“paradox of the plankton” is very extensive (Scheffer et al., 2003).

One of the main hypotheses is that some ecosystems are intrin-

sically out of equilibrium, either due to constantly varying exter-

nal conditions (Hutchinson, 1959) or to intrinsic cyclic or chaotic

1
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asymptotic behaviour (Huisman and Weissing, 1999; Benincà et al.,

2008). Another interesting hypothesis is the so called “neutral the-

ory of biodiversity” (Hubbell, 2003), proposing that species that

are equivalent can coexist because they are unable to outcompete

each other.

In chapter 2 I contribute to this lively debate. Using numerical

models, I show that both the neutral and the non-equilibrium hy-

potheses are not independent. Particularly, near-neutrality leads si-

multaneously to non-equilibrium dynamics (such as cycles or chaos)

and to a higher biodiversity.

1.5 Cycles and biological synchroniza-

tion

Predator prey cycles are not the only cyclic phenomena in biol-

ogy. Several cyclic phenomena are of outmost importance for the

physiology of living beings. Examples of such cycles of biomedical

interest could be heartbeat, breathing, walking rhythms or sleep-

wake patterns. Additionally, organisms are subject to cyclic exter-

nal forcings. The astronomical cycles, such as the day/night and

the yearly shift of seasons, are the most obvious examples of those

forcings (Strogatz and Stewart (1993)).

The pioneering experiments of the French polymath Jean-Jacques

d’Ortous de Mairan showed that organisms have an intrinsic ca-

pacity to generate rhythms (d’Ortous de Mairan (1729)). By in-

trinsic we mean that, in the absence of an external cue, they re-

main periodic. Those intrinsic cycles such as circadian rhythms

show a similar frequency to the one imposed by the external influ-
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ences. This synchronization capacity invites to think of an organism

as an oscillator tuned to a given intrinsic frequency, and coupled

with an external forcing (Strogatz (2003), Foster and Kreitzman

(2017)).

The phenomenon of coupling the organism’s inner cycles with the

external forcing is known as synchronization. The ability to syn-

chronize is, perhaps unsurprisingly, known to be a survival advan-

tage (Foster and Kreitzman, 2017). Some health conditions, such

as insomnia or arrhythmia, are related to a deficit in this synchro-

nization capacity (Glass (2001)).

Examples from sleep research are particularly illuminating. Sleep-

ing is a phenomenon that we are all familiar with, and the disad-

vantages of irregular sleep are obvious to anyone. Experiments per-

formed with isolated individuals in caves (Siffre (1975)) and special

soundproofed and window-less apartments (Czeisler (1979)) showed

that most humans have an intrinsic sleep-wake period slightly

longer than 24 h. An experiment performed by the U.S. Navy

tried to force sleep-wake cycles of 18 h (6 of work, 6 of leisure and 6

of sleep) by taking advantage of the isolation of submarines’ crews

(Kelly et al. (1999)). The results were unsatisfactory, proving that

there are limits to our capacity of synchronizing with an external

cue if its frequency is too far from our intrinsic one.

Kuramoto’s model (introduced in Kuramoto (1975)) captures all

the key features of synchronization in a remarkably simple way.

This minimal but surprisingly rich model has been successfully ap-

plied to several physical, biological and biomedical systems (see

Strogatz (2000)). The mechanism of desynchronizing in such a

model happens through a bifurcation known as saddle-node of cy-

cles (Strogatz, 1994).

1
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As the name suggests, the saddle-node of cycles is closely related

to the saddle-node bifurcation. While dynamical indicators of re-

silience (DIORs) have been derived for the latter (Scheffer et al.,

2009; Dakos et al., 2012), there are not DIORs for the saddle-

node of cycles. In chapter 4 I analyze Kuramoto’s model and

derive a method to assess the desynchronization risk from a time

series.

1.6 Thesis overview

The backbone of this thesis is the interdisciplinary interaction be-

tween dynamical systems theory and a selection of problems of

biological and biomedical interest. In the present chapter we in-

troduced the basic mathematical tools that are going to be needed

along the thesis. Ordinary differential equations of the form 1.2

are used to simulate food webs (chapters 2 and 3), circadian

rhythms such as sleep-wake cycles (chapter 4) and simple models

of regulatory gene networks and glycolysis (chapter 3).

In chapter 2 we use a classical plankton predator-prey model to

analyze the relationship between heterogeneity at the prey level and

the probability of developing cyclic or chaotic dynamics. Due to the

complexity and the dimensionality of the system under study, we

rely on numerical simulations. In the spirit of bifurcation theory, we

control the heterogeneity of the interactions between prey species

with a single parameter. We generated a few thousands of in silico

ecosystems differing in their neutrality parameter, and assessed the

type of attractor reached using Gottwald-Melbourne’s 0-1 test. We

show that more heterogeneity significantly increases the chances of

non-equilibrium dynamics and, additionally, of biodiversity.
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In chapter 3 we clarify some misunderstandings that exist around

the concept of stability landscape in multidisciplinary research com-

munities. We explain that such landscapes cannot be derived for

non-gradient systems. In order to reach all audiences regardless of

their interest/expertise in mathematics, we use spirals and cyclic

dynamics, together with a metaphor from the artwork of M.C. Es-

cher, as a transparent equation-free explanation. Additionally, we

provide a novel and simple algorithm to calculate (pseudo)stability

landscapes for systems that are only weakly non-gradient. The

algorithm has a built-in safety protocol that warns the user with

an error map indicating in which regions the stability landscape is

reliable.

In chapter 4 we use a two-oscillator Kuramoto model to repre-

sent a physiological variable potentially synchronized with the di-

urnal cycle. We explore the border between synchronized and de-

synchronized cycles and show that the phenomenon of loss of syn-

chronization in this general model happens through a saddle-node

bifurcation. We adapt the methods from Dakos et al. (2009) and

derive two practical indicators to forecast desynchronization before

it happens from time series data. We use sleep-wake models as a

case study for proving the generality of our indicators.

In chapter 5 I reflect on the potential of our results, and also

on their limitations. In addition I discuss the more human side of

performing the work presented in this thesis, sharing some of the

lessons learned during my journey from physics to biology.

1
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Abstract

Similarity of competitors has been proposed to facilitate coexis-

tence of species because it slows down competitive exclusion, thus

making it easier for equalizing mechanisms to maintain diverse com-

munities. On the other hand, previous studies suggest that chaotic

ecosystems can have a higher biodiversity. Here we link these two

previously unrelated findings, by analyzing the dynamics of food

web models. We show that near-neutrality of competition of prey,

in the presence of predators, increases the chance of developing

chaotic dynamics. Moreover we confirm that chaotic dynamics cor-

relate with a higher biodiversity.



2.1 Background 25

2.1 Background

Ever since Darwin, the idea that species must be sufficiently dif-

ferent to coexist is deeply rooted in biological thinking. Indeed,

the principles of limiting similarity (Macarthur and Levins, 1967)

and competitive exclusion (Hardin, 1960; Armstrong and McGe-

hee, 1980) are the cornerstones of ecological theory. Neverthe-

less, natural communities (such as plankton communities (Hutchin-

son, 1961)), often harbor far more species that may be explained

from niche separation, inspiring G. Evelyn Hutchinson (Hutchin-

son, 1959) to ask the simple but fundamental question ”why are

there so many kinds of animals?”. Since then many mechanisms

have been suggested that may help similar species to coexist. As

Hutchinson (Hutchinson, 1961) already proposed himself, fluctua-

tions in conditions may prevent populations to reach equilibrium at

which species would be outcompeted. Also, natural enemies includ-

ing pests and parasites tend to attack the abundant species more

than rare species, and such a ”kill the winner” (Winter et al., 2010)

mechanism promotes diversity by preventing one species to become

dominant.

In the extensive literature on potential mechanisms that could pre-

vent competitive exclusion there are two relatively new ideas that

have created some controversy: neutrality and chaos. The neu-

tral theory of biodiversity introduced by Hubbell (Hubbell, 2003)

proposes that species that are entirely equivalent can coexist be-

cause none is able to outcompete the other. In the case of near-

neutral communities, although sensu stricto the exclusion will hap-

pen eventually, the exclusion process will take a very long time

to finalize. The concept of equivalent species has met skepticism

as it is incompatible with the idea that all species are different.

2
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However, it turns out that also ”near-neutral” competitors can co-

exist in models of competition and evolution (Scheffer and van Nes,

2006; Scheffer et al., 2018). Support for such near-neutrality has

been found in a wide range of communities (Segura et al., 2011,

2013; Vergnon et al., 2013). The second controversial mechanism

that may prevent competitive exclusion is ”super-saturated coex-

istence” in communities that display chaotic dynamics (Huisman

and Weissing, 1999). This is in a sense analogous to the prevention

of competitive exclusion in fluctuating environments, except that

deterministic chaos is internally driven. Although there has been

much debate about the question whether chaotic dynamics plays

an important role in ecosystems (Berryman and Millstein, 1989;

Scheffer, 1991; Schippers et al., 2001), several studies support the

idea that chaos can be an essential ingredient of natural dynamics

(Huisman and Weissing, 1999; Benincà et al., 2008, 2015).

In the present work, we used a multi-species food-web model to ex-

plore the effect of near-neutrality of prey on the probability of devel-

oping chaotic dynamics. We found a surprising link between both

ideas: the closer to neutrality the competition is, the higher the

chances of developing chaotic dynamics. Additionally, our results

confirmed that there is a robust positive correlation between cyclic

or chaotic dynamics and the number of coexisiting species.

2.2 Material and methods

2.2.1 Model description

We focused our attention on food webs with two trophic levels,

competing prey and predators. The predators have a differentiated
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preference of different prey species.

The dynamics were modelled using the Rosenzweig-MacArthur

predator-prey model (Rosenzweig and MacArthur, 1963), gener-

alized to a higher number of species (van Nes and Scheffer, 2004).

Our model contains nP prey species and nC predator species. The

prey’s populations are under the influence of both intra and inter-

specific competition, whose intensities are defined by the competi-

tion matrix A. The relative preference that predators have for each

prey is defined by the predation matrix S. Prey immigration from

neighboring areas has been added to the classical model in order to

avoid unrealistic dynamics, such as heteroclinic orbits giving rise to

long-stretched cycles with near extinctions (van Nes and Scheffer,

2004). In mathematical notation, the system reads:
{

dPi

dt
= ri(P )Pi −

∑nC

j=1 gj(P )PiSjiCj + f : i = 1..nP

dCj

dt
= −lCj + e

∑nP

i=1 gj(P )PiSjiCj : j = 1..nC

(2.1)

where Pi(t) represents the biomass of prey species i at time t and

Cj(t) the biomass of predator species j at time t. The symbol P

is used as a shorthand for the vector (P1(t), P2(t), ..., PnP
(t)). The

auxiliary functions ri(P ) and gj(P ) (see equations (2.2) and (2.3))

have been respectively chosen to generalize the logistic growth

and the Holling type II saturation functional response (Edelstein-

Keshet, 2005) to a multispecies system when inserted into equation

(2.1).

ri(P ) = r

(
1− 1

K

nP∑
k=1

AikPk

)
(2.2)

gj(P ) =
g∑nP

i=1 SjiPi +H
(2.3)

For details about the parameters used, please refer to subsection

2.2.2.

2
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2.2.2 Parameterization

We parameterized our model as a freshwater plankton system based

on Dakos’ model (Dakos et al., 2009). Unlike Dakos, who uses

seasonally changing parameters, our parameters were assumed to

be independent of time (see table 2.1).

Table 2.1: Values and meanings of the parameters used in our numer-

ical experiment. The elements of the predation (S) and competition

(A) matrices are drawn from probability distributions described in

subsection 2.2.2.

Symbol Interpretation Value Units

r Maximum growth rate 0.50 d−1

K Carrying capacity 10.00 mg l−1

g Predation rate 0.40 d−1

f Immigration rate 10−5 mg l−1 d−1

e Assimilation efficiency 0.60 1

H Saturation constant 2.00 mg l−1

l Predator’s loss rate 0.15 d−1

S nC × nP predator preference matrix See section 2.2.2 1

A nP × nP competition matrix See section 2.2.2 1

Competition and predation matrices

Our main purpose is to analyze the effect of different competition

strengths on the long term dynamics exhibited. For this, we intro-

duce the competition parameter ε to build a competition matrix A,

whose non-diagonal terms are drawn from a uniform distribution

centered at 1+ ε and with a given width (here we chose w = 0.05).

The diagonal terms are by definition equal to 1. Defined this way,

the parameter ε allows us to move continuously from strong in-

traspecific (ε < 0) to strong interspecific competition (ε > 0), meet-
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ing neutral-on-average competition at ε = 0. For the rest of this

paper, we will call ecosystems with ε = 0 near-neutral (see figure

2.1).

Figure 2.1: The competition matrix on the left is a clear case of

dominant intraspecific competition. The central one represents a case

of near-neutral competition. The matrix in the right panel shows a

case of dominant interspecific competition. The difference between

them is the relative size of the non-diagonal elements respective of the

diagonal ones. This property of the competition matrices is controlled

by the competition parameter ε.

Regarding the predation matrix S , we follow (Dakos et al., 2009)

and draw each of its coefficients from a uniform probability distri-

bution bounded between 0 and 1.

2.2.3 Numerical experiments

Depending on the parameters and initial conditions, our model

(equation (2.1)) can have three kinds of dynamics, each of them

roughly corresponding to a different kind of attractor (see figure

2.2). In a stable point attractor, species composition is constant.

The limit cycle (and limit tori) attractor corresponds to periodically

2
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(or quasiperiodically) changing species composition. The last cate-

gory are chaotic attractors, where the species composition changes

irregularly within bounds and there is extreme sensitivity to initial

conditions.

Our target is to estimate the probability of reaching each type of

attractor under different assumptions about competition. For this,

we analyzed 25 values of the competition parameter ε (defined in

section 2.2.2), ranging from ε = −0.8 to ε = 0.8. The lower value

was chosen to ensure that the non-diagonal competition matrix el-

ements were positive and non-negligible to exclude facilitation and

non-competing species. The upper value was arbitrarily chosen to

be symmetric with the lower one. For each value of the competition

parameter, 200 different initial conditions, predation and competi-

tion matrices were generated. The intial conditions were drawn

from a uniform distibution between 1 and 2 mg l−1, while the pre-

dation and competition matrices were drawn from the probability

distributions described in section 2.2.2. We used a Runge-Kutta

solver (ode45) to simulate the model with each parameter set. A

stabilizing run of 2000 days was executed to discard transient dy-

namics. Simulating for 5000 more days, we obtained a time series

close to the attractor.

We determined the fraction of the 200 time series that were sta-

ble, cyclic or chaotic. For our multi-species models we compared

the performance of three different methods: visual inspection, esti-

mation of the maximum Lyapunov exponent (Sandri, 1996) and

Gottwald and Melbourne’s 0-1 test (Gottwald and Melbourne,

2009). We found the Gottwald-Melbourne test to be not only the

most efficient, but also the most reliable test for performing this

classification. Describing in detail Gottwald and Melbourne’s 0-

1 test is beyond the scope of this paper, and it has already been
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Figure 2.2: Our family of models generates time series of the popu-

lation of each species. All of the three panels correspond to one simu-

lation of an ecosystem initialized with 16 prey species and 12 predator

species. Only the time series corresponding to prey populations are

displayed. The time series can be classified in 3 qualitative types de-

pending on their asymptotic behaviour: stable, cyclic and chaotic. In

panel A, the system reaches a stable attractor after a transient time.

In panel B, a periodic attractor, with an approximate period of 1000

days, is reached after the transient time. The system in panel C

never reaches a stable nor a cyclic attractor, but a chaotic one.

2
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done brilliantly in (Gottwald and Melbourne, 2009). Nevertheless,

a quick introduction to this test and how we applied it is given in

the appendix subsection 2.9.2.

Additionally, two different measures of biodiversity were applied

to each simulated ecosystem: the average number of non-extinct

prey species and the average biomass grouped by trophic level. We

considered a species to be extinct when their population density re-

mained below a threshold of 0.01 mg l−1 after the stabilization run.

We determined the relationship between the competition strength,

the probability of each dynamical regime and the biodiversity.

The numerical experiment was repeated for species pools of different

sizes, ranging from a total of 5 to 50 species. In our simulations, we

kept a ratio of 2:3 for the size of the species pool at the predator

and the prey level.

In the spirit of reproducible research, we made available the code

used to obtain our conclusions and generate our figures (Rodŕıguez-

Sánchez, 2018).

2.3 Results

From figure 2.3 we conclude that, in our model, the likelihood of

cyclic and chaotic dynamics reaches an optimum for near-neutral

competition at the prey level. This result remains true for systems

with a different number of species (see figures 2.5 and 2.6 in the

Online Appendix). The likelihood of chaos also increases with the

size of the food web. This effect should not be surprising: the

more dimensions the phase space has, the easier is to fulfill the

requirements of the complex geometry of a chaotic attractor (Stro-
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Figure 2.3: Contour map showing the probability of chaos for var-

ious competition parameters (horizontal axis) and initial number of

species of the simulation (vertical axis). The predators’ species pool

is fixed as 2/3 of the prey’s species pool. Notice that chaotic attrac-

tors appear more easily (i.e., for systems with less species) the closer

is the competition to neutral (i.e., ε = 0).

gatz, 1994). Even in those higher dimensional cases, there is still

a clear maximum at near-neutral competition. The probability of

chaos shows another local, lower maximum for weak competition

coupling, while stable solutions are very rare (figure 2.4.A). Pos-

sibly due to the weaker coupling we get less phase locking of the

predator prey cycles in this case.

Additionally, we found a clear correlation between the probabil-

ity of chaos and the biodiversity. In all our cases the diversity in

systems with chaotic dynamics were highest (figures 2.4 B,C) and

the overall diversity peaked approximately at the near-neutral sit-

uation. Interestingly also the cyclic solutions were clearly much

more diverse than cases with stable dynamics (figures 2.4 B,C).

2
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In fact the difference in biodiversity of the situation with chaos

and cycles was rather small (figure 2.4.C). This conclusion remains

true for food webs of different sizes (figures 2.7 and 2.8 in the On-

line Appendix). From figure 2.4.D, we see that the prey biomass

remains relatively stable for the whole range of competition param-

eters, with the exception of weak interspecific competition, where it

reaches a maximum. The predator biomass grows almost linearly

as the competition moves leftwards, from near-neutral to strong

intraspecific, while the prey biomass remains constant. This also

remains true for food webs of different sizes (see figure 2.9 in the On-

line Appendix) We think this can be understood from the effect of

niche complementarity which causes an increase in their total prey

biomass (Schnitzer et al., 2011). Like in a two-species model this

increase in prey biomass results in an increase of predator biomass

only (cf. (Rosenzweig and MacArthur, 1963)).

2.4 Discussion

We find that competition close to neutrality in simple food web

models significantly increases the chances of complex dynamical be-

haviours (such as cycles and chaos), and also the biodiversity. These

observations suggest that the hypothesis of non-equilibrium (Huis-

man and Weissing, 1999) and Hubbell’s hypothesis of neutrality

(Hubbell, 2003) are not completely independent. Our model shows

another local maximum for the probability of chaos for weak compe-

tition coupling. We consider this a reasonable result, as predation

is known to be the main driver of chaos in this kind of models (van

Nes and Scheffer, 2004). Once again, this increase in the chances of

complex dynamics is correlated with a higher biodiversity, but here
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Figure 2.4: Results for food webs with a species pool of 8 predator

and 12 prey species. Food webs of different sizes show similar results

(see section 2.9.1 in Online Appendix). Panel A. Fraction of each

dynamic regime as a function of the competition parameter. For each

of the 25 parameter values we simulated 200 ecosystems. Panel B.

Box and whisker plot of the average number of non-extinct prey species

grouped by asymptotic regime. Panel C. Average prey biodiversity

as function of competition parameter. The dashed line shows the

average number of non-extinct prey species grouped by competition

parameter. The colored circles represent the average prey biodiversity

of the simulations, additionally grouped by dynamical regime (stable,

cyclic and chaotic). The relative size of the circles represents the ratio

of simulations that led to each kind of dynamics. Panel D. Average

biomasses grouped by trophic level vs. competition parameter. The

width represents standard deviation.
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the high biodiversity is also due to the low interspecific competition

which obviously increases species coexistence.

With these results in hand, it may be tempting to conclude that

chaos causes diversity. But this will be a premature conclusion. For

instance, we cannot exclude that near-neutrality leads to a higher

diversity and that this higher number of species makes chaotic dy-

namics more likely to occur. Teasing apart the exact pathway of

causation is beyond the scope of this paper.

Our research question requires a fine control of the ecosystems un-

der study and keeping a long-term track of their development in

time. The experimental realisation in a chemostat of a plankton

ecosystem is very costly and time consuming even for a single run

(cf. (Benincà et al., 2008)). To study our research question ex-

perimentally we would need many replicas and an experimental

manipulation of the competition strengths. We think that such

approach is unfeasible.

Our choice of the Rosenzweig-MacArthur model was based on the

modeller’s mantra of using the simplest possible model that shows

the behaviour of interest. This model doesn’t use Allee effects,

nor noise, nor species-specific carrying capacities, nor advanced pa-

rameterization techniques (Massoud et al., 2018), and the func-

tional form of each term has been chosen to account for satiation

and saturation in the simplest possible ways. This opens the door

to perform similar analyses in the future using more sophisticated

models.

Both the competition and predation parameter sets were drawn

from probability distributions. The interactions in our system can

be interpreted as a weighted network with a high connectivity. In

nature, trophic networks tend to show modular structure with var-
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ious clusters (Thebault and Fontaine, 2010). Our simplified model

could be interpreted as representing one of those densely connected

modules. Moreover, while in the present paper our random pa-

rameters were drawn independently, the competition matrix can

be chosen in a more advanced way (for instance, accounting for

rock-paper-scissors competition). Studying the effect of different

physiological scenarios (in the sense of (Huisman et al., 2001), that

is, constrains between the parameters) on the probabilities of chaos

could be a continuation to this paper.

Our result seemed to be robust against changes in the number of

species. However, the exact probabilities of cyclic or chaotic dy-

namics are of course dependent on the model details and on the

values of all parameters (Dakos et al., 2009). For a system with

such a high number of parameters, a systematic exploration of the

parameter space is unfeasible. In the present work we explored only

the variation away from neutrality just by changing the competi-

tion strength and randomizing some of the parameters. We found

no differences in the main qualitative results when our simulations

were run under different sets of realistic parameters (sensu (Dakos

et al., 2009)).

Due to the large number of simulations made (there were 5000

simulated time series for each of the 10 different food web sizes an-

alyzed), we had to rely on automatic methods for detecting chaos.

Automatic detection of chaos by numerical methods has fundamen-

tal limitations, especially for high dimensional systems like ours.

Most of them can be boiled down to the fact that, in general, nu-

merical methods cannot distinguish robustly between long, com-

plicated transients and genuine chaos. Our motivation to choose

the Gottwald - Melbourne test (Gottwald and Melbourne, 2009)

was threefold: it discriminates between stable, cyclic and chaotic,

2
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it scales easily to systems of higher dimensions, its computation is

fast and it performs better than any other method we tried when

compared to the visual inspection of the time series. Although we

cannot exclude that we misinterpreted some of the generated time

series due to long transients, we don’t think this affected the overall

patterns, as they were very robust in all our simulations.

Our results suggest a fundamentally new way in which near-

neutrality may promote biodiversity. In addition to weakening the

forces of competitive exclusion leading to long transients (Scheffer

et al., 2018), our analyses reveal that near neutrality may boost the

chances for more diverse chaotic and cyclic dynamics.

The results presented in this manuscript rely almost exclusively

on simulations. Although they are beyond the scope of this

manuscript, certain bridges with data from field ecology can be

built. It is known that competition matrices can be estimated from

field observations (Fort and Segura, 2018). Provided some stud-

ies point in the direction of neutrality (Scheffer and van Nes, 2006;

Segura et al., 2011) and chaos (Massoud et al., 2018) being an emer-

gent phenomenon, we find reasonable to expect near-neutral com-

petition matrices to be common in real ecosystems. Assessing the

interesting question of how frequent are near-neutral competition

matrices in real ecosystems using data from field ecology represents

a straightforward continuation of this manuscript.

2.5 Data accesibility

In the spirit of reproducible research, we made published the code

used to obtain our conclusions and generate our figures in Zen-
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odo, an open access repository. It is available at the reference
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2.9 Appendix

2.9.1 Results for species pools of different sizes

In the main body of the paper we focused our attention in families

of food webs with species pools consisting of 12 prey and 8 predator

species. In this section we show the results of the same analysis for

food webs of different sizes.

Probability of chaos grouped by number of species

Figure 2.5: Probabilities of chaos vs. competition parameter for

the whole set of simulations. The competition parameter ε is on the

horizontal axis. The estimated probability of chaos is represented

on the vertical one. Each panel corresponds to an ecosystem with a

different number of interacting species. The exact number is shown in

each box, as number of predator + number of prey species.
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Probability of each dynamical regime

Figure 2.6: Ratio of each dynamical regime vs. competition param-

eter for the whole set of simulations. The competition parameter ε is

on the horizontal axis. The size of the species pool is shown in each

box, as number of predator + number of prey species.

Biodiversity measurements

For each simulation, a biodiversity index was estimated as the num-

ber of prey species whose population was higher than a minimum

threshold of 0.01 mg l−1, averaged respective to time.
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Figure 2.7: Average prey biodiversity vs. competition parameter.

Each panel corresponds to a species pool of different size. For each

value of the competition parameter, 200 randomly drawn ecosystems

were simulated. The dashed line shows the average number of prey

species of these 200 simulations. The yellow circles represent the aver-

age prey biodiversity of those simulations who had chaotic dynamics.

The red and blue circles represent the same for, respectively, cyclic

and stable dynamics. The relative area of the circles represents the

ratio of each kind of dynamics.
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Figure 2.8: Box and whisker plot of the prey biodiversity, after being

classified as stable, cyclic or chaotic. The size of the species pool is

shown in each box, as number of predator + number of prey species.

Figure 2.9: Average biomasses grouped by trophic level vs. compe-

tition parameter. The width represents standard deviation. The size

of the species pool is shown in each box, as number of predator +

number of prey species.

2
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2.9.2 Gottwald-Melbourne 0-1 test in a nutshell

The 0-1 test for chaos is designed for distinguishing between regular

and chaotic dynamics in deterministic systems. It works directly

with the observed time series, so a prior knowledge of the under-

lying dynamics is not required (as long as we know that they are

deterministic). This short section is more a motivation than a rig-

orous proof. A minimal, geometrical approach to the method will

be outlined. For a detailed, complete explanation please refer to

(Gottwald and Melbourne, 2009).

The main input for the test is a one-dimensional time series of

observations, φk, where the integer k represents the time index.

This time series is used to build the functions of the parameter

θ:
{
pn(θ) =

∑n
k=1 φkcos(kθ)

qn(θ) =
∑n

k=1 φksin(kθ)
(2.4)

The summands in equation 2.4 are the horizontal and vertical com-

ponents of a vector of length φk pointing in the direction kθ. Con-

sequently, each observation in our time series can be understood

as the size of a step in the plane, being kθ its direction (see table

2.2).
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Table 2.2: Example showing a step by step geometrical con-

struction of the elements inside the summation operator in equation

(2.4). In this example we use a time series whose first elements are

φj = {2, 1, 0.5, 0.25, ...}. The parameter θ has been set to π
6 .

k 0 1 2 3 ...

kθ 0 π
6

2π
6

π
2

...

eikθ
π
6

2π
6

π
2 ...

φk 2 1 0.5 0.25 ...

φke
ikθ ...

Adding up the elements in table 2.2 as indicated by equation (2.4)

can be interpreted geometrically as vector addition, i.e., performing

one ”step” after another (see figure 2.10).

pn

qn

z1

z2
z3
z4

Figure 2.10: Geometrical calculation of z1, z2, z3 and z4 for φj =

{2, 1, 0.5, 0.25, ...} and θ = π
6 .

With this picture in mind, it is easy to understand the kind of

paths that different types of time series will give rise to (see fig-

ure 2.11). Constant time series generate cyclic paths (polygons) or

2
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pseudocyclic paths (polygons that do not close after a first round).

Periodic or pseudoperiodic time series generate periodic or pseu-

doperiodic paths. Random time series generate brownian-motion-

like paths. Provided that our system is deterministic, the apparent

stochasticity of our path is a strong indicator of chaos.

Figure 2.11: First and second panels show the paths generated by the

0-1 test when applied to constant and periodic time series. The third

panel shows the case with a chaotic time series (notice the different

scale). While in the first two cases the paths remain inside a bounded

domain, in the chaotic case the path drifts away from the starting

point in a brownian-motion-like fashion.

The case of an underlying chaotic time series is the only one that

generates a path that doesn’t stay inside a bounded domain around

the starting point (compare the third panel in figure 2.11 with the

other two). The 0-1 test uses the mean square displacement as

a measure of this drift. The system is considered to be chaotic if

the square displacement keeps growing for large times. If, on the

contrary, it stays bounded, the test will consider the system not

chaotic.

In the current manuscript, we used the time series corresponding to

a non-extinct prey as input (φk) to the 0-1 test. The test parame-
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ters θ were chosen from a uniform random distribution between π
3

and 2π
3
.

2





Chapter 3

Climbing Escher's stairs: a

way to approximate

stability landscapes in

multidimensional

systems
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Climbing Escher’s stairs: A way to approximate stability land-

scapes in multidimensional systems. PLOS Computational Biology,

16(4):e1007788.
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Abstract

Stability landscapes are useful for understanding the properties of

dynamical systems. These landscapes can be calculated from the

system’s dynamical equations using the physical concept of scalar

potential. Unfortunately, it is well known that for most systems

with two or more state variables such potentials do not exist. Here

we use an analogy with art to provide an accessible explanation of

why this happens and briefly review some of the possible alterna-

tives. Additionally, we introduce a novel and simple computational

tool that implements one of those solutions: the decomposition of

the differential equations into a gradient term, that has an associ-

ated potential, and a non-gradient term, that lacks it. In regions

of the state space where the magnitude of the non-gradient term is

small compared to the gradient part, we use the gradient term to

approximate the potential as quasi-potential. The non-gradient to

gradient ratio can be used to estimate the local error introduced by

our approximation. Both the algorithm and a ready-to-use imple-

mentation in the form of an R package are provided.
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3.1 Introduction

With knowledge becoming progressively more interdisciplinary, the

relevance of science communication is rapidly increasing. Math-

ematical concepts are among the hardest topics to communicate

to non-expert audiences, policy makers, and also to scientists with

little mathematical background. Visual methods are known to be

successful ways of explaining mathematical concepts and results to

non-specialists.

One particularly successful visualization method is that of the

stability landscape, also known as scalar potential, Waddington’s

epigenetic landscape, rolling marble diagram or ball-in-a-cup dia-

gram (Edelstein-Keshet, 2005; Strogatz, 1994; Beisner et al., 2003;

Pawlowski, 2006; Huang, 2012). In the rest of this work we de-

fine the stability landscape as a classical scalar potential, and thus

we will use both terms as equivalents (for a precise mathematical

definition, see subsection “Mathematical background” below). In

stability landscapes (e.g.: figure 3.1) the horizontal position of the

marble represents the state of the system at a given time. With this

picture in mind, the shape of the surface represents the underlying

dynamical rules, where the slope is proportional to the speed of

the movement. The peaks on the undulated surface represent un-

stable equilibrium states and the wells represent stable equilibria.

Different basins of attraction are thus separated by peaks in the

surface. Stability landscapes, whose origin can be traced back to

the introduction of the scalar potential in physics by Lagrange in

the 18th century (Lagrange, 1777), have proven to be a successful

tool to explain advanced concepts about dynamical systems theory

in an intuitive way. Some examples of those advanced concepts

are multistability, basin of attraction, bifurcation points and hys-

3



52 Climbing Escher's stairs

teresis (see Scheffer et al. (2001), Beisner et al. (2003) and figure

3.1).

The main reason for the success of this picture arises from the fact

that stability landscapes are built as an analogy with our most

familiar dynamical system: movement. Particularly, the movement

of a marble along a curved landscape under the influence of its own

weight. The stability landscape corresponds then with the physical

concept of potential energy (Strogatz, 1994). This explains why our

intuition, based in what we know about movement in our everyday

life, works so well reading these type of diagrams. It is important

to stress the fact that under this picture there’s not such a thing

as inertia (Pawlowski, 2006). The accurate analogy is that of a

marble rolling in a surface while submerged inside a very viscous

fluid (Strogatz, 1994).
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Figure 3.1: Example of a set of 5 stability landscapes used to il-

lustrate bistability in ecosystems (e.g: forest/desert, eutrophicated

lake/clear water, etc., see Scheffer et al. (2001)). The upper side of

the figure shows the stability landscape of a one-dimensional system

for 5 different values of a control parameter. The lower side shows the

bifurcation diagram, where the filled points represent stable equilib-

ria and the empty points unstable ones. This diagram proved to be

a successful tool for explaining advanced concepts in dynamical sys-

tems theory such as bistability and fold bifurcations to scientific com-

munities as diverse as ecologists, mathematicians and environmental

scientists.

Like with any other analogy, it is important to be aware of its lim-

3
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itations. The one we address here is the fact that, for models with

more than one state variable, such a potential doesn’t exist in gen-

eral. To get an intuitive feeling of why this is true, picture a model

with a stable cyclic attractor. As the slope of the potential should

reflect the speed of change, we would need a potential landscape

where our marble can roll in a closed loop while always going down-

hill. Such a surface is a classical example of an impossible object

(see figure 3.2 and Penrose and Penrose (1958) for details).

Figure 3.2: The Penrose stair (Penrose and Penrose, 1958) is a clas-

sical example of an impossible object. In such a surface, it is possible

to walk in a closed loop while permanently going downhill. The scalar

potential of a system with a cyclic attractor, if existed, should have the

same impossible geometry. This object was popularized by the Dutch

artist M.C. Escher (for two beautiful examples, see Escher (1960) and

Escher (1961)).

As this is a centuries-old problem, it is perhaps not surprising

that several methods have been proposed to approximate stabil-

ity landscapes for general, high-dimensional systems. Helmholtz,

in his pioneering work on fluid dynamics in the 19th century, de-
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composes the dynamical equations into a gradient and a curl term

(von Helmholtz, 1858; Zhou et al., 2012b). Helmholtz uses the gra-

dient term to compute a well defined scalar potential. The curl

term cannot be associated to a scalar potential, and requires com-

puting a more complicated mathematical object, namely a vector

potential. Vector potentials, although useful in fluid dynamics and

electromagnetism (see for instance chapters 5 and 16 of Wangsness

(1986)), do not correspond with the idea of a stability landscape.

A similar approach is followed in the normal decomposition (Zhou

et al., 2012b), where the dynamical equations are decomposed into

two perpendicular directions, being one of them the gradient of a

potential and the other interpreted as a perpendicular force. An-

other possible decomposition was introduced by Ao (Ao et al., 2007;

Tang et al., 2017), consisting in applying the sum of a symmetric

and an antisymmetric linear transformation to the dynamical equa-

tions. Some interesting alternatives are presented in Pawlowski

(2006), like potentials for second-order systems or the use of Lya-

punov functions as stability landscapes.

Alternative approaches based on probabilistic considerations have

achieved great success. The underlying idea is that those states

who are more stable have a higher chance to be found in the state

space. The corresponding quasi-potential is then a function of the

probability density function associated with the stochastic model.

This is the approach followed by the Wang’s potential landscape

(Wang, 2011) and by the Freidlin-Wentzell potential (Freidlin and

Wentzell, 2012) (a good review comparing both can be found in

Zhou et al. (2012b)). Particularly, the Freidlin-Wentzell potential

has become the standard for the derivation of quasi-potentials of

stochastic systems. Its direct links with transition rates makes it

particularly useful to understand and visualize relative stabilities

3
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(Nolting and Abbott, 2015). Other quasi-potential approaches, and

even the exact potential corresponding to a stochastic differential

equation with a purely gradient deterministic part, are just limit

cases of it (Zhou et al., 2012b, Zhou and Li (2016)). It is important

to note that these probability-based quasi-potentials don’t admit,

in general, the straightforward interpretation of a “rolling marble”.

Additionaly, they require heavy mathematical weaponry, such as

partial and stochastic differential equations. For a complete review

about this topic, please refer to Zhou et al. (2012b).

In the present work we introduce a simple method to deal with the

fundamental problem of approximating stability landscapes for high

dimensional deterministic systems. Specificially, we introduce an al-

gorithm to easily perform an approximation of the above-mentioned

Helmholtz decomposition, i.e., to decompose differential equations

as the sum of a gradient and a non-gradient, divergence-free part.

Each part can be used, respectively, to compute an associated scalar

potential and to measure the local error introduced by our picture.

In order to reach those interested readers with little background in

mathematics, we limited our mathematical weaponry. Knowledge

of basic linear algebra and calculus will suffice to understand the

paper to its last detail. Additionally, we provide a ready to use,

tested and documented R package that implements the algorithm

this paper describes (Rodŕıguez-Sánchez, 2019).

3.1.1 Mathematical background

Conditions of the potential to exist

Consider a coupled differential equation with two state variables x

and y (equation (3.1)).
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{
dx
dt

= f(x, y)
dy
dt

= g(x, y)
(3.1)

If, in addition, we are able to find a two-dimensional function

V (x, y) whose slope is proportional to the change in time of both

states, then V represents the stability landscape of the system (see

equation (3.2), and compare it with (3.1)).

{
dx
dt

= f(x, y) = −∂V (x,y)
∂x

dy
dt

= g(x, y) = −∂V (x,y)
∂y

(3.2)

It can be shown that such a function V (x, y) only exists if the

crossed derivatives of functions f(x, y) and g(x, y) are equal for all

x and y (equation (3.3)). Systems satisfying equation (3.3) are

known as conservative, irrotational or gradient fields (cf. section

8.3 of Marsden and Tromba (2003)). Function V is known as scalar

potential in the physical and mathematical literature.

∂f

∂y
=

∂g

∂x
(3.3)

If condition (3.3) holds we can use a line integral (Marsden and

Tromba (2003), section 7.2) to invert (3.2) and calculate V (x, y)

using the functions f(x, y) and g(x, y) as an input. An example of

this inversion is equation (3.4), where we have chosen an integration

path composed of a horizontal and a vertical line.

V (x, y) = V (x0, y0)−
∫ x

x0

f(ξ, y0)dξ −
∫ y

y0

g(x, η)dη (3.4)

3
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The attentive reader may have raised her or his eyebrow after read-

ing the word chosen applied to an algorithm. In fact, we can in-

troduce this arbitrary choice without affecting the final result. The

condition for potentials to exist (3.3) implies that any line integral

between two points in this vector field should be independent of the

path (cf. section 7.2 of Marsden and Tromba (2003)). Going back

to our rolling marble analogy, we can gain some intuition about

why this is true: in a landscape the difference in potential energy

between two points is proportional to the difference in height, and

thus stay the same for any path. If the condition (3.3) is not ful-

filled, the potential calculated with (3.4) will depend on the chosen

integration path. As this is an arbitrary choice, the computed po-

tential will be an artifact with no natural meaning.

A generalization to more dimensions of these ideas is presented in

the online appendix.

Linearization of dynamical systems

It is known that under very general circumstances (particularly,

local differentiability), a dynamical system can be approximated in

the vicinity of a point (x0, y0) by using a first order Taylor expansion

(equation (3.5)). This process is known as linearization (cf. section

6.3 of Strogatz (1994)).

{
f(x, y) ≈ f(x0, y0) +

∂f(x0,y0)
∂x

(x− x0) +
∂f(x0,y0)

∂y
(y − y0)

g(x, y) ≈ g(x0, y0) +
∂g(x0,y0)

∂x
(x− x0) +

∂g(x0,y0)
∂y

(y − y0)
(3.5)

Equation (3.5) can be written more compactly in matrix form (see

equation (3.6)), where the square matrix contains the partial deriva-
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tives evaluated at the point (x0, y0). This matrix is known as the

Jacobian J(x0, y0).

[
f(x, y)

g(x, y)

]
≈

[
f(x0, y0)

g(x0, y0)

]
+

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]

(x0,y0)

·
[
x− x0

y − y0

]
(3.6)

It is easy to see that condition (3.3) is equivalent to requiring the

Jacobian matrix in equation (3.6) to be symmetric at all lineariza-

tion points (x0, y0).

A few concepts about square matrices

In the rest of this work we will use a few concepts from basic linear

algebra. Here we briefly review them, for the convenience of the

reader.

The transpose of a matrix is obtained by exchanging rows and

columns or, equivalently, by “mirroring” it around its diagonal (see

equation (3.7) for an example).

[
a b

c d

]T
=

[
a c

b d

]
(3.7)

A symmetric matrix is equal to its transpose (see matrix S in (3.8)).

A skew-symmetric matrix is equal to minus its transpose (see ma-

trixK in (3.8)). The diagonal elements of a skew-symmetric matrix

are always zero.

S =

[
a b

b d

]
K =

[
0 b

−b 0

]
(3.8)

3
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A basic result from linear algebra states that any square matrix

can be univocally expressed as the sum of a symmetric and a skew

symmetric matrix. Particularly, the symmetric and skew parts are

given by equation (3.9).

M = Msymm +Mskew where:

{
Msymm = 1

2

(
M +MT

)

Mskew = 1
2

(
M −MT

) (3.9)

3.2 Material and methods

For the sake of a compact and easy to generalize notation, in the

rest of this paper we will arrange the equations of our system as

a column vector (equation (3.10) shows an example for a two-

dimensional system).

[
f(x, y)

g(x, y)

]
= �f(�x) (3.10)

The method for deriving a potential we propose is based on

Helmholtz’s idea of decomposing a vector field in a conservative or

gradient part and a non-gradient part (see equation (3.11)).

�f(�x) = �fg(�x) + �fng(�x) (3.11)

The gradient term �fg(�x) captures the part of the system that can

be associated to a potential function, while the non-gradient term
�fng(�x) represents the deviation from this ideal case. We’ll use �fg(�x)

to compute an approximate or quasi-potential. The absolute error
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of this approach is given as the euclidean size of the non-gradient

term | �fng(�x) |. In regions where the gradient term is stronger than

the non-gradient term, the condition (3.3) will be approximately

fulfilled, and thus the calculated quasi-potential will represent an

acceptable approximation of the underlying dynamics. Otherwise,

the non-gradient term is too dominant to approximate a potential

landscape.

In order to achieve a decomposition like (3.11), we begin by lin-

earizing our model equations. Any sufficiently smooth and contin-

uous vector field �f(�x) can be approximated around a point �x0 using

equation (3.12), where J( �x0) is the Jacobian matrix evaluated at

the point �x0 and ∆�x is defined as the distance to this point, that

is, ∆�x = �x − �x0, written as a column vector. Note that equation

(3.12) is just the generalized version of the two dimensional case

shown in (3.6).

�f(�x) ≈ �f( �x0) + J( �x0)∆�x (3.12)

As usual in linearization, we have neglected the terms of order 2

and higher in equation (3.12). This approximation is valid for �x

close to �x0.

Using the skew-symmetric decomposition described in equation

(3.9), we can rewrite the Jacobian as in equation (3.13):

J = Jsymm + Jskew (3.13)

When inserted in equation, (3.12) it becomes (3.14):

�f(�x) ≈ �f( �x0) + Jsymm( �x0)∆�x+ Jskew( �x0)∆�x (3.14)

3
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The first two terms in the left hand side of equation (3.14) repre-

sent a gradient system, being the third and last term the only non-

gradient term in the equation (see “Mathematical background”).

Equation (3.14) represents thus a natural, well-defined and opera-

tional way of writing our vector field �f(�x) decomposed as in equa-

tion (3.11) (see (3.15)).

{
�fg(�x) ≈ �f( �x0) + Jsymm( �x0)∆�x

�fng(�x) ≈ Jskew( �x0)∆�x
(3.15)

The non-gradient term �fng(�x) is a divergence-free field (see Mars-

den and Tromba (2003) and/or online appendix), so our proposed

decomposition is an approximation of the Helmholtz decomposition

(Zhou et al., 2012b) (in that sense, our decomposition is more akin

to that of Wang (2011) than to Ao et al. (2007), as may be wrongly

suggested by the fact that Ao also uses the concepts of symmetry

/ anti-symmetry). The gradient term �fg(�x) can thus be associated

to a potential V (�x). This potential can be computed analytically

for this linearized model using a line integral (see equation (3.4) for

the two dimensional case, or the online appendix for the general

one). The result of this integration yields an analytical expression

for the potential difference between the reference point �x0 and an-

other point �x1 ≡ �x0+∆�x separated by a distance ∆�x (see equation

(3.16)).

∆V ( �x1, �x0) ≡ V ( �x1)− V ( �x0) ≈ −�f(�x0) ·∆�x− 1

2
∆�xTJsymm( �x0)∆�x

(3.16)

Provided we know the value of the potential at one point �xprevious,

equation (3.16) allows us to estimate the potential at a different



3.2 Material and methods 63

point �xnext (cf.: equation (3.17)).

V (�xnext) ≈ V (�xprevious) + ∆V (�xnext, �xprevious) (3.17)

Equation (3.17) can be applied sequentially over a grid of points

to calculate the approximate potential on each of them. In two

dimensions, the resulting potential is given by the closed formula

(3.18). The cases with 3 and more dimensions can be generalized

straightforwardly. For a step by step example, see online appendix.

For a flowchart overview of the algorithm, please refer to figure

3.3.

V (xi, yj) = V (x0, y0)+
i∑

k=1

∆V (xk, y0; xk−1, y0)+

j∑
l=1

∆V (xi, yl; xi, yl−1)

(3.18)

As with any other approximation we need a way to estimate and

control its error. The stability landscape described in (3.16) has

two main sources of errors:

1. It has been derived from a set of linearized equations, sampled

over a grid

2. It completely neglects the effects of the non-gradient part of

the system

The error due to linearization in equation (3.14) is roughly pro-

portional to | ∆�x |2, where | ∆�x | is the euclidean distance to the

reference point. By introducing a grid, we expect the linearization

error to decrease with the grid’s step size.

The more fundamental error due to neglecting the non-gradient

component of our system cannot be avoided by reducing the grid’s

3
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step choice. From equation (3.11) it is apparent that the absolute

error of our decomposition is given by �f(�x)− �fg(�x) = �fng(�x). That

is, we can use the euclidean norm of �fng(�x) as an approximation

of the local absolute error introduced by our algorithm. The rela-

tive error introduced by our approximation can be estimated using

equation (3.19), where we use equation (3.15) to relate with the

skew and symmetric parts of the Jacobian matrix.

err(�x) ≈ | �fng(�x) |
| �fg(�x) | + | �fng(�x) |

≈ | Jskew(�x) |
| Jsymm(�x) | + | Jskew(�x) |

(3.19)

The norms of the symmetric and skew Jacobians can be understood

as the “weights” of each of those matrices. The relative error de-

scribed in (3.19) quantifies how dominant the non-gradient term is

in each region of the phase space, being 0 in those regions where

the system is fully gradient (i.e.: | Jskew |= 0), and 1 where it is

fully non-gradient (i.e.: | Jsymm |= 0). The figures in the Results

section show that the error maps calculated with equation (3.19)

are a good estimator of the local quality of our quasi-potential ap-

proximation.

3.2.1 Implementation

As an application of the above-mentioned ideas, and following the

spirit of reproducible research, we developed a transparent R pack-

age we called rolldown (Rodŕıguez-Sánchez, 2019). Our algorithm

accepts a set of dynamical equations and a grid of points defining

our region of interest as an input. The output is the estimated
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potential and the estimated error, both of them calculated at each

point of our grid (see figure 3.3 for details).

Figure 3.3: Flowchart showing the basic functioning of our imple-

mentation of the algorithm described in this paper.

3.3 Results

3.3.1 Synthetic examples

A four well potential

We first tested our algorithm with a synthetic model of two un-

coupled state variables. Uncoupled systems are always gradient as

all non-diagonal values of the Jacobian are zero everywhere. We

added the interaction terms px and py to be able to make it grad-

ually non-gradient (see equation (3.20)).

{
dx
dt

= f(x, y) = −x(x2 − 1) + px(x, y)
dy
dt

= g(x, y) = −y(y2 − 1) + py(x, y)
(3.20)

When we choose those non-gradient interactions to be zero, the sys-

tem is purely gradient and corresponds with a four-well potential.

3
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Our algorithm rendered it successfully and with zero error (cf. fig-

ure 3.4, row A). In order to test our algorithm, we introduced a

non-gradient interaction of the form px(x, y) = 0.3y · m(x, y) and

py(x, y) = −0.4x · m(x, y), with m(x, y) = e(x−1)2+(y−1)2 . m(x, y)

serves as a masking function guaranteeing that our interaction term

will be negligible everywhere but in the vicinity of (x, y) = (1, 1).

After introducing this non-gradient interaction a four-well potential

is still recognizable (cf. figure 3.4, row B). As expected, the error was

correctly captured to be zero everywhere but in the region around

(x, y) = (1, 1). The error map warns us against trusting the quasi-

potential in the upper right region, and guarantees that elsewhere

it will work fine. Notice that, accordingly, the upper right stable

equilibrium falls slightly outside its corresponding well. The rest of

equilibria, to the contrary, fit correctly inside their corresponding

wells.
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Figure 3.4: Results for two synthetic examples. In all panels the dots

represent equilibrium points (black for stable, otherwise white). The

left panel shows the phase plane containing the actual “deterministic

skeleton” of the system. The central panel shows the quasi-potential.

The right panel shows the estimated error. Row A shows the ap-

plication to a gradient case (equation (3.20) with interaction terms

equal to zero). As expected, the error is zero everywhere. In row B

our algorithm is applied to a non-gradient case (equation (3.20), with

non-zero interaction terms).
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A fully non-gradient system

In order to stress our algorithm to the maximum, we tested it in a

worst case scenario: a system with zero gradient part everywhere.

Particularly, we fed it with equation (3.21). All solutions (but the

unstable equilibrium point at (0, 0)) are cyclic (cf. 3.5, left panel)).

As we discussed in the introduction, calculating a potential for a

system with cyclic trajectories is as impossible as Escher’s paintings

(and for similar reasons). This fact is captured by our algorithm,

that correctly predicts a relative error of 1 everywhere (see figure

3.5, right panel). In this case, the quasi-potential (figure 3.5, left

panel) is not even locally useful.

{
dx
dt

= −y
dy
dt

= x
(3.21)
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Figure 3.5: Results for a fully non-gradient system (equation (3.21)).

In all panels the dots represent center equilibrium points. The left

panel shows the phase plane containing the actual “deterministic skele-

ton” of the system. The central panel shows the quasi-potential. The

right panel shows the estimated error.
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3.3.2 Biological examples

A simple regulatory gene network

Waddington’s epigenetic landscapes (Gilbert, 1991; Huang, 2012)

are a particular application of stability landscapes to gene reg-

ulatory networks controlling cellular differentiation. When ap-

plied to this problem, stability/epigenetic landscapes serve as a

visual metaphor for the branching pathways of cell fate determina-

tion.

A bistable network cell fate model can be described by a set of

equations like (3.22). Such a system represents two genes (x and

y) that inhibit each other. This circuit works as a toggle switch

with two stable steady states, one with dominant x, the other with

dominant y (see Bhattacharya et al. (2011)).

{
dx
dt

= bx − rxx+ ax
kx+yn

dy
dt

= by − ryy +
ay

ky+xn

(3.22)

Our parameter choice (ax = 0.4802, ay = 0.109375, bx = 0.2, by =

0.3, kx = 0.2401, ky = 0.0625, rx = ry = 1 and , n = 4) corresponds

with equations 6 and 7 of Bhattacharya et al. (2011), where we mod-

ified two parameters (By = 0.3, foldXY = 1.75, in their notation)

in order to induce an asymmetry in the the dynamics. Although

this system is non-gradient, our algorithm correctly yields a pseu-

dopotential with two wells (see figure 3.6, row D). Observe that the

bottom of those potentials corresponds with a stable equilibrium.

The relative error, despite being distinct from zero in some regions,

is not very high. This means that our quasi-potential is a reasonable

3
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approximation of the underlying dynamics. Indeed, the equilibria

correspond to the wells (stable) and the peak (unstable).

Predator prey dynamics

The Lotka-Volterra equations (3.23) are a classical predator-prey

model (Volterra, 1926). In this model x and y represent, respec-

tively, the prey and predator biomasses.

{
dx
dt

= ax− bxy
dy
dt

= cxy − dy
(3.23)

This model is known to have cyclic dynamics. As we discussed in

our analogy with Escher’s paintings, we cannot compute stability

landscapes in the regions of the phase plane where the dynamics

are cyclic. When we apply our method to a system like equation

(3.23), the error map correctly captures the fact that our estimated

potential is not trustworthy (see figure 3.6, row E).
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Figure 3.6: Results for two biological systems. In all panels the dots

represent equilibrium points (black for stable, otherwise white). The

left panel shows the phase plane containing the actual “deterministic

skeleton” of the system. The central panel shows the quasi-potential.

The right panel shows the estimated error. In row D we applied our

algorithm to the simple gene regulatory network described in equation

(3.22). In row E we apply our algorithm to a Lotka-Volterra system

(equation (3.23), with a = b = c = d = 1).

Selkov model for glycolysis

The Selkov model for glycolysis reads like equation (3.24), where x

and y represent the concentrations of two chemicals.

3
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{
dx
dt

= −x+ ay + x2y
dy
dt

= b− ay − x2y
(3.24)

The Selkov model is a classical example of a dynamical equation

motivated by a biochemical problem that can develop a limit cycle

under certain circumstances. Particularly, if we fix a = 0.1, such a

system is known to have a limit cycle for b ∈ [0.42, 0.79] (figure 3.7,

row G), and otherwise it reaches an equilibrium solution (figure 3.7,

row F). This system is particularly interesting from the pedagogical

point of view because the Jacobian doesn’t depend on b, so the error

map remains the same.

In the configuration showed in row F, we see that the trajectories

corresponding to low concentrations of any of both chemicals (i.e.:

x << 1 or y << 1) remain in the “safe zone” according to the

error map. Our estimated potential can be used in that region and,

accordingly, the equilibrium point lies in the bottom of a potential

well. On the other hand, in the configuration showed in row G,

even those trajectories that start inside the “safe zone” are forced

to “explore” the “unsafe” area outside it. Such a configuration leads

to a limit cycle and thus, unsurprisingly, doesn’t admit a potential

representation.
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Figure 3.7: Results for two parameter settings of the Selkov equation

(3.24). In all panels the dots represent equilibrium points (black for

stable, otherwise white). The left panel shows the phase plane con-

taining the actual “deterministic skeleton” of the system. The central

panel shows the quasi-potential. The right panel shows the estimated

error. In row F we applied our algorithm to a Selkov system with

b = 0.1, so the solutions reach a stable point. In row G we set b = 0.6,

so the system has a limit cycle.

3.4 Discussion

The use of stability landscapes as a helping tool to understand one-

dimensional dynamical systems achieved great success, especially in

3
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interdisciplinary research communities. A generalization of the idea

of scalar potential to two-dimensional systems seemed to be a log-

ical next step. Unfortunately, as we have seen, there are reasons

that make two (and higher) dimensional systems fundamentally dif-

ferent from the one-dimensional case. The generalization, straight-

forward as it may look, is actually impossible for most dynamical

equations. A good example of this impossibility is any system with

cyclic dynamics, whose scalar potential should be as impossible as

the Penrose stairs in Escher’s paintings. As a consequence, any at-

tempt of computing stability landscapes for non-gradient systems

should, necessarily, drop some of the desirable properties of classical

scalar potentials.

For instance, the method proposed by Bhattacharya (Bhattacharya

et al., 2011) smartly tries to avoid the fundamental problem of

path dependence of line integrals by integrating along trajectories,

removing thus the freedom of path choice. A problem of this ap-

proach is that there is generally no continuity along the borders of

the basins of attraction in the resulting quasi-potential, and that

the results depend on the choice of the initial point. Our approach

is, in some sense, the opposite. We embrace the fact that some sys-

tems do not have a reliable scalar potential landscape in some (or

even all) regions of the phase space, and we show this fundamental

limitation explicitly via the error map.

Methods based on probabilistic considerations such as occupancy

probabilities at the steady-state distribution (Wang, 2011; Li and

Wang, 2014) or transition rates between states (Ao et al., 2007;

Zhou et al., 2012b; Freidlin and Wentzell, 2012; Tang et al., 2017),

provide a continuous landscape where deep areas correspond with

states with a high probability of occurrence. When applied to a

limit cycle, they give rise to “Mexican hat” shaped surfaces (Wang,
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2011). However, these surfaces cannot be interpreted straightfor-

wardly as classical potentials where the state just “slides” to the

bottom of the wells. That is, the “rolling-marble” analogy has to

be used very carefully. Two transparent examples appear in fig. 3A

in Wang (2011) or fig. 2B in Li and Wang (2014). While the slope

correctly captures the attracting property towards the limit cycle,

once inside of it the trajectories eventually go uphill. Additionally,

these methods require familiarity with advanced mathematical con-

cepts such as stochastic and partial differential equations, both of

them more complex and computationally expensive than our ap-

proach.

We share the perception with other authors (Pawlowski, 2006) that

the concept of potential is often misunderstood in research commu-

nities with a limited mathematical background. The algorithm we

introduce here is an attempt to preserve as much as possible from

the classical potential theory while addressing explicitly its limi-

tations and keeping the mathematical complexity as low as possi-

ble. A more detailed summary about what our algorithm provides

is:

• Integrity. At each step the strength of the non-gradient term

is calculated. If this term is high, it is fundamentally impos-

sible to calculate a scalar potential with any method. If this

term is zero, our solution converges to the classical potential.

• Safety. The relative size of the non-gradient term can be

interpreted as an error term, mapping which regions of our

stability landscape are dangerous to visit.

• Speed. The rendering of a printing quality surface can be

performed in no more than a few seconds in a personal laptop.

• Simplicity. The required mathematical background is cov-

ered by any introductory course in linear algebra and vector

3
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calculus.

• Generality. The core of the algorithm is the skew-symmetric

decomposition of the Jacobian. This operation can be eas-

ily applied to square matrices of any size, generalizing our

algorithm for working in 3 or more dimensions.

• Usability. We provide the algorithm in the form of a ready

to use, fully documented and tested R package Rodŕıguez-

Sánchez (2019).

It is important to notice that, although our algorithm provides us

with a way of knowing which regions of the phase plane can be

“safely visited”, we cannot navigate the phase plane freely but only

along trajectories. This interplay between regions and trajectories

limits the practical applicability of our algorithm to those trajec-

tories that never enter regions with high error (good examples of

this can be found in figures 3.4 row B and 3.7 row F). If our algo-

rithm works in the region of interest, there is no need to use more

advanced (and thus, more difficult to implement and to interpret)

methods, as we expect them to converge to the same solution. As

a rule of thumb, we found that any relative error below 0.2 can

be considered small for visualization purposes, but this is a sub-

jective criterion. For higher errors, or in case of doubt, we suggest

to visually compare the calculated quasi-potential with the phase

plane (as we did in all the figures in the Results section). If re-

quired, a more detailed assessment of the absolute error can be

performed by calculating the difference between the flow contain-

ing the original dynamical equations and the flow corresponding to

the quasi-potential (i.e., by direct evaluation of �f(�x) − �fg(�x), see

Methods section). Note that the absolute error should not be cal-

culated using the quasi-potential itself, but the flows derived from

it.
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If we conclude that the system doesn’t admit our quasi-potential,

then the most reasonable alternative is to use a Freidlin-Wentzell

potential, but keeping in mind that its interpretation is not so

straightforward as that of a scalar potential.

The concept of potential is paramount in physical sciences. The

main reason for the ubiquity of potentials in physics is that several

(idealized) physical systems are known to be governed only by gra-

dient terms (e.g.: movement in friction-less systems, classical grav-

itatory fields, electrostatic fields, . . . ). As physical potentials can

be related with measurable concepts like energy, its use goes way

further than visualization. From the depth and width of a potential

we can learn about transition rates and resilience to pulse pertur-

bations. The height and shape of the lowest barrier determines the

minimum energy to transition to an alternative stable state, which

relates to the probability of a noise-driven jump in a stochastic en-

vironment (Zhou et al., 2012b; Nolting and Abbott, 2015; Hänggi

et al., 1990). All these results remain true for non-physical prob-

lems that happen to be governed exclusively by gradient dynamics,

and, we claim, should remain approximately true for problems gov-

erned by weakly non-gradient dynamics. This is the situation our

algorithm has been designed to deal with.

Regarding visualization alone, it may be worth reconsidering why

we prefer the idea of stability landscape over a traditional phase

plane figure, especially after pointing out all the difficulties of cal-

culating stability landscapes for higher-dimensional systems. It is

true that the phase plane is slightly less intuitive than the stability

landscape, but it has a very desirable property: it doesn’t require

the imagination of a surrealist artist to exist.

3
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3.6 Additional information

3.6.1 Gradient conditions for a system with an arbitrary

number of dimensions

Dynamics in equation (3.2) and the condition for the crossed

derivatives (3.3) can be straightforwardly generalized (see equa-

tions (3.26) and (3.25) to systems with an arbitrary number of state

variables �x = (x1, ..., xn). Particularly, if and only if our system of

equations dxi

dt
= fi(�x) satisfies the condition for all i:

∂fi
∂xj

=
∂fj
∂xi

: i �= j (3.25)

then a potential V (�x) exists related to the original vector field:

dxi

dt
= fi(�x) = −∂V

∂xi

: i = 1..n (3.26)

and such a potential can be computed using a line integral:
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V (�x) = V (�x0)−
∫

Γ

n∑
i=1

fi(�x)dxi (3.27)

where the line integral in (3.27) is computed along any curve Γ

joining the points �x0 and �x.

It is important to note that the number of equations (N) described

in condition (3.25) grows rapidly with the dimensionality of the

system (D), following the series of triangular numbers N = 1
2
(D −

1)D. Thus, the higher the dimensionality, the harder it may get to

fulfill condition (3.25). As a side effect, we see that one-dimensional

systems have zero conditions and their stability landscape is thus

always well-defined.

3.6.2 Correspondence with the Helmholtz decomposi-

tion

Our decomposition (3.15) is an approximation of the Helmholtz

decomposition. The Helmholtz decomposition is defined as the de-

composition of the field in a gradient term and a curl, or divergence-

free term. This decomposition is known to be unique.

The gradient nature of �fg(�x) has already been established in the

Methods section. Thus, in order to prove the correspondence, we

only need to show that �fng(�x) is a divergence-free field, that is,
�∇ · �fng = 0. The divergence represents one of the many gen-

eralizations of the concept of derivative in systems with 2 and

more dimensions, and it is a central concept from vector calcu-

lus (Marsden and Tromba, 2003). The divergence operator �∇·
of a field in cartesian coordinates is defined as the sum of the

derivative of each element respective the corresponding coordinate

3
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(see equation (3.28) for an example using the two-dimensional field
�F (x, y) = (Fx(x, y), Fy(x, y))).

�∇ · �F =
∂Fx

∂x
+

∂Fy

∂y
(3.28)

When applied to �fng, defined as in equation (3.15), the divergence

equals the sum of the diagonal elements of Jskew. The diagonal

elements of any skew matrix are all zero (see (3.8)), and thus, the

divergence of �fng is zero too.

3.6.3 Detailed example of application

To calculate the value of V at, for instance, the point (x3, y2) of a

grid, we should begin by assigning 0 to the potential at our arbitrary

starting point (i.e.: V (x0, y0) = 0 by definition). Then, we need

a trajectory that goes from (x0, y0) to (x3, y2), iterating over the

intermediate grid points (see figure 3.8).
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Figure 3.8: Path used to go from point (x0, y0) to (x3, y2). Note

that this is not the only possible path. Our algorithm converges to

the same potential regardless of the path chosen thanks to neglecting

the skew part of the Jacobian in our linearization process.

In the first step we go from (x0, y0) to (x1, y0). The new potential

is thus (using (3.17)):

V (x1, y0) ≈ V (x0, y0) + ∆V (x1, y0; x0, y0)

The next two steps continue in the horizontal direction, all the way

to (x3, y0). The value of the potential there is:

3
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V (x3, y0) ≈ V (x1, y0) + ∆V (x2, y0; x1, y0) + ∆V (x3, y0; x2, y0)

Now, to reach our destination (x3, y2) we have to move two steps

in the vertical direction:

V (x3, y2) ≈ V (x3, y0) + ∆V (x3, y1; x3, y0) + ∆V (x3, y2; x3, y1)

Generalizing the previous example we see that we can compute the

approximate potential at a generic point (xi, yj) using the closed

formula (3.18). Both our example (3.6.3) and formula (3.18) have

been derived sweeping first in the horizontal direction and next in

the vertical one. Of course, we can choose different paths of sum-

mation. Nevertheless, because we are building our potential ne-

glecting the non-gradient part of our vector field, we know that our

results will converge to the same solution regardless of the chosen

path.
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Abstract

Conditions such as insomnia, cardiac arrhythmia and jet-lag share

a common feature: they are all related to the ability of biological

systems to synchronize with external cues such as the the day-night

cycle. When organisms lose resilience, this ability of synchronizing

can become weaker till they eventually become desynchronized in a

state of malfunctioning or sickness. It would be useful to measure

this loss of resilience before the full desynchronization takes place.

Several dynamical indicators of resilience (DIORs) have been pro-

posed to account for the loss of resilience of a dynamical system.

The performance of these indicators depends on the underlying

mechanism of the critical transition, usually a saddle-node bifur-

cation. Before such bifurcation the recovery rate from perturba-

tions of the system becomes slower, a mechanism known as critical

slowing down. Here we show that, for a wide class of biological

systems, desynchronization happens through another bifurcation,

namely the saddle-node of cycles, for which critical slowing down

cannot be directly detected. Such a bifurcation represents a system

transitioning from synchronized (phase locked) to a desynchronized

state, or vice versa. We show that after an appropriate transforma-

tion we can also detect this bifurcation using dynamical indicators

of resilience. We test this method with data generated by models

of sleep-wake cycles.
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4.1 Introduction

The phenomenon of endogenous circadian rhythms, first observed

by the French polymath Jean-Jacques d’Ortous de Mairan in 1729

(d’Ortous de Mairan (1729)), has transcended science to become

part of the popular culture, often referred to as the inner clock. The

evolutionary convenience of synchronizing such inner clocks with

the external cues, usually provided by regular astronomical events

such as day-night periods and seasons, is well established (Foster

and Kreitzman (2017)). Synchronization, thus, proves useful for

living systems and a difficulty to synchronize (and sometimes also

to desynchronize) can be an indicator of sickness or malfunctioning.

Some synchronization-related conditions include insomnia, jet-lag,

arrhythmia or epilepsy (Glass (2001)).

The transition from a synchronized to a desynchronized regime is

discontinuous. The system is either synchronized or not. There-

fore it could be that synchronization is a special kind of critical

transition (Scheffer (2009)). This is relevant as there have been

developed ways to foresee whether at critical transition is likely to

occur (Scheffer et al. (2009)). These dynamic indicators of resilience

(DIORs) are based on the phenomenon of “critical slowing down”

(Wissel (1984), Van Nes and Scheffer (2007)). According to this

theory, the recovery rate from perturbations decreases if systems

are close to a critical transition. In time series we can measure

critical slowing down using different indicators, such as increased

autocorrelation and variance (Dakos et al. (2012)).

In the present work we illustrate with simple models that some tran-

sitions from synchronized to desynchronized states indeed can be

related to a special kind of critical transition, namely a saddle-node

4
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bifurcation of cycles. We show that after an appropriate transfor-

mation of the data, we can still use critical-slowing down indicators

to see if one of these transitions is likely to happen.

4.2 Methods

4.2.1 Case study model

Our goal is to develop generic indicators for the risk of desynchro-

nization of biological cycles such as the sleep-wake cycle. To under-

stand the properties of this system, we analyze a generic model of

such periodically forced cyclic systems. This minimal model con-

sists of two oscillators: a master (representing the external forcing,

for instance of a diurnal rhythm) and a slave (representing the or-

ganism’s state, for instance its sleep/awake status). We represent

each oscillator by its most basic feature: phase (θ� for the master

and θ for the slave) The master’s frequency is constant (i.e. the

phase grows steadily from 0 to 2π in 24 h), and it is not affected by

the slave’s dynamics. The slave’s dynamics are more complex: in

the absence of coupling it has a natural frequency, and an increas-

ing tendency to synchronize with the master if the coupling gets

more intense. These features are captured by model (4.1).

{
dθ
dt

= ω − k · f(θ − θ�)
dθ�
dt

= ω�
(4.1)

In model (4.1) each oscillator shows a natural frequency (ω and

ω�). The first oscillator shows a tendency to slow-down if θ is

ahead of θ�, and to speed-up otherwise. The function f measures
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the difference between θ and θ�. Note that f has to be a periodic

function (in the sense of f(x+ 2π) = f(x)). This is a consequence

of the cyclic nature of phases: by definition phases θ and θ + 2π

represent the same point in a cycle, and thus, the same physical

reality. In most applications f is also continuous and smooth. The

strength of the coupling is given by the positive constant parameter

k. If the coupling is not strong enough (relative to the difference in

natural frequencies), synchronization doesn’t happen.

The system (4.1) becomes simpler (and even analytically tractable)

if we use the phase difference φ(t) ≡ θ(t) − θ�(t) as a new state

variable. With this change of state variable, the system takes the

form (4.2), where, for convenience, we made Ω ≡ ω − ω�.

dφ

dt
= Ω− k · f(φ) (4.2)

For the sake of clarity, we will use f(φ) = sin(φ) in the rest of

this work. As we discuss in the online appendix, we can do this

without loss of generality. With this choice, our model becomes

a simple subcase of the classical Kuramoto model (see Kuramoto

(1975), Strogatz (2000)). Equating (4.2) to zero, the stable and

unstable equilibria of our system are easily found to be φ∗
s = ∆ and

φ∗
u = π − ∆, where ∆ ≡ arcsin Ω

k
. It is important to note that,

for those equilibria to exist, condition (4.3) should be satisfied.

Intuitively, this means that our system can only synchronize cycles

whose difference in natural frequencies (Ω) have at most the same

order of magnitude as the coupling term (k).

| Ω
k

|≤ 1 (4.3)

4
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When condition (4.3) is satisfied, the system (4.2) tends naturally

to the stable solution. In this case, the phase difference φ is con-

stant, so both oscillators have the same frequency (ω�) and are thus

synchronized. If, on the contrary, condition (4.3) is not satisfied,

the phase difference φ never stabilizes and consequently synchro-

nization is not possible.

But, what happens at the border between both cases, that is, when

Ω/k approaches 1? In such a situation, the stable and unstable

solutions collide and annihilate each other at φ∗ = π
2
(see first row

of panel 4.1). This mechanism of losing stability is known as a

saddle-node bifurcation (Kuznetsov (1998), Strogatz (1994)). For

an extensive discussion about the choice of this system, please refer

to the appendix.

We’ll take advantage of the periodicity of our system by plotting

its trajectories over a 2π×2π square with periodic boundary condi-

tions (or, equivalently, on the surface of a torus). When the phase

hits any border, it reappears at the opposite side (just like in old-

school video games such as Pac Man or Asteroids). In figure 4.1

we see three different configurations of such a system. As our pa-

rameter approaches the saddle-node bifurcation, both the stable

and unstable cycles get closer. When we introduce additive noise

to the dynamics, transitions can happen before the bifurcation is

reached if the noise is strong enough to make the state jump the gap

between both cycles (figure 4.1, column B). Note that due to the

periodic boundaries the system is only momentarily desynchronized

as it “collapses” back to the synchronized dynamics.
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Figure 4.1: Each of the columns corresponds to a different con-

figuration for system (4.1), identified by the value of the bifurcation

parameter Ω/k, which represents the synchronization capacity. From

left to right, each column represents less coupling strength. Each of

the rows corresponds to a different representation of the dynamics. In

the first row we see the bifurcation diagram of the phase difference

(φ). The red arrows in the first row represent the flow on the line.

In the second and third rows, the continuous red line represents the

stable branch, and the dotted one the unstable branch. Saddle-node

bifurcations happen at Ω
k = ±1. If | Ω

k |> 1 the system has no equilib-

rium solution and, thus, represents a desynchronized system. In both

the second and third rows, the continuous red lines represent the sta-

ble cycle, and the dashed line, the unstable one. We plot in blue one

simulated trajectory, under the influence of stochastic noise (modelled

as a Wiener process with a variance of σ2 = 0.04). The second row

uses (θ, θ�) as coordinates (phase space) and the third row uses (t, φ)

coordinates (time series). Notice that in the second column, even if
Ω
k < 1, a noise induced transition may happen due to the proximity

of the stable and unstable cycles.
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4.2.2 How to extract phase differences from data?

From the previous subsection it should be clear that synchroniza-

tion is related to a fold bifurcation that occurs in the phase dif-

ference of the internal clock of a system respective to that of the

forcing. This phase difference is usually not directly measurable.

Instead, experimental data of periodic phenomena usually gives us

indirect information about the phase. The angle of the Sun re-

spective to the local meridian, the height of the tide or even the

subjective feeling of sleepiness or hunger along the day are obvi-

ously affected by the phase of the cycle under study (see figure

4.2). But, can we use these indirect measurements to robustly infer

the phase?

In order to answer this question, we will translate the ideas illus-

trated in the previous paragraph and figure 4.2 to mathematical

language. Particularly, we’ll assume, as a working hypothesis, that

there is a certain functional relationship M between the phase of

the cycle θ(t) and our observations y(t) (equation (4.4)). Due to

the periodic nature of our problem, we expect M to have a period

of 2π.

y(t) = M [θ(t)] (4.4)

We define a reference cycle yref (t) based in our knowledge about

the system under study. For instance, if we are studying sleep

cycles and y(t) represents the asleep state, a reasonable choice for

yref (t) could be yref (t) = 0 (awake) if t is between 8 and 24 h,

and 1 (asleep) otherwise. Such a function represents the idealized

sleeping cycle of a healthy individual. We assume the reference

cycle to be the result of applying the unknown function M to the
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Figure 4.2: The first row shows the Sun’s angular height from a

local horizon. Second row represents the height of the tide. Third row

shows a sleep wake cycle of a healthy individual. The fourth and last

row shows a common phase for the three above-mentioned phenomena

(thus, the time series in all rows can be expressed in the form given in

equation (4.5)). All series have been plotted for three whole periods.
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phase of the external forcing θ� (equation (4.5)).

yref (t) = M [θ�(t)] (4.5)

If our system is either synchronized or subject to slow variations

in its external conditions, we can consider the phase difference

(φ(t) ≡ θ(t)−θ�(t)) approximately constant over a given time span

[ta, tb]. It can be shown (see appendix section 4.6.1) that under this

circumstances we can expect that y(t) is just shifted in time respec-

tive to yref (t) by a certain time delay λ (equation (4.6)).

y(t) = yref (t+ λ) (4.6)

We find the time delay λ that best fits our data by minimizing the

sum of squares between the time-shifted reference cycle and our

measurements (see figure 4.3 and equation (4.7)). This time delay

λmin is proportional to the phase difference. In section 4.6.1 of the

appendix, we show that, specifically, φ = ω�λmin.

D2(λ) =
b∑

i=a

(yi − yref (ti + λ))2 (4.7)

Applying the method described above to different time windows al-

lows us to use data to estimate a time series of the phase differences

(φ(tj)) even if the precise analytical form of M is unknown (see first

row in figure 4.5 and second row in figure 4.6). See appendix section

4.6.1 for details.
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Figure 4.3: In both panels the red crosses represent the hypothetical

activity of a human being experiencing a jet lag, measured every 60

minutes during 3 days. In the upper row we see the expected daily

activity in blue (no activity while sleeping between 0 and 8 hours, and

activity the rest of the day). In the lower row we see, in orange, the

expected daily activity, but now displaced 6h in the time axis. This

displacement provides the best fit for the data, and is calculated by

minimizing the function D2(λ) given in equation (4.7).
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Figure 4.4: Schematic outline of our method.

4.2.3 Resilience indicators

Saddle-node bifurcations are often preceded by the phenomenon of

critical slowing down (Scheffer et al. (2009)). Such a phenomenon

can be directly observed in the time series even if the underlying dy-

namics are unknown. In the present manuscript we used the above-

mentioned minimization algorithm along a moving window of typi-

cally 1-day width to extract the phase difference. Then, we applied

the methods proposed by Dakos (Dakos et al. (2012)) to analyze

this time series. Particularly, we first detrended the time series by

simply subtracting the average value over non-intersecting windows

of 1 day length. Afterwards, we calculated the standard deviation

and autocorrelation of the residuals, using a rolling window with

a length around 25-50% of the original time series’ length. The

optimal parameters (window length, autocorrelation lag, etc.) de-

pend on the time scale and characteristics of the data under study.

For more details about this method, see Dakos et al. (2012). For

an extended discussion about the limitations of these methods, see

Dakos et al. (2015).

Figure 4.4 summarizes all the steps, inputs and outputs of our

method.
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4.2.4 Model-generated time series

We tested our method with two model-generated time series.

The first time series was generated with the help of the sleep-wake

model of Strogatz (Strogatz (1987)). We configured the system so

the time series represents the sleep-wake dynamics of an individ-

ual that is becoming progressively more prone to insomnia. The

insomnia effect was simulated by allowing the coupling term k to

linearly decrease to zero along a period of 135 days. This makes

the individual’s inner clock progressively less capable of coupling

with the day-night cycle, and eventually completely unable to do

so. Strogatz’s model (Strogatz (1987)) can be understood as a

Kuramoto oscillator followed by a postprocessing function M that

transforms the inner clock’s phase θ into a sleep-wake time series.

Particularly, M(θ) returns 1 (awake) if the inner clock’s phase θ is

between 2π/3 and 2π radians (corresponding to 8 and 24 hours in

the inner clock), and 0 otherwise (asleep). We used the generated

time series to estimate the phase difference. As this model contains

an explicit phase, we can use it as a control, and compare it with

our estimated phase as a verification of our method for extracting

phases from data (see first row of figure 4.5).

To show the generality of our method, we applied it to a second

time series generated with a more realistic model, the Phillips-

Robinson model (Phillips and Robinson (2007)). The Phillips-

Robinson model is a deterministic sleep-wake model based on neu-

rological considerations, and it doesn’t contain an explicit phase. It

describes the time evolution of three state variables: Vv the activ-

ity of the ventrolateral preoptic area (prompting the body to stay

asleep), Vm the activity of the mono aminergic group (prompting

the body to stay awake) and H the homeostatic pressure (an aux-

4
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iliary variable that quantifies the need for sleep). The dynamics

of the model are given by the equations (4.8), where F (V ) is a

saturation function given by (4.9) and C(t) (defined in equation

(4.10)) is a time-dependent external forcing, representing the as-

tronomical light/dark cycle. The remaining elements in equation

(4.8), including the influence of the acetylcholine group (Va0), are

just constants. The parameters used are the same as in (Phillips

and Robinson (2007)); see section 4.6.3 in the online appendix. Ad-

ditionally, this appendix section provides a graphical representation

of the relationships in equation (4.8).




τv
dVv

dt
= −Vv − νvmS(Vm) + νvhH − νvcC(t)

τm
dVm

dt
= −Vm − νmvS(Vv) + νmaS(Va0)

χdH
dt

= −H + µS(Vm)

(4.8)

S(V ) =
Qmax

1 + e−
V −θ
σ

(4.9)

C(t) =
1

2
(1 + cos(ωt+ α)) (4.10)

Once again, we simulated an individual whose sleep quality is slowly

deteriorating. We achieved this effect by allowing the coupling pa-

rameter νvc to decrease linearly from its normal value of 6.3mV to 0

mV along a period of three months. By doing this, the ability of the

subject to synchronize his internal clock with the external time cues

slowly disappears. The first episode of insomnia/desynchronization

happens on the 83rd day (see first row in figure 4.6).

In order to simulate the fluctuations expected in any biological

system we added noise to the integration of both our time series.
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In particular, we modeled our systems as Wiener processes. The

deterministic terms have been described in the previous paragraphs.

The stochastic terms (dW = σdt) for Strogatz’s model where set to

σ = 0.05 for the inner clock’s phase, and to 0 for the driver. For the

Phillips-Robinson model, the stochastic term was set to σ = 1 for

the states Vv and Vm, and 0 for H. The integration was performed

numerically with the Python package sdeint.

4.3 Application

We applied the minimization algorithm described in the methods

section to the sleep-awake time series generated with Strogatz’s

model (see methods). As a reference of a healthy sleep-wake cycle,

we used a simple assumption: a healthy individual is awake be-

tween 8 in the morning and 24 at night, and asleep otherwise. We

managed to reconstruct correctly the phase difference. The recon-

structed phase difference shows the classical signs of slowing down

(namely, increase in standard deviation and autocorrelation) when

the system is approaching the bifurcation (see figure 4.5).

Our method was also applied with success to the time series gen-

erated with the Phillips-Robinson model (equation (4.8)). We fo-

cused our attention only in the time series corresponding to the

state variable H. We used the time series corresponding to day

1 as a reference to estimate the phase difference. Particularly, we

built yref (t) as a quadratic interpolator of the measurements cor-

responding to the first day. As we can see in figure 4.6, the first

episode of insomnia (83rd day) is preceded by an increase in both

standard deviation and autocorrelation of the estimated phase dif-

ference.

4
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Figure 4.5: The black dots in the upper panel represent the phase

difference, as approximated by our method. The exact phase difference

is also shown (green line) as a reference of the method’s accuracy. The

central and lower panel show the standard deviation (in blue) and the

autocorrelation with a 24 h lag (in orange) of the estimated phase

difference, both of them calculated for a window 50% the length of

the data. In both panels, as the time increases, the resilience of our

system gets weaker.
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Figure 4.6: The upper panel shows a simulated time series obtained

by integrating the Phillips-Robinson model under the influence of

stochastic noise, and with the parameter νvc decreasing linearly in

time to simulate an increasing difficulty in synchronizing. The sim-

ulation was initialized with non-transient values, to ensure the first

days represent a healthy sleep wake cycle. The second panel shows

the estimated phase difference (in hours) using the method described

in our paper (sub-sampling the whole time series once per day, and

using day 1 as reference). Our reference time series was chosen to be

the somnogen level H during the first day. The two lower panels show

the standard deviation (in blue) and the autocorrelation with a 48 h

lag (in orange), calculated for a window of 45 days into the past, of

the estimated phase differences. The red line the 83rd day marks the

first episode of insomnia/desynchronization.

4



100 Early warning signals for desynchronization

4.4 Discussion

In the current work we presented a way of deriving dynamic indica-

tors of resilience (DIORs) for systems transitioning from synchro-

nized to desynchronized states through the family of bifurcations

known as saddle-node of cycles. Our method is designed for time

series, and doesn’t require detailed knowledge of the deterministic

dynamics of the system. This makes it particularly suitable for

biological systems where a loss of synchronization may have an un-

desired effect (such as insomnia or arrhythmia (Glass (2001))) or

may be an indicator of a loss of resilience (such as the disruption

in daily activity patterns in cows after calving (van Dixhoorn et al.

(2018))).

It may be argued that our method rests on the particular choice of

the model given in equation (4.1). As we discuss in the appendix,

equation (4.1) represents the simplest, albeit non-trivial represen-

tative of a broader family of synchronization dynamics. Different

choices yield different geometries in the bifurcation diagram (figure

4.1, first row), but the main characteristic, the fact that at least one

saddle-node bifurcation exists, remains true. This, together with

the method to extract phase differences for general time series of

periodically forced systems, makes our approach valid under very

general circumstances. Two application examples of time series

that were generated with two different sleep-wake models, Stro-

gatz’s and Phillips-Robinson’s are analyzed.

The method to extract phase differences requires an approximate

reference time series. In the Strogatz’s model application example

we used the very simple assumption that a healthy individual sleeps

from 0 h at night to 8 h in the morning. Some problems may benefit
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from or even require more sophisticated assumptions. In the ab-

sence of any detailed knowledge of the system under study, another

approach could be using the dynamics of an arbitrary day as a ref-

erence. This is what we did in the Phillips-Robinson application

example.

Additionally, our method requires high quality time series. Those

time series should be long (as we need many cycles to infer the

indicators) and should have a high density of data points (typically

of the order of 10 points measured per cycle, depending on the

shape of the time series). This makes our method less suitable to

be applied with success in fields where the data is difficult and/or

expensive to collect. Luckily, data-rich systems such as the ones

provided by wearable devices are becoming increasingly popular in

medicine or veterinary sciences.

Even after extracting the phase difference, the critical slowing down

may be difficult to detect under some circumstances. As already

noted in Dakos et al. (2015), his method to forecast saddle-node

bifurcations has some fundamental limitations. For instance, it is

required that the time-scale of the changes in the external forcing

to be slower than the natural time-scale of the system (that is, the

transitions shouldn’t be too sudden). The role of noise is also a

delicate issue. On one hand, noise is required in order to observe

the phenomenon of critical slowing down in the vicinity of a saddle-

node bifurcation. On the other hand, it obscures the deterministic

dynamics. Our analysis will prove weak for systems whose dynam-

ics are strongly dominated by noise. Our method, based on Dakos’

indicators, shares this set of limitations.

Even with those applicability challenges, we consider our method

to be a step in the direction of forecasting transitions between syn-

4
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chronized and desynchronized states. The fact that the disruption

in certain physiological rhythms is associated with disease (Glass

(2001)), together with the recent increase in the availability of high-

quality biometric time series, makes the analysis and potential fore-

casting of these relevant kind of transitions a topic worth being

explored.

4.5 Acknowledgements

We thank Ingrid van Dixhoorn and Rudi de Mol for their useful

comments and suggestions.

This work was supported by funding from the European Union’s

Horizon 2020 research and innovation programme for the ITN

CRITICS under Grant Agreement Number 643073.



4.6 Appendix 103

4.6 Appendix

4.6.1 Detailed derivation of the phase extracting

method

In order to justify the results of section 4.2.2, we will make use of

equations (4.1), (4.4), (4.5) and (4.6). As a first step, we will write

both sides of equation (4.6) in terms of M . We can do this by

directly applying (4.4) and (4.5). The result is shown in equation

(4.11).

{
y(t) = M [θ(t)]

yref (t+ λ) = M [θ�(t+ λ)]
(4.11)

In order be able to compare the functions given by equations (4.4)

and (4.5) we will change their coordinates. Using the phase dif-

ference (φ(t) ≡ θ(t) − θ�(t)), we can rewrite the equation (4.4)

in terms of θ� and φ (see first line in equation (4.12)). Introduc-

ing a leftwards shift λ in the time coordinate of equation (4.5)

it takes the form yref (t + λ) = M [θ�(t + λ)], where θ�(t + λ)

can be evaluated exactly by its first order Taylor expansion, that

is, θ�(t + λ) = θ�(t) + ω�λ (cf. second line of equation (4.1)).

The results of both coordinate transformations appear in equation

(4.12).

{
y(t) = M [θ�(t) + φ(t)]

yref (t+ λ) = M [θ�(t) + ω�λ]
(4.12)

Note that if the system is synchronized and/or if the adiabatic

approximation (that is, that the external conditions vary slowly)

4
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holds in our region of interest (t ∈ [ta, tb]), φ(t) can be approximated

by a constant φ. We can estimate the value of φ by finding the shift

λmin that minimizes the square distance between both functions

(equation (4.13)). By direct inspection of equation (4.12) we see

that this optimal value corresponds to a phase difference of φ =

ω�λ
min.

D2(λ) =

∫ tb

ta

(y(s)− yref (s+ λ))2ds (4.13)

When faced with experimental data, we’ll have a collection of N

measured values yi sampled at times ti (that is, yi = y(ti)). The

discrete equivalent of equation (4.13), representing the square dis-

tance between our measured and the expected points, is given in

(4.7). By finding the value of the time displacement λ that mini-

mizes D2(λ), we find the time delay that better fits our data (see

figure 4.3).

4.6.2 Further generalization

By manipulating the parameter Ω/k in an equation like (4.2) with

any non trivial continuous function f(φ) we are sure of encountering

at least one saddle-node bifurcation. Even more, the saddle-node

is the only kind of bifurcation that may happen.

This can be proven graphically. As we discussed in the methods

section, the coupling function f in the model given by equation (4.2)

can be any non-constant, continuous, smooth and periodic function,

not necessarily a sine. A function f satisfying these properties will

have at least one local minimum and one local maximum per period.

This is also true for the right-hand side of equation (4.2). The effect
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Figure 4.7: Here we plot the curve y(φ) = Ω − kf(φ) for a non-

sinusoidal coupling function f . The function is non-constant, contin-

uous, smooth and periodic. We plotted it for three different values of

the bifurcation parameter Ω
k . The roots of each curve represent the

equilibria (filled dots if stable, white if unstable).

of the parameter Ω/k is to move up and down the curve defined

by y(φ) = Ω − kf(φ), whose roots represent the equilibria. This

rules out the pitchfork and the transcritical bifurcations, as those

require a change in the shape of the curve y(φ) (Strogatz (2003)).

By manipulating the parameter Ω/k, the only possible bifurcations

are collisions of stable and unstable equilibria, that is, saddle-node

bifurcations (Strogatz (2003)). Those bifurcations happen when a

minimum or a maximum equals 0 (see figure 4.7).

Those readers familiar with analysis may prefer noticing that, in

the vicinity of a minimum/maximum (φ0), the second order Taylor

expansion of the right-hand side of equation (4.2) can be written

as the equation of a parabola (4.14).

Ω− kf(φ) ≈ Ω− kf(φ0)−
kf ′′(φ0)

2
(φ− φ0)

2 (4.14)

By using the new variable x ≡
√

−kf ′′(φ0)
2

(φ − φ0) (representing a

4
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shift and re-scale of the horizontal axis), and renaming Ω−kf(φ0) as

r, the right-hand side of equation (4.14) adopts the canonical form

of saddle-node bifurcation, i.e.: r + x2 (Kuznetsov (1998)).

Due to the generality of the conditions requested to the cou-

pling function f , we expect saddle-node bifurcations in the phase

difference to be a widespread mechanism of synchronization and

desynchronization. Consequently, we expect those bifurcations to

be susceptible of being detected by the method described in this

manuscript.

4.6.3 Parameters for Phillips-Robinson model

The parameters used in equation (4.8) are the same as in (Phillips

and Robinson (2007)), with the exception of νvc, that decreases

linearly from 6.3 mV to 0 mV along the period of 90 days. The time

units have been changed to hours. The dynamics of the model are

summarized in figure 4.8. A usable implementation of this model (in

R) can be found at https://github.com/PabRod/sleepR.

Symbol Value Units

τm 10/3600 h

τv 10/3600 h

χ 10.8 h

νvm 1.9/3600 mV · h
νmv 1.9/3600 mV · h
νvh 0.19 mV · nM−1

µ 10−3 nM · h
νvc 6.3− 0 mV

νmaS(Va0) 1 mV

Qmax 100 · 3600 h−1
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Symbol Value Units

θ 10 mV

σ 3 mV

ω 2π/24 h−1

α 0 1 4
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Figure 4.8: Schematic summary of the dynamics of the Phillips-

Robinson model. The light blue nodes represent the system’s states

(Vv the activity of the ventrolateral preoptic area, Vm the activity of

the mono aminergic group and H the homeostatic pressure). The

pink nodes represent the external sources (C(t), the astronomical

light/dark forcing, and Va0, the acetylcholine group constant influ-

ence). The positive effects are coded as green arrows. Negative ones

as red arrows. Blue arrows represent oscillating effects.
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In this last chapter I briefly reflect on the potential and limita-

tions of the results presented in this thesis. Subsequently, I reflect

on some of the challenges of trans-disciplinary work that I expe-

rienced linking physics and biology for the work presented in this

thesis.

5.1 Main conclusions and their main

limitations

5.1.1 Neutrality and chaos are not independent drivers

of diversity

In chapter 2 we found that competition close to neutrality sig-

nificantly increases the chances of non-equilibrium long-term be-

haviour. We also showed that the non-equilibrium dynamics of

those simulated ecosystems were correlated with a higher biodiver-

sity. This result adds some new arguments to the long-term eco-

logical question: why are there so many species of plankton while

there seem to be so few niches? (Hutchinson, 1961). Particularly, it

provides a link between two hypotheses usually presented as inde-

pendent: Hubbell’s theory of neutrality (Hubbell, 2003) and the hy-

potheses of non-equilibrium (Armstrong and McGehee, 1980). I ar-

gue that perhaps those are indeed two sides of the same coin.

The results of chapter 2 are based on the numerical analysis of a

theoretical model. As in most models in mathematical biology, we

cannot expect a high descriptive accuracy. They can only serve as a

hypothesis that may be tested in experiments. Hopefully our work

will inspire such experiments, but we are not optimistic about their
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feasibility. A direct experimental confirmation of our results would

be enormously challenging, as it is very difficult to show chaos in

experimental data. For instance Benincà et al. (2008) needed data

of an 8 year experiment to demonstrate that the populations in

a chemostat had chaotic dynamics. To test our hypothesis would

additionally require not only many replicates of such expensive ex-

periments, but also a manipulation of the competition strengths

between species. Despite the near-impossibility of performing such

experimental tests, I feel that our modelling exercise may help see-

ing the relationship between two important, but previously uncon-

nected mechanistic explanations of biodiversity.

5.1.2 Stability landscapes can rarely be accurate

Chapter 3 is an example of interdisciplinary interaction. Stability

landscapes, a visual tool very popular in stem cell research (Gilbert,

1991) and other subfields of biological and social sciences (Beisner

et al., 2003), are strongly based in the physical concept of scalar

potential. We noticed that stability landscapes are surrounded by

a lot of confusion and misuse in interdisciplinary research commu-

nities.

Stability landscapes have the virtue of simplifying the explanation

of several advanced concepts in dynamical systems theory, such as

multistability, resilience or tipping point (see for instance Scheffer

et al. (2001)). But they also have an important limitation: they

can only be defined for a family of dynamical systems known as gra-

dient (Marsden and Tromba, 2003). In chapter 3 we do not only

explain the limitations of stability landscapes, but we also provide

an algorithm to create approximated potentials for systems that

are weakly and/or locally non-gradient. As the mathematical tools

5
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involved are relatively advanced for non-mathematical audiences, a

great amount of energy was invested in the readability and usability

of the paper. An analogy with art was used to provide an intuitive

illustration of the fundamental problem: the fact that sometimes

stability landscapes cannot be defined.

Not our method, nor any other can derive a stability landscape if

the system is strongly non-gradient. Software engineering protocols

were used to develop and publish a fully working software package,

in order to reach those users more interested in a solution than in

the internal details. We made sure that the output always contains

an error map, to explicitly address if and where the resulting sta-

bility landscape is reliable and, hopefully, avoid future confusion.

This new approach may enlarge the realm of situations in which

approximate stability landscapes can be produced. Nonetheless, I

realize that it may remain challenging for most biologists to see

the fundamental limitations of applying stability landscapes. This

may not be a problem as long as the approach is loosely used as a

heuristic only.

5.1.3 Resilience of synchronized states may be de-

tected

In chapter 4 we addressed the question of assessing the resilience

of biological periodically forced systems, with respect to sudden

loss of synchronization. By describing this problem in an abstract

mathematical way (Kuramoto, 1975) we show that there is likely

a fold bifurcation involved, but only when we consider the phase

difference between the forcing and the cycle. We deliberately chose

a very abstract model (Kuramoto, 1975) not only for pedagogical

reasons, but also for deriving the most general indicators possible.
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Resilience analysis (Dakos et al., 2009), particularly detection of

critical slowing down, was used to derive two dynamical indica-

tors for loss of resilience (DIORs) and to find them in simulated

data. The generality of our method is justified by geometrical con-

siderations. In order to check that our indicators work, we tested

them against time series simulated using models from sleep science

(Strogatz, 1987; Phillips and Robinson, 2007).

In addition to the fundamental requirements for detection of critical

slowing down (Dakos et al., 2015) (such as having not too sudden

changes in external conditions), the application of these indicators

of resilience will require a long-term high quality data time series.

The blooming wearable and remote sensing industries, particularly

for medical and veterinary applications, are a possible source of data

that we look at with great optimism. Unfortunately, not all fields of

biosciences where synchronization seems to play a role are so lucky.

Synchronization with seasons in plankton dynamics (Vandermeer

et al., 2001), for instance, may be more challenging to study with

the tools presented in chapter 4 due to the difficulty of collecting

enough data points.

Even with these practical challenges, we consider chapter 4 a first

step in the detection of early warning signals for desynchroniza-

tion. Provided several conditions, such as insomnia or arrhythmia,

are related with abnormal synchronization of physiological rhythms,

our results may have a potentially important impact in health sci-

ences.

I now turn to a series of more general reflections on the link be-

tween the different branches of science and engineering that I have

encountered during the work presented in this thesis.

5
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5.2 What can biology and physics learn

from each other?

Maybe surprisingly, the seemingly distant scientific fields of physics

and biology have many similarities. This is due to the most re-

markable feature of mathematical knowledge: the power of ab-

straction. The underlying mathematical descriptions of apparently

disconnected phenomena are often similar, and sometimes even ex-

actly the same. The models used to pose and address questions

in population dynamics (such as the one in chapter 2) are in-

deed quite similar to the ones used in chemical kinetics. Another

example shown in this thesis is the problem of defining stability

landscapes for multistate systems (addressed in chapter 3). In

this case, the analysis is not only similar but the very same as a

classical vector analysis problem known since the 19th century, that

of the Helmholtz decomposition. A significant part of chapter 3 is,

indeed, a translation of Helmholtz’s old ideas to multidisciplinary

language.

Of course, there are also large differences between physics and bi-

ology. Maybe unexpectedly, dealing with biological models is often

harder than with those from physics. This is a straightforward

consequence of the higher complexity of biological systems when

compared with most physical ones. For instance, even the simplest

biological models show non-linear behaviour. This makes their res-

olution and analysis particularly challenging, and also gives rise to

interesting phenomena such as limit cycles and chaos.

More importantly, most physical models are derived from a bunch of

simple first principles known to be extremely accurate (such as New-

ton’s laws of motion or Maxwell’s equations for electromagnetism)
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while biological ones cannot afford that luxury (there is no such a

thing as Newton’s laws of population dynamics). In other words:

while most physical models are mechanistic, most biological ones

are phenomenological (Edelstein-Keshet, 2005; Murray, 2002). The

evolution from the Malthusian growth equation (Malthus, 1798;

Bacaër, 2011) to the logistic growth one (Verhulst, 1838; Bacaër,

2011) is a good example of this phenomenological approach. The

Malthusian growth model predicts unlimited population growth,

something obviously not happening in nature. The logistic growth

just adds an upper limit to the population, known as the carrying

capacity, in the simplest mathematical manner: a linear decay in

the growth rate with increasing biomass. Indeed different shapes of

the decay curve in the growth rate may give better results in some

populations, but the linear decay of the logistic growth often fits

remarkably well (as seen in Driever et al. (2005)). As a side effect of

this phenomenological character, the expected predictive power of

a biological model is on average much lower than that of a physical

one (Edelstein-Keshet, 2005; Murray, 2002).

None of the above means that biological or other phenomenologi-

cal models are useless. Even an inaccurate biological model offers

us new ways to think about biological phenomena. An example is

the Kuramoto sleep-wake model (Strogatz, 1987) used in chapter

4. This model was built paying attention only to qualitative, gross

properties of synchronized systems, and thus we cannot expect it

to be highly accurate for specific cases. We show that this lack

of accuracy can become an advantage: the model can be used as

an approximation of any system with the same qualitative proper-

ties, that is, to a huge variety of different phenomena. Geometri-

cal considerations also allow us to understand why the conclusions

derived from this inaccurate model are expected to remain true
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under very general circumstances, providing a formal theoretical

basement.

When it comes to modelling, physicists have a powerful trait: they

are used to follow a very structured bottom-up approach in problem

solving. This is a consequence of the abundance of first principles

in physics, without whom a bottom-up approach is just unfeasi-

ble. Two of the positive side effects of this trait are the increase of

confidence and the improvement of the generalization capacity (in

the sense of applying abstract concepts to apparently disconnected

problems). Confidence is built each time the physicist solves a prob-

lem with the only help of a handful of first principles and a piece

of paper. The generalization capacity is trained when the physicist

solves several problems using the same first principle. Both together

create the illusory feeling that any question can be solved with a

small set of rules and a pocket calculator. This is of course danger-

ous and frustrating when the approach is not feasible anymore, as

often happens with biological and other complex problems.

On the other hand, biologists are permanently exposed to the full

complexity of their object of study: life. As a consequence, they are

not scared at all by complex models. Biologists don’t hesitate to use

ambitious approaches in their models, combining all kind of inputs

and interactions. Agent based models, that often require advanced

calibration and validation methods to be parameterized are per-

haps the most eloquent example (see for instance Grimm (2005)).

Physicists, more used to neat, short and relatively simple models

(they even use the words “elegant” and “beautiful”), tend to feel

uncomfortable with such complex models. As nature is complex,

the advantages of this trait biologists excel at are obvious. There

are, nevertheless, a few disadvantages. The fact that almost no bi-

ological model can be solved with pen and paper usually invites the
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biologist to rely too much on his/her computer, and increases the

temptation of using third party methods and models as black boxes.

Additionally, as a consequence of the lack of exposure to “elegant”

models, most biologists may not pay much attention to the nota-

tion and readability of their equations (Edwards and Auger-Méthé,

2019). In some cases there is even no standard way to write down

the model using mathematical notation (Grimm et al., 2006) but,

as we’ll see in subsection 5.3, tools such as literate programming

represent a practical and natural alternative.

More exposure to complex problems from biology could help physi-

cists to not forget how hard understanding nature can be as soon

as one leaves the textbook examples. Conversely, more exposure to

solvable problems from physics could increase biologists’ apprecia-

tion of the power of abstract thinking and also improve the clarity

of their explanations.

5.3 What can researchers learn from

software engineering?

Most scientists make extensively use of computers in their research,

and that is certainly the case for modelling studies such as this

thesis. They often use self-made software or research scripts. Fur-

thermore, there is an increasing concern about reproducibility of

scientific results. At the same time software engineers have created

various tools for developing their complex software in a more con-

sistent way. For this reason, I plea for an integrated approach for

writing scientific papers, combined with the data and software that

may recreate the results.

5
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Indeed, the standard of form of communication in science, the scien-

tific paper, is also rather complex. This is true not only because the

contents are complex: a scientific paper is complex from the point

of view of information management. A scientific publication can be

loosely defined as a piece of encapsulated information. It should be

internally and externally consistent, convincing, reproducible and

properly written. To make things even more complicated, scien-

tific publications are usually written by a team of authors and have

several versions in time.

Due to my experience in software engineering I noticed similari-

ties between scientific writing and software development (see also

Marwick et al. (2018)). Software is also a piece of encapsulated in-

formation that must fulfill similar requirements to those of scientific

papers (see table below).

Software Scientific paper

Consistent Consistent

Working Convincing and reproducible

Properly written and documented Properly written

References and dependencies References

Written by a team Written by a team

Of course, there are also differences. For instance, due to code being

less flexible than human language, consistency is harder to attain

in code than in text. A minor typo on a paper, that in the worst

case will make a reviewer raise her or his eyebrow, usually triggers

a serious error when happens on a piece of code (or even worse: it

doesn’t trigger any and remains unnoticed). Software developers

are very much aware of how hard to attain the list of requirements
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in the table is, and they developed methods and protocols to deal

with this set of problems, identified under the umbrella term of

best practices (Wilson et al., 2014). These methods can be easily

adapted to the scientific profession. Three of them are worth being

explicitly mentioned in the context of this thesis:

Version control systems (VCS) record and store changes in

the files contained in a project folder. Different “snapshots” can

thus be stored. This is done manually, and each “snapshot” or

version receives a meaningful name and description. This allows to

compare and recover versions corresponding to different stages in

time.

The most popular version control system nowadays is git. It pro-

vides integration with GitHub, a server that facilitates project dis-

covery, coauthoring and publishing of projects.

Unit testing (UT) consists in writing and storing scripts that

check the integrity of each component of a piece of software. In the

case of scientific software, the battery of tests must check that each

function written or used by the researcher produces the expected

output when fed with a known input. This increases the robustness

of the produced code, serves as additional documentation about the

purpose of each function and makes error spotting in future editions

(either by the same author or a coauthor) much easier.

Unit testing engines usually depend on the programming language

used in the project. In chapter 2 we used Matlab’s script-based

unit testing. In chapter 3 we used the R package testthat. In

chapter 4 we used Python’s pytest.

5
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Literate programming (LP) tools use a combination of code

and enriched text to produce a human-readable output. Most of

this thesis has been written using RMarkdown, a format that com-

bines enriched text with chunks of code. The R package knitr

executes and exports these RMarkdown files to different human-

readable formats such as html, doc or LATEX.

LP is becoming progressively more popular for scientific writing, to

the point that certain packages, such as rticles, automatically adapt

the output to the requirements of different journals and conferences.

The main reason for this popularity is the increasing concern about

reproducibility of scientific results. While traditional papers are

static descriptions of what the researcher has done, LP documents

are living documents that not only describe, but actually perform

the described operations.

Synergies

All the scientific research contained in this thesis has been struc-

tured in the form of a software engineering project. Code, text and

figures have been managed together through a VCS, adding UT

to check the consistency of our analyses. The code corresponding

to all chapters has been registered via Zenodo in order to ensure

permanent public access to the exact version used, a prerequisite

to reproducibility. With no exception, each of our results can be

reproduced with a single click. In chapters 3 and 4 we took the

parallelism between software and science writing even further: both

chapters were written in the form of standard software packages

(in R and Python, respectively), ready to be reused. The papers

have been written using LP with calls to the packages themselves,

in order to ensure reproducibility and robustness. This form of
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publication, known as research compendium (Nüst et al., 2018), is

increasingly gaining popularity.

The results couldn’t have been more satisfactory. Some obvious

advantages of this way of working are that our results are easily

reproducible, and that our methods are ready to be found, used,

adapted and even expanded by interested enough readers. More

unexpected advantages were also found from the point of view of

psychological well-being. The joint management of code and text

using LP, together with the standardized folder structure of a soft-

ware package and the use of a VCS kept the working environment

remarkably tidy. The extensive use of UT also increased the consis-

tency of the work and allowed for quick error spotting, making the

anxiety produced by code crashes disappear completely. Follow-

ing the classical, very structured software development workflow

recommended by VCS (write, test, commit) naturally structured

the author’s everyday tasks in small, measurable steps, generat-

ing a rewarding feeling of daily progress. Additionally, VCS served

naturally and effortlessly as a lab journal, being particularly help-

ful to gain momentum after having left a project aside for some

time.

These methods and concepts are slowly finding their place in edu-

cational syllabi, often through the figure of Data Competence Cen-

ters. The increasing access to cheap computational power and the

growing need of reproducible data analysis are making information

literacy skills a must-have in any scientific discipline.

5
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5.4 How can we improve the commu-

nication between mathematics and

life sciences?

Mathematics is often perceived as a harsh subject both by scientific

and non-scientific professionals. On the other hand, regardless of

our personal preferences, mathematics are used in almost every field

of knowledge and are must-have in any multidisciplinary project.

The present thesis, written under the auspices of a consortium

formed by mathematicians, physicists, biologists and economists, is

an example. Such an environment represented the perfect ecosys-

tem for experiencing multidisciplinarity, with both its advantages

and difficulties.

Different disciplines have associated not only a set of background

knowledge and methods, but a whole academic culture. When

crossing the borders between disciplines, facts and methods can

be learned, but accepting and adapting to another culture is much

harder.

As with any other culture, mathematicians and biologists differ

slightly in language, values, norms and interests. As usually hap-

pens in intercultural communication, there is plenty of opportunity

for misunderstandings, and each subgroup cultivates myths and

misconceptions about the other.

In the rest of this section, I will offer some advice for both biologists

and mathematicians (understood here as mathematically oriented

professionals, including physicists and engineers) interested in ex-

ploring “the other side”.
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Advice for biologists working with mathematicians

Invest in applied mathematics

Applied mathematics doesn’t mean easy mathematics. The adjec-

tive “applied” or “pure”, accompanying the word “mathematics”,

tells us something about the object under study, but nothing about

its difficulty. Indeed, the mathematical tool will be as complex as

the object under study is.

It may be frustrating to learn that, for instance, it is required to get

familiar with second order tensors (a particularly hard tool rooted

in differential geometry) in order to understand fluid dynamics.

Mathematicians don’t introduce this tool to torture the newcom-

ers, but because tensors are the easiest available tool to study a

complex phenomenon that cannot be avoided in the study of flu-

ids: deformation. The difficulty is provided by the problem under

study, not by the tool used to solve it.

This thesis contains some advanced mathematical concepts appear-

ing more or less naturally in biological problems. The concepts of

attractor and deterministic chaos appear in chapter 2, even after

having built our model with very simple assumptions. The gradi-

ent theorem is the core of the misunderstanding around stability

landscapes described in chapter 3. The concepts of fold bifurca-

tion and critical slowing down are key for deriving the indicators

for desynchronization in biological systems studied in chapter 4,

and the generalization of our method is proved using continuity

theorems.
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Equations and rigor are not torture instruments

It is known that the mere sight of an equation can create anxiety.

Even the physicist Stephen Hawking, in the preface of his best seller

“A brief history of time” (Hawking, 1998), claims that each printed

equation divides the potential audience by two.

Whether we like them or not, equations are often the best way

to share complex information in a compact and practical manner.

Invest time in learning how to read them. Rigorous and detailed

analyses are often required, as some details can escape intuition.

A good example is the calculation of 2 dimensional stability land-

scapes. Intuitivelly one may think that expanding the tool from 1 to

2 dimensions should be straightforward, but as we saw in chapter

3 this is far from true.

Be also aware that the same equation can be written in different

ways. Even if different ways of writing the same equation are cor-

rect, some of them can be clearer than others. A consistent use of

upper and lower case (for instance, upper for states, lower for pa-

rameters), superscript and subscript, smart use of auxiliary defini-

tions, proper alignment of related equations and other simple rules

can significantly increase the readability of your scientific output

(Edwards and Auger-Méthé, 2019).

Modelling is all about simplifying

Be prepared that the main task of modelling is simplifying as not

all processes can usually be included in a model. This is the main

challenge as here both knowledge of the system and of modelling is

needed. In the design phase of a model lots of exchange is needed
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between the biologists and the mathematicians. This may come

as a surprise, but most mathematicians feel overwhelmed by biol-

ogists’ talk. Biologists tend to provide too much information for

them.

When communicating to mathematicians, focus more on the ideas

than on the details you would provide for your peers. You can eas-

ily underestimate how difficult your own field is for outsiders. For

instance, the experimental methods can be left out, as mathemati-

cians will just assume that the data has been properly collected.

Try also to think in terms of inputs, processes and outputs.

This exercise of thinking in terms of inputs, processes and outputs

is not only good for interdisciplinary communication, but also for

experimental design and even for structuring a report. This ap-

proach was followed in the present thesis, to the point that the core

of each chapter can be summarized in a flow diagram.

Figure 5.1: Dramatic recreation of the first months of a typical

multidisciplinary collaboration. Source: (https://xkcd.com/1831/)
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Advice for mathematicians working with biologists

Make peace with uncertainty

Due to the complexity of the subject of study, it is unrealistic to

expect the same precision from biological models than from physical

ones. Forget all you learned in math/physics/engineering school

about discarding any result with an r2 below 0.99. You are working

with complex systems now. Models just do as good as possible.

Additionally, you’ll have to embrace the fact that most of these

models rarely allow an elegant, analytical approach, and numerical

methods will be required most of the time.

None of the models used in this thesis can be considered very ac-

curate if compared with engineering or physical models. But our

field of study, biological systems, is more unpredictable due to both

practical and fundamental limitations. In the practical side, the dif-

ficulty of collecting biological data (particularly in ecology) makes

almost impossible to even know the initial conditions of a given

system. A more fundamental problem, that couldn’t be resolved

even if we had a magical tool to establish the initial conditions,

is that our models are a strongly simplified description of a com-

plex reality. Nevertheless, despite all these difficulties, qualitative

conclusions can still be drawn from mathematical modelling.

Explain why you do what you do

When explaining a mathematical method, instead of starting with

generic propositions and formal proofs, always explain why it is use-

ful using simple examples. Biologists may quickly loose motivation

if they are not convinced that the used mathematics are somehow
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useful.

A particularly illuminating experience happened to me while teach-

ing matrix multiplication to a group of biology students. The topic

is particularly boring, and most often is just presented as a rule. In

this case, I proceeded differently: I first let the students experience

the need of a compact notation (by making them write down line by

line increasingly larger competition models), and later I explained

why the rule of matrix notation is what it is and how it solves their

need for a compact notation.

Presented this way, the students notice that the mathematical tool

is solving a problem they already have, instead of feeling that it

creates a new one (that of having to learn a new tool). Additionally,

the explanations about why the rule is how it is helps them learn

and remember it.

Proofs are scary

Maybe you think mathematical proofs shouldn’t be scary, but the

fact is that for most biologists they are. A proof is somehow a

journey, a journey from a set of assumptions to a conclusion, and

your collaborators should enjoy the ride too.

Often, proofs can be substituted by a graphical or an intuitive ap-

proach. This substitution may come with some simplification when

affordable, but often can be done without loss. Euclid’s “Elements”,

probably the most influential mathematical book ever written, con-

tains mostly visual proofs. More modern examples can be found in

the collection “Proofs without words” (Nelsen, 1993).

If a proof is really needed, make an effort in explaining the notation
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and all the steps. The quickest way of creating frustration in your

audience is by using the word trivial, so avoid it always. When writ-

ing publications in non-mathematical journals, it is usually a good

idea to write the proofs in an appendix and just state the results as

a fact in the main body. Just like mathematicians feel they cannot

judge experimental methods, most biologists will assume proofs are

correct.

In the present thesis we present an informal proof of the gener-

ality of the results of chapter 4 based exclusively in a graphical

approach. We use an analogy with art in chapter 3 to explain

why some problems lack a stability landscape and, when we ex-

plain the details of the algorithm we introduced, we explicitly ex-

plained the meaning of any mathematical symbol not covered in

high school.

Use visualization as much as possible

Take advantage of humans’ most advanced information acquisition

system: vision. Illustrate your ideas with graphs and figures, or

even movies and animations when applicable. If they are good,

they can even replace an equation.

Visualization has been used all around the present thesis. The

example of chapter 3 is particularly relevant, as the whole story

is built around an analogy with a famous piece of art.



5.5 A mathematician among biologists 129

Advice for both

Get involved in science communication

If you think interdisciplinary communication is hard, just try to

communicate science to a general public. Not only will you notice

that science communication is even harder, but also you will learn a

lot about how to improve your overall communication skills.

Despite science communication is receiving more attention than

ever by universities and other scientific institutions, and although

nowadays there are lots of ways of getting involved with it (from

writing a blog to giving a talk at an event), science communication

is still often perceived as a secondary task and rarely has any impact

in the researcher’s curriculum. Some steps have been performed in

order to change this, such as the introduction of the Altmetrics in-

dex or the inclusion of a contractual obligation to involve in science

communication in certain projects (such as the H2020).

The practice of science communication forces a deep understand-

ing of the topic being communicated. It requires to remove the

unnecessary, to identify what is hard and why and to advance the

audience questions and doubts. It requires, in one word, under-

standing.

5.5 A mathematician among biologists:

invasion or symbiosis?

Any thesis is strongly shaped by the interests, the skills and even

the personality of its author. This one is of course no exception.
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When I began writing it, I was a physicist, working as an engineer

in a technological company, and who was hired as a mathematician

by a group of aquatic ecologists. The question is straightforward:

what is a mathematician doing there?

The symbiosis between mathematics and biology, although may

seem improbable at first sight, is actually backed by a centuries

old tradition of collaboration. It started with mathematicians that

were inspired by biology such as Leonardo Pisano, alias Fibonacci.

His famous sequence (namely: 1, 1, 2, 3, 5, 8, 13, ...), a landmark in

number theory very popular among amateur mathematicians, was

first described in the context of a practical problem on rabbit breed-

ing in such an early date as year 1202 (Bacaër, 2011).

Mathematical knowledge has improved greatly since the 13th cen-

tury. The foundations of the tools used by modern mathematical

biologists, namely, calculus and differential equations, were laid in

the late 17th century by Isaac Newton and Gottfried Leibniz moti-

vated by mechanical problems (Boyer, 1968; Simmons, 1991). The

great mathematician Leonhard Euler and the economist and de-

mographer Thomas R. Malthus, two of the pioneers of using differ-

ential equations to address biological problems, had both printed

their seminal works in population dynamics before the fall of year

1800 (Bacaër, 2011).

This interdisciplinary collaboration between mathematics and biol-

ogy is nowadays alive and in good shape. Some of the most influ-

ential names in ecology in the 20th and 21st century have, indeed,

a background in mathematics (such as Robert MacArthur, Simon

Levin or Alan Hastings) or in physics (such as Robert May).

The opportunity offered by cheap access to computing power, to-

gether with the unavoidable increase of required technical skills
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such as programming, data analysis and advanced statistical meth-

ods, points to a future were the technical profiles expected from

a research team in biology will not be so different to those of a

team of physicists or applied mathematicians. It is reasonable to

expect that this symbiosis between mathematicians and biologists

will remain strong, and even get stronger, in the near future.
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V., Ives, A. R., Kéfi, S., Livina, V., Seekell, D. A., van Nes, E. H.,

and Scheffer, M. (2012). Methods for detecting early warnings

of critical transitions in time series illustrated using simulated

ecological data. PloS one, 7(7):e41010.

Dakos, V., Carpenter, S. R., van Nes, E. H., and Scheffer, M. (2015).

Resilience indicators: Prospects and limitations for early warn-

ings of regime shifts. Philosophical Transactions of the Royal

Society B: Biological Sciences, 370(1659):1–10.

d’Ortous de Mairan, J.-J. (1729). Observation botanique. Histoire



References 135

de l’Academie Royale des Sciences, 31:35–36.

Doveri, F., Scheffer, M., Rinaldi, S., Muratori, S., and Kuznetsov,

Y. (1993). Seasonality and Chaos in a Plankton Fish Model.

Theoretical Population Biology, 43(2):159–183.

Driever, S. M., van Nes, E. H., and Roijackers, R. M. (2005).

Growth limitation of Lemna minor due to high plant density.

Aquatic Botany, 81(3):245–251.

Edelstein-Keshet, L. (2005). Mathematical Models in Biology. So-

ciety for Industrial and Applied Mathematics.
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Summary

Cyclic phenomena in biology are enormously varied. The periods

of biological cycles range from years, such as those of oscillating

plankton populations, to less than a second, such as those of neu-

ron firing. Despite those differences, the mathematical analysis of

apparently disparate biological cycles can often be very similar. In

chapter 1 I present the mathematical tools and ideas used along

this thesis, together with the different biological problems I applied

them to.

In chapter 2 we address a classical problem of ecology, that of

the paradox of the plankton. Particularly, we show that there is

a link between two of the proposed hypotheses out of the para-

dox, that of super-saturated coexistence due to non-equilibrium

dynamics and Hubbell’s neutral theory. We do this by analyzing

a family of simulated ecosystems with two trophic levels, we show

that near-neutrality of competition at the prey’s level, in the pres-

ence of interactions with natural enemies, increases the chances of

developing chaotic or cyclic dynamics. Additionally, we measured

a correlation between the chances of developing chaotic dynamics

and an increase in biodiversity.

In biological literature the potential, a concept from physics, is com-



monly used to explain the stability properties of dynamical systems.

In biology potentials are commonly called stability landscapes,

marble-in-a-cup diagrams or Waddington’s landscapes. They have

proven to be particularly useful to communicate complicated con-

cepts from dynamical systems theory to non-expert audiences, such

as bifurcation, basin of attraction or hysteresis. These diagrams

work well in one-dimensional systems where the state is described

by a single variable. Unfortunately, when we try to use these pic-

tures for systems with two or more state variables we find a critical

limitation: potentials cannot exist unless the system verifies certain

constrains. This limitation rules out most multidimensional biolog-

ical systems, and is particularly problematic in systems with cyclic

dynamics and/or in systems with asymmetric interactions, a com-

mon situation in ecological models. In chapter 3 we explain the

reason why a potential may fail to exist without using heavy math-

ematical weaponry. We found a pedagogical analogy in the world of

art, particularly in M.C. Escher’s paintings of impossible objects.

As a partial solution to the problem, we introduced a simple and

efficient algorithm that takes into account the abovementioned lim-

itations, providing the best quasi-potential candidate plus an error

map indicating the regions of the phase space where it is safe to

use it.

Biological phenomena so diverse as heartbeat, sleep or menstrua-

tion have a common characteristic: they all have the capacity of

synchronizing to a rhythm imposed externally. Often this capac-

ity is of paramount importance, and a lack of it can translate into

disease or malfunctioning. Different conditions such as epilepsy, in-

somnia or arrhythmia are clearly related with a failure in synchro-

nization. A straightforward biological question is: can we forecast

transitions between synchronized and desynchronized states in a bio-



logical system? In chapter 4 we developed forecasting methods for

this kind of transitions. Particularly, we show that after an appro-

priate coordinate transformation, we can expect the phenomenon

of critical slowing down to take place. Our method is complex,

cannot predict too sudden regime shifts, and requires high-quality

time series. Despite these limitations, we are optimistic about its

potential. Particularly, we are looking at the growth in popularity

of the health-monitoring wearables with great optimism.

In chapter 5 I reflect on the results presented in this thesis and,

inevitably, their limitations. In addition, I reflect on my experi-

ences in this endeavor of multidisciplinary research, and highlight

some of the challenges of communication and the role of software

in science.
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• Rodŕıguez-Sánchez, P. (2018). PabRod/Chaos-and-

neutrality: Analysis script for ”Neutral competition boosts

chaos in food webs”. 10.5281/zenodo.1319590
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The SENSE Research School declares that Pablo Rodríguez-Sánchez has successfully fulfilled 
all requirements of the educational PhD programme of SENSE with a  

work load of 65.8 EC, including the following activities: 
 
SENSE PhD Courses 

o Environmental research in context (2016) 
o A2: ‘Outreach article: mappingignorance.org/2016/05/09/the-sound-of-chaos’ (2016) 

 
Other PhD and Advanced MSc Courses 

o Scientific publishing, Wageningen Graduate Schools (2016) 
o Dynamics Days 2016, National Technical University of Athens (2016) 
o High Performance and Advanced High Performance Cluster course (2017) 
o CRITICS schools and workshops (2016-2018)  
o From working code to software package, University Utrecht, The Netherlands (2019) 
 
External training at a foreign research institute 

o CERES summer school, École Normale Supérieure, France (2016) 
o GeoGebra Global Gathering, Johannes Kepler University, Austria (2017) 
o Mathematics and industry, Imperial College London, United Kingdom (2018) 
 
Selection of Management and Didactic Skills Training 

o Teaching in PhD seminars ‘Crash course on linear algebra’ (2016), ‘An introduction to 
Unit Testing with Matlab’ (2017), ‘ An introduction to Git and GitHub’ (2017) and ‘Quick 
introduction to partial differential equations’ (2018) 

o Teaching in three MSc courses ‘Ecology, classic and trends’ (2016), ‘Theoretical ecology’ 
(2017), ‘Practical aquatic ecology and water management’ (2018) 

o Activities and promotion coordinator at Marie Curie Alumni Association (2016-2017) 
o Organization of the CRITICS spring workshop and school 2017 
 
Selection of Oral Presentations 

o Competition, diversity and the benefits of chaos. Innovations and applications. 
Mathematics and industry. Jul 12th 2018. Imperial College London, United Kingdom.  

o Neutral competition and chaos, an example of reproducible research. CRITICS Summer 
workshop. Aug 29th 2018. University College Cork. Ireland. 

 
Other societal impact 

o Published 47 blog entries about science (full list at pabrod.github.io)  
o Interviews in newspaper (Vozpópuli, 2015 and 2017) and radio (RNE, 2018 and 2019) 
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