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1.1 Why do we need cross-species extrapolation? 

Chemicals provide substantial benefits to society, but their widespread use in industry, 
agriculture, and homes has led in some cases to pollution of land, water, and air. Since the 
current world population is expected to increase from 7.7 billion people in 2019 to 9.7 billion 
in 2050 (United Nations 2019), we can expect an increase in the impact of chemicals on natural 
ecosystems, unless we manage to reduce the adverse effects associated with these chemicals. 
The adaptation of precautionary approaches to identify the risks of hazardous chemicals in the 
environment is a requirement when we want to avoid an adverse impact of chemicals on the 
ecosystems surrounding us. However, traditional risk assessments lack mechanistic insight, rely 
on in vivo exposure, and apply arbitrary assessment factors to assess chemical safety (Brock, 
Arts et al. 2006). Greater mechanistic insights and the application of a systems-based approach 
can be achieved by the development and use of predictive models. Such models would enable 
risk assessors to extrapolate from laboratory studies on single organisms to assemblages in the 
field. In addition, such insights could help to identify environmental hazards earlier in chemical 
development, predict potential impacts of chemicals on specific taxonomic groups and assess 
interactions with other stressors on ecosystem function and ecosystem services. Therefore, this 
thesis focuses on developing and applying predictive methodologies for the extrapolation of 
chemical sensitivity across species. 

An environmental risk assessment (ERA) is used to obtain insight into the potential effects of 
a chemical on an ecosystem, and traditionally entails two different phases, the exposure and the 
effect assessment. The exposure assessment, when applied in the prospective risk assessment 
of chemicals required before market authorization, depends on chemical concentration 
dynamics calculated for different environmental compartments (e.g. soil, water, sediments) 
using mathematical models. When applied in the retrospective risk assessment of chemicals, 
aimed to identify the causes of adverse effects that have already occurred, the exposure 
assessment can be based on measured concentrations. Eventually, the exposure assessment 
results in a predicted environmental concentration (PEC). In the effect assessment, a regulatory 
acceptable concentration is determined. This acceptable concentration depends on which effects 
on organisms, populations, or ecosystems functions or services are tolerated under the 
protection goals at force under the legal framework (e.g. the Water Framework Directive, 
European Commission 2000). This regulatory acceptable concentration is, for aquatic 
ecosystems, traditionally based on effects found for the organism groups: algae, fish and 
invertebrates, and results in a predicted no-effect concentration (PNEC, Brock, Arts et al. 2006). 
The ratio between the PEC and the PNEC is then combined with an assessment factor to account 
for extrapolation from the field to the lab, from one to many species (including interactions), 
and from short- to long-term exposure, to result in the risk quotient. This risk quotient then 
forms the foundation of chemical management decisions.  
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This traditional ERA approach remains rather general, as it results in one value that is then 
applied to any system, anywhere, anytime, and thereby ignores differences in the sensitivity of 
species over space and time. However, since it is impossible to experimentally determine the 
sensitivity of all the species present in any ecosystem to all chemicals to which they can possibly 
be exposed and under all environmental conditions they might be exposed under, we rely on 
cross-species extrapolation of chemical sensitivity. To do this, however, requires on the one 
hand a mechanistic understanding of what determines sensitivity, and on the other hand an 
understanding of which factors contribute to the different chemical response of one species 
compared to another. 

Concerning the mechanistic understanding of sensitivity, a large branch of ecotoxicological 
research has investigated the mechanisms through which chemicals cause damage at a cellular 
level. This led to the description of so-called modes or mechanisms of action (e.g. Escher and 
Hermens 2002, Enoch, Hewitt et al. 2008). These modes of action classify chemicals according 
to the mechanisms through which they cause a molecular response that eventually results in 
damage at a cellular level (Escher and Hermens 2002). The advantage of these modes of action 
is that these mechanisms are often conserved over large taxonomic groups. This makes them 
perfect to study differences in species sensitivity, because if the mechanism of toxicity is the 
same, then what causes the differences in the response of multiple species?  

This brings us to the second aspect, focusing on which factors help to discriminate one species 
from another in their response to a chemical stressor. For this, a logic start is to describe what 
makes one species different from another species. At the most basic biological level, species 
differ from each other in their DNA. Studies at this level have shown that the simple presence 
or absence of the molecular target of the chemical determines that one species is susceptible to 
a chemical, whilst another is not (e.g. Kim and Lee 2013). Of course, more complex 
mechanisms complicate effect processes occurring at this level, for instance, the existence of 
orthologs, homologs and analogues (Moreno-Hagelsieb and Latimer 2007). Nevertheless, the 
sequence similarity of a known molecular target and its orthologs can be used to determine if 
and to which extent a species is potentially sensitive towards a chemical (LaLone, Villeneuve 
et al. 2013). These more complex and accurate pathways of how  molecular responses to 
chemical stress result in effects at the individual level were researched in great detail for several 
model species (i.e. adverse outcome pathways, Ankley, Bennett et al. 2010). However, for most 
species, these pathways remain unknown, and we rely on simple mode of action classifications 
for information on the mechanism of toxicity. 

As we know from nature, even very closely related species with a very similar genome, can 
look very different. Consider the difference in the appearances of a chimpanzee and a human, 
with a staggering amount of 95% similarity in our genomes (Britten 2002). Therefore, what 
else characterizes one species from another? The answer to that question is their traits. A trait 
is a phenotypic or ecological character of an organism at individual or population level, and 
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describes the physical characteristics, ecological niche and functional role of a species within 
the ecosystem (Baird, Rubach et al. 2008). Trait-based approaches have long been included in 
bioassessment approaches (most famously, in the River Continuum Concept, Vannote, 
Minshall et al. 1980), adding mechanistic and diagnostic knowledge to species occurrence 
patterns found in the field (well-explained in Culp, Armanini et al. 2011). In the last decade, 
trait-based approaches have also been introduced in ecotoxicology (Baird, Rubach et al. 2008), 
due to the growing realization that a solely taxonomic approach can limit our understanding of 
how a system responds to stress. They have proven that the use of traits can improve our 
understanding of stress responses, and may help to facilitate the prediction of chemical stress 
(Rubach, Baird et al. 2012).  

As described so far in this chapter, effects occur at sub-cellular level, whilst most measurements 
of species sensitivity occur at the level of the whole individual (e.g. by a measure of reduced 
fitness i.e. higher mortality rate, lower reproduction rate). So how can we make these two 
worlds meet? In the approaches revealed in this thesis, we combine mechanistic information on 
chemical toxicity with ecological knowledge at the individual and community scale, in order to 
make a case for a more regional, fit-for-purpose ERA.  

1.2 Objectives 

The overall aim of this thesis is to support the development of models describing species 
sensitivity towards chemical stressors. This includes unravelling decisions that might be of 
importance in the modelling process, obtaining a better mechanistic understanding of 
differences in species sensitivity, and providing recommendations for applying modelling 
approaches within or across different taxonomic groups in freshwater ecosystems all over the 
world.  

To accomplish this global applicability, this thesis primarily focuses on the use of trait-based 
approaches. Besides that traits add mechanistic and diagnostic knowledge (Rubach, Ashauer et 
al. 2011), they have additional advantages in that they are transferable across geographies 
(Usseglio‐Polatera, Bournaud et al. 2000, Bellwood, Wainwright et al. 2002, Van den Brink, 
Alexander et al. 2011), and can be easily translated from taxonomic analyses priory preformed 
(Van den Brink, Alexander et al. 2011). However, besides using trait-based approaches solely, 
we also studied the potential of hybrid approaches in which traits are combined with other 
predictors (e.g. relatedness). Finally, we explored the use of alternative descriptors of 
sensitivity. 

1.3 Thesis outline 

In Chapter 2, we report about a new predictive modelling approach for potential use in 
environmental risk assessment (ERA). This new approach constructs macroinvertebrate 
sensitivity rankings, and subsequently, predictive trait-based models for a set of pre-defined 
modes of action. Each model reveals interesting taxonomic patterns of species sensitivity, as 
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well as an accurate picture of which species-chemical combinations still lack sufficient data. 
Additionally, we demonstrate that there is not one (set of) species which is most sensitive to all 
chemicals.  

In Chapter 3, we develop the models of Chapter 2 into hybrid models by the addition of 
taxonomic relatedness. Subsequently, we apply the models at two different spatial scales, 
continental and national, revealing spatial patterns in species sensitivity towards chemical 
stressors. We conduct the first trait-based chemical sensitivity assessment of freshwater 
macroinvertebrate assemblages, and test the influence of spatial scale on sensitivity patterns. 
Finally, we provide important insights and recommendations for the improved application of 
the developed method to invertebrates, an organism group which remains underrepresented in 
global conservation priorities.  

Chapter 4 proves that the use of a more mechanistic description of sensitivity improves the 
predictive power of cross-species extrapolation models. We demonstrate this using the 
quantitative mechanistic toxicokinetic (TK)- toxicodynamic (TD) models of the General 
Unified Threshold models of Survival (GUTS) framework. These models link external 
exposure and survival effects by describing dynamically the process of TK (uptake, 
biotransformation, and elimination) and TD (damage/hazard, internal recovery and thresholds). 
We aim to predict these TKTD parameters using species traits, and that traits-predicted TKTD 
parameters can subsequently be used to predict classical sensitivity endpoints such as LC50. 

Chapter 5 gives an overview of currently existing cross-species extrapolation methods, 
dividing them into descriptive groups, and provides an overview of the trade-offs that exist 
between them. We also give advice on crucial modelling decisions, and demonstrate that these 
decisions are highly dependent on the taxonomic group and the mode of action of the chemical 
under study. 

Finally, Chapter 6 provides a synthesis and general discussion, summarizing all important 
findings of this thesis, and puts them in a broader perspective. The final chapter also provides 
recommendations for the incorporation of cross-species extrapolation models into a prospective 
ERA framework. 
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Abstract 

In this study, a trait-based macroinvertebrate sensitivity modelling tool is presented that 
provides two main outcomes: (1) it constructs a macroinvertebrate sensitivity ranking and, 
subsequently, a predictive trait model for each one of a diverse set of pre-defined Modes of 
Action (MOAs) and (2) it reveals data gaps and restrictions, helping with the direction of future 
research. Besides revealing taxonomic patterns of species sensitivity, we find that there was not 
one genus, family or class which was most sensitive to all MOAs, and that common test taxa 
were often not the most sensitive at all. Traits like life cycle duration and feeding mode were 
identified as important in explaining species sensitivity. For 71% of the species, no or 
incomplete traits data were available, making the lack of trait data the main obstacle in model 
construction. Research focus should therefore be on completing trait databases, and enhancing 
them with finer morphological traits, focusing on the toxicodynamics of the chemical (e.g. 
target site distribution). Further improved sensitivity models can help with the creation of 
ecological scenarios by predicting the sensitivity of untested species. Through this 
development, our approach can help reduce animal testing and contribute towards a new 
predictive ecotoxicology framework. 

This chapter is based on the paper: Sanne J. P. van den Berg, Hans Baveco, Emma Butler, 
Frederik De Laender, Andreas Focks, Antonio Franco, Cecilie Rendal, Paul J. Van den Brink 
(2019). Modelling the sensitivity of aquatic macroinvertebrates to chemicals using traits. 
Environmental Science and Technology, 53 (10), 6025-6034.  
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2.1 Introduction 

In the environmental risk assessment (ERA) of chemicals it is essential to determine the 
environmental threshold concentration below which ecosystem structure and functioning 
experience no adverse impacts. In order to set this threshold, a key challenge in ERA remains 
the extrapolation of effects of toxicants found for a limited number of standard test species to 
many additional species. Ecosystems are generally populated by hundreds to thousands of 
species, and each species has the potential to show a different sensitivity towards one of the 
hundreds or even thousands of different chemical compounds that can be present in our 
ecosystems (Guénard, Ohe et al. 2011, Guénard, von der Ohe et al. 2014). Experimental testing 
of this innumerable amount of species-chemical combinations, plus any possible 
environmentally realistic mixture of those chemicals, is impossible. We therefore need to 
improve current modelling approaches and make them flexible for application to any 
geographic region and any set of abiotic conditions. 

Traditional approaches trying to incorporate species diversity into risk assessment include the 
application of uncertainty factors (Chapman, Fairbrother et al. 1998) and the fitting of species 
sensitivity distributions (SSDs, Posthuma, Suter II et al. 2001) to available toxicity data. While 
both methods are extensively used (and frequently combined), they are aimed at being 
protective rather than predictive and as such, still maintain large uncertainty due to both a 
limited knowledge of the mechanisms underlying species sensitivity and a lack of taxonomic 
diversity. This lack of taxonomic diversity is especially true for uncertainty factors, but also 
holds for SSDs. Regulatory frameworks require SSDs to contain 10 to 15 species in total 
(Belanger, Barron et al. 2017), but divided over the different organism groups (e.g. fish, 
crustaceans, algae), this results in only 1 or 2 organisms from each organism group, which are 
often comprised out of the same set of standard test species. For the extrapolation across 
chemicals, Quantitative Structure-Activity Relationships (QSARs) are commonly used (Donkin 
2009). QSARs use chemical characteristics to predict the toxicity of many chemicals for a 
certain species. Due to their large demand for experimental toxicity data, however, QSAR-
models are often built only for specific standard test species like Daphnia magna and 
Oncorhynchus mykiss and, therefore, fail to account for the large species diversity of real 
ecosystems. In the last decade, trait-based approaches have been introduced to overcome this 
lack of realism (Baird and Van den Brink 2007, Rubach, Ashauer et al. 2011). These approaches 
incorporate more ecological realism into ERA by considering traits to provide a clear 
mechanistic link between exposure and effects, making it possible to extrapolate species 
sensitivities over chemicals acting by the same Mode Of Action (MOA).  

After the introduction of trait-based approaches as a potential tool in ERA around a decade ago 
(Liess and Von der Ohe 2005, Baird and Van den Brink 2007, Buchwalter, Cain et al. 2007, 
Baird, Rubach et al. 2008), they have been rapidly evolving (Rubach, Baird et al. 2010, Liess 
and Beketov 2011, Rubach, Ashauer et al. 2011, Segner 2011, Van den Brink, Alexander et al. 
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2011, Ippolito, Todeschini et al. 2012, Rico and Van den Brink 2015, Baert, De Laender et al. 
2017). Baird and Van den Brink (2007) were among the first to use biological traits to predict 
species sensitivity. They performed a Principal Components Analysis (PCA, Ter Braak 1995) 
on a species-by-substance matrix (12 macroinvertebrate species, 15 chemicals covering several 
MOAs), where they introduced a species-by-traits matrix as a set of nominal, passive 
explanatory variables. They found that up to 71% of the variability in the sensitivity could be 
explained with only four species traits. In a later study, Rubach, Baird and Van den Brink (2010) 
developed the approach further, now using single and multiple linear regression instead of PCA, 
and dividing the chemicals into groups according to their MOA. MOA has proven to be a strong 
determinant of species sensitivity and is, therefore, seen as a promising alternative to chemical 
class-based predictive toxicity modelling (Barron, Lilavois et al. 2015, Kienzler, Barron et al. 
2017). Rubach , Baird and Van den Brink (2010) defined the Mode Specific Sensitivity (MSS) 
value of each species as the average relative sensitivity of the species to a group of chemicals 
with the same MOA. Single and multiple linear regressions between the MSS values and 
species trait data at the family level explained up to 70% of the variation in invertebrate 
sensitivity to 3 groups of insecticides. Recently, the approach by Rubach, Baird and Van den 
Brink (2010) has been extended by incorporating relationships between species traits and 
sensitivity into predictive models that could potentially be used in risk assessment (Rico and 
Van den Brink 2015).  

So far, these predictive models have only been built for insecticides, whilst it remains open 
whether the same traits are important in explaining invertebrate sensitivity to other groups of 
chemicals. Therefore, in this study, we develop predictive models of macroinvertebrate 
sensitivity to a larger and more diverse set of MOAs. We first optimize the sensitivity prediction 
method of Rubach et al. (2010) and Rico and Van den Brink (2015) using both literature 
research and comparative analysis. The methods, results and discussion of this technical 
optimization are given in the Supplementary Information (S1). Next, and as the main focus of 
this article, we study the influence of MOA on species sensitivity rankings and, subsequently, 
on the resulting predictive trait models. By studying which traits are included in the trait-
sensitivity models, we aim to get a better mechanistic understanding of how species sensitivity 
is determined by MOA. In a final evaluation, we test the power of species sensitivity predictions 
and assess if model performance depends on data availability. As a result of our research, we 
deliver a trait-based macroinvertebrate sensitivity modelling tool that builds predictive models 
for potential use in risk assessment for a diverse set of pre-defined MOAs. 
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2.2 Methods 

2.2.1 Overall methodology  

The prediction tool was developed in the R environment, and automates sensitivity rankings of 
aquatic macroinvertebrates and the construction of a corresponding set of trait-based models 
from a MOA-based chemical grouping (Figure 2.1). A hands-on explanation of the R tool and 
all R scripts and databases required to run the tool are available in the Supporting Information 
(S1 and S2 respectively). The tool consists of four different parts: database collection, 
preliminary input data processing, data processing, and production of output. Each part in turn, 
consists of multiple steps, the essentials of which will be presented briefly. 

2.2.2 Database collection and preliminary input data processing 

Several public databases were utilized to obtain data on MOA, toxicity, chemical properties, 
traits and taxonomy. We accept the limitations and errors of the databases exploited in this 
study, as it is not within the scope of this study to perform a quality assessment on the databases 
used.  

The extensive (1213 chemicals) MOA database developed by Barron et al. (2015) was used to 
extract a list of chemicals with their CAS numbers and their division into 6 groups of broad 
MOA (narcosis, acetylcholinesterase (AChE) inhibition, ion/osmoregulatory/circulatory (IOC) 
impairment, neurotoxicity, reactivity, and electron transport inhibition), and their subdivision 
into 31 groups of specific MOA (see Table 1 in Barron, Lilavois et al. 2015). The database was 
cleaned (e.g. chemicals for which no specific MOA was defined were removed) and prepared 
for further processing (e.g. specific MOAs with long names were replaced by a letter to ensure 
readability). For more details on pre-processing, see the corresponding R script in the SI (S2).  

The US Environmental Protection Agency (EPA) ECOTOX database (USEPA 2017) was 
selected as the source of toxicity data. See instructions in S1 on how to download the ECOTOX 
database. Only the ECOTOX tables tests, results and species are incorporated into the R tool. 

A chemical properties database was acquired by batch-running all CAS numbers available in 
the MOA database in the EPI (Estimation Programs Interface) Suite programs KOWWIN, 
MPBPVP and WSKOWWIN, respectively obtaining data on logKow (octanol-water 
partitioning coefficient); melting point, boiling point and vapor pressure; and water solubility 
(USEPA 2018). Modelled values were only used when experimental data were lacking. 
Eventually, only data on water solubility are used in the tool (as a check for realistic 
concentration values). All data are kept in however, to enable future flexibility of the tool. Data 
on molecular weight were obtained and added to the chemical properties database by extracting 
SMILES (Simplified Molecular-Input Line-Entry System) of all MOA CAS numbers from the 
SMILECAS database (also available through EPI Suite), and calculating the molecular weight 
based on these SMILES using the rcdk package in R (version 3.4.5, Guha 2007).  
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Figure 2.1. Structure of the developed R tool, divided into the four different parts: database 
collection (blue), preliminary input data processing (light grey), data processing (dark grey) and 
production of output (red). MSS refers to Mode Specific Sensitivity; LOOCV refers to Leave-
One-Out-Cross-Validation.

The Tachet database provides a coding of 22 biological and ecological traits describing 472 
species known to live in French freshwaters (Tachet, Richoux et al. 2000, Usseglio‐Polatera, 
Bournaud et al. 2000). The database is based on ‘a very large and scattered published expert 
knowledge and diverse literature sources ... We also included unpublished observations of 
ourselves and colleagues’ (Usseglio‐Polatera, Bournaud et al. 2000). From this, we deduced 
that the database represents the average trait state of European species and is, therefore, suitable 
for our study. Since our interest lies in predicting species sensitivity and we want to avoid 
overfitting, only the following traits for which we could hypothesize a mechanistic relation with 
sensitivity were extracted (based on Rubach, Baird et al. 2010): maximum potential size (i.e. ≤ 
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0.25 cm, > 0.25 – 0.5 cm), life cycle duration (i.e. ≤ 1 year, > 1 year), potential number of cycles 
per year (i.e. < 1, > 1), dispersal mode (i.e. aquatic passive, aerial active), respiration mode (i.e. 
tegument, gill), feeding mode (i.e. shredder, scraper), current velocity preferendum (i.e. slow, 
fast), salinity preferendum (i.e. freshwater, brackish water), temperature preferendum (i.e. < 
15°C, > 15°C) and pH preferendum (i.e. ≤ 4, > 5.5-6) (see Table S1 for an overview of the traits 
and the corresponding trait categories).  

To facilitate the cross-linking of information among the different databases, the Taxonomy 
database of the NCBI (National Centre for Biotechnology Information, Benson, Karsch-
Mizrachi et al. 2009, Sayers, Barrett et al. 2009) was used to extract the scientific names, along 
with the taxonomic rank and unique id, of all the species present in both the ECOTOX and the 
Tachet database. For this we used the taxize package in R (version 0.9.0, Chamberlain and 
Szöcs 2013). A copy of the ECOTOX species table and the Tachet database, both with updated 
taxonomy, are provided in the SI (S2).  

2.2.3 Data processing 

Data processing has been executed once for each broad and once for each specific MOA (36 
times in total). The data processing part of the tool consists out of eight consecutive steps 
(Figure 2.1): i) first Mode Specific Sensitivity (MSS) calculation, ii) removal of species 
without traits information, iii) second MSS calculation, iv) species-traits matching, v) 
preparation of trait data, vi) optimization, vii) removal of redundant traits, and, viii) Leave-One-
Out-Cross-Validation (LOOCV).  

The MSS values are calculated twice; once including all species for which sufficient toxicity 
data are available (step i), and once only including species for which we have ascertained that 
also trait data are available (step iii). In between the two MSS calculations, species for which 
no trait data are available are removed (step ii). Performing the MSS calculation twice is 
necessary, because the MSS values depend on relative sensitivities, and therefore are influenced 
by the in- or exclusion of species. The MSS calculations are implemented as described by 
Rubach, Baird and Van den Brink (2010). In short, only toxicity tests lasting between 1 and 4 
days and studying the effect of chemical stress on mortality are included in the analysis. Within 
each chemical, first the log transformed LC50 or EC50 values are normalized using the mean 
and standard deviation of all sensitivity values found for that chemical, resulting in a relative 
sensitivity of each species towards that chemical. Subsequently, these relative sensitivities are 
averaged over all chemicals belonging to the same MOA, resulting in an MSS value. 
Importantly, there were three fundamental differences in our method compared to the method 
of Rubach, Baird and Van den Brink (2010): the unit of the toxicity data (we use mol/L instead 
of µg/L), an extra check for realism of concentration values (should not exceed solubility), and 
the selection of tests with the longest exposure duration to enlarge the chance of reaching 
equilibrium concentration (see discussion for more extensive explanation).  
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After the second MSS calculation, species-traits matching is executed at the lowest taxonomic 
level possible (step iv). Since species level trait data are scarce, and traits measured at genus 
and species level are strongly correlated (Dolédec, Olivier et al. 2000), species-traits matching 
is done at genus level. Prior to species-traits matching, MSS values are converted to genus level 
by averaging the MSS values of all species belonging to the same genus. Traits data are also 
converted to genus level by taking the median of the original fuzzy codes of all taxa belonging 
to that genus. This fuzzy coding scheme is specifically developed for describing species traits 
data, and is ideal for differentiating species by their affinities to different trait modalities (i.e. 
categories) belonging to several traits (for further explanation of fuzzy codes, see Chevenet, 
Dolédec et al. 1994). 

Next, the trait data are prepared for linear regression by expressing continuous traits (e.g. size) 
as weighted averages of the different trait modalities (Tachet, Richoux et al. 2000, Rubach, 
Baird et al. 2010, Rico and Van den Brink 2015), and factorial traits (e.g. mode of respiration) 
as fixed within species (step v) (Rubach, Baird et al. 2010, Rico and Van den Brink 2015). The 
latter means that for each of the factorial traits, the modality for which the taxon has the highest 
affinity is selected as the modality this taxon carries and uses throughout its entire lifespan. In 
case of equal affinity to more than one trait modality (e.g. 40% gills, 40% skin respiration), a 
missing value is inserted. These missing values are problematic for (multiple) linear regression, 
because regression requires closed datasets with no missing values. To solve this, an 
optimization step is performed (step vi), which removes all gaps from the dataset by deleting 
any species with missing trait values.   

Next, redundant traits are removed to avoid overfitting (step vii). Traits are considered 
redundant i) when they are clearly aliased with other traits (collinearity), and ii) when they do 
not show enough variation in their different trait modalities. The tool tackles these two issues 
through i) a collinearity maximum of 0.7 (see Dormann, Elith et al. 2013 for a review of 
different methods to deal with collinearity), removing all traits that exceed this maximum, 
starting with those that correlate with the largest number of other traits or, in case multiple traits 
match this criterion, with the largest exceedance of the collinearity maximum, and through ii) 
a minimum on the trait modality diversity index (derived from the Shannon diversity index, 
Spellerberg and Fedor 2003), removing all traits with a trait modality diversity below this 
minimum. 

Finally, a Leave-One-Out-Cross-Validation (LOOCV) is executed to quantify the predictive 
power of the model (step viii). LOOCV is done by successively leaving out one species from 
the training dataset and building the MSS model based on the remaining species (for 
explanation of model building, see section 2.2.4). LOOCV was preferred above k-fold cross-
validation, because LOOCV is better in giving a reliable picture of the true R2 than k-fold cross-
validation (Hawkins, Basak et al. 2003). With the produced model, the MSS value of the left-
out species is predicted, and afterwards compared to the known value by calculating the squared 
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error. From the LOOCV, the mean squared prediction error (MSPE) and a prediction coefficient 
(P2) were calculated as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖−ŷ𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1         eqn. 1 

𝑀𝑀𝑀𝑀2 = 1 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦2

        eqn. 2 

where ŷ𝑖𝑖𝑖𝑖 is the estimated MSS value, 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 is the calculated MSS value, and 𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦2 is the variance of 
all MSS values in the dataset. When all predictions perfectly match observations, P2 equals 1. 
A negative P2 value indicates that prediction errors exceed the total variance of the sensitivity 
values, and therefore the model has poor accuracy. 

2.2.4 Production of output 

Each MOA output consists of the MSS ranking and the best MSS model. The MSS ranking is 
obtained by sorting the MSS values found in the first MSS calculation from low (most sensitive) 
to high (least sensitive). To visualize the taxonomic patterns in species sensitivity, we made 
heat maps of the MSS rankings, dividing the MSS values into four bins, ranging from sensitive 
to tolerant (MSS ≤ -1; -1 – 0; 0 – 1; ≥ 1). The best MSS model is selected in two steps. First, 
all possible linear models are constructed using the regsubset function of the R package leaps 
(version 3.0, Lumley and Miller 2017). Next, the best model is selected from all constructed 
models based on the small sample unbiased Akaike’s Information Criterion (AICc), which takes 
both model fit and model complexity into consideration and which is additionally extended 
with a bias correction term for small sample size (Johnson and Omland 2004). 

2.3 Results and discussion 

Figures of all MSS rankings resulting from the first MSS calculation and tables comparing 
within and among broad MOA relative sensitivities can be found in S1 and S3 respectively. For 
the interpretation of the results, it is important to realize that the MSS values represent the 
relative sensitivity of a species to a group of chemicals with the same MOA. The results of the 
MSS rankings (section 2.3.1) and the MSS models (section 2.3.2) are not described together, 
because the MSS models result from a further reduced and transformed MSS dataset (Figure 
2.1). 

2.3.1 MSS rankings  

We found large differences in the MSS rankings of species depending on MOA, both within 
the broad MOAs (between the specific MOAs belonging to one broad MOA), and between the 
different broad MOAs. Differences between broad MOAs were, however, larger than 
differences within broad MOAs. This can be seen when comparing the standard deviation (SD) 
of the MSS values across the broad MOAs (0.68), with the SD of the MSS values within the 
broad MOAs (0.26, 0.38, 0.4, 0.52, 0.59, and 0.63 for within respectively the broad MOAs 
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AChE inhibition, narcosis, IOC impairment, electron transport inhibition, neurotoxicity, and 
reactivity) (S3). Having a higher SD between the broad MOAs compared to within the broad 
MOAs confirms that grouping into specific MOAs is helpful for modelling species sensitivity 
(Barron, Lilavois et al. 2015, Martin, Young et al. 2015, Kienzler, Barron et al. 2017).  

A heat map of the MSS rankings shows the general taxonomic pattern of species sensitivity and 
tolerance to the different MOAs (Figure 2.2). For AChE inhibition, for instance, arthropods are 
most sensitive and molluscs are most tolerant. Whether crustaceans or insects are the most 
sensitive arthropods to AChE inhibition remains unclear, since both groups contain comparable 
numbers of sensitive and tolerant genera. We see similar results in two closely related studies 
(Rubach, Baird et al. 2010, Rico and Van den Brink 2015), as well as in a review of semi-field 
experiments (Wijngaarden, Brock et al. 2005). The sensitivity pattern for narcotic chemicals is 
closely related to the sensitivity pattern of AChE inhibition, with crustacean and insect genera 
containing the largest number of sensitive genera. We compared this result with two outdoor 
microcosm studies performed with the fungicide azoxystrobin, classified as a narcotic chemical 
(Barron, Lilavois et al. 2015). In the study of Zafar et al., (2012) significant effects were found 
for only one insect species (Chaoborus obscuripes) and for none of the crustacean species 
tested. In the study from Cole et al. (2000) (summarized in EFSA 2009), the mollusk 
Sphaeriidae was the only species showing negative effects on occurrence after a constant 
exposure of 10 µg/L, followed by negative effects on Gammaridae, Oligochaeta and 
Planorbidae at 30 µg/L, and on Asellidae at 100 µg/L. No negative effects on any of the insect 
groups tested (Hemiptera, Chaoboridae, Chironomidae) were found. The discrepancy between 
our results and the two microcosm studies might be due to the wrong assignment of narcosis as 
the MOA of azoxystrobin. Indeed, although two studies (Bradbury 1994, Barron, Lilavois et al. 
2015) classified azoxystrobin as a narcotic chemical, two other classification schemes (the 
QSAR Toolbox developed by the OECD, and Toxtree) assigned a non-narcotic MOA to 
azoxystrobin (Kienzler, Barron et al. 2017). In the last paragraph of section 2.3.3 we discuss 
the causes and effects of MOA misclassification in more detail.  

Besides general patterns in species sensitivity, the heat map also shows that there is not one 
genus, family or class which is sensitive to all MOAs (Figure 2.2a). When looking over all 
MOAs, the arthropod phylum contained the largest fraction of species classified as being more 
sensitive than average, followed by nematodes, molluscs and annelids. Genera belonging to the 
phyla Bryozoa, Cnidaria, Platyhelminthes and Rotifera were never more sensitive than average. 
At class level, Hexanauplia contained the largest fraction of genera more sensitive than average, 
which makes sense, because of their relatively small size and, herewith, large surface to volume 
ratio. Another result is that common test taxa are often not the most sensitive at all (Figure 
2.2b). We find that Daphnia never belongs to the most sensitive group, and other commonly 
tested taxa (e.g. Asellus, Procambarus, and Chironomus) are for the majority of the MOAs 
found to be medium tolerant. Only the commonly tested taxon Ceriodaphnia shows high 
sensitivity to two MOAs: AChE inhibition and reactivity.   
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Figure 2.2. Heat map displaying taxonomic 
distribution of species sensitivity towards the 
different MOAs including a) all species with an 
MSS value, and b) only species which have been 
tested on 5 or 6 MOAs. MSS values are divided 
into four bins, ranging from sensitive to tolerant. 
White indicates absence of data. Upper cladogram 
shows similarities between MOAs. 

Taxonomic legend for b): 

Taxonomic legend for a): 

Heatmap legend: 
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The information presented in Figure 2.2 can also be used to identify for which MOA-taxon 
combinations data is lacking. Ciliophora have, for instance, been studied more frequently for 
reactive chemicals, whilst Nematodes have been studied more frequently for the MOAs IOC 
impairment and electron transport inhibition. Generally, the MOAs IOC impairment, electron 
transport inhibition and reactivity have been studied to a lesser extent than the others. Especially 
data on insect species are missing for these MOAs, which might explain the counterintuitive 
result of seemingly reduced sensitivity of insects to these MOAs. Indeed, a field study 
performed in the 1970s shows that two mayfly (Ephemeroptera) species significantly reduced 
in occurrence after application of the electron transport inhibitor Antimycin A, whilst all other 
invertebrate taxonomic groups present at the study site remained unaffected (Morrison 1979). 
This indicates that certain insect species are indeed sensitive to electron transport inhibition, 
but these species are not included in the ECOTOX database. That the taxonomic focus of some 
MOAs differs can lead, besides to a misinterpretation of results as just has been demonstrated, 
to a bias in the sensitivity ranking, and subsequently, to a bias in the sensitivity models. That 
the taxonomic composition of the species assemblage used to construct models is important is 
well known. Maltby et al. (2005) found, for example, that hazardous concentrations (HC5) 
derived from arthropod SSDs were significantly lower than those derived from non-arthropod 
invertebrates. In order to avoid any bias in predictive modelling, we should, therefore, not only 
ensure high taxonomic coverage, but also evenness across the different taxonomic groups.  

2.3.2 Sensitivity models 

The final modelling effort resulted in 12 significant (p < 0.05) models explaining 31 to 90% of 
the variation in MSS values, covering 5 broad MOAs and 7 specific MOAs (Table 2.1). Some 
of the MOAs show overlap in the traits that explained sensitivity best. For example, life cycle 
duration (life) and feeding mode (feeding) are included in the models for 3 of the 6 broad 
MOAs. This is a good indicator that these traits are in general important in explaining species 
sensitivity. Results from several studies (Rubach, Baird et al. 2010, Ippolito, Todeschini et al. 
2012, Rico and Van den Brink 2015) confirm this by including the same or closely related traits 
in their models. Additionally, an extensive review of potential sensitivity related traits classify 
feeding mode and life cycle duration as traits known to have an established link with sensitivity 
for several taxa (Rubach, Ashauer et al. 2011). Other traits selected by our modelling effect 
(e.g. temperature and salinity preferendum) are only included in explaining one broad MOA, 
which might indicate that these traits are less important for determining species sensitivity. For 
temperature preferendum, this is indeed confirmed by the relatively low prediction coefficient 
of the models including this trait (Table 2.1). One of the models containing salinity preference 
(alicyclic GABA antagonism), however, has one of the highest prediction coefficients, and is 
therefore possibly important. Indeed, a relationship between salinity preference and the toxicity 
of a GABA antagonist makes sense, because GABA is one of the most common 
neurotransmitters (Nelson and Cox 2008), and is therefore potentially influenced by the 
presence of strategies to deal with salt stress (Rivera-Ingraham and Lignot 2017).  
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For some traits, the correlation to sensitivity is positive for some MOAs and negative for other 
MOAs (e.g. dispersal, Table 2.1). Species were more sensitive to narcosis when they preferred 
more neutral waters (pH preferendum), were capable to disperse actively (dispersal) and 
breathed through their tegument (respiration mode, see Table S1 for the included trait 
modalities). For reactivity, however, we find that the relationship between dispersal and 
sensitivity is the exact opposite, and the more passive organisms were found to be more 
sensitive. This can be explained by the large gap in insect genera for the MOA reactivity 
(Figure 2.2). When comparing the data included in the multiple linear regression, the dataset 
for reactivity only contains some insensitive Odonata and Diptera genera that are classified to 
disperse actively, whilst the dataset for narcosis contains both sensitive Ephemeroptera and 
sensitive Trichoptera genera. Because of this unbalance, it remains unclear whether the 
direction of the trait-sensitivity relationship of the two MOAs is indeed mechanistic, or it is 
simply an artefact of data availability. We think that the latter is true, because the trait profile 
of species sensitive to narcotic chemicals matches perfectly with the trait profiles of insects 
belonging to the orders Ephemeroptera, Plecoptera and Trichoptera (EPT), which are generally 
known as sensitive species (Verberk, Van Noordwijk et al. 2013). It can be hypothesized that 
our trait selection does not contain the best traits, and the patterns we see only arise because 
traits are phylogenetic correlated, i.e. belong to trait syndromes (Poff, Olden et al. 2006, 
Verberk, Van Noordwijk et al. 2013). Further analyses including phylogenetic information can 
probably further elucidate this.

2.3.3 Data gaps and potential for improvement 

Low availability of traits data has in earlier studies been described as one of the major threats 
to the successful implementation of trait-based approaches in ecotoxicology (Rubach, Ashauer 
et al. 2011, Van den Brink, Alexander et al. 2011). We confirm this by showing that the lack of 
trait data was the main obstacle in model construction. Over all the MOAs, an average of only 
12% (SD ±5%) of the species for which we had sufficient data to calculate the first MSS value 
were included in the construction of the MSS models. For an average of 56% (±10%) of the 
species, no match at all could be found in the trait database. For 15% (±5%) of the species, a 
match could be found in the trait database, but values on one or multiple traits of interest were 
lacking, and the species were therefore removed during the optimization process. It is generally 
known that traits databases hold a high number of gaps, and 15% of the species with missing 
values matches closely to 18% of the species having an incomplete trait description in a 
comparable trait database for Europe (Gayraud, Statzner et al. 2003). Due to the large loss of 
taxa in the analysis because of missing traits information, also only 20% (±7%) of the toxicity 
tests used to calculate the first MSS value ended up as an underlying data point in the multiple 
linear regression analysis. This indicates that a large part of the available toxicity data remains 
unused, merely because of insufficient trait data. Future research should therefore focus on 
completing, and simultaneously extending the taxonomic extent of existing trait databases. This 
can be achieved by obtaining new data, but also by combining existing trait databases, although 
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the latter could become complicated due to existing differences in methodologies and categories 
between the different trait databases. Baird et al. (2011) review the technological challenges in 
creating and sharing traits data; and Culp et al. (2011) show examples of traits databases 
currently available for different habitats and taxonomic groups (cf. Table 2). 

In our analysis 16% of the traits we deemed important regarding species sensitivity did not enter 
the multiple linear regression process, because they were highly correlated to another trait. This 
could indicate the permanent presence of collinearities between some of the sensitivity-related 
traits we selected (also defined as trait-syndromes, Poff, Olden et al. 2006). However, there was 
a clear relationship between the number of traits and the number of species going into the 
multiple linear regression process, indicating that collinearity was primarily found in small 
datasets (Figure S4 in the Supporting Information of Chapter 2). Therefore, traits were in most 
cases only correlating with each other due to chance, originating from the small size of the 
remaining datasets after all data processing steps. Besides the sensitivity-related traits selected 
and evaluated in this study, it can be helpful to enhance trait databases with finer morphological 
characteristics which are more directly related to bioaccumulation (e.g. lipid content), or to the 
internal distribution of the chemicals (e.g. target site distribution). Buchwalter and Luoma 
(2005) found, for example, that although well-studied traits like body size or gill size did not 
explain macroinvertebrate sensitivity to heavy metals, the relative number of ionoregulatory 
cells did relate to dissolved metal uptake rates. Rubach et al. (2012) also tried to improve trait-
models by using finer morphological traits. Additionally, they measured most of these traits on 
individuals captured in the same season (although a different year) and in the same 
biogeographic region (sometimes even the exact same location) as they were collected for 
toxicity testing, which reduces the presence of trait variability due to phenotypic or seasonal 
intraspecific variability. However, their results show only a minor increase in model fit by 
measuring traits, even with the lowered intraspecific variability, both for the single linear 
regression and for the multiple linear regression (compare Table 2 in Rubach, Baird et al. 2010, 
with Table 3 and Figure 2 in Rubach, Baird et al. 2012).  

There are other aspects that could improve trait-based models, three of which we will discuss 
in more detail. First, measurement of internal tissue concentrations (i.e. the tissue residue) in 
addition to external exposure concentrations would improve toxicity predictions, because toxic 
effects are more closely related to the concentration inside the organism than the concentration 
in the water (Friant and Henry 1985, McCarty, Landrum et al. 2011). Although this has already 
been proven in the eighties, research on the (partial) incorporation of tissue residues into ERA 
has only started the previous decade (e.g. in the biotic ligand model, Paquin, Gorsuch et al. 
2002), and has still not been accepted as a standard in chemical regulation. We hope that the 
recent development and increasing importance of mechanistic effect models like toxicokinetic 
(TK) – toxicodynamic (TD) models (e.g. the General Unified Threshold Model of Survival, 
Jager, Albert et al. 2011, or the Dynamic Energy Budget, Jager, Martin et al. 2013), will lead 
to a more frequent measurement and publication of internal concentrations. Especially since 
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these process-based models explain the link between internal concentrations and dynamic 
processes underlying toxic responses, and additionally enable extrapolation from standard test 
conditions, e.g. to different exposure scenarios (Ashauer, Boxall et al. 2007, Ashauer, Boxall 
et al. 2007, Ashauer, Hintermeister et al. 2010). Rubach et al. (2012) additionally demonstrated 
that quantitative links between the parameters of these mechanistic effect models fitted on 
internal concentration data and traits are substantially stronger than quantitative links between 
classical sensitivity endpoints (e.g. EC50, LC50) and traits. Measurements of internal 
concentrations could therefore improve our models in two ways: one, by using internal instead 
of water concentrations, and two, by trying to explain TKTD parameters, instead of LC50 
values, which could subsequently be used to model EC50 values at any exposure profile of 
interest. 

Second, and especially important in the absence of internal concentrations, the exposure 
duration of toxicity tests should be long enough to ensure approximate equilibrium between 
external and internal concentrations. Without going too deep into the discussion of acute versus 
chronic exposure, biotransformation, and elimination, we do want to emphasize that failure to 
obtain equilibrium concentration can result in an underestimation of effects, simply because 
under the same exposure time, a smaller organism reaches a higher internal concentration faster 
than a larger organism (McCarty, Landrum et al. 2011). This means that for an acute toxicity 
test, different organisms may require a different minimum exposure time. We tried to account 
for this by selecting the toxicity test with longest exposure duration where possible. However, 
it can still be that some of the variability we see in Figure 2.2 may be associated with 
differences in exposure duration (e.g. in one toxicity test, a species was exposed for 48 hours 
to chemical A, whilst in another toxicity test, the same species was exposed for 96 hours to 
chemical B). 

Finally, improvements can be made by integrating Bayesian methods into the current approach. 
Approximate Bayesian Computation can distinguish which mechanisms contribute most to 
patterns observed in the data (Hartig, Calabrese et al. 2011), and can thereby help optimizing 
model complexity. Bayesian model averaging can additionally incorporate model-selection 
uncertainty into statistically derived predictive models, and can therefore provide a more 
realistic estimation of model uncertainty compared to the approach used in our study (Wintle, 
McCarthy et al. 2003, Clark 2005).  

Interestingly, data availability alone could not explain differences in model performance. An 
increase in the number of toxicity tests, chemicals or genera did not improve model 
performance substantially (Figures S1, S2, and S3 in the Supporting Information of Chapter 2). 
Actually, model fit reduces slightly with an increase in the number of tests, chemicals or genera. 
However, cross-validation results show an exact opposite trend, with a slight reduction in error 
with an increase in data availability. We think that model performance does not increase with 
data availability due to one (or a combination) of the following three reasons. First, the chemical 
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groups (in our case, the MOAs) may insufficiently differentiate the chemicals according to the 
effects that they cause in invertebrates. As in any kind of grouping, mistakes or missing 
information could result in a wrong grouping in MOA for the chemicals (see Martin, Young et 
al. 2015, Kienzler, Barron et al. 2017 for studies on MOA classification errors). Additionally, 
MOA is not a constant property of a compound, but may vary between species or life stage, 
depending, for instance, on the availability of target sites, exposure duration or frequency, or 
the endpoint of interest (Nendza and Muller 2000). Photosynthetic inhibitors, for example, are 
specific toxicants towards primary producers, but are often baseline toxicants towards 
invertebrates (Nendza and Muller 2000). The chance that a chemical expresses multiple MOAs 
in different species becomes smaller, however, when analysis is restricted to species belonging 
to the same organism group (e.g. invertebrates, as in this study), because the basic biochemical 
systems and molecular targets affected by each MOA may be generally conserved across many 
species (LaLone, Villeneuve et al. 2016). A second aspect that could have prevented increased 
model performance with increased data availability can be that we missed the right traits to 
mechanistically explain the relationship between MOA and sensitivity. As mentioned before, 
obtaining additional and finer morphological traits can help improve trait-based models, 
especially if these traits explain the toxicodynamics of the chemical, since processes related to 
toxicodynamics are currently not covered by the traits in our selection. Finally, we argue that 
the models could not achieve a better model performance because, regardless of data 
availability, trait data alone may be insufficient in explaining species sensitivity. Several studies 
show that complementing trait data with data on phylogenetics greatly enhances model 
performance, and that both traits and phylogenetic indicators explain a distinct part of species 
sensitivity (Poteat, Jacobus et al. 2015, Pilière, Verberk et al. 2016). Other attempts combining 
phylogenetics and physiochemical properties into predictive models have also proven 
successful (Guénard, von der Ohe et al. 2014, Malaj, Guénard et al. 2016), although 
phylogenetics is still impossible to include in an inclusive approach as we performed in this 
study. Nevertheless, we suggest to further explore the potential of species traits for sensitivity 
predictions, as they enable large scale applicability and increased mechanistic understanding.  

2.3.4 Future direction 

Our prediction tool is an addition to the fast growing and evolving science behind 
environmental risk assessment, which can be easily amended in the future when more data or 
better data processing and analysis procedures are identified. It is very flexible, and facilitates 
i) testing the effectiveness of different kinds of chemical grouping, e.g. based on (physical) 
mechanism of action (Ashauer and Jager 2018), ii) testing the predictive value of ‘new’ traits, 
hypothesized to have a relationship with species sensitivity, iii) the addition of new predictors, 
e.g. based on phylogenetics or physiochemical properties, and iv) repeating the modelling 
exercise for different groups of organisms (e.g. fish or algae), as long as trait data are available. 
Analyses comparable to those reported herein would take days to weeks of preparation time to 
collect all input data, followed by more time to conduct and compile all analyses, requiring 
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multiple types of commercial software. Using the software and algorithms developed for this 
work, these intensive efforts can now be compiled in only a few hours, already has all main 
open-source databases incorporated and uses only R, a free software environment. 

Both the sensitivity rankings and the sensitivity models produced in this study are an important 
step forward on the challenging road towards predictive ecotoxicology with reduced animal 
testing (Villeneuve and Garcia‐Reyero 2011). The sensitivity rankings help reduce animal 
testing by guiding future taxonomic focus of toxicity tests depending on the estimated MOA of 
the new chemicals. The sensitivity models can predict the sensitivity of species or even entire 
communities never tested before, avoiding additional animal tests. This allows us to rank the 
sensitivity of species occurring in any community composition anywhere, or in other words, to 
determine the worst-case ecological scenario for any aquatic ecosystem. Developing such 
ecological scenarios will fill one of the remaining gaps in the construction of environmental 
scenarios (De Laender, Morselli et al. 2015, Franco, Price et al. 2016, Rico, Van den Brink et 
al. 2016) deemed necessary for future ecological risk assessment frameworks. Together with 
exposure scenarios, ecological scenarios will form the basis for developing spatial-temporal 
explicit population-, community- and ecosystem-level effect models for use in prospective 
environmental risk assessment for chemicals.  
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Abstract  

Current chemical risk assessment approaches rely on a standard suite of test species to assess 
toxicity to environmental species. Assessment factors are used to extrapolate from single 
species to communities and ecosystem effects. This approach is pragmatic, but lacks resolution 
in biological and environmental parameters. Novel modelling approaches can help improve the 
biological resolution of assessments by using mechanistic information to identify priority 
species and priority regions that are potentially most impacted by chemical stressors. In this 
study we developed predictive sensitivity models by combining species-specific information 
on acute chemical sensitivity (LC50 and EC50), traits, and taxonomic relatedness. These 
models were applied at two spatial scales to reveal spatial differences in the sensitivity of 
species assemblages towards two chemical modes of action (MOA): narcosis and 
acetylcholinesterase (AChE) inhibition. We found that on a relative scale, 46% and 33% of 
European species were ranked as more sensitive towards narcosis and AChE inhibition, 
respectively. These more sensitive species were distributed with higher occurrences in the south 
and north-eastern regions, reflecting known continental patterns of endemic macroinvertebrate 
biodiversity. We found contradicting sensitivity patterns depending on the MOA for UK 
scenarios, with more species displaying relative sensitivity to narcotic MOA in north and north-
western regions, and more species with relative sensitivity to AChE inhibition MOA in south 
and south-western regions. Overall, we identified hotspots of species sensitive to chemical 
stressors at two spatial scales, and discuss data gaps and crucial technological advances required 
for the successful application of the proposed methodology to invertebrate scenarios, which 
remain underrepresented in global conservation priorities. 

This chapter is based on the paper: Sanne J. P. van den Berg, Cecilie Rendal, Andreas Focks, 
Emma Butler, Edwin T.H.M Peeters, Frederik De Laender, Paul J. Van den Brink (2020). 
Potential impact of chemical stress on freshwater invertebrates: A sensitivity assessment on 
continental and national scale based on distribution patterns, biological traits, and relatedness. 
Science of the Total Environment, Accepted.  
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3.1 Introduction 

The scientific community is rapidly developing new ecological models to increase realism in 
environmental risk assessment (ERA, e.g. De Laender, Morselli et al. 2015, Windsor, Ormerod 
et al. 2018). However, what so far has remained unclear is which organisms need to be 
modelled. Common standard test species are usually not representative of all species present in 
ecosystems with regards to their sensitivity to stressors (Nagai 2016). Indeed, it has already 
been argued for over 30 years that there is not a single species or a specific group of species 
which is always the most sensitive (all the time, everywhere, and towards every compound). 
This has been coined the ‘myth of the most sensitive species’ (Cairns 1986). However, since in 
reality both compound multiplicity as well as species diversity occur simultaneously, it is not 
feasible to acquire all possible sensitivity data with laboratory toxicity testing. Therefore, there 
is a need to develop models that can help identify priority species, which are species that are 
likely to be intrinsically most sensitive to chemical stressors.  

Several studies have tried to determine which species are intrinsically most sensitive to 
chemical stressors by using species traits, and were able to explain up to 87 percent of the 
variation in species sensitivity using only four traits (Rubach, Baird et al. 2010, Rubach, Baird 
et al. 2012, Rico and Van den Brink 2015, Van den Berg, Baveco et al. 2019). A large advantage 
of using traits-based approaches is that they add mechanistic understanding of the sensitivity 
process by describing characteristics that make a species more or less sensitive towards 
chemical stressors. This largely reduces the chances of overfitting models to the training data 
(Johnson and Omland 2004). In addition to that, describing aquatic communities in terms of 
their biological traits increases the generality of such characterizations and their subsequent 
transferability between regions (Van den Brink, Alexander et al. 2011). Also, correlations 
between species traits and species sensitivity might exist, potentially resulting in unexpected 
effects at the community level (Baert, De Laender et al. 2017). 

Other studies (Malaj, Guénard et al. 2016) concerned with determining which species were 
most sensitive to chemical stressors, combined phylogenetic information with chemical 
properties. They were to a great extent (R2 of ~0.8) capable of predicting species sensitivity to 
pesticides (Guénard, von der Ohe et al. 2014) and heavy metals (Malaj, Guénard et al. 2016). 
Furthermore, some studies have demonstrated that indeed traits and phylogeny (or other 
measures of relatedness between species) both explain an unique part of the sensitivity process 
(Poteat, Jacobus et al. 2015, Pilière, Verberk et al. 2016). However, phylogenetic approaches 
do not unravel any concrete mechanisms of sensitivity, and are therefore more susceptible to 
overfitting on the training data. For this reason, we think that a combination of both traits and 
phylogenetic information has the most potential for identifying priority species at a large spatial 
scale.  
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We envision these priority species to, in the future, become part of environmental scenarios, a 
simplified (model) representation of exposed aquatic ecosystems which provides a sufficient 
amount of ecological realism, enabling us to conduct an appropriate ERA (Rico, Van den Brink 
et al. 2016). There are clear benefits associated with the development of scenarios for use in 
risk assessment, the most important ones being reduction of animal tests, integration of 
exposure and effect assessments, and increased realism with respect to spatial-temporal 
dimensions and species biodiversity (Rohr, Salice et al. 2016). However, for obtaining more 
realism in respect to spatial-temporal dimensions and biodiversity, we require not only the 
identification of priority species, but also the spatial-temporal dimensions at which these 
species occur. Therefore, after identifying priority species, looking into the distribution patterns 
of these species can help to identify priority regions, that is, regions where these priority species 
are more abundant. These regions can assist in delivering realistic ranges of important landscape 
parameters (e.g. temperature, discharge, alkalinity) as input for environmental scenarios, 
enabling more realistic landscape level ERA (Franco, Price et al. 2016, Rico, Van den Brink et 
al. 2016). Additionally, these regions can become the focus of conservation and management 
efforts. 

The two main objectives of the present study therefore are i) to construct models predicting the 
sensitivity of aquatic macroinvertebrates based on mode of action (MOA), traits and 
relatedness, and ii) to reveal spatial differences in the sensitivity of species composition 
assemblages by applying the developed models at the continental and national scale. The 
community composition of European freshwater ecoregions (ERs, based on Illies 1978) is used 
for the application of our models at the continental scale, while the reference database of the 
RIVPACS (River InVertebrate Prediction And Classification System) tool is used for river-type 
scale within the United Kingdom (Wright 1994). We conduct the first trait-based chemical 
sensitivity assessment of freshwater macroinvertebrate assemblages, extensively test the 
influence of spatial scale on sensitivity patterns, and provide key recommendations for its robust 
application in data-poor taxa. 

3.2 Methods 

The whole methodology of this study has been developed in R, a free software environment (R 
Core Team 2018). The R project, along with all scripts and data necessary to reproduce the 
models and figures performed in this study are available at Figshare 
(10.6084/m9.figshare.11294450) (Van den Berg 2019). 

3.2.1 Modelling approach 

We extracted toxicological data from Van den Berg et al. (Van den Berg, Baveco et al. 2019; 
original data from ECOTOX (USEPA, 2017)), which comprised Mode Specific Sensitivity 
(MSS) values for 36 and 32 macroinvertebrate genera towards baseline (narcosis) and AChE 
inhibiting toxicants respectively. Briefly, the MSS value represents the average relative 



Potential impact of chemical stress on freshwater invertebrates |   41   

 

sensitivity of each species to a group of chemicals with the same MOA (original MOA 
classification from Barron, Lilavois et al. 2015), where an MSS value below zero indicates that 
the species is more sensitive than average, and an MSS value above zero indicates that the 
species is less sensitive than average. The MOAs narcosis and AChE inhibition were selected 
for this study, because they were the most data rich (Van den Berg, Baveco et al. 2019). 
Narcosis, also called baseline toxicity, is found toxic at similar internal concentration across all 
organisms (Wezel and Opperhuizen 1995, Escher and Hermens 2002) Therefore, differences in 
sensitivity for this MOA are expected to be mainly explained by traits related to toxicokinetics 
(i.e. uptake, biotransformation, and elimination). AChE inhibition is a more specific MOA, and 
therefore shows large differences in effect concentrations depending on taxonomic group (Van 
den Berg, Baveco et al. 2019). For this MOA we, therefore, expect a stronger phylogenetic 
signal. To justify a separate classification for the two MOAs, we made a correlation plot of the 
measured MSS values of species that were tested on both MOAs (Figure S3.7). The lack of a 
significant relationship between species sensitivity towards the two MOAs indicates that 
sensitivity towards these two MOAs is independent, and should therefore be evaluated 
separately. 

The dataset from Van den Berg et al. (2019) also contained data on genus name, unique 
identifier (UID from the NCBI database, Benson, Karsch-Mizrachi et al. 2009, Sayers, Barrett 
et al. 2009), and traits (original data from Tachet, Richoux et al. 2000, Usseglio‐Polatera, 
Bournaud et al. 2000). In this study, we added relatedness to this dataset by constructing a 
taxonomic tree, since detailed phylogenetic data was still largely unavailable or incoherent for 
most freshwater macroinvertebrates (we looked, for instance, in Genbank, Benson, Karsch-
Mizrachi et al. 2009), and Guénard and Von der Ohe et al. (2014) have provided sufficient proof 
that taxonomic relatedness explains around the same amount of variation in species sensitivity 
as phylogenetic data when a wide taxonomic range is taken into consideration. This taxonomic 
tree is subsequently converted to Phylogenetic Eigenvector Maps (PEMs), from which species 
scores are extracted which subsequently serve as predictors of relatedness in model construction 
(Griffith and Peres-Neto 2006, Guénard, Legendre et al. 2013). 

Constructing the taxonomic tree.  

We constructed the taxonomic tree by extracting taxonomic data from the NCBI (National 
Centre for Biotechnology Information) database (Benson, Karsch-Mizrachi et al. 2009, Sayers, 
Barrett et al. 2009), followed by applying the class2tree function from the taxize package in R 
(version 0.9.3, Chamberlain and Szöcs 2013). Both the model species (for which we had 
sensitivity data available) and the target species (whose sensitivity we wanted to predict) were 
included in the tree. The simultaneous incorporation of both model and target species was 
necessary, because the PEM would change if the large number of target species would be added 
to the tree at a later point.  
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Phylogenetic eigenvector maps.  

As descriptors of the taxonomic tree, phylogenetic eigenvectors were obtained from the PEM 
(see Guénard, Legendre et al. 2013 for details). PEMs work on a similar basis as principal 
component analysis (PCA; Legendre and Legendre 2012). Briefly, the eigenvectors of a PEM 
are obtained from a decomposition of the among-species covariance’s and represent a set of 
candidate patterns of taxonomic variation of the response variables (i.e. the sensitivities to 
different chemicals). As is the case for a traditional PCA, this decomposition results in n – 1 
eigenvectors (Legendre and Legendre 2012), where in our analysis n was the number of model 
species. The calculation of a PEM is obtained from both the structure of the taxonomic tree and 
from the dynamics of the (in our case) sensitivity evolution. The dynamics of the sensitivity 
evolution depends on the strength of a steepness parameter (parameter α; related to Pagels’ 
parameter κ (Pagel 1999), where α = 1 – κ). This parameter represents the relative evolution 
rate of the sensitivity to the MOA, takes values between 0 (natural evolution) and 1 (strong 
natural selection), and was in our study estimated from the known sensitivity of the model 
species. We constructed the PEMs with the MPSEM package (version 0.3-4, Guénard, 
Legendre et al. 2013, Guénard 2018). 

Model construction.  

For the narcosis dataset, two leverage points were discovered during the modelling process 
(Figure S3.1 and S3.2). Since we doubted the validity of these points (they were identical) and 
were unable to assess their validity (there was no data available on closely related species, and 
the reference was inaccessible), they were removed from the dataset, reducing the number of 
species for which toxicity data was available to 34. For the AChE inhibition dataset, only the 
27 Arthropoda species present in the dataset were included in the analysis, because this MOA 
works in a more specific manner, making differences in MOA among different phyla more 
likely (Maltby, Blake et al. 2005). Eventually, 33 and 26 eigenvectors were included as 
taxonomic predictors for narcosis and AChE inhibition respectively (in the modelling process, 
taxonomic predictors were indicated with a ‘V’, see Figures S3.3 and S3.4 for examples of such 
predictors), and were added to the sensitivity and trait data. To reduce the number of predictors 
going into the final model building process (required due to memory limitations of the 
algorithm), an exhaustive search was performed using the regsubsets function from the leaps 
package (version 3.0, Lumley and Miller 2017). From this, traits or phylogenetic eigenvectors 
that were least frequently included in the best 1% of the models, ordered according to the 
Bayesian Information Criterion (BIC), were removed from the analysis. Next, an exhaustive 
regression was performed between the remaining predictors and the available MSS values, 
allowing a maximum of 4 predictors in the models. The best model was the model with the 
lowest AICc (Aikaike’s Information Criterion with a correction for small sample size, Johnson 
and Omland 2004). The modelling exercise was repeated using only traits-, and a combination 
of traits- and taxonomic- predictors. We did not consider taxonomy-only models, because we 
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were primarily interested in obtaining more mechanistic understanding of the sensitivity 
process.  

3.2.2 Predicting unknown taxa 

The best model found for narcosis and the best model found for AChE inhibition were 
subsequently applied to the prediction of the sensitivity of species composition assemblages at 
two different spatial scales, continental and national. For the continental scale, the community 
composition of European freshwater ecoregions (ERs) was downloaded from 
https://www.freshwaterecology.info/ (Schmidt-Kloiber and Hering 2015). Although we realize 
that these data do not exactly resemble species assemblage data, it was the only dataset currently 
available at this spatial scale. For the national scale, the reference database of the RIVPACS 
tool was downloaded from the website of the Centre for Ecology and Hydrology 
(https://www.ceh.ac.uk/services/rivpacs-reference-database). The RIVPAC database was 
selected, because it is the only easily accessible database that provides detailed community level 
data at this spatial scale. The database contains macroinvertebrate assemblages at 685 reference 
sites, and was originally used to assess the ecological quality of UK rivers under the Water 
Framework Directive. To assess the ecological quality, the 685 sites have in an earlier study 
been grouped into 43 end groups based on biological and environmental variables (Davy-
Bowker, Clarke et al. 2008). For descriptive summary purposes, these 43 end-groups were 
furthermore combined into 7 higher level super-groups (Davy-Bowker, Clarke et al. 2008, 
Table 3.1), such that these super-groups can be considered river-types at a relatively broad 
scale. In this study, we will use the super-groups to assess differences in species sensitivity on 
a river-type scale (Table 3.1).  

The Tachet database was used as a source of traits data (Tachet, Richoux et al. 2000, Usseglio‐
Polatera, Bournaud et al. 2000). In order to make species-traits matching between the two 
community compositions (ERs and RIVPACS) and the Tachet database possible, the taxonomy 
of the three databases was aligned with the NCBI database using the taxize package (version 
0.9.3, Chamberlain and Szöcs 2013). Species from the ER and RIVPACS communities could 
then be matched with traits from the Tachet database using the UIDs from the NCBI database. 
This matching was done at genus level. Since the traits in the Tachet database are coded using 
a fuzzy coding approach (describing a species by its affinity to several trait modalities, see 
Chevenet, Dolédec et al. 1994 for more information), a transformation was required before this 
data could be used. Continuous traits were transformed using a weighted averaging of the 
different trait modalities, whilst for factorial traits the modality for which the species had the 
highest affinity was selected (as in Van den Berg, Baveco et al. 2019).  

At this point, taxonomic and trait data of all the target species (species for which we want to 
predict sensitivity) were complete, and PEM scores had to be added. To do this, the locations 
of the target species were extracted from the taxonomic tree, and subsequently transformed into 
PEM scores using the MPSEM package (version 0.3-4, Guénard, Legendre et al. 2013, 
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Guénard 2018). The PEM scores were then combined with the traits data, which allowed us to 
predict the sensitivity (MSS values) towards narcotic and AChE inhibiting chemicals using the 
two best models developed earlier.  

The sensitivity of each ER or river type was determined by calculating the percentage of species 
with an MSS value below 0, comparable to (Hering, Schmidt-Kloiber et al. 2009). For 
RIVPACS, this was initially done both on abundance and presence-absence data, on the seasons 
spring, summer and autumn separately, and averaged over the three seasons. Eventually, we 
focused on presence-absence data averaged over the three seasons only, due to higher 
uncertainty (e.g. due to sampling error and seasonality) associated with the other data subsets. 
The results were projected on maps by colouring the ERs and river types according to the 
percentage of sensitivity species (MSS < 0) present. To construct the maps, we downloaded a 
map of the world from the Natural Earth website 
(https://www.naturalearthdata.com/downloads/10m-cultural-vectors/). The shape files for the 
ERs were obtained from the European Environment Agency (https://www.eea.europa.eu/data-
and-maps/data/ecoregions-for-rivers-and-lakes), and their projection was transformed to match 
the projection of the world map using the spTransform function form the sp package (version 
1.3-1, Pebesma and Bivand 2005). Coordinates of all the RIVPACS sites were available in the 
RIVPACS database.  

3.2.3 Statistics  

A Kruskal-Wallis Rank Sum Test was done to check if there were any statistically significant 
differences in sensitivity between ERs or RIVPAS groups. If this was true, multiple 
comparisons of all the groups were done with Kruskal Wallis using the kruskal function from 
the agricolae R package (version 1.2-8, Mendiburu 2017). Fisher’s least significant difference 
criterion was used as a post-hoc test, and we used the Bonferroni correction as p-adjustment 
method. 
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Table 3.1. Division of the 685 reference sites into the 7 super-groups, along with a description 
of the dominant characteristics of the super-groups (taken from Davy-Bowker, Clarke et al. 
2008). 

RIVPACS 
super-
group 

N 
sites 

Dominant characteristics 

1 64 All in Scotland, mostly islands 
2 148 Upland streams, mainly in Scotland and Northern England 
3 169 Intermediate rivers, South-East Scotland, Wales, North and South-

West England 
4 48 Small steeper streams, within 13 km of source 
5 115 Intermediate size lowland streams, including chalk, South-East 

England 
6 84 Small lowland streams, including chalk, South-East England 
7 57 Larger, lowland streams, South-East England, larger, finer sediments 

 

3.3 Results 

3.3.1 Sensitivity models 

Incorporating taxonomic relatedness slightly improved the predictive capacity of models for 
invertebrate sensitivity towards narcotic and AChE inhibiting chemicals (higher adjusted R2), 
compared to models without taxonomy (Table 3.2). Interestingly, the trait ‘mode of respiration’ 
was incorporated in the taxonomy & traits model of narcosis (Figure S3.3) and was also present 
in the traits-only model. For AChE inhibition, mode of respiration was included in the 
taxonomy & traits model (Figure S3.4), but not in the traits-only model. Considering the 
taxonomic predictors, V14, V2 and V4 were present in both the taxonomy-only and the 
taxonomy & traits model for narcosis. For AChE inhibition, the predictors V7 and V3 were 
present in both the taxonomy-only and the taxonomy & traits model. 

Cross-validation of the model species resulted in the correct classification of 82% and 74% of 
the genera as sensitive or tolerant for respectively narcosis and AChE inhibiting chemicals 
(Figure 3.1). For narcosis, the Diptera Paratanytarsus and Mochlonyx, the Odonata 
Ophiogompus, the Ephemeroptera Siphlonurus, the Gastropoda Aplexa, and the Annelida 
Chaetogaster were misclassified (predicted on the wrong side of the zero line). For AChE 
inhibition, incorrect predictions were made in only two taxonomic groups, the Diptera 
Glyptotendipes, Paratanytarsus, Tanytarsus, and the Odonata Anax, Crocothemis, 
Ophiogompus and Orthetrum.  
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Table 3.2. Predictive models constructed for narcotic and AChE inhibiting chemicals, in- and 
excluding taxonomy. Taxonomic predictors are indicated with a V. See Figures S3.3 and S3.4 
for a visualization of the predictors incorporated in the taxonomy & traits models. 

MOA Type of model Model Adj. 
R2 

p - value 

Narcosis Taxonomy & 
traits 

MSS = -0.44 + 1.63 * V14 – 1.95 * V2 + 0.32 
* respiration mode + 1.27 * V4 

0.47 < 0.001 

 Taxonomy-
only 

MSS = 0.16 + 1.66 * V4 + 1.64 * V14 + 1.16 
* V5 – 1.14 * V2 

0.42 < 0.001 

 Traits-only MSS =  0.04 – 0.25 * dispersal mode + 0.39 
* respiration mode 

0.20 0.011 
 

AChE 
inhibition 

Taxonomy & 
traits 

MSS = 0.74 + 2.94 * V7 – 1.62 * V3 – 1.04 
* V13 – 0.29 * respiration mode 

0.62 < 0.001 

 Taxonomy-
only 

MSS = 0.19 + 2.61 *V7 + 0.9 * V10 – 0.88 
* V1 – 0.86 * V3 

0.61 < 0.001 

 Traits-only MSS =  6.93 – 0.84 * life cycle duration – 
1.13 * cycles per year– 0.17 * feeding mode 
– 0. 78 * temperature preferendum 

0.4 0.004 

 

Figure 3.1. Observed MSS values (filled squares) and values predicted (unfilled circles) using 
traits and taxonomy according to the best models for (a) narcotic (b) and AChE inhibiting 
chemicals. Dendrograms show the taxonomic relationship between species according to class, 
family, order, and genus. 
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3.3.2 European freshwater ecoregions 

Data availability. 

For the ER communities, taxonomic data was available for 97% of the species, and covered 
four crustacean orders (Amphipoda, Anostraca, Decopoda, and Isopoda), and six insect orders 
(Coleoptera, Diptera, Ephemeroptera, Lepidoptera, Plecoptera and Trichoptera). Figure S3.5 
shows the taxonomic composition of all ERs at the order level. For 19% of these species there 
was no or incomplete trait data available, leading to the exclusion of these species from our 
analysis. Of the remaining species, only around 5% had toxicity data available. We therefore 
had to predict the sensitivity of around 95% of the species for which no toxicity data was 
available using the taxonomy & traits models for narcosis and AChE inhibition.  

Taxonomic pattern.  

On the continental scale, 46 and 33% of the species were found sensitive (MSS < 0) towards 
narcotic and AChE inhibiting chemicals, respectively. For narcotic chemicals, 18 families 
contained only genera predicted as sensitive. Among these 18 families were all families 
belonging to the order of Isopoda (1 family), as well as a part of the Amphipoda (1 family), 
Plecoptera (6), and Trichoptera (10) families included in our study (Table S3.1). Five families 
contained both sensitive and tolerant genera. Four of these families belonged to the order of the 
Trichoptera, and one to the order of Lepidoptera. The remaining 25 families were predicted to 
only contain tolerant genera (MSS > 0), and included all of the families belonging to the order 
of Anostraca (1 family), Decapoda (5), Diptera (1), and Ephemeroptera (12), as well as the 
remaining Amphipoda (2 families), Plecoptera (1), and Trichoptera (3) families included in this 
study (Table S3.2).  

For AChE inhibiting chemicals, there was little variation in sensitivity of the genera belonging 
to the same family, and the whole family was either predicted to contain only sensitive (MSS 
< 0) or only tolerant (MSS > 0) genera. All genera belonging to the order of the Trichoptera 
and all genera belonging to the family of the Gammaridae were predicted as sensitive (Table 
S3.3), while all other families included in this study were predicted to contain only tolerant 
genera (Table S3.4).  

Geographical pattern.  

For both MOAs, we noticed that the South of Europe (e.g. ER 1) has the highest proportion of 
sensitive species (MSS < 0), whilst Iceland (ER 19) is the ecoregion containing the lowest 
proportion of sensitive species (Figure 3.2). Central Europe (e.g. ER 14) contains the lowest 
percentages of sensitive species. ER 6 contains the largest percentage (57%) of species sensitive 
to narcotic chemicals, whilst ER 24 contains the largest percentage (45%) of species sensitive 
to AChE inhibiting chemicals.  
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When comparing the assigned sensitivity class of each ER for the two MOAs, we find that 8 of 
the 25 ERs were grouped into the same class for both MOAs (ER 1, 3, 5, 11, 18, 19, 21, 24, 
Figure S3.5). ER 2, 4, and 6 -10 were classified one or two classes lower for sensitivity towards 
AChE inhibiting chemicals compared to sensitivity towards narcotic chemicals, whilst the 
opposite was true for ER 12 -17, 20, 22, 23, and 25 (Figure S3.6).  

 

Figure 3.2. Percentage of sensitive taxa (MSS < 0) to narcotic (a) and AChE inhibiting (b) 
chemicals in European freshwater ecoregions. The numbers refer to the ecoregion number (ER 
1 through ER 25).
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3.3.3 RIVPACS river types 

Data availability.  

For the RIVPACS end-group communities, taxonomic data was available for 98% of the 
species. To ensure that model predictions did not trespass the taxonomic range on which the 
model was calibrated, any phylum that was not represented by one of the model species was 
removed from the analysis. Consequently, sensitivity towards narcotic chemicals was predicted 
for genera belonging to the phyla Annelida, Mollusca, and Arthropoda, whilst sensitivity 
towards AChE inhibiting chemicals was predicted only for Arthropoda. Coincidentally, in case 
of both datasets (Annelida, Mollusca, and Arthropoda, versus Arthropoda only), 34% of the 
species had no or incomplete traits data available, leading to the exclusions of these species 
from the analysis. Of the remaining species, less than 10% had toxicity data available. We 
therefore had to predict the sensitivity of 90% of the species for which no toxicity data was 
available using the taxonomy & traits models for narcosis and AChE inhibition. 

Taxonomic pattern.  

Within the UK, 38, and 25% of the species were found sensitive (MSS < 0) to narcotic and 
AChE inhibiting chemicals respectively. For narcotic chemicals, 37 families contained only 
genera predicted as sensitive, with an MSS value below zero. Among these 37 families were 
all families belonging to the order of Annelida (9 families), Isopoda (1), and Odonata (7), as 
well as a part of the Amphipoda (1), Plecoptera (6), Trichoptera (8), and Gastropoda (5) families 
included in our study (Table S3.5). Four families contained both sensitive and tolerant genera, 
all of them belonging to the order of Trichoptera. The 49 remaining families were predicted to 
only contain tolerant genera, with an MSS value above zero. Among them were all families 
belonging to the order of Arguloida (1 family), Coleoptera (7), Decapoda (1), Diptera (5), 
Ephemeroptera (9), Hemiptera (7), Lepidoptera (1), Megaloptera (1), Neuroptera (2), and 
Bivalvia (4), as well as the remaining Amphipoda (3), Plecoptera (1), Trichoptera (3), and 
Gastropoda (4) families (Table S3.6). 

For AChE inhibiting chemicals, there was little variation in sensitivity of the genera belonging 
to the same family, and, as for the ER assemblages, the whole family was either predicted to 
only contain sensitive (MSS < 0) or tolerant (MSS > 0) genera. In total, 25 families contained 
genera that were all predicted as sensitive. This encompassed all families belonging to the order 
of Trichoptera (15 families), as well as a part of the Amphipoda (1), Diptera (2), Neuroptera 
(1), and Odonata (6) families (Table 3.8). The remaining 43 Arthropod families were predicted 
to only contain tolerant species, and included all Arguloida (1 family), Coleoptera (7), 
Decapoda (1), Ephemeroptera (9), Hemiptera (7), Isopoda (1), Lepidoptera (1), Megaloptera 
(1), and Plectopera (7), as well as the rest of the Amphipoda (3), Diptera (3), Neuroptera (1), 
and Odonata (1) families (Table S3.7). 
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Geographical pattern.  

Considering the RIVPACS sites, geographical patterns show opposite results for the two MOAs 
(Figure 3.3). Regions containing more species sensitive towards narcotic chemicals were 
observed in the west and north of the UK, while regions containing more species sensitive 
towards AChE inhibiting chemicals were found in the south, south-west of the UK (Figure 
3.3). RIVPACS sites located in small to intermediate lowland streams contained more sensitive 
species towards AChE inhibiting chemicals (super-groups 3, 4 and primarily 5, boxplots Figure 
3.3), whilst for narcotic chemicals most sensitive species were found at sites located in upland 
rivers, mainly located in Scotland and Northern England (super-groups 1 and 2, boxplots 
Figure 3.3). For both MOAs, larger, lowland streams located in South-East England (super-
group 7), contained the smallest percentage of sensitive species. 

 

Figure 3.3. Map of the UK showing the percentage of sensitive taxa (MSS < 0) present at all 
RIVPACS sites, and boxplots of the percentage of sensitive species (MSS < 0) present in each 
RIVPACS super-group to narcotic and AChE inhibiting chemicals. Letters in boxplots indicate 
significant differences (p < 0.05). 
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3.4 Discussion 

3.4.1 Traits and taxonomic predictor selection, and how this can be improved 

For both MOAs, mode of respiration was selected as an important trait for explaining species 
sensitivity (Table 3.2). Several studies have investigated the relationship between respiration 
and AChE inhibiting chemicals before (Buchwalter, Jenkins et al. 2002, Rubach, Baird et al. 
2010, Rubach, Baird et al. 2012, Rico and Van den Brink 2015, Van den Berg, Baveco et al. 
2019), and have frequently found respiration important for determining species sensitivity, 
primarily due to an influence of respiration mode on uptake rates. The relationship between 
narcosis and respiration has been studied less, and there is to our knowledge only one study 
available that performed an analysis with narcotic chemicals (Van den Berg, Baveco et al. 
2019). The result of that study closely aligns with ours, undoubtedly due to the large overlap in 
the data included in both studies.  

We find that combining traits with taxonomic information results in models with increased 
predictive power, although only marginal (Table 3.2). Previous studies likewise emphasize the 
importance of complementing traits approaches with taxonomic approaches (Poff, Olden et al. 
2006, Poteat, Jacobus et al. 2015, Pilière, Verberk et al. 2016). For example, Pilière and 
colleagues (2016) used boosted regression tree modelling to assess the environmental responses 
of single traits, orders and trait profile groups. They found that taxa belonging to the same trait 
profile group but to different orders showed different environmental responses. Similarly, they 
found that taxa belonging to the same order but to different trait profile groups showed different 
environmental responses (Pilière, Verberk et al. 2016). This indicates that unique information 
related to the evolutionary history was captured by the order of a taxon, whilst another part was 
captured by the trait set of a taxon. We find a similar result in our study, where the taxonomy-
only model explaining sensitivity towards narcotic chemicals has an explanatory power of 0.42. 
This explanatory power increases to 0.46 when traits are included (Table 3.2). For AChE 
inhibition we see a similar result, although there the increase is only from 0.61 to 0.62 (Table 
3.2). Although the increase of predictive power is only slight, the increase in mechanistic 
explanation is large, since the traits reveal mechanistic information regarding species 
sensitivity, and the taxonomic predictors point out taxa which show a different response to the 
chemical. The taxonomic predictors can thereby focus future research on finding the actual 
mechanisms that are different between these taxa. For this reason, both traits and taxonomy 
should be taken into consideration simultaneously for maximum benefit to risk assessment.  

Although our models already show a good fit on the available data (Table 3.2), we anticipate 
that technological advances both in molecular and computational technologies will lead to an 
improvement of our models over time. Applying sophisticated molecular approaches can help 
with resolving the taxonomy of currently still problematic organism groups, for instance, by 
increasingly basing taxonomy on DNA markers, ideally replacing taxonomy completely by 
phylogenetics in due time (Hebert, Cywinska et al. 2003). Additionally, basing phylogenetic 
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trees on key target genes associated with Adverse Outcome Pathways (AOPs) might 
substantially improve phylogenetic predictive models for application in ecotoxicology 
(LaLone, Villeneuve et al. 2013). Furthermore, our models could improve with increased 
computing power. Due to memory limitations and the structure of currently existing model 
selection algorithms, we had to restrict the number of predictors going into the model selection 
process. However, since we maintain strict rules to avoid overfitting (e.g. the use of AICc as a 
model selection criterion and the use of a multivariate approach for the taxonomic predictors), 
it would be possible to add more predictors to the model without increasing the chance of 
overfitting.  

3.4.2 Sensitivity patterns at European scale 

At the continental scale, we predict that around half of the species are sensitive (MSS < 0) 
towards narcotic chemicals. This matches our expectations, since MSS is a relative value, and 
there is not any taxonomic group known that is particularly sensitive towards narcotic 
compounds (Escher and Hermens 2002). For AChE inhibiting chemicals we predict around one 
third of the arthropod species to be sensitive (MSS < 0). This is less than found in the sensitivity 
ranking of Rico and Van den Brink (Rico and Van den Brink 2015), where on average 70% of 
the Arthropoda were found sensitive towards AChE inhibiting chemicals (organophosphates 
and carbamates). However, this difference likely originates from the fact that Rico and Van den 
Brink (2015) also included non-arthropod species. Since MSS is a relative value, and arthropod 
species are the most sensitive group towards AChE inhibiting chemicals, including non-
arthropod species will result in relatively more sensitive arthropod species.  

Considering both MOAs, our predictions show that river basins in central Europe contain fewer 
sensitive species than those situated in the south (Figure 3.2). We reason that this results from, 
on the one hand, chemical exposure patterns before and during the period that Illies recorded 
the community composition of the ERs (Illies 1978), and on the other hand, from more ancient 
phylogeographical and ecological processes. Indeed, the pattern we find coincides with the 
emission pattern of multiple persistent organic contaminants commonly used in the 1960s, 
around the time when Illies was constructing his species database (Illies 1978). Chemicals like 
DDT (Dichloro-diphenyl-trichloroethane, Stemmler and Lammel 2009), lindane (Prevedouros, 
MacLeod et al. 2004), mercury (Pacyna, Pacyna et al. 2003), and PCDFs (polychlorinated 
dibenzofurans, Pacyna, Breivik et al. 2003) were more extensively used in central Europe, 
potentially reducing the occurrence of more sensitive species in those regions. However, we 
think that chemical exposure was not the main determinant for species composition, primarily 
because Moog and colleagues demonstrated that different ERs could always be differentiated 
from each other based on their community composition, even when heavily impacted by 
chemical stress (Moog, Schmidt-Kloiber et al. 2004). Therefore, we argue that the main cause 
for the geographical pattern we see lies in the phylogeography of Europe, in which extreme 
climatic events wipe out more sensitive species, and mountainous regions consecutively serve 
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as refugia and biodiversity hotspots (Rahbek, Borregaard et al. 2019, Rahbek, Borregaard et al. 
2019). During the last ice age, glaciers covered the majority of northern Europe, forcing most 
species towards refugia present in southern Europe or to ice free parts of high mountain areas 
(e.g. Schmitt and Varga 2012). Indeed, there is a large overlap in biodiversity hotspots 
(Mittermeier, Myers et al. 1998, Médail and Quézel 1999, Rahbek, Borregaard et al. 2019) or 
so-called regions of large endemism (Deharveng, Dalens et al. 2000), with regions containing 
the highest percentage of sensitive species (Figure 3.2). Then after the last ice age, species 
recolonized northern Europe from these southern refugia, which is confirmed by the fact that 
almost all species occurring in northern European are also present in central and/or southern 
Europe (Hering, Schmidt-Kloiber et al. 2009). The relatively higher sensitivity of ER 22 and 
15 (especially towards AChE inhibiting chemicals, Figure 3.2) can be explained due to 
migration of more sensitive species from Siberian refugia, e.g. located in the Ural mountains 
(Bernard, Heiser et al. 2011, Schmitt and Varga 2012). 

3.4.3 Sensitivity patterns at UK scale 

We see that certain biases in the underlying data are revealed in the sensitivity patterns we find 
for the UK. For instance, at a national scale, fewer species were considered sensitive compared 
to the continental scale, both towards narcotic and AChE inhibiting chemicals. We think this is 
caused by the interaction of two things. First, our models are biased in predicting entire families 
as sensitive or tolerant, in some cases resulting in entire phyla being predicted as sensitive or 
tolerant. Second, the RIVPACS communities are taxonomically uneven at genus level, the level 
we used to predict species sensitivity. Indeed, dipterans make up around 40% of all genera 
present which all are predicted to be tolerant towards the two MOAs. In this case, the taxonomic 
unevenness at genus level specifically, has a large influence on the percentage of species 
sensitive at the national scale. When we compare the ER and RIVPACS results at the family 
level, results between the two datasets are more consistent. For instance, for the ER dataset we 
predict that 33, 59, and 86% of respectively Amphipoda, Trichoptera, and Plecoptera families 
were sensitive towards narcotic compounds. This was 25, 53, and 86% of the families in the 
same orders in the RIVPACS dataset.  

The geographical distribution of sensitive species throughout the United Kingdom is less 
pronounced than at a European level, although the opposing results of the RIPVAC super-
groups towards the two MOAs studied is striking. This contradictory result corresponds with 
the study of Van den Berg et al. (2019), where an inclusive database approach reveals large 
differences in species sensitivity depending on MOA. Their study shows that AChE and 
narcosis are on opposing ends of a dendrogram clustered on a matrix of species sensitivity 
towards six diverse MOAs, indicating that AChE and narcosis show the largest differences in 
species sensitivity among all MOAs tested. Additionally, we found alternative explanations that 
could explain the contradicting geographical patterns we found for the two MOAs. 
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As an explanation for the geographical pattern for narcotic compounds, we find a large overlap 
between hotspots of sensitivity towards narcotic toxicants and conservation areas in the UK 
(e.g. with Special Areas of Conservation, Special Protection Areas, Sites of Special Scientific 
Interest, (Gaston, Charman et al. 2006)). It is known that protected areas serve as establishment 
centres, enabling the colonization of new regions by species that are shifting their geographical 
ranges (Thomas, Gillingham et al. 2012, Hiley, Bradbury et al. 2013). Although all RIVPACS 
sites are considered reference sites and have been selected because of low anthropogenic 
influence, our results show that whether these sites are included in or near to a conservational 
area leads to a higher support of sensitive species, likely due to an increased landscape and 
habitat heterogeneity. 

As an explanation for the geographical pattern for AChE inhibiting compounds, the larger 
differences between the sensitivity of super-groups towards AChE inhibiting chemicals 
demonstrates that species sensitive towards AChE inhibition were more differentiated 
according to river type (i.e. the abiotic preferences of the species) than according to the 
availability of conservation areas. Additionally, the finding that the North to South pattern that 
we found at a European level was not noticeably present at the UK level is probably due to 
smaller differences in environmental factors (e.g. temperature, precipitation) when considering 
the UK only, compared to when the whole of Europe is considered. 

3.4.4 Implications and outlook 

Our analysis indicates that not only the taxonomic resolution of available trait databases is 
crucial, also the resolution of the (taxonomic) model is important. Additionally, we are 
confident that our models will improve in the near future, for instance by the replacement of 
the taxonomic tree with a phylogenetic tree based on validated biomarkers (for instance, as in 
Simões, Novais et al. 2019). In that case, the successful application of our suggested approach 
is mainly limited by access to raw biological data (e.g. species abundance), which is currently 
still problematic because governmental agencies provide ecological status information based 
on general indices rather than species counts. Providing access to raw data, along with clear 
metrics on the quality of that data, would foster our understanding of the links between 
anthropogenic stressors and populations or communities. Subsequently combining this effect 
data with chemical concentration data would be the next logical step, and would require 
chemical concentration data be made widely available by governmental agencies.  

The current analysis provides an important new chapter in the development of environmental 
scenarios that can be used for the environmental risk assessment of chemicals at larger 
geographical scales (Franco, Price et al. 2016, Rico, Van den Brink et al. 2016). Our work is 
the first attempt to apply sensitivity models on community assemblage data previously grouped 
according to both biotic and abiotic parameters (e.g. invertebrate community composition, 
water depth, alkalinity and temperature, Davy-Bowker, Clarke et al. 2008). This combination 
of both biological and spatial data is required to successfully characterize exposure, effects and 
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recovery of aquatic non-target species under realistic worst-case conditions. Currently, 
mismatches exist between parameter values and spatial-temporal scales of ecological models 
used to predict potential effects of chemicals (Rico, Van den Brink et al. 2016). Our approach 
contributes to solving this mismatch by simultaneously incorporating biological and 
environmental factors.  

In addition to this, the inclusion of traits in our models leads to an increased mechanistic 
understanding of cause-effect relationships, and allows for the application across wide 
biogeographical regions. This extrapolation enables, for instance, the comparison of ecological 
status across countries or regions that have so far remained unmonitored due to practical reasons 
(e.g. remote regions). Also, patterns across wide geographical scales can easily be compared 
with other studies to reveal regions where multiple stressors might be causing an effect 
simultaneously (e.g. Figure S3.6). Take, for instance, the potential impact of climate change on 
aquatic insects. Hering et al. (2009) show that southern European regions contain the highest 
fraction of species sensitive towards climate change. Since this largely overlaps with the regions 
we found to be most sensitive towards chemical stressors (Figure 3.2), there might be an 
increased overall effect on aquatic communities due to an unexpected interaction between 
climate change and chemical stress. In the north-east of Europe, a similar amplification effect 
may occur due to an overlap in regions with a relatively high chemical sensitivity (Figure 3.2), 
and predicted increased potential of harmful arthropod pest invasions (Bacon, Aebi et al. 2014).  

Finally, our study demonstrates that sensitivity towards chemical stressors is spatially variable, 
and that although entire regions can be considered relatively tolerant, there might still be certain 
river reaches with a large percentage of sensitive species. Applied at relevant geographic scales, 
the methodology described in this study has demonstrated the potential to identify hotspots of 
sensitive species for given chemical classes. When applied to current risk assessment 
approaches, this will both increase the biological realism of assessments, and reduce the need 
for overly conservative assessment factors.  
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Figure S3.1. Measured MSS values plotted against predicted MSS values using the best model 
found for the narcosis dataset including the two leverage points. The red circle surrounds the 
two leverage points. The two leverage points lie exactly on the same spot.  

 

Figure S3.2. Measured MSS values plotted against predicted MSS values using the best model 
found for the narcosis dataset without the two leverage points. 
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Figure S3.3. Visualization of the predictors incorporated in the best traits & taxonomy model 
for the narcosis dataset. The loadings of the taxonomic predictors and the trait values of the trait 
predictors are indicated for each genus on the taxonomic tree. 

 

Figure S3.4. Visualization of the predictors incorporated in the best traits & taxonomy model 
for the AChE inhibtion dataset. The loadings of the taxonomic predictors and the trait values of 
the trait predictors are indicated for each genus on the taxonomic tree. 
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Figure S3.5. Taxonomic composition of ERs at order level. 

 

Figure S3.6. Relative sensitivity of the ERs towards the two MOAs tested. 
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Figure S3.7. Correlation plot between the relative sensitivity (MSS) of species tested towards 
AChE inhibiting and narcotic chemicals. Each point indicates a different species.  
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Table S3.1. Number of genera from the European freshwater ecoregions predicted sensitive 
towards narcotic compounds. Each column indicates the order the genera belong to, whilst 
each row indicates the family. Shaded rows indicate that the family includes both sensitive and 
tolerant genera. The final row indicates the number of sensitive families per order. 
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Apataniidae 0 0 0 0 1 
Asellidae 0 2 0 0 0 
Beraeidae 0 0 0 0 2 
Brachycentridae 0 0 0 0 2 
Capniidae 0 0 0 2 0 
Chloroperlidae 0 0 0 3 0 
Crambidae 0 0 1 0 0 
Ecnomidae 0 0 0 0 1 
Gammaridae 2 0 0 0 0 
Glossosomatidae 0 0 0 0 4 
Helicopsychidae 0 0 0 0 1 
Hydropsychidae 0 0 0 0 1 
Hydroptilidae 0 0 0 0 8 
Leptoceridae 0 0 0 0 4 
Leuctridae 0 0 0 2 0 
Limnephilidae 0 0 0 0 6 
Nemouridae 0 0 0 4 0 
Perlodidae 0 0 0 6 0 
Philopotamidae 0 0 0 0 3 
Polycentropodidae 0 0 0 0 6 
Psychomyiidae 0 0 0 0 4 
Taeniopterygidae 0 0 0 2 0 
Uenoidae 0 0 0 0 1 

Number of families 1 1 1 6 14 
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Table S3.2. Number of genera from the European freshwater ecoregions predicted tolerant 
towards narcotic compounds. Each column indicates the order the genera belong to, whilst 
each row indicates the family. Shaded rows indicate that the family includes both sensitive and 
tolerant genera. The final row indicates the number of sensitive families per order. 
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Ameletidae 0 0 0 0 1 0 0 0 
Artemiidae 0 1 0 0 0 0 0 0 
Astacidae 0 0 3 0 0 0 0 0 
Atyidae 0 0 1 0 0 0 0 0 
Baetidae 0 0 0 0 5 0 0 0 
Beraeidae 0 0 0 0 0 0 0 1 
Caenidae 0 0 0 0 2 0 0 0 
Cambaridae 0 0 2 0 0 0 0 0 
Chironomidae 0 0 0 122 0 0 0 0 
Corophiidae 1 0 0 0 0 0 0 0 
Crambidae 0 0 0 0 0 2 0 0 
Crangonyctidae 1 0 0 0 0 0 0 0 
Ephemerellidae 0 0 0 0 2 0 0 0 
Ephemeridae 0 0 0 0 1 0 0 0 
Goeridae 0 0 0 0 0 0 0 4 
Heptageniidae 0 0 0 0 5 0 0 0 
Hydropsychidae 0 0 0 0 0 0 0 2 
Leptoceridae 0 0 0 0 0 0 0 4 
Leptophlebiidae 0 0 0 0 6 0 0 0 
Limnephilidae 0 0 0 0 0 0 0 2 
Odontoceridae 0 0 0 0 0 0 0 1 
Oligoneuriidae 0 0 0 0 1 0 0 0 
Perlidae 0 0 0 0 0 0 2 0 
Phryganeidae 0 0 0 0 0 0 0 2 
Polymitarcyidae 0 0 0 0 1 0 0 0 
Potamanthidae 0 0 0 0 1 0 0 0 
Potamidae 0 0 1 0 0 0 0 0 
Prosopistomatidae 0 0 0 0 1 0 0 0 
Siphlonuridae 0 0 0 0 1 0 0 0 
Varunidae 0 0 1 0 0 0 0 0 

Number of families 2 1 5 1 12 1 1 7 
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Table S3.3. Number of genera from the European freshwater ecoregions predicted sensitive 
towards AChE inhibiting compounds. Each column indicates the order the genera belong to, 
whilst each row indicates the family. The final row indicates the number of sensitive families 
per order. 
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Apataniidae 0 1 
Beraeidae 0 3 
Brachycentridae 0 2 
Ecnomidae 0 1 
Gammaridae 2 0 
Glossosomatidae 0 4 
Goeridae 0 4 
Helicopsychidae 0 1 
Hydropsychidae 0 3 
Hydroptilidae 0 8 
Leptoceridae 0 8 
Limnephilidae 0 8 
Odontoceridae 0 1 
Philopotamidae 0 3 
Phryganeidae 0 2 
Polycentropodidae 0 6 
Psychomyiidae 0 4 
Uenoidae 0 1 

Number of families 1 17 
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Table S3.4. Number of genera from the European freshwater ecoregions predicted tolerant 
towards AChE inhibiting compounds. Each column indicates the order the genera belong to, 
whilst each row indicates the family. The final row indicates the number of sensitive families 
per order. 
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Ameletidae 0 0 0 0 1 0 0 0 
Artemiidae 0 1 0 0 0 0 0 0 
Asellidae 0 0 0 0 0 2 0 0 
Astacidae 0 0 3 0 0 0 0 0 
Atyidae 0 0 1 0 0 0 0 0 
Baetidae 0 0 0 0 5 0 0 0 
Caenidae 0 0 0 0 2 0 0 0 
Cambaridae 0 0 2 0 0 0 0 0 
Capniidae 0 0 0 0 0 0 0 2 
Chironomidae 0 0 0 122 0 0 0 0 
Chloroperlidae 0 0 0 0 0 0 0 3 
Corophiidae 1 0 0 0 0 0 0 0 
Crambidae 0 0 0 0 0 0 3 0 
Crangonyctidae 1 0 0 0 0 0 0 0 
Ephemerellidae 0 0 0 0 2 0 0 0 
Ephemeridae 0 0 0 0 1 0 0 0 
Heptageniidae 0 0 0 0 5 0 0 0 
Leptophlebiidae 0 0 0 0 6 0 0 0 
Leuctridae 0 0 0 0 0 0 0 2 
Nemouridae 0 0 0 0 0 0 0 4 
Oligoneuriidae 0 0 0 0 1 0 0 0 
Perlidae 0 0 0 0 0 0 0 2 
Perlodidae 0 0 0 0 0 0 0 6 
Polymitarcyidae 0 0 0 0 1 0 0 0 
Potamanthidae 0 0 0 0 1 0 0 0 
Potamidae 0 0 1 0 0 0 0 0 
Prosopistomatidae 0 0 0 0 1 0 0 0 
Siphlonuridae 0 0 0 0 1 0 0 0 
Taeniopterygidae 0 0 0 0 0 0 0 2 
Varunidae 0 0 1 0 0 0 0 0 

Number of families 2 1 5 1 12 1 1 7 
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Table S3.5. Number of genera from RIVPACS predicted sensitive towards narcotic 
compounds. Each column indicates the order the genera belong to, whilst each row indicates 
the family. Shaded rows indicate that the family includes both sensitive and tolerant genera. 
The final row indicates the number of sensitive families per order. 
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Acroloxidae 0 1 0 0 0 0 0 0 0 
Aeshnidae 0 0 0 0 0 0 2 0 0 
Ancylidae 0 1 0 0 0 0 0 0 0 
Apataniidae 0 0 0 0 0 0 0 0 1 
Asellidae 0 0 0 0 1 0 0 0 0 
Beraeidae 0 0 0 0 0 0 0 0 1 
Brachycentridae 0 0 0 0 0 0 0 0 1 
Calopterygidae 0 0 0 0 0 0 1 0 0 
Capniidae 0 0 0 0 0 0 0 1 0 
Chloroperlidae 0 0 0 0 0 0 0 1 0 
Coenagrionidae 0 0 0 0 0 0 5 0 0 
Cordulegastridae 0 0 0 0 0 0 1 0 0 
Ecnomidae 0 0 0 0 0 0 0 0 1 
Enchytraeidae 0 0 1 0 0 0 0 0 0 
Erpobdellidae 0 0 0 3 0 0 0 0 0 
Gammaridae 1 0 0 0 0 0 0 0 0 
Glossiphoniidae 0 0 0 5 0 0 0 0 0 
Glossosomatidae 0 0 0 0 0 0 0 0 2 
Gomphidae 0 0 0 0 0 0 1 0 0 
Haemopidae 0 0 0 1 0 0 0 0 0 
Hydropsychidae 0 0 0 0 0 0 0 0 1 
Hydroptilidae 0 0 0 0 0 0 0 0 4 
Leptoceridae 0 0 0 0 0 0 0 0 2 
Leuctridae 0 0 0 0 0 0 0 1 0 
Libellulidae 0 0 0 0 0 0 2 0 0 
Limnephilidae 0 0 0 0 0 0 0 0 6 
Lumbricidae 0 0 1 0 0 0 0 0 0 
Lumbriculidae 0 0 0 0 0 1 0 0 0 
Lymnaeidae 0 4 0 0 0 0 0 0 0 
Naididae 0 0 12 0 0 0 0 0 0 
Nemouridae 0 0 0 0 0 0 0 4 0 
Perlodidae 0 0 0 0 0 0 0 3 0 
Philopotamidae 0 0 0 0 0 0 0 0 3 
Physidae 0 3 0 0 0 0 0 0 0 
Piscicolidae 0 0 0 1 0 0 0 0 0 
Planorbidae 0 8 0 0 0 0 0 0 0 
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Platycnemididae 0 0 0 0 0 0 1 0 0 
Polycentropodidae 0 0 0 0 0 0 0 0 5 
Propappidae 0 0 1 0 0 0 0 0 0 
Psychomyiidae 0 0 0 0 0 0 0 0 4 
Taeniopterygidae 0 0 0 0 0 0 0 2 0 

Number of families 1 5 4 4 1 1 7 6 12 
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Table S3.6. Number of genera from RIVPACS predicted tolerant towards narcotic 
compounds. Each column indicates the order the genera belong to, whilst each row indicates 
the family. Shaded rows indicate that the family includes both sensitive and tolerant genera. 
The final row indicates the number of sensitive families per order. 
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Ameletidae 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Argulidae 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Astacidae 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Athericidae 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
Baetidae 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 
Beraeidae 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Bithyniidae 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Caenidae 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 
Chaoboridae 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
Chironomidae 0 0 0 0 87 0 0 0 0 0 0 0 0 0 0 
Chrysomelidae 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
Corixidae 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 
Corophiidae 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Crambidae 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
Crangonyctidae 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Culicidae 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
Dixidae 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 
Dreissenidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
Dytiscidae 0 0 18 0 0 0 0 0 0 0 0 0 0 0 0 
Ephemerellidae 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Ephemeridae 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Gerridae 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Goeridae 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 
Helophoridae 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
Heptageniidae 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 
Hydraenidae 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 
Hydrobiidae 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Hydrochidae 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
Hydrometridae 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Hydrophilidae 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 
Hydropsychidae 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 
Leptoceridae 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 
Leptophlebiidae 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 
Limnephilidae 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 



Potential impact of chemical stress on freshwater invertebrates |   67   

 

Margaritiferidae 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
Mesoveliidae 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Nepidae 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Niphargidae 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Notonectidae 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Odontoceridae 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
Osmylidae 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
Perlidae 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 
Phryganeidae 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 
Potamanthidae 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Scirtidae 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 
Sialidae 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Siphlonuridae 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Sisyridae 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
Sphaeriidae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
Unionidae 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 
Valvatidae 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Veliidae 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Viviparidae 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Number of families 3 1 7 1 5 9 4 7 1 1 2 1 7 2 2 
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Table S3.7. Number of genera from RIVPACS predicted tolerant towards AChE inhibiting 
compounds. Each column indicates the order the genera belong to, whilst each row indicates 
the family. The final row indicates the number of sensitive families per order. 
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Ameletidae 0 0 0 0 0 1 0 0 0 0 0 0 0 
Argulidae 0 1 0 0 0 0 0 0 0 0 0 0 0 
Asellidae 0 0 0 0 0 0 0 1 0 0 0 0 0 
Astacidae 0 0 0 1 0 0 0 0 0 0 0 0 0 
Athericidae 0 0 0 0 1 0 0 0 0 0 0 0 0 
Baetidae 0 0 0 0 0 4 0 0 0 0 0 0 0 
Caenidae 0 0 0 0 0 2 0 0 0 0 0 0 0 
Capniidae 0 0 0 0 0 0 0 0 0 0 0 0 1 
Chironomidae 0 0 0 0 87 0 0 0 0 0 0 0 0 
Chloroperlidae 0 0 0 0 0 0 0 0 0 0 0 0 1 
Chrysomelidae 0 0 1 0 0 0 0 0 0 0 0 0 0 
Corixidae 0 0 0 0 0 0 5 0 0 0 0 0 0 
Corophiidae 1 0 0 0 0 0 0 0 0 0 0 0 0 
Crambidae 0 0 0 0 0 0 0 0 1 0 0 0 0 
Crangonyctidae 1 0 0 0 0 0 0 0 0 0 0 0 0 
Culicidae 0 0 0 0 1 0 0 0 0 0 0 0 0 
Dytiscidae 0 0 18 0 0 0 0 0 0 0 0 0 0 
Ephemerellidae 0 0 0 0 0 1 0 0 0 0 0 0 0 
Ephemeridae 0 0 0 0 0 1 0 0 0 0 0 0 0 
Gerridae 0 0 0 0 0 0 1 0 0 0 0 0 0 
Gomphidae 0 0 0 0 0 0 0 0 0 0 0 1 0 
Helophoridae 0 0 1 0 0 0 0 0 0 0 0 0 0 
Heptageniidae 0 0 0 0 0 3 0 0 0 0 0 0 0 
Hydraenidae 0 0 3 0 0 0 0 0 0 0 0 0 0 
Hydrochidae 0 0 1 0 0 0 0 0 0 0 0 0 0 
Hydrometridae 0 0 0 0 0 0 1 0 0 0 0 0 0 
Hydrophilidae 0 0 5 0 0 0 0 0 0 0 0 0 0 
Leptophlebiidae 0 0 0 0 0 3 0 0 0 0 0 0 0 
Leuctridae 0 0 0 0 0 0 0 0 0 0 0 0 1 
Mesoveliidae 0 0 0 0 0 0 1 0 0 0 0 0 0 
Nemouridae 0 0 0 0 0 0 0 0 0 0 0 0 4 
Nepidae 0 0 0 0 0 0 1 0 0 0 0 0 0 
Niphargidae 1 0 0 0 0 0 0 0 0 0 0 0 0 
Notonectidae 0 0 0 0 0 0 1 0 0 0 0 0 0 
Perlidae 0 0 0 0 0 0 0 0 0 0 0 0 2 
Perlodidae 0 0 0 0 0 0 0 0 0 0 0 0 3 
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Potamanthidae 0 0 0 0 0 1 0 0 0 0 0 0 0 
Scirtidae 0 0 3 0 0 0 0 0 0 0 0 0 0 
Sialidae 0 0 0 0 0 0 0 0 0 1 0 0 0 
Siphlonuridae 0 0 0 0 0 1 0 0 0 0 0 0 0 
Sisyridae 0 0 0 0 0 0 0 0 0 0 1 0 0 
Taeniopterygidae 0 0 0 0 0 0 0 0 0 0 0 0 2 
Veliidae 0 0 0 0 0 0 1 0 0 0 0 0 0 

Number of families 3 1 7 1 3 9 7 1 1 1 1 1 7 
 

Table S3.8. Number of genera from RIVPACS predicted sensitive towards AChE inhibiting 
compounds. Each column indicates the order the genera belong to, whilst each row indicates 
the family. The final row indicates the number of sensitive families per order. 
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Aeshnidae 0 0 0 2 0 
Apataniidae 0 0 0 0 1 
Beraeidae 0 0 0 0 2 
Brachycentridae 0 0 0 0 1 
Calopterygidae 0 0 0 1 0 
Chaoboridae 0 1 0 0 0 
Coenagrionidae 0 0 0 5 0 
Cordulegastridae 0 0 0 1 0 
Dixidae 0 2 0 0 0 
Ecnomidae 0 0 0 0 1 
Gammaridae 1 0 0 0 0 
Glossosomatidae 0 0 0 0 2 
Goeridae 0 0 0 0 2 
Hydropsychidae 0 0 0 0 3 
Hydroptilidae 0 0 0 0 4 
Leptoceridae 0 0 0 0 6 
Libellulidae 0 0 0 2 0 
Limnephilidae 0 0 0 0 7 
Odontoceridae 0 0 0 0 1 
Osmylidae 0 0 1 0 0 
Philopotamidae 0 0 0 0 3 
Phryganeidae 0 0 0 0 2 
Platycnemididae 0 0 0 1 0 
Polycentropodidae 0 0 0 0 5 
Psychomyiidae 0 0 0 0 4 

Number of families 1 2 1 6 15 
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Abstract 

Recently, mechanistic effect models have been suggested as an alternative to the statistical 
summaries (e.g. LC50s) that are currently being used to assess the potential risk of chemicals 
to the diversity of all living species. Examples of such quantitative mechanistic effect models 
are the toxicokinetic- toxicodynamic models of the General Unified Threshold models of 
Survival (GUTS) framework, which link external exposure and survival effects by describing 
the processes of uptake, biotransformation, elimination, damage and internal recovery. 
Parameterization of these models by means of traits enables prediction of standard sensitivity 
endpoints for a wide range of species and for multiple exposure patterns. In this study, the 
comparison of linear regressions between i) standard sensitivity endpoints (i.e. LC50 and EC50) 
and species traits, and between ii) GUTS parameters and species traits, shows that GUTS 
models parameterized on traits can approximate the sensitivity of freshwater arthropods 
towards the organophosphate chlorpyrifos, the pyrethroid lambda-cyhalothrin, and to a lesser 
extent, the neonicotinoid imidacloprid. We find that multiple quantitative links between traits 
and GUTS model parameters could be established, for instance, demonstrating that the uptake 
of chlorpyrifos is determined by lipid content and source of oxygen.  
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4.1 Introduction 

A key challenge in environmental risk assessment (ERA) is to assess the potential risk of 
chemicals to the wide range of species present in the environment based on laboratory toxicity 
data derived from a limited number of species. Since it is impossible to test all possible species-
chemical combinations in the lab, ERA must rely on modelling approaches to extrapolate 
known species sensitivities to realistic estimations of the effects of chemicals on the 
environment. One way to do this, is to make use of models which link species traits to a measure 
of sensitivity, so that in consequence the sensitivity of untested species can be predicted from 
the traits it possesses (e.g. Van den Berg, Baveco et al. 2019). 

A decade ago, it has been proposed that the inclusion of species traits in ERA could provide a 
useful description of natural species assemblages and has the potential to replace classical 
taxonomic approaches (Baird, Rubach et al. 2008, Van den Brink, Alexander et al. 2011). 
Indeed, trait-based approaches have proven powerful in explaining differences in species 
occurrence patterns in aquatic ecosystems caused by natural variation, as well as by 
anthropogenic impacts (see Table 1 in Culp, Armanini et al. 2011, and the references therein). 
Trait-based approaches in ERA rely on the mechanistic relationships between biological and 
ecological characteristics and species sensitivity to different types of stressors, such as chemical 
stress, hydrological extremes, habitat deterioration, and nutrient excess or limitation. Regarding 
chemical stressors, previous studies have found that traits explained up to 77% of the difference 
in species sensitivity towards insecticides (Rubach, Baird et al. 2010, Rico and Van den Brink 
2015). However, a more in-depth analysis of similar models constructed for a wider range of 
chemicals (e.g. baseline toxicants, neurotoxins) has proven that trait-based approaches are 
limited in their performance explaining standard sensitivity endpoints.(e.g. LC50, Van den 
Berg, Baveco et al. 2019) Whether this limit in model performance is due to the limitation of 
trait-based approaches in general, or due to the use of overall measures of sensitivity like EC50 
to describe intrinsic species sensitivity instead of their underlying processes (Jager 2011), 
remains unclear.  

In the past, quantitative mechanistic effect models have been suggested as an alternative for 
standard sensitivity endpoints like LC50 and EC50 (Jager, Heugens et al. 2006). Examples of 
such process-based models are the toxicokinetic (TK)- toxicodynamic (TD) models of the 
General Unified Threshold models of Survival (GUTS) framework, which describe the 
underlying processes of sensitivity. These models link external exposure and effects on survival 
by describing dynamically the process of TK (uptake, biotransformation, and elimination) and 
TD (damage/hazard, internal recovery and thresholds), and when fully parameterized on 
experimental data, are able to predict standard sensitivity endpoints (e.g. LC50) for any given 
time point, as well as for any given exposure pattern (EFSA Panel on Plant Protection Products 
and their Residues, Ockleford et al. 2018). There is a growing recognition that the use of such 
mechanistic approaches in ERA may improve predictive and extrapolative power of simple 
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statistical models which are currently applied for the analysis of effects in toxicity testing. 
Indeed, GUTS models have recently been endorsed by EFSA for their possible use in regulatory 
risk assessment (EFSA Panel on Plant Protection Products and their Residues, Ockleford et al. 
2018). One of the remaining limiting factors for the more frequent use of GUTS modelling is 
that parameters still need to be calibrated on experimental data for any new species-compound 
combination. If it would be possible to parameterize GUTS models in an alternative way, i.e. 
without performing experiments but instead by predicting its parameters using traits-based 
models, this would enable prediction of standard sensitivity endpoints for a wide species range 
and for multiple exposure patterns. 

Rubach and colleagues (2011) constructed a framework connecting traits with mechanistic 
effect models (Figure 2 in Rubach, Ashauer et al. 2011), and argued that trait-parameterized 
mechanistic effect models can be used to predict intrinsic sensitivity. In a follow-up study, they 
applied the developed framework to a simplified one-compartment first-order kinetic model, 
dynamically describing the uptake (kin) and elimination (kout) rates of chlorpyrifos for fifteen 
aquatic invertebrate species (Rubach, Baird et al. 2012). Linear regressions between the fitted 
TK parameters and the traits of the tested species resulted in relationships stronger than those 
found between traits and standard sensitivity endpoints (e.g. LC50). However, only the TK part 
of the GUTS model was parameterized on traits in this study, and it therefore remains unclear 
whether GUTS models parameterized on traits can provide accurate predictions of standard 
sensitivity endpoints. 

In our study, we hypothesize that all parameters of the GUTS models (describing both TK and 
TD) can be parameterized on traits, and can subsequently be used to predict standard sensitivity 
endpoints. We test this using toxicity data collected for 15, 13, and 10 freshwater arthropods 
respectively exposed to the organophosphate chlorpyrifos (CPF, Rubach, Crum et al. 2011), the 
pyrethroid lambda-cyhalothrin (LCY, Schroer, Belgers et al. 2004), and the neonicotinoid 
imidacloprid (IMI, Roessink, Merga et al. 2013). The comparison of linear regressions between 
i) standard sensitivity endpoints (LC50 and EC50) and species traits, and between ii) GUTS 
parameters and species traits, shows whether GUTS models parameterized on traits are indeed 
able to approximate LC50 or EC50 models parameterized on traits.  

4.2 Methods  

4.2.1 Data 

This study required four types of data: i) data on standard sensitivity endpoints (i.e. LC50 and 
EC50), ii) data on survival and immobilization over time, iii) data on the chemical (internal 
and/or external) concentration over time, and iv) traits data. 

For CPF, LC50 and EC50 values as well as data on survival and immobilization over time (after 
0, 24, 48, 72, and 96 h of exposure) were available for 15 freshwater arthropods, including 8 
insects (Anax imperator, Chaoborus obscuripes, Cloeon dipterum, Notonecta maculata, 
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Parapoynx stratiotata, Plea minutissima, Ranatra linearis, Sialis lutaria), 3 decapods 
(Neocardinia denticulata, Procambarus sp. (separate data for adult and juveniles)), the isopod 
Asellus aquaticus, the cladoceran Daphnia magna, and the amphipod Gammarus pulex 
(separate data for adults and juveniles) (Rubach, Crum et al. 2011). Of these 15 species, two 
species were flagged as outliers (S. lutaria and N. denticulata), and were removed from the 
analysis (see Figure S4.1 in the Supporting Information (SI)). Additionally, since our objective 
is to reveal cross-species differences in sensitivity, we removed the least sensitive life stage if 
a species had data on multiple life stages available, which was the case for Procambarus sp. 
and G. pulex. This was done to avoid any bias in the traits data, since many traits were equal or 
highly correlated between life stages. For all of the remaining species, both internal and external 
CPF concentrations over time were obtained from (Rubach, Ashauer et al. 2010). 

For LCY, LC50 and EC50 values as well as data on survival and immobilization over time (at 
least after 0, 48, and 96 h of exposure) were available for 13 freshwater arthropods, including 
8 insects (Chaoborus obscuripes, Cloeon dipterum, Caenis horaria, Erythromma viridulum, 
Notonecta glauca, Macropelopia sp., Sialis lutaria, Sigara striata), two isopods (Asellus 
aquaticus, Proasellus coxalis), two cladocerans (Daphnia galeata, Simocephalus vetulus), and 
the amphipod Gammarus pulex (Schroer, Belgers et al. 2004). Regarding the chemical 
concentration over time, only external concentrations were available, and were obtained from 
(Schroer, Belgers et al. 2004). 

For IMI, LC50 and EC50 values as well as survival and immobilization over time (after 0, 24, 
48, 72, 96, of exposure, followed by observation of recovery in clean medium after 168, and 
216 h) were available for 10 freshwater arthopods, including 8 insects (Chaoborus obscuripes, 
Caenis horaria, Cloeon dipterum, Limnephilidae, Micronecta spp., Notonecta sp., Plea 
minutissima, Sialis lutaria), the isopod Asellus aquaticus, and the amphipod Gammarus pulex 
(Roessink, Merga et al. 2013). Regarding the chemical concentration over time, only external 
concentrations were available, and were obtained from (Roessink, Merga et al. 2013). 

Finally, traits data were taken from (Rubach, Baird et al. 2012). For the analysis twelve different 
traits were selected: size, water content, thickness of exoskeleton, lipid content, respiratory 
regulation, source of oxygen, mode of respiration, trophic relation, degree of sclerotization, 
Bauplan (shape of organism), life stage, and phylogeny (see Table 4.1 for an overview of the 
traits, and their associated trait modalities). For CPF, trait data were available for all of the 11 
species considered in this study. For LCY, the dataset was restricted to seven species, because 
trait data were unavailable for C. horaria, E. viridulum, Macropelopia sp., S. striata, P. coxalis, 
and S. vetulus. For IMI, the dataset was also restricted to seven species, because trait data were 
unavailable for C. horaria, Limnephilidae, and Micronecta spp.. 
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Table 4.1. Description of traits included in the analysis, their modalities, abbreviations and 
type. Adjusted from (Rubach, Baird et al. 2012). 

Abbreviation Trait Modality Unit Type of 
variable 

Biovol Size related Biovolume mm3 Metric 
SurfArea 

 
Surface area (without gills) mm3 Metric 

AVratio  
 

Surface area/volume ratio mm-1 Metric 
Length 

 
Body length mm Metric 

DryMass 
 

Dry mass mg/ind. Metric 
WatCont Water content Water content % Metric 
ExoTh Thickness of exoskeleton Thickness of exoskeleton mm Metric 
LipFW Lipid content % Lipid of wet weight % wet weight Metric 
LipDW 

 
% Lipid of dry weight % dry weight Metric 

LipTot 
 

Total lipid content mg/ind. Metric 
ResConf Respiratory regulation Conformer — Binary 
ResInt 

 
Intermediate — Binary 

ResReg 
 

Regulator — Binary 
SOatm  Source of oxygen Atmospheric oxygen — Binary 
SOdiss  

 
Dissolved oxygen — Binary 

ResMocut Mode of respiration Cutaneous — Binary 
ResMosip 

 
Siphon — Binary 

ResMoCoG 
 

Compressible gill — Binary 
ResMoExG 

 
External gills — Binary 

ResMoInG 
 

Internal gills — Binary 
ResMoPig 

 
Respiratory pigments — Binary 

TroDetr Trophic relation Detritivore — Binary 
TroHerb 

 
Herbivore — Binary 

TroCarn 
 

Carnivore — Binary 
TroOmni 

 
Omnivore — Binary 

SclPoor Degree of sclerotization Poor (<10%) — Binary 
SclGood 

 
Good (10-90%) — Binary 

SclComp 
 

Complete (>90%) — Binary 
BauBox Bauplan, shape of organism Box shapes — Binary 
BauCyl 

 
Cylindroid — Binary 

BauSphe 
 

Spheres and ellipsoids — Binary 
BauCone 

 
Cones and half cones — Binary 

Ladult Life stage Adult — Binary 
Llarny 

 
Larva/nymph — Binary 

Ljuv 
 

Juvenile — Binary 
PhylRES Phylogeny Rank species (lowest  

rank = oldest) 
— Ordinal 

PhylEQ 
 

Rank taxon (lowest  
rank = oldest) 

— Ordinal 
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4.2.2 GUTS models 

GUTS parameters resulted from fitting four versions of the GUTS model, the full (FULL) and 
the reduced (RED) model, combined with either the Stochastic Death (SD) or the Individual 
Tolerance (IT) assumption (RED-SD, RED-IT, FULL-SD, FULL-IT), to both survival (SUR) 
and immobility (IMMO) data. For a full description of the model we refer to (EFSA Panel on 
Plant Protection Products and their Residues, Ockleford et al. 2018) and see Table 4.2 for an 
overview of the equations and parameters belonging to the four different GUTS models. SD 
models and IT models differ in the way they define the threshold of effects, and death above 
that threshold (Table 4.2). SD models have one value for the threshold of effects and an 
increased probability of death after exceeding it. IT models have a distribution of the threshold 
within the population, and death is instantaneous after exceeding the individual threshold. The 
FULL and RED version are distinguishable by the respective presence or absence of internal 
concentration data for model calibration (Table 4.2). Measurements of internal concentrations 
were only available for the experiments performed with CPF, and this is therefore the only 
chemical for which the full model could be fitted. We are aware that the assumptions and 
definitions of the equations and parameters associated with GUTS restrict its application to 
survival data (Jager, Albert et al. 2011). However, we apply the model to both survival and 
immobility data under the assumption that immobility is a pre-stage of mortality, assuming that 
recovery is impossible after four days of constant exposure (Ashauer, Agatz et al. 2011). 
Immobility data was corrected for recovery by fixing the number of immobile individuals from 
the timepoint where it first occurred to the rest of the experiment.  All GUTS parameters were 
fitted using the openGUTS software version 1.0 (Jager 2019) implemented in Matlab (version 
R2018b). Since the openGUTS software only includes the RED model, the FULL model has 
been mimicked by transforming the measured external concentrations into simulated dynamic 
internal concentrations using the kin and kout parameters as obtained from (Rubach, Ashauer et 
al. 2010). These internal concentrations were then fed into the RED models in openGUTS, so 
that the other four parameters (kR, b, m, and hb for the SD model, and kR, Fs, m and hb for the 
IT model) could be optimized.  
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Table 4.2. Explanation of the equations, parameter symbols and their units used in this study. 

Symbol Explanation Unit 
Scaled 
damage 

 

𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝑤𝑤𝑤𝑤(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝒌𝒌𝒌𝒌𝑫𝑫𝑫𝑫�𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤(𝑡𝑡𝑡𝑡) − 𝐷𝐷𝐷𝐷𝑤𝑤𝑤𝑤(𝑡𝑡𝑡𝑡)�                                                        (1) - 

Internal 
concentration 

 

𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝐶𝐶𝐶𝐶𝑤𝑤𝑤𝑤(𝑡𝑡𝑡𝑡) −  𝒌𝒌𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)                                                     (2) - 

Scaled 
internal 
damage 

 
𝑑𝑑𝑑𝑑𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝒌𝒌𝒌𝒌𝑹𝑹𝑹𝑹�𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) − 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡)�                                                 (3) 
- 

Hazard rate 𝑑𝑑𝑑𝑑𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= 𝒃𝒃𝒃𝒃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(0,𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) −𝒎𝒎𝒎𝒎)                                                     (4) - 

Survival 
probability 
SD 

 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) = 𝑒𝑒𝑒𝑒−𝐻𝐻𝐻𝐻(𝑡𝑡𝑡𝑡)−𝒉𝒉𝒉𝒉𝒃𝒃𝒃𝒃𝑡𝑡𝑡𝑡                                                              (5) 

 
- 

Survival 
probability 
IT 

𝑀𝑀𝑀𝑀𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡𝑡𝑡) = �1 − 𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡)�𝑒𝑒𝑒𝑒−𝒉𝒉𝒉𝒉𝒃𝒃𝒃𝒃𝑡𝑡𝑡𝑡, where                                         (6) 

 𝐹𝐹𝐹𝐹(𝑡𝑡𝑡𝑡) = 1

1+�
max
0≤𝜏𝜏𝜏𝜏≤𝑡𝑡𝑡𝑡

𝐷𝐷𝐷𝐷(𝜏𝜏𝜏𝜏)

𝒎𝒎𝒎𝒎 �
−𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭                                                           (7)                                                   

- 
- 

𝒌𝒌𝒌𝒌𝑫𝑫𝑫𝑫 Dominant rate constant for the reduced model day-1 
𝒌𝒌𝒌𝒌𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊  Uptake rate constant for chemicals into the body µg kg-1 day-1 
𝒌𝒌𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐  Elimination rate constant for chemicals from the body day-1 

𝒌𝒌𝒌𝒌𝑹𝑹𝑹𝑹 Damage repair rate constant day-1 

𝒃𝒃𝒃𝒃𝒘𝒘𝒘𝒘 Killing rate constant, referenced to external concentration L µg-1 day-1 
𝒃𝒃𝒃𝒃𝒊𝒊𝒊𝒊 Killing rate constant, referenced to internal concentration kg µg-1 day-1 
𝒎𝒎𝒎𝒎𝒘𝒘𝒘𝒘  Median of the distribution of thresholds (IT), and threshold 

for effects (SD), referenced to external concentration 
µg L-1 

𝒎𝒎𝒎𝒎𝒊𝒊𝒊𝒊 Median of the distribution of thresholds (IT), and threshold 
for effects (SD), referenced to internal concentration 

µg kg-1  

Fs Shape parameter for the distribution of thresholds [-] 
𝒉𝒉𝒉𝒉𝒃𝒃𝒃𝒃 Background hazard rate day-1 

4.2.3 Trait-based models  

The rest of the analysis was performed in the R environment (R Core Team 2020) and used 
some of the functions from the trait-based macroinvertebrate sensitivity modelling pipeline 
developed by Van den Berg et al. (2019). In short, after a pre-processing check for collinearity 
between traits, the remaining traits were further reduced by performing single linear regressions 
between all trait modalities and each of the endpoints separately. Subsequently, the trait 
modality which explained the largest variance in the respective endpoint went into an 
exhaustive multiple linear regression process. Eventually, the best model was selected from all 
constructed models based on the small sample unbiased Akaike’s Information Criterion (AICc, 
Johnson and Omland 2004). 

Reduced 

Full 

SD 

IT 
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Linear regressions were performed between i) standard sensitivity endpoints (LC50 and EC50) 
and species traits, and between ii) GUTS parameters and species traits. Model performance was 
evaluated using model fit (R2) and Leave-One-Out-Cross-Validation (LOOCV). For the latter, 
a mean squared prediction error (MSPE) and a prediction coefficient (P2) were calculated as 
follows:  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖−ŷ𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛
𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖=1           (8) 

𝑀𝑀𝑀𝑀2 = 1 − 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦2

           (9) 

where ŷ𝑖𝑖𝑖𝑖 is the estimated sensitivity or parameter value, 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 is the ‘true’ sensitivity or parameter 
value, and 𝑠𝑠𝑠𝑠𝑦𝑦𝑦𝑦2 is the variance of the ‘true’ sensitivity or parameter values. When all predictions 
perfectly match observations, P2 equals 1. Since the sizes of our datasets are small, further 
reducing this for the sake of cross-validation is arguable. When data is limited, a bad cross-
validation result does not necessarily indicate an erroneous relationship, and literature might be 
available to provide support for the found relationship. However, good cross-validation results 
provide proof that the found relationship is consistent across species, and that the model is not 
performing well merely due to coincidence. Therefore, LOOCV results are used as a stringent 
measure to compare the mechanistic power of the two approaches tested in this study.  

Finally, we used traits-predicted GUTS parameters as an input for the prediction of standard 
sensitivity endpoints, so that we can compare the predictions of LC50 and EC50 values using 
traits directly, or using traits for the parameterization of GUTS models. We compared the 
performance of the models by calculating the normalized root mean squared deviation 
(NRMSD) as measure for the distance of model prediction and observation. 

4.3 Results and discussion 

4.3.1 Relationship between traits and acute sensitivity 

For CPF, the best models explained 88 and 50% of the total variation in EC50 and LC50 values 
respectively (Figure 4.1). The thickness of the exoskeleton (ExoTh) was found to have a 
positive relationship with both endpoints (Table S4.1), indicating that the thicker the 
exoskeleton of the organism, the less sensitive it is towards CPF. For EC50, the model 
additionally contained the traits life stage “juvenile” (Ljuv; negative (-) relationship) and being 
a respiratory regulator (ResReg; +) (Table S4.1). Although the negative sign of Ljuv indicates 
that species tested with juveniles were more sensitive than species tested with adults or larvae, 
we cannot conclusively say that juveniles are the most sensitive life stage, because our model 
did not include different life stages of the same species. That juveniles were found more 
sensitive than adults can, for instance, also result from a smaller body size, an effect found to 
explain sensitivity differences between adults and juveniles before (Gerritsen, van der Hoeven 
et al. 1998). The positive sign of respiratory regulation indicates that species which actively 
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regulate their respiration are less sensitive towards CPF. This relationship meets our 
expectations, and together with ExoTh indicates that uptake is an important process determining 
the variation in sensitivity towards CPF, a phenomenon well known from previous studies 
(Buchwalter, Jenkins et al. 2002, Rubach, Baird et al. 2012, Rotvit and Jacobsen 2013). Cross-
validation results for both the LC50 and EC50 model were not good (P2 value negative or close 
to zero, Table S4.1).  

For LCY, the best models explained 75 and 41% of the total variation in EC50 and LC50 values 
respectively (Figure 4.1). The best models found for the two endpoints both contained only one 
trait (Table S4.1), ExoTh for the LC50 model, and phylogeny (PhylEQ) for the EC50 model. 
ExoTh indicates that uptake is an important process for LCY sensitivity, whilst PhylEQ 
indicates a phylogenetic signal in LCY sensitivity. From literature it is known that pyrethroids 
are rapidly taken up from the aqueous phase through the surface of the body due to the high 
octanol-water partitioning coefficient of these chemicals (it sorbs to lipids, Rasmussen, Wiberg-
Larsen et al. 2013). Therefore, differences in the permeability of the organism caused by, for 
instance, differences in exoskeleton thickness, are likely to cause differences in species 
sensitivity. The importance of the dietary uptake of pyrethroids, however, is more unclear, since 
it is related to chemically and enzymatically mediated processes inside the digestive tract 
(Rasmussen, Wiberg-Larsen et al. 2013). Phylogeny is demonstrating to be a good metric for 
describing the differences in these enzymatically mediated sorption processes of the chemical. 
Besides a good model fit, the EC50 model for LCY also demonstrated good cross-validation 
results (P2 = 0.44, Table S4.1), indicating that the phylogenetic signal of LCY sensitivity is 
well-conserved across species. Literature confirms that differences in arthropod sensitivity 
towards pyrethroids are dependent on mutations in sodium channels (Rinkevich, Du et al. 2013) 
or on alternative phylogenetic origins that are known to exist (Rinkevich, Su et al. 2012, 
Weston, Poynton et al. 2013).  

For IMI, the best models explained 48 and 68% of the total variation in EC50 and LC50 values 
respectively (Figure 4.1), and like LCY, only one trait was included in the two models (Table 
S4.1). For LC50, this was the trait Length, confirming the well-known relationship between 
size and sensitivity (Poteat and Buchwalter 2014, Gergs, Kulkarni et al. 2015). For EC50 this 
was the trait PhylEQ, indicating a phylogenetic signal in IMI sensitivity. So far, the only 
empirical support of the presence of a phylogenetic signal in aquatic invertebrate sensitivity 
towards IMI, is that toxicity ranges in neonicotinoid sensitivity are larger among taxonomic 
groups than within taxonomic groups (Morrissey, Mineau et al. 2015). For bees, however, 
research explaining why they are so much more susceptible for IMI than any other insect is 
finding explanations in genomic pathways (e.g. in differences in the expression of cytochrome 
p450s, Manjon, Troczka et al. 2018, Beadle, Singh et al. 2019). Similar genomic pathways have 
been discovered in other terrestrial arthropods, like the hemipterans Bemisia tabaci (Karunker, 
Benting et al. 2008) and Nilaparvata lugens (Bass, Carvalho et al. 2011, Ding, Wen et al. 2013), 
and a phylogenetic signal in IMI sensitivity is therefore likely. 
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4.3.2 Relationship between traits and GUTS parameters 

All GUTS model fits (available in S2) seemed reasonable, and the parameter values (available 
in S3) were therefore considered reliable for the construction of trait-based models.  

For CPF, most of the models explaining GUTS parameters fitted on survival data had a similar 
(± 0.1) or better model fit (adjusted R2) than the model explaining acute sensitivity (LC50, 
Figure 4.1). Only bw in the reduced SD model for survival (SUR-RED-SD), and kR and mi in 
the SUR-FULL-IT model had a worse model fit than the LC50 model. For the GUTS 
parameters fitted on immobility data, all the RED-SD and FULL-SD parameters had a similar 
or lower model fit compared to the acute sensitivity model (EC50, Figure 4.1). Indeed, the 
EC50 model had a very good model fit, and was therefore difficult to surpass. However, for 
some parameters, such as kin or mi, fits of the SD parameters were almost reaching those of the 
EC50 model, and the Fs parameter of the IMMO-FULL-IT and the kd parameter of the IMMO-
RED-IT model still had a better fit than the EC50 model.  

Regarding the traits that were included in the models for CPF, the parameters of the reduced 
models were most frequently explained by traits related to respiration (respiratory regulation 
(ResConf, ResReg), and mode of respiration (ResMoInG, ResMoPig)), but also the thickness 
of the exoskeleton (ExoTh) and the Bauplan (BauCone, BauCyl, BauBox) were regularly 
included in explaining some of the model parameters in the reduced models (Table S4.2). 
Regarding the parameters of the full model, kin was explained by lipid content (LipTot) and 
source of oxygen (SOatm), whilst kout was explained by phylogeny (PhylRES, Table S4.2). 
That kin and kout were consistently explained by the same traits across both the FULL-SD and 
FULL-IT model for both mortality and immobility data was expected, since the uptake (kin) and 
elimination rate constants (kout) were directly taken from (Rubach, Ashauer et al. 2010) and, 
therefore, their values did not change across the different full models. The identified explaining 
traits appear reasonable, since uptake is primarily determined by traits determining the uptake 
of the chemical, whereas elimination is determined by species-specific enzyme-based processes 
(see Kretschmann, Ashauer et al. 2011 for an example), for which phylogeny demonstrates to 
be a good proxy. However, an earlier study based on the same data (Rubach, Baird et al. 2012) 
identified additional and different traits (e.g. surface area) as explanatory variables for the 
uptake and elimination rate constants. These differences can be explained by two things. First, 
a different and more stringent algorithm was used in our study, which was primarily aiming to 
avoid overfitting of the models. Second, our models were constructed on the exact same data, 
but minus four data points: the adult life stage of G. pulex and Procambarus sp., and the 
leverage points of S. lutaria, N. denticulata.  

The other parameters of the full models were most frequently explained by traits related to 
respiration (ResConf, ResInt) and shape of the organism (BauCone, BauCyl, BauSphe, Table 
S4.2), which is very similar to the traits used to explain the reduced model parameters. Indeed, 
when comparing the traits included in the full and the reduced model for CPF, we find that 
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similar traits, or opposite traits with an inverted relationship, were included in the parameter-
model combinations that represent the same process in the full and in the reduced model. An 
opposite trait with the inverted relationship was, for instance, selected for the kd parameter in 
the SUR-RED-SD model (BauCyl) compared to the kR parameter in the SUR-FULL-SD model 
(-BauCone). The same is true for the mw (RED-SD) - mi (FULL-SD), the bw (RED-SD) - bi 
(FULL-SD), and the Fs (RED-IT) - Fs (FULL-IT) pairs, both for survival and immobility data. 
In general, an overlap in traits between the reduced and the full model confirms that those 
specific parts of the model explain the same or a related process in species sensitivity. The 
overlap in the traits composition of the kR and kd parameters provides additional information, 
namely that recovery appears to be the rate limiting step in CPF toxicity. If the dominant rate 
constant (kd) would have been mainly determined by uptake or biotransformation processes, 
selected traits would have shown more overlap with traits showing correlations with kin 
parameters, such as total lipid content (LipTot) and source of oxygen (Soatm) or kout-related 
traits such as phylogeny (PhylRES). If, indeed, recovery is the rate limiting step, the fitting of 
two additional parameters in the full model (kin and kout) only assists in describing the 
bioaccumulation of CPF. This is confirmed by the finding that trophic relation (TroCarn) is 
used to describe kR in the FULL-SD model, indicating that a difference in assimilation 
efficiency helps in explaining the differences in bioaccumulation. In general, carnivores have a 
different assimilation efficiency compared to other trophic levels (Hendriks, van der Linde et 
al. 2001), although studies focusing solely on invertebrates are lacking, making it difficult to 
hypothesize about the exact nature of this relationship. 

For LCY, all models explaining GUTS parameters fitted on survival data (SUR-RED-SD, SUR-
RED-IT) had a better or similar model fit than the model fitted on acute sensitivity data (LC50, 
Figure 4.1). For the GUTS parameters fitted on immobility data, the model fit was still good 
(lowest adj. R2 of 0.43), but sometimes below the EC50 model (EC50, Figure 4.1). Regarding 
the traits that were included in the different models for LCY, both exoskeleton thickness 
(ExoTh) and shape of the organism (BauCyl) were frequently included in explaining different 
GUTS parameters (Table S4.3). ExoTh was twice found to explain the kd parameter, both in 
the IMMO-RED-SD and the IMMO-RED-IT model, indicating that uptake and/or elimination 
was limited by the thickness of the exoskeleton. This matches its predictive power for 
explaining the LC50s, and the same reasoning applies.  

For IMI, models explaining GUTS parameters fitted on immobility data performed better than 
the model fitted on acute sensitivity data (EC50) with the exception of one parameter (mw, 
Figure 4.1). For the GUTS parameters fitted on survival data, two parameters had a better 
model fit (kd and mw in the SUR-RED-IT model), one parameter had a similar model fit (Fs in 
the SUR-RED-IT model), and three parameters had a lower model fit than the LC50 model (all 
parameters of the SUR-RED-SD model, Figure 4.1). The traits lipid content (LipDW), 
exoskeleton thickness (ExoTh), and shape of the organism (BauSphe) were most frequently 
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included in explaining the GUTS parameters for IMI (Table S4.4). This showed no overlap in 
the traits included in the LC50 and EC50 models. 

Regarding the LOOCV results for the GUTS parameters, comparison of the prediction 
coefficients (P2, Figure S4.6) and the model fits (adjusted R2, Figure 4.1) shows that although 
the adjusted R2 of a model is high, this does not guarantee good cross-validation results. Take, 
for instance, the parameters of the IMMO-RED-SD model for LCY. Although the adjusted R2 
values for kd, bw and mw are relatively high (0.43, 0.96 and 0.72, Figure 4.1), the measured-
predicted plots of the parameters look bad (regression line between measured-predicted data is 
far from passing through 0, and its slope is close to 0 or negative, Figure S4.4). These bad cross-
validation results are reflected in negative P2 values (Figure S4.6). Indeed, when P2 values are 
positive, the measured-predicted plot looks good. Take, for example, the cross-validation of the 
parameters of the IMMO-RED-IT model for CPF (Figure S4.2). All the parameters have a 
positive P2 value (Figure S4.6), and additionally show a regression line between the measured 
and predicted data that is relatively close to passing through zero (Figure S4.2). The same 
pattern can be found for the other chemicals (Figures S4.2 – S4.5).  

Our analysis does not show any relationship between the type (metric, binary, ordinal) and 
number of traits included in the models for the GUTS parameters and the accuracy of the 
predictions. Models with good cross-validation results can range from being based on a single 
binary (CPF-SURV-FULL-SD: mi ~ ResConf) to a combination of 4 binary traits (CPF-SURV-
RED-IT: Fs ~ BauBox+Ljuv+ResConf+SclGood). A comparison of the number of traits 
included in the model and cross-validation results (P2 values) indicate no clear relationship 
(Figure S4.6). Another general observation is that when we compare the accuracy of the model 
predictions (P2 values) of the three chemicals, we find that CPF had 4 parameters of the reduced 
models with P2 values > 0.5, whereas IMI had three, and LCY had none. Whether this is related 
to the different physicochemical properties (e.g., hydrophobicity), to the different modes of 
action, or to the lower number of observations available for LCY and IMI, is not clear from this 
study.  

Due to the nature of the traits data used in this analysis, we expected a higher mechanistic match 
between traits and TK parameters than between traits and TD parameters. However, this does 
not seem to be reflected in the model performance. Comparing the average model fits (R2 
values) of the TK parameters with the average model fits of the TD parameters, we see no 
difference for CPF and IMI, and we even find a higher average model fit for the TD parameters 
for LCY. Regarding the accuracy of the model predictions (P2 values) of the TK and TD 
parameters, we also do not see that the models explaining TK parameters perform better than 
the models explaining TD parameters. Nevertheless, although it is apparently possible to find 
strong relationships between TD parameters and traits, it is more difficult to construct 
empirically testable hypotheses on the current traits models explaining TD parameters. 
Consider, for instance, that the Fs parameter of the CPF-SURV-RED-IT model is explained by 
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a combination of the shape (BauBox) and life stage (Ljuv) of the organism, the respiratory 
regulation (ResConf), and the degree of sclerotization (SclGood, Table S4.2). Therefore, the 
mechanistic understanding of TD parameters remains restricted due to a lack of more 
appropriate traits describing, for instance, the presence, absence, or distribution of target sites 
in the different organisms (Rubach, Ashauer et al. 2011). 

 

Figure 4.1. The model fits (adjusted R2) of the best models found with multiple linear 
regression for all endpoints under study.  
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4.3.3 Comparison of the direct and indirect prediction of standard sensitivity endpoints 

The performance of the models directly predicting LC50 and EC50 values by means of traits 
turned out better than expected (Figure 4.1 & 4.2). With the exception of the EC50 model for 
CPF, all direct models only had a single trait incorporated in the best performing model, but 
still performed rather well (adjusted R2 ranging between 0.41 and 0.75). Both the LC50 and 
EC50 models for CPF performed better than those of a similar analysis performed by Rubach 
and colleagues (Rubach, Baird et al. 2012). Our LC50 model also performed better than the 
single-traits LC50 model found for CPF by Ippolito et al. (2012). Possible reasons for the 
improved performance might include a better performance of the code or a superior data 
selection (e.g. removal of leverage points). For CPF and LCY, immobility data had a better 
model fit (smaller NRMSD) than mortality data, potentially indicating that sublethal effects are 
more closely related to sensitivity after short-term (4 days) exposure than lethal effects are.   

Regarding the indirect prediction of standard sensitivity endpoints, where LC50 and EC50 
values were estimated from predicted GUTS parameters, we find both promising and 
disappointing results when comparing them with the direct prediction (Figure 4.2). For CPF, 
the indirect prediction of LC50 values using the SUR-FULL-SD and SUR-RED-IT models 
performed better than the LC50 model, and the IMMO-RED-IT model performed almost as 
good as the EC50 model when the NRMSD is used as indicator for the accuracy of the model 
predictions.  

When comparing the NRMSD for LCY, the IMMO-RED-SD model performs better than the 
EC50 model and the IMMO-RED-IT model performs relatively well. However, both the SUR-
RED-IT and the SUR-RED-SD model showed much higher deviations in model predictions 
than the LC50 model. Obviously, the higher complexity of the GUTS modelling (more 
parameters) did not result in better predictions. It can be speculated, that short-term exposure 
experiments do probably not provide enough information for a compound such as LCY, which 
is known for its extreme hydrophobicity (Rasmussen, Wiberg-Larsen et al. 2013). Prolonged 
duration of such toxicity tests could probably provide more information.  

For IMI, all GUTS models performed worse than the LC50 and EC50 models, although the 
SUR-RED-IT and the IMMO-RED-SD models come close to the respective performances of 
the LC50 and EC50 model. The disappointing results of the GUTS models for IMI hint at a 
failed inclusion of some of the processes determining species sensitivity. A possible explanation 
is that IMI requires bioactivation, that is, a chemical biotransformation to a more toxic or bio-
accumulative metabolite. If this is indeed the case, the TK part of the model should be 
additionally calibrated on the biotransformation product, for instance as described for diazinon 
(Ashauer, Hintermeister et al. 2010, Kretschmann, Ashauer et al. 2011). An alternative to an 
experimental analysis of the internal concentration dynamics and biotransformation would be 
a prolongation of the toxicity testing. Indeed, the study from which we obtained the short-term 
toxicity data also contained results from long-term toxicity tests performed with the same 
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species (Roessink, Merga et al. 2013). There was a large difference in the sensitivity ranking of 
the species after 4 or 21 days of exposure. Firstly, all species demonstrated an increased 
sensitivity after the longer exposure duration. Secondly, the order of the species, when ranked 
from least to most sensitive, changed dramatically according to the exposure duration. 
Considering immobilization, for instance, S. lutaria and C. obscuripes demonstrated a higher 
relative sensitivity after 21 days of exposure, whilst G. pulex, who was found relatively 
sensitive after 4 days of exposure, was ranked least sensitive after 21 days. Both factors indicate 
that a short-term exposure to IMI is not representative enough to reveal the real sensitivity 
process.  

 
Figure 4.2. Measured versus predicted LC50 or EC50 values, after using trait-based prediction 
of standard sensitivity endpoints and GUTS parameters. The value inside each plot gives the 
NRMSD, indicating how accurate model predictions are. 
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In general, the SUR-RED-SD model never seems to give a good estimation of LC50 values, 
whilst the IMMO-RED-SD model works well for all three chemicals. To find a reason why the 
SUR-RED-SD model never seems to give a good estimation of LC50 values, we visually re-
inspected all the GUTS model fits and the parameter space explored during the optimization 
process (S2). All model fits looked reasonable, and the frequency with which a parameter 
boundary was hit, or no clear optimal parameter value could be found, was similar for both the 
SD and the IT models. In consequence, immobility seems to be a better endpoint when aiming 
to create GUTS models based on species traits. This can be explained by the fact that 
immobilization is a more direct response to chemical stress than mortality, since organism death 
is the result of the interaction between multiple processes. In addition, immobility data have 
frequently been found as a more sensitive proxy for mortality (Maul, Brennan et al. 2008, 
Rubach, Crum et al. 2011, Raby, Nowierski et al. 2018). There are also critical discussions 
whether mortality is the best endpoint when the aim is to consider species sensitivity (Jager 
2011, Jager 2012). 

Considering the comparison of the full and the reduced models for CPF, we find that the full 
model performs better than the reduced model when the SD model is applied, whilst the 
opposite is true when the IT model is applied. This is true using both survival and immobility 
as endpoints. Internal concentrations were only available for CPF, so it is not possible to check 
this pattern for consistency across modes of action. In earlier GUTS validation studies (Nyman, 
Schirmer et al. 2012, Focks, Belgers et al. 2018), however, neither the RED-SD or the RED-IT 
models was superior to the other for the prediction of effects of untested time-variable exposure 
profiles, so that it appears that sometimes the RED-IT model and sometimes the RED-SD model 
is better in capturing the effect dynamics of a certain compound, which makes it less likely that 
the pattern that we find is of a general nature. 

Considering the NRMSD values, our analysis does not show any relationship between the 
number of species included in the models and the accuracy of the predictions. Indeed, well-
preforming models were found both for CPF, for sure one of the most data-rich examples of 
toxicity testing and GUTS modelling in literature, and LCY, a data-poor example that resulted 
in the second-best prediction of sensitivity out of all the models constructed (only the EC50 
model for CPF had a smaller NRMSE). Therefore, we cannot claim that we simply need more 
species to improve these models. Of course, data on more species can reduce problems of 
collinearity between predictors, which can result in models with a better model performance, 
but it can also introduce new problems due to a broadening of the taxonomic scope, because 
the mode of action of a chemical might change depending on the taxonomic group (see Nendza 
and Muller 2000 for a more elaborate explanation).  

So, if it is not necessarily more species that results in GUTS models with a better performance, 
then what is it? Considering the restrictedness of the data used in our analysis, our models have 
an impressive model performance, which can only be due to mechanistic relationships that we 
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have managed to exploit in our modelling pipeline. Unfortunately, our analysis is unable to 
determine the exact reason why some of the models worked better than others, but we 
hypothesize that the mechanistic overlap between species-traits and TKTD parameters has 
indeed been found in those models that performed well. For the models that did not outperform 
the standard sensitivity endpoints, the right traits were still lacking or removed during the 
collinearity check due to the small number of species for which data was available. Attempts to 
improve these models should focus on improving traits or alternative predictors that can 
mechanistically explain TD parameters.  

4.3.4 Implications for future risk assessment 

Our approach shows that although models with a good model fit can be found for standard 
sensitivity endpoints, models for GUTS parameters with an equal or even a slightly lower model 
fit are superior to standard sensitivity endpoints due to three reasons. First, the relationships 
between GUTS parameters and traits are easier to interpret mechanistically. This is especially 
true for TK parameters, although TD parameters still require the collection of alternative traits 
or other predictors that can mechanistically explain differences in TD parameters. Second, these 
mechanistic relationships do not only help us to understand the mechanism of sensitivity better, 
they also allow the formulation of new hypotheses regarding the mode of action of the chemical. 
Ashauer and colleagues demonstrate that TD parameters cluster together when chemicals 
belong to the same mode of action, and hypothesize how this, in combination with TK 
parameters extrapolated from other species using read-across, can enable the prediction of the 
toxicity of untested chemicals (Ashauer, O’Connor et al. 2015). Finally, the use of GUTS 
parameters allows the calculation of standard sensitivity endpoints using different exposure 
patterns. Previous work showed that fitted GUTS models can be used to predict the response of 
a number of species to a realistic exposure scenario (e.g. Focks, Belgers et al. 2018), which can 
assist in the more accurate development of SSDs based on representative species assemblages 
(e.g. Van den Brink, Buijert - de Gelder et al. 2019). Calibration of GUTS models without the 
necessity of performing experiments will open up new possibilities, even when the accuracy of 
trait-based GUTS modelling would be lower than that of experiment-based. In any case, without 
open access to the raw data underlying LC50 and EC50 values, this will be impossible.  

The fitting of GUTS parameters requires more data than what is usually available in databases 
such as ECOTOX (USEPA 2017). Therefore, raw data from experiments, in case of GUTS that 
would be observations of survival and/or mobility over time need to be archived in its entirety, 
instead of summaries of data of inhomogeneous quality. Access to the full raw data would 
additionally enable transparency on experimental precision, another aspect remaining 
inadequately addressed by current approaches in ERA. Getting a firmer grip on uncertainty and 
variability associated with the execution of toxicity tests and species sensitivity can enlarge our 
capability to disentangle the two, and reveal the patterns in the noise.  
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Figure S4.1. Outlier detection for the CPF dataset. 

 

Table S4.1. Best trait-based models found for the classical sensitivity endpoints, LC50 and 
EC50, fitted on CPF, LCY and IMI data. 

Chemical Best model Adjr. R2 p value LOOCV P2 
CPF LC50  ~  ExoTh 0.50 0.009 2.19 0.07 
CPF EC50  ~  ExoTh-Ljuv+ResReg 0.88 0.000 2.26 -0.32 
LCY LC50  ~  ExoTh 0.41 0.071 8.63 -2.09 
LCY EC50  ~  PhylEQ 0.75 0.008 0.84 0.44 
IMI LC50  ~  Length 0.68 0.014 5.57 0.02 
IMI EC50  ~  PhylEQ 0.48 0.052 6.26 -0.96 
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Table S4.2. Best trait-based models found for the TKTD parameters fitted on CPF data. 

Endpoint TK TD Best model Adj. R2 p value LOOCV P2 
Survival Reduced SD kd  ~  BauCyl 0.49 0.010 22.66 -0.59 
Survival Reduced SD mw  ~  ExoTh - ResConf 0.79 0.001 10.62 0.51 
Survival Reduced SD bw  ~  -ResConf 0.33 0.037 79.34 -14.89 
Survival Reduced IT kd  ~  -BauCone-ExoTh+LipTot+Sodiss 0.99 0.000 2.16 -0.33 
Survival Reduced IT mw  ~  ExoTh+LipTot+ResReg+WatCont 0.97 0.000 2.90 0.17 
Survival Reduced IT Fs  ~  BauBox+Ljuv+ResConf+SclGood 0.99 0.000 0.06 0.93 
Immobility Reduced SD kd  ~  -BauCone-Ladult+PhylRES 0.81 0.002 13.57 -1.17 
Immobility Reduced SD mw  ~  PhylEQ-ResConf 0.52 0.022 148.69 -7.88 
Immobility Reduced SD bw  ~  BauCone 0.28 0.053 7.51 -0.52 
Immobility Reduced IT kd  ~  ExoTh+ResMoInG-ResReg 0.96 0.000 2.37 0.30 
Immobility Reduced IT mw  ~  ExoTh+ResMoInG 0.89 0.000 2.01 0.62 
Immobility Reduced IT Fs  ~  ResConf+ResMoPig-WatCont 0.86 0.001 0.20 0.58 
Survival Full SD kout  ~  -PhylRES 0.45 0.014 0.78 -2.48 
Survival Full SD kr  ~  -BauCone+TroCarn 0.55 0.017 8.60 -0.80 
Survival Full SD kin  ~  -LipTot-Soatm 0.81 0.000 2.00 -0.40 
Survival Full SD mi  ~  -ResConf 0.78 0.000 11.86 0.51 
Survival Full SD bi  ~  ResInt+TroCarn 0.59 0.012 9.87 -1.77 
Survival Full IT kout  ~  -PhylRES 0.45 0.014 0.78 -2.48 
Survival Full IT kr  ~  BauCyl 0.33 0.037 20.48 -0.83 
Survival Full IT kin  ~  -LipTot-Soatm 0.81 0.000 2.00 -0.40 
Survival Full IT mi  ~  PhylRES 0.24 0.073 13.70 -1.30 
Survival Full IT Fs  ~  -Llarny+ResConf+Sodiss-WatCont 0.93 0.000 2.38 -1.85 
Immobility Full SD kout  ~  -PhylRES 0.45 0.014 0.78 -2.48 
Immobility Full SD kr  ~ - BauCone-TroOmni 0.54 0.019 8.17 -1.93 
Immobility Full SD kin  ~  -LipTot-Soatm 0.81 0.000 2.00 -0.40 
Immobility Full SD mi  ~  PhylEQ-ResConf 0.56 0.016 124.58 -6.20 
Immobility Full SD bi  ~  LipTot+TroCarn 0.60 0.010 5.96 -1.00 
Immobility Full IT kout  ~  -PhylRES 0.45 0.014 0.78 -2.48 
Immobility Full IT kr  ~  PhylEQ 0.33 0.039 46.36 -7.03 
Immobility Full IT kin  ~  -LipTot-Soatm 0.81 0.000 2.00 -0.40 
Immobility Full IT mi  ~  -BauSphe 0.31 0.045 26.84 -3.74 
Immobility Full IT Fs  ~ - BauCyl+Ljuv+ResConf-Soatm 0.95 0.000 0.68 -0.08 
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Table S4.3. Best trait-based models found for the TKTD parameters fitted on LCY data. 

Endpoint TK TD Best model Adj. R2 p value LOOCV P2 
Survival Reduced SD kd  ~  -PhylEQ 0.38 0.082 48.15 -0.77 
Survival Reduced SD mw  ~  -WatCont 0.53 0.039 13.81 0.03 
Survival Reduced SD bw  ~  BauCyl 0.67 0.015 5.20 0.18 
Survival Reduced IT kd  ~  Soatm 0.45 0.058 30.44 -1.10 
Survival Reduced IT mw  ~  -BauCyl 0.77 0.006 3.55 0.18 
Survival Reduced IT Fs  ~  WatCont 0.68 0.014 1.03 -1.26 
Immobility Reduced SD kd  ~  -ExoTh 0.43 0.067 8.73 -0.67 
Immobility Reduced SD mw  ~  -BauCyl 0.72 0.010 2.84 -0.19 
Immobility Reduced SD bw  ~  -

ExoTh+PhylEQ 
0.96 0.001 2.05 -0.83 

Immobility Reduced IT kd  ~  -ExoTh 0.49 0.047 29.02 -2.27 
Immobility Reduced IT mw  ~  -BauCyl-ExoTh 0.98 0.000 8.88 -1.10 
Immobility Reduced IT Fs  ~  SclPoor 0.74 0.008 0.19 0.36 

 

Table S4.4. Best trait-based models found for the TKTD parameters fitted on IMI data. 

Endpoint TK TD lm adjr2 p_value LOOCV P2 
Survival Reduced SD kd  ~  ExoTh 0.53 0.04 58.45 -5.68 
Survival Reduced SD mw  ~  BauSphe 0.39 0.08 33.19 -0.52 
Survival Reduced SD bw  ~  LipFW 0.55 0.03 12.54 -0.41 
Survival Reduced IT kd  ~  ExoTh 0.94 0.00 7.87 -4.01 
Survival Reduced IT mw  ~  ExoTh 0.86 0.00 5.22 0.25 
Survival Reduced IT Fs  ~  -BauSphe 0.68 0.01 1.24 -0.48 
Immobility Reduced SD kd  ~  -Llarny-Soatm 0.99 0.00 5.74 0.68 
Immobility Reduced SD mw  ~  WatCont 0.09 0.26 67.18 -2.02 
Immobility Reduced SD bw  ~  LipFW 0.60 0.02 73.69 -5.52 
Immobility Reduced IT kd  ~  -ResInt-Soatm 0.94 0.00 1.92 0.56 
Immobility Reduced IT mw  ~  -LipFW 0.71 0.01 3.08 0.56 
Immobility Reduced IT Fs  ~  -BauSphe 0.72 0.01 0.88 -0.11 

 

  



Chapter 492   |

 

 

Figure S4.2. Measured-predicted plots of the TKTD parameters resulting from Leave-One-
Out-Cross-Validation (LOOCV) performed for both survival and immobility and the RED-SD 
and RED-IT models for the chemical CPF. 

Figure S4.3. Measured-predicted plots of the TKTD parameters resulting from LOOCV 
performed for both survival and immobility and the FULL-SD and FULL-IT models for the 
chemical CPF. 
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Figure S4.4. Measured-predicted plots of the TKTD parameters resulting from LOOCV 
performed for both survival and immobility and the RED-SD and RED-IT models for the 
chemical LCY. 

 

Figure S4.5. Measured-predicted plots of the TKTD parameters resulting from LOOCV 
performed for both survival and immobility and the RED-SD and RED-IT models for the 
chemical IMI. 
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Figure S4.6. The prediction coefficient (P2) resulting from Leave-One-Out-Cross-Validation 
(LOOCV) performed for both endpoints (survival and immobility), all GUTS-models, and the 
three chemicals under study (chlorpyrifos, lambda-cyhalothrin, and imidacloprid). If no bar is 
shown, the P2 value was negative, indicating bad LOOCV results. 
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Abstract 

The ecological risk assessment of chemicals largely depends on cross-species extrapolation 
approaches, since experimentally testing of all possible species-chemical combinations is 
impossible. This review provides an overview of currently existing cross-species extrapolation 
methodologies, and discusses i) how species sensitivity could be described, ii) which predictors 
might be useful for explaining differences in species sensitivity, and iii) which statistical 
considerations are important. We argue that risk assessment can benefit most from modelling 
approaches when species sensitivity is described based on effects that are ecologically relevant 
and robust. Additionally, specific attention should be paid to the heterogeneity of the training 
data, since this strongly influences the reliability of the resulting models. This includes 
heterogeneity in exposure duration, experimental variables, and the use of chemical or 
taxonomic grouping. Regarding which predictors are useful for explaining differences in 
species sensitivity, we review interspecies-correlation, relatedness-based, traits-based, and 
genomic-based extrapolation methods focusing on the amount of mechanistic information the 
predictors contain, the amount of input data the models require, and the extent to which the 
different methods provide protection for ecological entities. We use this review to develop an 
integrated framework, incorporating the strengths of each of the methods described. Finally, 
the discussion of statistical considerations reveals that regardless of the method used, 
statistically significant models can be found, although the usefulness, applicability, and 
understanding of these models and their outcomes varies considerably according to modelling 
choices made. We therefore recommend the publication of scientific code along with scientific 
studies to simultaneously clarify modelling choices, and enable continuation and elaboration 
on existing work. In general, we aim that this review can help steer the direction of empirical 
research by pointing out in which research fields data demands are most urgent, and make 
regulators more aware of where rules and regulations need to be put in place to make future 
cross-species extrapolation efforts successful.  
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5.1 Introduction 

An ecosystem generally consists of a diverse species assemblage, and each of the species 
present in such assemblage has the potential to show a different sensitivity towards each of the 
many different chemical compounds that can be present in their environment (e.g. Hickey and 
Clements 1998, Biggs, Williams et al. 2007, Clements and Rohr 2009). Ecological risk 
assessment (ERA) is the process used to evaluate the impact of chemicals on species 
assemblages by seeking the threshold concentration below which ecosystem structure and 
functioning experience no adverse impacts (e.g. Suter 2016). At the first tier of this assessment, 
this threshold is defined by combining the results of single species toxicity tests with assessment 
factors (Brock, Arts et al. 2006). These assessment factors should reflect the uncertainty and 
variability related to the extrapolation from a laboratory system (short-term, high exposure, 
controlled environment, one species) to the natural environment (long-term, low exposure, 
variable environment, multiple species, and species interactions) (USEPA 2002). However, the 
assessment-factor approach remains generalized, since one threshold value is applicable to all 
assemblages within an ecosystem, irrespective of the variation in their species composition over 
space and time. This limits the specificity of the ERA. In contrast, existing higher tier 
approaches, such as mesocosm studies, do consider species assemblages rather than single 
species. However, performing multiple mesocosm experiments to account for seasonal and 
spatial variation would be too time and capital intensive (Van den Brink 2008). Predictive 
methodologies extrapolating existing toxicity data to untested organisms can help understand 
spatial-temporal variation in species sensitivity by predicting sensitivity values for a wide range 
of species (e.g. Malaj, Guénard et al. 2016, Raimondo and Barron 2019, Van den Berg, Baveco 
et al. 2019). However, although several predictive methods have been developed in the last 
decades, a clear overview of which extrapolation methodologies are currently available, along 
with a description of their considerations, assumptions, merits, and pitfalls, is still lacking.  

Since the need to address spatial-temporal variation requires the sensitivity of a species 
assemblage to be calculated rather than the sensitivity of a single species, we focus this review 
on methods extrapolating the sensitivity of multiple species towards one chemical or mode of 
action (MOA), thereby excluding methodologies extrapolating sensitivity of one species to 
multiple chemicals (e.g. Quantitative-Structure-Activity Relationships (QSARs), Donkin 
2009). Interspecies Correlation Estimation (ICE) is one of the earliest methods used to 
extrapolate toxicity data to untested species (Mayer and Ellersieck 1986).  A software program 
to predict acute effects on aquatic and terrestrial species using ICE was developed in the 2000s 
(Asfaw, Ellersieck et al. 2003) and a web-based model is available as Web-ICE (Raimondo, 
Lilavois et al. 2015). The method has gained popularity for the derivation of water quality 
criteria (e.g. Dyer, Versteeg et al. 2008, Feng, Wu et al. 2013). In addition to their application 
to water quality, for example within the WFD (Water Framework Directive, European 
Commission 2000), cross-species extrapolation methods can also be utilised for assessing the 
risk from chemical exposure under REACH (Registration, Evaluation, and Authorization of 
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Chemicals, European Commission 2007), the Biocides Directive (European Commission 
1998), the Plant Protection Products Directive (European Commission 1991), and any other 
directive that requires a chemical risk assessment.

To understand interspecific differences in species sensitivity towards chemical exposure, it is 
useful to divide sensitivity into two processes: toxicokinetics (TK) and toxicodynamics (TD) 
(EFSA Panel on Plant Protection Products and their Residues, Ockleford et al. 2018). TK 
processes describe the uptake, biotransformation and elimination of a chemical by a given 
organism, whilst TD processes are related to the damage, internal recovery and toxicity 
thresholds inside the organism after uptake of the chemical. The mechanistic basis of cross-
species extrapolation is related to interspecific differences in TKTD processes. Interspecific 
differences in TKTD processes can be investigated by describing the combined effect of TK 
and TD processes simultaneously, or by using more specific predictors that split TK and TD 
into separate processes. In this review, we illustrate these processes in more detail, explain how 
they can be used as a more accurate description of species sensitivity, and clarify how different 
predictors can be used to describe different components of interspecific variation in sensitivity 
to chemical exposure. 

Figure 5.1. Schematic overview of the elements making up predictive models. Q1 indicates the 
elements covered by the first sub-question this review addresses, Q2 the second, and Q3 the 
third. 

The main research question of this review is ‘How can we extrapolate species sensitivity?’. 
However, a direct answer to this question does not exist, and in order to understand and compare 
cross-species extrapolation methods, it is necessary to study the three elements that make up 
predictive models separately, namely: i) the dependent variable (𝑦𝑦𝑦𝑦), ii) the independent 
variable(s) (𝑚𝑚𝑚𝑚), and iii) the function used to determine the relationship between the independent 
variable(s) and the dependent variable (𝑓𝑓𝑓𝑓, Figure 5.1). For the cross-species extrapolation 
methods reviewed here, the dependent variable is the sensitivity of an untested species to a 
chemical. Therefore, the first sub-question this review tries to answer is ‘How can we describe 
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species sensitivity?’ (Q1). Although there is a proven distinction between true sensitivity and 
sensitivity as measured by short-term, laboratory experiments (Craig 2013), it remains 
unambiguous that true sensitivity can only be inferred from measured sensitivity. Therefore, to 
avoid ambiguity, we will continue to use the term sensitivity to refer to measured sensitivity, 
of which we are aware that it is a measure relative to the exact protocol under which it was 
determined. The second element making up predictive models is the independent variable(s), 
or in other words, the predictors required to explain species sensitivity. The second sub-question 
this review tries to answer is therefore ‘Which independent variables are useful for explaining 
differences in species sensitivity?’ (Q2). Ultimately, the last element concerns the statistical 
considerations that are of importance when connecting the independent and dependent variables 
together, or in other words, an answer to the question ‘Which statistical considerations are 
important when extrapolating species sensitivity?’ (Q3). Overall, we aim to provide an 
overview of the approaches available for each of the three elements mentioned, along with a 
description of the considerations and assumptions they make, and to provide guidance on how 
the optimal combination of these elements can be combined in an integrated framework. 

5.2 How can we describe species sensitivity? 

The first element concerns how sensitivity is described. This description is primarily dependent 
on choices made in the selection of the input data, since this limits the boundaries of the model. 
For example, if the input data exclusively contain data on mortality effects, the resulting model 
can only predict effects on mortality. Additionally, when comparing the performance of 
different models to determine which model is most suitable for answering a specific research 
question, it is important to consider whether data have been grouped or not (e.g. over chemicals 
or taxa). 

5.2.1 Effects 

Effects on mortality are most frequently incorporated into predictive models (Table 5.1). This 
is primarily determined by data availability. More than 40% of all aquatic toxicity tests in the 
ECOTOX database (USEPA 2019) report effects on mortality, making it the most frequently 
studied effect on aquatic organisms of this database. However, this does not mean that mortality 
is the most important effect to consider, nor that these data cannot be exploited in a more 
optimal way, for instance, by means of TKTD models.  

Effects other than mortality might be ecologically more relevant. Reproduction, for instance, is 
an indisputable element of population sustainability (see Gleason and Nacci 2001, for an 
example with fathead minnow, and see Segner 2011 for extensive background material). Thus, 
processes influencing reproductive success might be a better indicator of effects at higher levels 
of biological organization (e.g. offspring fitness, Hammers-Wirtz and Ratte 2000).  
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Energy allocation has been suggested as a means to link the various levels of biological 
organization together (Calow and Sibly 1990), since the energy available for reproduction and 
other functions depends on the availability of food sources and on the ability of an organism to 
exploit those (Amiard-Triquet 2009). Thus, effects on feeding behaviour and reproduction can 
directly be connected to effects at population level by means of energy allocation modelling 
(Calow and Sibly 1990), and might provide a closer approximation than when effects on 
mortality are used. More recently, this dynamic energy budget modelling has obtained renewed 
research interest under the acronym DEBkiss, promoting simple generic models of animal life 
history (Jager, Martin et al. 2013). 

Besides incorporating more ecologically relevant measurement endpoints, it is also possible to 
extract more information from existing data by means of TKTD models. For instance, the 
General Unified Threshold model of Survival (GUTS) is a TKTD framework that has been 
developed to obtain more mechanistic understanding from mortality or immobilization data by 
dynamically describing the process of uptake, elimination, recovery, and survival (Jager, Albert 
et al. 2011). Since GUTS parameters provide a more accurate description of processes 
determining species sensitivity, additional mechanistic understanding of differences in species 
sensitivity can be obtained by comparing calibrated GUTS parameter values across species, 
instead of standard sensitivity endpoints (Rubach, Ashauer et al. 2011, Rubach, Baird et al. 
2012). To be able to fit GUTS models, however, data on effects at multiple time points are 
required. Collection of these data is already obligatory in some standard test protocols (e.g. 
OECD 2019), in which case access to these data can easily be acquired by a commitment to 
publish the raw data of experiments along with summary statistics like LC50 values. Other 
standard test protocols, under which collection of this data is not yet mandatory, should be 
reviewed on whether their data requirements should be tightened to allow the fitting of such 
models. 

5.2.2 Exposure duration 

Typically, acute toxicity tests with an exposure duration between 24 and 96 hours are used for 
predictive modelling (Table 5.1). Again, this is primarily determined by data availability, since 
more than 50 percent of all aquatic toxicity test data available in the ECOTOX database 
concerns tests with an exposure duration of up to 96 hours (USEPA 2019). Although expanding 
the exposure duration range may be beneficial for obtaining an adequately-sized dataset, it 
potentially compromises the integrity of the model and should be avoided if possible. For 
instance, we are likely to find less effects after a 1-day exposure than after a 21-days exposure, 
because it takes time for a chemical to reach equilibrium between the exposure concentration 
and the concentration inside the organism. This difference is likely to become larger when the 
comparison concerns tests performed with different species, i.e. due to intraspecific differences 
in size and other traits influencing the uptake and elimination of the chemical (e.g. Wiberg-
Larsen, Graeber et al. 2016). The exposure duration required to reach equilibrium is not only 
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species dependent, but also depends on the physical-chemical properties of the compound, as 
is well-known from QSAR modelling (Cherkasov, Muratov et al. 2014).  

Besides running experiments long enough to ascertain that internal and external concentrations 
are in equilibrium, internal tissue concentrations could be reported together with external 
exposure concentration. Several studies have demonstrated that the internal chemical 
concentration describes toxic effects more closely than the external chemical concentration 
(Friant and Henry 1985, McCarty, Landrum et al. 2011). Focusing on internal chemical 
concentration would by-pass TK processes, since uptake and elimination processes are 
redundant when internal concentrations are known, and would enable us to compare differences 
in species sensitivity originating from internal processes only (TD). Alternatively, a TKTD 
model like GUTS could be employed, which results in toxicity measures that are independent 
of exposure time (Jager, Heugens et al. 2006). 

5.2.3 Additional selection criteria 

Imposing additional selection criteria on experimental conditions (e.g. pH, temperature, 
conductivity) can be useful for improving data homogeneity and hence data quality. Heavy 
metal toxicity, for example, has been reported to vary greatly according to the physicochemical 
characteristics of the exposed water (Pascoe, Evans et al. 1986, Gerhardt 1993). Hydroxide 
precipitations are, for instance, formed when the pH rises to alkaline conditions, reducing the 
concentration of free metal ions and reducing the heavy metal toxicity (Gadd and Griffiths 
1977, Gerhardt 1993). Similarly, reduced heavy metal toxicity was observed in hard water due 
to the formation of insoluble compounds from soluble metal ions (McCarty, Henry et al. 1978). 
The biotic ligand model has been developed to examine the bioavailability of heavy metals 
under different exposure circumstances, and additionally explains how abiotic conditions 
influence the affinity of metals to accumulate on the surface of aquatic organisms (Erickson 
2013). Similar models, normalization factors, or additional selection criteria, can be employed 
for other compound groups when necessary. Whether and which physicochemical properties 
should be taken into consideration when determining toxicity depends on the specific 
characteristics of the chemical group under study.  

5.2.4 Units 

A final, but equally important choice in the description of sensitivity data is the unit in which 
sensitivity is expressed. This is specifically important when comparing species sensitivity 
across chemicals, which is sometimes necessary when data availability is restricted (discussed 
in next section). Although µg l-1 is still the most frequently used unit in aquatic toxicity tests 
(almost 50% of all aquatic tests available in the ECOTOX database, USEPA 2019, and see 
Table 5.1), it is not the most suitable one. It is frequently overlooked that chemical sensitivity 
is primarily related to molecular activities, and that the use of molar units makes molecule-to-
molecule activity comparisons possible. For baseline toxicants exhibiting a non-polar narcosis 
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MOA, the concentration at which mortality occurs will be close to equivalent for all species 
when internal molar concentrations are used (Wezel and Opperhuizen 1995, Escher and 
Hermens 2002), reducing differences in species sensitivity to TK processes only. To overcome 
the problems of tests expressed in weight units, attaching an accurate molar mass database (e.g. 
EPIsuite, USEPA 2018) can help with converting mass units to molar units. 

5.2.5 Grouping data, and its effects on explained variance 

For modelling purposes, classifying chemicals according to their MOA is considered useful, 
because it provides an organizing scheme using an intermediate level of complexity between 
molecular mechanisms and physiological or organismal outcomes (Carriger, Martin et al. 
2016). The rationale for using MOA classification for cross-species extrapolation is that these 
molecular mechanisms are conserved among biological entities (Escher and Hermens 2002). 
However, as in any grouping, using MOA as a grouping variable also introduces variation and 
errors. The assigned MOA may vary, for instance, between species or life stage depending on 
the availability of target sites (e.g. in the case of photosynthetic inhibitors, Nendza and Muller 
2000), or between classification scheme used (see Kienzler, Barron et al. 2017 for differences 
in MOA classification according to the approach used). Therefore, MOA grouping only 
represents a suitable option when it is used with caution, for instance, by restricting the 
taxonomic range of the model to avoid interspecific variation in MOA, or when there is strong 
evidence that the MOA is applicable across the species in question (e.g. for baseline narcosis, 
for which there is strong evidence that the critical body residue for acute lethality in aquatic 
organisms has a very small range, van Wezel, de Vries et al. 1995). 

Similar to using MOA to group across chemicals, higher taxonomic levels (e.g. family, order) 
can be used to group across taxa, and may also be useful for reducing data gaps. Grouping at 
higher taxonomic levels has the advantage of reducing bias due to extreme values and spurious 
data. However, potentially important differences in species sensitivity might be lost by 
summarizing the sensitivity of several species at, for example, family level (Buchwalter, Cain 
et al. 2008, Ippolito, Todeschini et al. 2012), and this trade-off should be carefully considered 
for the chemical-taxa combination under study. 

Whether and how input data are grouped needs to be considered when comparing the 
performance (e.g. the adjusted R2, or the cross-validation error) of different models. It is crucial 
to keep in mind that the variation associated with the grouping that goes into the model, is 
directly related to the variation related to the predictions that come out of the model (Schultz 
and Cronin 2003). Disregarding the variation in input values can result in an overly optimistic 
view on model performance. Similarly, when comparing the performance of different models, 
it is important to consider how much variation the model explains, since this largely depends 
on the number of chemicals considered in the model. For instance, the most complex model of 
Guénard and colleagues (2014) explained 80% of the variation in the sensitivity of 25 species 
towards five compounds, whilst a related model of Van den Berg et al. (Van den Berg, Baveco 
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et al. 2019, both models include AChE inhibition as MOA) explained only 41% of the variation 
in the sensitivity of 32 genera towards 33 compounds. This large difference in model 
performance can partially be explained by the fact that the five compounds of Guénard et al. 
included three MOAs, whilst the 33 compounds of Van den Berg et al. included only one MOA, 
thereby resulting in a large difference in the absolute amount of variation that each model 
explains. 

5.3 Which independent variables are useful for explaining differences in species 
sensitivity? 

We divide possible sensitivity predictors into four groups based on the type of mechanistic 
information that they contain: interspecies-correlation (IC), relatedness-based (RB), trait-based 
(TB), and genomic-based (GB). Here, we first give an overview of the general concept behind 
each sub-group (section 5.3.1), followed by a discussion of the merits and pitfalls associated 
with each of them (section 5.3.2), and close with a description on how the different predictor 
groups can be combined in an integrated framework (section 5.3.3). 

5.3.1 Overview of methods  

Interspecies-correlation (IC) models are log-linear least-squares regression of the acute toxicity 
(E/LC50) of chemicals measured in two species (e.g. Dyer, Versteeg et al. 2006, Raimondo, 
Mineau et al. 2007, Awkerman, Raimondo et al. 2008, Dyer, Versteeg et al. 2008, Awkerman, 
Raimondo et al. 2014). IC models aim at predicting the acute toxicity of a chemical to untested 
species (predicted species) using the known acute toxicity of this chemical to tested species 
(surrogate species). IC models have been used to predict chemical toxicity for algae (e.g. Brill, 
Belanger et al. 2016), aquatic invertebrates and vertebrates (e.g. Awkerman, Raimondo et al. 
2014), terrestrial birds (e.g. Raimondo, Mineau et al. 2007) and mammals (e.g. Awkerman, 
Raimondo et al. 2009), and have proven to be protective for rare and endangered species 
(Willming, Lilavois et al. 2016). However, not all predictions made by this kind of models are 
reliable. Reliable prediction results are those that are derived from models that have a low mean 
square error, narrow confidence intervals, a high cross-validation success rate, a high R2 value, 
and are predicting the sensitivity of closely related taxa (Raimondo, Mineau et al. 2007, 
Raimondo, Vivian et al. 2010, Raimondo and Barron 2019). 

Relatedness-based (RB) models use the extent of evolutionary relatedness between organisms 
as a proxy for the similarity in their response to chemical stressors (e.g. Craig 2013, Guénard, 
von der Ohe et al. 2014, Malaj, Guénard et al. 2016). The underlying principle of these models 
is that closely related species exhibit high correlation of sensitivity to chemicals. This 
correlation can be used to make extrapolations from species whose sensitivity is known, to 
closely related untested species. The strength of this correlation decreases as the two species 
are more distantly related to the point where species that belong to the same phyla, but not to 
the same class, exhibit no correlation of sensitivity. Most RB models use taxonomy to predict 
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the sensitivity of untested species (e.g. Craig 2013), although other relatedness metrics, such as 
phylogenetics, have also been used (Guénard, von der Ohe et al. 2014, Malaj, Guénard et al. 
2016, Table 5.1).  

Trait-based (TB) models use physiological, morphological and ecological characteristics of a 
species to describe its sensitivity towards chemical stressors (e.g. Rubach, Baird et al. 2010). 
Currently existing trait databases (e.g. Usseglio‐Polatera, Bournaud et al. 2000), primarily 
describe visible, external traits (e.g. size, shape). Therefore, TB models are most appropriate 
for describing TK related processes, e.g. by considering feeding mode or mode of respiration 
(Rubach, Baird et al. 2012, Van den Berg, Baveco et al. 2019). Other traits that could help 
describe internal TD processes (e.g. biotransformation, presence of target receptors) are 
available, but have so far only been described for a small number of species (see Table 2 
Rubach, Ashauer et al. 2011 for an overview of the availability and linkage of potential 
toxicodynamic traits).  

Genomic-based (GB) models use the relationship between gene expression and biological 
function as a way to determine the sensitivity of an organism towards specific chemical 
stressors (Snape, Maund et al. 2004, Fedorenkova, Vonk et al. 2010). GB models focus on gene 
and protein expression, integrating transcriptomics (identification of mRNA from actively 
transcribed genes), proteomics (identification of proteins in a biological sample), and 
metabolomics (identification of metabolites in a biological sample) into ecotoxicology (Pennie, 
Ahr et al. 2001). It is widely recognized that changes in gene expression have the potential to 
serve as early warning indicators for environmental effects and as useful biomarkers for 
chemical exposure (Pennie, Ahr et al. 2001, Poynton, Robinson et al. 2014), because they can 
be detected at low concentrations of chemicals and occur well before any morphological or 
reproductive effects become visible (e.g. Klaper and Thomas 2004). However, how effects 
found at a molecular level should be extrapolated to a higher biological level relevant to risk 
assessment is an area of active research, and adverse outcome pathways (AOPs) have been 
suggested as a suitable framework (Ankley, Bennett et al. 2010). An AOP is a conceptual 
construct of a sequence of events that starts with a molecular initiating event, spans multiple 
levels of biological organization, and ends with an adverse outcome on endpoints meaningful 
to risk assessment (e.g. survival, reproduction). We realize that the boundary between a 
phylogenetic RB approach and a GB approach can be vague. To avoid ambiguity, we consider 
an analysis of the sequence similarity in a molecular target a GB approach (because this 
confirms a deeper understanding of the toxicity process), whilst an analysis of the sequence 
similarity in the whole genome or in genetic markers frequently used in phylogenetic analysis 
(e.g. COI, 18S) is considered an RB approach (Table 5.1). 
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5.3.2 Comparison of methods 

Mechanistic explanation 

Raimondo and colleagues (2010) state that taxonomic relatedness is the underlying mechanistic 
explanation for IC models. However, IC models do not incorporate any phylogenetic- or 
taxonomic predictors, and only take taxonomic distance into account when screening for 
reliable prediction results (Raimondo and Barron 2019). Similarly, relatedness between 
chemicals can be considered the mechanistic explanation of IC models, since these models 
always include the response of species to multiple chemicals. Indeed, the fact that IC models 
work well when enough data are available, is likely due to the simultaneous explanation of the 
variation in sensitivity related to different chemicals and different species. Nevertheless, the 
lack of either taxonomic or physicochemical predictors raises the possibility of over-fitting the 
correlation model to the training data, resulting in inaccurate predictions when models are 
applied beyond the limits of the training data (Johnson and Omland 2004). In the case of IC 
models, any untested chemical lies outside the limits of the training data. 

RB models use relatedness as the mechanistic explanation of sensitivity. Relatedness itself does 
not explain differences in sensitivity, but is used as a proxy for similarity in species response to 
chemicals (Craig 2013, Guénard, von der Ohe et al. 2014, Malaj, Guénard et al. 2016), since 
closely related taxa tend to exhibit similar sensitivity due to shared sensitivity-influencing traits 
(e.g. size and target receptor, Blomberg, Garland Jr et al. 2003). The shared distance from a 
common ancestor results in closely-related genetic patterns, which leads to a similar 
biochemistry and phenotype, and therefore, to a shared susceptibility to certain MOAs.  

TB models incorporate mechanistic explanations of sensitivity arising from differences in 
phenotypic or ecological characteristics of species. One TB approach has, for instance, 
demonstrated that the uptake rate of chemicals can to a large extend be explained by the lipid 
content of an organism, whilst elimination rates are negatively correlated with the degree of 
sclerotization (Rubach, Baird et al. 2012). Depending on the taxonomic group under study, 
mechanistic hypotheses between traits and chemical susceptibility have been established to a 
greater or lesser extent. See, for instance, Table 1 in (Culp, Armanini et al. 2011) and the 
references therein, for examples of established trait-stressor relationships for algae, fish, aquatic 
plants, and invertebrates.  

GB models have the potential to contain a comprehensive mechanistic explanation of sensitivity 
to chemical exposure. However, in contrast to TB models, GB models often describe complex 
biochemical pathways that are difficult to understand and to test experimentally (see McCarty 
and Munkittrick 1996 for an overview of the limitations of biomarkers for assessing population 
level effects). Even if a complete AOP is available, uncertainties in the quantification of one of 
the intermediate steps required to infer organism level effects from molecular target sequence 
similarity might prevent a model from performing well, i.e. have a large predictive power. This 
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is largely because these intermediate steps (e.g. related to transcriptomics, proteomics) heavily 
influence the eventual outcome of the molecular effect. LaLone and colleagues (2013) found, 
for example, that the correlation between empirical acute toxicity data and the percent similarity 
in the molecular target analysis is not very strong (R2 = 0.49, p-value = 0.121). They argue that 
to fully understand chemical susceptibility it is necessary to further assess sequence and even 
structural information beyond the level of the primary or secondary protein structure (LaLone, 
Villeneuve et al. 2013).  

Data demand 

IC models only require data on toxicity (e.g. EC50, LC50), which can be obtained from public 
databases such as the ECOTOX Knowledgebase (USEPA 2019). However, the requirement 
that paired toxicity data (i.e. surrogate and predicted species) must be available for at least three 
chemicals in order to produce the correlation, restricts data availability (Raimondo, Jackson et 
al. 2010). Nevertheless, the latest IC models for aquatic animals contain more than 8500 toxicity 
values covering 316 species and 1499 chemicals (Raimondo, Lilavois et al. 2015). However, 
the taxonomic coverage of these models is restricted, with more than 60 percent of all the 
models available in WebICE extrapolating from one fish species to another (Raimondo, 
Lilavois et al. 2015), and of another 26 percent, either the surrogate or the predicted species is 
a fish.  

As the predictive methods of RB models are based on relatedness, rather than on correlations 
of sensitivity to chemicals, data on toxicity must be complemented with data on relatedness. 
Taxonomic classifications for use in taxonomic RB models are readily available for any 
described species in publicly available databases (e.g. the taxonomy database from the National 
Center for Biotechnology Information, Federhen 2011, or the Integrated Taxonomic 
Information System, ITIS 2019). A phylogenetic RB model requires the genetic sequencing of 
a species, and coverage of phylogenies is currently still clade dependent. For instance, 
sequencing efforts in eukaryotic genomics are strongly biased towards multicellular organisms 
and their parasites (Del Campo, Sieracki et al. 2014), and large projects are available to 
sequence vertebrate genomes (e.g. the Genome 10K project, Koepfli, Paten et al. 2015). 
Genomic projects on algae and invertebrates remain limited, however, restricting the use of 
phylogeny-based RB models to data-rich clades such as fish. To ensure a good performance of 
RB models, however, a taxonomically (or phylogenetically) diverse toxicity dataset is required, 
because the correlation of sensitivity decreases with decreasing relatedness (Craig 2013). 

The data demand of TB models depends on the traits to be included in the model, as well as the 
taxonomic group for which the model is constructed. For invertebrates, traits like size and mode 
of respiration (e.g. having gills or not) are readily available in literature, or can otherwise easily 
be recorded. Data on more specific traits, like lipid content or target site distribution, require 
more effort to measure, and are therefore less available in the literature (see Table 2 in Rubach, 
Ashauer et al. 2011). The study of Van den Berg and colleagues (2019) showed that when a 
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wide range of traits were included in the construction of invertebrate TB models, the modelling 
effort was primarily limited by a shortage of traits data (loss of 56% of the species for which 
toxicity data are available). However, only one trait database was used in their study (Usseglio‐
Polatera, Bournaud et al. 2000), whilst more trait databases are available for invertebrates (Poff, 
Olden et al. 2006, Schäfer, Kefford et al. 2011, Hébert, Beisner et al. 2016). For fish, a wide 
range of traits are available distributed over several trait databases (Froese and Pauly 2000, 
Lamouroux, Poff et al. 2002, Frimpong and Angermeier 2009), and covering a large part of the 
taxonomic diversity of fish. For algae we are aware of two traits databases currently available 
(Reynolds, Huszar et al. 2002, Lange, Townsend et al. 2016), but have to acknowledge that 
they are likely to have the lowest taxonomic coverage out of the three standard organism groups 
discussed here (invertebrates, fish, algae), due to the large biodiversity of this group. Besides 
data on traits, TB models require data on taxonomy to match the traits with the toxicity data. 
Access to taxonomic data has already been described under RB models.  

GB models are the most data demanding, because they require validated AOPs. Currently, 274 
AOPs have been described in the AOP wiki in total covering 521 stressors, although the OECD 
status of the majority of them remains ‘under development’ (https://aopwiki.org/, accessed on 
the 25th of January 2019), and taxonomic coverage of these models remains limited. However, 
powerful advances in genome sequencing technology, informatics, automation, and artificial 
intelligence are assisting researchers in understanding species differences to a more detailed 
level (Lewin, Robinson et al. 2018), and can be expected to lead to a significant increase in the 
development of AOPs. Promising new techniques, e.g. in vitro cell-lines (Eisner, Doering et al. 
2019) or enzymatic markers (Arini, Mittal et al. 2017), are being developed and carry the 
potential to replace currently used in-vivo concentration-response curves with in-vitro 
concentration-response curves (see, for instance, Figure 3 in Zhang, Xia et al. 2018). However, 
these methods are time-, and cost-consuming, and are frequently incomparable due to 
inconsistent bioinformatic methods for data filtering, concentration-response modelling and 
quantitative characterization of genes and pathways (Zhang, Xia et al. 2018).  

Protection of ecological entities  

The main objective of all cross-species extrapolation methods is to get an accurate view on the 
variation in species sensitivity that exists in the real world. Indeed, all methods presented in this 
review attempt to add realism to risk assessment by filling in data gaps. However, the methods 
studied in this review vary in two important ways: i) in the way they can consider real species 
assemblages, and ii) in the way that they can be used to extrapolate effects to higher levels of 
biological organization (e.g. population, community or ecosystem level). Therefore, the four 
methods differ in the way they provide protection for ecological entities, i.e. species, 
populations, communities, and ecosystems. 

Researchers have known for a long time that real species assemblages vary through time 
(Murphy 1978) and space (Vannote, Minshall et al. 1980). Although we will likely never be 
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able to understand this variation in its entirety, we can reduce uncertainty in ERA by predicting 
the sensitivity of representative species assemblages. RB and TB methods have this potential, 
since both methods can predict the sensitivity of species that have never undergone toxicity 
testing before, providing predictor values of the species whose sensitivity you want to predict 
are available. This contrasts with IC models, which require sufficient toxicity data to be 
available for other chemicals for the taxon whose sensitivity we want to predict (section 5.3.1), 
and then still might be overfitted to the training data. GB models require, at least, to have the 
part of the genome sequenced that is associated with the key molecular initiating events, so that 
sequence similarity can be calculated (LaLone, Villeneuve et al. 2013). Therefore, IC and GB 
models are only able to predict the sensitivity of commonly tested species. 

All four methods have the potential to be used for the construction of species sensitivity 
distributions (SSDs), a statistical tool considered more protective of ecological entities than 
single measurements of sensitivity, since they allow only a defined fraction of species present 
in a species assemblage to be affected (Kooijman 1987). Again, due to the restrictions in the 
underlying data, IC and GB models assume standard species assemblages in their SSDs, whilst 
RB and TB models can also be applied to representative species assemblages. RB approaches 
have as advantage over TB approaches that data on relatedness is usually more abundant than 
data on traits, allowing sensitivity to be predicted for a wider range of species. Although, in the 
contrary, RB approaches have a weaker mechanistic explanation, ignoring the fact that 
taxonomically diverse species can share sensitivity-related traits. For this reason, RB models 
can be used to develop spatially-defined protection criteria, whereas TB models can extrapolate 
found relationships towards assemblages with the same trait profile, but with a different 
taxonomic composition (Van den Brink, Alexander et al. 2011). GB approaches have recently 
been used for the retrospective risk assessment of community-level effects towards ammonia 
and nitrogen using field-based SSDs (Yang, Zhang et al. 2017). However, there are many 
uncertainties in using retrospective risk assessment approaches, for instance, due to the inability 
to disentangle effects caused by the stressor of interest from all the other stressors (either natural 
or anthropogenic) that might be present at the site under study. For this reason, we do not 
consider retrospective risk assessment studies in our review. 

Although SSDs are considered more representative of real species assemblages than when only 
an alga, an invertebrate, and a fish are evaluated, they still do not consider indirect effects of 
chemical exposure, i.e. effects on food availability, predation, competitive interactions or 
feedback mechanisms. Indeed, all studies described in this review only consider direct effects 
of chemical exposure on organism sensitivity. However, certain methods are better able than 
others to extrapolate effects to higher levels of organization. For instance, TB models permit 
the derivation of hypotheses on what might happen to specific functional groups, whilst RB can 
only do this if functions are clearly restricted to taxonomic or phylogenetic groups. Imagine, 
for example, that predators are more sensitive to a certain chemical than herbivores due to a 
difference in assimilation efficiency (a relationship found in Hendriks, van der Linde et al. 
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2001). It is well known from literature that functional traits like feeding guild are not strongly 
conserved across taxonomy (e.g. see Table 1 in Poteat, Jacobus et al. 2015 for the distribution 
of feeding guilds over the orders Ephemeroptera, Plecoptera, and Trichoptera). Therefore, RB 
approaches will fail to extrapolate the effect of this relationship to the community level, whilst 
TB approaches will be able to do so. Additionally, hypotheses derived from TB models can 
directly link into stochastic ecosystem models (e.g. De Laender, Morselli et al. 2015). Such 
models are able to extrapolate effects found for specific functional groups to the community 
level, incorporating factors like species interactions and functional redundancy (Rosenfeld 
2002). For GB approaches, examples exist of how to extrapolate direct effects to population 
level effects. For instance, De Coen and Janssen (2003) have found a strong relationship (0.88 
< r2 < 0.99) between the cellular energy allocation biomarker response to several chemicals and 
population level effects of Daphnia magna. However, studies extrapolating effects found on a 
single species to community level effects remain absent. For IC models, no examples of 
extrapolations to higher biological levels exist, besides the use of assessment factors. 

5.3.3 Combined approaches to predicting sensitivity 

Since all the methods discussed in this review have their own strengths and weaknesses, our 
main concern is not identifying which method results in models with the highest explanatory 
power, but rather in understanding how the methods can be incorporated into one integrated 
framework. Indeed, all studies discussed in this review (Table 5.1) have demonstrated the 
ability to predict differences in species sensitivity to a certain extent, although there was not 
one method that consistently outperformed the others, and all of them seemed restricted in the 
maximum amount of variation in species sensitivity they could explain. However, studies which 
combined predictors from multiple mechanistic explanations observed an increased model 
performance compared to when predictors belonging to only one mechanistic explanation were 
included. For example, Larras et al. (2014) and Buchwalter et al. (2008) both found that 
combining TB and RB methods (trophic preference with phylogenetic signal, and body weight 
with taxonomic family, respectively) explained more variation than either method alone. These 
findings have found consistent support in further studies (e.g. Ippolito, Todeschini et al. 2012, 
Poteat, Jacobus et al. 2015). 

How combining predictors belonging to different predictor groups leads to better models can 
be explained by the fact that each of the predictor groups explains a different part of the 
sensitivity processes as understood under the TKTD framework (Figure 5.2). Studies 
describing species differences in TK parameters (e.g. Buchwalter, Cain et al. 2008, Rubach, 
Baird et al. 2012) found that traits like mode of respiration and body size are good predictors 
of uptake rates, whilst elimination rates have a very strong phylogenetic signal. We are unaware 
of any studies that have explored the relationships between GB predictors and TD parameters, 
but since TD parameters describe processes related to toxicity thresholds inside the organism, 
the presence, absence, and distribution of chemical receptors are likely to be strong predictors 
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for describing differences in the TD part of species sensitivity (e.g. as found in Larras, Keck et 
al. 2014). So, we can hypothesize that TB approaches are good in explaining the TK part of 
differences in species sensitivity, whilst GB approaches have high explanatory power for 
predicting cross-species differences in TD processes. Additionally, RB approaches have the 
potential to represent aspects of both TK and TD, because relatedness acts as a proxy for the 
likelihood of sharing a niche and therefore traits (TK), but also for sharing similar biochemical 
processes (TD). For these reasons, we hypothesize that the best performing models can be found 
by combining the different methods in one integrated framework (Figure 5.2), although next 
we will discuss the constraints that apply to this framework.

Figure 5.2. An abstract visualization of the integrated framework suggested to combine the 
different modelling approaches (IC, RB, TB and GB) discussed in this review. The different 
layers (IC, RB, TB, GB) of the TK and TD processes can be regarded as the steps of a tiered 
approach, increasing in complexity and mechanistic explanation.  

When combining predictors from different categories, it is important to set constraints on the 
exact part of the sensitivity process they are going to explain, because otherwise the predictors 
can negatively influence each other through collinear relationships, as explained in section 5.4.
For the reasons mentioned in the previous paragraph, we hypothesize that the best performing 
models can be found by combining sensitivity-related, morphological traits (TB) with the 
sequence similarity of the molecular target(s) of the chemical or MOA under study (GB). RB 
predictors can potentially be added to the model to represent sensitivity related processes that 
are still unknown. Alternatively, a separate RB approach can be used to distinguish which taxa 
are sensitive and tolerant to a specific chemical or MOA. This information can be help ease the 
search for the molecular target(s) describing differences in species sensitivity, since it must lie
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in the part of the genome that is different between these taxa. We think that IC approaches have 
limited applicability for cross-species extrapolation of chemical sensitivity when data are 
restricted due to their lack in mechanistic information, but they can of course be used when data 
availability is sufficient. The different layers (IC, RB, TB, GB) of the TK and TD processes as 
illustrated in Figure 5.2 can also be regarded as the steps of a tiered approach, increasing in 
complexity and mechanistic explanation. 

5.4 Which statistical considerations are important when extrapolating species 
sensitivity? 

The final feature of predictive models that this review discusses, is the statistical considerations 
that are important when extrapolating species sensitivity. After all, most modelers are aware 
that a major part of the modelling outcome is determined by choices made along the modelling 
process. These choices range from the selection of input data (section 5.2), to the method 
selected for (preliminary) variable selection. Here, we want to discuss modelling considerations 
that have so far not been discussed in this review, but are main determinants for the modelling 
output.  

The first consideration is the omission of data points. Modelling studies often depend on a 
subset of data available in literature or databases, and, as mentioned in section 5.2, model 
performance is largely dependent on this sub-setting of the input data. Therefore, it is crucial 
that data are only omitted or included under clear and well-documented circumstances. Data 
should never be omitted without explanation, as this can lead to the suspicion that outliers were 
merely removed to improve the model.  

The second consideration is the use of confounded predictors. If two predictors are highly 
collinear, they contribute the same information twice, thus confounding the statistical 
association and making it more difficult to deduce a mechanistic interpretation (Dormann, Elith 
et al. 2013). Therefore, preliminary variable selection is an important process. Van den Berg et 
al (2019) assessed the optimal collinearity threshold for trait predictors, and found an increase 
in cross-validation error with an increasing collinearity threshold. In general, a collinearity of 
maximum 70% is allowed, and is found sufficient to keep collinearity under control (e.g. 
Dormann, Elith et al. 2013). Research performed on a GB based approach studied the influence 
of different preliminary variable selection methods on model performance (Mannheimer, Duval 
et al. 2019). They found that the variable selection method only had marginal effects on 
Spearman correlations between predicted and measured values, and that as long as the signal to 
noise ratio is high, the dominant effect will be captured regardless of the preliminary variable 
selection method. This is to a large extent true for big datasets containing many collinear 
predictors, which is often the case for GB approaches. For smaller datasets, however, 
preliminary variable selection methods can have a severe impact on the modelling results. 
Therefore, predictors should be collected deliberately avoiding collinearity, and with clear 
underlying hypotheses.  
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The third consideration is that any descriptor value, measured or calculated, can potentially 
contain errors. Molecular descriptors, for instance, may vary depending on the conformation of 
molecules and on the software used (Benfenati, Piclin et al. 2001, Schultz and Cronin 2003). 
Therefore, the more descriptor values included in the model, the larger the chance of 
incorporating errors. Extrapolating the variation associated with descriptors is a field not yet 
satisfactorily explored, but crucial if modelling approaches ever want to take a more dominant 
place in the risk assessment process (e.g. by means of Bayesian approaches, Wintle, McCarthy 
et al. 2003). For this to be possible, though, accessibility to raw data is necessary. Proper 
registration and transparency of test methods used and results generated will help making data-
mining approaches more feasible, especially if raw data are organized according to clear 
standards. Guidelines and standards have been developed for ecotoxicity data (e.g. Kase, 
Korkaric et al. 2016, Moermond, Kase et al. 2016, Society of Environmental Toxicology and 
Chemistry 2019), but also for gene expression data the minimum quantity and quality of 
information required to interpret and verify study results has been defined (Brazma, Hingamp 
et al. 2001). 

The fourth and final consideration concerns overfitting in general. Biological processes consist 
of complex dynamic interactions in a multi-dimensional system, and non-linear methods have 
the ability to capture these complex interactions between variables (e.g. Ladroue, Guo et al. 
2009). However, in a multi-dimensional system these methods tend to incorporate noise leading 
to overfitting. Alternatively, linear methods are more robust to overfitting, although at the cost 
of potentially missing important non-linear interactions (Mannheimer, Duval et al. 2019). 
Whether a linear or non-linear method is more suitable depends on the number of predictors 
available, and on the degree of mechanistic information contained within these predictors. 
Regardless, additional measures can be taken to ensure overfitting is avoided. The use of the 
adjusted R2 as model selection criterion should, for instance, be avoided, although this rule is 
still regularly broken (e.g. Rubach, Baird et al. 2010, Rubach, Baird et al. 2012, Rico and Van 
den Brink 2015). This criterion focuses entirely on maximizing fit and completely disregards 
model complexity, therefore often resulting in models overfitted to the training data. 
Information criteria that consider both fit and complexity (e.g. Akaike’s Information Criterion) 
are better suited for selecting a model (Johnson and Omland 2004), and are therefore 
recommended. 

Regardless of the exact choices made on the considerations discussed in this section, it is likely 
that statistically significant models will be found. However, the outcome of these models does 
to a large extend depends on the choices made. For this reason, communication of choices made 
during the modelling process is just as crucial for understanding the modelling outcomes, as are 
the modelling outcomes themselves. Striving for reproducible research is one way to force 
modelling choices to be communicated, since being able to recreate the whole process will 
enable external reviewers to re-run all the steps made. Reproducible research has as additional 
advantage that methods that have been implemented once, do not require implementation a 
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second, third, or even fourth time. In this way, we can spend our efforts on using and elaborating 
on existing work.  

5.5 Concluding remarks 

This review provides an overview of the methodologies currently available for extrapolating 
species sensitivity towards chemical stressors. However, there is not one straight-forward 
answer to the question ‘How can we extrapolate species sensitivity?’. Indeed, the answer to this 
question depends on the answers to the sub-questions addressed in this review: i) how can we 
describe species sensitivity, ii) which independent variables are useful for explaining 
differences in species sensitivity, and iii) which statistical considerations are important when 
extrapolating species sensitivity?  

Regarding the first question, we show that ERA can primarily benefit from modelling 
approaches by describing species sensitivity on effects that are ecologically relevant and 
sufficiently robust such that the data can be used to accurately represent species sensitivity. 
However, attention should be paid to data heterogeneity, since this strongly influences the 
reliability of the resulting models. Additionally, the importance of the unit used to describe 
species sensitivity was discussed, which is primarily important when sensitivity is compared 
across chemicals, for instance, when data is grouped according to MOA. Ideally, concentrations 
should be described using molarities, since chemical sensitivity is primarily related to molecular 
activities. Finally, when deciding on which model is most suitable to answer a specific research 
question, we should keep in mind that model performance is a function of the number of 
chemicals and/or organisms that the model covers.  

Regarding the independent variables that are useful for explaining differences in species 
sensitivity, we find that none of the methods discussed in this review result in the best model 
performance when considered alone. When sufficient toxicity data are available, and the MOA 
of the chemical is not very specific, IC models are likely to work (e.g. for baseline toxicants 
with a strong phylogenetic signal). However, as toxicity data for the same chemical is required 
for the tested and predicted species, IC methods are limited to species frequently used in 
laboratory testing. Extrapolating to other species therefore requires mechanistic approaches to 
construct trustworthy models. In that case, a combination of predictors originating from 
multiple approaches is likely to achieve optimal model performance, since all predictors explain 
a unique, complementary part of differences in species sensitivity (Figure 5.2). For these 
reasons, we suggest an integrated framework (Figure 5.2), combining predictors describing 
important traits determining the uptake and elimination of chemicals (e.g. size, respiration, 
exoskeleton-thickness), with the amount of sequence similarity in molecular targets, and 
relatedness predictors. This integrated framework can also be considered a tiered approach, 
where moving up a tier equals moving up in level of complexity and mechanistic understanding 
of the sensitivity process.  
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The final question has perhaps the most straight-forward answer, since regardless of the method 
selected, significant models can be found. It is, therefore, important that modelling is done in a 
reproducible way, and that modelling decisions are clearly communicated along with modelling 
results. To optimise reproducibility, we advise the publication of well-documented scientific 
code along with scientific studies, as is also in accordance with the good modelling practise as 
advised by EFSA (2014). This will not only clarify modelling choices, but will also help avoid 
re-implementing methods that have been implemented before, so that we can spend our efforts 
on continuing and elaborating on existing work.  

In general, this review clarifies which considerations and assumptions are made during 
modelling efforts concerned with the cross-species extrapolation of chemical sensitivity. We 
think it can help steer the direction of empirical research, by pointing out in which research 
fields data demands are most urgent. For example, the applicability of RB and TB methods 
could be improved by refining which species have to be tested to enable accurate prediction to 
more natural species assemblages. For instance, focusing on still unknown taxonomic- or trait 
profiles. In contrast, GB models would benefit most from further research into AOPs and 
completing the necessary genomic tests for organism groups capable of being covered by GB 
methods. By specifying and standardising the data requirements for the functioning of these 
methods, it would be possible to integrate cross-species extrapolation into regulatory 
environments. This would offer opportunities for refining risk assessments, including spatial 
and temporal consideration of sensitivity, and provide methods for reducing animal testing and 
the cost associated with them. 
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6.1 The myth of the most sensitive species  

For over 30 years, researchers have been aware that there is not a single species or a specific 
group of species which is always the most sensitive one (all the time, everywhere, and towards 
every compound). This has been coined the ‘myth of the most sensitive species’ (Cairns 1986). 
Nevertheless, current risk assessment approaches still often rely on a standard set of test species, 
since well-developed experimental protocols are required to enable reproducibility of test 
results.  

Chapter 2 provides new proof that relying on a standard set of test species results in an 
unrealistic representation of the actual sensitivity of invertebrates, and therefore provides 
evidence that current risk assessment approaches require rethinking. We demonstrate that there 
is not one genus, family, or class which is sensitive to all chemicals. Indeed, our results show 
that the mode of action of a chemical largely determines which taxa are most sensitive towards 
that chemical. We found, for instance, that chemicals classified as ion-, osmoregulatory-, or 
circulatory- impairing were most toxic towards bivalves, whilst acetylcholinesterase (AChE) 
inhibiting chemicals were most toxic towards arthropods (chapter 2). Similarly, when looking 
at Daphnia spp., the aquatic species that is most frequently incorporated into the aquatic risk 
assessment of chemicals, we found that although it is relatively sensitive towards chemicals 
belonging to the mode of action ester narcosis, it is one of the most tolerant species towards 
nicotinic acetylcholine receptor agonism (Figure 6.1). The same is true for other species 
commonly used in risk assessment, like Chironomus spp. and Gammarus spp. (Figure 6.1). For 
this reason, we conclude from chapter 2 that depending on the same set of standard test species 
can result in either an overestimation or an underestimation of sensitivity, depending on the 
mode of action of the chemical.  

6.2 Sensitivity is a complex problem 

Species sensitivity is known to vary across life stage (e.g. Van der Lee, Kraak et al. 2020), 
gender (McClellan-Green, Romano et al. 2007), size (e.g. Poteat and Buchwalter 2014), and 
season (Van den Brink, Van Smeden et al. 2016), to name a few. This thesis adds to that list, 
variation in sensitivity according to the mode of action of the chemical (chapter 2), the 
exposure duration (chapter 4), and the endpoint under consideration (chapter 4 & 5). Consider, 
for instance, the change in the ranking of invertebrates after short- or long-term exposure, or 
after considering lethal- or sub-lethal effects (chapter 4). This long, and yet still incomplete, 
list of factors influencing species sensitivity makes it clear that sensitivity is a complex attribute.  

With complexity in understanding sensitivity, we also face considerable challenges in reliably 
measuring it. Ecotoxicologists generally rely on simple measures to express the toxicity of 
chemicals to organisms, such as the no-observed-effect concentration (NOEC) and the exposure 
concentration associated with x% effect (ECx). However, these statistical summaries are merely 
a snapshot description of the toxicity process, and are largely influenced by the factors 
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mentioned before. True sensitivity is rather the response of a dynamic system (an individual) 
to a chemical stressor (Jager 2011). For this reason, the use of dynamic, mechanistic effect 
models has gained popularity in recent years (Jager, Heugens et al. 2006). In chapter 4 we 
explored the use of these more accurate descriptions of species sensitivity, and have 
demonstrated that these parameters indeed allow us to understand underlying processes in 
species sensitivity better. 

 

Figure 6.1. Illustration of how the position of three commonly tested species (Daphnia spp., 
Gammarus spp., and Chironomus spp., c) varies in sensitivity rankings made for different 
modes of action: a) ester, narcosis, and b) nicotinic acetylcholine receptor agonism, 
neurotoxicity. Pictures taken by Christophe Brochard (Daphnia) and Ton van Haaren 
(Chironomus and Gammarus). 

Nevertheless, if we already struggle to grasp the sensitivity process at an individual level, then 
how can we start extrapolating to higher levels of biological organization (e.g. community or 
ecosystem level)? Predictions of the real impact of chemicals on an aquatic system are uncertain 
due to the complexity of the biological system and all the aspects influencing the system under 
study. However, just because something is uncertain does not imply that the right action is to 
do nothing until we are certain. Indeed, uncertainty can cut two ways: reality can turn out better 
or worse than predicted. Concerning direct effects, species can turn out more sensitive in the 
field than measured in the lab, for instance, due to effects of seasonality (i.e. temperature, 
Macaulay, Buchwalter et al. 2020), the presence of multiple stressors (Cedergreen 2014), and 
the historical presence of stressors (even if they are now absent, Ashauer, O’Connor et al. 2017). 
Species can also turn out less sensitive in the field than measured in the lab, for instance, due 
to adaption to the harsh conditions present in their natural environment (Räsänen, Laurila et al. 
2003), or the constant exposure regimes used in the lab tests (Reinert, Giddings et al. 2002). 
Concerning indirect effects, impacts can turn out worse than expected due to a cascading effect 
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at the population or community level effect. Consider, for instance, the loss of keystone species 
or ecosystem engineers, for which any loss of function will result in a disproportional effect on 
ecosystem functions (Baert, De Laender et al. 2017). Alternatively, impacts can turn out lower 
than expected due to a high recoverability of the species (Gabsi and Preuss 2014), or due to the 
fact that other species take over the ecosystem function of the species that goes extinct (i.e. 
functional redundancy, Rosenfeld 2002). These indirect effects are currently not yet addressed 
with the cross-species extrapolation methods discussed in this thesis. However, being able to 
predict the sensitivity of natural species assemblages opens up the possibility of incorporating 
real species assemblages into community models such as (De Laender, Morselli et al. 2015). 

6.3 Traits alone are insufficient in describing species sensitivity 

In chapter 2 we seem to hit a boundary on the maximum possible performance of trait-based 
models (figure S1 and S2 in the supporting information of chapter 2). Since previous studies 
have found that both traits and relatedness explained a unique part of sensitivity (Poteat, 
Jacobus et al. 2015, Pilière, Verberk et al. 2016), we decided to enhance the models developed 
in chapter 2 with advanced taxonomic predictors (chapter 3). We indeed find that combining 
traits with taxonomic information results in models with increased predictive power (Table 
3.2), and that regardless of whether the mode of action is strongly rooted in phylogeny, 
taxonomic predictors can be used to describe differences in species sensitivity. We find, for 
instance, that there is no specific taxonomic group more sensitive or tolerant towards narcotic 
compounds, whilst sensitivity towards AChE inhibiting compounds has a strong phylogenetic 
signal. In chapter 4, we find that taxonomic distance is a strong explainer of differences in 
elimination rates of imidacloprid for different species.  

Another main finding of chapter 2 was that a large part of the available toxicity data remains 
unused due to insufficient traits data. Around 70% of the species for which we had toxicity data 
available were discarded because no or incomplete traits data were available. Additionally, we 
sometimes struggled that traits were not quantitative enough. Consider, for instance, that the 
traits included in the best models found in chapter 3 were conserved among taxonomy, leading 
to a bias when the model was used to predict the sensitivity of real species assemblages. From 
this we can conclude that we have currently reached a dead-end on using existing data only. 
Therefore, if we want to increase the predictive power of trait-based approaches, we must 
dedicate ourselves to collecting more traits data. Although it is possible that the lack of traits 
data gets resolved due to general research interest (e.g. Gallagher, Falster et al. 2020), it is more 
likely to be executed efficiently when the measurement of a restricted set of traits (with 
established relationships with sensitivity) becomes mandatory under standardized test 
guidelines as developed by organizations like the OECD (Organisation for Economic Co-
operation and Development, e.g. OECD 2019). 
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Since traits on the one hand are insufficient in describing species sensitivity, and on the other 
hand pose one of the main obstacles in model construction, chapter 5 describes and compares 
a more diverse range of possible sensitivity predictors. We suggest an integrated approach, 
combining predictors from multiple categories (e.g. traits, relatedness, genetic markers, Figure 
5.2), and demonstrate that when specific predictors are used to explain specific parts of the 
sensitivity process we will be able to construct better models. 

6.4 Sensitivity towards chemical stressors is spatially variable 

In chapter 3 the value of being able to predict the sensitivity of species never tested before 
becomes apparent. By applying developed models to species assemblage data, we demonstrate 
that aquatic ecosystems located in central Europe contain fewer sensitive species than those 
situated in the south. We found this was the case for both narcotic and AChE inhibiting 
compounds. However, zooming-in to a smaller spatial scale of one region, the UK in this case, 
revealed contradicting patterns in species sensitivity depending on the mode of action of the 
chemical. So, although entire regions can be considered relatively tolerant, there might still be 
certain river reaches with a large percentage of sensitive species. At both spatial scales, 
however, patterns of endemic biodiversity were found to explain the presence of sensitivity 
hotspots. 

Since sensitivity towards chemical stressors is spatially variable, and the spatial pattern depends 
on the stressor under study, patterns across wide spatial scales can easily be compared with 
other studies to reveal regions where multiple stressors might be causing an effect 
simultaneously (Figure 6.2). This could be useful in the consideration of multiple stressors and 
interactions between multiple stressors can easily be incorporated, for instance, by using simple 
additive models (Cedergreen 2014, Rider, Dinse et al. 2018). 

Assuming we reconcile conceptual differences in species sensitivity (section 6.2), there remain 
limiting factors in terms of data availability and collection quality across regions, especially in 
the developing world (e.g. Aus der Beek, Weber et al. 2016). We know the least about areas 
where pollution might present the largest challenge for ecosystems as well as the regulatory 
policy makers. A possible solution to estimate the potential chemical impact at these sites is to 
use species distribution models to predict assemblage composition at sites where no 
biomonitoring efforts are in place (e.g. as in He, Bradley et al. 2015). In this way, abiotic 
conditions can be used to determine which species are likely to occur at these sites. 
Subsequently predicting the sensitivity of these predicted assemblages would then allow us, for 
the first time, to map sensitivity globally at a fine resolution. 
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Figure 6.2. The relative sensitivity of aquatic invertebrates towards the mixture toxicity of a)
AChE inhibiting and narcotic compounds, and b) climate change and narcotic compounds using 
simple additive models. Data on sensitivity towards climate change is derived from 
(Hershkovitz, Dahm et al. 2015).

6.5 It’s all relative

In this thesis, we describe and discuss numerous times that results often depend on (modelling) 
decisions. In the supporting information of chapter 2, for example, we provide an extensive 
review and analysis on the effect of modelling decisions on modelling outcomes. However, 
even after this careful consideration of multiple factors influencing modelling decisions, model 
biases revealed themselves when applying the models to real data. For instance, we came to 
learn the existence of a taxonomic bias when we applied the models developed in chapter 2 to 
existing species assemblages in chapter 3. This taxonomic bias was caused by a discrepancy 
in the taxonomic diversity and evenness between the data used to train the model, and the data 
to which the model was applied. This example is a clear illustration of how large the 
implications are of the well-known fact of any model: what goes in, must come out.  

In principle, models are little more than a transformation of the data that was used to build the 
model. Therefore, all models need to be evaluated on their validation, applicability domain, and 
relevance (Figure 6.3a). The integrated approach we suggest in chapter 5 has a large overlap 
with Quantitative-Structure-Activity-Relationship (QSAR) approaches. Consider, for instance, 
that instead of chemical structures, structure is resembled by species traits (i.e. describing the
structural characteristics of species), and that instead of measures of chemical activity, activity
is resembled by (the expression of) validated genetic markers (i.e. describing the 
presence/absence of chemical receptors). Due to this large resemblance, the validity, 
applicability, and relevance prerequisites developed for QSARs (Worth 2010) can easily be 
amended to cover cross-species extrapolation methods. 
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Figure 6.3. a) The overlap of considerations regarding the validity, applicability, and relevance 
needed to demonstrate model accuracy (adjusted from Worth 2010), and b) the five validation 
principles established by the OECD.

To facilitate the consideration of a cross-species extrapolation model for regulatory purposes, 
models have to demonstrate their validity (also see Augusiak, Van den Brink et al. 2014). Five 
validation principles have been established by the OECD, originally developed for QSAR 
models, that can be amended to include cross-species extrapolation methods (OECD 2004, 
figure 6.3b). First, a model should be associated with a defined endpoint. This refers to any 
biological effect that can be measured, as long as it is transparent. In chapter 5 we describe the 
most relevant endpoints for consideration in risk assessment. Second, a model should be 
expressed in the form of an unambiguous algorithm. Although I would not call the algorithm 
(R pipeline) developed under chapter 2 and 3 unambiguous, the main complexity in these 
cross-species extrapolation methods lies in the connection and preliminary processing of 
multiple databases. Eventual model construction consists most of the time out of mere multiple 
linear regressions (Table 5.1). The third validation principle describes that each model should 
have a clearly defined applicability domain. In the case of cross-species extrapolation, often 
grouping on either chemical or taxonomic groups are used to enable the construction of models 
with a restricted data availability (Table 5.1). The models developed in chapter 2 and 3, for 
example, have been constructed on the mode of action of the chemicals for which empirical 
toxicity data was available. Therefore, these models can only be applied to chemicals with a 
similar mode of action. Similarly, the models have been constructed for specific taxonomic 
groups, and the applicability of the models is thereby restricted to these taxa. The last two 
validation principles, stating that the models should be 4) robust and predictive and 5) 
mechanistically interpretable, are with the understanding of this thesis, highly correlated with 
each other. Chapter 4 demonstrates that even for very small datasets, if the mechanisms 
determining species sensitivity are well-described by available predictors (e.g. traits), model 
performance will be good.  
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Besides that the model should be valid, it should also be applicable to the chemical under query. 
As mentioned in the previous section, models are associated with a defined application domain. 
Therefore, any uncertainty in whether the model is applicable to the query chemical is directly 
associated with the uncertainty of the classification method used to assign the mode of action, 
or any other grouping that was used for the training of the model. 

Finally, the model endpoint should be relevant for the regulatory purpose. In the case that the 
model predicts directly the regulatory endpoint (e.g. LC50 values), the relevance is self-evident. 
However, the new generation cross-species extrapolation models focus on predicting lower-
level mechanistic endpoints (e.g. uptake rates (chapter 4), presence of molecular sites (chapter 
5)), and therefore require an additional extrapolation to the endpoint of interest. This is more 
thoroughly discussed in chapter 5.  

6.6 Cross-species extrapolation for environmental risk assessment 

The past years, progress has been made regarding the incorporation of so-called non-testing 
methods for use in risk assessment. Take, for instance, the more frequent incorporation of 
QSARs and read-across for the registration of new chemicals under REACH (the Registration, 
Evaluation, Authorization and Restriction of Chemicals, European Commission 2007). For an 
overview of case studies demonstrating the successful incorporation of non-testing methods 
into ERA, multiple review studies are available (OECD 2006, Worth and Patlewicz 2007). The 
cross-species extrapolation methods covered by this thesis would be a new addition to the list 
of non-testing methods, but how do we envision that cross-species extrapolation can be used in 
ERA? 

In principle, cross-species extrapolation can be used in ERA in three ways. First, it can be used 
to support priority setting procedures to narrow down further assessment work. The first 
chapter of this thesis provides sensitivity rankings that serve exactly this purpose (also see 
Figure 6.1). If the mode of action of the query chemical is known, we can use these sensitivity 
rankings (based on experimental data available on other chemicals with the same mode of 
action) to determine which taxa are most sensitive, and then focus further assessment work on 
these taxa. To avoid only considering taxa already frequently tested in the lab, we can extend 
the diversity of species diversity by applying the developed models to a wide diversity of 
untested species. This could point out species not normally considered for toxicity testing, but 
with an apparently high susceptibility towards the query chemical. Chapter 5 additionally 
provides a workflow of how relatedness-based approaches can be used to narrow-down the 
taxonomic scope of further assessment work, even when no mechanistic predictors of 
sensitivity are known.  

Second, cross-species extrapolation can be used to supplement the use of experimental data in 
weight-of-evidence approaches. Using cross-species extrapolation can strengthen weight-of-
evidence approaches performed under lower tiers, or reduce the magnitude of standard 
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assessment factors. The power of cross-species extrapolation lies in this case not only in the 
filling in of data gaps, but more importantly, in the provision of mechanistic information. 
Chapter 4 demonstrates that the availability of predictors (e.g. traits) that describe the 
mechanisms determining species sensitivity well is crucial for the construction of predictive 
models when data availability is low.  

Finally, cross-species extrapolation can be used to replace or completely substitute the need for 
experimental data. This is of course the envisioned objective of all non-testing methods: 
completely replace animal testing. However, the way cross-species extrapolation methods will 
be applied in practice is likely to depend on the restrictions set by the regulatory framework 
(some being more conservative than others) and the specific context (availability of other 
information, possible consequences of an incorrect prediction). In regard of the first two 
applications mentioned (support priority setting and supplement experimental data), the use of 
cross-species extrapolation methods is more indirect and is more likely to be not decisive in the 
final assessment. However, when we discuss the replacement of experimental data with 
modelled data, the risk assessment will heavily rely on the performance of the models, and 
therefore will require properly validated and applicable models (Worth 2010).  

In general, this thesis contributes to the development of a transparent ERA approach that is 
based on mechanistic understanding and combines experimental data with modelling 
approaches to develop smart, cost-effective, prospective tools. A well-developed ERA will 
protect species currently not directly covered by the aquatic testing procedures. As science is 
evolving, it is important to ensure that ERA is continuously updated with the latest technology 
and the newest scientific knowledge. It would be best to unify guidelines and regulation across 
the whole globe. Future steps can be taken to include metabolites, mixture toxicity, and focus 
on developing approaches at a landscape level further. This calls for an interdisciplinary 
approach to improve our scientific understanding and to communicate findings with all 
stakeholders involved in ERA.  
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Summary 
The aim of this thesis was to improve the development of models describing species sensitivity 
towards chemical stressors. This included unravelling decisions that might be of importance in 
the modelling process, obtaining a better mechanistic understanding of differences in species 
sensitivity, and providing recommendations for applying such modelling approaches within or 
across different taxonomic groups of freshwater ecosystems all over the globe. To accomplish 
this global applicability, we primarily focus on traits-based instead of taxonomy-based 
approaches on the development of predictive models. A trait is a phenotypic or ecological 
character of an organism at individual or population level, and describes the physical 
characteristics, ecological niche and functional role of a species within the ecosystem. We make 
use of traits, because they are transferable across geographies, add mechanistic and diagnostic 
knowledge and can be easily translated from taxonomic analyses priory preformed.  

We start this thesis with presenting a new predictive modelling approach for potential use in 
environmental risk assessment (ERA). This new approach constructs macroinvertebrate 
sensitivity rankings, and subsequently, predictive trait models for a set of pre-defined modes of 
action (MOA). Each model reveals different taxonomic patterns of species sensitivity, 
demonstrating that there is not one (set of) species which is most sensitive to all chemicals. The 
traits included in the models additionally provide information on the mechanisms underlying 
differences in species sensitivity. We identified, for instance, traits like life cycle duration and 
respiration mode as important in explaining differences in species sensitivity, and which are 
hypothesized to be indicators of respectively metabolism and uptake rates. Additionally, we 
provide an accurate picture of which species-chemical combinations still lack sufficient data, 
and found that no or incomplete traits data were available for 71% of the species, making the 
lack of trait data the main obstacle in model construction.  

Although these models delivered a new understanding of species sensitivity, they also 
demonstrate that using traits-data alone will never results in explaining all differences in species 
sensitivity. Therefore, we develop the models further by adding taxonomic relatedness as an 
additional predictor of species sensitivity. We indeed find that model performance increases, 
although only marginally. Besides improving the models further, we also develop the tool 
further, so that it is now able to predict the sensitivity of species never tested before. We apply 
the developed models and tool to community assemblages at two different spatial scales 
(continental and national) and for two different MOAs (narcosis and acetylcholinesterase 
(AChE) inhibition). The community composition of European freshwater ecoregions is used 
for the application of our models at the continental scale, while the reference database of the 
RIVPACS (River InVertebrate Prediction And Classification System) tool is used for river-type 
scale within the United Kingdom. We found that on a relative scale, 46% and 33% of European 
species were ranked as more sensitive towards narcosis and AChE inhibition, respectively. 
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These more sensitive species were distributed with higher occurrences in the south and north-
eastern regions, reflecting known continental patterns of endemic macroinvertebrate 
biodiversity. At the UK level, we found contradicting sensitivity patterns depending on the 
MOA, with more species displaying relative sensitivity to narcotic MOA in north and north-
western regions, and more species with relative sensitivity to AChE inhibition MOA in south 
and south-western regions.  

Next, instead of looking for alternative predictors of species sensitivity, we look for alternative 
descriptors of species sensitivity. Recently, mechanistic effect models have been suggested as 
an alternative to the statistical summaries (e.g. LC50s) that are currently being used to assess 
the potential risk of chemicals to the diversity of all living species. Examples of such 
quantitative mechanistic effect models are the toxicokinetic- toxicodynamic models of the 
General Unified Threshold models of Survival (GUTS) framework, which link external 
exposure and survival effects by describing the processes of uptake, biotransformation, 
elimination, damage and internal recovery. Parameterization of these models by means of traits 
enables prediction of standard sensitivity endpoints for a wide range of species and for multiple 
exposure patterns. We find that GUTS models parameterized on traits are indeed able to 
approximate the sensitivity of freshwater arthropods, and additionally allow us to understand 
the underlying processes of species sensitivity better. 

Since so many decisions must be made regarding the predictors or descriptors that can be used 
to describe species sensitivity, we provide a review on currently existing cross-species 
extrapolation methodologies. We argue that risk assessment can benefit most from modelling 
approaches when species sensitivity is described based on effects that are ecologically relevant 
and robust. Additionally, specific attention should be paid to the heterogeneity of the training 
data, since this strongly influences the reliability of the resulting models. Regarding which 
predictors are useful for explaining differences in species sensitivity, we develop an integrated 
framework, combining the strengths of interspecies-correlation, relatedness-based, traits-based, 
and genomic-based extrapolation methods. Finally, we discuss that regardless of the statistical 
method used, statistically significant models can be found. However, the usefulness and 
applicability of these models varies considerably according to modelling choices made. We 
therefore recommend the publication of scientific code along with scientific studies to 
simultaneously clarify modelling choices, and enable continuation and elaboration on existing 
work.  

We conclude this thesis by explaining the three ways in which cross-species extrapolation 
methods can be used in the prospective risk assessment for chemicals: i) to support priority 
setting procedures by narrowing down further assessment work, ii) to supplement the use of 
experimental data in weight-of-evidence approaches, and iii) to replace or completely substitute 
the need for experimental data. Through this development, our approach can help reduce animal 
testing and contribute towards a new predictive ecotoxicology framework. 
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