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Tropical forests, savannas and forest-savanna transitions 

Tropical forests and savannas make up between 15% to 20% of the earth’s 

terrestrial surface (Grace et al. 2006) and account for over 60% of terrestrial 

productivity (Beer et al. 2010). Tropical forests and savannas represent distinct 

biomes both of which are crucial to the earth’s land-atmosphere feedbacks, other 

ecosystem services (Bonan 2008, Furley et al. 1992) and support many socio-

cultural and economic livelihoods (Grace et al. 2006).  

Tropical forests refer to those tropical vegetation types dominated by woody 

species with a canopy cover sufficiently high to reduce (or eliminate) C4 grasses 

(Torello-Raventos et al. 2013, Veenendaal et al. 2015). This definition includes a 

wide range of canopy cover types, but generally with a canopy area index ≥ 0.7, 

tree height ≥ 12 m and fractional herb and grass cover ≤ 0.1 (Torello-Raventos et 

al. 2013, Veenendaal et al. 2015). At times, “grassy” are also distinguished, e.g. 

forests in South East Asia, (Torello-Raventos et al. 2013). The term woodland 

(sometimes, with a prefix, e.g. “tall” or “closed”) is used to distinguish tropical 

vegetation formations with almost closed canopies but often comprising species 

that may not be regarded as true forest species, the latter being defined as more 

shade-tolerant and fire-sensitive (see for various views e.g. Torello-Raventos et 

al. 2013, Ratnam et al. 2011).  

Tropical savannas, on the other hand, are vegetation types characterized by 

the coexistence of herbaceous vegetation with woody species (Torrelo-Raventos 

et al. 2013, Scholes & Archer 1997). The relative dominance of trees and grasses 

varies considerably across savanna types (Ratnam et al. 2011, Torrelo-Raventos 

et al. 2013, Veenendaal et al. 2015). Generally, canopy area index is < 0.7 (i.e. 

not closed-canopy) with fractional herb and grass cover > 0.1, although woody 

plant height may be as tall as forest vegetation (Torrelo-Raventos et al. 2013).  
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8



9 
 

The interface of tropical forests and savannas constitutes an ecotone; the 

forest-savanna transition (Torrelo-Raventos et al. 2013, Veenendaal et al. 2015). 

Figure 1.1a shows this zone and adjacent vegetation types for West Africa and 

Ghana. The forest-savanna transition is a mosaic of forest patches in an otherwise 

large expanse of woodland (Torrelo-Raventos et al. 2013, Swaine et al. 1976, 

Cuni-Sanchez et al. 2016). Kent & Coker (1996) defined a vegetation mosaic as 

the existence in a specific area of different plant communities. 

The forest-savanna landscape is dominated by the two contrasting 

vegetation types, forest versus savanna, which differ in structure and composition 

despite occurring in close proximity under similar climate (Armani et al. 2018, 

Azihou et al. 2013, Torrelo-Raventos et al. 2013, Veenendaal et al. 2015). 

Consequently, tree species that occur in the transition are often viewed as 

belonging either to forest or savanna tree functional types (Box 1.1). This 

dichotomy has been the basis for many studies seeking to explain patterns in the 

forest savanna-transition (see e.g. Hoffmann & Franco 2003, Hoffmann et al. 2004, 

Gignoux et al. 2009; 2016).  

In this thesis, I make a distinction between forest tree species and humid 

savanna tree species that occur predominantly in the forest-savanna transition 

(hereafter, savanna-transition tree species). Savanna-transition species often 

occur both in humid savannas and in dry forests (particularly in secondary or 

degraded forests). Savanna-transition species are variously named in the 

literature; e.g. ubiquitous species (Armani et al. 2018), transition species 

(Ametsitsi et al. in prep. Boonman et al. 2019). In West Africa, transition forests 

(or woodlands) exist as mixtures of savanna-transition species and forest tree 

species (Ametsitsi et al. in prep., Armani et al. 2018, Asare 1962, Hopkins 1974, 

Swaine et al. 1976, Swaine 1992). Many of these dry forests are prone to 
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disturbance (fire) and their structures are likely maintained by the existence of 

different tree functional types (Box 1.1). 

 

 

 

Figure 1.1. (a) Distribution of forest types in West Africa. Dry forest is shaded. Area to 

the north bordering the shaded region falls within the forest-savanna transition zone 

(Source: Swaine 1992). (b) Condition of forest reserves in the forest (and forest-savanna 

transition) zone of Ghana (Source: Hawthorne and Abu-Juam 1995). It shows forests 

bordering the forest-savanna transition are mostly degraded.  

(a) 

Excellent 
Good 
Partly degraded 
Mostly degraded 
Very poor 
No sig. forest 
 

Forest reserve condition 

(b) 
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Growth and survival responses of savanna-transition and forest tree species to 

vegetation controls (environmental factors that influence vegetation development) 

or changes in these controls is important for understanding recruitment patterns 

or for predicting the movement of the transition subjected to land use or climate 

change.   

In Ghana, the forest-savanna transition is bordered to the north by the 

northern Guinea savanna and to the south by the dry semi-deciduous forest 

(Figure 1.1a and b). Forest types regarded as dry forests include forest vegetation 

within the forest-savanna transition and the adjoining deciduous forest, occurring 

at approximately 1250 mm mean annual precipitation (Swaine 1992). Elsewhere 

in the tropics, dry forests may occur at lower rainfall on highly fertile soils at a 

much wider precipitation amplitude (500 mm to 2000 mm annual precipitation) 

(Holdridge 1976, Veenendaal et al. 2015). The condition of forest reserves in the 

drier forest types of Ghana had been described, already in 1995, as being “mostly 

degraded” or “very poor” (Figure 1.1b, Hawthorne & Abu-Juam 1995) as a result 

of deforestation fuelled largely by timber harvest and agriculture (Hawthorne & 

Abu-Juam 1995). Occasional ground fires (which spread from the adjacent forest-

savanna transition) occur in the dry semi-deciduous forest (in the fire-zone 

subtype, Swaine et al. 1976), giving this dry forest subtype a unique mix of forest 

and savanna-transition tree species.  

The forest-savanna transition in Ghana is subjected to many disturbances. 

Large quantities of charcoal (fuelwood) are supplied from the transition zone to 

meet the energy needs of the growing urban population (Mayaux et al. 2013). In 

Ghana, the contribution of fuelwood and timber harvest to deforestation in the 

transition comes, perhaps only second to land clearing for agricultural activities 

due to the fertile soils in the transition (Swaine 1992). Thus, the coupling of 
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increased land use pressures and climate change render these transition zones at 

present even more vulnerable to degradation disturbance (Malhi et al. 2013).  

Determinants of vegetation distribution in forest-savanna 

transitions 

An explanation for the nature of the forest-savanna transition has been a subject 

of long-standing debate. Fire has been historically seen as the main determinant 

of savanna formations in landscapes largely viewed capable of supporting forests 

(Stebbing 1935). The current view, first proposed by Morgan & Moss in their 

seminal 1965 paper, is that at broader scales, different vegetation types that occur 

within the forest-savanna transition are associated with distinct site characteristics 

driven by many factors including geology, variations in soil conditions, hydrology 

(water table and drainage) and disturbance history (Swaine 1992, Swaine et al. 

1976, Oliveras & Malhi 2016, Swaine et al. 1976). Fire is considered the main 

disturbance factor, which may constrain forests and savannas as alternative stable 

states (Hirota et al. 2011, Staver et al. 2011). This view is disputed by others who 

propose soil moisture and nutrient contents as principal drivers of vegetation 

structure and distribution (Lloyd & Veenendaal 2016 versus Staal & Flores 2015, 

Veenendaal et al. 2015; 2018). The existence of transition forests, stability of 

different vegetation formations in some places and advance of forest over 

savannas in other places suggest complex dynamics, possibly involving many 

different factors, which still need to be investigated.  

Factors which influence vegetation development (and distribution) have 

been summarised as “bottom-up” and “top-down” vegetation controls (Bond 

2008). Bottom-up vegetation controls refer mainly to edaphic factors which 

influence vegetation structure, composition or juvenile recruitment. Evidence 

exists for the influences of soil depth, soil water retention capacity and nutrient 

Chapter 1
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content on the distribution and structure of tropical vegetation (Keay 1960, Lloyd 

et al. 2008; 2015, San José & Farinas 1983, Veenendaal et al. 1996a; 2015; 2018). 

In the forest-savanna transition of Ghana, soil physical and chemical properties 

are associated with distinct vegetation formations with higher exchangeable bases 

in forest sites (Markham & Babbedge 1978, Swaine 1992). Evidence for such 

associations, particularly those linking seedling establishment and juvenile-stage 

species composition to soil properties is, however, very scanty (Ametsitsi et al. in 

prep., Armani et al. 2018).  

Water availability is an important bottom-up control sometimes overlooked 

because climate is similar for all vegetation types within forest-savanna 

transitions. Soil moisture differences between forest and adjacent savannas may, 

however, result from differences in microclimate or soil depth and texture (Lloyd 

et al. 2015, Ametsitsi et al. in prep). For example, higher silt content or organic 

matter in forest may translate to lower moisture stress (due to a higher water 

holding capacity) for seedlings in forest than savanna. Thus, drought sensitive 

(forest) species may have a higher chance of establishing in forest than savanna 

(Hoffmann et al. 2004, but see Cardoso et al. 2016). Seedlings in forest may, 

however, experience enhanced drought stress in dry forests due to light-limited 

growth and competition with larger trees for water (Veenendaal et al. 1996b). 

Where water table is high, e.g. along streams, plants have access to ground water 

even in the dry season, which could explain the thickening of vegetation along 

streams in parts of the transition (Janssen et al. 2018). 

Top-down vegetation controls often highlighted include fire (Gignoux et al. 

2009; 2016, Hoffmann et al. 2012, van Langevelde et al. 2003), herbivory (Higgins 

et al. 2000, Sankaran et al. 2005, van Langevelde et al. 2003), canopy cover and 

light (Charles-Dominique et al. 2018, Gignoux et al. 2004; 2016, Hoffmann & 
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Franco 2003). The effects of fire and herbivory are sometimes considered 

analogous to the extent that both remove aboveground biomass of plants (Bond 

& Keeley 2005) but the exact effects of herbivory and fire may differ because fire 

occurs in the dry season while herbivory occurs, in large parts, in the wet season. 

Fire may also cause a more extensive shoot damage than herbivory (Pausas et al. 

2016). The capacity to recover from sprout loss is a key trait for persisting both in 

pyrogenic and in herbivore dominated environments (Hoffmann et al. 2012, 

Murphy & Bowman 2012, Wigley et al. 2019, Boonman et al. 2019). Resprouting 

capacity may, thus, form a basis for the separation of the recruitment niches of 

tree functional types (Oliveras & Malhi 2016, Wigley et al. 2019).  

 There may, however, be complex interactions involving resources (light, 

soil moisture and nutrient levels). Thus, plant-plant interactions between 

overstorey species and tree seedlings may be complex, resulting both in 

competition (water, light) or facilitation (reduction of fires). The extent of 

competitive interactions between tree seedlings and herbaceous vegetation may 

be an important determinant of the balance between woody and herbaceous 

components (Sankaran et al. 2004). Herbaceous vegetation and tree seedlings 

may compete for belowground resources (Kulmatiski et al. 2010, February et al. 

2013, Reginos et al. 2009, Tomlinson et al. 2019, van der Waal et al. 2009) or for 

both belowground resources and light (Barbosa et al. 2014, de Dois et al. 2014, 

Holl 1998, Vadigi & Ward 2013). Competition with grass may influence forest and 

savanna-transition tree species differently (Figure 1.2), because capacity to 

coexist with grass may have been a selection pressure for savanna tree species 

but not forest species. These interactions may in turn influence (e.g. via growth 

rates) the effects of fire on tree seedling establishment success (see conceptual 

model; Figure 1.2).  

Chapter 1
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Woody canopy cover may influence many vegetation controls including both 

bottom-up and top-down (some of which have already been discussed). The extent 

of woody canopy cover correlates with microsite conditions; including relative 

humidity, temperature variability, soil properties, composition and biomass of 

herbaceous vegetation, the latter being linked to fire behaviour (Figure 1.2, 

Ametsitsi et al. in prep, Cardoso et al. 2018, Charles-Dominique et al. 2019). 

Woody canopy cover also correlates strongly with light levels (Charles-Dominique 

et al. 2018, Veenendaal et al. 2015), which may influence recruitment differently 

for shade bearers than light demanders (Box 1.1) (Agyeman et al. 1999, 

Veenendaal et al. 1996). For example, shade intolerance is often cited as the 

reason for the inability of savanna species to thrive in intact forest environments 

(Hoffmann et al. 2004, Hoffmann & Franco 2003, Ratnam et al. 2011).  

Tree seedling recruitment and vegetation dynamics  

Forest-savanna transitions are characterised by complex dynamics involving 

contractions and occasional expansion of forests (Janssen et al. 2018, Malhi et al. 

2013, Mitchard & Flintrop 2013, Oliveras & Malhi 2016). There is a long history of 

forest expansion and contraction in response to variability or change in climate 

(Malhi et al. 2013, Oliveras & Malhi 2016, Oslisly et al. 2013). Climate models 

predict, despite great uncertainty, greater precipitation declines and dry season 

water deficits for some regions in West Africa including Ghana (James et al. 2013, 

Sheffield & Wood 2008). Precipitation declines that have already occurred were 

greater in the rainforest zone and along the coast with steady declines in 

transitions zone of Ghana (Owusu & Waylen 2009). Assessment of Ghanaian 

forests revealed less impact of a drying trend on dry forest species than wet forest 

species (Fauset et al. 2012). Thus, tree functional types will likely play an 

important role in climate responses of tropical trees. More frequently, forest 
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contraction is associated with deforestation by humans (Malhi et al. 2013, Janssen 

et al. 2018). Where tree removal (i.e. canopy disturbance at larger scales) has 

taken place, the resulting savanna vegetation may remain for prolonged periods 

of time with very limited possibility for forest tree recruitment (Janssen et al. 2018, 

Cardoso et al. 2016, Veenendaal et al. 2018). Thus, where savannas appear stable 

(e.g. Janssen et al. 2018, Cuni-Sanchez et al. 2016), bottlenecks (from some of 

the vegetation controls discussed earlier) to (forest) tree seedling recruitment may 

exist.  

Forest encroachment in savanna may be associated with a change in fire 

regime (i.e. a decreased fire frequency) and other land use changes which are 

sometimes associated with rural depopulation (Malhi et al. 2013, Mitchard et al. 

2009, Mitchard & Flintrop 2013). Recent expansion of forest across Africa could 

also be due to recent increases in precipitation following a drying trend in 1970s 

and 1980s (Jury et al. 2009). This may confirm the point made earlier about the 

role of climate variability in forest expansion versus contraction. Also, CO2 

fertilisation, another climate change factor, may offset the adverse effect of 

precipitation decline through enhanced water use efficiency of trees (Bond & 

Midgely 2012, Malhi et al. 2013). This could tip the balance between trees and 

grasses in favour of trees (Bain & Day 2019, Bond & Midgley 2000, Hoffmann et 

al. 2000, Kgope 2010). I do not explore CO2 fertilization hypothesis in this thesis.  

It is relevant to study constraints to tree seedling recruitment due to current 

and predicted changes in forest-savanna transitions. It is well-established that the 

different vegetation controls are strongly interlinked (see above and conceptual 

framework, Figure 1.2). The interactions among top-down and bottom-up controls 

may therefore likely explain bottlenecks to seedling recruitment in forest-savanna 

transitions. Although there are good theoretical frameworks for explaining how 
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tropical tree seedlings may respond to changes in many vegetation controls, 

empirical tests of the relative importance of these factors are scant. In this thesis, 

I test interactions involving many vegetation controls and also disentangle their 

effects where needed to enable determination of their relative importance as 

bottlenecks to seedling recruitment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Conceptual model of the influence of key vegetation controls in forest-savanna 

transitions on tree seedling recruitment. Herbivory effect is also important but not included 

(directly) in the model. The model shows that woody cover increases from humid savanna 

to forest, resulting in variation in certain environmental factors. The effects of grass 

competition, fire and light limitation on tree seedling establishment success are known, but 

interactions among them and the different tree functional types (TFT) that exist in the forest-

savanna transition are poorly quantified. The model indicates that tree functional type effect 
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may be important due to functional trait variability and trait responses among forest and 

forest-savanna-transition tree species. Red arrows with questions marks represent current 

knowledge gaps. Arabic numbers in parentheses indicate which research chapter in this 

thesis addresses the specific research gap identified. 

The link between functional traits and seedling recruitment  

Regeneration niches of tropical tree species are linked to seedling functional traits 

(Poorter 2007). Trait variation may thus, be important in explaining seedling 

recruitment into the various vegetation types in the forest-savanna transition. 

Following the functional equilibrium hypothesis (Brouwer 1963), plants invest in 

organs that capture resources in most limiting supply in their environments. 

Accordingly, trait syndromes vary between forest and savanna tree functional 

types (Boonman et al. 2019, Hoffmann et al. 2004, Gignoux et al. 2016). Viewed 

from the resource economics theory (Box 1.1), species which occur in more open 

and pyrogenic environments may be more conservative, rather than acquisitive, 

as a conservative strategy may be better for persistence, despite the cost to 

growth, in such environments. In other environments (e.g. under closing canopy 

of forest vegetation), the opposite strategy (i.e. resource acquisition) may be a 

better strategy to allow for rapid growth to escape the closing canopy. Therefore, 

forest species may generally be more acquisitive than savanna-transition species.  

There are also differences to be expected within forest and savanna-

transition tree functional types due to species adaptation to more specialised 

habitats. Seedling traits and recruitment requirements may differ among forest 

species depending on their successional guild (Amissah et al. 2015, Swaine & 

Whitmore 1988, Veenendaal et al. 1996). Also, trait syndromes differ between wet 

and dry forest species (Markesteijn & Poorter 2009). Savanna-transition species 

may feature greater variability in traits (and hence have a wider recruitment 

requirements) because they occur both in forest and savanna-environments 
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(Armani et al. 2018). Different species may also attain similar establishment 

successes by deploying different traits (Tomlinson et al. 2012). For example, some 

species (mainly humid-savanna species) overcome drought and sprout loss, 

through fire or herbivory, by increasing allocation to root biomass and 

carbohydrate storage (O’Brien et al. 2015; Hoffmann et al. 2004, Boonman et al. 

2019). Species from less humid environments rather increase allocation to root 

mass, survive drought by foraging more efficiently for deeper water using finer 

and deeper roots with a faster root extension to reach a declining water column 

(Tomlinson et al. 2012). Trait plasticity (Box 1.2) may characterize species 

responses to changes in environmental factors (Valladares et al. 2000). Plasticity 

in response to factors of the environment (e.g. irradiance and drought) has been 

linked to some fitness measures including seedling survival and growth 

performance among Ghanaian forest tree species (Amissah et al. 2015).  

While trait information for tropical tree species exist, only few studies have 

compared forest and savanna-transition tree species, particularly for West African 

forest-savanna transitions (see Boonmann et al. 2019, Gignoux et al. 2016). 

Studies that have looked beyond fire and soil moisture to explain trait variation 

and seedling recruitment among forest and savanna-transition tree functional 

types are even scantier. This thesis relates trait variation (and responses) to 

seedling establishment success of forest and savanna-transition tree species under 

influences of multiple stress and disturbance factors. I focus on specific traits, 

selected based on their significance (and in relation to the hypotheses tested here) 

as shown in previous studies (Table 1.1).  

Rationale and research questions 

This thesis aims to explain how seedling recruitment differs between savanna-

transition and forest tree functional types under various vegetation controls. 
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Seedling establishment success is defined here as survival and growth of tree 

seedlings past one wet and one dry season. Four specific research questions are 

addressed in four corresponding research chapters (Table 1.2) to attain the overall 

research aim.  

Thesis outline 

Chapter two: How does variation in woody cover (and associated factors) 

influence establishment success of forest and savanna-transition tree seedlings? 

(Table 1.2). This chapter explores the effects of woody canopy cover variation and 

the associated factors: fuel load, light intensity and soil resources on tree seedling 

survival and growth in the forest-savanna transition. We investigate, also, how 

root traits (biomass allocation and starch concentration) are related to survival in 

the different vegetation types. We tested hypotheses (Table 1.2) for this chapter 

using two congeneric tree species pairs of forest and savanna species in a field 

transplant experiment within the forest-savanna transition of Ghana. 

Chapter three: What are the relative influences of grass competition during 

the wet season followed by fire and lack of precipitation during the dry season on 

tree seedling establishment success for savanna-transition and forest tree 

functional types? (Table 1.2). In this chapter, we tested hypotheses (Table 1.2) 

related to the direct and indirect effects of grass competition on establishment 

success for savanna-transition and forest tree functional types. This was achieved 

in a common garden experiment in the humid Guinea savanna of Ghana, which 

involved eight tree species, four each for forest and savanna-transition tree 

functional types.  

Chapter four: What are the relative influences of fire and lack of 

precipitation during the dry season on tree seedling establishment success among 

forest and savanna-transition tree species? (Table 1.2). This chapter is based on 
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results of another common garden experiment in which we disentangled the effects 

of fire and lack of precipitation during the dry season on seedling performance 

(growth and survival), related to seedling traits. The aim was to separate the 

effects of fire and dry season (lack of moisture), which are naturally entangled, so 

as to determine their relative importance as constraints to tree seedling 

recruitment. We tested responses of four forest tree species versus two savanna-

transition types.  

Chapter five: How do seedlings of savanna-transition and forest tree 

functional types differ in allocation traits and growth performance under 

contrasting regimes of soil moisture and defoliation? This chapter is based on 

results from a greenhouse experiment in which we tested hypotheses related to 

the question posed (Table 1.2) using 12 species, six each for savanna-transition 

and forest tree functional types.  

In chapter six, I synthesize the results of chapters 2 to 5 and discusses 

how this thesis contributes to advancing our understanding on vegetation 

dynamics across the forest-savanna transition in the face of land use and climate 

change. 
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Table 1.1. Traits analysed in the various research chapters in this thesis and their 

functional roles [based on references provided; Arabic numerals] for different species and 

tree functional types.  

Trait (units) Significance Chapter 
Root dry weight (g) Indication of stored resources (or of foraging for resources) 

belowground. Related to survival [2, 11, 17] 
3 

Root mass fraction  
(g g-1) 

Indication of stored resources (or of foraging for resources) 
belowground. Better predictor of survival than root dry weight as it 
is standardised to plant size. [1, 7, 11, 13, 17] 

2, 3, 4, 5 

Specific rooting depth 
(g m-1) 

Indication of taproot thickness and belowground foraging efficiency. 
Related to growth and survival. [13] 

3, 5 

Root extension rate 
(cm day-1) 

Indication of foraging for deeper water resources. Associated with 
survival in a declining water column. [13] 

5 

Root starch 
concentration (%) 

Belowground storage carbohydrates. Allows for resprouting after 
drought or fire topkill [4, 9, 17] 

2 

Root collar/stem  
diameter (mm) 

Indication of growth. Thicker stems are associated with ... 2, 11 2, 3, 4, 
5 

Stem dry weight (g) Indication of aboveground growth. Important for light competition 
or avoiding fire topkill [11] 

3, 5 

Stem mass fraction (g) Stem dry weight standardised to plant size, Indication of 
aboveground growth. [1, 7, 11] 

5 

Plant height/Stem 
length (cm) 

Indication of aboveground growth. Important for light competition 
or avoiding fire topkill [2, 15] 

2, 3, 4, 
5 

Stem extension rate 
(cm day-1) 

Faster height growth. Shade, fire or herbivory avoidance [3, 14] 5 

Specific stem length 
(cm g-1) 

Indication of etiolation. Shade avoidance or aboveground foraging 
efficiency [1] 

3, 5 

Leaf dry weight (g) Light capture: indication of photosynthetic capacity and growth 
[11] 

3, 5 

Leaf mass fraction (g 
g-1) 

Light capture: standardised to plant size and better related to 
photosynthesis and growth than leaf dry weight [1, 7, 11] 

3, 4, 5 

Leaf area (cm2) Light capture: photosynthetic surface area and growth [2, 6, 7] 5 
Specific leaf area (g 
cm-2) 

Standardised to leaf size, better predictor of photosynthetic 
capacity and growth [1, 7, 8, 10, 11, 16] 

5 

Plant dry weight Indication of overall fitness (growth and survival) in the 
environment [6] 

2, 3 

Relative growth rate 
(g g-1  day-1) 

Photosynthetic capacity, a measure of fitness in the environment. 
Fast growth. [1, 10, 15] 

5 

Survival (proportion 
of %) 

Indication of fitness to the environment [1, 6, 10] 2, 3, 4, 
5 

Resprouting 
(proportion or %)  

Recovery after disturbance [3, 4] 2,3,4,5 

References: Amissah et al. 20151, Gignoux et al. 20162; Higgins et al 20003, Hoffmann et 

al. 20044, , Lopez-Iglesias et al. 20146, Markesteijn & Poorter 20097, Nicotra et al. 20108, 

Obrien et al. 20149, Poorter & Bongers 200610, Poorter & Markesteijn 200811, Quentin et 

al. 201512, Tomlinson et al. 201213, Tomlinson et al. 201914, Veenendaal et al. 199615, 

Wright et al. 200416 , Boonman et al. 201917 
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Table 1.2. Overview of research questions and associated hypotheses for each research 

chapter 

Research question Hypotheses Chapter 

How does variation in woody 

cover (and associated factors) 

influence seedling 

establishment success, related 

to traits, of forest and 

savanna-transition tree 

seedlings?   

Forest tree species have lower survival than their savanna 

congeners in open woodland vegetation types due to less 

favourable conditions (fire intensity, soil properties and 

microclimate). Savanna species are less competitive 

under the low light conditions in the forest vegetation 

type. Trade-offs in higher root allocation versus shoot 

allocation are expected to separate higher survival in 

woodland versus under closed canopy forest.  

2 

What are the relative 

influences of grass competition 

during the wet season 

followed by fire and lack of 

precipitation during the dry 

season on tree seedling 

establishment success among 

forest and savanna-transition 

tree species? 

Grass competition decreases forest tree seedling 

establishment success (growth and survival) more for 

forest than savanna transition tree functional types in 

humid savannas. It is also expected that grass 

competition preceding dry season fire result in lower 

post-fire seedling survival for forest than savanna-

transition tree species.       

3 

What are the relative 

influences of fire and lack of 

moisture during the dry 

season on tree seedling 

establishment success among 

forest and savanna-transition 

tree species? 

Fire and dry season (acting separately) cause greater 

declines in seedling establishment success for forest than 

savanna-transition tree seedlings. It is also expected that 

the interaction of fire and lack of moisture in the dry 

season result in the greatest declines in establishment, 

but acting separately, fire has greater effect than lack of 

moisture in the dry season regardless of tree functional 

type. Differences in root allocation (root mass fraction 

and starch storage) are expected to mediate differential 

survival to fire and moisture limitation.  

4 

How do seedlings of savanna-

transition and forest tree 

functional types differ in 

allocation traits and growth 

performance under contrasting 

regimes of soil moisture and 

sprout loss? 

Greater decline in growth performance for forest than 

savanna-transition tree functional type under lower soil 

moisture regime and defoliation. It is also expected that 

seedling growth performance after defoliation is related 

positively to higher belowground resource allocation and 

starch storage in roots. 

5 
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  Box 1.1. Tree functional types, ecological guilds and plant functional traits  

The term tree functional type (TFT, coined from plant functional type, PFT) refers to groups of 

tree species that have similar resource-use strategies and function in an ecosystem (Smith et al. 

1997). Phylogeny, life-form characteristics including morphology, size and specific characteristics 

of various plant parts may form the basis for grouping species into functional types (Box, 1996). 

Forest and savanna tree species represent different TFTs due to adaptations to different sets of 

environmental conditions, which result in a separation in function. Other TFTs that can be defined 

within forest and savanna TFTs including, dry savanna, humid savanna, dry forest, moist forest 

(Boonman et al. 2019, Tomlinson et al. 2012). Savanna-transition TFT is defined in this thesis to 

include humid savanna species that also occur in dry (or transition) forests. Different tree 

functional types may belong to different guilds. The term guild, although sometimes used 

interchangeably with functional type, is a concept used within the context of competition to refer 

to resource sharing by different species (Blondel et al. 2003). For example, based on light 

requirements, tropical forest species are grouped into guilds of pioneers versus non-pioneers 

(Swaine & Whitmore 1988). Pioneer species establish and grow in relative high light 

environments while non-pioneers are capable of establishment and growth in forest shade due 

to differences in physiological light tolerances (Agyeman 2009, Poorter 1999, Veenendaal et al. 

1996).  

Plant functional traits are quantitative plant features that are measurable on an individual 

and related to plant fitness (Nicotra et al. 2010, Violle et al. 2007). There is substantial 

information on plant traits globally (Kattge et al., 2011) perhaps due to threats posed by global 

environmental change, as  traits provide good indicators of the ecological strategies and 

environmental tolerance of species (Nicotra et al. 2010). According to the resource economics 

theory, plant functional traits may be organised along a spectrum, ranging from conservative to 

acquisitive strategies (Craine 2009, Grime 1977). Tree species may trade-off between investing 

carbon in structures that allow for faster resource capture and growth (i.e. acquisitive strategy). 

Alternatively, plants may store or invest carbon in structures that allow for recovery or survival 

under unfavourable conditions.  

The seedling stage is an important barrier to tree recruitment. Thus traits that predict 

the success at the seedling stage will also predict adult stage tree distribution (Lopez-Iglesias et 

al. 2014; Poorter & Markesteijn 2008, van Langevelde et al. 2003). Plants often show great 

flexibility in adjusting their traits to changes in their environments through phenotypic plasticity 

(i.e. the ability of a particular genotype to produce a range of phenotypes depending on its 

environment, Nicotra et al. 2010). Flexibility in responses of many different functional traits (of 

leaves, stems and roots) has been found to be an important for performance of tree species 

under changing environments in many tropical tree species (Amissah et al. 2015, McLean et al. 

2014). 
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Abstract 

Differential tree seedling recruitment across forest-savanna ecotones is poorly 

understood, but hypothesized to be influenced by vegetation cover and associated 

factors. In a 3-y-long field transplant experiment in the forest-savanna ecotone of 

Ghana, we assessed performance and root allocation of 864 seedlings for two 

forest (Khaya ivorensis and Terminalia superba) and two savanna (Khaya 

senegalensis and Terminalia macroptera) species in savanna woodland, closed-

woodland and forest. Herbaceous vegetation biomass was significantly higher in 

savanna woodland (1.0 ± 0.4 kg m−2 vs 0.2 ± 0.1 kg m−2 in forest) and hence 

expected fire intensities, while some soil properties were improved in forest. 

Regardless, seedling survival declined significantly in the first-year dry-season for 

all species with huge declines for the forest species (50% vs 6% for Khaya and 

16% vs 2% for Terminalia) by year 2. After 3 y, only savanna species survived in 

savanna woodland. However, best performance for savanna Khaya was in forest, 

but in savanna woodland for savanna Terminalia which also had the highest 

biomass fraction (0.8 ± 0.1 g g−1 vs 0.6 ± 0.1 g g−1 and 0.4 ± 0.1 g g−1) and 

starch concentration (27% ± 10% vs 15% ± 7% and 10% ± 4%) in roots relative 

to savanna and forest Khaya respectively. Our results demonstrate that tree cover 

variation has species-specific effects on tree seedling recruitment which is related 

to root storage functions. 

Keywords: Biomass allocation; canopy cover; drought survival; fuel load; root 

starch; seedling traits; soil properties; tropical trees  
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Introduction 

Forest-savanna ecotones characterized by a mosaic of forest patches within 

savanna environments represent a common feature of the landscape of West Africa 

(Hennenberg et al. 2005, McCook 1994). Across the tropics, observations of forest 

encroachment in savannas are on the rise (Bowman et al. 2001, Mitchard et al. 

2009, Schwartz et al. 1996, Veenendaal et al. 2015), generally occurring at 

decadal timescales with rapid changes in vegetation cover and species composition 

(Cuni-Sanchez et al. 2016, Jeffery et al. 2014). Such vegetation transitions have 

important implications for ecosystem services and local livelihoods due to changes 

in composition, productivity, diversity and abundance of species (Mitchard et al. 

2009, Poulter et al. 2014). 

The process of forest advancement into savannas is still little understood, 

and the relative influences of fire (Higgins et al. 2007, Hoffmann et al. 2012a), 

edaphic and climatic factors (Bowman et al. 2015, Lloyd et al. 2015, Veenendaal 

et al. 2015, 2018) on the formation of closed-canopy vegetation have been 

highlighted in several studies. It is also recognized that vegetation (canopy) cover 

has important influences on fire behaviour and intensity, light and edaphic factors. 

As a result, tree seedling establishment success can be mediated by the extent of 

vegetation cover via fire suppression (Bowman 2000, Cardoso et al. 2016, Gignoux 

et al. 2009, Hoffmann et al. 2012a) or through amelioration of factors such as 

irradiance, soil moisture and soil fertility (Cuni-Sanchez et al. 2016, Ruggiero et 

al. 2002, Saiz et al. 2012, Veenendaal et al. 1996a, 1996b). 

Forest species generally may lack the suite of traits that make savanna 

species successful in open pyrogenic savannas, while savanna species may be less 

successful in closed-canopy forests for the same reason and forest advancement 

in savanna may be facilitated in sites with higher woody canopy cover where low-
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light conditions constrain performance of savanna species (Armani et al. 2018, 

Bowman 2000, Cardoso et al. 2016, Hoffmann et al. 2004, Ruggiero et al. 2002). 

However, there is little empirical data on whether canopy closure facilitates the 

establishment of forest species and to what extent this limits survival and growth 

performance of savanna species across forest-savanna ecotones. 

In this study, we investigated influences of vegetation type (with a focus on 

canopy cover levels being the main distinguishing factor) and its associated factors 

on seedling survival, growth and traits (i.e. root mass fraction and root starch 

concentration) in a field transplant experiment that lasted three growing seasons 

and two dry/fire seasons. We used two congeneric species pairs of forest and 

savanna species that are common to the forest-savanna ecotone or to nearby 

semi-deciduous forest in West Africa to test the following hypotheses: (1) The 

forest tree species have lower survival than their savanna congeners in savanna 

due to relatively lower root mass fraction and root starch content needed to survive 

dry periods and to resprout after fire. (2) Higher vegetation (canopy) cover, being 

associated with a lower fuel load and higher soil nutrient status, benefits mainly 

forest tree seedlings as savanna species are less competitive in deep shade. 

Materials and methods 

Study site 

The field transplant experiment was carried out in Kogyae Strict Nature Reserve 

(KSNR) located in the forest-savanna transition zone of Ghana (7°19 01.661 0 0N, 

1°05 05.863 0 0W). Climatically, the area has a bimodal rainfall pattern with major 

peaks occurring in May–June and September–October (Figure 1), with a mean 

annual rainfall of 1200–1300 mm. Four vegetation types are distinguished in the 

area: transitional forest, savanna, riparian woodland and boval vegetation 

(vegetation on flat iron pans) (Wildlife Department 1994), but plot selection for 
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this study was done following the structural classification of Torello-Raventos et 

al. (2013) in woodland, closed woodland and forest vegetation patches. In the 

study site, tree cover has been stable or slowly increasing over the last 30 y 

(Janssen et al. 2018). 

Species selection 

We selected four tree species from two families and two genera. Each species pair 

in a genus comprised one forest and one savanna species (Table 1). Seeds of 

Khaya ivorensis and Terminalia superba were collected from a moist semi-

deciduous forest (Bobiri Forest reserve, 6.678°N, 1.32°W), while those of Khaya 

senegalensis and Terminalia macroptera were collected within Kogyae Strict 

Nature Reserve itself. Seedlings were raised from seeds at the Forestry Research 

Institute of Ghana nursery in April 2012. At 3 months old, seedlings were 

transported to the Kogyae Strict Nature reserve and allowed 7 days to recover 

from any transportation shock before transplanting.  

Table 1. Classification and biophysical limits of tree species used in the study. All species 

thrive within the Kogyae Strict Nature Reserve or in nearby semi-deciduous forest in 

Ghana. Sources of information: Hawthorne (1995), 

http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp. 

Species Family Functional 
type 

Guild Distribution Rainfall 
range 
(mm) 

Khaya ivorensis 
(Desr.) A.Juss 

Meliaceae Forest Non-pioneer 
light demander 

Moist–dry 
forest 

1600-2500 

Khaya senegalensis 
(Desr) A.Juss 

Meliaceae Savanna Moderately 
shade tolerant 

Gallery forest 400-1750 

Terminalia superba 
(Engl.&Diels) 

Combretaceae Forest Pioneer Moist–dry 
forest  

1000-1800 

Terminalia 
macroptera (Guill. & 
Perr.) 

Combretaceae Savanna Open savanna Moist open 
woodland 

700-1500 
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Transplantation experiment  

Thirty-six 10 × 10-m plots were randomly established under the three vegetation 

types differing in canopy closure; 12 each for cover classes typical for woodland, 

closed woodland and forest canopies (following Torello-Raventos et al. 2013) in 

three sites (blocks) that were about 750 m apart. In each plot, six seedlings each 

of the four species (Table 1) were assigned and planted in random positions in 

rows (1.4 m within and between rows of seedlings). A total of 864 seedlings were 

planted (i.e. 6 seedlings × 4 plots × 3 cover classes × 3 blocks × 4 species). 

Seedlings were transplanted in September 2012 at the beginning of the second 

rainy season (Figure 1). No additional watering was done and no fire protection 

was given during the experimental period. Canopy cover of plots in the various 

vegetation patches was assessed using leaf area index (LAI) and canopy openness 

in October before the end of the rainy season (peak leaf cover). Additionally, we 

assessed absence/presence of C4 grasses in the herb layer.  

LAI and canopy openness were obtained by analysing hemispheric photos, 

taken at 1 m above the ground in each plot with a fish-eye lens mounted on a 

Nikon E4500 camera. Images were then analysed with Gap Light Analyser software 

(Veenendaal et al. 2015). Mean percentage canopy openness and (LAI) ranged 

between 18.5–25% (1.7–2.0) for forest plots, 32–45% (0.7–1.0) for closed 

woodland plots and 60–73% (0.1–0.25) for (savanna) woodland plots. The herb 

layer in plots with highest LAI (forest plots) consisted mainly of C3 species, while 

canopy cover was mainly provided by forest trees. In the closed woodlands tree 

cover was provided by a mix of different species with tree crowns not touching and 

C4 grasses were present, while cover in woodlands was provided by savanna trees 

(Torello-Raventos et al. 2013). 
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Data on seedling height and survival were taken for three seasons. Before 

the first dry season, three censuses were conducted at 1, 2 and 3 mo after 

transplantation, the third month being at the onset of the first dry season 

(December 2012) (Figure 1). Subsequent censuses were conducted only at the 

end of the consecutive growth seasons (December) of 2013 and 2014. The first 

dry season and its associated fires occurred 5 mo into the experiment (19 January 

and subsequent days in 2013). The plots also burnt in the second year (around 4 

February 2014). 

The experiment ended in December 2014 at the end of the third wet season 

(Figure 1). Fire intensity was not measured separately in this experiment, but after 

each fire event we observed that the forest plots generally had been lightly touched 

by fire, whereas all plots in closed-woodland and woodland cover types burnt more 

heavily in both dry-season fires that occurred within the period of this study. All 

surviving seedlings at the end of the experiment were carefully excavated. 

Seedling height, total plant dry weight and root mass fraction were determined. 

Immediately after harvest, samples were microwaved, in preparation for 

determination of root starch content, following a carbohydrate extraction protocol 

of Duranceau et al. (1999) adapted from Dubois et al. (1956). Root starch content 

was analysed for all species (except Terminalia superba, for which we had no 

adequate samples available). 

Environmental factors 

Soil moisture content of the top layer (0–60 mm) was determined with a theta 

probe (Delta-T Devices, Cambridge, UK). Five moisture measurements were made 

across all four plots of each vegetation type within a block (as all four plots laid 

fairly close to one another). This was done at the centre and at the outer corners 

of the plots. Measurements were done twice, at 7 wk (November 2012) and 13 wk 
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(December 2012). We took five soil samples per vegetation type per block using 

a cylindrical auger at the centre and at the mid-distance to the four corners of the 

outer plots. Sampling was done at three depths (0–10 cm, 10–20 cm and 20–30 

cm) and composites were formed from the replicates for each depth category and 

put in zip-lock plastic bags and later analysed for soil organic matter content (loss-

on-ignition method; Ball 1964) and some biogeochemical properties. CEC, Mg, Ca, 

K analyses (Gilman 1979) were done using an Atomic Absorption spectrometer 

(VARIAN AA240FS, Varian Inc.). Total N and P were analysed according to 

Novozamsky et al. (1983) using the Segmented Flow Analyser (SKALAR SAN++ 

System) and P-Olsen was determined according to Olsen et al. (1954). 

Data on fuel load and fuel composition as a proxy for fire intensity were 

taken from three random 1-m2 quadrats per plot and averaged for each plot per 

vegetation type. In each plot, cover abundances of grasses and herbs were 

estimated. Also, dry weights of total herbaceous vegetation (i.e. including herbs 

and grasses and litter were determined from sub-samples by cutting vegetation 

and collecting litter and weighing them after oven drying. Daily rainfall data from 

August 2012 to December 2015 recorded in Ejura, the nearest meteorological 

station (25 km away from experimental site), were obtained from the Ghana 

Meteorological Agency. There were gaps in the data for some months (October 

2012, November 2013 and June 2015). Mean monthly rainfall for months with 

missing data were estimated using records from the last 15 days of the month 

before and the first 15 days of the month after the reference month. For example, 

mean rainfall for October 2012 was estimated as mean of rainfall values from 16 

September to 15 November 2012. 
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Figure 1. Mean monthly precipitation for Ejura, Ghana (nearest meteorological station to 

Kogyae Strict Nature Reserve-KSNR) for the experimental period and beyond. Timing of 

all five censuses conducted are shown. 

Statistical analyses 

We used linear mixed-effects models (Zuur et al. 2009) to test for differences in 

soil moisture content of the top soil layer among vegetation types and 

measurement weeks (as fixed factors), including the interaction term of two fixed 

factors and a random block effect. Similarly, we tested fixed effects of vegetation 

type including a random block effect on organic matter content, litter mass, 

herbaceous vegetation biomass and cover abundances of herbaceous vegetation 

using linear mixed-effects models. Block was included as random factor in these 

analyses. Soil organic matter content was analysed for each soil depth separately. 

Also, cover abundance of grass and herbs were analysed separately. We checked 

for normality and homoscedasticity and applied natural log (ln), square root and 

arcsine transformations (Sokal& Rohlf 1995) on herbaceous vegetation biomass, 

litter mass and cover abundance proportions of grasses and herbs respectively. A 

multivariate analysis of variance (MANOVA) was used to test, for each soil layer, 

differences in soil chemical properties among vegetation types. 
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Survival data from each census (conducted at months 1, 2, 3, 15 and 27) were 

analysed separately to compare survival among species and vegetation types in 

generalized linear models (GLM) using binomial distribution with logit link function. 

Sidak correction was used for multiple comparisons. 

Seedling heights recorded in years 1, 2 and 3, were tested for differences 

among years and vegetation types separately for each species in linear mixed-

effects models. A random block effect was included in the models and Sidak 

correction was used for multiple comparisons. Also, for each species, a Kruskal–

Wallis test (Sokal & Rohlf 1995) was used to determine if seedling height differed 

among years 1, 2 and 3. For T. superba, a Mann–Whitney U-test was used to 

compare height of years 1 and 2 as insufficient samples were available in year 3. 

Data on total seedling dry weight, root mass fraction (RMF) and root starch 

concentration were analysed in separate linear mixed-effects models for each 

species to determine fixed effects of vegetation type. All analyses were done on 

SPSS version 23.0. 

Results 

Soil properties 

Soil moisture content (SMC) of the top soil layer (0–60 mm) after 7 wk differed 

significantly (F2, 84 = 8.4, P < 0.001) among vegetation types, higher in forest and 

closed-woodland (6.11% ± 1.71% and 6.25% ± 1.89% respectively) than 

savanna woodland at 4.25% ± 2.07%. We found that SMC had dropped to an 

average of 2.7% at 13 wk into the experiment (i.e. at the start of the dry season) 

(F1, 84 = 66.6, P < 0.001). During the experimental period, all vegetation types 

showed a similar decline in moisture content and at the end of the experiment SMC 

was still lower in savanna woodland and closed woodland (1.95% ± 1.53% and 

2.69% ± 1.89% respectively) than forest at 4.74% ± 2.2%. 
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Soil organic matter in the top 10 cm was significantly higher in the forest 

compared with savanna woodland and closed-woodland sites (F2, 6 = 19.6, P = 

0.002). Interestingly, no significant differences between vegetation types were 

found for soil layers below 10 cm (Table 2). Significant differences between 

different vegetation types were also found for soil pH, total nitrogen and CEC (F2, 

9 = 5.85, P = 0.039; F2, 9 = 17.4, P = 0.003; F2, 9 = 16.7, P = 0.004 respectively), 

but again only in the upper 10 cm soil layer. Soil pH was lowest in forest and 

highest in woodland. Total nitrogen was higher in forest than in savanna woodland 

and closed-woodland. CEC was lowest in closed-woodland and similar between 

savanna woodland and forest. No significant vegetation type effect was found for 

levels of Ca, Mg, K, total P and P-Olsen (Table 2). 

Herbaceous vegetation and litter 

Total biomass of herbaceous vegetation (including grasses and herbs) differed 

among vegetation types (F2, 31 = 29.8, P < 0.001). Biomass of herbaceous 

vegetation was 0.23 ± 0.12 kg m−2 in forest, lower than biomass in closed-

woodland and savanna woodland which had similar biomass of 0.84 ± 0.25 kg m−2 

and 0.99 ± 0.35 kg m−2 respectively. Similarly, litter mass differed significantly 

(F2, 31 = 23.3, P < 0.001) among vegetation types being higher in forest (0.21 ± 

0.11 kg m−2) than closed-woodland (0.06 ± 0.05 kg m−2) and savanna woodland 

(0.03 ± 0.05 kg m−2). Overall, grasses were more abundant (F2, 31 = 111, P < 

0.001) in savanna woodland (51.5% ± 8.8%) and closed-woodland (50.8% ± 

8.7%) than forest at 15.4% ± 3.1%. Percentage cover of herbs was low overall 

(average of 3%) and did not differ significantly (F2, 33 = 1.68, P = 0.2) among 

vegetation types.
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Seedling survival 

A few weeks (4–8 wk) into the experiment, both Terminalia species showed lower 

survival, relative to the Khaya species, in forest plots (Figure 2). Survival 

differences for T. superba versus K. ivorensis (P = 0.02) and T. macroptera versus 

K. senegalensis (P < 0.001) were revealed through pairwise comparisons (with 

Sidak correction). Generally, seedling survival remained high, particularly for the 

Khaya species and regardless of vegetation cover until 3 months (i.e. onset of the 

first dry season). By this census, survival had considerably declined for all species 

(Figure 2). We found a significant species × vegetation cover interaction effect 

(Table 3), but differences among species were mainly between and not within 

vegetation cover type. 

At 15 months, and after the first dry-season fire, significant survival 

differences were found among species (Table 3). Overall, 50% of all savanna 

Khaya was still alive versus 6% for its forest congener. We found a similar pattern 

in genus Terminalia with 16% survival for the savanna type versus 2% for its forest 

congener. Pairwise comparisons showed that survival of the savanna Khaya was 

significantly higher than all other species in all vegetation types. Savanna 

Terminalia also had a significantly higher survival than both forest species in 

savanna woodland. Between the two forest species, survival in savanna woodland 

and closed-woodland was higher for forest Khaya than forest Terminalia. In the 

final census (27 months on) after the second dry-season fire and third wet season 

(Figure 2), 12% of the total number of planted seedlings were still alive. There was 

a significant interaction effect of vegetation type and species (Table 3). None of 

the forest species was alive in savanna woodland where 20% survival for the 

savanna Khaya and 13% for savanna Terminalia were observed. Remarkably, 

higher survival was observed in forest (55%) and closed-woodland (33%) for the 
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savanna Khaya as compared with 8% and 4% in the respective vegetation types 

for forest Khaya. The savanna Terminalia survived in very low numbers in closed-

woodland (4%) and forest (1%). There were no seedlings of the forest Terminalia 

surviving in savanna woodland and only 1% survived in forest (Figure 2). 

 

 

Figure 2. Proportion of surviving seedlings of Khaya senegalensis (filled-triangle), Khaya 

ivorensis (filled-circle), Terminalia macroptera (open triangle), Terminalia superba (open 

circle) at woodland cover (a), closed-woodland cover (b) and forest cover (c) in Kogyae 

Strict Nature Reserve, Ghana. Month corresponds to the month of transplantation, with 

month of transplanting = 0. Grey vertical lines indicate times when the dry season fires 

occurred. Error bars show ± 1 standard error of the mean.  
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Table 3. Binomial analysis (with logit link) of seedling survival of four tree species in three 

vegetation types in Kogyae Strict Nature Reserve, Ghana. Analyses were done separately 

for each census (month) and all factors included in the separate models are presented. 

Significant effects are indicated with asterisks and non-significant effects by “ns”. 

Time 
(mo) 

Main effects and interactions df Wald Chi-
Square 

P 

1 Vegetation type 2 0.0001 1.0 ns 

 Species 3 5.42 0.144 ns 

 Vegetation type  x Species  6 9.38 0.159 ns 

2 Vegetation type   2 3.29 0.192 ns 

 Species 3 68.6 < 0.001* 

 Vegetation type  x Species  6 19.0 0.004*  

3 Vegetation type   2 4.67 0.097 ns 

 Species 3 10.7 0.013* 

 Vegetation type  x Species  6 21.5 0.001* 

15 Vegetation type   2 0.0003  1.0 ns 

 Species 3 97.4 < 0.001* 

 Vegetation type  x Species  6 0.88 0.99 ns 

27 Vegetation type   2 0.000012  1.0 ns 

 Species 3 34.4 < 0.001* 

 Vegetation type  x Species  6 13.5 0.036* 

 

Seedling growth 

Seedling height was significantly lower in year 2 for all species relative to year 1 

heights evidencing shoot loss (Table 4, Figure 3). We found that for the forest 

species in both genera, seedling height did not differ among vegetation cover 

types, but for both savanna species, differences between vegetation types were 

significant (F2,107 = 5.32, P = 0.006 for Khaya and F2,33 = 3.27, P < 0.001 for 

Terminalia). Savanna Khaya was taller in forest and closed-woodland than 

woodland while savanna Terminalia was taller in savanna woodland than closed-

woodland and forest (Figure 3). 
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At the end of the third wet season, plant height was higher than recorded 

for year 2 for all species except forest Terminalia for which there were insufficient 

seedlings for comparison suggesting recovery from year 2 drought/fire. Also 

compared to year 1, both savanna species in year 3 were significantly taller, but 

forest Khaya in year 3 did not differ from year 1 height (Table 4), suggesting a 

higher cumulative shoot recovery of the savanna than forest species in this study. 

Overall, plant dry weight of the savanna Khaya was 3.4 ± 1.9 g and did not 

differ significantly (F2, 80 = 0.20, P = 0.82) among vegetation types as was the 

case for its forest congener (F1, 5 = 0.22, P = 0.67) (Figure 4a). Seedlings of the 

savanna Terminalia did grow significantly larger in savanna woodland (16.0 ± 12.9 

g; F2, 15 = 17.4, P < 0.001) compared to closed-woodland and forest where 

seedlings weighed on average 1.9 ± 0.5 g. Unfortunately, for the forest Terminalia, 

biomass could not be analysed because not enough seedlings survived at final 

harvest (Figure 4a). 

Biomass proportion and starch concentration in roots 

We found that root mass fraction significantly differed (F2,77 = 4.88, P = 0.01) 

among vegetation types for savanna Khaya, which was higher in savanna 

woodland at 0.71 ± 0.10 g g−1 and lowest in the forest at 0.61 ± 0.11 g g−1 

(Figure 4b). Root mass fraction of the forest Khaya did not differ significantly (F1, 

5 = 2.01, P = 0.22) between closed-woodland and forest where it survived till the 

end (Figure 4b). Also for the savanna Terminalia, root mass fraction did not differ 

significantly (F1, 10 = 1.14, P = 0.31) between savanna woodland and closed-

woodlands where it survived till the end. Overall root mass fraction (regardless of 

vegetation type) differed significantly (F3, 95 = 14.6, P < 0.001) among species 

being highest in savanna Terminalia (mean = 0.79 ± 0.09 g g−1) and lowest in 
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forest Khaya (mean = 0.44 ± 0.07 g g−1). Root mass fraction of savanna Khaya 

was intermediate (mean = 0.64 ± 0.13 g g−1) between the two other species. 

We found that root starch concentration differed significantly (F2, 27 = 19.1, 

P < 0.001) among species and also among vegetation types (F2, 27 = 3.48, P = 

0.045). Pairwise comparisons revealed highest root starch concentration for 

seedlings in savanna woodland (21.6% ± 10.7%) and lowest in closed-woodland 

(13.8% ± 9.8%). Among species, savanna Terminalia stored the most starch in 

their roots (27.1% ± 9.6%) whereas forest Khaya stored the least (9.6% ± 3.9%) 

while savanna Khaya had intermediate root starch storage (14.9% ± 6.8%). 

 

 

Figure 3. Mean seedling height of each species at three vegetation types for the three 

growing seasons in Kogyae Strict Nature Reserve, Ghana. In year 3, Terminalia superba 

was excluded due to too few numbers to allow for analysis. Also, there were insufficient 
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samples of Khaya ivorensis and Terminalia macroptera for woodland and forest 

respectively. Statistical comparisons (with Sidak adjustment) are done among vegetation 

types for each species. Different letters indicate significant differences (P < 0.05). Error 

bars are ±1 SE of mean. 

 

 

 
Figure 4. Mean seedling dry weight and root mass fraction for three species in three 

vegetation types in Kogyae Strict Nature Reserve, Ghana. Statistical comparision is among 

vegetation types, but not among species. Data not presented for Terminalia superba due 

to insufficient samples. Also, samples were insufficient for Khaya ivorensis and Terminalia 

macroptera in woodland and forest respectively. Different letters indicate significant 

differences (P < 0.05). Error bars are ±1 SE of mean. 
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Table 4. Pairwise comparisons (from Kruskal-Wallis test) of tree seedling height recorded 

in years 1, 2 and 3 at Kogyae Strict Nature Reserve, Ghana. Analyses were done for each 

species separately. For Terminalia superba, only years 1 and 2 are compared using 

Mann-Whitney-U test. Years for which median seedling height differed significantly (P < 

0.05) are indicated with asterisk.  

 

 

 

 

 

 

 

Discussion 

Forest and savanna species occur predominantly in their respective non-pyrogenic 

and pyrogenic environments. Yet, widespread observations have been made of 

forest species encroaching savannas in many places across the globe (Bowman et 

al. 2001, Mitchard et al. 2009). Higher vegetation cover is hypothesized to increase 

establishment of forest species, but tests in forest-savanna ecotones produced 

mixed results (Bowman et al. 2001, Cardoso et al. 2016, Geiger et al. 2011, 

Gignoux et al. 2009, Hoffmann et al. 2004). 

Generally, higher canopy cover suppresses pyrogenic fuel loads 

(Hennenberg et al. 2006) and aids tree seedling survival as fire in open savanna 

vegetation induces high seedling mortality (Cardoso et al. 2016, Gignoux et al. 

2009, Hoffmann et al. 2004). Here, we assessed survival and growth of seedlings 

Species Years compared 
pairwise 

Test statistic Standard 
error 

P-value 

Khaya senegalensis 
2-1* 91.5 13.8 < 0.001 

 2-3* -139 15.3 < 0.001 

 1-3* -47.3 17.3 0.019 

Khaya ivorensis 2-1* 136 9.70 < 0.001 

 2-3* -177 30.4 < 0.001 

 1-3  -40.7 30.9 0.563 

Terminalia macroptera 2-1* 109 10.4 < 0.001 

 2-3* -181 24.3 < 0.001 

 1-3*  -71.4 25.3 0.014 

Terminalia superba 2-1*  809 596 < 0.001 
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of two congeneric pairs of forest and savanna trees over a period of 3 y (two 

dry/fire seasons) allowing for assessments at different moments in time and 

beyond one season in both forest and savanna environments. We assessed 

flammable material as an indication of fire intensity, soil characteristics as well as 

biomass fraction and starch concentration in roots in relation to different 

vegetation types (differing in extent of canopy closure). 

The forest plots typically had higher soil moisture, organic matter and N 

content compared with the savanna woodland plots, which is in line with other 

studies (Fensham et al. 2003, Kellman 1985, Markham & Babbedge 1979) and 

which may be caused by the presence of increased cover and litter input by trees 

(Fensham et al. 2003, Kellman 1985). Higher N content could also be the result of 

fixation by trees and the nitrification of N (leftover after uptake by vegetation) 

could explain the lower pH found in forest plots (Ste-Marie & Pare 1999). These 

differences between forest and savanna woodlands were found in top (10 cm) soil 

only. Additionally, several other soil parameters measured such as P, K, Mg, Ca 

and CEC were similar in both environments. Thus, no firm conclusions can perhaps 

be drawn on whether soils differ markedly between forest and savanna patches in 

this ecotone. Nonetheless, higher top soil moisture content, organic matter and N 

may affect tree seedling growth and survival. 

Savanna woodland plots were characterized by higher biomass of 

herbaceous vegetation, while litter load was somewhat higher in closed-canopy 

forest cover (but only ∼0.2 kg m−2). This is the result of the higher canopy cover 

in forest excluding grasses, consistent with findings in other studies (Hennenberg 

et al. 2006, Hoffmann et al. 2012b). Faster and more intense fires have been 

observed for savanna than forests (Hennenberg et al. 2006, Hoffmann et al. 
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2012b) as a consequence of this difference in type and biomass of herbaceous 

vegetation. 

Seedling survival 

Survival in the first few weeks for both species in the genus Terminalia was lower 

in forest (at LAI of ∼1.7–2.0) than in savanna, while species in genus Khaya were 

not affected. Clearly, both Terminalia species prefer higher light levels, at least in 

the first weeks after germination. The forest Khaya is a non-pioneer light demander 

(Hawthorne 1995) while its savanna congener is known to tolerate moderate shade 

(Kwesiga & Grace 1986). Three months into the first dry season, these apparent 

species differences were no longer observed and mortality had reached about half 

for nearly all individuals. Prior to this census (census 3) rainfall had declined from 

37 mm in November to 3 mm in December (Figure 1). 

Thus, the high mortality of the initial establishment phase may suggest a 

similar response to dry season drought for all species and regardless of vegetation 

cover. It was in the second dry season that the reported differences between forest 

and savanna species (Hoffmann et al. 2004) became evident in both genera tested 

in this study. At this stage, seedlings had gone through the first dry and fire 

seasons and subsequent recovery. And thus fire- and drought survival traits 

became more important explaining the greater survival of the savanna species. 

At the end, the savanna Khaya had the most survivors in all vegetation types 

because it is both drought/fire tolerant and also moderately shade tolerant. None 

of the two forest species survived in woodlands where the highest biomass of 

flammable material was recorded. Except for the forest Khaya that had few 

surviving seedlings in closed-woodland, the forest species generally survived in 

forest, although in very low numbers. This suggests that the long dry seasons and 

associated fire events in this ecotone limits their colonization possibilities (Cardoso 
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et al. 2016). Survival in savanna Khaya was similar to that of savanna Terminalia 

in savanna woodland, but markedly contrasting in closed-canopy forest and closed 

woodland with intermediate canopy cover (although to a lesser extent), with 

canopy closure favouring savanna Khaya and more open environments favouring 

savanna Terminalia. Again, this is consistent with the natural distributions of the 

two species. 

Seedling growth, biomass proportions and starch concentration in 

roots 

Within the first growing season, seedlings tended to grow taller (significantly for 

two species) in woodlands than forest. Perhaps this represents an increased growth 

response to the increasing light availability (Veenendaal et al. 1996b) associated 

with increasing canopy openness from forest to savanna. By the second year, 

seedling height had greatly reduced for all species indicating shoot loss resulting 

from drought and/or fire of the first dry season. The difference in height between 

years 2 and 1 which was greater for the two forest species than their savanna 

congeners may be an indication of a greater adverse effect of the dry season on 

the forest species. At the end of year 3, seedlings were a lot taller (relative to year 

1 heights) for both savanna species. By contrast, y 3 seedlings of the surviving 

forest tree K. ivorensis (mortality of forest Terminalia was 99% at this stage) were 

not taller than they were in year 1 suggesting a higher cumulative recovery and 

resprouting capacity for the savanna species than their forest congeners. This is 

consistent with our prediction and also reported in several other studies (Fensham 

et al. 2003, Gignoux et al. 2016, Okali & Dodoo 1973). 

Vegetation cover type did not have profound effects on shoot loss and 

subsequent regrowth over the 3-y period except on savanna Khaya in year 2. This 

is inconsistent with our expectation because flammable material differed among 
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vegetation types and should have influenced extent of stem die-back (top-kill) 

(Higgins et al. 2007). Perhaps this finding suggests that drought effect on stem 

die-back was stronger than the ameliorating influence of canopy cover. The fact 

that seedlings in closed-canopy forest also experience drought stress (Veenendaal 

et al. 1996c) lends support to this assertion. This may explain why patterns of 

forest development as well as mature trees of Khaya senegalensis appear to closely 

follow branching patterns of streams. It may also explain the overall rather slow 

development of forest vegetation on savanna patches in Kogyae Strict Nature 

Reserve and elsewhere in the transition (Armani et al. 2018, Janssen et al. 2018). 

At the end of the experiment, the savanna species outperformed the forest 

species in terms of attained biomass at harvest, allocation to roots and root starch 

concentration. This was consistent with our expectation as species from drier 

pyrogenic environments have been reported to have higher root mass fraction and 

carbohydrate reserves for overcoming drought and fire (Cardoso et al. 2016, 

Hoffmann et al. 2004, O’Brien et al. 2014, Tomlinson et al. 2012). 

Overall, our results suggest that the possibilities for establishment of moist semi-

deciduous forest species in the forest-savanna ecotone are particularly limited by 

the dry season and its associated pyrogenic environment. More interestingly, we 

demonstrate that savanna species also differ in their tolerance to canopy cover 

and open pyrogenic environments specifically related to root storage functions, 

thus contributing to a better understanding of differences in tree seedling 

recruitment between species across the forest-savanna ecotones. 
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Abstract 

Competition with grasses may affect growth and post-fire survival of tree seedlings 

in tropical savannas. Different tree functional types (e.g. forest and savanna-

transition species) that co-occur in the forest-savanna transition may have 

different responses to grass competition which may result in differential 

establishment success. We performed a common garden experiment in the humid 

Guinea savanna of Ghana, which involved eight forest and savanna-transition tree 

species in factorial combinations with wet season grass treatment and dry season 

fire. Savanna-transition species are common to both forest and savannas in the 

forest-savanna transition. We tested direct effects of competition on seedling 

growth and survival before the dry season fire and indirect effects on post-fire 

survival. We found that grass competition suppressed tree seedling growth but not 

survival. Except for seedling height and stem basal diameter, the effect of grass 

competition on growth performance was similar for both tree functional types. 

Grass competition decreased root starch content due to reduction in root mass of 

forest tree seedlings. Consequently, post-fire survival (which averaged only 6%) 

was four times lower for seedlings in prior grass competition among forest species. 

Post-fire survival of the savanna-transition species was 91% and found to be 

related to pre-fire seedling size and root starch reserves. Our results show that 

wet season grass competition suppresses growth performance similarly for 

savanna-transition and forest tree species, and while it does not affect post-fire 

survival of savanna-transition seedlings, it may render forest seedlings more 

susceptible to fire-induced mortality.  

 

Keywords: Tropical tree species, Ghana, savanna, forest, seedling traits, 

growth, survival, dry season, fire   
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Introduction 

The forest-savanna transition is often a mosaic of forest patches in a large expanse 

of humid savanna (McCook 1994) characterised by different tree functional types 

including species that occur in forest, savanna or in the transition between forest 

and savanna (Armani et al. 2018, Veenendaal et al. 2015). Fire is generally 

considered a significant bottleneck for the establishment and subsequent survival 

and growth of forest tree seedlings in savanna (Gignoux et al. 2009, Hoffmann et 

al. 2004) thereby maintaining the typical mosaic pattern of the forest-savanna 

transition (Hopkins 1974, Swaine et al. 1976).  

Competition with grasses may also play an important role in limiting 

establishment of forest tree seedlings in savannas. Models of tropical savannas 

often assume a negative effect of trees on grasses (e.g. Van Langevelde et al. 

2003), but these ignore the seedling stage of trees (Van Langevelde et al. 2014). 

Suppression of tree seedlings due to grass competition is often reported for 

savanna tree seedlings (Barbosa et al. 2014, February et al. 2013, Tomlinson et 

al. 2019, Vadigi & Ward 2013, van der Waal et al. 2009). Grasses may compete 

with tree seedlings particularly for water (Anthelme & Michalet 2009, Kulmatiski et 

al. 2010, February et al. 2013) or soil nutrients (Tomlinson et al. 2019, van der 

Waal et al. 2009) or for both soil resources and light (Barbosa et al. 2014, de Dois 

et al. 2014, Holl 1998, Vadigi & Ward 2013). Some studies have reported 

facilitation of tree seedlings by grasses via amelioration of microclimate under dry 

conditions (Anthelme & Michalet 2009, de Dois et al. 2014). 

Due to differences in the amounts of stored reserves, larger plants survive 

drought and fire better than smaller ones (Cardoso et al. 2016, Hoffmann et al. 

2012). Suppression of tree seedling growth in the wet season due to grass 

competition may, therefore, decrease the chances of dry season fire survival. 

Exploring the effects of grass competition on post-fire survival
among forest and savanna-transition tree seedlings
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Additionally, by slowing down seedling growth rates, grass competition may also 

prolong how long it takes for seedlings to reach a “threshold of fire resistance” 

(Hoffmann et al. 2012) thereby affecting the dynamics between fire frequency and 

seedling recruitment into bigger size classes. Thus, competition with grasses may 

affect growth and post-fire survival of tree seedlings in tropical savannas. Different 

tree functional types may have different responses to grass competition. 

Differences in responses of tree functional types will provide a better 

understanding of the role that grasses (aside fuelling fire) may have in shaping 

tree recruitment in savannas. Interactions of forest tree species with grasses may 

differ from tree species found in savannas or in the transition between savanna 

and forest due to differences in resource use strategies (and hence trait 

syndromes) (Boonman et al. 2019) and also because the forest environment is 

naturally less grassy. Studies testing the effects of grass competition on forest 

species are important because increased forest degradation means greater 

invasion by herbaceous vegetation (Hoffmann & Haridasan 2008) which may 

(together with fire) provide an effective bottleneck for the restoration of forest 

cover (Ratnam et al. 2011). Additionally, grass competition, in addition to fire, 

may limit encroachment of forest species in savannas. However, only few studies 

have explored tree-grass interactions that involve forest tree species (e.g. Holl 

1998, Sun & Dickson 1996).  

In this study, we ask: 1) are survival and growth responses to grass 

competition different for forest than savanna-transition tree functional types? 2) 

How does wet season grass competition influence seedling survival after dry 

season fire for forest and savanna-transition tree functional types? We hypothesise 

that: 1) grass competition in the wet season reduces tree seedling growth and 

survival, with larger effect on the forest than savanna-transition tree functional 
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types, and 2) wet season growth suppression of seedlings decreases the survival 

chances to dry season fire more for forest than savanna-transition tree functional 

types.  

Materials and methods 

Study site and species 

The study was performed at the experimental garden on the Nyankpala Campus 

of the University for Development Studies, Ghana (9°24'52.0"N, 0°58'43.6"W). 

The site is within the humid part of the Guinea savanna vegetation zone with an 

annual rainfall of ~1100 mm yr-1. The dry season is from November to March and 

followed by an April to October wet season. Mean annual temperature is 28°C. The 

experimental garden is a former agricultural land with high herbaceous cover 

dominated by the two grass species Pennisetum pedicellatum and Andropogon 

pseudapricus. The soil in the garden is sandy loam in texture with medium to 

coarse stones. Soils of the general study location are described as Plinthustalf, 

sandy over-clays skeletal phase and classified by FAO as Plinthic Lixisols (FAO 

2001, Serno & van de Weg 1985). Eight tree species were used in this study, 

classified a priori into species typical for forests (four species) or forest savanna-

transition (four species) (Table 1). Of the latter group, Afzelia africana is a 

transition/non-selective species (Ametsitsi et al. in prep.) occurring both in 

savanna and in dry tropical forest. Seeds of the humid savanna-transition species 

were collected in the transition zone at Kogyae Strict Nature Reserve (7°19' 1.66'' 

N, 1°05' 5.863'' W) whereas those of the forest species were collected from the 

semi-deciduous forest near Abofour (7°19' 1.66''N, 1°05' 5.863''W), between 

December 2017 and February 2018. Seedlings were raised in a temporary nursery 

at the experimental site and transplanted into the experiment at ~8 weeks old in 

early April 2018.  

Exploring the effects of grass competition on post-fire survival
among forest and savanna-transition tree seedlings

 57   

3



56 
 

Table 1. Functional classification of tree species used in the common garden experiment 

in the Guinea savanna of Ghana. Sources of species information: Hawthorne 2005; Hall & 

Swaine 1976; Orwa et al. 2009.  

Species  Family Guild Functional type 
Khaya senegalensis (Desr.) A. 
Juss 

Meliacaea - Savanna 

Khaya anthotheca (Welw.) 
C.DC. 

Meliacaea Non-pioneer light 
demander 

Forest 

Khaya ivorensis (Desr.) A. Juss Meliacaea Non-pioneer light 
demander 

Forest 

Terminalia superba (Engl. & 
Diels) 

Combretacae Pioneer Forest 

Terminalia ivorensis A.Chev. Combratacae Pioneer Forest 
Pterocarpus erinaceous Poir. Fabaceae - Savanna 
Afzelia africana Sm. ex Pers. Cesalpinaceae Non-pioneer light 

demander 
Transitional 

Daniella oliveri (Rolfe) Hutch. 
& Dalziel 

Cesalpinaceae - Savanna 

 

Study approach 

The experiment consisted of two phases: a grass/no-grass competition treatment 

in the wet season, followed by a fire/no fire treatment in the dry season in a full 

factorial design (Figure 1). Twelve 48 m2 plots were established at the 

experimental site in early April, just before the onset of the wet season of 2018. 

All herbaceous vegetation was removed in six randomly chosen plots. Vegetation 

in the other six plots was left intact (i.e. grass competition plots). If necessary, 

tufts of Pennisetum pedicellatum and Andropogon pseudapricus were transplanted 

in the grass plots to ensure a homogeneous sward of herbaceous vegetation 

throughout. In each plot, four seedlings each of the eight species, except Daniella 

oliveri (Table 1) were transplanted at a spacing of 0.7 m x 1.0 m within and 

between rows (respectively) of seedlings at the onset of the rainy season (April, 

2018) with D. oliveri only present in three control and five competition plots due 

to the low seedling availability. We assigned seedlings at random to planting 

positions. In total, 360 seedlings were transplanted (12 plots × 7 species × 4 

seedlings + 3 seedlings x 8 plots for D. oliveri). All plots received natural 
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precipitation over the seven months of the wet season (Figure 1). No-grass plots 

were kept free of grass by periodic weeding until October 2018 when the rains 

ended. At this point, we randomly selected six plots (three each for grass and no-

grass) for destructive harvest to measure the pre-fire plant performance. The 

remaining six plots were reserved for the fire/no fire treatment.  

The fire experiment 

The percentage grass cover was estimated in three 1 m2 quadrats randomly 

located per plot with standing grass biomass and the maximum height of the grass 

determined at the end of the rainy season. Then all six plots (three grass and three 

no-grass plots) were prepared for burning with pre-prepared grass fuel to ensure 

uniformity in fuel (type, moisture content and load) for plots to burn. Fuel used 

consisted of Pennisetum pedicellatum and Andropogon pseudapricus, harvested 

from the adjoining savanna and air-dried for two weeks.  

We made fuel beds by covering each plot (entirely) with grass at a fuel load 

of 1 kg of grass m-2. All plots were burnt separately between 15 hrs and 17 hrs in 

November 2018. Fire temperature in each plot was measured using a 

thermocouple thermometer (Hanna instruments, Singapore), with the probe cable 

buried while the full length of the probe was sticking out allowing for the most 

accurate fire temperature close to the seedling to be determined (Dayamba et al. 

2010). After this, the plots were left untouched until being re-watered on February 

1, 2019 to mimic early start of the wet season after four months of dry season. 

From then on each seedling received 1.4 L per day of water for three weeks after 

which plants were harvested.  
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Measurements on plants during the experiment 

Three months after the start of the experiment, we measured seedling height and 

stem basal diameter for all seedlings in all plots. Census of live or dead was 

conducted for seedlings in all 12 plots at the end of the wet season, before the 

fire/no-fire treatment (November 2018). We defined dead plants as seedlings with 

dry (dead) aboveground parts (stem and leaves). We determined changes in 

seedling height and stem basal diameter using data from July 2018 and November 

2018 for all 12 plots. Post-fire and/or dry season survival (henceforth post-fire 

survival) was assessed in each plot (total of 6 plots) by counting the number of 

resprouting seedlings for each species.  

Plant biomass and trait measurements 

We determined seedling start (dry) mass from five random seedlings (from the 

seedling pool) per species prior to transplantation. Pre-fire harvest (in November 

2018) was done just before the fire treatment in November by carefully excavating 

all seedlings in six random plots (three grass and three no-grass). Seedlings were 

separated into leaf, stem and root parts before oven drying (at 70 ˚C) to constant 

weight. Various plant traits (Table 2) were then derived based on data at this 

harvest. Leaf mass fraction (LMF) was calculated as leaf dry weight divided by total 

plant dry weight; stem mass fractions (SMF) as stem dry weight divided by total 

plant dry weight; root mass fraction (RMF) as root dry weight divided by total plant 

dry weight; Specific stem length (SSL) as stem length divided by total plant dry 

weight; specific rooting depth (SRD) as rooting depth divided by total root dry 

weight. We also calculated average seedling mass gain as the difference between 

start plant mass and mass at end of wet season harvest. RGR was calculated using 

ln-transformed final plant mass and mean ln-transformed initial mass and the 
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growth period (d = 32 weeks) in the following equation (adapted from Hoffmann 

& Poorter 2002):  

      

We did the final harvest in March 2019. This was after 28 weeks of the post-fire 

regrowth phase. Prior to excavation, we watered all seedlings for four weeks (to 

ascertain mortality). Live seedlings were counted as those with (at least) live 

belowground buds. After oven drying, we determined the total mass of new shoot 

as new stem mass plus new leaf mass. Total plant mass was determined as mass 

of new shoot plus mass of root.  

Table 2. Functional traits analysed in the study and their relevance. 

Trait   Abbr. 
(units) 

Relevance 

Leaf dry weight LDW (g) Light capture/growth 
Stem dry weight SDW (g) Height growth/light capture/avoiding fire top-kill 
Root dry weight RDW (g) Belowground reserves/fire or drought survival 
Leaf mass fraction  LMF (g g-1) Investment in light capture, photosynthesis and 

growth 
Stem mass fraction  SMF (g g-1) Investment in light capture and aboveground growth 
Root mass fraction  RMF (g g-1) Storage of reserves and/or belowground foraging  
Plant height gain  PH (cm) Indication of aboveground growth. Important for light 

competition or avoiding fire top-kill 
Stem length SL (cm) Light capture/aboveground growth 
Specific stem length  SSL (cm g -1) Light foraging and growth, avoiding fire top-kill 
Rooting depth  RD (cm) Foraging for deeper soil moisture 
Specific rooting depth  SRD (cm g -1) Investment in deep water foraging 
Relative growth rate  RGR  

(g g-1 week-1) 
Photosynthetic capacity, biomass accumulation 

Plant mass gain PDW (g) Biomass accumulation, growth 
Stem basal diameter SBD (mm) Thicker stem/root, protection of tissues from fire, 

indication of root size or plant growth 
 

Roots of plants excavated in both harvests (November 2018 and March 

2019) were analysed for root starch concentration and starch content (i.e. total 

root starch reserves). We used the carbohydrate extraction protocol of Duranceau 

et al. (1999) which is adapted from Dubois et al. (1956). Samples available for the 
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November 2018 harvest were sufficient: 6 seedlings x 2 grass treatments x 7 

species (three savanna-transition tree species and four forest tree species). At the 

March 2019 harvest, only three savanna-transition tree species were available for 

root starch analysis due to mortality of particularly the forest species. 

Environmental measurements 

We obtained data on precipitation, temperature and relative humidity for the whole 

experimental period (Figure 1) from the Agro-meteorological station of Savanna 

Agricultural Research Institute of Ghana (within 1 km of the study site). We 

measured soil moisture (vmc %) within the top 10 cm of the soil using a theta 

probe (Spectrum technologies Inc.) in mid-August (peak wet season of 2018) and 

then in November (one week into the dry season). Measurement in August was 

done at five random positions in all 12 plots (six each for grass and no grass) while 

the November measurement was done at every seedling position but in six plots 

(three each for grass and no-grass). After the fire treatment, we sampled soil for 

chemical analysis. Sampling was done within the top 10 cm soil layer in nine plots, 

three each for fire + grass, fire + no-grass and no-fire + no-grass. We made 

composite samples from 4 locations within each plot. 

Light availability to seedlings was measured using a PAR quantum sensor 

(Skye Instruments, Llandyndrod Wells, UK) by measuring light reaching the top 

canopy leaves of randomly selected seedlings in the grass and no grass plots. Light 

measurements were done under overcast conditions between 11:30 hrs and 12 

hrs. Monthly summaries of temperature, relative humidity and rainfall before and 

after the experimental fire are presented in Figure 1 and temperature, relative 

humidity and wind speed on the day of burning were 30°C, 66% and 0.88 kph 

respectively.  
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Figure 1. Weather variables, monthly rainfall, relative humidity and temperature during 

the experimental period in Nyankpala within the Guinea savanna of Ghana. Red vertical 

line indicate month (in the dry season) of experimental burn. Weather data are from agro-

meteorological station of the Savanna Agricultural Research Institute of Ghana, within 1 

km of the experimental site.  

 

Statistical analysis  

We analysed all data in R (R Development Core Team 2017) and used ggplot2 

(Wickham, 2009) for data visualization except Figure 1. Soil moisture content (MC) 

in grass and no-grass plots was tested for differences for August and November 

measurements separately using linear mixed-effects models (LMMs). This was 

achieved with the lmer function in lme4 package (Bates et al. 2015) together with 

lmerTest package (Kuznetsova et al. 2019). In the LMMs, plot was included as a 

random factor. We tested light intensity for differences between grass and no-

grass plots using an LMM including plot and seedling position as random factors.  
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We tested growth-related traits (i.e. RGR, gains in total plant mass, height 

and stem diameter), root starch concentration, total root starch content and 

seedling morphology traits (LMF, SMF, RMF, RD, SRD and SSL) determined at the 

end of the competition phase for fixed effects of tree functional type (TFT) × grass 

treatment. Plot was included as a random effect. Root starch (content and 

concentration) and SRD were ln-transformed prior to analyses to meet 

assumptions of normality and residual variances. Root dry weight was included as 

a covariate in the models for root starch. We estimated the effect size of 

competition for growth-related traits using Hedges’ g (Hedges & Olkin 1985). In 

separate models (for each TFT) we tested fixed effects of species × grass treatment 

including random plot effect. We separated significant species effects (or 

interaction effects) using Tukey’s post hoc contrasts achieved in the emmeans 

package (Lenth et al. 2019).  

We analysed seedling survival in a generalized linear mixed model (GLMM) 

with the binary data using binomial error (with logit link function). For this, we 

used the glmer function in lme4 package. We analysed survival for fixed effects of 

TFT × grass treatment and then for species × grass treatment separately for each 

TFT, including random plot effect in each separate model. Post-fire seedling 

survival (also binary data) was analysed in GLMMs to test competition and TFT 

effects, including random plot effect following the same procedure as described for 

survival due to grass competition. Within the forest TFT, we analysed survival of 

K. anthotheca and K. ivorensis together (as there were no survivors of the two 

Terminalia species) for fixed effect of species × grass treatment, including random 

plot effect. Then we tested post-fire growth among savanna-transition species for 

species × grass treatment effect in an LMM that included random plot effect. Also 

among the savanna-transition species, we assessed the relationship of post-fire 
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survival to pre-fire seedling size (plant height) in a GLMM and evaluated changes 

in root starch concentrations in a LM (after ln-transformation) for fixed effects of 

harvest (i.e. pre-fire or post-fire), species and grass treatment. Correlations 

among traits were performed separately for seedlings in grass and no-grass 

treatments using Pearson’s product-moment. 

 

Results 

Environmental variables 

Total rainfall received within the wet season was 1053.8 mm, which peaked in 

August (Figure 1). Soil moisture content (vmc %) averaged from 26.4 ± 2.6 % in 

August to 12.4 ± 2.2 % in November. In both measurement months, soil moisture 

content was higher in the grass treatment than no-grass (Table 3). Grass 

dominated the herbaceous layer in the grass plots (> 75 % vs 5-12 % cover for 

herbs). Mass of herbaceous vegetation averaged 0.76 kg m-2 ± 0.15 kg m-2, with 

a maximum height of 2.26 m ± 0.29 m. Light intensity recorded in grass plots 

averaged 10.9 % ± 5.0 %, which was lower (F 1, 33 = 467, p < 0.001) than intensity 

recorded in the no-grass plots at 90.5 % ± 5.9 % of full light levels. The amount 

of light reaching the seedling crowns varied between 75-100% of above canopy 

height, and related (β = -0.25, t = -2.80, df = 14, p = 0.015) to seedling height 

in the no-grass treatment. In the grass treatment, the amount varied between 

10% and 27%, but was not related (β = -0.015, t = -0.15, df = 16, p = 0.886) to 

seedling height (Figure SI). Height of the fuel bed made in the fire experiment 

averaged 0.23 m ± 0.1 m, resulting in a fuel bulk density of 1.1 kg m-3. Mean 

moisture content of grass (calculated on a dry weight basis) used as fuel for the 

experimental burn was 3.0 ± 1.1 % and mean fire temperature recorded was 

535°C ± 157°C. 
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Table 3: Results of ANOVA (Type III, with Satterthwaite's method) from linear mixed-

effects models on differences in soil moisture content between grass and no-grass plots in 

August (peak wet season) and November (start of dry season) in a common garden in the 

Guinea savanna of Ghana. 

 Mean (VMC %  ± sd) F-value df p-value 

 Grass No grass    

August MC 28.2 ± 2.73 24.5 ± 2.81 10.1 1 0.009 

November MC 13.2 ± 2.57 11.6 ± 1.84 17.3 1 0.015 

 

Influence of competition on pre-fire survival and growth-related 

parameters  

Seedling survival proportion at the end of the wet season averaged 0.93 ± 0.14 

irrespective of TFT or grass treatment (Tables 4 & 5). However, relative growth 

rate (RGR) was lower for seedlings in the grass treatment (at 0.03 ± 0.03 g g-1 

week-1) than no-grass (at 0.06 ± 0.05 g g-1 week-1) irrespective of TFT (Table 5). 

The effect size of grass treatment on RGR was similar for both TFTs (mean g = -

0.89). Plant mass gain was lower for seedlings in the grass treatment (1.14 ± 1.70 

g) than no-grass (6.20 ± 6.70 g) irrespective of TFT (Table 5). Grass treatment 

had a larger effect on mass gain than it did on RGR, but effect sizes were again 

similar for both TFTs (g = -1.03 for forest and -1.02 for savanna-transition). Height 

gain was irrespective of TFT, lower for seedlings in the grass treatment (at 1.80 

cm ± 5.46 cm) than no-grass (at 9.9 cm ± 10.7 cm). Also irrespective of grass 

treatment, forest seedlings grew taller (8.0 cm ± 10.9 cm) than savanna-transition 

seedlings at 3.2 cm ± 6.4 cm (Table 5). Effect size estimated for plant height gain 

was larger for savanna-transition than forest TFT (g = -1.26 vs g = -0.91). We 

found an interaction effect of TFT × grass treatment on increment in stem basal 

diameter (SBD) (Table 5). In no-grass, SBD was higher for forest TFT (at 4.2 ± 

3.1 mm) than savanna-transition (at 2.7 ± 2.5 mm), but SBD did not differ 
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between TFTs in grass treatment. Thus, effect of grass treatment on SBD was 

larger for forest TFT (g = -1.56) than savanna-transition TFT (g = -0.95). 

We assessed species differences within each TFT separately. Seedling 

survival within the forest TFT did not differ between grass treatments or among 

species (Tables 4 & 5). We found an interaction effect of species × grass treatment 

on RGR (Table 5), with slower RGR in grass treatment for both T. superba and T. 

ivorensis while RGR was similar in both grass treatments for K. anthotheca and K. 

ivorensis (Figure 2a). There was also an interaction effect of species × grass 

treatment on plant mass gain (Table 5), with higher plant mass gain for both 

Terminalia species than K. ivorensis. Here, T. ivorensis had a bigger mass gain 

than K. anthotheca in the no-grass treatment, but we did not observe species 

differences in the grass treatment (Figure 2d). We found interaction effects of 

species × grass treatment on both gains in plant height and SBD (Table 5). 

Irrespective of grass treatment, increments in seedling height and SBD were 

higher for both T. ivorensis and T. superba than for both K. ivorensis and K. 

anthotheca. We observed these species differences (for both height and SBD) in 

the no-grass treatment (Figure 2b & 2c). SBD was higher only for T. ivorensis than 

the two Khaya species in the grass treatment.  

Within the savanna-transition TFT, survival was similar for seedlings in both 

grass treatments and also did not differ among species (Tables 4 & 5). There was 

an interaction effect of species × grass on RGR (Table 5), with faster RGR observed 

in the no-grass than grass treatment for K. senegalensis and P. erinaceus whereas 

A. africana and D. oliveri maintained similar RGR in both grass treatments (Figure 

2e). We also found an interaction of species × grass treatment on plant mass gain 

(Table 5). Mass gain differed in the no-grass treatment between K. senegalensis 

and P. erinaceus (on one hand with higher mass gain) and D. oliveri and A. africana 
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on the other (Figure 2h). Plant height gain was lower in grass (-0.2 ± 3.6 cm) than 

no-grass (6.7 ± 6.8 cm) irrespective of species. Also irrespective of grass, both K. 

senegalensis and P. erinaceus grew taller than A. africana but not D. oliveri (Table 

5, Figure 2f). There was an interaction effect of species × grass on SBD gain (Table 

5). SBD gain was similar among species in the grass treatment, but SBD gain was 

higher for K. senegalensis than all other savanna-transition species in the no-grass 

treatment (Figure 2g).   

Table 4. Seedling survival proportion (± sd) at the end of the wet season (October 2018) 

and end of dry season (March 2019) in a common garden in the Guinea Savanna of Ghana. 

Statistical comparisions (binomial model with logit link) for Tree functional types (TFT) × 

grass treatments and species (TFT) × grass treatments are conducted for each census 

separately and significant (p < 0.05) effects are indicated by different letters. Same or no 

letters indicate non-significant results. D. oliveri is left out due to too few replications in 

grass plots at final harvest. 

  Wet season census Dry season(post-fire) census 

TFT(species) Grass  No-Grass Grass  No-Grass 

Forest TFT 0.91 ± 0.16 0.90 ± 0.16 0.02 ± 0.08a 0.08 ± 0.16a 
Khaya anthotheca 0.96  0.83  0.08  0.25  
Khaya ivorensis 0.83  0.88  0.00  0.08  

Terminalia ivorensis 0.96  1.00  0.00 0.00  

Terminalia superba 0.88  0.88  0.00  0.00  

Savanna TFT 0.96 ± 0.13 0.95 ± 0.10 0.89 ± 0.18b 0.92 ± 0.18b 
Khaya senegalensis 1.00  0.96  0.83 0.83  
Afzelia africana 0.96  0.92  0.92  0.92 
Daniella oliveri 0.88  0.92  - - 
Pterocarpus erinaceus 0.96  1.00  0.92  1.00  
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Figure 2. Plant growth in the wet season as influenced by grass treatments among 

seedlings of forest (green shaded in species list) and savanna-transition tree species in a 

common garden experiment in the Guinea savanna of Ghana. Means across species for 

each grass treatment are presented and compared within each TFT (*p < 0.001; **p ≥ 

0.001< 0.01; *p < 0.05>0.01; ns = non-significant). Letters compare species (box and 

whiskers) across grass treatments within TFT only. Different letters are significant at p < 

0.05 from Tukey pairwise comparisons following linear mixed-effects models.  

 

Influence of grass treatment on pre-fire seedling morphology traits and 

root starch   

At the TFT level, leaf mass fraction (LMF) averaged 0.19 ± 0.11 g g-1 for seedlings 

in grass treatment, which was lower than LMF in the no-grass treatment at 0.28 ± 

0.14 g g-1 (Table 6). There was a trend of higher (although at borderline 

(a) 

(b) 

(c) 

(e) 

(f) 

(g) 

(d) (h) 
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significance) LMF for forest (0.34 ± 0.12 g g-1) than savanna-transition (0.23 ± 

0.15 g g-1) in the no-grass treatment, but no apparent TFT difference in the grass 

treatment (Table 6). Forest seedlings had higher stem mass fraction (SMF) at 0.43 

± 0.10 g g-1 than savanna-transition seedlings at 0.19 ± 0.09 g g-1 (Table 6) 

irrespective of grass treatment savanna-transition seedlings had higher RMF (at 

0.62 ±  0.18) than forest (at 0.29 ± 0.10) seedlings irrespective of grass treatment 

(at 0.47 ± 0.21 g g-1
 for no-grass and 0.43 ± 0.22 g g-1 for grass treatment). 

We found that specific stem length (SSL) was higher for savanna-transition 

(at 37.1 ± 24.0 cm g-1) than forest TFT (at 28.2 ± 19.8 cm g-1) irrespective of 

grass treatment. SSL was also higher (F 1, 4 = 27.0, p = 0.006) in the grass 

treatment at 44.3 cm g-1 ± 22.1 cm g-1 than in no-grass at 21.2 cm g-1 ± 15.8 cm 

g-1 (Table 6). Savanna-transition seedlings rooted more deeply (at 21.3 ± 6.7 cm) 

than forest seedlings (at 16.2 ± 6.1 cm) irrespective of grass treatment (Table 6). 

However, specific rooting depth (SRD) was higher for the forest than savanna TFT 

irrespective of grass (Table 6). Also irrespective of TFT, SRD was higher in the 

grass treatment (at 29.8 ± 29.2 cm g-1) than in the no-grass treatment at 16.8 ± 

21.2 cm g-1.  

Within the forest TFT, we found an interaction effect of species × grass 

treatment on LMF (Table 6). Both K. anthotheca and K. ivorensis had higher LMF 

than both T. superba and T. ivorensis in the grass treatment, but not in the no-

grass treatment (Figure 3a). There was a similar interaction effect on SMF (Table 

6), with both Terminalia species, but not the two Khaya species, having higher 

SMF in the grass treatment than in the no-grass treatment (Figure 3b). RMF was 

similar between grass treatments and among species within this TFT (Table 6, 

Figure 3c). We found an effect of species × grass treatment on SSL (Table 6). SSL 

was similar among the two Khaya species irrespective of grass treatment, but SSL 
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was also higher for both Terminalia species in the grass than no-grass treatment 

(Figure 4a). Seedlings rooted more deeply in the no-grass compared to grass 

treatment irrespective of species. Also, both Terminalia species rooted deeper than 

both Khaya species irrespective of grass treatment (Table 6, Figure 4c). We found 

an interaction effect of species × grass on SRD (Table 6). The two Terminalia 

species had higher SRD in the grass than no-grass treatment whereas the two 

Khaya species maintained similar SRD in both grass treatments (Figure 4b). 

 

 

Figure 3. Plant biomass allocation: leaf mass fraction (LMF), stem mass fraction (SMF) 

and root mass fraction (RMF) for seedlings of forest (shaded green in species legend) and 

savanna-transition tree species in grass and no-grass plots at the end of the wet season in 

a common garden experiment in the Guinea savanna of Ghana. Means (across species) for 

each grass treatment are compared within each TFT (*p < 0.001; **p ≥ 0.001< 0.01; *p< 

0.05>0.01; ns = non-significant). Letters compare species (box and whiskers) across grass 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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treatments within TFT only. Different letters are significant at p < 0.05 from Tukey pairwise 

comparisons following linear mixed-effects models.   

 

Within the savanna-transition TFT, there was an effect of species × grass 

interaction on LMF (Table 6). K. senegalensis had the highest LMF and was also 

the only species with a lower LMF in grass than no-grass treatment (Figure 3d). 

We found a similar interaction effect for SMF (Table 6), with higher SMF in grass 

than no-grass treatment for K. senegalensis. SMF was similar in both grass 

treatments for all other species (Figure 3e). Seedlings in grass had higher RMF 

than seedlings in no-grass treatment irrespective of species. Also, K. senegalensis 

had the lowest RMF regardless of grass treatment (Table 6, Figure 3f). We found 

an effect of species × grass interaction on SSL (Table 6). D. oliveri and P. erinaceus 

had lower SSL in the no-grass than grass treatment while all other species 

maintained similar SSL irrespective of grass treatment (Figure 4d). Within this TFT, 

RD was similar among species and between grass treatments (Table 6, Figure 4f). 

There was, however, a species × grass treatment interaction effect on SRD (Table 

6). SRD was higher in grass than no-grass treatment only for K. senegalensis 

(Figure 4e).  

At the TFT level, root starch concentration [RS] was lower (F 1, 83 = 101, p 

< 0.001) for forest (at 3.50 ± 3.0%) than savanna-transition (at 17.5 ± 8.7%) 

irrespective of grass treatment and also regardless of root dry weight (Figure 5a). 

Total root starch content (RSC) however, increased with root dry weight (β = 0.31, 

t = 7.8, p < 0.001). There was also an apparent interaction effect (at borderline) 

of TFT × grass treatment (F 1, 83 = 3.9, p = 0.051) as RSC of savanna-transition 

seedlings were similar between grass treatments whereas RSC was lower in grass 

treatment than no-grass for the forest TFT (Figure 5b). Within the forest TFT, [RS] 

was similar among species irrespective of grass treatments. Within the savanna-
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transition TFT, [RS] differed among species (F 3, 34 = 13.2, p < 0.001) irrespective 

of grass treatment. [RS] for K. senegalensis was 9.5% ± 5.2%, which was lower 

than  [RS] for all others (which were similar) at 23 ± 6% for A. africana, 20 ± 13% 

for D. oliveri and 19 ± 4% for P. erinaceus. 

Trait correlations 

Correlations among traits (growth-related and morphology) were positive (ranging 

in strength from medium to strong) and largely significant (p < 0.05) among forest 

(Table S1a) than savanna-transition (Table S1b) TFTs. Grass treatment decreased 

the extent (strength) of correlations in both TFTs. Exceptions were correlations 

between stem length and stem dry weight and also between root dry weight and 

total plant dry weight (in both TFTs), which were stronger in grass than no-grass 

treatment. RGR correlated positively and significantly with RD in forest but not 

savanna-transition in both grass and no-grass treatments while SRD negatively 

correlated with RGR only in no-grass for both TFTs. This RGR and RD (or SRD) 

relationship influenced correlations of several other growth traits to RD and SRD 

(Table S1a and S1b). 
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Figure 4. Foraging efficiency; specific stem length (SSL) specific rooting depth (SRD) and 

rooting depth (RD) among seedlings of forest (shaded green in species list) and savanna-

transition tree species in grass and no-grass plots at the end of the wet season in a common 

garden experiment in the Guinea savanna of Ghana. Means across species for each grass 

treatment are presented and compared within each TFT (*p < 0.001; **p ≥ 0.001< 0.01; 

*p < 0.05>0.01; ns = non-significant). Letters compare species (box and whiskers) across 

grass treatments within TFT only. Different letters are significant at p < 0.05 from Tukey 

pairwise comparisons following linear mixed-effects models.  
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Post-fire and dry season survival, regrowth and root starch 

All plants were top-killed by the fire and/or dry season. Therefore we assessed 

TFT/species resprouting capacity as influenced by grass competition. At the TFT 

level, post-fire survival was lower (F = 62.2, p < 0.001) for the forest TFT (at 0.06 

± 0.12) than savanna-transition (at 0.91 ± 0.18) irrespective of grass treatment 

(Table 4). At the species level, both T. ivorensis and T. superba failed (completely) 

to survive from the dry season and fire (Table 4) within the forest TFT. Post-fire 

survival for K. ivorensis and K. anthotheca averaged 0.14 ± 0.18, and there were 

no species or grass treatment effects. Notwithstanding the lack of statistical 

significance, we observed a four-fold decline in post-fire survival for forest 

seedlings in prior grass treatment compared to the no-grass treatment across all 

species. Within the savanna-transition TFT, seedlings largely survived the dry 

season fire irrespective of prior grass treatment or species (Table 4). 

We analysed post-fire regrowth only for savanna-transition species as 

recovery was too low for the forest TFT at this stage. Across all three savanna-

transition species, new shoot mass (post-fire) averaged 0.16 g ± 0.4 g. We 

observed that root mass constituted 97% ± 6.7% of total plant mass across 

species (Figure S2b), which was lower for seedlings in previous grass treatment 

(at 1.48 g ± 1.07 g) than no-grass treatment (at 5.71 g ± 3.61 g). There was also 

an interaction effect of species × grass (F 2, 59 = 8.22, p < 0.001). Total plant mass 

differed between pre-fire grass treatments for K. senegalensis and P. erinaceus, 

but not A. africana (Figure S2a).  

Across all three savanna-transition species analysed for post-fire survival, 

the chances of a seedling surviving fire increased (β = 0.27, z = 2.03, p = 0.043) 

with seedling height (Figure 6a). Total root starch reserves (RSC) increased with 

root mass (β = 0.122, t = 2.08, p = 0.046) for seedlings analysed post-fire. We 
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found an interaction effect of species × grass treatment (F 2, 25 = 6.87, p = 0.004) 

on post-fire RSC. K. senegalensis seedlings had lower post-fire RSC in (previous) 

grass treatment than no-grass treatment whereas post-fire RSC for A. africana 

and P. erinaceus were similar between previous grass treatments (Figure 6b).  

We assessed the effect of fire on root starch concentration [RS]. We found 

an effect of species × harvest time (i.e. pre-fire vs post-fire) interaction (F 2, 59 = 

12.1, p < 0.001) on [RS] irrespective of prior grass treatment. [RS] was lower 

among post-fire than pre-fire seedlings of K. senegalensis (2.5% ± 5% vs 10% ± 

2%) but not of A. africana (20% ± 10% vs 23% ± 6.5%) or P. erinaceus (17% ± 

6% vs 19% ± 4%).  

Discussion 

In this study, we first tested whether direct competition effect on wet season tree 

seedling performance was larger for the forest tree functional types than for the 

savanna-transition tree functional types. We then determined whether any growth 

reduction subsequently resulted in greater decrease in probability of surviving dry 

season fire among seedlings of forest than savanna-transition tree functional 

types. Overall, we found differences in seedling performance in the face of grass 

competition and in post-fire survival of seedlings, which were related to trait 

differences between the two tree functional types.   

Grass competition directly suppresses tree seedling growth performance 

but not survival  

We predicted lower growth for tree seedlings in grass plots, with forest tree 

seedlings being more affected than savanna-transition seedlings. This prediction 

was based on the fact that forests are naturally less grassy than humid savannas 

(Issifu et al. 2019; Ratnam et al. 2011). Indeed, we found overall significant 
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suppression of all growth-related parameters for both TFTs, consistent with other 

studies reporting on suppressed tree seedling growth by grass competition 

(Barbosa et al. 2014, Reginos et al. 2009, Scholes & Archer 1997, Sankaran et al. 

2004, Tomlinson et al. 2019).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: (a) Root starch concentration and (b) root starch content (total reserves in 

roots) of seedlings of forest and savanna-transition tree species in grass and no-grass plots 

at the end of the wet season in a common garden experiment in the humid Guinea-savanna 

of Ghana. Data points: triangles are savanna-transition seedlings, circles are forest 

seedlings. Regression lines: red line is savanna transition in in grass (ST: G), green line is 

(a) 

(b) 
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savanna-transition in control (ST: nG), blue line is forest in grass (F:G), grey line is forest 

in control. Black line in (a) is the mean across treatments. Grey-shaded area is 95% CI. 

Forest species: ka = K. anthotheca, ki = K. ivorensis, ti = T. ivorensis, ts = T. superba. 

Savanna-transition species: aa = A. africana, ks = K. senegalensis, pe = Pterocarpus 

erinaceus, do = D. oliveri. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: (a) Dry season survival probability as predicted by wet season plant height (in 

a GLMM) (b) Total root starch reserves as predicted by root dry weight post-burn in 

previous grass vs no-grass plots for three savanna species in a common garden in the 

Guinea savanna of Ghana. Grey-shaded area is 95 % confidence interval for species 

average (black regression line).  

No-grass 

Grass 
A. africana 
K. senegalensis 
P. erinaceus 

A. africana 
K. senegalensis 
P. erinaceus 
Species average 

R2 = 0.62 
(a) 

(b) 
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However, not all species responded similarly. Terminalia superba and T. ivorensis 

(both forest species) and Khaya senegalensis and Pterocarpus erinaceus (both 

savanna-transition species) responded more strongly to grass competition. 

Interestingly, species that were not adversely affected by competition, Khaya 

ivorensis, Khaya anthotheca (forest) and Afzelia africana, Daniella oliveri 

(savanna-transition) were slow growing even in the absence of grass competition 

(Figure 2). Response of this latter group of species is in line with a conservative 

resource-use strategy (see, e.g. Boonman et al. 2019) and consistent with the 

idea that grass competition effect is greater on faster-growing species (Tomlinson 

et al. 2019). Grass competition thus, merely prevents fast-growing species from 

attaining their growth potential, but in terms of growth, these species perform 

similar to slow-growing species under competition (Figure 2).  

Differences in tree growth, seedling growth rate in particular, is mostly 

attributed to competition for soil moisture (Kulmatiski et al. 2010, February et al. 

2013), soil nutrients (Reginos et al. 2009, Tomlinson et al. 2019, van der Waal et 

al. 2009), a combination of moisture and nutrients or light (Barbosa et al. 2014, 

de Dois et al. 2014, Holl 1998, Vadigi & Ward 2013). In our plots, topsoil moisture 

content was not regarded as a limiting growth factor as moisture content was 

generally high, and even slightly higher in grass plots, and expectedly was 

probably sufficient for ample water uptake (Veenendaal et al. 1996). Light intensity 

was however much lower in grass plots suggesting that light competition may 

present a potential mechanism for tree seedling suppression in productive humid 

savannas. We found relative light levels of 11% in the grass treatment. Although 

some forest tree species (the shade bearers in this study) may still maintain 

considerable growth or even attain maximum growth (Agyeman et al. 1999, 

Veenendaal et al. 1996b) under these light conditions, such relatively low light 
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levels may pose growth limitation to the forest pioneers (Veenendaal et al. 1996) 

and the savanna-transition species (Gignoux et al. 2016, Ratnam et al. 2011). 

Competition for soil moisture, or more likely nutrients, may have occurred, but 

would still be minimal due to the low light intensity. In shaded environments, 

seedlings tend not to respond strongly to limitations in soil moisture and nutrients 

(Hoffmann et al. 2004, Tomlinson et al. 2019, Vadigi & Ward 2013).  

Effect of grass competition on seedling performance is similar for forest 

and savanna-transition tree functional types 

In contrast to prediction, we did not find evidence for greater competition effect 

for the forest than savanna-transition species, particularly on RGR and plant mass 

gain. Competition effect on plant height was instead, higher for the savanna-

transition than forest species. We found this because the savanna-transition 

species invested much less in height growth, particularly when in competition with 

grass. The forest species (particularly the Terminalia species) on the other hand, 

generally grew tall with their height in competition being comparable with height 

of the savanna-transition seedlings without competition (Figure 2b and 2f). The 

difference in investment in height growth reflects different growth strategies for 

the forest than savanna species (Hoffmann & Franco 2003, Issifu et al. 2019, 

Boonman et al. 2019). Among forest species, stem basal diameter correlated very 

strongly to root mass regardless of grass treatment. Among savanna-transition 

seedlings in grass treatment, however, there was no correlation between stem 

basal diameter and root dry weight in competition (Table S1). Therefore, root mass 

was unrelated to plant size for savanna-transition species (i.e. they had 

disproportionately large roots), unlike the forest species. Overall, differences in 

species responses to competition appear to reflect strategies for faster growing 

and highly competitive pioneer species (Terminalia superba and T. ivorensis) and 
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the slow-growing, more resource-conserving and less competitive shade bearers 

(Khaya anthotheca and K. ivorensis) (Hawthorne et al. 1995). 

Also, we did not find evidence for direct competition effect on seedling 

survival for either TFT. This contrasts with some reports on direct competition 

effect on savanna tree seedling survival (e.g. Migley & bond 2001 van der Waal et 

al. 2009, Ward & Elser 2011), but consistent with other studies that also did not 

find this effect (Barbosa et al. 2014, Vadigi & Ward 2013). A plausible explanation 

for this would be that soil moisture was high in our plots as opposed to studies in 

semi-arid savannas (e.g. Migley & bond 2001, van der Waal et al. 2009, but see 

also Barbosa et al. 2014). Also, our plots were not limiting in nutrients, and the 

levels of nutrients found were also similar in both grass treatments (Table S2). 

Only light intensity differed between grass treatments, but the forest pioneers and 

savanna species which should be affected by lower light could survive the 

intensities recorded in grass plots, albeit with reduced growth. These findings imply 

that grass competition alone does not directly preclude the establishment of tree 

seedlings irrespective of functional type. This finding may (partly) explain why 

forest species are capable of establishing in some humid savannas under fire 

exclusion (Murphy & Bowman 2012 and references therein). 

Seedling trait responses to grass competition suggest an important role 

for light competition in humid savanna 

We observed adjustments in some biomass allocation and foraging traits in 

response to grass competition. Seedlings in grass plots (irrespective of TFT) had 

higher specific stem length (thinner stems), which is often associated with shade 

avoidance (Schmitt et al. 1999). Seedlings also had higher specific rooting depth, 

which is needed for foraging for deeper water (Tomlinson et al. 2012). However, 

seedlings in the grass treatment did not root more deeply compared to those in 
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the no-grass treatment. Thus, there was no evidence for the nearly elusive root 

niche separation for water uptake between roots of tree seedlings and grasses 

(Kulmatiski et al. 2010, Sankaran et al. 2004, Walter 1971). Irrespective of grass 

treatment, savanna-transition seedlings rooted more deeply than forest seedlings, 

reflecting the need for species from dryer environments to forage more for deeper 

water compared to those from more moist environments (Tilman 1988).  

We observed that patterns of larger investment in foraging traits were 

mainly by Terminalia superba and T. ivorensis. These species increased investment 

in aboveground traits in grass treatments to avoid shading, which is typical of 

forest pioneers (Veenendaal et al. 1996). They had higher rooting depth, perhaps, 

only because they were bigger (Table S1), which also explains why specific rooting 

depth was lower in the no grass treatment (as thicker roots tend to yield lower 

specific rooting depth values). Among Savanna-transition species, specific stem 

length was higher for open-woodland species (P. erinaceus and D. oliveri) than 

closed-woodland types (K. senegalensis and A. africana), which suggests 

differences in shade tolerances even within this TFT (Issifu et al. 2019). Only K. 

senegalensis increased specific rooting depth in competition, again suggesting 

thinner roots in grass compared to no-grass treatment. Savanna-transition species 

increased root mass fraction in grass plots, but forest species did not. When in 

competition with grass, forest pioneers instead, invested more in stems than 

leaves or roots in competition. Biomass allocation patterns of K. senegalensis was 

similar to the forest pioneers. These patterns again reveal strategies for being 

competitive for light and investment in growth structures versus investing in 

survival structures (Wright et al. 2010).  
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Wet season grass competition does not decrease the chances of post-fire 

survival for savanna-transition tree seedlings, but may be important for 

forest tree seedlings via influences on root allocation and starch storage  

Forest species were strongly affected by fire, illustrated by a 15-fold lower survival 

after fire compared to the savanna-transition species (Table 4). This finding is in 

line with other studies across forest-savanna boundaries (Gignoux et al. 2009; 

2016, Hoffmann et al. 2004; 2012, Issifu et al. 2019) and reflects sensitivity of 

forest seedlings to fire, particularly at the early life stages. We, however, 

acknowledge that the effect attributed here to fire may not represent a fire-alone 

effect due to the coupling of fire with the dry season.  

Among savanna-transition species, the probability of a seedling surviving 

fire was related to seedling height. Such a relationship among savanna juveniles 

is often attributed to the benefit of growing above the flame height (Higgins et al. 

2000, Hoffmann et al. 2012). However, all seedlings in our experiment were top-

killed, perhaps because they were still young (under one year) and also due to the 

high fire temperature they were subjected to in our study. Therefore, it may be 

safe to assume that other traits which correlated strongly with seedling height 

(e.g. root mass and hence starch concentration) could explain higher survival of 

taller individuals. This explanation is in line with other studies which also found 

higher survival to be dependent on root allocation and carbohydrate storage 

(Hoffmann et al. 2004, Issifu et al. 2019). This also explains the difference in 

survival between TFTs. The savanna-transition species survived while all seedlings 

of both forest pioneers died and the few forest seedlings that survived the fire 

were from the Khaya species (particularly K. anthotheca). This is interesting 

because it shows that being more conservative (as in savanna tree seedlings) 

ensures a higher survival, in line with the growth-survival hypothesis (Wright et 

al. 2010).  
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Root starch concentration was not affected by grass treatment, but root dry 

weight decreased in the grass-present plots. This suggests that allocation to root 

storage was fixed (and unrelated to root mass) (Figure 5a). However, total root 

reserves was lower in the grass treatment due to a decrease in root mass. 

Reduction in root mass (due to competition) was higher among the forest TFT than 

the savanna-transition TFT (Figure 5b) possibly linked to the latter foraging more 

aboveground to avoid being shaded by grass. Consequently forest (but not 

savanna-transition) seedlings that had been in competition had a tendency to 

survive much less (Table 4). A lower fire intensity (than used in this study) may 

reveal the potential adverse effect of wet season grass competition on post-fire 

survival of forest species, which was not found (statistically) in this study. This 

needs to be explored in further studies manipulating different fire intensities. All 

species (only savanna-transition) which survived the fire failed to regain their pre-

fire sizes. This adverse competition effect was mainly evident in root mass, and 

therefore in the total root starch reserves (Figure 6b). This could influence the 

sizes of regrowth in subsequent seasons, and may contribute to savanna-transition 

species persisting only as small plants in pyrogenic humid savannas (Freeman et 

al. 2017, Hoffmann et al. 2009).  

In conclusion, our results show that grass competition (in the wet season) 

suppresses tree seedling growth for both forest and savanna-transition tree 

species. Savanna-transition tree species survive after fire regardless of prior grass 

competition, while forest tree species (which are already more sensitive to fire) 

may be more susceptible to fire-induced mortality due to reduction in total starch 

reserves in roots. This may explain current patterns in juvenile tree densities of 

forest and savanna-transition tree species in humid savannas. Our findings also 
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provide insights into the possible conditions under which forest species can 

establish in humid savannas.  
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Appendices 

 
Table S2: Soil chemical properties in burnt and unburnt plots in a common garden in a 

humid Guinea savanna. P (av.) is Available P (mg/kg). 

  
Fire Grass pH N% C% P(av.) K Ca Mg Na 

Burnt Grass 7.08 
(0.1) 

0.08 
(0.02) 

0.84 
(0.18) 

3.21 
(0.1) 

0.24 
(0.08) 

2.13 
(0.4) 

1.27 
(0.1) 

0.01 
(0.001) 

No-
grass 

7.07 
(0.1) 

0.07 
(0.00) 

0.71 
(0.06) 

3.33 
(0.5) 

0.31 
(0.08) 

2.55 
(0.8) 

0.65 
(0.3) 

0.01 
(0.001) 

Unburnt No-
grass 

7.00 
(0.1) 

0.07 
(0.01) 

0.66 
(0.16) 

3.26 
(0.4) 

0.18 
(0.08) 

2.60 
(1.4) 

0.73 
(0.4) 

0.01 
(0.001) 

 

 

 

 

Figure S1. Light intensity reaching seedling crowns in relation to plant height in grass and 

no-grass plots in a common garden in the Guinea savanna of Ghana.  
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Figure S2. (a) Total plant mass at final harvest, (b) root mass fraction among seedlings 

of three savanna-transition tree species grown with and without grass in the Guinea 

savanna of Ghana. Letters compare species across grass treatments. Different letters are 

significant at p < 0.05 from Tukey pairwise comparisons following linear mixed-effects 

models. 
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Abstract 

Fire is often adduced to explain differential tree species recruitment in humid 

savannas. However, fire generally occurs during the dry season and hence the 

effects of the two on recruitment are entangled and their separate and interactive 

effects on seedling establishment success for different tree functional types (TFTs) 

are poorly understood. We studied seedling establishment success in a common 

garden experiment for seven tropical tree species selected from moist forest to 

savanna-transition in the humid savanna of Ghana. Transplantation of the 

seedlings was done in the wet season and followed in the dry season by factorial 

combinations of irrigation (vs no-irrigation) and fire (vs no-fire). Survival in the 

dry season was lower for burnt than unburnt seedlings of the forest species, 

whereas there was no such difference for the savanna-transition species despite 

all burnt seedlings having been top-killed. Irrigation increased survival of savanna-

transition but not forest tree seedlings and fire effect on survival was 5 times larger 

than no-irrigation. The largest adverse effect was observed for the combined fire 

and no-dry season irrigation treatment which was 4 times as large on survival and 

twice as large on growth for the forest than the savanna-transition tree functional 

type. Seedling size at onset of the dry season related significantly to starch in roots 

at final harvest for savanna transition and not for forest seedlings. Savanna-

transition tree seedlings survived at much smaller sizes, possibly linked to this 

early investment in stored reserves than forest tree seedlings. Our results 

demonstrate that fire is a stronger bottleneck than lack of moisture in the dry 

season for forest tree seedlings. 

Keywords: Savanna-forest transitions, forest and savanna tree species, fire 

effects, tropical trees, tree functional types, seedling growth and survival, 

biomass allocation, root starch   
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Introduction 

Predicting the movement of the forest-savanna ecotone requires insights into 

changes in environmental factors that influence tree recruitment as well as into 

the responses of different tree functional types (TFTs) to these changes. Instances 

of forest advance into humid savannas observed across many forest-savanna 

boundaries have often been attributed to changes in fire regimes (Mitchard & 

Flintrop 2013 and references therein) but not much attention given to changes in 

soil moisture regimes. However, as fire and lack of soil moisture during the dry 

season co-occur their separate effects on seedling establishment success in humid 

savannas are less clear. 

The dry season constitutes an important constraint to forest tree seedling 

establishment in savannas (Gignoux et al. 2009) and soil moisture could vary 

substantially in the dry season even between adjacent forest and savannas via 

influences of microclimate and soil properties including texture and depth 

(Ametsitsi et al. in press, Issifu et al. 2019). Despite great variability in drought 

tolerance among forest tree species, they are generally less drought tolerant (and 

also less fire-tolerant) than savanna tree species as a result of trait variation (e.g. 

biomass allocation and carbohydrate storage in roots) between these TFTs 

(Hoffmann et al. 2004, Issifu et al. 2019) which perhaps explains the generally 

lower abundance of juveniles of forest (vs savanna) tree species in humid savannas 

(Armani et al. 2019, Azihou et al. 2013, Gignoux et al. 2009). 

Fire occurs in the dry season (irrespective of distinctions between early 

versus late season fires) when microclimate and fuel characteristics are suitable to 

sustain fires of various intensities (Hoffmann et al. 2012, Prior et al. 2010, Sow et 

al. 2013, Veenendaal et al. 2018). Consequently in pyrogenic environments, fire 

effects and those of the dry season are naturally entangled in field experiments on 
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seedling recruitment (e.g. Cardoso et al. 2016, Gignoux et al. 2009; 2016, Issifu 

et al. 2019, Lawes et al. 2011). Decoupling influences of lack of soil moisture 

during the dry season from fire on tree seedling establishment success (defined 

here as survival and growth past the first wet and dry seasons) is relevant because 

yearly variations in soil moisture regimes (e.g. wetter versus drier wet season or 

longer versus shorter dry seasons) could make it difficult to determine which 

factor(s) are responsible for tree seedling mortality in the generally regarded 

pyrogenic humid savannas. Such insights are needed for understanding the forest-

savanna ecotone dynamics under different global change scenarios. 

Here, we asked which of the factors constrain survival and growth of forest 

and savanna-transition tree seedlings; fire, dry season or their interaction. To 

address this question, we tested two hypotheses: (1) Both fire and dry season 

(acting separately) cause greater declines in establishment success among forest 

than savanna-transition tree seedlings, linked to differences in root biomass 

allocation and carbohydrate reserves. (2) Fire has greater influence than dry 

season on seedling establishment success regardless of TFT, but the interaction of 

fire and dry season is the most important constraint.  

 

Materials and methods 

Study site 

The study was conducted at the experimental site of the University for 

Development Studies, Nyankpala Campus (9o 25'41" N and 0o 5' W) in the Guinea 

savanna ecological zone of Ghana. The area has a unimodal rainfall with April to 

October wet season and a November to March dry season. Average annual 

precipitation is 1100 mm and temperature is 28°C. The soil in the experimental 

garden is sandy loam in texture with medium to coarse stones. Soils in the study 
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site belong to the Nyankpala Series, described as shallow and taxonomically 

classified as Plinthustalf, sandy over-clayey skeletal phase (Serno & van de Weg 

1985) or Plinthic Lixisols (FAO 2001).  

Study approach and species 

We conducted a common garden experiment using seven tree species selected 

from a wide range of habitat affinity from moist semi-deciduous forest to the 

savanna-transition vegetation (Table 1). The forest tree species were collected 

from moist  semi-deciduous forest near Abofour (7°7'60" N and 1°45'0" W) in the 

Ashanti region of Ghana, while the savanna-transition tree species were collected 

from Kogyae Strict Nature Reserve (7°14′N and 1°05′W) also in the Ashanti 

region. Khaya senegalensis and Afzelia africana are both common to savanna and 

transition environments (Armani et al. 2018). Therefore we put both species into 

the savanna-transition TFT and the forest species into the forest TFT. Forest 

species in this study occur in variously categorised, but typical forest environments 

with Albizia zygia being the “driest” in the group while Khaya ivorensis is the 

“wettest” based on lower bounds of their tolerance ranges for dry period and 

rainfall (Hawthorne 1995). Seedlings were raised from seeds and transplanted into 

the experiment after 5-8 weeks.  

Experimental treatments 

Site preparation was done in April 2018 with ploughing of the experimental garden 

to homogenise soil. In June 2018, we established 12 plots (blocks), each of about 

37 m2 and planted 24 seedlings per plot, four per species assigned to random 

seedling positions in rows. Spacing between and within rows of seedlings was 1 m 

× 0.7 m. In October 2018 (i.e. end of the wet season), we randomly assigned 
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combinations of irrigation (irrigation vs no-irrigation) and fire (burn vs no-burn) 

treatments to plots. 

Table 1. Species and tree functional types (TFTs) used in this study and a description of 

their environmental tolerances. Species origin; MSD = moist semi-deciduous, DSD = dry 

semi-deciduous, T = transitional species, S-T = savanna-transitional. Biophysical limits are 

based on known species distribution, not seed collection for this study. Sources of species 

information: Hawthorne 2005; Hall & Swaine 1976; De Bie et al. 1998. 

Species Family TFT Origin Rainfall range 

Khaya senegalensis Meliaceae ST ST 650 mm – 1800 mm 

Afzelia Africana Fabaceae TT ST  > 900 mm 

Albizia zygia Fabaceae F DSD-MSD 2700 mm av. (wide range) 

Terminalia ivorensis Combretacea F DSD-MSD 760-1500 mm  

Khaya anthotheca Meliaceae F MSD 1200-1800 mm  

Terminalia superba Combretacea F MSD 1000–3500 mm 

Khaya ivorensis Meliaceae F MSD 1600–2500 mm 

 

There were three plots assigned, in a randomised block design, to each of four 

treatment combinations viz. no-irrigation + fire, no-irrigation – fire, irrigation + 

fire and irrigation – fire, respectively representing: a dry season with fire (the 

natural situation in fire-frequent savannas), dry season without fire, fire with 

extended wet season, and extended wet season without fire. There were 12 

seedlings per species (3 plots × 4 seedlings) in each treatment combination except 

A. zygia and T. ivorensis due to lack of seedlings. Final replications are shown in 

Table 3. Irrigation in the dry season involved giving, by means of hand watering, 

33.6 L of water per plot per day from November 2018 to mid-March 2019, 

equivalent to 3860 mm of rainfall over the period. This amount of rainfall (although 

not corrected for the evaporation of the dry season) was slightly higher than the 

annual rainfall for the wettest forest species (Table 1). The fire treatment involved 

burning seedlings with pre-prepared grass fuel. 
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Fuel preparation and fire application 

Burning took place four months after transplantation and involved burning 

seedlings with dried grass, composed mainly of Pennisetum pedicellatum and 

Andropogon pseudapricus, which are the dominant grass species in the study 

location. We made grass fuel beds in each of the six plots to burn by placing 0.93 

kg of dry grass in an area of 0.93 m2 on each row of seedlings, based on the fuel 

mass of ~1 kg m-2 reported for humid savannas of West Africa (Hennenberg et al. 

2006, Issifu et al. 2019). Average fuel bed height was 0.20 m yielding a fuel bulk 

density of 4.7 kg m-3. 

Moisture content of grass (fuel) was determined on a dry weight basis from 

12 samples as (fresh weight – dry weight / dry weight) × 100). Burning was done 

on the afternoon of November 19, with all rows within each plot torched 

simultaneously. Fire temperature was recorded for each burn (i.e. once 

measurement per plot) using an HI 935005 K-thermocouple thermometer (Hanna 

Instruments, Singapore). Probe cable was buried with the full length of the probe 

sticking out of the ground close to seedling base to allow for the most accurate 

determination of fire temperature (Dayamba et al. 2010).  

Plant and biomass measurements 

Prior to transplanting, start plant mass was determined for five random seedlings 

per species after oven-drying. We measured seedling height and stem basal 

diameter just before implementing the fire treatment in November, following which 

we monitored post-burn (re)growth until March 2019 when we did final census of 

live or dead seedlings in all plots and then excavated all live ones. Excavation was 

done as practically as possible to recover as much root biomass as possible. We 

considered a seedling dead only if in addition to top-kill also the main root system 

near the surface had dried up. This definition was suitable because whereas fire 
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usually results in top-kill, a live belowground part often results in regrowth among 

resprouters. We measured final plant height and estimated total plant dry weight 

for all plants and regrowth (new shoot) dry weight for burnt plants after oven-

drying. We then calculated gains in plant mass as difference in mass between 

transplantation (species average) and final harvest (for each individual).  

Environmental factors 

Weather data for the experimental period (and few months before) were obtained 

from the Nyankpala Weather Station of the Savanna Agricultural Research 

Institute of Ghana-SARI (9-25-41" N and 0-58' 42"W), situated within 1 km of our 

experimental garden.  

We measured soil moisture content (vmc %) at the end of the wet season 

(i.e. October 2018) using a theta probe (Spectrum Technologies Inc.) at five 

locations (plot centre and corners) within each of the 12 plots. This was to 

determine soil moisture content of our plots at onset of the dry season and to test 

if soil moisture content differed among plots assigned to receive either dry season 

(no-irrigation) or irrigation treatment. Also, at final harvest in March 2019, we 

measured soil moisture content gravimetrically at three depths (5-10 cm, 25-30 

cm and 45-50 cm) and at three seedling positions, selected diagonally across plot 

(middle and two plot corners) for all 12 plots. We also sampled soil at two depths 

(10 cm and 20 cm) in three holes per plot for six plots (three each for burnt and 

unburnt) for analysis for chemical properties (Table S1). We estimated soil matric 

potential at onset and end of the dry season based on a drying cycle water release 

curve for soils in the experimental garden (using the filter paper technique, data 

not shown). 
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Figure 1. Mean temperature and relative humidity (on the secondary axis) and total 

rainfall and evaporation (on the primary axis) for the experimental period in Nyankpala in 

the Guinea savanna, Ghana. Red arrow indicate moment of fire event, black arrows indicate 

start of the experiment and final harvest. Data are from Nyankpala weather station of 

SARI, within 1 km of our experimental site. Data on total evaporation between March and 

August were not available.  

 

Statistical analysis  

We analysed all data in R (R Core Team 2017) and used ggplot2 package (Wickham 

2009) for all figures (except figure 1). We tested soil moisture content (SMC) at 

the onset of the dry season for differences between plots to receive irrigation or 

no irrigation in linear mixed effects models (LMM) including plot as random factor. 

For this we used the lmer function in lme4 package (Bates et al. 2015) and 

generated ANOVA tables with statistical significance based on Satterthwaite's 

method using the lmerTest package (Kuznetova et al. 2014). SMC at final harvest 

was analysed for fixed effects of irrigation × soil depth also in an LMM including 

random factors of soil pit within plot. Tukey pairwise comparisons for significant 

irrigation × soil depth was done using the emmeans package (Lenth et al. 2019).    
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We analysed seedling survival with binomial error (logit link function) in 

generalised linear mixed models (GLMM) using the glmer function in lme4 package. 

First, we tested whether survival differed between TFTs in a model that included 

fixed effects of TFT × irrigation × fire and random plot effect. As we also expected 

variation within TFT, we performed separate analyses for each TFT for fixed effects 

of species × irrigation × fire and random plot effect. Tukey pairwise contrasts were 

performed for significant species or interaction terms. 

For seedling growth, we took a subset of the data (due to high post-fire mortality 

in some species) to include only species with sufficient replicates in the combined 

fire and dry season treatment to allow for testing interactions. We then performed 

a linear mixed effects model (LMM) separately for plant mass gain and seedling 

height at final harvest with species × fire × irrigation as fixed effects and including 

random plot effect.  

For both seedling survival and growth performance, we estimated effect size 

(Hedges’ g) for each treatment using the irrigation without fire treatment as the 

control treatment to estimate both magnitude (value of g) and direction (whether 

g was positive or negative) of effect for the other treatments.   

We compared plant dry weight between irrigated and non-irrigated plants and 

assessed biomass allocation traits in separate LMMs. Plant mass was analysed both 

at the TFT and species levels but allocation traits were analysed only at the TFT 

level. Plant mass, SMF and RMF were LN-transformed to stabilise residual 

variances. We tested root starch concentration for TFT × irrigation (for unburnt 

seedlings) and TFT × fire (for irrigated seedlings) in the separate analyses due to 

insufficient replicates in some treatments at final harvest. We compared total root 

starch content (total reserves in roots) between TFTs, we performed an LMM 

including root dry weight as covariate and plot as random effect.    
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We assessed relationships (within each TFT) between pre-dry season stem 

diameter and dry season survival in separate GLMMs for fixed effect of fire × dry 

season, plot as random factor and stem basal diameter as covariate. Prior to this 

we had assessed correlations of stem diameter to other pre-dry season plant size 

variables (i.e. height and pre-transplantation plant mass). We also assessed 

relationship of pre-dry season basal stem diameter to final root starch content to 

explain influences of pre-dry season size on dry season survival.  

Results 

Environmental factors 

Rainfall of the general study location peaked in August and ended in October 

(Figure 1) with a total of 959.4 mm received within the experimental period (June 

2018 to March 2019). Temperature, relative humidity and wind speed on the 

moment of burning were 30.7 °C, 70% and 0.92 kph respectively. Mean moisture 

content of grass used in the experimental burn was 3.0% and mean fire 

temperature recorded was 519 °C. Soil moisture content in October (onset of the 

dry season) averaged 15.3% and did not differ significantly (F 1, 10 = 1.70, p = 

0.22) between plots to receive irrigation (at 15.7%) or no irrigation (at 14.9%). 

This equates to a matric potential of approximately -0.004 MPa to -0.006 MPa (i.e. 

no water stress for seedlings at this point). Overall, soil moisture content at the 

end of the experiment was lower in non-irrigated than irrigated plots, but there 

was also a significant irrigation × soil depth interaction effect (F 2, 68 = 20.3, p < 

0.001). Soil moisture content was progressively (and significantly) higher with 

depth such that the difference between irrigated and non-irrigated plots was 

largest (and significant only) in the topmost (5-10 cm) layer (Figure 2), with matric 

potentials of -0.3 MPa for irrigated and -433 MPa for non-irrigated seedlings. 

Irrigated and non-irrigated seedlings in the 25 cm-30 cm layer were under similar 
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moisture stress (-0.20 MPa and -0.27 MPa), while at 45-50 cm soil layer matric 

potentials were -0.11 MPa and -0.42 MPa respectively.  

Soils were slightly acidic to neutral and except for exchangeable Mg which 

was slightly higher in some burnt plots, soils in the experimental garden had high 

levels of available P and exchangeable bases which were similar in plots. There 

was also no effect of burning on many of the soil chemical parameters we 

measured (Table S1). 

Seedling survival responses to fire and dry season  

Survival proportion (across treatments) was 0.52 ± 0.63 for the forest TFT which 

was significantly lower than the savanna-transition TFT at 0.87 ± 0.79 (Table 2), 

and the TFT × fire interaction was significant (Table 3). Pairwise comparisons 

revealed that survival was lower for burnt (0.26 ± 0.76) than unburnt (0.79 ± 

0.75) seedlings of forest whereas no difference existed between burnt (at 0.85 ± 

0.75) and unburnt (at 0.90 ± 0.83) savanna-transition seedlings. Irrigation effect 

was not significant (Table 3). 

Within the forest TFT, we observed the largest difference among species 

(across treatments) between A. zygia (at 0.75 ± 0.31) and T. superba (at 0.42 ± 

0.36) (Table 2) but species effect was not significant (Table 3). Also, there was no 

effect of species × fire interaction and there was no irrigation effect within this TFT 

(Table 3). Within the savanna-transition TFT, survival (across treatments) was 

0.96 ± 0.04 for K. senegalensis and 0.79 ± 0.14 for A. africana (Table 2) but 

species effect was not significant (Table 3). Across both species, survival was 

higher among irrigated (0.96 ± 0.91) than non-irrigated (0.79 ± 0.74) seedlings 

and there was no effect of fire (Table 3). 

Effect size estimates (Hedge’s g) for the experimental treatments (Table 2) 

showed that across all species, the no-irrigation with fire treatment had the largest 
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(adverse) effect on seedling survival. Compared between TFTs, this effect was ~ 

4 times larger for the forest (mean d = -3.70) than the savanna-transition (mean 

d = -0.99) tree species. Within the savanna-transition TFT, the effect was ~ 1.5 

times larger for A. africana than K. senegalensis. Within the forest TFT, the effect 

was largest for T. superba as all seedlings died in this treatment. Differences in 

effect size of the combined fire and no-irrigation treatment among forest species 

for which g could be estimated were small (Table 2) suggesting similar responses 

across species. Also across all forest species, effect size on survival for fire with 

irrigation treatment (i.e. fire alone) was 5 times larger than no-irrigation without 

fire treatment (i.e. irrigation alone). Among savanna-transition tree seedlings on 

the other hand, fire had no effect (all burnt seedlings resprouted) whereas effect 

of irrigation was medium to large (-0.83 on average) for both species A. africana 

and K. senegalensis.  

Seedling (re)growth performance as influenced by fire and dry season 

Growth performance data analysed for the interactive effects of fire and irrigation 

included three species viz. K. anthotheca, A. africana and K. senegalensis. We 

found significant effects of irrigation × species (F 2, 86 = 7.54, p < 0.001) and fire 

× species (F 2, 86 = 8.78, p < 0.001) interactions on plant mass gain at final harvest 

(Figure 3b). Pairwise comparisons revealed lower mass gain for burnt than unburnt 

seedlings irrespective of irrigation for K. anthotheca and K. senegalensis but not 

A. africana. Also regardless of fire treatment, mass gain was higher for irrigated 

than non-irrigated seedlings of K. anthotheca and K. senegalensis, but not A. 

africana. Unburnt seedlings were taller (F 1, 10 = 91.8, p < 0.001) than burnt 

seedlings. Also, irrigated seedlings were taller (F 1, 10 = 7.00, p = 0.027) than non-

irrigated seedlings irrespective of species. There were no significant interaction 

effects on plant height (Figure 3a).   
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Table 2. Statistics on seedling survival (from GLMM) and plant mass (from LMM) at final 

harvest. For each parameter, comparisons are done between tree functional types (TFT) 

and then among species for each TFT separately. GLMM on survival included fixed effects 

of fire, irrigation and TFT (or species). LMM on plant mass is for unburnt seedlings, testing 

fixed effects of irrigation and TFT (or species). For savanna-transition TFT, the three way 

interaction term was removed. Effect sizes associated with survival and plant mass are 

presented in Table 2 and Table 4 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Source of variation Survival Plant mass 
 F df p-value F Df p-value 
TFT 21.4  < 0.001 3.07 1, 104 0.082 
Fire 34.3  < 0.001    
Irrigation 1.75  0.186 3.24 1, 4 0.152 
TFT × Fire 7.76  0.003    
TFT × irrigation 1.72  0.191 5.90 1, 104 0.016 
Fire × irrigation 0.09  0.759    
TFT × Fire × irrigation 0.24  0.624    

       
Forest TFT       
Species 0.31  0.875 11.2 3, 57 < 0.001 
Fire 22.8  < 0.001    
Irrigation 0.20  0.653 7.94 1, 3 0.064 
Species × Fire 0.98  0.418    
Species × irrigation 1.04  0.388 2.0 3, 57 0.126 
Fire × irrigation 1.49  0.222    
Species × Fire × irrigation 0.37  0.828    
       
S-T TFT       
Species 2.37  0.125 26.2 1, 36 < 0.001 
Fire 0.43  0.513    
Irrigation 4.05  0.045 0.42 1, 4 0.553 
Species × Fire 0.11  0.736    
Fire × irrigation 0.20  0.658 1.30 1, 36 0.262 
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Table 3. Survival proportions and effect size estimates (Hedge’s g) for the various 

experimental treatment combinations for seven tree species in a common garden 

experiment. Effect size was estimated for each treatment combination relative to irrigation 

without fire which represented the control treatment (with best possible outcome for 

seedling survival). Effect size could not be calculated for A. zygia and T. ivorensis due to 

too few survivors are the end. 

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Treatment Survival prop N Hedge’s g 
K senegalensis Dry season + fire  0.92  12 -0.83 

Dry season - fire 0.92  12 -0.83 
Fire + Irrigation 1.00  12 -0.00 
Irrigation - fire 1.00  12  

A. africana Dry season + fire  0.58  12 -1.15 
Dry season - fire 0.75 12 -0.82 
Fire + Irrigation 0.92  12 -0.00 
Irrigation - fire 0.92  12  

A. zygia Dry season + fire  0.25  4 - 
Dry season - fire 1.00  4 - 
Fire + Irrigation 0.75  8 - 
Irrigation - fire 1.00  8  

K. anthotheca Dry season + fire  0.42  12 -3.46 
Dry season - fire 0.67  12 -1.10 
Fire + Irrigation 0.25  12 -3.27 
Irrigation - fire 0.92  12  

K. ivorensis Dry season + fire  0.25  12 -3.27 
Dry season - fire 0.92  12 -0.00 
Fire + Irrigation 0.14  12 -3.81 
Irrigation - fire 0.92  12  

T. ivorensis Dry season + fire  0.12  7 -4.33 
Dry season – fire 0.62  8 -0.85 
Fire + Irrigation 0.50 4 -2.00 
Irrigation - fire 0.75  4  

T. superba  Dry season + fire  0.00  12 - 
Dry season – fire 0.58  12 -0.22 
Fire + Irrigation 0.17  12 -1.73 
Irrigation - fire 0.92  12  
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Figure 3. (a) Plant height and (b) mass gain at final harvest (after dry season/fire) for 

K. anthotheca (forest species) and Afzelia africana and K. senegalensis (both savanna-

transition species) in fire and irrigation treatment combinations. Different letters indicate 

significant differences among irrigation and fire treatments (Tukey pairwise comparisons 

at 0.05 level of significance). 

 
Seedling size, morphology and root starch reserves at final harvest  

There was a significant TFT × irrigation interaction effect on plant mass at final 

harvest (Table 3, Figure 4d). Pairwise comparisons revealed that among non-

irrigated seedlings, savanna-transition TFT was bigger (at 18.5 ± 13.1 g) than 

forest TFT (at 13.2 ± 13.6 g) but TFTs did not differ among irrigated seedlings 

(30.0 ± 25.5 g and 23.2 ± 14.7 g for savanna-transition and forest TFT 

respectively). Within the savanna-transition TFT, K. senegalensis seedlings were 

bigger than A. africana and there was no significant irrigation effect (Table 3, 

Figure 4d). Within the forest TFT, plant mass differed among species. Terminalia 

superba was the biggest while all other species attained similar mass irrespective 

of irrigation (Table 3, Figure 4d).   

An assessment of biomass allocation patterns among unburnt seedlings 

revealed that stem mass fraction differed between TFTs, which was higher for the 

forest than savanna-transition TFT. Also, stem mass fraction was higher for non-

d 

a 

c 
b 

c
b 

d 

a b 

 

Chapter 4

108



106 
 

irrigated than irrigated seedlings (Table 5, Figure 4a). We found significant effects 

of TFT × irrigation on both leaf mass fraction (Table 5, Figure 4b) and root mass 

fraction (Table 5, Figure 4c). Savanna-transition species maintained similar leaf 

mass fraction under both non-irrigated (0.27 ± 0.11) and irrigated (0.25 ± 0.11) 

treatments across both species, but leaf mass fraction of forest species was lower 

for non-irrigated (0.20 ± 0.14 vs 0.33 ± 0.09 for irrigated seedlings). As a result, 

leaf mass fraction was higher for forest seedlings in irrigation, but higher for 

savanna-transition seedlings in the no-irrigation treatment (Figure 4b). Root mass 

fraction of the savanna-transition TFT averaged 0.58 ± 0.16 g g-1 for irrigated 

seedlings, significantly higher than forest (at 0.41 ± 0.18 g g-1), but there was no 

TFT difference in the no-irrigation treatment (Figure 4c). Within the forest TFT, 

Stem mass fraction was, irrespective of irrigation, higher for T. superba and lowest 

for A. zygia. Leaf mass fraction was highest for K. ivorensis and lowest for T. 

superba. Also, irrespective of species, leaf mass fraction was lower among non-

irrigated than irrigated seedlings. Root mass fraction was highest for A. zygia 

(Figure 4, Table 5). Within the savanna-transition TFT, there was a significant 

effect of species × irrigation on stem mass fraction; which was higher for K. 

senegalensis than A. africana for irrigated but not for non-irrigated seedlings. Both 

leaf mass fraction and root mass fraction were also higher for K. senegalensis than 

A. africana irrespective of irrigation (Figure 4, Table 5). 

Root starch concentration was lower for forest (10.0 ± 5.9%) than savanna-

transition (18.7 ± 8.1%) TFTs but did not differ between non-irrigated (at 12.8 ± 

9.6%) and irrigated seedlings (at 13.7 ± 6.4%) (Table 5). Tested separately for 

each TFT, root starch concentration did not differ among species or irrigation 

treatments (Table 5). 
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Figure 4. Biomass allocation to stem (a), leaf (b), roots (c) and total plant dry weight (d) 

at final harvest among irrigated and non-irrigated seedlings of six tropical tree species in 

a common garden experiment in the humid Guinea savanna of Ghana. Khaya ivorensis, 

Khaya anthotheca, Albizia zygia, Terminalia superba are forest species while Afzelia 

africana and Khaya senegalensis are savanna-transition species. Different letters indicate 

significant differences among species across irrigation treatments (Tukey pairwise 

comparisons at 0.05 level of significance). 

In the separate TFT × fire analysis, root starch was lower (F 1, 43 = 43.2, p 

< 0.001) for burnt (6.04 ± 4.0%) than unburnt (14.6 ± 6.5%) seedlings and there 

was no interaction effect. Within the forest TFT, root starch concentration differed 

(F 1, 19 = 12.3, p < 0.001) among species, highest for A. zygia (12.0 ± 6.0%), 

intermediate for K. anthotheca (9.2 ± 5.5%) and lowest for T. superba (6.8 ± 

3.5%). Root starch concentration was also lower (F 1, 19 = 53.1, p < 0.001) for 

burnt (4.8 ± 3.1%) than unburnt (12.0 ± 4.6 %) forest seedlings irrespective of 

species and there was no species × fire interaction effect. Within the savanna-

transition TFT, root starch was also lower (F 1, 18 = 24.5, p < 0.001) for burnt than 

unburn seedlings but with no species differences for either burnt (at 8.55 ± 5.3% 
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for K. senegalensis vs 5.33 ± 2.8%  for A. africana) or unburnt seedlings (at 18.0 

± 7.5% for K. senegalensis vs 19.6 ± 7.1% for A. africana). 

Table 4. Effect sizes (Hedges’ g) for the various treatment combinations for gains in plant 

mass and plant height among seven tropical tree species in a common garden experiment 

in the humid Guinea savanna of Ghana. Effect size was estimated for each treatment 

combination relative to irrigation without fire which represented the control treatment (with 

best possible outcome for seedling growth). 

 

 

 

 

 

 

 

 

 

Root starch content (total reserves in roots) increased (β = 0.10, t = 5.33, 

p < 0.001) with root mass, but there was also an effect (F 1, 54 = 7.41, p = 0.008) 

of TFT × irrigation interaction (Figure 5b). The difference between TFTs was 

significant only among non-irrigated seedlings. Among burnt seedlings, we found 

also that root starch content increased (β = 0.10, t = 6.07, p < 0.001) with root 

mass and was lower (F 1, 41 = 23.3, p < 0.001) for burnt than unburnt seedlings, 

but the difference between TFTs was not significant (F 1, 41 = 3.47, p = 0.069) 

(Figure 5a) and there was no TFT × fire interaction effect.    

 

Species Treatment Plant mass Plant height 
K senegalensis Dry season + fire  -2.14 -1.86 

Dry season  - fire -0.90 -0.49 
Fire + irrigation -1.33 -1.39 

A. africana Dry season  + fire  -0.62 -1.42 
Dry season  - fire -0.35  0.17 
Fire +  irrigation -0.59 -1.14 

A. zygia Dry season  + fire  -1.82 -4.72 
Dry season  - fire  0.38  0.86 
Fire +  irrigation -1.82 -4.81 

K. anthotheca Dry season  + fire  -1.88 -0.42 
Dry season  - fire -1.05 -0.39 
Fire +  irrigation -1.64 -2.95 

K. ivorensis Dry season  + fire  -2.54 -4.41 
Ds - fire -1.98 -1.18 
Fire +  irrigation -1.79 -3.13 

T. ivorensis Dry season  + fire  -3.42 -5.16 
Ds - fire -2.82 -4.36 
Fire +  irrigation -2.35 -4.70 

T. superba  Dry season  + fire  -2.19 -5.14 
Dry season  - fire -0.82 -0.84 
Fire +  irrigation -2.15 -5.83 
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Figure 5. Total root starch reserves for (a) burnt seedlings and (b) unburnt seedlings of 

forest and savanna-transition tree species in a common garden experiment. Root starch 

was tested for effect of burning (a) and effect of irrigation (b) in separate analyses which 

included only species with sufficient replicates at final harvest. 

Relationship of pre-dry season seedling size to dry season survival  

Stem basal diameter at onset of the dry season was related to plant height, 

although the relationship was slightly stronger for forest (β = 2.8, t = 14.4, p < 

0.001) than savanna-transition (β = 2.2, t = 8.2, p < 0.001) TFTs (Figure S1a). 

Neither stem diameter nor height was related significantly to plant mass at 
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transplantation; neither for forest (β = -0.11, t = -0.08, p = 0.93) nor savanna-

transition (β = -0.69, t = -0.55, p = 0.58) (Figure S1b). Total root starch reserves 

(at final harvest) was related (β = 0.25, t = 3.20, p = 0.004) to pre-burn basal 

stem diameter for savanna-transition but not for the forest seedlings (Figure 7). 

We found that survival probability for savanna-transition seedlings (across 

treatments) increased (β = 0.84, z = 2.84, p = 0.004) with stem basal diameter, 

with survival guaranteed (on average) at ~ 10 mm (Figure 6b). By contrast, the 

overall relationship between stem basal diameter and survival was not significant 

(β = 0.02, z = 0.28, p = 0.78) for the forest seedlings. For this TFT, survival was 

lowest in the fire + irrigation combination and highest in the no-fire + irrigation 

treatment regardless of stem diameter (Figure 6a).  

 

 

 

 

 

 

 

 

 
 

Figure 6. Predicted survival probability as a function of pre-burn stem basal diameter 

(proxy for seedling size) under various experimental treatments for (a) forest and (b) 

savanna-transition tree functional types in a common garden experiment in the humid 

Guinea savanna of Ghana.  
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Figure 7. Relationship of pre-fire stem basal diameter to root starch content of unburnt 

seedlings at final harvest for forest and savanna-transition tree species. Root starch data 

include both irrigated and non-irrigated seedlings (not statistically different and so not 

distinguished here).   

 

Discussion 

In this study, we decoupled dry season and fire effects on survival and growth of 

forest and savanna-transition tree seedlings. Overall, our findings show that fire, 

dry season and their interactive effects influence tropical tree seedling 

establishment success but their relative importance differ for forest and savanna-

transition tree functional types.  

We expected poorer seedling survival for the forest than the savanna-

transition species under the 5-month long dry season. We found that survival did 

not differ between forest and savanna-transition species irrespective of irrigation 

treatment in the absence of fire (79% vs 90% for forest and savanna-transition 

respectively). Also fast growing forest species such as Terminalia superba and T. 

ivorensis avoided drought stress by shedding leaves. 
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Our results were not consistent with expectation based on known differences in 

drought tolerances between forest and savanna species (Gignoux et al. 2009; 

Hoffmann et al. 2004, Hoffmann and Franco, 2003). We attribute this finding to 

the large sizes attained by forest seedlings by the onset of the dry season as some 

seedlings reached stem basal diameter of 16 mm in the four-month growth period. 

Rainfall was high in this humid savanna site (Figure 1) such that at the end of the 

dry season soil moisture content did not differ between irrigation treatments 

beyond 10 cm (Figure 2). Our irrigation treatment did little to alleviate moisture 

stress in the dry season, but it did have an effect on soil matric potentials, which 

decreased with depth (regardless of moisture treatment). Therefore, seedlings 

which had roots in the 25 cm-30 cm soil layer and beyond (which was nearly all 

species, Figure S2) were not in drought stress. Additional reasons may include the 

absence of competing grasses which is linked to growth suppression (Barbosa et 

al. 2014, Chapter 3 of this thesis) and also, plots were not nutrient limited (Table 

S1). Therefore, seedlings were big enough to withstand the 5 month long dry 

season due to the specific experimental conditions in this study. Large mortality 

attributed to dry season effects have been reported for forest seedlings in other 

studies (Cardoso et al. 2016, Gignoux et al. 2009, Prior et al. 2007).  

Consistent with prediction, fire decreased survival of forest seedlings but 

not savanna-transition seedlings (Gignoux et al. 2009, 2016, Hoffmann et al. 

2004, Chapter 3 of this thesis). Starch concentration in roots, often linked to 

resprout capacity, is reportedly higher for savanna than forest species (Hoffmann 

et al. 2004, Issifu et al. 2019, Wigely et al. 2019). We found that seedling size at 

the onset of the dry season did not predict root starch at final harvest for forest 

species unlike the savanna-transition species (Figure 7). However, plants with 

bigger roots at final harvest also had more starch stored in roots even for forest 
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species (Figure 5). Thus, as an important addition, our finding suggests that 

savanna-transition species invest in starch storage much earlier and thus have 

more starch reserves than forest species. Also, savanna-transition seedlings had 

more starch reserves at smaller sizes than forest seedlings. Therefore, a basal 

diameter of 10 mm guaranteed survival (across treatments) for savanna-transition 

seedlings whereas forest seedlings did not attain complete survival (not even for 

the largest individuals) at sizes attained in this study (Figure 6). This may explain 

why survival of forest species does not necessarily increase with age (Gignoux et 

al. 2009) and why savanna seedlings require several times less biomass, than 

required by forest seedlings, to survive fire (see also Gignoux et al. 2016).  

Due to the lack of capacity to regrow from belowground buds, forest species 

need to avoid aboveground tissue loss (top-kill). However, compared to savanna 

species, forest species reach the “threshold of fire resistance”, which is the size 

sufficient to avoid top-kill (Hoffmann et al. 2012b), at much bigger sizes. 

Therefore, while the forest species in this study were big enough to survive the 

dry season (in the absence of fire), they were largely killed by fire (all seedlings 

including those of savanna-transition were top-killed). This finding suggests that 

forest species can survive humid savanna dry season at sizes smaller than required 

to survive fire. Fire is thus a stronger constraint to forest seedlings than lack of 

moisture during the dry season where soil conditions are conducive to their 

establishment. This may justify why the high mortality of forest seedlings observed 

in dry season fire experiments is often regarded as a fire effect (Cardoso et al. 

2016; Gignoux et al. 2009; 2016, Issifu et al. 2019, Lawes et al. 2011). We 

observed the largest effect on seedling performance in the combination treatment 

of dry season with fire. This effect which represents the natural occurrence of fire 

and dry season drought, was stronger than the separate effects of fire and 
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irrigation. This may perhaps reflect the influence of soil moisture on survival and 

regrowth of resprouting plants (Pausas et al. 2016, Pratt et al. 2014) The 

interactive effect was also stronger for forest than savanna-transition species with 

the implication being that encroachment of forest species in savannas that are 

moist enough is only possible under a diminished fire regime (Mitchard & Flintrop 

2013, Aubreville 1949, Louppe 1995, Veenendaal et al. 2018). Otherwise, 

savanna-transition (rather than forest species) may initiate forest encroachment 

in savannas (Hennenberg et al. 2005). 

Seedling growth in the dry season was limited, possibly due to unfavourable 

microclimate (Figure 1) as irrigation in a common garden could only increase soil 

moisture without ameliorating microclimate. However, higher resprouting among 

irrigated burnt seedlings yielded an overall significant effect of irrigation on plant 

mass and height (Figure 3). Also, higher mass gain among unburnt irrigated than 

non-irrigated seedlings suggest that seedlings still grew regardless of any 

constraints imposed by microclimate. Differences in resprout and subsequent 

regrowth between TFTs is largely attributable to differences in root starch reserves 

(Figure 5) also reported in other studies (Issifu et al. 2019, Wigley et al. 2019). 

Root starch reserves were lower for burnt than unburnt seedlings (Figure 5) 

because stored reserves were re-invested in regrowth among burnt seedlings 

(Tomlinson et al. 2012) which also explains why starch reserves (post-fire) were 

lower for savanna-transition than forest (Figure 5a) since regrowth was also higher 

for savanna-transition seedlings.  

Some forest species decreased their leaf mass in the no-irrigation treatment 

which increased their root mass fraction possibly to minimise drought stress under 

this treatment (Figures 4b and 4c). Biomass allocation to aboveground plant parts 

(stem and leaves) and roots as found in this study were consistent with allocation 
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patterns for resource acquiring versus resource conserving traits with such 

differences playing an important role in in TFT responses to fire and irrigation 

(Tomlinson et al. 2012, Boonman et al. 2019, Issifu et al 2019, Cardoso et al. 

2018).  

Overall, our study showed that irrigation during the dry season had a 

positive effect on savanna-transition seedlings but not on forest seedlings (which 

may avoid mortality through drought stress, by shedding leaves, but also then 

may not grow). Fire negatively influenced forest tree seedlings only.  Overall, the 

combined effect of fire and lack of moisture during the dry season had the 

strongest effect on forest species, which thus face the greatest recruitment 

bottleneck in humid savanna. 
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Appendices 

Table S1. Soil chemical properties in burnt and unburnt plots in a common garden in a 

humid Guinea savanna. P (av.) is Available P (mg/kg). 

  

Fire Layer pH N% C% P(av.) K Ca Mg Na  

Burnt 10 cm 6.67 
(0.14) 

0.07 
(0.01) 

0.61 
(0.14) 

3.64 
(0.30) 

0.29 
(0.02) 

2.53 
(0.6) 

0.6 
(0.35) 

0.01 
(0.001) 

 

20 cm 6.78 
(0.05) 

0.09 
(0.02) 

0.47 
(0.03) 

4.24 
(0.87) 

0.17 
(0.02) 

1.80 
(0.4) 

1.0* 
(0.20) 

0.012 
(0.001) 

 

Unburnt 10 cm 6.67 
(0.06) 

0.15 
(0.15) 

0.57 
(0.09) 

4.47 
(0.42) 

0.21 
(0.05) 

1.77 
(0.5) 

0.83 
(0.10) 

0.011 
(0.0008)  

 

20 cm 6.62 
(0.09) 

0.09 
(0.06) 

1.96 
(2.4) 

4.70 
(1.3) 

0.33 
(0.17) 

1.85 
(0.40) 

0.35 
(0.05) 

0.011 
(0.0003) 

 

 

 

Figure S1. (a) Relationship of pre-fire plant height to stem basal diameter and (b) 

relationship of pre-fire plant height to seedling mass at transplantation for forest and 

savanna-transition tree species grown in common garden experiment in the humid Guinea 

savanna of Ghana. 
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Figure S2. Rooting depth at final harvest for non-irrigated and irrigated seedlings. Species 

names: ki = K. ivorensis, ts = T. superba, ka = K. anthotheca, az = A. zygia (which are all 

forest species) and aa = A. africana and ks = K. senegalensis (which are both savanna-

transiton species).  
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Abstract 

The transition between tropical forests and savannas is characterised by frequent 

disturbances due to intense drought, the presence of herbivores and the 

occurrence of fire. Seedling growth and allocation responses to these disturbances, 

which may increase with changes in land use and climate, may differ between tree 

functional types. We performed a greenhouse experiment to compare growth 

performance and allocation traits of forest and savanna-transition tree functional 

types after defoliation under the constraints of moisture limitation. Savanna-

transition species are common to both forest and savannas in the forest-savanna 

transition. Seedlings of both tree functional types started off with similar relative 

growth rates, but forest species grew faster in the end. Low soil moisture 

decreased seedling growth performance with slightly larger effect for savanna-

transition than forest tree seedlings. Defoliation at the early growth phase 

decreased growth performance in older seedlings, with a larger effect under low 

soil moisture. Forest and savanna-transition tree species differed in foraging and 

allocation traits, with patterns establishing at the early growth phase. Regrowth 

performance, following defoliation was lower under low soil moisture availability 

and not different between the tree functional types. Our findings reveal adverse 

synergistic effects of defoliation and soil moisture limitation on tree seedling 

growth performance irrespective of tree functional type, with implications for 

tropical tree seedling recovery from disturbance in a drier climate as predicted for 

the future.  

Keywords: Tree functional types, tropical tree seedlings, biomass allocation, root 

starch reserves, forest-savanna transition  
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Introduction 

Multiple disturbance factors including fire, herbivory or drought may cause 

aboveground biomass loss among juvenile trees in open vegetation types, 

particularly in tropical savannas and forest-savanna transitions (Hempson et al. 

2015, Sankaran et al. 2019, van Langevelde et al. 2003). Following substantial 

shoot loss, plants compensate by increasing resource allocation to shoot growth 

(Ballina-Gomez 2010). Post-disturbance recovery (survival and regrowth) depend 

on carbon accumulation and the allocation of resources prior to the disturbance 

event (Boonman et al. 2019, Leishman et al. 2000, Poorter et al. 2012, Tomlinson 

et al. 2012). Factors that govern plant growth (and carbon gain) are thus 

considered to be important for tree species responses to disturbance events across 

tropical forest-savanna transitions.  

Precipitation is a key determinant of seedling growth among tropical tree 

species (Gentry 1991, Bunker & Carson 2005). Lower soil moisture regimes may 

decrease post-disturbance recovery by decreasing seedling growth (Gignoux et al. 

2016, Lawes et al. 2011, Zeppel et al. 2015). Consistent with the functional 

equilibrium hypothesis (Brouwer 1963), forest species differ from savanna-

transition species (which occur both in humid savanna and transition forests) in 

allocation patterns. Forest species generally invest more in plant organs for light 

capture to aid a more rapid growth (Amissah et al 2015) while savanna-transition 

tree species invest more in organs for belowground resource capture and storage 

of reserves (Boonman et al. 2019, Gignoux et al. 2016, Hoffmann et al. 2004, 

Issifu et al. 2019, Wigley et al. 2019). These general patterns offer alternative 

ways of resource allocation that maximize fitness under different environmental 

conditions, and form a basis for niche separation (Freschet et al. 2015, Gignoux et 

al. 2016).  

Seedling growth performance and allocation traits of forest and
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Precipitation amount affects distribution of forest species (Amissah et al. 

2014), which also have lower resprouting capacity (Chapters 3 & 4 of this thesis). 

Thus, interactions of defoliation (e.g. via fire, herbivory or trampling) and lower 

soil moisture are expected to have greater effects on (re)growth performance of 

forest than savanna-transition species. Effects of such interactions are more likely 

to intensify under future global change scenarios as precipitation patterns are 

predicted to change across much of the tropics (Malhi et al. 2013, Zeppel et al. 

2015) including a steady decline in rainfall in the forest zone of Ghana (Owusu & 

Waylen 2009). Tree species are sometimes found to increase belowground 

biomass allocation in response to precipitation decline (Nicotra et al. 2002, Poorter 

et al. 2012), which should reduce the adverse effect of lower moisture on post-

disturbance regrowth. How traits for foraging, resource allocation and storage in 

roots change with soil moisture limitation and how any such changes are 

associated with regrowth following defoliation among forest and savanna-

transition tree species is still poorly understood. The responses of different tree 

species in the forest-savanna transition, i.e. forest and savanna-transition tree 

species, to these factors will determine vegetation dynamics across this transition. 

Here, savanna-transition tree species are common to both forest and savannas in 

the forest-savanna transition. 

We performed a greenhouse experiment to compare growth performance 

and allocation traits of forest and savanna-transition tree functional types after 

defoliation under constraints of moisture limitation. We predicted the following: 

(1) greater decline in growth performance for forest than savanna-transition tree 

seedlings under both soil moisture limitation and defoliation, and (2) seedling 

regrowth performance after defoliation is positively associated with higher 

belowground resource allocation and starch storage in roots. 
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Materials and methods 

Species selection 

We selected tree species typical of humid savanna to moist semi-deciduous forest 

in Ghana. These species may co-occur in the forest-savanna transition or in 

adjacent forest types. Based on the distributions and habitat affinity described for 

each, we grouped the species as belonging either to forest or savanna-transition 

tree functional type (TFT) (Table 1 and references in legend). Taxonomic 

information of the studied species is provided in Table 1. Seed collection was done 

for the savanna-transition tree species in Kogyae Strict Nature Reserve (7°19' 

1.66'' N, 1°05' 5.863'' W). The forest species were collected from Bobiri (6°40'41"N 

and 1°19'12"W) and Abofour (7°7'60"N and 1°45'0"W), which are both semi-

deciduous forests in the Ashanti region of Ghana. Seedlings were raised from seeds 

and used in the experiment at about four weeks old. 

Greenhouse experiment 

Plants were grown in the greenhouse of the University for Development Studies, 

Nyankpala Campus, Ghana (9°24'55"N; 0°58'56"W). We used two batch-

repetitions of the experiment to accommodate all 12 species tested. This was due 

to limitation in greenhouse space and number of species for which seeds could be 

obtained in a particular season. The first batch of the experiment was conducted 

between July 2016 and December 2016. The second batch was between March 

2017 and December 2018. Light level in the greenhouse (measured with a 

quantum sensor, Skye instruments, Llandindrod Wells, UK) was ~12% (averaged 

across measurements in both batches). Plants were grown in 15 cm wide x 50 cm 

deep poly pots filled (up to 45 cm of pot depth) with topsoil harvested in the nearby 

garden in the Guinea savanna.  

Seedling growth performance and allocation traits of forest and
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Table 1. List of studied species. All species occur in the forest savanna-transition or in 

adjacent semi deciduous forest. Species marked with ++ are species present in both batch 

repetitions of the greenhouse experiment; # was formerly known as Annogeissus 

leiocarpus (DC.) Guill. & Perr) (Hochst. exHutch. & Dalziel) Gere & Boatwr. TFT refers to 

tree functional type: savanna-transition (ST) or forest (as categorised in this study). For 

vegetation type affinity, S = savanna, FST = forest-savanna transition, DSD = dry semi-

deciduous, MSD = moist semi-deciduous.  

Sources of species information: Hall & Swaine (1976), Hawthorne (1995), Orwa et al. 

(2009). 

Species Family TFT Vegetation-

type affinity 

Khaya senegalensis++ Meliaceae ST S/FST 

Pterocarpus erinaceus Fabaceae ST S/FST 

Afzelia africana Fabaceae ST S/FST 

Daniella oliveri Caesalpiniaceae ST S/FST 

Terminalia glaucescens Combretacea ST S/FST 

Terminalia schimperi#  Combretacea ST S/FST 

Terminalia superba++ Combretacea Forest MSD 

Terminalia ivorensis Combretacea Forest DSD - MSD 

Khaya ivorensis Meliaceae Forest MSD 

Afzelia bella Fabaceae Forest MSD 

Albizia zygia Fabaceae Forest DSD - MSD 

Daniella ogea Caesalpiniaceae Forest MSD 

 

The experiment included moisture (low versus control) and defoliation (defoliated 

seedlings versus non-defoliated control) treatments, which were assigned in a fully 

cross-factored, three-factor design in three blocks. Batch 1 had six species while 

batch 2 had eight, with two species common to both batches (Table 1). For each 

species, there were nine seedlings per species per moisture × defoliation 

combination. In each batch, additional 12 seedlings (six each for low and control 

moisture treatments) were included for intermediate harvest which was done at 

week 8 (seedlings were 12 weeks old). Seedlings in the control moisture regime 

received 40 ml day-1 of water while those in the low moisture regime received 20 

ml day-1. We adjusted watering in the low moisture treatment twice (when pots 

were getting too dry) in the course of the experiment to prevent mortality as we 
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wanted to measure traits of live seedlings. We monitored changes in pot moisture 

content as described below.  

 The defoliation treatment immediately followed the intermediate harvest at 

week 8. We removed shoots by cutting the stem just above the first leaf-bearing 

node. All leaves and cotyledons (if present) were removed. Rather than cutting at 

similar height on the stem for all seedlings, the approach we used was to give each 

species an equal chance at recovery.   

Soil moisture and nutrient content  

Top soil was sampled in triplicate after thorough mixing during the potting stage. 

Samples were later bulked and analysed for some soil chemical properties. Soils 

for both batches came from the same site. 

During intermediate and final harvests, soil moisture (VMC %) was 

determined at the top, middle and bottom layers of each pot using a soil moisture 

meter (TDR 150, Spectrum Technologies, Inc. Il, USA). In batch 2, we also 

monitored moisture content (MC) in between harvests in 12 dedicated pots (2 pots 

× 2 moisture treatments × 3 blocks) for soil moisture determination (this was to 

follow pot moisture changes, but data are not presented here).   

Plant biomass measurements 

At transplanting, we sampled five seedlings per species from the seedling pool for 

determination of start plant mass (i.e. week 0 harvest) after oven-drying. We 

planned two other harvests: at 12 weeks (intermediate harvest) and after 20 

weeks (final harvest). At intermediate harvest, we randomly selected 12 seedlings 

(six seedlings × two soil moisture treatments) across all three blocks for plant 

biomass measurement. We measured plant height and then separated seedlings 

into root, stem and leaves. Three “sun-leaves” per seedling were scanned with a 

Seedling growth performance and allocation traits of forest and
savanna-transition tree seedlings under defoliation and soil moisture limitation
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flatbed scanner (in batch 2 all leaves were scanned) for the determination of leaf 

area. Roots were washed out of soil after soaking in water to soften and total root 

length was recorded as rooting depth.  

At final harvest (at the end of the experiment), all seedlings were harvested 

for determination of dry weight of various plant organs following the same protocol 

as described for the intermediate harvest. Roots were microwaved within six hours 

of harvest and later analysed for root starch concentration following the extraction 

protocol of Duranceau et al. (1999) adapted from Dubois et al. (1956) at the 

laboratory of Plant Ecology and Nature Conservation in Wageningen University, 

the Netherlands.  

Analyses of seedling functional traits  

We assessed seedling morphology traits related to growth, biomass allocation and 

foraging for resources using data from either the intermediate or final harvest (and 

for some traits, e.g. relative growth rate, in combination with week 0 data). Leaf 

scans were analysed for leaf area (LA) using ImageJ and total leaf surface area 

was determined as LA × leaf dry weight (LDW, this was not necessary in batch 2 

as all leaves were scanned). We determined specific leaf area (SLA) as LA/LDW; 

root extension rate (RER) using rooting depth (RD) as RDwk12 – RDwk0/12 weeks 

(i.e. growth duration); specific rooting depth (SRD) as RD/RDW; and rooting depth 

per leaf area (RDLA) as RD/LA.  

Using root dry weight (RDW), leaf dry weight (LDW), stem dry weight (SDW) 

and plant dry weight (PDW), biomass allocation traits were determined: RMF as 

RDW/PDW; LMF as LDW/PDW; and SMF as SDW/PDW. We calculated RGR 

(adapted from Hoffmann and Poorter 2002) as follows:   

 

eqn. 1  
RGR  = lnMassfinal - lnMassinitial 

d 
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RD, RER, SRD and RDLA were analysed using data from intermediate harvest only 

as estimates from older seedlings could be skewed due to the possibility of pot 

limitation on root growth (Tomlinson et al. 2012).  

 

Table 2. Functional traits quantified in this study. Numbers in parentheses after relevance 

indicate when (which stage of the greenhouse experiment) trait was measured: 1, 2 and 

3 indicate first (week 0), second (intermediate) and final harvests respectively. 

Trait Abbrv. (units) Trait type and Relevance 

Relative growth rate  RGR (g g-1 week-1) Biomass accumulation. Fitness measure (2&3)  

Leaf dry weight LDW (g) Light capture /growth (1,2&3) 

Stem dry weight SDW (g) Light capture/growth (1,2&3) 

Shoot dry weight ShootDW (g) Light capture and growth (3) 

Root dry weight RDW (g) Belowground resource capture/growth (1,2&3) 

Plant dry weight PDW (g) Biomass accumulation/fitness measure (1,2&3) 

Root to shoot ratio R:S (g g-1) Biomass allocation related to resource capture (2) 

Root mass fraction RMF (g g-1) Investment in belowground resource capture, 

storage in roots (2&3) 

Root starch 

concentration 

[RS] (%) Allocation of resources to storage in roots. Related 

to recovery from disturbance (3) 

Total root starch 

reserves 

TRS (mg) Total resources stored in roots. Related to recovery 

from disturbance (3) 

Root extension rate RER (cm day-1) Indication of foraging for deeper water (2)  

Stem mass fraction SMF (g g-1) Stem/height investment for light capture (2&3) 

Specific stem length SSL (cm g-1) Indication of etiolation. Shade avoidance or 

aboveground foraging efficiency (2) 

Leaf mass fraction LMF (g g-1) Light capture/growth (2&3) 

Rooting depth RD (cm) Belowground foraging, drought avoidance (2) 

Specific rooting depth SRD (m g-1) Investment in deeper rooting, drought avoidance (2) 

Rooting depth per leaf 

area 

RDPLA (m cm-2) Foraging for deeper water while reducing transpiring 

surface area (2) 

Leaf area LA (cm2) Light capture and growth (2&3) 

Specific leaf area SLA (cm2 g-1) Light capture (2&3) 

 

Data analysis 

We performed all data analyses using R (R Development Core Team, 2017). We 

tested seedling relative growth rate (RGR) and seedling mass at intermediate 

harvest for fixed effects of tree functional type (TFT) and soil moisture treatment 
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and their interaction using linear mixed model (LMM) in the lme4 package (Bates 

et al. 2015). We included (experimental) batch and block as random factors. We 

tested RGR and mass gain for fixed effects of TFT × soil moisture × defoliation 

also using LMM. Again block and batch were added as random factors. We 

calculated effect size (using Hedge’s g) of the defoliation treatment on mass gain 

separately for forest and savanna-transition TFTs and also separately for seedlings 

in low and control soil moisture treatments. Similarly, effect size of soil moisture 

limitation was estimated for the TFTs for defoliated and control seedlings 

separately. Then we calculated overall effect size for the defoliation treatment (as 

mean g under the control moisture regime) and the soil moisture treatment (as 

mean g for control seedlings). 

We analysed selected seedling traits related to foraging, biomass allocation 

and root starch storage for differences between TFTs and soil moisture treatment 

(as fixed effects). The separate models (for each trait) included block and batch 

as random factors. Foraging traits were analysed only for seedlings at intermediate 

harvest as it was impractical to do this for older seedlings due to pot limitation, on 

rooting depth particularly. Leaf area, specific leaf area and rooting depth per leaf 

area were analysed using data from one experimental batch only (i.e. three species 

each within each TFT). For some traits (e.g. SRD, LA and RDLA) we applied ln-

transformation to meet assumptions of normality and homoscedasticity of 

residuals.  

To assess trait associations as influenced by soil moisture, TFT and 

defoliation, we performed principal component analysis (PCA) based on 11 root, 

leaf and whole-plant morphology traits (related to biomass allocation) and starch 

storage in roots at final harvest using the vegan package with function rda() 

(Oksanen et al. 2019). We performed the PCA separately for defoliated and control 
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seedlings. Data were scaled (mean = 0, sd =1) for all variables prior to analysis. 

Scores of the first two principal components were tested (each one separately with 

Bonferroni correction) for differences between TFTs and soil moisture treatments 

in LMMs (which included block as random factor).  

Finally, we analysed the allocation traits between the different treatments 

and TFTs. We tested root starch concentration of the control seedlings for fixed 

effects of TFT and soil moisture (and their interaction) using LMM. We used data 

from both batch repetitions and included only species with sufficient replicates in 

all treatment combinations. The model included block and batch as random factors. 

We also tested for differences in total root starch reserves using a LMM, only for 

the first batch (which included both defoliated and control seedlings) to test for 

interactions between soil moisture, defoliation and TFT. Block was added as 

random factor. 

Results 

Pot moisture distribution  

At intermediate harvest, our control and low moisture treatments differed 

significantly (F 1, 280 = 59.9, p < 0.001) at 14.6 ± 3.1 (~ -0.006 MPa –indicating 

no moisture stress) and 12.7 ± 2.6% (~ -0.014 MPa- indicating moderate moisture 

stress) respectively. Also, moisture content (MC) differed significantly (F 2, 280 = 

131.3, p < 0.001) among different pot layers, with MC being progressively lower 

with depth (Figure S1).  

At final harvest, pot moisture content in the low moisture treatment was 8.6 

% ± 2.3%  (~-0.42 MPa- indicating moisture stress) while moisture in the control 

treatment was 16.0% ± 7.0% (~ -0.004 MPa- indicating no moisture stress).  The 

difference in moisture content was significant (F1, 473 = 332, p < 0.001) but there 

was also a significant moisture treatment x defoliation interaction (F1, 492 = 9.61, 
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p = 0.0020). Under control moisture conditions, non-defoliated seedlings had 

lower soil moisture than defoliated ones, but there was no difference between 

defoliation treatments under low soil moisture treatment (Figure S2).  

Initial (pre-defoliation) seedling growth, foraging efficiency and biomass 

allocation  

Relative growth rate (RGR) for 12 week-old seedlings did not differ between forest 

(at 0.035 ± 0.02 g g-1 week-1) and savanna-transition (at 0.039 ± 0.02 g g-1 week-

1) tree functional types, irrespective of soil moisture regime. Irrespective of tree 

functional type, RGR was higher for seedlings in control (0.040 ± 0.02 g g-1 week-

1) than low (0.030 ± 0.02 g g-1 week-1) soil moisture regimes (Table 3). Seedlings 

at 12 weeks were, thus, bigger in the control (1.0 ± 0.66 g) than the low moisture 

treatment (0.75 ± 0.56 g) irrespective of tree functional type (Table 3). 

We found differences between tree functional types and moisture 

treatments for some foraging traits. Savanna-transition seedlings had higher 

specific stem length (SSL; Figure 1a, Table 4) and stem extension rate (SER; 

Figure 1b, Table 4) than forest seedlings irrespective of soil moisture treatment. 

Savanna-transition seedlings were, therefore, taller than the forest species (21 ± 

11 cm versus 13 ± 4.7 cm) at 12 weeks (i.e. at intermediate harvest). Seedlings 

in low moisture regime tended to have lower specific rooting depth (SRD), but 

effects of both soil moisture treatment and tree functional type on SRD were not 

significant (Figure 1c, Table 4). Irrespective of soil moisture treatment, root 

extension rate (RER) was higher for savanna-transition than forest TFTs. There 

was no effect of soil moisture treatment on RER (Figure 1d, Table 4). Thus, 

savanna-transition seedlings rooted deeper than forest seedlings ((29.1 ± 12 cm 

versus 25.1 ± 10 cm) at 12 weeks.  
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 Leaf area (LA) was higher for forest than savanna-transition species, 

irrespective of soil moisture treatment. Also irrespective of tree functional type, LA 

was higher for seedlings in the control than low moisture treatments (Figure 2a, 

Table 4). Specific leaf area (SLA) was, however, similar for seedlings for both tree 

functional types and moisture treatments (Figure 2b, Table 4). At the whole-plant 

level, root to shoot ratio was higher for savanna-transition than forest seedlings, 

irrespective of soil moisture treatment (Figure 2c, Table 4). Rooting depth per leaf 

area (RDLA) was higher for savanna-transition than forest species. RDLA was 

higher for seedlings in low than control moisture treatment irrespective of tree 

functional type (Figure 2d, Table 4).  

 

Table 3. ANOVA Table based on Satterthwaite’s method from LMM for relative growth rate 

(RGR) and seedling mass at intermediate harvest.  

Parameter Source of variation df  F p-value 

RGRwk12  TFT 1, 151 0.06 0.800 

Moisture  1, 151 6.60 0.011 

TFT ˟ Moisture                                        1, 151 0.65 0.421 

Seedling 

masswk12 

TFT 1, 151 7.36 0.007 

Moisture  1, 151 6.64 0.011 

TFT ˟ Moisture                                                                                                                     1, 151 0.41 0.523 
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Figure 1. Traits related to below and aboveground foraging efficiency at the initial seedling 

establishment phase for forest and savanna-transition tree species under defoliation and 

soil moisture regimes in a greenhouse experiment. Error bars are ±1 SE of mean. Different 

letters indicate significant differences (from Tukey pairwise comparisons at 0.05 level of 

significance). 

 

Figure 2. Mean (a) leaf area (b) specific leaf area and (c) ratio of rooting depth to leaf 

area based on data for six tree species (three each for forest and savanna-transition 

species) and (d) root to shoot ratio based on 12 species (6 each for forest and savanna-

a 
a 

b b 
a a 

b 
b 

a a a a 

ac ab c 
cb 

a 

abc 

c 

b 

a a a a 

a 

bc 

c 

a 

a 
b a 

b 

Chapter 5

136



134 
 

transition species) in a greenhouse experiment. Error bars are ±1 SE of mean. Different 

letters indicate significant differences (from Tukey pairwise comparisons at 0.05 level of 

significance). 
 

Influence of soil moisture and defoliation on trait associations in older 

seedlings  

The principal component analysis (PCA) for control seedlings at final harvest 

showed that the first two principal components (PC1 and PC2) explained together 

75% of the total variance in the data. PC1 correlated negatively to relative growth 

rate, total seedling mass gain, shoot mass, leaf mass and stem mass (Figure 3a). 

Thus, PC1 represents a growth axis: separating fast growing (and thus, bigger) 

seedlings from slow growing (and smaller) ones. Seedlings in low moisture had 

higher scores on this axis (F1, 104 = 11.1, p = 0.001) than those in the control 

moisture treatment irrespective of tree functional type. Also, forest and savanna-

transition seedlings differed along this axis irrespective of soil moisture treatment 

(F1, 104 = 92.2, p < 0.001) (Figure 4a). PC2 correlated negatively to RMF, SMF, root 

starch concentration and total starch reserves, but positively to LMF and leaf dry 

weight. Thus, this second axis represents trade-offs in below-ground versus 

aboveground biomass allocation and starch storage in roots. Savanna-transition 

seedlings had higher (F1, 104 = 92.2, p < 0.001) scores than forest seedlings along 

this axis, but there was no effect of soil moisture treatment (Figure 4b). 

Among defoliated seedlings, the first two principal components explained 

73% of the total variance. PC1 correlated positively to LMF, leaf mass, plant mass 

gain, root mass, stem mass and RGR (Figure 3b). PC1 thus represents for the 

defoliated seedlings the “regrowth axis”. We found that PC1 scores were lower (F1, 

88 = 15.8, p < 0.001) for seedlings in the low moisture than control soil moisture 

treatment, but tree functional types did not differ along this axis irrespective of 
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moisture treatment (Figure 4c). PC2 correlated positively to root starch 

concentration, RMF and root starch reserves, and negatively to SMF (Figure 3b). 

This axis, thus, separated seedlings based on higher biomass allocation and starch 

storage in roots versus higher investment in stem regrowth following defoliation. 

Axis scores on PC2 were higher (F1, 90 = 19.1, p < 0.001) for forest than savanna-

transition seedlings, but not between soil moisture treatments (Figure 4d).  

Table 4. ANOVA table (based on Satterthwaite’s method) from LMM on initial biomass 

allocation and foraging traits at intermediate harvest. Data for leaf area (LA), specific leaf 

area (SLA) and rooting depth per leaf area (RDLA) come from experimental batch 1. The 

rest of the traits were estimated based on data from both experimental batches. TFT = 

tree functional type 

 

 

 

 

 

 

 

 

 

 

 

 

Trait Source of 

variation 

df F p-value 

SRD TFT 1, 152 1.25 0.266 

Moisture 1, 152 3.19 0.076 

TFT  ˟  Moisture 1, 152 0.05 0.828 

RER TFT 1, 149 7.06 0.008 

Moisture 1, 149 2.06 0.136 

TFT  ˟  Moisture 1, 149 0.08 0.994 

SSL TFT 1, 146 38.2 0.002 

Moisture 1, 146 0.26 0.148 

TFT  ˟  Moisture 1, 146 1.92 0.682 

SER TFT 1, 150 50.2 < 0.001 

Moisture 1, 150 2.05 0.154 

TFT  ˟  Moisture 1, 150 0.38 0.717 

LA TFT 1, 66 21.3 < 0.001 

Moisture 1, 66 4.11 0.050 

TFT ˟ Moisture 1, 66 0.12 0.731 

SLA TFT 1, 67 0.19 0.663 

Moisture 1, 67 0.62 0.435 

TFT  ˟  Moisture 1, 67 0.15 0.700 

RDLA TFT 1, 68 25.7 < 0.001 

Moisture 1, 68 6.02 0.017 

TFT  ˟  Moisture 1, 68 0.04 0.846 

RS ratio TFT 1, 151 4.96 0.027 

Moisture 1, 151 0.97 0.330 

TFT  ˟  Moisture 1, 151 0.05 0.817 
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Figure 3. Principal component analyses of 11 root, leaf and whole plant traits related to 
biomass allocation and starch storage in roots for (a) control and (b) defoliated forest 
(circles) and savanna-transition (triangles) tree seedlings. Seedlings in high moisture (HM, 
which is control) and low moisture (LM) are given red and blue labels respectively. 
Variables included are root starch concentration (RStarchconcentration), root starch 
content (RStarchreserves), relative growth rate (RGR), root mass (RM), stem mass (SM), 
leaf mass (LeafM), shoot mass (ShootM), plant mass gain (PMgain), root mass fraction, 
stem mass fraction, leaf mass fraction (LMF). 

(b) 

(a) 
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Figure 4. Principal component scores of the first two axes (72% variance explained) as 

influenced by soil moisture and tree functional type for control seedlings (a) and (b) and 

defoliated seedlings (c) and (d). Different letters indicate significant differences (from 

Tukey pairwise comparisons at 0.05 level of significance). 

 

Seedling (re)growth performance as influenced by defoliation, soil 

moisture and tree functional type 

Beyond associations revealed by the PCA, we explored further for the effects of 

defoliation, soil moisture and tree functional type (and their interactions) on 

seedling growth performance. We observed that seedling relative growth rate 

(RGR) was higher for forest (0.11 ± 0.07 g g-1 week-1) than savanna-transition 

(0.09 ± 0.06 g g-1 week-1) tree functional types irrespective of soil moisture or 

defoliation treatments (Figure 5, Table 5). RGR was also affected by the defoliation 

× soil moisture interaction. Irrespective of TFT, RGR was six times lower for 

defoliated than control seedlings under the low soil moisture treatment, but the 

difference was not significant under the control moisture treatment (0.01 ± 0.05 

vs 0.15 ± 0.07 for defoliated vs control seedlings) (Figure 5, Table 5). 
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We found a significant three-way interaction effect of TFT × soil moisture × 

defoliation on seedling mass gain (Table 5). Mass gain was higher for forest (at 

7.4 ± 8.0 g) than savanna-transition (at 5.9 ± 4.7 g) seedlings for the control, but 

not for the low soil moisture treatment (1.4 ± 1.9 g for forest and 1.4 ± 1.3 for 

savanna-transition TFT). Among defoliated seedlings, mass gain was similar for 

both tree functional types in both soil moisture treatments (Figures 5c and 5d).  

Hedge’s effect size (g) indicated an overall large effect of defoliation on 

seedling mass gain. Effect size of defoliation was similar for both forest (g = -1.36) 

and savanna-transition (g = -1.40) TFTs under the control moisture treatment. In 

the low moisture treatment, the effect of defoliation was smaller for the forest (g 

= -0.80) than savanna-transition (g = -1.18) TFT. Effect size of lower soil moisture 

treatment on seedling mass gain (among control seedlings) was larger, overall, 

but smaller for the forest (g = -1.55) than savanna-transition (g = -1.87) TFT. 

Among defoliated seedlings, the effect of lower soil moisture on seedling mass gain 

was smaller for the forest (g = -0.83) than the savanna-transition (g = -1.25) TFT. 

Overall effect of lower soil moisture (g =1.71) represented a larger effect than 

defoliation effect (g = 1.38) on seedling mass gain. 

Irrespective of defoliation or soil moisture treatment, shoot mass was higher 

for forest than savanna-transition TFT (3.4 ± 6.7 g vs 2.0 ± 2.5 g) while root mass 

was higher for the savanna-transition than forest TFT (1.8 ± 2.0 g vs 1.4 ± 2.0 

g). Within each TFT, both root mass and shoot mass were lower at final harvest 

for defoliated seedlings and also for seedlings in the low soil moisture treatment 

relative to controls (Figure 6, Table 5). Among defoliated seedlings, shoot mass 

(which indicates extent of shoot compensation) was lower under low than the 

control soil moisture treatments, i.e. three times (for forest seedlings) and four 

times (for savanna-transition seedlings).  
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Figure 5. Seedling relative growth rate for forest (a) and savanna-transition seedlings (b) 

and mass gain for forest (a) and savanna-transition seedlings (b) under defoliation and 

soil moisture regimes in a greenhouse experiment. Error bars are ±1 SD of mean. Tukey 

pairwise comparisons are done among tree functional types, defoliation and soil moisture 

and different letters indicate significant differences (at 0.05 level of significance). 

 

Root allocation and starch storage as influenced by soil moisture and 

defoliation  

Root mass fraction (RMF) at final harvest was higher for savanna-transition (0.50 

± 0.18 g g-1) than forest TFT (0.35 ± 0.15 g g-1) irrespective of defoliation or soil 

moisture treatments. There was a defoliation × soil moisture interaction effect, 

without a significant three-way interaction (Table 6). Irrespective of TFT, RMF was 

higher for seedlings in the control (0.33 ± 0.16 g g-1) than low (0.40 ± 0.19 g g-

1) soil moisture treatments only for non-defoliated seedlings (Table 6, Figure 7). 

Root starch concentration was lower for forest (9.0 ± 11%) than savanna-

transition (16.5 ± 12.7%) TFTs irrespective of soil moisture treatment (Table 7a). 
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Root starch concentration did not differ between the soil moisture treatments, and 

neither was there a TFT × soil moisture interaction effect (Figure 8a, Table 7a). 

Irrespective of moisture treatment, total root starch reserves were lower for the 

forest (18.8 ± 38.4 mg) than savanna-transition (32.2 ± 42.0 mg) TFTs. Also, 

irrespective of TFT, root starch reserves were lower for seedlings in low (6.5 ± 6.0 

mg) than control (41.4 ± 49.7 mg) soil moisture regimes (Figure 8b, Table 7a).  

 
Table 5. ANOVA Table based on Satterthwaite’s method from LMM testing fixed effects of 

treatments (including block and batch as random factors) on growth parameters at final 

harvest in a greenhouse experiment.  

Parameter Source of variation df  F p-value 
RGR  TFT 1, 491 21.0 < 0.001 

Moisture  1, 491 145 < 0.001 
Defoliation 1, 491 186 < 0.001 
TFT Moisture                                                                                                                            1, 491 0.25 0.617 
Moisture × Defoliation 1, 491 4.83 0.028 
TFT × Defoliation 1, 491 2.13 0.145 
TFT × Moisture × Defoliation 1, 491 0.30 0.583 

Seedling 
mass gain 

TFT 1, 491 6.06 0.014 
Moisture  1, 491 226 < 0.001 
Defoliation 1, 491 153 < 0.001 
TFT × Moisture                                1, 491 4.38 0.037 
Moisture × Defoliation 1, 491 70.6 < 0.001 
TFT × Defoliation 1, 491 7.53 0.006 
TFT ×  Moisture × Defoliation  1, 491 6.01 0.015 

Shoot mass TFT 1, 471 22.7 < 0.001 
Moisture  1, 471 153 < 0.001 
Defoliation 1, 471 236 < 0.001 
TFT × Moisture                                                                   1, 471 0.36 0.550 
Moisture × Defoliation 1, 471 1.24 0.267 
TFT × Defoliation 1, 471 2.16 0.142 
TFT × Moisture × Defoliation  1, 471 0.23 0.627 

Root mass TFT 1, 486 18.0 < 0.001 
Moisture  1, 486 370 < 0.001 
Defoliation 1, 486 159 < 0.001 
TFT × Moisture                                                                                                          1, 486 0.01 0.907 
Moisture × Defoliation 1, 486 10.8 0.001 
TFT × Defoliation 1, 486 0.85 0.355 
TFT × Moisture × Defoliation  1, 486 0.74 0.315 

 

For the first experimental batch starch data for both defoliated and non-

defoliated seedlings, we tested for possible interactions involving defoliation, soil 

moisture and tree functional type. Not only did we find a TFT effect (as reported 
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above), we also found that root starch concentration was lower for defoliated (2.2 

± 2.6 %) than control (6.7 ± 5.7 %) seedlings irrespective of TFT or soil moisture 

treatment (Figure 9, Table 7b). For total root starch reserves, there was an effect 

of soil moisture treatment in addition to effects of both TFT and defoliation, but 

there were no interaction effects (Figure 9, Table 7b).  

 

 

Figure 6. Shoot and root mass at final harvest for forest and savanna-transition tree 

species under defoliation and soil moisture regimes in a greenhose experiment. Error bars 

are ±1 SD of mean. Tukey pairwise comparisons are done among tree functional types, 

defoliation and soil moisture and different letters indicate significant differences (at 0.05 

level of significance). 
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Table 6: ANOVA table (based on Satterthwaite’s method) from LMM on biomass 

allocation at final harvest. Data are from both batches of the greenhouse experiment. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Root mass fraction of (a) forest TFT, (b) savanna-transition TFT for 12 tree 

species of forest and savanna-transition origins under defoliation and soil moisture regimes 

in a greenhouse experiment. Error bars are ±1 SD of mean. Tukey pairwise comparisons 

are done among tree functional types, defoliation and soil moisture and different letters 

indicate significant differences (at 0.05 level of significance). 

 

 

 

 

Trait Source of 
variation 

df F p-value 

R:S ratio TFT 1, 237 51.6 < 0.001 
Moisture 1, 237 5.24 0.022 
TFT × Moisture 1, 237 0.02 0.880 

LMF TFT 1, 243 45.3 < 0.001 
Moisture 1, 243 0.94 0.333 
TFT × Moisture 1, 243 0.51 0.477 

SMF TFT 1, 243 6.38 0.012 
Moisture 1, 243 4.31 0.038 
TFT × Moisture 1, 243 0.60 0.439 

RMF TFT 1, 242 79.5 < 0.001 
Moisture 1, 242 6.46 0.011 
TFT × Moisture 1, 242 0.16 0.687 
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Table 7a. ANOVA table (based on Satterthwaite’s method) from LMM on root starch 

concentration and total root starch reserves at week at final harvest. Data from both 

batches of the greenhouse experiment was used in this analysis. 

Parameter Source of variation df F p-value 

Root starch 

concentration 

TFT 1, 153 25.4 < 0.001 

Moisture  1, 153 0.15 0.696 

TFT × Moisture                                                                                                                     1, 153 0.43 0.514 

Root starch 

content  

TFT 1, 153 21.4 < 0.001 

Moisture  1, 153 33.8 < 0.001 

TFT × Moisture                                                                                                  1, 153 0.06 0.805 

 

 

Table 7b. Vertical root distribution, SRL and root starch reserves for non-defoliated 

seedlings at final harvest. Forest and savanna-transition TFTs were analysed separately in 

LMM, including block as random factor. 

Parameter Source of variation df F p-value 

Savanna-transition TFT 

Root starch 

concentration 

Moisture 1, 86 0.43 0.515 

Defoliated  1, 86 42.0 < 0.001 

Defoliated × Moisture                                                                                                                     1, 86 3.68 0.059 

Root starch 

content  

Moisture 1, 86 6.16 0.015 

Defoliated  1, 86 69.8 < 0.001 

Defoliated × Moisture                                                                                                                     1, 86 0.88 0.349 

Forest TFT     

Root starch 

concentration 

Moisture 1, 98 0.43 0.947 

Defoliated 1, 98 24.4 < 0.001 

Defoliated × Moisture                                                                            1, 98 0.20 0.658 

Root starch 

content  

Moisture 1, 98 16.2 < 0.001 

Defoliated  1, 98 92.1 < 0.001 

Defoliated × Moisture                                                                                                                             1, 98 1.33 0.251 
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Figure 8. (a) Root starch concentration, (b) root starch reserves based on seedlings from 

12 tree species of forest and savanna-transition origins under defoliation and soil moisture 

regimes in greenhouse experiment. Only species with sufficient replications were included 

in both root starch analyses. Error bars are ±1 SD of mean. 

 

 

 

Figure 9. Root starch concentration (a) and (b) and total starch reserves (c) and (d) 

under defoliation and soil moisture treatments for forest and savanna-transition tree 

functional types (data are from experimental batch 1 only: 3 forest and 3 savanna-

transition species). Error bars are ±1 SD of mean. Tukey pairwise comparisons are done 
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among tree functional types, defoliation and soil moisture and different letters indicate 

significant differences (at 0.05 level of significance). 

 

Discussion  

We tested two hypotheses related to seedling growth performance, morphology 

traits and starch storage in roots in response to defoliation and soil moisture 

limitation for forest and savanna-transition tree functional types in a greenhouse 

experiment. We found adverse synergistic effects of defoliation and soil moisture 

limitation on tree seedling growth performance. Regrowth following defoliation was 

associated with rapid growth, greatly influenced by soil moisture regime. We 

discuss implications for seedling growth performance under precipitation declines 

and defoliation disturbance factors. We further discuss a new question arising from 

this study, on whether specific disturbance type may matter more for differences 

in regrowth capabilities inherent to TFTs.   

Allocation patterns differ between tree functional types and establish 

early regardless of moisture treatment 

At the early seedling establishment phase (among 12 week old seedlings), 

savanna-transition species invested more (relative to forest species) in height 

growth with thinner stems (higher specific stem length) and higher rate of stem 

extension regardless of soil moisture regime. These trait differences suggest a 

stronger response of the savanna-transition (than forest) tree functional type to 

the light environment (~12% of full light) in the greenhouse (Gignoux et al. 2016). 

Such light levels should not limit growth for many of the forest species in this study 

(Agyeman et al. 1999, Amissah et al. 2015, Veenendaal et al. 1996). Beyond the 

initial acclimation response as observed for the savanna-transition tree seedlings, 
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we did not expect strong growth limitation to result from the greenhouse light 

conditions.   

We observed a general pattern of higher aboveground versus belowground 

foraging and biomass allocation, consistent with expected differences between the 

tree functional types (following the functional equilibrium hypothesis, Brouwer 

1963). Savanna-transition tree seedlings had higher rooting depth, root to shoot 

ratio, rooting depth per leaf area, and lower leaf area than forest seedlings. These 

traits indicate greater allocation to belowground foraging and storage, typical of 

species from moisture-limited or disturbance prone environments. Forest seedlings 

increased photosynthetic surface area to maximize light capture for their inherent 

faster growth rates (Gignoux et al. 2016, Boonman et al. 2019). Leaf area was 

lower under low moisture regime as seedlings attempted to trade-off leaf mass for 

root mass to enhance survival (Poorter et al. 2012). Also, irrespective of tree 

functional type, seedlings in low moisture regime had higher values of rooting 

depth per leaf area, due to the negative effect of low moisture on leaf area. This 

may represent an attempt to reduce transpiring surface area relative to water 

uptake, which has potential benefits in a drier environment (Lopez-Iglesias et al. 

2014). Savanna-transition species had this tendency, but the difference between 

tree functional types was not significant due to high variability.  

Higher rooting depth observed for savanna-transition seedlings at 

intermediate harvest was supported by faster root extension. We did not find 

specific rooting depth to differ between tree functional types, possibly because 

roots had thickened by week 12, when we did the intermediate harvest (Tomlinson 

et al. 2012). Both root extension rate and specific rooting depth are associated 

with semi-arid savanna species which have the need to chase after a declining 

water column (Tomlinson et al. 2012). Therefore, the savanna-transition tree 

Seedling growth performance and allocation traits of forest and
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functional type in this study may combine many traits characteristic of humid, 

mesic or even semi-arid savannas because this group of species are supposed to 

have a wide ecological amplitude (Armani et al. 2018). 

At final harvest, we found higher biomass allocation and carbohydrate 

storage in roots for savanna-transition seedlings versus higher allocation to shoot 

for forest tree seedlings. Biomass allocation patterns were similar as found for 

seedlings at 12 weeks. Higher allocation and storage in roots is typical of species 

from humid savannas (or more disturbed environments) because it enhances 

recovery after disturbance (Boonman et al. 2019, Issifu et al. 2019, Wigley et al. 

2019). Lower soil moisture regime decreased biomass allocation to roots without 

changing tree functional type allocation patterns to roots. There was also no effect 

of lower soil moisture on root starch concentration even though growth decreased 

under low moisture, which may suggest fixed allocation to root storage. However, 

there may still be an effect of moisture on recovery capacity via reductions in total 

amount of stored reserves. For example we found lower total root starch content 

for seedlings in lower moisture relative to control because root dry weight was also 

lower in the low moisture treatment.    

Forest seedlings grow faster but not at the initial growth phase 

Forest and savanna-transition tree seedlings had similar growth rates at 12 weeks, 

but forest seedlings grew faster at the end (after ~28 weeks). The tree functional 

types started off similarly possibly because initial maternal investments in seed 

reserves were also similar for the species selected (this has not been explored in 

this study, but see Leishman et al. 2000, Tomlinson et al. 2019). Also, regardless 

of tree functional type, plants at the initial stages of development need to build 

tissues that are important for carbon gain. Leaves (which are the primary 

photosynthetic tissues) and stems (structural biomass needed for light 
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competition) are needed to be constructed first (through rapid growth) before any 

resource use (or economics) strategies take hold. Thus, the trade-offs in biomass 

allocation that separate forest from savanna tree species (discussed above for the 

initial growth phase) were perhaps not yet strong enough to cause differences in 

growth allocation between tree functional types at the initial establishment phase 

(Hoffmann & Franco 2003). Thus, general patterns of resource conservation 

(among savanna-transition tree seedlings) versus resource acquisition (among 

forest tree seedlings) had been strongly established by final harvest, possibly 

explaining the observed difference in growth rate between the tree functional types 

among older seedlings (Gignoux et al. 2016).   

Seedling growth performance was lower under low moisture treatment 

relative to the control treatment. This adverse effect of low soil moisture was 

similar for both forest and savanna-transition tree functional types, which was in 

contrast with our expectation that soil moisture limitation should have a stronger 

negative effect on forest than savanna-transition tree seedlings due to differences 

in the climate of the species origin (Table 1). Species that constituted the savanna-

transition tree functional type in this study may be quite limited in their distribution 

by soil moisture. For example, Khaya senegalensis, A. africana, Daniella olivera 

are associated with moist savanna woodlands and when they occur in drier 

savanna types, they are associated with gallery forests or found along water 

courses (Orwa et al. 2009). Thus, humid savanna species subjected to moisture 

stress may respond strongly with conservative strategies and in the end being 

affected similarly as (dry) forest species.  

 

 

Seedling growth performance and allocation traits of forest and
savanna-transition tree seedlings under defoliation and soil moisture limitation

 151   

5



149 
 

Low soil moisture and defoliation produce adverse synergistic effects on 

(re)growth performance irrespective of tree functional type 

We found that defoliation and low soil moisture synergistically decreased growth 

performance (both seedling relative growth rate and mass gain) irrespective of 

tree functional type. Thus, the extent of compensation for shoot loss was lower 

under low soil moisture regime for both forest and savanna-transition tree 

seedlings, which may be explained in two (not mutually exclusive) ways. First, we 

found that low soil moisture caused a reduction in mass gain and likely decreased 

amount of stored resources prior to defoliation (starch content in roots was not 

measured at this stage, but this is plausible based on positive correlations of root 

mass with starch content, e.g. as reported in Chapter 4 of this thesis). Thus, 

resources available for recovery were likely lower compared to seedlings in the 

control treatment (although seedlings may also increase storage reserves under 

moisture limitation, O’Brien et al. 2014). Second, seedlings in the low moisture 

treatment which resprouted, had lower post-resprout growth rate possibly due to 

smaller photosynthetic surface area (and unit leaf rate) in addition to moisture 

stress which could affect stomatal conductance (Pratt et al. 2014).   

Defoliation (as applied in this study) represents a more moderate 

disturbance type. For example, the low soil moisture treatment had a stronger 

adverse effect on growth than the effect of defoliation, which differs from the 

effects found for fire (Chapters 3 and 4 of this thesis). This was possibly because 

defoliation above the first node (see methods) allowed for epicormic resprouting, 

instead of basal and belowground resprouting that dominate post-fire resprouting 

(Lawes et al. 2013). The higher sensitivity of forest species (compared to savanna 

species) to stronger disturbance types (e.g. high intensity fires, Chapters 3 and 4 

of this thesis) could be due to lower capacity to resprout from belowground buds. 
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This needs to be tested empirically, but such an idea may explain the importance 

of aboveground bud protection for post-disturbance recovery of forest seedlings. 

These findings imply that herbivores and fire (as disturbance factors) may differ in 

extent of influences on tropical tree seedling growth performance (Pausas et al. 

2016, but see Zeppel et al. 2015).  

We found (from the principal component analysis on allocation and regrowth 

performance traits among defoliated seedlings) that regrowth performance 

parameters (plant mass gain and shoot mass) were more associated with plant 

size parameters and influenced by soil moisture, but not tree functional type. 

Findings were not consistent with expectation that seedlings with higher biomass 

allocation to roots and carbohydrate storage should have a higher regrowth 

performance following defoliation (see also Hoffmann et al. 2009). Stored 

resources may have a stronger influence on whether or not seedlings resprout 

after defoliation (Moreira et al. 2012), which may also be determined by 

disturbance type (and its intensity). Once seedlings survive defoliation, regrowth 

allocation (after a brief period of compensating for shoot loss, Moreira et al. 2012) 

may then depend on species resources use strategy. We found in this study that 

post-defoliation allocation (as measured at final harvest) followed similar patterns 

as non-defoliated seedlings, with forest species investing more in shoots while 

savanna species continued to invest more in roots.  

In conclusion, our findings indicate that declines in precipitation amounts 

may decrease growth performance and post-disturbance recovery among both 

forest and savanna-transition tree seedlings with implications for tree recruitment 

in forest-savanna transitions. 
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Appendices 

Table S2: Some soil chemical properties of soil used in the pot experiment. AP = Available 

P (mg/kg). K, Ca, Mg, Na are Exchangeable Cations (cmol+/kg soil).  

 

 pH N% C% AP K Ca Mg Na  

Batch 1         

Mean - 0.52 1.58 - 0.10 3.40 1.78 0.002  

Batch 2         

Mean 7.26 0.09 0.93 4.34 0.25 2.57 0.87 0.0096  

SD 0.14 0.01 0.06 0.60 0.05 0.74 0.27 0.0048  

 

Figure S1. Pot moisture content at intermediate harvest under moisture 

treatments in batch 2 of the greenhouse experiment. Soil moisture was 

measured prior to applying the defoliation treatment 

 

Figure S2. Pot moisture content at final harvest under moisture treatments for 

defoliated and non-defoliated seedlings in batch 2 of the greenhouse experiment. 
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Introduction 

In this thesis, I aim to explain how seedling recruitment differs between tropical 

savanna-transition and forest tree functional types under constraints imposed by 

various vegetation controls across the forest-savanna transition. In the previous 

chapters, I presented results from semi-manipulative field transplant, common 

garden and greenhouse experiments to address the following specific research 

questions (in four corresponding chapters):   

[1] How does variation in woody cover (and associated factors) influence 

seedling establishment success, related to traits, of forest and savanna-

transition tree species?   

[2] What are the relative influences of grass competition during the wet season 

followed by fire and lack of precipitation during the dry season on tree 

seedling establishment success among forest and savanna-transition tree 

species? 

[3] What are the relative influences of fire and lack of moisture during the dry 

season on tree seedling establishment success, related to traits, among 

forest and savanna-transition tree species?  

[4] To what extent does soil moisture regime influence growth performance, 

allocation traits and recovery from defoliation among forest and savanna-

transition tree functional types? 

In this last synthesis chapter, I integrate and discuss results presented in the 

different chapters as well as raise some general issues. I highlight how this thesis 

may contribute to the understanding of the transition between savanna and forests 

and restoration of dry forests. Finally, I propose directions for future research. 
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Nature and dynamics of tropical forest-savanna transitions  

The forest-savanna transition in West Africa is a mosaic of forest patches in a 

matrix of humid savanna with transition vegetation occurring in close proximity 

and under similar climatic conditions differing in composition and vegetation 

structure (Ametsitsi et al. in prep., Swaine et al. 1976, Cuni-Sanchez et al. 2016, 

Hennenberg et al. 2006). The relative importance of various factors (such as fire 

and soil resources) thought to govern the distribution of the different vegetation 

formations has been a question of long-standing debate (Fairhead & Leach 1996, 

Veenendaal et al. 2015). It is increasingly being accepted that different vegetation 

formations are associated with soil factors, but shaped locally by top-down controls 

including fire and herbivory (Oliveras & Malhi 2016, Veenendaal et al. 2015; 2018).  

The seedling stage of trees is an important bottleneck for tree species 

distribution due to influences of the regeneration phase on plant success (Poorter 

2007, van Langevelde et al. 2011). Current trends of forest retreat and 

(occasional) advance across the forest-savanna transition (Janssen et al. 2018, 

Mitchard & Flintrop 2013) suggest an important role for seedling recruitment into 

the different vegetation types in response to changes in the transition. Fire is also 

suggested as a key constraint to forest seedling establishment success in humid 

savannas (Cardoso et al. 2016, Gignoux et al. 2009). However, the close relation 

between soil fertility and soil water retention and vegetation structure in the tropics 

suggests that other factors, such as soil resources, may be just as important (see 

e.g. Veenendaal et al. 2015, Lloyd et al. 2015 and Staal & Flores 2015 versus Lloyd 

& Veenendaal 2016).  

In this thesis, I propose that woody cover variability (and its influences on 

herbaceous vegetation) across the transition cause differential tree functional type 

seedling recruitment through both bottom-up and top-down controls (Figure 1.2). 
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Figure 1.2 identifies current research gaps, which form a basis for this thesis. The 

constraints on tree seedling recruitment are relevant to study as the seedlings 

develop into adult trees determining the constraints for new tree seedlings. 

Seedlings of different tree species may respond differently to bottom up and top 

down constraints, and adult trees of different species may trigger different 

constraints on seedlings. From the conceptual model (Figure 1.2), fire may indeed 

be an important constraint to seedling establishment success in savanna 

woodlands, but different responses to fire can be expected for seedlings belonging 

to different tree functional types due to trait variability. Such differences in tree 

functional type responses may explain the observed variation in species types 

dominating various vegetation types in the transition (Armani et al. 2018), 

including the existence of transitional vegetation types in the fire zone of African 

dry forests (Swaine 1992, Cuni-Sanchez et al. 2016, Hopkins 1974). Using the 

conceptual model (Figure 1.2), I propose that other factors may be important on 

their own or in interaction with fire. The relative influences of these different 

factors, interactions among them and with tree functional type, determine 

vegetation changes across the forest-savanna transition and future stand 

composition under land use and climatic change. Further explanation of these 

influences will following in the next sections. 

Tree seedling functional types and species selection for 

experiments in this thesis 

I set out with the broad hypothesis that trait variation (including performance 

traits) in response to certain vegetation controls between forest and savanna-

transition tree species, explain species recruitment and the mosaic vegetation 

pattern observed across the forest-savanna transition. Emphasis was placed on 

contrasting trait responses of forest and savanna-transition tree functional types 
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that co-occur in the forest-savanna transition or in semi-deciduous forests. 

Savanna-transition species are important in the transition due to their role in 

maintaining vegetation types that are intermediate between closed forest and 

savanna woodland (Ametsitsi et al. in prep., Cuni-Sanchez et al. 2016, Hennenberg 

et al. 2006, Swaine 1992).  

While particular seedling root trait syndromes may vary strongly along 

resource gradients, they are not exclusively assigned to distinct tree types 

(Boonman et al. 2019), suggesting a broad range of variation. Noting that the 

number of species within tree functional types in our experiments was by necessity 

limited, we undoubtedly did not capture the full breadth of trait variation across 

functional types. This is potentially an important limitation of the experiments 

reported in this thesis. Nevertheless, in nearly all chapters, general patterns 

emerged for separating forest tree species from savanna-transition tree species, 

consistent with studies which looked for similar patterns (e.g. Boonman et al. 

2019, Gignoux et al. 2016). I analysed species-specific patterns to demonstrate 

within tree functional type variability. Therefore, despite limitation in species 

numbers, I was able to demonstrate patterns and responses of the selected species 

which helped to answer questions posed in this thesis. Below, I provide a synthesis 

of the answers. 

Influence of canopy cover variation on tree functional type 

establishment success  

Different vegetation types (woodland, closed woodland and forest) that co-occur 

within the forest-savanna transition vary in the extent of woody canopy cover 

(crown area index, leaf area index; Chapter 2, Torrelo-Raventos et al. 2013, 

Veenendaal et al. 2015) and herbaceous biomass and its composition (Chapter 2, 

Cardoso et al. 2018, Charles-Dominic et al. 2018, Veenendaal et al. 2015). Thus, 
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fire intensities tend to be higher in savanna woodland than in vegetation types 

with more closed canopy (Ametsitsi et al. in prep., Laris 2011, Laris et al. 2015, 

Veenendaal et al. 2018). Therefore, I expected woodland vegetation type to select 

for fire tolerant savanna-transition tree species over fire-sensitive forest species 

(Chapter 2). Consistent with this expectation, and in line with other studies, 

savanna species survived and grew in fire-prone woodland (Chapter 2, Gignoux 

et al. 2009, Hoffmann et al. 2004) – with survival linked to a resource conservation 

root trait syndrome. I explored the hypothesis on fire effect further with more 

species in the common garden experiments (Chapters 3 and 4), where I could 

better control and disentangle effects of a number of drivers. The effect of fire on 

seedling growth and mortality was tested in combination with other factors (which 

I will discuss later in this chapter). I found that in all experiments where seedlings 

of forest and savanna-transition species were subjected to a fire treatment 

(Chapters 3 and 4), savanna-transition tree species were more likely to survive 

than forest species.     

Forest species are more competitive under denser woody canopy cover 

because they are generally more shade-tolerant compared to savanna species, 

and also because they require more soil resources – which are more abundant in 

forest – for their intrinsic faster growth rates. The moist semi-deciduous species 

selected in the study hardly survived. As in many field studies, many factors likely 

contributed to mortality of the seedlings, but we determined that lack of moisture 

during the dry season was important, and that not even closed canopy of the forest 

vegetation ameliorated the adverse effect of a prolonged dry period contrary to 

expectation based on net house pot studies (see e.g. Amissah et al. 2015). Poor 

survival may be attributed to increased competition for water between seedlings 

and mature trees in closed canopy vegetation, which reduces seedling growth 
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(Veenendaal et al. 1996a,b). In my field study area, a strong link between 

recruitment success and drought tolerance in forest trees has been demonstrated 

(Cardoso et al. 2016) – forested patches depleting water resources to greater 

extents than the surrounding savanna (Ametsitsi et al. in prep.). However, forest 

species could survive the dry season if sufficient soil moisture conditions prevailed 

(Chapter 4). Considering that forest patches populated by forest-type species 

coexist with savanna vegetation (e.g. Armani et al. 2018, Swaine 1992), 

recruitment of forest species in transitional vegetation is not impossible, but is for 

forest species only possible linked to years of higher rainfall and short dry seasons. 

Further work is needed to explore this possibility. 

Light limitation is likely an important bottleneck to the recruitment of shade-

intolerant species and could be the basis for differential recruitment of tree 

functional types into various vegetation types in the forest-savanna mosaic. I 

compared a typical savanna woodland species (Terminalia macroptera) with the 

savanna-transition species Khaya senegalensis (originally also categorised as a 

savanna species) in Chapter 2. Seedlings of the first species were, in the course 

of three years, excluded from closed canopy forest, while the more shade-tolerant 

K. senegalensis (Kwesiga & Grace 1986) survived well under the closed canopy 

forest. This finding was not consistent with the idea that shade excludes savanna 

species from closed-canopy forests, and was perhaps due to variability in species-

specific traits that may exist even for species within the same tree functional type. 

Khaya senegalensis is variously categorised; as a savanna species (Chapter 2 of 

this thesis, Okali & Dodoo 1973, Keay 1960), ubiquitous or transition species 

(Armani et al. 2018, Boonman et al. 2019) or even as a forest species (Kwesiga & 

Grace 1986), suggesting that it has more intermediate traits or trait plasticity. This 

species, thus, represents an example of the existence of “many shades of green” 
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within the forest-savanna-transition trait spectrum. Interestingly, it is the only 

representative of the forest tree genus Khaya (African Mahoganies) that has made 

it into the savanna biome. 

Woody canopy cover may thus govern tree recruitment patterns of different 

tree functional types in the forest-savanna transition through its influences on 

bottom-up and top-down controls. Although soil resources and microclimate are 

known to have an important influence on seedling establishment success (as 

discussed earlier), the link between soil resources or microclimate and 

establishment success of seedlings in different vegetation types was not very 

clearly established in the field (Chapter 2). Admittedly this link was not 

investigated in detail in Chapter 2, but also such a link is very difficult to establish 

for juvenile trees under field conditions (see Armani et al. 2018). One reason could 

be the many interacting factors (e.g. interactions between soil nutrients and light 

levels or drought). It appears that a stronger effect of dry season moisture stress 

on seedling establishment success masked the influences of other factors 

(including soil resources and light) in Chapter 2. It may also be due to low 

representation of dry forest species, which are better adapted to the local field 

conditions of the transition. I investigated the link between soil resources and 

seedling establishment success in more manipulative experiments which I discuss 

later on in this chapter.  

Relative effects of tree seedling-grass competition, soil resources 

and fire on tree functional type establishment success   

Field transplants (e.g. Chapter 2, Cardoso et al. 2016, Gignoux et al. 2009; 2016, 

Lawes et al. 2011) provide general patterns on recruitment niches (as discussed 

earlier in this chapter) of different tree functional types within the transition. As is 

often the case with many field studies, field transplants fail to fully disentangle 
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effects of the factors which correlate to influence seedling establishment success. 

For example, light limitation, relative effects of grass competition in the wet 

season, lack of precipitation in the dry season and fire as well as interactions 

involving combinations of these factors could not be properly separated in Chapter 

2. Therefore, I focused on tree functional type responses to more specific factors 

(and their interactions) separately; grass competition and fire (Chapter 3), fire 

and dry season irrigation (Chapter 4) and soil moisture regime and defoliation 

(Chapter 5).  

Apart from being fuel for dry season fire, which is seen as an important 

cause of seedling mortality, herbaceous vegetation also directly affects tree 

seedling performance through competition for soil resources or light in the wet 

season (Chapter 3, Migley & Bond 2001, van der Waal et al. 2009, Ward & Elser, 

2011, Barbosa et al. 2014, February et al. 2013, Tomlinson et al. 2019). 

Depending on the strength of such competitive interactions, grass competition may 

be a direct constraint to tree seedling establishment success. Tree seedling-grass 

competition is mainly for soil moisture and nutrients (Tomlinson et al. 2019), but 

the forest-savanna transition is not limited in either factor (Swaine 1992). 

Therefore, direct effect of grass competition on tree seedling survival is expected 

to be less important (Chapter 3) unlike in drier savannas where grass competition 

may directly decrease seedling survival (Migley & Bond 2001, van der Waal et al. 

2009, Ward & Elser 2011). 

I expected grass competition to have greater adverse effect on growth 

performance of forest than savanna-transition tree seedlings due to possible 

evolutionary differences, mainly the development of adaptations to co-existence 

(e.g. root niche partitioning, Walter 1971, but see Kulmatiski et al. 2010) between 

the two tree functional types (Oliveras & Malhi 2016). However, I found that the 
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negative effect of grass competition on tree seedling growth performance was 

similar for both forest and savanna-transition tree seedlings (Chapter 3). A 

possible reason for this finding is that across tree functional types, competition 

effect was greater for faster growing species, but overall growth was similar 

between tree functional types (Chapter 3). Interestingly, while growth 

suppression was similar for both tree functional types, grass competition 

decreased root mass more (leading to a greater reduction in the amount of starch 

stored in roots) resulting in lower post-fire survival for forest than savanna-

transition seedlings (Chapter 3, in consistence with other studies reporting on the 

role of carbohydrate storage on survival differences between forest and savanna 

species in drier savannas, e.g. Wigley et al. 2019).   

Models on tree grass interactions focus a lot more on the suppressing effect 

of adult trees on grasses than on the reverse interactions at the seedling stage 

(van Langevelde et al. 2003; 2014, Charles-Dominic et al. 2018). This is especially 

true for forest-savanna mosaics where soil moisture or nutrients are not 

considered limiting (Swaine 1992, but see Veenendaal et al. 1996a). This thesis 

provides evidence (chapter 3) that wet season tree seedling-grass interactions 

are important and that the influences may not be via soil resources per se, but 

light limitation may also be important in tall grass woodlands that characterise 

West African forest-savanna transitions (Chapter 2, Hennenberg et al. 2006). 

Seedling trait responses may provide indications of which factors likely drive 

competitive interactions. For example, taller, thinner stems and a higher allocation 

to shoot (Chapter 3, Schmitt et al. 1999) may indicate shade avoidance by tree 

seedlings in the midst of tall grasses. These findings have important ecological 

implications. First, grass competition alone (in the absence of fire) is not sufficient 

to prevent seedling establishment in humid savanna regardless of tree functional 
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type, but recruiting individuals may persist as very small seedlings. Second, via 

reductions in growth (and root carbohydrate reserves), tree seedlings, particularly 

of forest species, may be rendered more susceptible to fire-induced mortality, 

suggesting that variability in grass cover could influence patchy recruitment as 

pockets of seedlings are more likely to establish where grass cover is less.  

In many experiments (including the afore-discussed competition 

experiment), fire effects are naturally entangled with lack of moisture in the dry 

season. Thus, questions arise on whether seedlings can survive the lack of 

moisture in the dry season in the absence of fire. I attempted to disentangle these 

effects using a dry season fire and irrigation experiment (Chapter 4). I found in a 

common garden experiment that in the absence of fire, forest tree seedlings 

survived a 5-month long dry season just as well as savanna-transition tree species. 

This finding was not consistent with the expectation that a lack of moisture in the 

dry season should have a stronger adverse effect on forest tree seedling 

establishment success (Gignoux et al. 2009, Lawes et al. 2011). Mortality in the 

dry season could result from moisture stress, but at certain sizes, seedlings either 

have enough carbohydrate reserves (Cardoso et al. 2016) or have roots in deeper 

soil layers and can, therefore, avoid moisture stress despite the absence of 

precipitation in the dry season (Chapter 4). Findings in Chapter 4 may imply that 

the dry season itself (in the absence of fire) may not be a barrier to forest seedling 

establishment in humid savannas particularly if there is no root competition with 

mature trees, which may explain forest encroachment in savannas in the absence 

of fire. However, the effect of dry season in humid savannas has to be interpreted 

carefully, since soils may remain moist over relatively long periods despite the 

absence of precipitation. I found also that dry season irrigation (continued access 

to moisture by tree seedlings) did not reduce the sensitivity of forest species to 
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fire, possibly because post-fire resprout capacity depends on the amount of 

carbohydrates stored in roots, which is lower for forest than savanna-transition 

tree species (Chapter 4, Gignoux et al. 2016, Boonman et al. 2019, Hoffmann et 

al. 2004).     

Aside rainfall distribution, total rainfall amount received in the wet season 

and stored in the soil profile is important for tropical seedlings performance 

(Veenendaal et al. 1996b, Le Roux & Bariac 1998). Decreased precipitation in the 

wet season may result from climate variability (Fauset et al. 2012) and it is also 

one of possible scenarios of climate change.  Rainfall shows a decline of ca. 10 -

15% over the last 40 years for the transition zone of Ghana (Owusu & Waylen 

2009). Sub-optimal precipitation levels may influence seedling establishment and 

growth of forest and savanna-transition species differently. Lower growth 

performance in the wet season may be linked to lower dry season survival and 

tolerance to defoliation since the effect of defoliation may depend on seedling size 

(Bond & Midgley 2003). I assessed the effect of lower soil moisture regime and its 

interaction with defoliation on (re)growth performance emphasising the link 

between allocation traits (as influenced by moisture) and regrowth capacity of 

defoliated seedlings (Chapter 5). 

In Chapter 5, I already reported that at the seedling stage, savanna-

transition trees may just be as sensitive as forest species to moisture limitation 

(Chapter 5) and the adverse effect of defoliation on seedling growth performance 

was greater under lower soil moisture regime irrespective of tree functional type 

(Chapter 4). The implication is that in drier years, disturbance factors such as fire 

or herbivory will likely have greater negative effects on seedling growth 

performance of all tree functional types. Regrowth performance was not linked to 

allocation traits (which differed predictably between forest and savanna-transition 
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tree seedlings) but determined by growth performance. This contradicts 

expectations that higher allocation to roots should enhance post-disturbance 

regrowth performance (Chapters 2 and 3). Possibly we found these results 

because disturbance type (defoliation versus fire) may not produce similar 

regrowth responses (Pausas et al. 2015, but see Bond & Keeley 2005, Zeppel et 

al. 2015). This needs further research.   

Influence of seedling trait variation on establishment success 

under various constraints 

Tree seedling traits (morphological, physiological or phonological) are good 

predictors of environmental tolerances and the recruitment niches of tropical tree 

species (Amissah et al. 2015, Boonman et al. 2019, Poorter 2007, Tomlinson et 

al. 2012; 2019). Therefore, as a final overarching research objective, I assessed 

the link between seedling traits and seedling establishment success under key 

environmental constraints investigated in this thesis, namely moisture limitation, 

light limitation, competing herbaceous vegetation, fire and defoliation. Emphasis 

was placed on seedling morphology traits related to biomass allocation and 

foraging efficiency, and also starch storage in roots. For each experiment, specific 

traits were selected based on the functional role they were expected to play under 

the constraints imposed, as described in previous studies (See Table 1.1 and 

references therein).  

Root starch concentration and total root starch reserves are higher for 

savanna-transition than forest tree species (Chapters 2, 3, 4, 5, Boonman et al. 

2019). These traits are associated with higher post-fire survival and explain the 

success of savanna-transition over forest tree seedlings (Chapters 2, 3, 4), 

except in the defoliation experiment (Chapter 5, reasons for this have been 

discussed in the previous section). This is in line with many other studies in which 
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root carbohydrate reserves were linked to post-disturbance survival (Cardoso et 

al. 2016, Hoffmann et al. 2004, O’Brien et al. 2014; 2015, Wigley et al. 2019). 

Thus, carbohydrate storage in roots mediates resprout capacity, making root 

starch storage a key trait for persisting in pyrogenic or herbivore-dominated 

savanna woodlands (Wigley et al. 2019). The importance of root starch reserves 

in mediating recovery between tree functional types may depend on the type (or 

extent) of disturbance. From the point of view of defoliation, fire and herbivory 

effects have been considered analogous (Bond & Keeley 2005), which may suggest 

that re-sprouting success should not be dependent on disturbance type (Zeppel et 

al. 2015). However, defoliated seedlings (depending on extent of damage) may 

have a higher recovery success than burnt seedlings (see Pausas et al. 2015). This 

may explain the difference observed between savanna-transition and forest 

seedling responses in the fire experiments (Chapter 3 and 4) and the defoliation 

experiment (Chapter 5). Under little to moderate disturbance (e.g. where 

substantial residual stem remains as in our experiment in Chapter 5) higher post-

disturbance growth allocation may not be less beneficial than a conservative 

strategy of higher resource storage in roots (Chapter 5). This leads to the 

tantalising but yet untested idea that a conservative strategy may be more 

beneficial under severe disturbance, such as savanna fires (Chapters 2, 3 and 4), 

and less beneficial under little to moderate disturbance e.g. browsing herbivores. 

Further experiments and field observations will be needed here.   

Re-sprout capacity is crucial for plants to thrive in a disturbance-prone 

environment such as the forest-savanna transition, which is why I emphasized the 

role of root starch in this discussion. It may, however, be more practical to discuss 

trait syndromes and how they relate to tree functional type recruitment success in 

general. Following the functional equilibrium hypothesis (Brouwer 1963), savanna-
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transition species may be expected to invest more in plant organs for the capture 

(and storage) of resources belowground for resprouting whereas forest species 

invest in aboveground parts for the capture of light (see for a review of this notion 

Boonman et al. 2019). Indeed, it is possible to separate savanna-transition and 

forest species based on combined traits into higher belowground versus 

aboveground allocating species (Chapter 5, Boonman et al. 2019, Hoffmann & 

Franco 2003). The generally acquisitive nature (which is in trade-off with a 

conservative strategy) of forest species is thus likely related to their poorer 

survival under the constraints explored in this thesis (Chapters 2, 3 and 4).  

Implications of differential tree functional type responses for 

forest-savanna dynamics and dry-forest restoration 

From the foregoing, the point has been established now that the composition and 

structure of the different vegetation types (which constitute the forest-savanna 

mosaic) reflect filtering effects, on tree functional type, by top-down and bottom-

up constraints (described in Chapter 1). Therefore, any changes in these 

vegetation controls may alter tree functional type recruitment patterns across the 

forest-savanna transition. Currently, the forest-savanna transition including 

adjacent dry forest in Ghana, are heavily degraded (Figure 1.1b, Chapter 1 and 

see Janssen et al. 2018). Much of the deciduous forest zone has become prone to 

fires due to increased fragmentation and consequent large edge effects (see 

Figure 6.1, Dwomoh et al. 2019). The large-scale canopy disturbance (even in 

protected areas) makes influences of top-down controls (mainly fire) very strong, 

preventing recovery (through natural regeneration) of forest species. Forest and 

savanna vegetation are, therefore, relatively stable across the forest-savanna 

transition of Ghana (Janssen et al. 2018).  
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Forest advance over savannas in many parts of Africa (Mitchard & Flintrop 

2013) may suggest that vegetation controls that constrain establishment of forest 

species are being relaxed (examples have been discussed in the previous section). 

This thesis has shown that forest tree seedlings respond very strongly to fire 

(Chapters 3 and 4; also detailed discussed in detail in previous sections of this 

chapter). Fire exclusion experiments suggest that forest species can establish in 

humid savannas in the absence of fire (Laris 2011, Laris and Wardell 2006). 

However, since the natural distribution of vegetation types within the transition is 

associated with soil factors (Veenendaal et al. 2015), it is likely that forest species 

may only (re)establish where soil factors are favourable. My experiment (Chapter 

5) on the role of lack of precipitation in the dry season did not show a negative 

dry season effect on forest seedling survival (details discussed in the previous 

section). However, soil moisture deficit has been previously shown to be related 

to greater mortality of forest tree seedlings in the forest savanna transition of 

Ghana (Cardoso et al. 2016). It is a matter of debate if soil nutrients limit the 

success (growth and survival) of forest species in savanna (e.g. Bond 2010, 

Ricardo et al. 2011, Lloyd & Veenendaal 2016). The exact role of soil nutrients on 

seedling establishment success, however, has not been tested in any consistent 

manner in this thesis and needs further investigation.  

Mostly, in addition to favourable soil factors, a relaxed top-down control; 

e.g. fire is an additional requirement for forest seedling establishment, but the 

relative importance of such a (top-down) control may depend on tree functional 

type. For example, some dry forest (e.g. pioneer) species can establish in 

woodlands in the forest-savanna transition under prevailing fire regimes (Cardoso 

et al 2016). Also, an admixture of more fire tolerant and more fire resistant tree 
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species may co-occur depending the degree of canopy closure (Ametsitsi et al. in 

prep; Torrelo-Raventos et al. 2013, Veenendaal et al. 2015, Swaine 1992).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Active fire detections in 2016 from MODIS for the forest zone of Ghana. Active 

fires points (fires Km-2 year-1) presented do not include non-vegetation fires. Source: 

Dwomoh et al. (2019). 

From a global change perspective, a steady reduction in precipitation is 

taking place for the transition zone of Ghana (Owusu & Waylen 2009), which may 

be linked to increased fire occurrences. Other elements of climate change (e.g. 

warming and CO2 fertilisation; discussed in Chapter 1) may be important in 

determining the balance between tree-dominated versus grass-dominated 

vegetation types in the transition, with CO2 increases likely to reduce the 

competitive advantage of grasses over trees (due to the C4 pathway). The resulting 

interactions between these factors on tropical vegetation are at present not clear. 

I did not explore effects of these global change factors in this thesis, but it may be 

speculated that based on fire responses (Chapters 3 and 4), the forest species 
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used in this thesis may be more vulnerable to any increase in fire frequency or 

intensity due to climate change. Human land use change itself remains an 

important driver of change in the forest-savanna transition of Ghana. While human 

rural depopulation may be the cause of forest expansion over savannas in some 

parts of Africa (as earlier discussed), there is no evidence of emigration from the 

transition zone in densely populated Ghana. Instead, pressure on land is actually 

increasing due to population increase and rising demand for resources from the 

transition zone (Afikorah-Danquah S 1997).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. A simplified model for managing tree seedling establishment in forest-savanna 

transitions. This model is modified from Figure 1.2 to show how key vegetation controls 

may influence recruitment success outside of closed canopy areas. The model shows that 

weed removal may eliminate need for fire protection. Optimal growth conditions (from 

availability of soil resources; water and nutrients) may also decrease fire effect on seedling 

survival due to linkages between plant size (determined by growth) and post-disturbance 

survival. Also the need for weed control and fire protection may be less for transitional 
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than forest tree species making the choice of species type a crucial decision for success in 

reforestation.  

The findings in this thesis have important implications for dry forest 

restoration. By manipulating top-down controls (e.g. fire or weeds) through 

management, it may be possible to restore dry forests (see conceptual model in 

Figure 6.2). Weed removal is beneficial to the growth performance of seedlings 

of tropical tree species (Chapter 4, Hoffmann & Haridasan 2008 (Figure 6.2), 

but may be unfeasible outside a commercial forestry setting. Active fire protection 

may be needed and feasible but may strongly depend on tree functional type. 

Forest species may require many folds the sizes required by savanna-transition 

species to resist fire-induced mortality (Chapters 3 and 4, Gignoux et al. 2016). 

The obvious choice for species for recovery of dry forest based on trait differences 

is therefore with savanna-transition species.   

Outlook  

Insights into tree recruitment across tropical forest-savanna transitions are needed 

for understanding current patterns in vegetation distribution, future changes under 

various scenarios of climate and land use change and for vegetation management 

decisions. The responses of forest and savanna-transition tree species to top-down 

and bottom-up vegetation controls largely determine the recruitment success of 

species across the forest-savanna transition. In this thesis, I assessed seedling 

responses (of growth, survival and morphology traits) to some important 

vegetation controls. From the results presented and discussed for the various 

research chapters, savanna-transition tree species are more tolerant than forest 

species to many of the constraints assessed.  

The mosaic appearance of the transition (which is likely to expand under 

increased disturbance) reflects a filtering of tree functional type into the different 
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vegetation formations. However, trait variation (e.g. in shade tolerance) among 

forest and savanna-transition tree species may explain the mixing of tree 

functional types in transition vegetation types. The effects of various vegetation 

controls assessed in this this thesis may be intensified by changes in land use and 

climate, making future dynamics in the transition complex.  

In the forest-savanna transition in Ghana, there have been large scale shifts 

from forest to more savanna-like vegetation. This reflects the effects of certain 

disturbance regimes, likely put in place by human land use change, which constrain 

the recruitment of tree species. It is clear from this study that forest species are 

worst affected by fire (the dominant disturbance factor) hence fire suppression is 

needed to attain recovery of some degree of forest cover, as shown in fire exclusion 

trials (Aubreville 1949, Louppe 1995, Veenendaal et al. 2018). Savanna-transition 

tree species, which are capable of forming forest-physiognomies (transition 

forests, Ametsitsi et al. in prep., Swaine 1992) provide a degree of some resilience. 

This speculation is based on the higher establishment found for savanna-transition 

tree seedlings under the constraints imposed in this thesis. There, however, is also 

evidence for the existence of these forests in the fire prone transition (and the dry 

semi-deciduous forest) zone (Torrelo-Raventus et al. 2013, Swaine et al 1976). 

Resilience from transition forests may be influenced by the scale of deforestation 

as this determines the extent to which vegetation controls (mainly top-down, e.g. 

fire) constrain seedling recruitment. This explains why pocket of (transition) 

forests remain only in protected areas across the transition (and including the 

adjacent semi-deciduous forest). 

Responses of savanna-transition species in my experiments also suggest 

possibilities for restoration of degraded dry forests. One practical challenge is that 

many savanna-transition tree species fall within the timber category of “lesser-
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known” or “lesser-used” species which had traditionally been given much less 

priority in forestry practice due to their lower economic value (Oteng-Amoako 

2006). Recently, however, species such as Khaya senegalensis, Daniella oliveri 

and Afzelia africana are key timber species in construction while Pterocarpus 

erinaceus is now being exploited for export (Dumenu & Bandoh 2016). 

Additionally, species aforementioned are preferred for use as charcoal and thus 

very useful in woodlots. Therefore, reforesting the transition zone with its 

characteristic species pool is important not only for ecological reasons but for 

economic ones as well. The need for protection from fire and weeds (as shown in 

Figure 6.2) may make logistical demands high, but possible when commercial 

forestry interests are involved. 

General conclusions and future research needs    

I showed that canopy cover variation across the forest-savanna transition 

selects for different tree functional types, with survival in savanna woodlands, with 

high grass biomass, being contingent upon higher root allocation and root starch 

storage, while shade tolerance played a role in survival in the forest. To conclude 

that differential tree species establishment represents niche partitioning (as results 

suggest) may be overstretching the results of this study due to the limited number 

of species pairs used. An important research need, therefore, will be to expand the 

number of species pairs so as to obtain the full range of trait variation in response 

to the different constraints in the various vegetation types. This thesis showed that 

competitive interactions between tree seedlings and grass results in direct growth 

suppression of tree seedlings regardless of tree functional type. Competition may 

also indirectly (via root mass and starch reserves) decrease post-fire survival for 

forest, but not savanna-transition tree seedlings. This latter notion needs further 
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testing since a strong pattern existed but the effect was not found. Seedling trait 

responses suggested light limitation may drive competitive interaction between 

tree seedlings and grasses in tall grass savannas, but the relative effects of soil 

moisture and nutrients need to be separated in additional carefully manipulated 

common garden experiments and follow-up field tests.  

Generally, forest species are more sensitive to fire than savanna-transition 

tree species. The dry season soil moisture deficit may not have been properly 

simulated in this study, but my results suggest that under field conditions in the 

absence of competition with larger trees, forest species seedlings can survive the 

dry season in the savanna as long as they are big enough for their roots to reach 

a declining water column. This may explain the presence of some forest species in 

the forest-savanna transition and even in savanna vegetation.  

Finally, this thesis showed adverse synergistic effects of defoliation and soil 

moisture limitation on tree seedling growth performance irrespective of tree 

functional type. At the seedling stage, savanna-transition trees may just be as 

sensitive as forest species to moisture limitation. Different tree functional types 

invest differently in above- and belowground foraging and allocation traits, but we 

did not find evidence that increased conservation improved regrowth performance 

following defoliation. As a further step, it is important to investigate the 

relationships between disturbance type (e.g. fire versus defoliation) and seedling 

allocation traits on regrowth performance more thoroughly. Nevertheless, I predict 

an important role for transition species in the recovery (and resilience) of transition 

forest in the forest-savanna transition of West Africa. 
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Summary 

Vegetation transition has important implications for the carbon cycle, land-

atmosphere feedbacks and the livelihoods of millions of people, but it is still a 

poorly understood phenomenon. The retreat, advance and stability of forests have 

all been observed across the forest-savanna boundaries of Africa, suggesting a 

complex interplay between tree recruitment and the dynamics in vegetation 

controls (e.g. canopy cover, fire, herbivory, precipitation and soil resources). 

However, it has yet to be demonstrated how known vegetation controls interact to 

influence recruitment of different tree functional types, leading to the observed 

variation in patterns of tree recruitment and mosaic appearance of the forest-

savanna transition. Differential tree functional type responses to vegetation 

controls may also be important for predicting future vegetation dynamics and 

useful, also, for reforestation of degraded dry forests. By combining common 

garden and greenhouse experiments, I explain how savanna-transition and forest 

tree species differ in their responses to a number of vegetation controls across a 

West African forest-savanna transition.  

In the first research chapter of this thesis, I showed (from a three-year long 

field transplant experiment) that woody canopy cover variation was associated 

with variations in microsite related to the degree of tree cover. I found differences 

in seedling establishment success among tree species and functional types. 

Survival in savanna woodland was contingent upon higher biomass allocation and 

starch storage in roots while shade tolerance played a role in adjacent forest. There 

were also important species-specific differences within tree functional types which 

indicated the possible existence of “many shades of green” and may explain the 

observed variation in vegetation composition within the forest-savanna transition. 
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In the second research chapter, I showed (from a common garden 

experiment in the humid savanna of Ghana) that high grass biomass, characteristic 

of humid savannas, had adverse effects on wet season tree seedling growth 

performance for both forest and savanna-transition tree functional types. Thus, 

grass competition alone (in the absence of fire) may not prevent establishment 

success of forest or savanna-transition tree species in humid savannas, possibly 

explaining instances of forest species slowly encroaching humid savannas in fire-

free periods. Due to the relationship between seedling growth performance (and 

hence seedling size) and recovery from disturbance (e.g. fire), I explored the 

possibility of wet season growth suppression (via grass competition) influencing 

post-fire seedling survival in the same research chapter. Competition with grass 

decreased root mass (and therefore, total starch reserves in roots) for forest 

species but not savanna-transition tree species, and is therefore expected to 

induce differential post-fire survival response between the tree functional types. 

Although patterns indicated such a process, this could not be proven. This chapter 

therefore reveals possible interaction of wet season grass competition and dry 

season fire survival which needs further testing.  

In the third research chapter, I demonstrated (using a common garden 

experiment in the humid savanna of Ghana) that the establishment of forest and 

savanna-transition tree species in humid savannas is most constrained by the 

combination of the dry season and fire. I attempted to disentangle the influences 

of these important vegetation drivers (which effects could not be separated in the 

previous chapters) to show that fire alone, largely explained failure of forest 

species, but not savanna-transition species, to establish in humid savanna. 

Irrigation increased survival of savanna-transition species, but not forest species. 
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The findings here explain why forest advance is often associated with fire 

suppression and why transition species dominate pyrogenic humid savannas.    

In the fourth and final research chapter, I explored (in a greenhouse 

experiment) the interactive effects of low soil moisture regime and defoliation on 

(re)growth performance of forest and savanna-transition tree seedlings. Forest 

seedlings grew faster than savanna-transition tree species only at a later growth 

stage, but lower soil moisture and defoliation synergistically decreased growth 

performance for both tree functional types. Allocation patterns and root starch 

reserves differed between forest and savanna-transition tree functional types 

consistent with expectation, but the difference in traits was unrelated to regrowth 

of defoliated seedlings. Instead, regrowth performance was lower under a lower 

soil moisture regime. This chapter highlights the potential negative effect of lower 

precipitation on post-disturbance recovery of tropical tree species, which is 

relevant in the forest-savanna transition subjected to changes in both climate and 

land use change. 

In the synthesis, I provided an outlook for changes in the forest-savanna 

transition and the potential for the restoration of dry forest with its characteristic 

species pool.  

  

Chapter 6

196



194 
 

Samenvatting 

Vegetatieovergangen hebben belangrijke implicaties voor de koolstofcyclus, 

broeikaseffect en het levensonderhoud van miljoenen mensen, maar het is nog 

steeds een slecht begrepen fenomeen. De terugtrekking, uitbreiding, en stabiliteit 

van bossen zijn allemaal waargenomen in de bos-savannegrenzen van Afrika, wat 

een complex samenspel suggereert tussen de vestiging van bomen en de 

dynamiek in mechanismen die vegetatie controleren (e.g. kroonbedekking, vuur, 

vraatschade, nutriëntenbeschikbaarheid). Het is echter nog niet aangetoond hoe 

bekende vegetatiecontroles op elkaar inwerken om de vestiging van verschillende 

soorten boomtypes te beïnvloeden, wat leidt tot de waargenomen variatie in 

patronen van boomvestiging en de mozaïek van de overgang van bos naar 

savanne. Verschillende reacties van boomtypen op vegetatiecontroles kunnen ook 

belangrijk zijn voor het voorspellen van toekomstige vegetatiedynamiek en 

kunnen ook nuttig zijn voor herbebossing van aangetaste droge bossen. Door 

zogenoemde common garden-, en kasexperimenten te combineren, leg ik uit hoe 

savanne-overgang en bosboomsoorten verschillen in hun reacties op een aantal 

vegetatiecontroles in een West-Afrikaanse bos-savanne-overgang. 

In het eerste onderzoekshoofdstuk van dit proefschrift laat ik zien (met een 

driejarig transplantatie-experiment) dat de variatie in de kroonbedekking van 

bossen geassocieerd was met variaties in microhabitat gerelateerd aan de mate 

van boombedekking. Ik vond verschillen in de mate van succes van vestiging van 

zaailingen tussen boomsoorten en functionele typen. Overleving in savanne was 

afhankelijk van hogere biomassa en opslag van zetmeel in wortels, terwijl 

schaduwtolerantie een rol speelde in aangrenzend bos. Er waren ook belangrijke 

soortspecifieke verschillen binnen functionele boomtypen die het mogelijke 

bestaan van "vele tinten groen" aanduiden en mogelijk de waargenomen variatie 
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in vegetatiesamenstelling binnen de overgangsgebieden van bos naar savanne 

verklaren. 

In het tweede onderzoekshoofdstuk laat ik zien (in een common-

gardenexperiment in de vochtige savanne van Ghana) dat de karakteristieke hoge 

grasbiomassa van vochtige savannes  nadelige effecten had op de groeiprestaties 

van boomzaailingen van functionele typen van zowel bos- als savanne-

transitieboomsoorttypen in natte seizoenen. Zo kan grasconcurrentie alleen (in 

afwezigheid van brand) het vestigingssucces van bos- of savanne-

transitieboomsoorttypen in vochtige savannes niet verhinderen, wat mogelijk een 

verklaring kan zijn voor het feit dat bossoorttypen zich langzaam in de vochtige 

savannes kunnen vestigen gedurende brandvrije periodes. Vanwege de relatie 

tussen de groeiprestaties van zaailingen (en dus de grootte van zaailingen) en 

herstel na verstoring (bijv. brand), heb ik in hetzelfde hoofdstuk de mogelijkheid 

onderzocht van groeionderdrukking in het natte seizoen (via grascompetitie). 

Concurrentie met gras verminderde de wortelmassa (en dus de totale 

zetmeelreserves in wortels) voor bosboomsoorttypen, maar niet voor savanne-

transitieboomsoorttypen, en daarom wordt verwacht dat ze een verschillende 

overlevingsreactie zullen laten zien. Hoewel een dergelijk patroon leek te bestaan, 

kon dit niet worden bewezen. Dit hoofdstuk laat daarom een mogelijke interactie 

zien tussen grascompetitie in het natte seizoen en brandoverleving in het droge 

seizoen die verder moet worden getest. 

In het derde onderzoekshoofdstuk heb ik aangetoond (met behulp van een 

common garden-experiment in de vochtige savanne van Ghana) dat de vestiging 

van bos- en savanne-transitieboomsoorttypen in vochtige savannes het meest 

wordt beperkt door de combinatie van het droge seizoen met vuur. Ik heb 

geprobeerd de invloeden van deze belangrijke drijfveren van vegetatieverandering 

Chapter 6

198



196 
 

(die in de voorgaande hoofdstukken niet van elkaar konden worden gescheiden) 

te ontwarren om aan te tonen dat vuur in vochtige savannes grotendeels het niet 

kunnen vestigen van bosboomsoorttype kon verklaren, maar niet voor savanne-

overgangssoorttypen. Irrigatie verhoogde de overleving van savanne-

transitieboomsoorttypen, maar niet van bosboomsoorttypen. Dit resultaat kan 

verklaren waarom bosopkomst vaak wordt geassocieerd met brandbestrijding en 

waarom overgangssoorten brandgevoelige, vochtige savannes domineren. 

In het vierde en laatste hoofdstuk van het onderzoek onderzocht ik (in een 

kasexperiment) de interactieve effecten van een laag bodemvochtregime en 

ontbladering op de (her-)groeiprestaties van bos- en savanne-

transitieboomzaailingen. Boszaailingen groeiden pas in een latere groeifase sneller 

dan savanne-overgangsboomsoorten, maar lagere bodemvochtigheid en 

ontbladering samen verminderden de groeiprestaties synergetisch voor beide 

functionele typen. Biomassa-opslagpatronen en wortelzetmeelreserves 

verschilden, zoals verwacht, tussen de bos- en savanne-transitieboomsoorttypen, 

maar het verschil in die eigenschappen kon de hergroei van ontbladerde zaailingen 

niet verklaren. In plaats daarvan waren de hergroeiprestaties lager bij een lager 

bodemvochtregime. Dit hoofdstuk schijnt licht op het potentiële negatieve effect 

van lagere neerslag op het herstel na verstoring van tropische boomsoorten, wat 

relevant is in de overgang van bos naar savanne die onderhevig is aan 

veranderingen in zowel klimaat- als landgebruiksverandering.  

In de synthese heb ik vooruitzichten gegeven voor veranderingen in de 

overgang van bos naar savanne en het potentieel voor het herstel van droog bos 

met zijn karakteristieke soortengemeenschap. 
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