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Abstract: The European Space Agency (ESA)’s Sentinel-2A (S2A) mission is providing time series
that allow the characterisation of dynamic vegetation, especially when combined with the National
Aeronautics and Space Administration (NASA)/United States Geological Survey (USGS) Landsat
7 (L7) and Landsat 8 (L8) missions. Hybrid retrieval workflows combining non-parametric Machine
Learning Regression Algorithms (MLRAs) and vegetation Radiative Transfer Models (RTMs) were
proposed as fast and accurate methods to infer biophysical parameters such as Leaf Area Index (LAI)
from these data streams. However, the exact design of optimal retrieval workflows is rarely discussed.
In this study, the impact of five retrieval workflow features on LAI prediction performance of
MultiSpectral Instrument (MSI), Enhanced Thematic Mapper Plus (ETM+) and Operational Land
Imager (OLI) observations was analysed over a Dutch beech forest site for a one-year period.
The retrieval workflow features were the (1) addition of prior knowledge of leaf chemistry (two
alternatives), (2) the choice of RTM (two alternatives), (3) the addition of Gaussian noise to RTM
produced training data (four and five alternatives), (4) possibility of using Sun Zenith Angle (SZA) as
an additional MLRA training feature (two alternatives), and (5) the choice of MLRA (six alternatives).
The features were varied in a full grid resulting in 960 inversion models in order to find the overall impact
on performance as well as possible interactions among the features. A combination of a Terrestrial Laser
Scanning (TLS) time series with litter-trap derived LAI served as independent validation. The addition
of absolute noise had the most significant impact on prediction performance. It improved the median
prediction Root Mean Square Error (RMSE) by 1.08 m2 m−2 when 5 % noise was added compared to
inversions with 0 % absolute noise. The choice of the MLRA was second most important in terms of
median prediction performance, which differed by 0.52 m2 m−2 between the best and worst model.
The best inversion model achieved an RMSE of 0.91 m2 m−2 and explained 84.9% of the variance of the
reference time series. The results underline the need to explicitly describe the used noise model in future
studies. Similar studies should be conducted in other study areas, both forest and crop systems, in order
to test the noise model as an integral part of hybrid retrieval workflows.

Keywords: leaf area index (LAI); Sentinel-2; forest; machine learning; vegetation radiative transfer
model; Discrete Anisotropic Radiative Transfer (DART) model
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1. Introduction

Vegetation represents a primary component in Earth’s terrestrial carbon cycle, with respect to
its role both as a source of CO2 through respiration and as a sink of CO2 through photosynthesis [1].
Its photosynthetic capacity is a function of available leaf area, which can be quantified in terms of Leaf
Area Index (LAI). LAI is the leaf area per horizontally projected ground area [2]. It was acknowledged
as an Essential Climate Variable (ECV) with high priority in the European Space Agency (ESA)’s
Copernicus program [3] and is a focus area of the Committee on Earth Observing Satellites (CEOS)
Working Group on Calibration and Validation (WGCV) Land Product Validation (LPV) subgroup [4].

Multi-spectral Earth observation data are sensitive to the amount of canopy foliage, primarily
in the NIR and SWIR spectral region [5]. In the NIR, the leaf mesophyll with its enclosed air and
air–tissue interfaces results in high reflectance. In the SWIR, the water contained in the leaves leads
to high reflectance. Denser leaf layers increase these effects on the canopy level. In this context,
the multi-spectral Landsat missions and especially its latest satellite Landsat 8 [6] have shown potential
to estimate crop LAI [7–9], forest LAI [10] and in combination with Radiative Transfer Models (RTMs)’
generic LAI [11]. However, the missions’ orbits defines the revisit time as 16 days, which may be
insufficient to track fast vegetation changes such as spring leaf flush. The Sentinel-2 mission was
awaited for the purpose of estimation of biophysical parameters such as LAI. Its higher spatial
resolution, higher revisit frequency and additional red edge bands are emphasised as potentials for
performance advances, when compared to the Landsat missions. Agricultural testing campaigns
such as SEN3Exp and SicilyS2EVAL offered measurements to explore opportunities for estimating
vegetation parameters with spectral observations from Sentinel-2 [12–15]. The SPOT5 Take5 satellite
campaign delivered a dataset with a 5-day revisit time to explore the temporal domain [16]. However,
the domain of forest remote sensing has not seen this extent of targeted preparation campaigns.
Nevertheless, approaches are advancing to make use of the Sentinel-2 open data in terms of biophysical
parameter estimation [17,18]. All these campaigns and connected studies underlined that Sentinel-2
has high potential for estimation of LAI and Chlorophyll a and b (Cab) in diverse canopies.

In parallel with the advances in sensor technology and data availability, Machine Learning
Regression Algorithms (MLRAs) were introduced as retrieval techniques [14,19–23]. Their main
advantages are their ability to map the nonlinear relationship between canopy parameters and the
reflectance signal, and their fast mapping speed, compared to look-up tables [23]. Especially Gaussian
Process Regression (GPR)—a kernel-based MLRA—showed good results in terms of prediction
accuracy and could achieve the 10% precision for Cab retrieval required by the Global Climate
Observing System (GCOS) [14]. Like traditional retrieval techniques, MLRAs require a database
of biophysical parameters, and their associated reflectance signal to learn the mapping between
spectral bands and biophysical parameters. This database can originate from field observations,
but also from vegetation RTMs. RTMs simulate the spectral properties of vegetation based on a
limited set of biophysical parameters and the laws of radiative transfer, which makes them universally
applicable. Verrelst et al. [23] conclude that MLRAs and RTMs combined in training workflows have a
potential for implementation in operational processing chains for retrieving biophysical parameters.
These workflows are referred to as hybrid training workflows.

Turbid medium RTMs, which approximate the vegetation canopy as one homogeneous layer,
dominate inversion workflows (e.g., [19,24]). Among these RTMs, PROSAIL—a combination of
the PROSPECT leaf and the SAIL canopy model [5]—is one of the most widely used. The main
reasons for the use of turbid medium models are their fast processing speed and the low number
of input parameters. However, PROSAIL does not agree well with geometrically explicit RTMs
in the case of heterogeneous scenes, i.e., scenes where natural objects such as trees are explicitly
modelled [25]. As modelling capabilities have outrun means to collect ground truth, a final evaluation
of the differences remains open [26]. Apart from this, so-called emulators make it possible to build fast
surrogates for complex models [27]. For that, a complex physical model is replaced with a statistical
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learning model that was trained on input–output combinations of the physical model. This makes it
practically possible to exploit heterogeneous RTMs in operational contexts.

In the context of hybrid training workflows, addition of noise to the RTM generated spectral
data has been a common practice [19,28–30]. This is typically achieved by adding an absolute term
or multiplying with a multiplicative term across the RTM generated spectral bands following a
Gaussian distribution. The addition of noise has multiple purposes: it simulates errors of radiometric
calibration, atmospheric noise and residuals from the atmospheric correction, but to some extent also
bridges between the simplified representation of the RTM and the actual radiometric behaviour of the
canopy [19]. Generally, noise prevents the inverse model from over-fitting on the training database.
However, an accurate quantification of all error terms in the sensing process remains difficult [19].
Additionally, the quantification of the optimal noise level to be added has not been attempted for
hybrid workflows yet.

Considering these developments together—decametric observations from Sentinel-2 and Landsat,
fast mapping with MLRA algorithms and fast radiative transfer modelling with emulators—a
decametric LAI product would be possible. Such a product would offer better opportunities to
monitor ecosystems in fragmented landscapes than comparable products on hectometric scale such as
the MODerate-resolution Imaging Spectroradiometer (MODIS) [31] and CYCLOPES [19] LAI products.
However, the discrete implementation of hybrid learning processing chains requires many decisions
to be taken on—for example, the used RTM and MLRA. Often implemented, but rarely discussed in
depth so far, is the addition of noise to the synthetic spectral data.

The aim of this study was to compare different hybrid retrieval workflows that make combined
use of Sentinel-2A (S2A) MultiSpectral Instrument (MSI), Landsat 7 (L7) Enhanced Thematic Mapper
Plus (ETM+) and Landsat 8 (L8) Operational Land Imager (OLI) observations for forest LAI retrieval.
Features in the retrieval workflow were altered in a fully-factorised way to explore their effects.
The tested features were: (1) addition of prior knowledge of leaf chemistry, (2) the choice of RTM, (3)
the addition of Gaussian noise to RTM produced training data, (4) possibility of using Sun Zenith Angle
(SZA) as an additional MLRA training feature, and (5) the choice of MLRA. Performance statistics
for the realisations were derived to identify the relevance of the features with respect to prediction
performance. Apart from this, features were analysed in terms of their first degree interactions with
other features.

2. Data

2.1. Study Site

This study focussed on the Speulderbos Fiducial Reference site in the Veluwe forest area (N
52◦15.15′ E 5◦42.00′), The Netherlands [32,33] (www.wur.eu/fbprv). In an earlier forest inventory,
the site was marked with a wooden pole grid with 40 m spacing, which was geo-located with a LeicaTM

Robotic Total Station (Leica Geosystems AG, Heerbrugg, Switzerland) and triangulation. This grid
served to define the five plots A to E used as validation for this study (Figure 1). The plot locations
were chosen with a distance of at least 80 m between them. This distance is four times the image
registration error according to S2A mission definition [34].

The stand is predominantly composed of European beech (Fagus sylvatica). A few specimens
of pedunculate oak (Quercus robur) and sessile oak (Quercus petraea) can be found as well. In the
understorey, few specimens of evergreen European holly (Ilex aquifolium) can be found with heights
of <7 m in plots A, B, and E. The stand was created as a plantation in 1835 and left unmanaged from
then on, so that dominant trees are of even age. Recruitment took only place in canopy openings
caused by falling trees as was the case in plot D. This was reflected by the total number of stems, which
was 1059 ha−1 in plot D compared to 280, 250, 280 and 202 ha−1 in plots A, B, C and E, respectively,
as determined in a forest inventory in 2013/2014. Basal area was 43.0, 42.5, 31.4, 34.8 and 37.2 m ha−1

for plots A, B, C, D, and E, respectively.

www.wur.eu/fbprv
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Figure 1. Speulderbos study site with TLS scan positions and polygons representing the five plots.
Background image is an airborne false-colour composite of 2013. The inset shows the location of the
study site within the Netherlands.

2.2. Field Data

2.2.1. Terrestrial Laser Scanning (TLS) Data

During a field campaign in 2016, a TLS time series was acquired that followed the phenological
development of the trees in the study site. The five plots were revisited 28 times with a RIEGL VZ-400
scanner (RIEGL LMS GmbH, Horn, Austria). Samples were taken during the growing season, with an
increased intensity during leaf flush and senescence. Rain events and wet canopy conditions were
avoided as wet canopy elements tend to absorb the laser pulses, thereby introducing a bias in the
estimation of gap fraction. A comprehensive list of all sampling dates can be found in Table A1. In each
plot, five scan positions were established that have been visited on each field visit, resulting in a total
of 25 positions per field visit. The positions were arranged in a star shape with a centre position
determined according to the wooden poles and four positions at the corners of imaginary squares with
20 m edge length.

The individual point clouds were processed with the PyLidar package (http://pylidar.org) based
on the methodology developed by Calders et al. [35]. This method basically treats the TLS laser
pulses as virtual probes similar to point quadrats, which have been proposed for measuring LAI [36].
The underlying assumption is that the canopy is a random medium with a density proportional to
its LAI. The canopy density is proportional to the TLS hit probability, while the TLS hit probability
is the inverse of the gap fraction. In this aspect, the TLS gap fraction is similar to the gap fraction
derived from digital hemispherical photography [37], which is a standard method to measure LAI [38].
The gap fraction was derived by counting pulses that exited the canopy without return versus all
pulses fired in the hinge angle region, which was approximated by the zenith angle region between
50◦ and 60◦. Terrain correction for vertical profiles as proposed by Calders et al. [39] was not used
because only total canopy Plant Area Index (PAI) values were required, which is indifferent to the
terrain. Finally, PAI was derived as follows:

PAI = −1.1 log(Pgap(57.5◦)) (1)

http://pylidar.org
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where Pgap(57.5◦) is the gap fraction at the hinge angle. PAI is defined as the one sided surface area
of all plant material per unit area ground surface [35]. Alternatively, it can be defined as PAI =

LAI + WAI, where WAI is the wood area index. This is different from LAI, which only includes
foliage material [35].

2.2.2. Littertrap Data

Additionally, 25 litter traps were installed in the area to directly measure LAI per season. In each
plot, five litter traps were positioned close to the TLS sampling points. Their construction was based
on recommendations of the Center for Tropical Forest Science (CTFS) Global Forest Carbon Research
Initiative Litterfall Monitoring Protocol, version March 2010 (https://forestgeo.si.edu/sites/default/
files/litterfall_protocol_2010.pdf). Each trap consisted of a PVC pipe bent to a circle with an area of
0.7 m2 and holding a plastic net. The net allows water to drain and prevent decomposition of the litter
content. For each trap, the pipe circles were levelled to assure correct surface area and are held in place
1 m over the ground with four wooden poles.

Litter was collected seven times in 2016 over the course of the season on 1 June, 12 August, 7
and 21 October, 11 November , 2 December, as well as on 10 January in 2017 to collect the last fallen
leaves of 2016. Sampling dates were chosen to account for the increased litter-fall in autumn. Litter
was collected with paper bags; sorted by species and components, i.e., leaves, twigs, and husks; dried
for at least 24 h at 65 ◦C; and weighted. For each litter collection, 100 leaves were randomly sampled,
and their area determined with a leaf area meter (Licor Area Meter 3100, LI-COR, Inc., Lincoln, NE,
USA). Specific Leaf Area (SLA)—the unit area of leaf per unit mass—was estimated based on these
sub-samples [40]. The total LAI per trap for the whole season was then inferred from the total collected
dry leaf weights taking into account the litter trap surface area of 0.79 m2. Plot level LAI was estimated
as the mean of the single traps.

2.2.3. Leaf Sampling Data

Apart from these canopy structural measurements, the leaf chemistry was monitored over the
course of the year by inversion of leaf spectral samples. For this purpose, two beech trees between
plot A and B were rigged with ropes and climbed four times at different points of leaf development.
On each tree, five branches were cut off at each sampling event from near the crown top. From each
branch, five leaves were sampled randomly when no differences in development stage were visible.
Especially during the last sampling event, the leaves showed different stages of senescence. In that
case, the leaves were sampled to represent the abundance of the respective senescence stage on the
branch. Leaf reflectance spectra were acquired with a Fieldspec Pro 3 (ASD Incorporated, Boulder, CO,
USA) equipped with an integration sphere. Additionally, the same leaves were sampled with a Minolta
SPAD-500 chlorophyll meter (Spectrum Technologies, Inc., Plainfield, IL, USA). For this, four SPAD
measurements per leaf were averaged. The sampling resulted in a total of 173 reflectance spectra.

2.3. Satellite Data

2.3.1. Sentinel-2A MSI

S2A MSI was primarily designed for land cover and disaster monitoring, but also for retrieval
of biophysical parameters such as Fraction Absorbed Photosynthetically Active Radiation (FAPAR),
LAI and Fractional vegetation cover (FCover) [34]. Operational products incorporate the Top Of
Atmosphere (TOA) Bidirectional Reflectance Factor (BRF) and recently the Surface Reflectance (SR)
BRF. Table 1 gives an overview of the MSI spectral bands.

https://forestgeo.si.edu/sites/default/files/litterfall_protocol_2010.pdf
https://forestgeo.si.edu/sites/default/files/litterfall_protocol_2010.pdf
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Table 1. Spectral band specifications for bands and missions used in this study (band centres and
widths in nm), bands used for atmospheric correction were omitted [34,41].

Domain Landsat 7 ETM+ Landsat 8 OLI Sentinel-2A MSI
Name Center Width Name Center Width Name Center Width

VIS B1 485 70 B2 482 60 B2 490 65
B2 560 80 B3 561 57 B3 560 35
B3 660 60 B4 654 37 B4 665 30

NIR B4 835 130 B5 864 30 B5 705 15
B6 740 15
B7 783 20
B8 842 115
B8A 865 20

SWIR B5 1650 200 B6 1608 84 B11 1610 90
B7 2220 260 B7 2200 187 B12 2190 180

S2A MSI TOA BRF products for tile T31UFT were downloaded from the Copernicus Open Access
Hub (https://scihub.copernicus.eu/) for the period of January 2016 until December 2016. The relative
orbits R008 and R051 both include the Speulderbos site, thereby doubling the number of observations
compared to single orbit observation. TOA BRF products were further processed with sen2cor 2.4.0
(http://step.esa.int/main/third-party-plugins-2/sen2cor/) to derive SR BRF products. During further
processing, 60 m bands (B01, B09, B10) were excluded because they are heavily affected by atmospheric
conditions and, therefore, surface reflectance products were not provided for these bands. Cloud and
quality screening was performed manually under consideration of the scene classification delivered
with sen2cor. For this, Normalised Difference Vegetation Index (NDVI) time series for the extracted
observations were inspected. Potentially cloud free scenes were identified as high NDVI values in the
time series and, therefore, those images were accepted for further processing.

Of the 64 dates in 2016 when MSI observations of the Speulderbos site were available, 21 dates
yielded usable observations, which is 32.8% of all. Figure 2 shows the bands B04 and B8A, which are
the red and NIR spectral bands (Table 1) and hold most information on change in canopy characteristics.
The automatic scene classification could identify most of the cloud affected conditions with an accuracy
of 91.6%. It should be noted that all observations that were not clouds were further processed, no matter
their assigned Scene Classification (SCL) class. Overall, the time series depicted the start of season in
April and May: the red reflectance decreased over all plots from 0.059± 0.003 on May 1 to 0.022± 0.001
on May 11 due to absorption by chlorophyll. At the same time, reflectance in band B8A increased from
0.188± 0.008 to 0.406± 0.014, which can be attributed to the leaves’ characteristic scattering behaviour.
During late summer, the overall temporal course remained stable with a slightly decreasing trend. This
trend could also be observed in the validation time series (Figure 6). An exception was 17 July, when
B8A reflectance jumped to 0.526± 0.023. There were no clouds over the plots on that day, but clouds
close by probably caused adjacency effects.

https://scihub.copernicus.eu/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
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Figure 2. Observed BRFs for S2A MSI red and NIR band over the year 2016 for the five Speulderbos
plots (see Figure 1). Points represent average BRF over the five plots, error bars one standard deviation.
Colour codes the number of plots for which the observations were useful (clear sky). SCL class refers
to the mode of all Scene Classification (SCL) given by sen2cor over the five plots. Observations used
refers to how many of the BRF of the five plots were not affected by clouds and used for analysis.

2.3.2. Landsat ETM+ and OLI

Similar to S2A, atmospherically corrected data are available from the Landsat Archive. For this
study, L7 ETM+ and L8 OLI SR BRF products at Worldwide Reference System (WRS) row 24 and WRS
path 197 and 198 were obtained as on-demand download products provided by the United States
Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center Science Processing
Architecture (ESPA) On Demand Interface (https://landsat.usgs.gov/landsat-surface-reflectance-high-
level-data-products). Both Landsat time series profited from two orbits from which Speulderbos can
be observed. Clouds and cloud shadows were identified in the same manner as for MSI and with the
support of the pixel quality layer delivered with Landsat Collection 1 products.

In order to extract SR from the satellite SR products, the plots needed to be defined in terms
of geo-referenced polygons. For this, the circular field of view of the TLS at the five scan positions
within each plot (Figure 1) was considered. Each position was buffered with a circle of 14.4 m radius,
which corresponds to the top of canopy of the approximated canopy height of 25 m and maximum
observation angle 60◦ of the TLS. The combined area of the circles represented the plots. The square SR
product pixels did not correspond exactly to the polygonal definitions of our plots. Therefore, pixels
overlaying each plot were weighted according to their overlap area with the respective plot polygon in
order to estimate the SR of the plot.

In case of the two Landsat missions, 41 and 42 observation dates were available of which 8 (17.1%)
and 9 (15.8%) were usable for ETM+ and OLI, respectively (Figure 3). The pixel quality bits for cloud
occurence indicated at least medium confidence, which appeared to indicate clear sky conditions
after checking the corresponding images. As for MSI, these could mostly be found during the spring
green-up and late summer periods. Cloud conditions, represented by bits set to high confidence cloud,
were identified with an accuracy of 85.9%.

https://landsat.usgs.gov/landsat-surface-reflectance-high-level-data-products
https://landsat.usgs.gov/landsat-surface-reflectance-high-level-data-products
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Figure 3. Observed BRFs for Landsat 7 ETM+ and Landsat 8 OLI MSI NIR bands over the year 2016
for the five Speulderbos plots (see Figure 1). Points represent average BRF over the five sites, error bars
one standard deviation. Colour codes the number of plots for which the observations were useful (clear
sky). Pixel QA refers to the pixel quality bits. Six observations were discarded because they exceeded a
reflectance of 1 (undetected clouds). Observations used refer to how many of the BRF of the five plots
were not affected by clouds and used for analysis.

In September, when multiple observations of MSI and OLI were available, they produced
comparable SR BRFs when excluding September 5: average per band BRFs showed differences of
less than 5%, which is the S2A mission requirement for SR products. Only L7 ETM+ and S2A MSI
showed differences in the NIR of 7.4%, which can be explained by the wider spectral response curve
of the ETM+ NIR band 4. These similarities give confidence in comparable behaviour of SR BRFs
and to combine observations from these sensors. However, for a detailed comparison the spectral
response functions of the sensors and the used atmospheric processors need to be taken into account
(e.g., [42]). In fact, for optimal inter-operability, the S2A and Landsat products should be harmonised
before combined processing [43].

3. Methods

The aim of this study was to modify features—or elements—of a hybrid retrieval workflow for
LAI in order to test their impact on the prediction performance. The general order for a hybrid retrieval
workflow is as follows [23,44]:

1. A vegetation RTM is run in forward mode to create a database of training samples, i.e., biophysical
parameters serve as input for the RTM to predict spectral BRFs. The parameter values are altered
to cover multiple canopy conditions.

2. Gaussian noise is added to the spectra to prevent the MLRA from over-fitting and simulate
observation noise.

3. Multiple MLRAs are trained on the database to learn the inverse mapping, i.e., from spectral
bands to biophysical parameter. Model hyperparameter tuning is performed on a part of the
generated database, while the rest is used for testing the trained model.

4. The MLRAs are applied to the observed spectra to predict the biophysical parameter of interest.
MLRAs performance is compared.

The following list gives an overview of the modified features of this study and introduces
reference terms under which the feature domains were treated. Figure 4 summarises the workflow
and features visually.
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• Biochemical Prior: Using leaf biochemical parameters inferred from field spectroscopy
observations to restrict the RTM input parameter space (label: prior knowledge) versus using
a free range (label: free) (two alternatives).

• RTM: Two underlying, structurally contrasting RTMs were tested: turbid medium PROSAIL
(SAIL 4 coupled with PROSPECT 5) and structurally-explicit Discrete Anisotropic Radiative
Transfer (DART) (with PROSPECT 5) (two alternatives).

• Noise scenario: Using multiple noise levels for two types of noise (four and five alternatives).
• SZA: Using the SZA as an additional learning feature (label: SZA) or not (label: no SZA) (two

alternatives).
• MLRA: Using multiple MLRAs: Ordinary Least Squares (OLS), Multi-Layer Perceptron (MLP),

Regression Tree (RT), Support Vector Regression (SVR), Kernel Ridge Regression (KRR), GPR (six
alternatives).

Each unique combination of these features is referred to as a realisation in the following, while
realisations with the same feature were summarised as ensembles. For example, a realisation may have
used biochemical prior knowledge, DART, specific levels of noise, SZA, and OLS. All realisations that
implement DART make up the ensemble. All possible combinations of the list above were tested,
resulting in 960 realisations. Model training was performed independently for each satellite mission,
and model predictions were combined later to form one time series per realisation. A separate per
mission performance assessment was not conducted because the effective number of observations
varied strongly between the missions and thus would not allow fair comparison.

Figure 4. Flowchart of the applied workflow. Varied feature domains have orange background, LAI
ground truth green background. For abbreviations, the reader is referred to the text.
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3.1. Leaf Biochemical Parameter Estimation

The spectral signature of vegetation canopies is sensitive to LAI mostly in the NIR, but to a
certain extent also in the VIS and red edge, and SWIR [5]. However, the VIS and red edge regions
are also strongly affected by Cab, and the SWIR by leaf water content (Cw) and leaf dry matter
content (Cm). For LAI retrieval, this means having knowledge about leaf biochemistry allows restricting
the parameter range that the training database needs to cover, thereby improving the learning of the
variations that are caused by LAI. For this reason, a leaf biochemical prior was tested as a possible
feature of the training workflow, even though the retrieval of leaf biochemical compounds was not the
aim of this study.

For the retrieval of leaf chemical properties, the collected field spectral samples (Section 2.2) were
inverted with a gradient descent approach utilising the PROSPECT 5 model as implemented in the R
package hsdar (https://cran.r-project.org/web/packages/hsdar) [45,46]. The quasi-Newton method
after Byrd et al. [47] that allows box constraints was chosen. Box constraints allow for limiting the
searched parameter space to hyper-cubes according to given parameter ranges. The parameter ranges
given in Table 2 were chosen as constraints. Results were inspected to identify biochemical compounds
whose abundance was stable over the season and could be assumed fixed over the course of the year,
or otherwise needed to be treated as variable.

Table 2. RTM parameters with their symbols, units, ranges (in case of free realisations) and best-estimate
values (in case of prior knowledge realisations; based on PROSPECT inversion of sampled leaf spectra,
Section 3.1). The best-estimate values were used for the prior knowledge realisations.

Model Parameter Unit Free Best Estimate

Leaf parameters: PROSPECT-5B
N Leaf structure index - 1–2.5 1.27
Cab Leaf chlorophyll content µg cm−2 0–80 -
Car Leaf carotenoid content µg cm−2 0–20 8.60
Cm Leaf dry matter content g cm−2 0.001–0.025 0.00263
Cw Leaf equivalent water thickness cm 0.002–0.025 0.0053
Cbrown Brown pigment fraction - 0–1 -

Canopy parameters: SAIL4 and DART

LAI Leaf area index m2 m−2 0–8 0–8
θs Sun zenith angle ◦ 27.5–80 27.5–80
θo View zenith angle ◦ 0 0
φ Sun-sensor azimuth angle ◦ 0 0
LAD Leaf angle distribution - Plagiophile Plagiophile

Canopy parameters: SAIL4

αsoil Soil wet/dry factor - 0 0
hspot Hot spot parameter - 0 0

Canopy parameters: DART

TreeHeight Tree height m 20 -
CrownDiameter Tree crown diameter m 5–9 -
CrownHeight Tree crown height m 7 -

3.2. RTMs and Training Database Generation

Two contrasting canopy RTMs were used to represent different levels of canopy complexity.
One was PROSAIL, which is a turbid medium model, i.e., it treats the canopy as a homogeneous
medium. It is a combination of the PROSPECT leaf and the SAIL canopy bidirectional reflectance
model [5]. It has been widely used in the fields of agriculture, plant physiology, and ecology, including
estimation of biophysical parameters [16,19,48,49]. In this study, PROSAIL 5B, as implemented in the
R package hsdar, was used.

https://cran.r-project.org/web/packages/hsdar
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On the other hand, the DART model is a voxel-based flux-tracing model that allows building
complex 3D scenes, including vegetation canopies [50,51]. DART contains a PROSPECT module to
simulate leaf reflectance and transmission. Applications of DART can be found in the fields of surface
energy budget studies [52] and forest biophysical parameter retrieval [53–55], where its advantages
of explicitly modelling 3D structure were exploited. DART can be obtained from CESBIO with free
licences for publicly funded research and teaching (https://dart.omp.eu).

As both RTMs use PROSPECT 5 as the underlying leaf model, they have many common
parameters. Table 2 gives an overview of the used parameter ranges. In the case of free realisations,
parameters were allowed to vary within the ranges that adopted from the literature [44]. In case of prior
knowledge realisations, the values were estimated with field spectroscopy as described in Section 3.1.
The range of sun zenith angles is based on the geographic location of the Speulderbos site. Since
ETM+, OLI and MSI have narrow fields of view of 15◦, 15◦ and 21◦, respectively, view zenith angle
and relative azimuth angles were assumed to be 0. This was found to be a reasonable assumption for
mid and high latitudes [56]. Soil spectra were estimated from MSI barren and winter observations.
BRFs were extracted as described above and averaged over all sites. Sensor spectral response curves
were approximated as Gaussian with centre wavelength and Full Width at Half Maximum (FWHM)
according to published specifications (Table 1). In summary, three models were trained, one for
each sensor.

The DART scene was built up of five trees as squared, repetitive scene with 10 m edge length
and grid size of 1 m horizontal and 0.5 m vertical cell size (Figure 5). This means that the scene was
duplicated along the edges. The trees’ heights and diameters were roughly approximated with TLS
point clouds (Table 2, Section 2.2). However, the trees were based on generic forms consisting of
8-faceted stems and ellipsoidal crowns. The stems had a diameter of 0.5 m below and 0.25 m within
the crown. The crown leaf volume was simulated as turbid medium cells. TLS was not used to build
explicit 3D tree models in order to keep the number of input parameters minimal. For fast computation,
an emulator was built to replace actual DART simulations [27]. For this, 2500 samples of DART input
parameters were drawn with Latin hypercube sampling [57] according to the free option in Table 2.
Then, the same MLRAs as for the inversion were trained to predict the single spectral bands of ETM+,
OLI and MSI. The best performing MLRA was identified according to the lowest Root Mean Square
Error (RMSE) in a five-fold cross-validation.

In total, 2500 parameter samples were drawn with Latin hypercube sampling using uniform
distributions to evenly cover the parameter space for all parameters with range specifications. Of these
2500, 30% were modified to represent barren, winter conditions. This means that all leaf chemical
parameters and LAI were set to 0.

https://dart.omp.eu
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Figure 5. Nadir view of a DART sample scene that is used to represent the heterogeneous canopy.
The centre scene with five trees is replicated along the edges. Colour is reflectance with low values
black and high values white.

3.3. RTM Sensitivity Analysis

In order to assess the importance of the RTM input parameters (Table 2) on the single spectral
outputs, a global sensitivity analysis of the RTMs was conducted. Such an approach also helps to gauge
how good input parameters can be estimated from spectral outputs. The approach here generally
followed the approach of Verrelst et al. [27] based on Sobol sensitivity indices [58,59] modified by
Saltelli et al. [60] and as implemented in the R package sensitivity (https://cran.r-project.org/web/
packages/sensitivity). Here, only the total effect indices were considered that describe the sensitivity
of the model output to an input parameter and its interactions with other parameters. The sum of
the sensitivity indices with respect to all input parameters varies per spectral band output. Therefore,
indices were normalised to sum up to 1 to ease comparison across spectral band outputs. Furthermore,
only bands of MSI were taken into account because they cover the same spectral domains as ETM+
and OLI (Table 1).

3.4. Noise Scenarios

In this study, two types of noise were tested: multiplicative wavelength-independent (MI) and
additive wavelength-independent (AI) noise [61]. MI is dependent on the BRF. Its term is larger for
NIR compared to red spectral bands for typical vegetation spectral responses. MI and AI were added
to the RTM spectral bands:

ρ′ = ρRTM + ρRTM · εMI + εAI (2)

where ρ′ is the noise contaminated spectral band, ρRTM is the RTM spectral band output, εMI the MI
noise term with εMI ∼ N (0, σMI) and εAI the AI noise term with εAI ∼ N (0, σAI). Apart from noise
free, realisations with MI noise of 0.05, 0.1, 0.2 and 0.3, and AI noise of 0.05, 0.1 and 0.2 were tested.
The 0.05 noise level was motivated by the Sentinel-2 mission requirement of 5% error on SR [34].
The other noise levels were pessimistic variations. However, as mentioned before, the noise term has
multiple purposes, so that the mission requirements can only be an indication.

https://cran.r-project.org/web/packages/sensitivity
https://cran.r-project.org/web/packages/sensitivity
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3.5. Solar Zenith Angle

Illumination conditions greatly affect the reflectance of canopies [5,62,63]. As the SZA changes
over the course of the year, the internal canopy shadowing varies. Furthermore, SZA is an easy to
obtain feature, as it is solely a function of location and time. Therefore, SZA was incorporated in the
training workflow to test if it improves LAI prediction. SZA was calculated for local overpass times
of the respective missions with the R package RAtmosphere ([64], https://cran.r-project.org/web/
packages/RAtmosphere). For the respective realisations, it was treated as an extra training feature
next to spectral bands.

3.6. Machine Learning Regression Algorithms

Studies on MLRA typically test a range of algorithms to explore their respective (dis-)advantages
and cross-comparison results. This was adopted in this study as well. All models were trained to
predict LAI, while the independent variables depended on the learning realisation. Multi-variate
OLS regression was chosen as a benchmark method. For neural networks, the classic MLP was used
(e.g., [19]). In particular, this was the implementation of the Stuttgart Neural Network Simulator
in the R package RSNNS (https://cran.r-project.org/web/packages/RSNNS). Networks with n + 1
neurons in a single hidden layer were trained, where n corresponded to the number of independent
variables [19]. Random Forest was selected as an RT algorithm [65,66] and used as implemented in the
R ranger package (https://cran.r-project.org/web/packages/ranger). The forests were grown with
500 trees.

Furthermore, three kernel-based methods were used. This type of regression methods translates
the—possibly nonlinear—regression problem from the parameter space into a higher dimensional
feature space, where it can be solved linearly. Kernel functions implement a notion of similarity
function. SVR [67], KRR [14] and GPR [68] with Radial Basis Function (RBF) kernels were tested here.
The kernel σ hyperparameter was estimated with the sigest function from the kernlab package
(https://cran.r-project.org/web/packages/kernlab/). Although developed to estimate σ for SVR,
results in initial tests were promising for KRR and GPR. For further reading on MLRAs in biophysical
parameter estimation, the reader is referred to Verrelst et al. [23].

The general workflow for MLRA application typically involves splitting of the feature database
into training and validation sets to tune model parameters. Here, five-fold cross-validation was
performed during the tuning process. This was based on the training dataset, which held 2500 samples
of the RTM-based database. Next, the model performance for the best tuned parameters was evaluated
with the test dataset, which held 500 samples of the RTM based database. This set was never seen by
the models during training. Finally, the models were applied on the actual sensor observations and
compared with the validation dataset (Section 3.7). However, as we inverted observations of three
different sensors, in fact, for each realisation, three separate models were trained.

3.7. Ensemble Analysis and Validation

In order to analyse how well the MLRAs were able to learn the RTM-produced band-LAI
relationships, the test error was evaluated. However, this error represents only the theoretical
performance in case the RTM produces true results for the scene and the induced noise properties
correspond to the noise of the actual spectral observations.

For validation purposes, the advantages of the TLS time series—i.e., high precision due to
independence of illumination conditions [69,70]—was combined with the direct estimation of LAI
with the litter-traps. Litter-traps are considered among the most accurate methods in terms of absolute
LAI for forest canopies [71]. This approach follows the suggestion of Woodgate et al. [72] to calibrate
TLS with other techniques. Specifically, the TLS time series was scaled with the litter-trap total LAI
separately for each plot:

LAIi =
PAITLS,i −min(PAITLS)

max(PAITLS)
· LAILT (3)

https://cran.r-project.org/web/packages/RAtmosphere
https://cran.r-project.org/web/packages/RAtmosphere
https://cran.r-project.org/web/packages/RSNNS
https://cran.r-project.org/web/packages/ranger
https://cran.r-project.org/web/packages/kernlab/
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where LAIi is the LAI at time i, PAITLS is the TLS derived PAI time series and LAILT is the litter-trap
LAI. The observations were averaged per plot and linearly interpolated to obtain a continuous
time series.

For each realisation, the time series of predicted LAI was compared with this validation time
series. The performance metric was the RMSE:

RMSE =

√√√√1
t

t

∑
i=1

(LAIrealisation,i − LAIvalid,i)
2 (4)

where t is the length of the time series, and LAIrealisation,i and LAIvalid,i the realisation and validation
LAI at time i, respectively.

4. Results and Discussion

4.1. Validation Time Series

Figure 6 shows the derived validation time series. The seasonal pattern with a fast spring leaf flush
in May and autumn leaf falling in November dominated the temporal behaviour. Calders et al. [35]
observed this speed in spring leaf flush for a mixed oak forest in the Netherlands. Maximum LAI of
6.1 m2 m−2 was reached on 26 May in plot A. Plots B and E showed LAI values just below 6.0 m2 m−2.
Plot C had a larger gap in its centre so that overall LAI was lower there. Measured LAI for plot D was
about two units lower than for the other plots with a peak of 3.2 m2 m−2. This was due to the age
composition of this plot, which was dominated by younger trees. The maximum LAI compares well
with the results of Leuschner et al. [73], who measured LAI by litter-traps in 23 mature Beech stands in
Germany. They found an average LAI of 7.4 m2 m−2 with a range between 5.6 to 9.5 m2 m−2.

Another feature is the slow decrease in LAI starting in August that could be observed in all plots.
After the 2016 growing season, few brown leaves were still remaining on the trees until new leaves
flushed in 2017. Overall, the obtained time series show the expected dynamic behaviour of the canopy
during spring and autumn (Figure 6).

With respect to the uncertainty of the validation data, the standard deviation of the mean for
the litter-trap samples was calculated as 0.43, 0.25, 0.41, 0.32 and 0.24 m2 m−2 for plots A to E,
respectively. GCOS specified an accuracy of 0.5 m2 m−2 as a target for LAI products for local and
regional applications [38]. However, this is the requirement for the final LAI products, so that the
achieved uncertainties are rather high for a validation measurement. This affected especially the
realisation evaluations in terms of RMSE.
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Figure 6. Speulderbos LAI time series for 2016 derived from TLS, points are observations. Lines are
linear interpolations. Interpolations for outside of the measurement campaign were performed with
the values from the previous and next year, which are added to the graph for clarity.

4.2. Leaf Biochemical Parameters’ Retrieval

The leaf chemistry assessment indicated that some leaf components remained stable over the
course of the season, while others showed a dynamic behaviour, resulting in multi-modal distributions
(Figure 7). The static ones were the leaf structure parameter (N) parameter, the dry matter content
Cm, and to some extent the equivalent water thickness Cw. The mean of the carotenoids remained
stable, but its variance was increasing at the last sampling day. Cab showed clear dynamics, with a
strong decrease during the last sampling day. When compared to the readings of the SPAD meter, Cab
retrievals showed a quadratic relationship (Figure A1), which is confirmed by other studies [74,75].
This strong relationship supports the validity of the Cab retrievals, and thereby the retrieval of the
other biochemical constituents since they were inverted simultaneously. On the basis of these results,
it was decided to constrain the training with fixed, central values of the N parameter, leaf carotenoid
content (Car), Cw and Cm, but vary Cab and leaf brown pigment fraction (Cbrown) as given in Table 2.
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Figure 7. Leaf chemical properties based on PROSPECT inversions of 173 leaf samples. Leaf properties
are leaf structure parameter (N), Chlorophyll a and b (Cab), leaf carotenoid content (Car), leaf dry
matter content (Cm), leaf water content (Cw), and leaf brown pigment fraction (Cbrown). Stacks are
coloured by acquisition date. Solid lines are fitted density models. Ordinate axis represents observation
counts and modelled counts for the observations and the fitted models, respectively.

4.3. RTM Sensitivity

PROSAIL’s and DART’s sensitivity to their input parameters is depicted in Figure 8. In case of
PROSAIL, BRFs in the visible bands were primarily driven by Cab with a contribution of 74.8 and 49.4%
in B03 and B04, respectively. This extended into the first red edge band B05, but strongly decreased to
6.1% at B06. In the red edge and NIR bands, LAI was the most important parameter with a relative
contribution of 68.5% for bands B06 to B8A on average. This sensitivity is the reason why LAI retrieval
relies on the NIR domain. The SWIR bands were mostly dependent on leaf water content Cw, which
had 52.8 and 46.2% contribution in B11 and B12, respectively. These results are in line with those of
Jacquemoud et al. [5].

On the other hand, DART’s output sensitivity was dominated by canopy structural parameters
(LAI and crown diameter) in the NIR spectral outputs (Figure 8). The contribution of LAI was maximal
in B04 with 64.1%, while that of crown diameter was maximal in B06 with 52.2%. Their combined
contribution was minimal in B12 with 12.7%. In contrast to PROSAIL, DART showed some sensitivity
towards SZA, which was 5.1% on average in bands B05 to B8A. This reflects the effect of shadowing
and DART’s vertical heterogeneous character.
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Figure 8. Global sensitivity of S2A MSI spectral bands to PROSAIL and DART input parameters
according to Sobol’ Indices. Total Sobol’ Indices were normalised per band to sum up to 1. For band
specifications, see Table 1 and for parameters see Table 2.

4.4. Impact of Training Scheme Features on Prediction Performance

This section presents the single inversion workflow features and their role for predicting LAI,
starting with a comparison across domains in the following paragraphs. Since the RMSE results were
not consistently normal distributed within ensembles, the median was calculated for all realisations
that implemented a specific feature. In this way, the feature’s role could be evaluated. It should also be
noted that RMSE refers to the validation error. Only in some cases was the training error evaluated,
but this is always explicitly mentioned.

Table 3 summarises the effects of all features on the validation RMSE. The 25 and 75% Interquartile
Range (IQR) is listed as a quantification for the variability within the ensembles. The feature with the
strongest influence on performance in terms of RMSE was the adding of AI noise to the RTM generated
spectral outputs. Adding 5% AI noise decreased the median RMSE from 2.33 m2 m−2 for no noise to
1.25 m2 m−2. Realisations with 5% AI noise also achieved the overall lowest RMSE. The second-most
important feature was the choice of MLRA. Here, realisations varied between RMSE of 2.04 m2 m−2

for MLP, and RMSE of 1.52 m2 m−2 for SVR. Restraining the training database with prior information
on leaf biochemical contents generally decreased prediction performance.

The following sections present the performance results of all training features in more detail and
elaborate on their first order interactions, whereas typically only the strongest interaction is discussed.
Interactions were investigated by comparing the respective groups of realisations that implement
the features. For example, if feature A has two realisations A1 and A2, and its strongest first order
interaction feature B has B1 and B2, all realisations that implement them (A1/B1, A1/B2, A2/B1,
A2/B2) were compared to each other. The strongest interaction (feature B in the previous example) was
identified as the one that varies performance in terms of validation RMSE the most after the feature
under consideration (feature A in the previous example). For example, when the leaf chemical prior
was inspected, the feature that produced the largest differences among the realisations was identified
as the strongest interaction, which was the RTM feature.
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Table 3. Validation median RMSE and Interquartile Range (IQR) (25 to 75%) for training features.
∆RMSE refers to the difference to the best feature per group.

Feature Realisation Median RMSE ∆RMSE RMSE IQR

Leaf chemical prior Free range 1.47 — 0.49
Prior 2.10 0.63 0.96

RTM PROSAIL 1.93 0.42 0.95
DART 1.51 — 0.69

MI Noise 0% 1.73 0.10 1.12
5% 1.70 0.07 1.08
10% 1.70 0.07 1.01
20% 1.63 — 0.84
30% 1.63 — 0.73

AI Noise 0% 2.33 1.08 0.80
5% 1.25 — 0.67
10% 1.38 0.13 0.68
20% 1.74 0.49 0.51

SZA Without SZA 1.69 0.06 0.97
With SZA 1.63 — 0.95

MLRA OLS 1.72 0.20 0.54
MLP 2.04 0.52 0.88
RT 1.57 0.05 1.04
SVR 1.52 — 1.06
KRR 1.63 0.11 1.06
GPR 1.60 0.08 0.98

4.4.1. Leaf Biochemical Prior

Among other information, Figure 9 summarises how the leaf biochemical prior information
affected the training results. PROSAIL performance was generally more affected by introducing prior
information than DART performance (Figure 9): median RMSE decreased from 1.91 to 1.38 m2 m−2

when prior information was included in the test data sets, while it increased from 1.43 to 2.37 m2 m−2

in case of the validation data. The former can be explained by the sensitivity of PROSAIL to biochemical
parameters Cab, Cm and Cw (Section 4.3). Using prior information effectively decreases the parameter
input space that the MLRA has to learn, thereby making it easier for the MLRA. This also made it
possible to reach testing RMSE as low as 0.01 m2 m−2. However, inversion of actual observations was
impaired by the constraint of the leaf chemical parameter space. This may be due to the fact that leave
chemical properties were not representative for the whole study area, as leaves were only sampled from
two beech trees, while oak was also present and environmental conditions may change the chemical
composition throughout the study area. Additionally, the way the constraint was implemented—as
mean estimates allowing no deviation—may also play a role.

Contrary to this, the DART inversion performance was less sensitive to leaf biochemical
parameters (Section 4.3). Median performance in terms of RMSE was similar at 2.29 and 2.16 m2 m−2

for test data and improved slightly with a decrease in RMSE from 1.55 to 1.46 m2 m−2 for the validation
data set when introducing leaf chemical information. Thus, reducing the input parameter space had a
small positive effect during training and validation.
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Figure 9. Prediction performance in terms of testing and validation RMSE with dependence on the
chosen RTM, AI and MI noise level, and bio-chemical prior. RMSEmedian, IQRRMSE and RMSEmin refer
to the validation error in the respective panel cell. Grey line is 1:1 line. In case of the validation results,
14 realisations were trimmed with RMSE larger than 10 m2 m−2 (all with 0 % AI noise) because they
prevented proper display.

4.4.2. RTM Choice

Among other features, Figure 9 compares the inverse model realisation in terms of their used RTM.
Both testing error, i.e., the error based on RTM produced samples, and validation error, i.e., the error
based on the validation time series for the Speulderbos site, are shown. Overall, PROSAIL and DART
achieved a median test RMSE of 1.63 and 2.21 m2 m−2, while the validation RMSE was 1.93 and 1.51
m2 m−2, respectively. The lower performance of DART on the testing samples can be explained with
its additional freely varying parameter, the crown diameter. However, with this parameter came the
capability to model crown gaps (Figure 5), which led to the better performance in terms of validation
RMSE.

Apart from the overall better median RMSE of DART, using this RTM generally decreased spread
of error for realisations that implemented this RTM, at least when some AI noise larger than 0% was
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chosen. For example, the validation RMSE IQR for DART with 0% AI noise was 0.23 m2 m−2, while it
was 1.20 m2 m−2 for PROSAIL. This means that choosing this DART reduced the importance for a
particular choice of the other training features.

There were realisations for which the testing RMSE was disproportionally larger than the
validation RMSE. In fact, this was the case for 43.3 and 77.7% of the PROSAIL and DART cases,
respectively (Figure 9). Under circumstances where data of the same origin would have been used,
this would be unlikely to occur, especially in scenarios with added noise. However, training in this
study was based on RTM output and validation on field acquired data.

4.4.3. Noise Scenarios

Both the AI and MI noise had different effects on the testing and validation error. Generally testing
errors increased with increasing noise—in the case of AI from 1.29 m2 m−2 for 0 % to 2.46 m2 m−2

median RMSE for 20% AI noise, and in the case of MI from 1.89 m2 m−2 for 0% to 2.09 m2 m−2 median
RMSE for 20 % MI noise. This showed the general effect of the noise to blur the relationship between
spectral output and associated LAI, and prevent the MLRA to learn the true RTM produced pattern.

AI noise was generally more successful at reducing validation RMSE (Table 3): it decreased median
RMSE by 1.08 m2 m−2 (from 2.33 m2 m−2 for 0% AI noise to 1.25 m2 m−2 for 5 % AI noise). MI noise
reduced median RMSE only by 0.10 m2 m−2 (from 1.73 m2 m−2 for 0 % MI noise to 1.63 m2 m−2 for
20% MI noise).

Considering AI noise alone, the addition of any in comparison to 0% AI noise strongly changed
the distribution of realisations in terms of RMSE (Figure 9). This did not only include the best, but also
low performing results. More precisely, AI noise prevented occurrence of very bad results. For the 0%
AI noise level, worst performance reached up to 29.29 m2 m−2 and the 95% quantile lay at 10.4 m2 m−2,
while for 5% these statistics were 2.66 and 2.48 m2 m−2, respectively. Here, the added noise prevented
the MLRA from over-fitting on clean RTM simulations.

Noise was also found an important training workflow element in PROSAIL-Look Up
Table (LUT)-based inversions of observations from agricultural crops by Rivera et al. [29] and
Verrelst et al. [30]. They added up to 50 and 30% noise to PROSAIL spectra, respectively, but did
not specify how the error was implemented. However, the required magnitude of noise corresponds
to the MI noise in this study, which was optimal at 20 to 30%. Baret et al. [19] added 0.04 absolute
Gaussian white (AI) noise in a global retrieval workflow based on PROSAIL. This is in line with the
optimal 5% AI noise in this study. Koetz et al. [28] adopted a wavelength-dependent, relative noise
term of maximal 10% in the 444 nm band. Both Koetz et al. [28] and Baret et al. [19] based their choice
for a specific noise level on experience of observation errors, but do not evaluate other possibilities.

Baret et al. [19] argued that the quantification of the error term is difficult, as it includes errors
stemming from the radiometric calibration of the sensor, Bidirectional Reflectance Distribution Function
(BRDF) normalisation, atmospheric correction, cloud residuals and the RTM representativeness for the
actual canopy. Additionally, the interaction of these single terms plus the properties of the used MLRA
in an inversion workflow complicates the choice based on experience of errors of the sub-systems.
Surely, it is more practical to conduct a sensitivity analysis over validation samples rather than
characterising the sensor-inversion system in detail. Moreover, noise terms need to be defined properly
to compare them across studies.

4.4.4. SZA

As shown in Table 3, realisations that made use of SZA as an extra training feature achieved
overall 0.06 m2 m−2 smaller median RMSE than realisations that did not include SZA. A Wilcoxon
signed-rank test confirmed that the two groups differed significantly (p < 0.01). This difference was
most prominent with the multiple MLRAs. For example, SVR benefited strongest with a decrease
in median RMSE by 0.07 m2 m−2. This can be explained by the richer feature space that the MLRAs
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had available for learning. Additionally, SZA correlated with the general phenological patterns of the
study area with low SZA in summer.

Strategies to include SZA into inversion workflows of multi-temporal observations are not
consolidated yet. Koetz et al. [28] computed independent LUTs for different observation dates
and consequently SZAs, but they did not investigate the error that would occur if they would not
have done so. However, training separate models for multi-temporal time series with multiple
observations per year is undesirable due to computational load and the checks that would be necessary
to ensure consistent model properties. Campos-Taberner et al. [16] conducted PROSAIL inversions
over a full season of L8 OLI, L7 ETM+ and Satellite Pour l’Observation de la Terre (SPOT) High
Resolution Geometric (HRG) sensor data and they mention solar-sensor geometry as inputs for
PROSAIL, but do not elaborate how these parameters were dealt with in the training database.
Baret et al. [19] included SZA as a training feature in their neural network based inversion for the
VEGETATION based CYCLOPES LAI product, but again did not evaluate this strategy. However,
as the CYCLOPES product has global extents, it spans several degrees of latitude, leading to different
regimes of illumination dynamics over the year. Thus, SZA was given importance in past studies and
showed some importance here as well, but has not been yet evaluated for global LAI products. At least
adding SZA as an additional training feature is an easy implementable option. In addition, SZA is
efficient to compute, as only the location and observation time are needed to calculate it. However,
interactions with other parameters that change over the time of the year such as soil background and
LAI itself also need to be considered.

4.4.5. MLRA

As demonstrated in the discussion of the other training features, the choice for a specific MLRA
was not the most important factor affecting validation performance in this study (Table 3). However,
studies employing MLRA typically compare various algorithms (e.g., [14,16]). Figure 10 gives an
overview over all realisations grouped by their used MLRA. The MLRAs reached best (and median)
RMSE of 0.91 (1.57), 0.92 (1.63), 0.93 (1.52), 0.95 (1.60), 1.02 (1.72) and 1.08 (2.04) in case of RT, KRR,
SVR, GPR, OLS and MLP, respectively. Hence, even though RT and KRR produced the best, SVR
produced the overall best realisations. Maximum differences among the MLRAs in median RMSE of
0.52 m2 m−2 were found between SVR and MLP realisations. There were also 18 realisations using
OLS and seven using KRR that exceeded RMSE of 5 m2 m−2, all of which were training without noise
applied to the training spectral features.

Apart from the MLRA validation, performance processing time is an important property especially
for routine and large scale production. The time required for the training of the described realisations
in this study was on average 0.03, 7.18, 2.29, 3.17, 125.37 and 123.81 s for the OLS, RT, MLP, SVR, KRR
and GPR, respectively. This is in contrast to Verrelst et al. [14] who found KRR and GPR required
around the tenth of the time of a neural network or an SVR. However, their models were implemented
with Matlab, while this study used R. Additionally, the implementations of RT, SVR, KRR and GPR in
this study could make use of parallelisation. Concerning time required for prediction of 10,000 random
samples, the models needed 0.08, 0.09, 0.09, 0.15, 0.30 and 0.19 s in the case of OLS, RT, MLP, SVR,
KRR and GPR, respectively. Hence, implementation details and optimisation can play a significant
role in processing time.
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Figure 10. Violin plots [76] of prediction performance for the different MLRAs. It should be noted
that 25 realisations were trimmed with RMSE larger than 5.0 m2 m−2 (18 for OLS and 7 for KRR)
because they prevented proper display.

4.5. Best Performing Feature Combination

Figure 11 shows the best performing realisation that reached RMSE of 0.91 m2 m−2. It was built
with an RT based on a DART produced database restricted with prior information from the leaf
sampling, 5% AI and 20% MI noise, and with SZA as an additional training feature. Maximum LAI of
5.80 m2 m−2 was reached in plot A on 17 July. LAI before May 1st was on average (0.27± 0.31)m2 m−2,
and thereafter (4.81± 0.59)m2 m−2 until end of October. The predicted LAI explained 84.9% of
variation of the reference time series.

In general, these results for a single time series are in the range of previously published results.
Schlerf and Atzberger [77] achieved 0.66 m2 m−2 with a two-band combination chosen from simulated
Landsat TM bands over a Norway Spruce site. For beech canopies within the same site, Schlerf and
Atzberger [78] report 2.12 m2 m−2 RMSE with a multi-spectral, near-nadir viewing set-up. Brown et
al. [18] obtained a RMSE of 0.47 m2 m−2 for a beech site in Southern England. All three studies used
the INFORM RTM to create the training database [79].

However, as can be observed in Figure 11, the predictions showed different biases for the single
plots. In fact, summer LAI was underestimated on average by 0.74 m2 m−2 in plots A, B, C and E,
and overestimated by 1.53 m2 m−2 in plot D. The bias in plot D could result from the structure of the
plot, which consisted of more young trees compared to the other plots. The position of the litter traps
was chosen close to the TLS scan positions, which were possibly not representative for the whole of
the plot. Additionally, RMSE as the choice of error metric during retrieval evaluation does not allow
the assessment of bias. In fact, additional error metrics would be needed to characterise the bias as
well as temporal consistency of the time series.
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Figure 11. Best performing realisation in terms of RMSE over the 2016 study period. Black solid line is
the validation time series.

5. Conclusions

The Sentinel-2 mission provides a new science-grade data stream for monitoring of dynamic
vegetation behaviour. Together with other missions such as Landsat 7, 8 and future Landsat 9, a
characterisation of temporal dynamics in biophysical parameters becomes possible at decametric
resolution. Accurate retrieval and a universal processing workflow for potential Sentinel-2 and
Landsat harmonised biophysical products remains a challenge. Previous studies identified MLRAs
combined with RTMs in hybrid retrieval workflows as a potential solution. This study investigated
the impact of multiple properties of such workflows on the retrieval performance for LAI over a Dutch
beech forest site.

Addition of AI noise on the RTM spectral database was found to be most important for prediction
performance with a difference of 1.09 m2 m−2 in median RMSE compared to no noise. A level of 5%
was optimal in this study. On the other hand, MI noise showed less improvements. Added noise helps
the MLRAs to generalise and prevent over-fitting on the pure RTM output. Previous studies did not
investigate the effect of different noise definitions and some did not report precisely how noise was
defined. With respect to its importance, a clear definition and careful sensitivity analysis should be
paramount for future studies.

The choice for the heterogeneous DART RTM in comparison with the turbid medium PROSAIL
model resulted in a median RMSE difference of 0.42 m2 m−2. An additional advantage of DART in this
study was the lower spread of performance of other inversion workflow features, i.e., DART led to more
consistent inversion workflows. Apart from this, care must be taken when using the PROSAIL model
with biochemical prior information, as PROSAIL is very sensitive to this. The choice of a specific MLRA
was found to be less critical in terms of prediction performance. However, MLRAs varied significantly
in run-time, also depending on the implementation and code optimisation. When choosing a particular
MLRA, these secondary benefits should be weighted together with the expected accuracy.
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samples. Solid line, R2, p-value and formula correspond to the quadratic fit. Dates correspond to the
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Table A1. List of TLS and satellite sampling dates.

TLS Landsat 7 Landsat 8 Sentinel-2A

2015-11-18 2016-01-18 2016-02-11 2016-02-11
2016-04-01 2016-02-28 2016-03-07 2016-03-12
2016-04-08 2016-04-07 2016-05-01 2016-04-01
2016-04-11 2016-05-02 2016-07-20 2016-04-08
2016-04-14 2016-05-09 2016-08-30 2016-04-11
2016-04-18 2016-07-21 2016-09-06 2016-04-21
2016-04-21 2016-09-14 2016-09-15 2016-05-01
2016-05-01 2016-10-16 2016-11-25 2016-05-08
2016-05-04 2016-12-04 2016-05-11
2016-05-12 2016-07-10
2016-05-18 2016-07-17
2016-05-26 2016-07-20
2016-06-29 2016-08-16
2016-07-20 2016-08-26
2016-08-02 2016-09-05
2016-08-26 2016-09-08
2016-09-06 2016-09-15
2016-09-15 2016-09-25
2016-09-22 2016-10-05
2016-10-03 2016-12-04
2016-10-07 2016-12-27
2016-10-14
2016-10-27
2016-11-08
2016-11-17
2016-11-24
2016-12-05
2017-03-07
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