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Abstract. One of the largest causes of fluctuations in the size and structure of populations is changes in
the environment. In nature, these changes are often temporally autocorrelated and the strength and direc-
tion of the autocorrelation can affect population dynamics. These effects are mediated by complex, simulta-
neously occurring ecological and evolutionary processes, such as phenotypic plasticity and selection.
Determining how these processes interact to affect responses of different life histories to autocorrelated
environmental fluctuations is of paramount importance to infer which taxa are likely to go extinct or
become invasive under global change. Here, we assessed the effect of autocorrelation in environmental
states on the trait and population dynamics of different life histories using an evolutionary explicit individ-
ual-based modeling approach. We found that, in general, higher positive temporal autocorrelation caused
more variation in population size. Fast life histories were more affected than slow ones as they were able to
adapt more quickly to varying environmental optima and therefore experienced larger initial decreases in
population size when optima changed. Including adaptive phenotypic plasticity buffered the effects of
autocorrelation on population dynamics while nonadaptive plasticity amplified them, especially for slow
life histories, which recovered less from maladaptation. This study highlights that integration of pheno-
typic plasticity, selection, and population dynamics is important to improve our understanding of how dif-
ferent life histories deal with autocorrelated climate variability.
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INTRODUCTION

Stochastic variation in the environment is one
of the most important drivers of population
dynamics, that is, changes in population size and
structure (Tuljapurkar 1990, Morris et al. 2008).
This variation has usually been modeled with the
assumption that consecutive values of environ-
mental states are independent (Ruokolainen

et al. 2009, Buckley et al. 2010). However, natu-
ral environmental conditions are often tempo-
rally autocorrelated (Halley 1996), and the sign
of this autocorrelation can determine the estab-
lishment of invasive species (Cuddington and
Hastings 2016), development of different life-
history strategies (Metcalf and Koons 2007), and
the persistence of phenotypes and populations
(Morris and Doak 2002, Wieczynski and Vasseur
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2016). For instance, negative autocorrelation has
been shown to delay extinction compared to ran-
dom fluctuations as years in which population
size declines are more likely to be followed by a
year where population size increases, which
allows populations to recover (Morris and Doak
2002). For positive autocorrelation, a good year is
more likely to be followed by another, and vice
versa, leading to larger stretches of population
growth and shrinkage. Long stretches of adverse
conditions can lead to higher risk of population
extinction (Petchey 2000, Laakso et al. 2003, Pike
et al. 2004, Tuljapurkar and Haridas 2006, Engen
et al. 2013, Chevin et al. 2017), especially in pop-
ulations with weak density feedbacks (Morris
and Doak 2002). Under global environmental
change, which is expected to alter temporal auto-
correlation in natural environments (Boulton and
Lenton 2015, Lenton et al. 2017), extinction risk
may be exacerbated (van der Bolt et al. 2018).
Therefore, understanding the myriad of path-
ways through which temporal autocorrelation
drives population persistence is becoming
increasingly important, but these pathways are
typically not well integrated into a common
framework (Ruokolainen et al. 2009).

Temporal autocorrelation in environmental
states affects populations through both evolu-
tionary and life-history processes, which are
rarely assessed jointly. Shifts in autocorrelation
can change selection pressures and alter the
genetic variation among individuals (Ranta et al.
2008), leading to changes in phenotypic trait dis-
tributions within populations (Michel et al. 2014)
that can affect population fitness (Pelletier et al.
2007, Tuljapurkar et al. 2009, Ozgul et al. 2010,
2012). For example, the prevalence of similar
environmental conditions under positive auto-
correlation allows for adaptation to these condi-
tions (Lande and Shannon 1996). This may lead
to maladaptation when individuals are exposed
to another environment (Frank et al. 2017). This
(mal)adaptation can, in turn, affect vital rates
such as survival and reproduction and therefore
lead to changes in the mean population structure
and growth (Chevin et al. 2017). At the same
time, it is not well known to which degree trait-
mediated demographic effects of autocorrelated
environmental conditions are determined by the
life-history strategy of a species. Different strate-
gies, such as the pace of life (slow–fast

continuum) or reproductive strategy (lifetime
reproductive output; Salguero-G�omez et al.
2016), are characterized by different sensitives of
vital rates to environmental effects (Stearns 1983,
Oli 2004) and are likely to show different poten-
tial for adaptation. For instance, species with fast
life histories and a high lifetime reproductive
output appear to be among the most sensitive to
temporal autocorrelation, in terms of population
growth (Paniw et al. 2018). These life histories
are expected to evolve faster than species with
slow life histories under changes in environmen-
tal variation (Reed et al. 2011).
Aside from differences in adaptive potential

among life histories, differences in phenotypic
plasticity can also affect their relative responses
to temporal autocorrelation (Lynch et al. 1998).
By altering their phenotype, for example, fur
color or body size, in response to an environmen-
tal perturbation, individuals can respond to
novel conditions without genetic change. This
adaptive phenotypic plasticity is likely to
decrease the effects of autocorrelation as it buf-
fers the effects of natural selection and can make
evolutionary changes redundant (Thompson
1991, Oostra et al. 2018). It has been suggested
that adaptive phenotypic plasticity plays a more
important role for slow life histories, due to their
decreased evolutionary potential (Vedder et al.
2013). Conversely, slow life histories may also be
more sensitive to nonadaptive phenotypic plas-
ticity, in which phenotypes are expressed that are
further away from the environmental optimum,
thereby decreasing the fitness of an individual
(Ghalambor et al. 2015). One of the reasons that
this nonadaptive plasticity can occur is due to
the delayed nature of most plastic responses
(Wennersten and Forsman 2012). These time lags
may occur, for instance, when the phenotype of
an individual is determined by environmental
cues during early development, but these cues
change later in life resulting in a maladaptive
plastic response (Helle et al. 2012, Bateson et al.
2014). Time lags are especially important under
different autocorrelation levels as environmental
cues under which phenotypes develop may
prove to be unreliable under increasingly nega-
tive autocorrelation, leading to maladaptive
responses (Reed et al. 2010). This unreliability
can decrease fitness of phenotypically plastic
individuals and can lead to an acceleration in
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evolutionary adaptation (Ghalambor et al. 2007,
Schmid and Guillaume 2017). Nevertheless, pop-
ulations might still suffer if the genetic evolution
cannot fully compensate the nonadaptive plastic
response.

Understanding how different forms of plastic-
ity interact with temporal autocorrelations for
different life histories can help us further explain
the differences in the effects of autocorrelation
on population dynamics across taxa. While selec-
tion pressure, genetic variation, phenotypic plas-
ticity, and demographic sensitivities have been
investigated in autocorrelated environment
(Ruokolainen et al. 2009, Ezard et al. 2014), no
studies have integrated all of these aspects into a
single model in order to determine the differ-
ences between life histories in evolutionary and
demographic responses to different autocorrela-
tion patterns.

Here, we used a novel approach, combining
an evolutionary explicit model with demo-
graphic models to investigate how temporally
autocorrelated changes in the environment
simultaneously affect the distribution of a pheno-
typic trait, population fitness, and population
size in different life histories. We used a modified
version of the individual-based modeling frame-
work Nemo (Guillaume and Rougemont 2006,
Cotto et al. 2017). This framework allowed us to
simulate the evolutionary dynamics of a single
quantitative trait, while also including a demo-
graphic model in the form of a matrix population
model that represents vital rates of different life
histories. We simulated autocorrelated among-
year environmental fluctuations by shifting the
optimum trait value. This environmental pattern-
ing then changed survival patterns of different
life-history stages. Furthermore, to investigate
how phenotypic plasticity influences the
response to autocorrelated environments, we
included both (non)adaptive and time-lagged
(non)adaptive phenotypic plasticity in trait
responses to temporal autocorrelation.

MATERIALS AND METHODS

For our simulations, we used version 2.3 of the
individual-based, genetically explicit, evolution-
ary modeling program Nemo (Guillaume and
Rougemont 2006), which was modified to
include age structure and phenotypic plasticity

(Cotto et al. 2017). We simulated demographic
and trait responses to environmental autocorrela-
tion for a total of 150 life histories.

Life histories
We simulated different life histories using a

two-stage matrix population model. The life-cy-
cle stages corresponded to juveniles and adults.
Transitions between these stages were deter-
mined by three vital rates: juvenile survival (S1),
adult survival (S2), juvenile transition to adults
(G1), and fecundity (F1). The different life histo-
ries were then created by perturbing S1, S2, and
G1 independently and solving F1 for an asymp-
totic growth rate k = 1.2, creating a set of viable
life histories with similar population growth in
the absence of density dependence (Fig. 1A).
Choosing k = 1.2 instead of k = 1, which defines
a stable population not regulated by density
dependence, ensured that populations did not go
extinct instantaneously due to selection and reg-
ulation (see Density-dependent regulation). S1 and
G1 were set to 0.11, 0.33, 0.55, 0.77, and 0.99,
while S2 was set to 0.0, 0.25, 0.5, 0.75, 0.9, and
0.99. We used all possible combinations between
values of S1, S2, and G1 to create 150 stage-struc-
tured populations with life histories. All popula-
tions were sexually reproducing with random
mating between adult male and female individu-
als with a 1:1 sex ratio in offspring.
For all of the matrix models, we calculated five

commonly used life-history traits: generation
time, net reproductive rate, age at sexual repro-
duction, degree of iteroparity, and annual sexual
reproduction (Caswell 2001, Salguero-G�omez
et al. 2016, Paniw et al. 2018, Appendix S1:
Fig. S1). The populations ranged, for instance,
from 2 to 22 yr in generation time and from
almost completely semelparous to iteroparous
when assuming asymptotic dynamics (i.e., not
considering density dependence). Reproductive
rate was positively, nonlinearly related to genera-
tion time, as net reproductive rates and annual
reproduction were constrained in our simula-
tions due to the constrain on F1. Iteroparity var-
ied independently from generation time and
reproductive rate (Appendix S1: Fig. S1).
The matrix models for each of the 150 life his-

tories were then used as the demographic model
in the Nemo simulations (Fig. 1A). In this simu-
lation, all individuals followed a life cycle
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(Fig. 1B) in which they were first subjected to a
density-dependent survival based on a simple
Beverton-Holt model (Fig. 1C). Conditional on
surviving density dependence, individuals were
subjected to selection in which survival was

based on an individual’s phenotypic trait and the
environment (Fig. 1D). Individuals that survived
selection then bred with the probability to pro-
duce offspring based on the demographic matrix
models (Fig. 1E). Finally, individuals aged, that

C

Fig. 1. Individuals (points) transition through life-cycle stages (different colors) from time t to time t + 1 and
change associated phenotypic trait values according to the experimental setup of Nemo. In this setup, demo-
graphic matrix models describe the different life histories (A); and each individual must pass through five life-cy-
cle events (ovals) to progress to the next time step (B). Within these events, density-dependent regulation (C) is
based on the Beverton-Holt equation, where the chance of surviving to the next time step is dependent on the
total number of individuals (Ntot) and a competition parameter M; individuals that pass density-dependent regu-
lations are then selected based on their phenotypic trait value, which determines survival and can take on two
optima depending on the environmental condition (D). At each time step, one of the two conditions, determining
selection on the trait, is drawn depending on the autocorrelation. After selection, individuals breed, which corre-
sponds to drawing a number of newborns randomly from a Poisson distribution with a mean of F1 (E). Lastly,
individuals age following the structure of the matrix population model in A, which was modified to include the
newborns (F).
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is, transitioned stages based on the matrix
parameters (Fig. 1F).

Density-dependent regulation
When projecting the dynamics of each simu-

lated population through time, we first exposed
all individuals in a population to a density-
dependent regulation (Fig. 1B). This regulation
mimicked within-species competition to limit the
maximum population size and therefore simu-
late biologically realistic population dynamics
(Cotto et al. 2017). The regulation occurred via a
simple Beverton-Holt model, where a competi-
tion-based survival probability (Sbev) was calcu-
lated using the total number of juveniles and
adults (Ntot) and the weight of each individual in
the population set at M = 0.0001 (Sbev = 1/
(1 + Ntot 9 M)) (Beverton and Holt 1957;
Fig. 1B). Juvenile and adult individuals then sur-
vived based on Sbev. As density dependence
acted on both life stages, population sizes after
density-dependent survival were the same across
life histories.

Individuals’ genetic composition and phenotype
expression

Each individual in a simulated population was
characterized by 10 unlinked genetic loci
(Fig. 1C) that additively contributed to a single
quantitative trait g0. We used a continuum-of-al-
leles model of mutation which assumes that the
distribution of breeding values at each locus is
Gaussian. Mutational effects were drawn from a
normal distribution with a = 0 and r2 = 0.05 and
a mutation rate of m = 0.001 (Appendix S1:
Fig. S2). The phenotype z of an individual was
determined by a linear reaction norm z = g0 + g1e
with g0 as the (evolving) quantitative trait of the
individual and slope g1 as the degree of plasticity
attributed to the phenotypic optimum e similar
to Lande (2009). The absence of phenotypic plas-
ticity was achieved with a constant reaction
norm slope of g1 = 0 such that the phenotype
expression was independent of the phenotypic
optimum e and solely depended on g0. We simu-
lated constant plasticity such that g1 was not
evolving over time.

Adaptive and nonadaptive phenotypic plastic-
ity were installed with g1 6¼ 0, ranging from �0.5
to 0.5. Positive g1 values indicate adaptive plas-
ticity while negative indicate nonadaptive

plasticity. Phenotypic plasticity was imple-
mented in two different ways: one in which the
phenotypic optimum of the current year et was
perceived during development and one in which
the phenotypic optimum corresponded to the
environment of the previous year e(t�1) allowing
for time-lagged effects.

Selection
Our environment could fluctuate between two

environmental states, characterized by phenotypic
optimums (e) of e = +1 and e = �1. The phenotypic
optimum described the phenotypic values with a
survival probability of 1 (i.e., maximum fitness at
selection; Fig. 1D). This fitness declined when
moving away from the optimum following a
Gaussian distribution with variance = x2. This
variance depicted the selection strength. During
each iteration of a simulation, the environmental
condition and therefore the phenotypic optimum
were sampled from a sequence generated using a
two-state Markov chain:

px py
1� px 1� py

� �
.

In this chain, px and py are the probabilities of
transitioning to the environmental state with
e = �1 at year t + 1 when the environment is
e = �1 or e = 1, respectively, at year t. While keep-
ing the mean of e = 0, we created autocorrelated
sequences of the two environmental states by vary-
ing px and py from 0.1 to 0.9 (as in Paniw et al.
2018). This resulted in an autocorrelation range
from a negative autocorrelation of �0.8 to a posi-
tive autocorrelation of 0.8 with 0.2 increments.
Each year, the fitness of each individual that

survived density regulation was calculated with
a Gaussian fitness function with mean l (i.e., the
phenotypic optimum e; see Individuals’ genetic
composition and phenotype expression) and variance
x2 = 5. Fitness corresponded to surviving selec-
tion, where survival = 1 at e for both juveniles
and adults, and declined following the Gaussian
fitness distribution (Fig. 1C). Fitness declined
with increasing distance between z and l, corre-
sponding to a survival rate of 0.63 when e corre-
sponded to the opposite phenotypic optimum
(i.e., z = �1 when e = 1). In a separate set of sim-
ulations, selection was applied to a single life
stage only (juvenile or adult) together with an
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increased selection strength of x2 = 3 (see
Appendix S1: Fig. S3 for different variances of
the optimum curve).

Breeding and aging
Sexual reproduction was implemented as the

number of offspring per female that survived
selection using a Poisson distribution with
l = 2 9 F1. This allowed us to include individual
stochasticity in reproduction. For each offspring
of a female, a male was selected randomly to pro-
vide genetic material. These offspring were
stored in a separate stage until the life-cycle
event aging. In this event, all offspring transi-
tioned to the juvenile stage. The inclusion of an
offspring stage is a modification to Nemo which
ensures that all of the offspring recruited in the
breeding step end up in the juvenile stage at t
right after aging. In the absence of this modifica-
tion, individuals would be able to be born into
the adult life stage and thus our simulation
would not represent the two-stage life-cycle tran-
sitions depicted in the demographic model. Juve-
niles could then remain juveniles in next year
with a probability of S1 9 (1 � G1) or transition
to adult with a probability of S1 9 G1. Adults
either survived (S2) and remained adults or died.

Simulations
We ran four different types of simulations on

all life history 9 autocorrelation combinations:
(1) Individuals showed no phenotypic plasticity,
and both juvenile and adult survival were under
selection; (2) no plasticity, while selection acted
on either juvenile or adult survival; (3) individu-
als showed five different levels of phenotypic
plasticity, and selection acted on both adults and
juveniles; or (4) time-lagged phenotypic plastic-
ity in the trait, selection on juveniles and adults.
Every year, the following sequence of life-cycle
events occurred in the simulation: regulation (re-
moval of individuals based on density depen-
dence), selection (survival of individuals based
on the expressed phenotype and the current
environmental condition/phenotypic optimum),
breeding (sexual reproduction), and aging (stage
transitions based on the MPM; Fig. 1). To ensure
all projections of trait and population dynamics
started from a stable state and to eliminate any
unwanted transient dynamics, a burn-in of 7000
time steps was run for each combination of the

autocorrelation level, life history, and simulation
type. Simulations began with the population
structure at the end of the burn-in and lasted for
another 300 time steps. For each different life his-
tory 9 autocorrelation combination, we gener-
ated five different sets of environmental
conditions using the Markov chain, and for each
set, population projections were replicated five
times.

Analysis of simulation results
For each replicate simulation run, the coeffi-

cient of variation (CV) of the total population
size and mean population fitness were calcu-
lated. For the simulations including phenotypic
plasticity, we also calculated the extinction prob-
ability as here population extinctions occurred
due to the negative fitness effects of maladaptive
phenotypic plasticity (Appendix S1: Figs. S5, S6).
We used CV as a metric of population and fitness
variation as it accounts for possible differences in
population sizes. Since populations with higher
variability and lower means are more likely to
reach critical population size and this variability
can occur independent of the mean, CV can be
used as an important indicator of population per-
sistence (Trotter et al. 2013). We tested for the
effect of generation time and autocorrelation and
their interaction on the CV of population size, fit-
ness, and the mean additive genetic variance
within populations using generalized linear
models (GLMs). Generation time, which corre-
lates strongly with the fast–slow continuum, was
used to depict variation in responses among life-
history strategies (Lebreton and Clobert 1991,
Smallegange et al. 2014). We used an inverse
gamma GLM to fit the model, as our data were
only positive and continuous. In addition, we
also tracked changes in mean population size
across simulation scenarios (Appendix S1:
Fig. S4). Average population sizes were approxi-
mately normally distributed, and we therefore
used a Gaussian error distribution to model
them. Extinction probability was modeled using
a quasibinomial distribution. We fit a full model,
including main effects and interaction of predic-
tors to estimate effect sizes (Appendix S1 for
model coefficients). We removed a life history
with a generation time of 2.35, as it showed large
between-year variation in population size. This
occurred due to high juvenile transition rates and
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low adult survival leading to a 2-yr cycle in
which a year either had a very small or very
large population size. These cycles were not
related to selection but pure artifacts of parame-
terizing the matrix model. Removing them did
not alter the results.

All data analysis was carried out in R 3.4.2 (R
Core Team 2017).

RESULTS

Variation in population fitness and size in the
absence of plasticity

When selection acted on adults and juveniles,
both the temporal patterning in the environment
and the life-history strategy of the simulated
populations determined the CV in mean popula-
tion fitness. Positive autocorrelation substantially
increased the CV of mean fitness (measured as
survival probability during selection;
Appendix S1: Table S1). Slow life histories with a
long generation time had a lower CV in mean fit-
ness compared to fast life histories with shorter
generation times across autocorrelations
(Fig. 2A; Appendix S1: Table S1). The CV was
highest at positive autocorrelation and was
increased more for long-lived populations than
for short-lived ones, although variation remained
highest for fast life histories.

The effects of autocorrelation and life history
on variation in fitness carried over to population
dynamics. At higher positive autocorrelations,
the CV of population size increased for both fast
and slow life histories (Fig. 2B; Appendix S1:
Table S2). Furthermore, slow life histories had a
lower amount of additive genetic variance com-
pared to fast life histories (Fig. 2C; Appendix S1:
Table S3). For the fast life histories, we also found

Fig. 2. Temporal autocorrelation in trait selection
optima alters the coefficient of variation of the mean
population fitness (measured as survival probability
under selection) (A) and of population size (B), and the
additive genetic variance (C) for the different life histo-
ries described using generation time. These metrics
were calculated over 300 generations and averaged
over 25 simulation replicates. Points and lines indicate
simulated valued and average predictions from gener-
alized mixed models, respectively.

 ❖ www.esajournals.org 7 February 2020 ❖ Volume 11(2) ❖ Article e03029

POSTUMA ET AL.



lower mean population fitness and mean popula-
tion size (Appendix S1: Fig. S4). Variation
between replicates was minimal, and the pat-
terns described above occurred in all replicates.

The relationships between temporal autocorre-
lation and population-size variation across life
histories changed when selection affected only
one of the stages. Fast life histories showed more
variation in population sizes when selection only
acted on juveniles at positive autocorrelations
(Fig. 3; Appendix S1: Table S4). The opposite
was true for slow life histories, which showed
more variation at positive autocorrelation when
selection only affected the adults (Fig. 3).

Effects of adaptive plasticity on trait and
population dynamics

When including adaptive plasticity, autocorrela-
tion displayed a smaller effect on variation in pop-
ulation size compared to simulations omitting
plasticity. Nonadaptive plasticity, on the other
hand, amplified the effect of autocorrelation on
CV in fitness and population size. Under
nonadaptive plasticity, population extinction
rate decreased with generation time (Fig. 4;
Appendix S1: Table S5). When introducing a time

lag, the variation in population dynamics in
response to autocorrelation changed compared to
non-lagged plasticity. For negative autocorrela-
tions, time-lagged adaptive phenotypic plasticity
increased the CV of population size (Fig. 4) and
increased the probability of extinction
(Appendix S1: Fig. S5, Table S6) across fast and
slow life histories. Nonadaptive phenotypic plas-
ticity had the exact opposite effect as it increased
extinction and CV of population size at positive
autocorrelation for fast and slow life histories alike
(Fig. 4; Appendix S1: Fig. S6).

DISCUSSION

Population dynamics of species with different
life histories can respond differently to changes
in the temporal autocorrelation of the environ-
ment (Paniw et al. 2018). Moreover, temporal
autocorrelation affects genetic variation and
selection strength (Ranta et al. 2008, Michel et al.
2014). Our results show that life histories differ
in simultaneous population and genetic-trait
responses to changes in autocorrelation patterns.
Fast life histories had larger genetic variation in
their populations compared to slow life histories

Selection on juveniles Selection on adults
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Fig. 3. Selection acting on two different stages (juveniles and adults) separately differently affects the coeffi-
cient of variation of the mean population size for the different life histories, characterized by generation time,
and temporal autocorrelations in trait selection optima. These metrics were calculated over 300 generations and
averaged over 25 simulation replicates. Points and lines indicate simulated valued and average predictions from
generalized mixed models, respectively.
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independently of the level of environmental
autocorrelation they were exposed to. This was
due to the higher annual reproductive rate of the
faster life histories, which allowed them to adapt
more rapidly to changes in environmental
optima than slow life histories. When the trait
mean of a population was closer to the environ-
mental optimum, the mean population fitness,
here measured as survival, increased. However,
due to the Gaussian shape of the optimum
curves, which allowed quick adaptation to one
optimum, shifts in the optimum led to equally
quick decreases in the mean population fitness
and mean population sizes. On the other hand,
populations of slow life histories, which adapted
slower to an environmental optimum due to
their lower genetic variation, experienced smaller
differences in fitness compared to fast life histo-
ries when the optima shifted, and consequently
fluctuated less. These patterns became weaker at
more positive autocorrelation as there was more
time to adapt, leading to a larger increase of

variation in fitness and population size for the
slow life histories compared to the fast life histo-
ries, although the latter still had higher variation.
These results point to potential implications of
omitting the effect of autocorrelated environ-
ments when assessing the performance of species
under environmental change. Previous studies
suggested that positive autocorrelation can play
an important role in the successful establishment
of invasive species (Cuddington and Hastings
2016), which tend to have relatively short genera-
tion times (Salguero-G�omez et al. 2016). We pro-
vide a mechanistic understanding of the
evolutionary and demographic drivers that
underlie the success of some species under envi-
ronmental change.

Selection
Our study provides a better understanding of

the evolutionary processes contributing to demo-
graphic buffering. Long-lived species have been
predicted to be more sensitive to changes in the

Fig. 4. The effect of immediate (no time lag) and time-lagged phenotypic plasticity on the coefficient of varia-
tion of the mean population size across temporal autocorrelation patterns and for the different life histories
described using generation time. Facets indicate different levels of adaptiveness with g1 = �0.5 being strongly
maladaptive, and g1 = 0.5 being strongly adaptive, as described by the reaction norm function (z = g0 + g1e).
Only simulations in which the population did not go extinct during the burn-in are shown. These metrics were
calculated over 300 generations and averaged over 25 simulation replicates. Points and lines indicate simulated
valued and average predictions from generalized mixed models, respectively.
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environment due to lower adaptability (Vedder
et al. 2013). However, our results, showing lower
variation in population size for slow life histo-
ries, were more in line with studies showing
demographic buffering against temporal auto-
correlation in populations with long generation
times and low reproduction (Morris et al. 2010,
Engen et al. 2013, Paniw et al. 2018). In an evolu-
tionary sense, slower life histories may buffer
populations from extinction because more
genetic variation can be maintained in adult indi-
viduals (Hailer et al. 2006). When selection acted
on just the juveniles, our results seem to corrobo-
rate this. However, when selection acted on both
juveniles and adults our results show the oppo-
site, as there was lower genetic variation present
in slow life histories compared to fast life histo-
ries. This may occur when reproduction is con-
strained (as imposed by our models), resulting in
the birth of more individuals in each time step
for fast species leading to more frequent muta-
tion and recombination events, while the slower
life histories are unable to maintain genetic varia-
tion in the adult life stage. Aside from the differ-
ences in genetic variation between life histories,
differences in demographic sensitivity also play a
role in the response to selection. This is because
longer lived species with low annual fecundity
are more sensitive to changes in adult survival
compared to faster species (Heppell et al. 2000).
This increased sensitivity leads to a stronger
selection pressure, leading to a larger variation in
the population size because the average pheno-
type more strongly follows the environmental
conditions. Faster life histories are more sensitive
to changes in juvenile survival and fecundity.
Since we did not perturb fecundity, we only find
minor effects of autocorrelation when selection
acts upon juvenile survival. These results indi-
cate that understanding the way selection acts
upon populations is important in both an evolu-
tionary and demographic sense to take suitable
conservation measures.

Phenotypic plasticity
Our simulations provide novel insights on the

effects of the interaction between environmental
patterning and different forms of plasticity on
trait and population dynamics. One of the mech-
anisms species use to cope with environmental
change is phenotypic plasticity (Gienapp et al.

2008, Hoffmann and Sgro 2011, Meril€a and Hen-
dry 2014). For example, great tits (Parus major)
have been shown to plasticly change their behav-
ior allowing closer tracking of the environment
(Charmantier et al. 2008). In our study, immedi-
ate adaptive plasticity (i.e., occurring at the same
time as the environment changed states) buffered
against changes in the environment. Population
fitness increased leading to decreased differences
in fitness and population sizes between autocor-
relation levels across life histories. This conflicts
theory predicting that phenotypic plasticity is
more important for slow life histories due to their
inability to genetically adapt quickly enough to
changing environments (Vedder et al. 2013,
Camarero and Fajardo 2017). In fast life histories,
plasticity may be equally important as the rate of
environmental change may outpace the adaptive
potential of these life histories. However, these
findings need to be corroborated in future empir-
ical studies.
Under time-lagged phenotypic plasticity (i.e.,

individuals respond plastically to environmental
conditions at time t � 1), the influences of auto-
correlation on variation in population size
became more apparent. At more positive auto-
correlations, conditions remain more stable so
time-lagged phenotypic plasticity is mostly
adaptive. This corresponds to other theoretical
studies showing that plastic responses lagging
behind environmental cues benefit from more
positive autocorrelated and predictable environ-
ments (Reed et al. 2010, Fischer et al. 2011, Ezard
et al. 2014, Ashander et al. 2016). Our results
therefore highlight that increases in autocorrela-
tion under environmental change can prove
advantageous for traits that are affected by time-
lagged phenotypic plasticity.

Implications and future research
The individual-based model we used effec-

tively combined trait dynamics with population
dynamics to assess complex relationship
between evolutionary processes and life histories
in autocorrelated environments. Using this
framework, important eco-evolutionary ques-
tions can be addressed, for example, on differ-
ences in adaptability between species, evolution
of plasticity, and the role of life-history strategies
and evolutionary feedbacks in invasion pro-
cesses. Our approach substantially advances
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previous studies describing the effects of auto-
correlation on population dynamics across life
histories (Paniw et al. 2018) by integrating phe-
notypic plasticity into a joint evolutionary-demo-
graphic model, the latter accounting for density
dependence. Density dependence has been
shown to influence population responses to auto-
correlation (Levine and Rees 2004, Engen et al.
2013). Here, we used a simple density model
which affected all life histories in a similar fash-
ion. That is, both juveniles and adults in each
population experienced negative density depen-
dence of equal strength, which was implemented
by randomly culling a certain percentage of the
population. However, this does not necessarily
reflect the conditions in natural populations. For
instance, in plants density dependence usually
affects recruitment of seedlings (Comita et al.
2014). In animals, density dependence can take
on many forms. For example, density depen-
dence in the form of intraspecific competition
affects juvenile survival or growth in numerous
species, including wolves (Cubaynes et al. 2014),
great tits (Reed et al. 2013), and mackerel (Jansen
and Burns 2015). In other species, for example,
cormorants, adult survival is mostly affected by
population density (Frederiksen and Bregnballe
2000). Further investigation into how density
dependence influences the adaptability of differ-
ent life histories across taxa can improve our
understanding of the eco-evolutionary dynamics.

Aside from assumptions of density dependence,
we described phenotypic plasticity using a linear
reaction norm, in which all life histories were
equally affected by phenotypic plasticity. How-
ever, plasticity can also be modeled as a trait that
can evolve in response to environmental variabil-
ity. Since there are costs associated with plastic
responses, different patterns of environmental
change can lead to fitness advantages and disad-
vantages (DeWitt et al. 1998, Pigliucci 2005).
Describing the evolution of phenotypic plasticity
may provide further insight into how different life
histories respond to stochastic environments
(Franks et al. 2014, Camarero and Fajardo 2017).

Lastly, although the two-stage matrix popula-
tion models we developed could generate a wide
range of life histories and have been used in
numerous comparative studies (Koons et al.
2009, 2016), including more complex life histories
will provide more detailed insights into

evolutionary dynamics. For example, species
with a more complex life cycle such as most
herbaceous plants may have seed banks that can
act as a storage for genetic material, allowing for
better adaptation to changes in the environment
(Ellner and Hairston 1994, Sasaki and Ellner
1997, Tanksley and McCouch 1997). This can
help reduce the fluctuations in population size
due to autocorrelated environmental change
(Nunney and Nunney 2002).

CONCLUSIONS

Predicted global changes in environmental
patterning can have a large influence on the evo-
lutionary and demographic processes across life
histories. Combining life-history differences in
adaptability to new conditions with stage- or
age-specific differences in sensitivity to selection
will allow for better estimations of population
responses to environmental change. We empha-
size that phenotypic plasticity can play an impor-
tant role in mediating these responses by either
amplifying the amount of genetic and popula-
tion-level variation in the case of nonadaptive
plasticity or buffering in the case of adaptive
plasticity. Therefore, we suggest that further
research is needed which incorporates differ-
ences in the evolution of plasticity between life
histories.
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