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The genetic response to selection is central to both evolutionary biology and
animal and plant breeding. While Price’s theorem (PT) is well-known in evol-
utionary biology, most breeders are unaware of it. Rather than using PT,
breeders express response to selection as the product of the intensity of selection
(i), the accuracyof selection (ρ) and the additive genetic standard deviation (σA);
R = iρσA. In contrast to the univariate ‘breeder’s equation’, this expression holds
for multivariate selection on Gaussian traits. Here, I relate R = iρσA to PT, and
present a generalized version, R = iwρA,wσA, valid irrespective of the trait distri-
bution. Next, I consider genotype–environment covariance in relation to the
breeder’s equation and PT, showing that the breeder’s equation may remain
valid depending on whether the genotype–environment covariance works
across generations. Finally, I consider the response to selection in the prevalence
of an endemic infectious disease, as an example of an emergent trait. The result
shows that disease prevalence has much greater heritable variation than cur-
rently believed. The example also illustrates that the indirect genetic effect
approach moves elements of response to selection from the second to the first
term of PT, so that changes acting via the social environment come within
the reach of quantitative genetics.

This article is part of the theme issue ‘Fifty years of the Price equation’.
1. Introduction
Price’s theorem (PT, [1,2]) has received very little attention in animal breeding, and
many breeders appear to be unaware of it. This seems surprising for two reasons.
First, PT provides a general expression for genetic change, and optimizing such
change is the main objective of animal breeders. Second, the first term of PT,

R ¼ cov(w,A), ð1:1Þ
also known as the Robertson–Price identity (RPI) or the ‘secondary theorem of
natural selection’, which states that response to selection (R) in a trait equals the
covariance of relative fitness (w) and the breeding value (A) for the trait, was
first developed by an animal breeder in a study on the culling process of cows
at dairy farms [3,4]. The response to selection is the cross-generation change in
mean breeding value of the trait. The relative unfamiliarity of breeders with the
RPI is illustrated by the citations of the Robertson [3] publication. Based on an
inventory using Google Scholar, only two out of the first 50 publications citing
this work originate from the field of animal breeding, while the vast majority
relate to evolutionary biology. A similar observation applies to the ‘breeder’s
equation’ [5],

R ¼ h2S, ð1:2Þ
with h2 the narrow-sense heritability and S the selection differential, and its
multivariate version in particular [6],

r ¼ GP�1s, ð1:3Þ
which are primarily referred to in evolutionary genetic studies. In equation (1.3), r
is a vector of responses to selection for each trait,G the matrix of additive genetic
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(co)variances of all traits, P the matrix of phenotypic (co)vari-
ances of all traits and s a vector of (phenotypic) selection
differentials for each trait. The breeder’s equation follows
directly from the regression of additive genetic values (breed-
ing values) on trait values. While breeders are very familiar
with regression theory for the prediction of response to selec-
tion, they mainly use selection-index theory [5,7,8], rather
than the breeder’s equation, the RPI or PT.

Two important reasons for which breeders are relatively
unfamiliar with PT is that they select on a known ‘index’,
and that they usually take a predefined proportion of top-rank-
ing individuals to become parents of the next generation. The
index is a linear combination of phenotypic values or estimates
of breeding values for each selection candidate for all traits of
interest, each trait being weighed according to its known (or
perceived) importance [8]. Hence, breeders do not need to esti-
mate the contribution of each trait to individual fitness (the
‘selection gradient’) because the index weights are known.
Moreover, they also do not need to infer the overall strength
of selection because the selected proportion is a breeder’s
decision. A third reason is the relatively limited role of the
environment in livestock populations, where the environment
is largely under human control and environmental confoun-
ders are often known. Hence, simpler approaches such as
regression of breeding values on the selection index often suf-
fice for breeders, but not always.

Here, I show how an approach based on PT can also be
enlightening with more complex cases in animal breeding,
for example in the presence of genotype–environment covari-
ance or when interest is in emergent traits of populations,
such as the prevalence of an infectious disease. I first connect
the common animal breeding expression for response to selec-
tion to the RPI, and subsequently investigate response in the
presence of genotype–environment covariance and in emer-
gent traits, taking an approach building on the RPI. Because
most traits relevant for animal breeding are highly polygenic,
the per generation change in allele frequency due to selection
is typically small. As a consequence, the per generation
change in the average effects of alleles owing to non-additive
effects is also small. For this reason, I will focus on the first
term of PT (equation (1.1)) and not consider incomplete fidelity
of transmission of the breeding value in the mathematical deri-
vations. In the interpretation of results, however, I will illustrate
how components of response can be shifted between the first
and second terms of PT.
2. Price’s theorem and expressions for response
in animal breeding

The limited use of PT in animal breeding, as compared to the
field of evolutionary biology, relates to the selection criterion
and the measurement of selection in the two fields. The selec-
tion criterion in animal breeding is typically an ‘index’, a
linear combination of phenotypes or estimates of breeding
values for multiple traits (e.g. [8]),

I ¼ b1z1 þ b2z2 þ . . . , ð2:1Þ
where the b’s are the index weights, and the z’s the information
sources. The information sources may include trait values of
the selection candidate or of its relatives, but also estimates of
breeding values for multiple traits. The index weights (b) are
chosen by the breeder [8]. Selection in animal breeding is
measured by two parameters, the intensity of selection
and the accuracy of selection, while no reference is made to
fitness or selection gradients. Because of this difference in the
parameterization of response to selection between animal
breeding and evolutionary biology, the relationship between
the RPI and the common expression used by breeders is not
immediately clear.

In animal breeding, response to selection in any single
trait, as a result of selection for an index (that potentially con-
tains information sources on multiple traits), is commonly
expressed as

R ¼ irI,AsA, ð2:2Þ
where i is the intensity of selection, which is the selection differ-
ential in the index (SI) expressed in standard deviation units
(σI), i = SI/σI, ρI,A is the accuracy of selection, which is the cor-
relation between the breeding value for the trait of interest and
the index value I in the candidates for selection, and σA is the
additive genetic standard deviation in the trait [7,9]. Equation
(2.2) is equivalent to the multivariate breeder’s equation
(equation (1.3)) when the index includes only phenotypic
trait values measured on the selection candidate itself. In
most cases, however, the index also includes phenotypes
measured on relatives of the selection candidate.

Equation (2.2) expresses response as a function of three
clearly distinct parameters: the overall strength of selection
(i), the precision of the relationship between the selection cri-
terion (I ) and the breeding value for the trait of interest (ρI,A),
and the amount of heritable variation in the trait of interest
(σA). In animal breeding practice, it is useful to distinguish
these three parameters because they relate to rather different
components of a breeding program; the heritable variation is
a biological given, the selection intensity reflects the number
of selection candidates evaluated per selected parent and
depends primarily on the reproductive potential of the
species, while the accuracy reflects the amount and quality
of the phenotypic information collected to estimate the breed-
ing values and calculate the index value for each selection
candidate. Equation (2.2) follows directly from regression of
the breeding values on the index (e.g. [10, p. 490]). Under
the condition that the index and the breeding values are lin-
early related, for example when breeding values and
phenotypic values are multivariate normal, equation (2.2)
represents the expected change in mean breeding value
given the selection differential applied to the index.

The relationship between equation (2.2) and the RPI is clari-
fied in the following. FromtheRPI and the lawof full covariance,

R ¼ cov(A,w) ¼ E cov(A,wjI) þcov� ½E(AjI),E(wjI)],½
where E denotes the expectation. Since selection is based solely
on the index, there is no covariance between the breeding
value and fitness of an individual conditional on its index
value. So cov(A,w|I) = 0, and only the second term remains,

R ¼ cov[E(AjI),E(wjI)]:

Breeding values and index values are typically defined
relative to a mean of zero. With means of zero and bivariate
normality of A and I, conditional expectations follow from
linear regression without the need for an intercept. Thus
E(A|I ) = bA,II, where bA,I is the regression coefficient of
A on I. Thus

R ¼ bA,I cov[I,E(wjI)]:
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Figure 1. Selection intensity with truncation selection, for the trait (i), and
for relative fitness (iw), as a function of the selected proportion ( p). (Online
version in colour.)
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Next, cov[I,E(w|I )] = cov(I,w), since any deviation of w from
E(w|I ) must be independent from I. From the first term of
PT, cov(I,w) is the (phenotypic) change in the mean index
value owing to selection, which by definition is the selection
differential in the index, SI. Thus

R ¼ bA,I SI :

Replacing bA,I by its definition, expressing the selection
differential as the product of the selection intensity and the
standard deviation in index value, SI = iσI, and multiplying
the result by σA/σA yields

R ¼ cov(A,I)
s2
I

i sI
sA

sA
¼ i rA,I sA: ð2:3Þ

This result shows that the common expression for response to
selection used by breeders (equation (2.2)) follows from the RPI
under the condition that the selection index and the breeding
value for the trait of interest are linearly related (e.g. bivariate
normal), while the distribution of fitness is irrelevant (see,
e.g. also Chapter 6 of [11]). In other words, the relationship
between the selection index and fitness can take any shape,
as long as there is no covariance between fitness and breeding
value other than via the index; cov(A,w|I) = 0. A common
practice in animal breeding is to select the individuals with
an index value above a certain threshold as the parents of the
next generation, which is known as ‘truncation selection’ [12].

While equation (2.2) is generally used in animal breeding,
it is exact only when breeding values and the index are line-
arly related. However, an analogous equation can be found in
which elements of equation (2.2) relate to breeding values
and relative fitness, and which is exactly valid irrespective
of the multivariate distribution of the breeding values and
the selection criterion. (Note that the focus here is on the
first term of PT, the RPI. We do not consider the second
term, which relates to incomplete fidelity of transmission of
the breeding value.) Starting from the RPI,

R ¼ cov(A,w) ¼ rA,wsAsw,

where ρA,w is the correlation between the breeding value for
the trait of interest and individual fitness in the candidates
for selection, σA is the additive genetic standard deviation
for the trait of interest and σw is the (phenotypic) standard
deviation in individual relative fitness. Using sw ¼ s2

w=sw,
where, from the first term of PT, the variance in relative
fitness is equal to the selection differential in relative fitness
(s2

w ¼ Sw, which is a phenotypic analogy of Fisher’s [13]
theorem of natural selection), it follows that

sw ¼ Sw
sw

¼ iw,

which, by definition, is the intensity of selection for relative
fitness (iw). Hence, the selection intensity for relative fitness
is equal to the standard deviation in relative fitness, always.
On substitution in the expression for response to selection,
it follows that response to selection in trait value is given by

R ¼ iwrA,wsA: ð2:4Þ

This expression is valid for any type of selection and any distri-
bution of breeding values, selection criterion and fitness.
Hence, equations (2.2) and (2.4) are analogous, but equation
(2.2) is equivalent to the breeder’s equation (with the associated
linearity assumption), whereas equation (2.4) is the general RPI
version that does not require this assumption.

Equation (2.4) is mathematically equivalent to the RPI,
and thus valid for any type of (multivariate) selection and
trait distribution. It is a reparameterization of the RPI, but it
emphasizes different aspects of the response to selection from
the RPI. The iw measures the overall strength of selection in
the population as the standard deviation in relative fitness
values among individuals. The correlation between breeding
value and relative fitness, ρA,w, measures the precision of the
genetic relationship between fitness and the trait of interest,
while the σA measures the heritable variation in the trait.
Note that iw is the selection intensity for fitness, iw = Sw/σw,
not for trait value. Hence, even when selection is for a single
trait, so that individual fitness is fully determined by individ-
ual trait value, the value of iw may differ from the classical
selection intensity for trait value, i = Sz/σz [12].

To illustrate the magnitude of the selection intensity
for fitness, iw, consider truncation selection as an example. With
truncation selection, a proportion p of the available selection can-
didates becomes parents of the next generation, each leaving an
equal number of descendants, while a proportion 1− p leaves no
descendants. Thus individuals below the selection threshold
have w = 0, and individuals above the threshold have w = 1/p,
so that the mean relative fitness equals w = (1− p) × 0 + p× 1/
p= 1, as it should. Selection intensity in relative fitness equals
iw ¼ sw ¼ p

(w2 � �w2) ¼ p½p� (1=pÞ2 � 12], giving

iw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�1 � 1

q
: ð2:5Þ

To illustrate the difference between the selection intensity for
fitness and the classical intensity of selection, figure 1 shows
both iw and i, as a function of the selected proportion, for a nor-
mally distributed selection criterion (see, e.g. [12] for a table of
selection intensities). Both measures of selection intensity take
rather similar values, unless the selection is very strong (small
p), in which case the selection intensity for fitness is clearly
larger than the classical intensity of selection.
3. Genotype–environment covariance
One reason the RPI has received considerably more attention
in evolutionary biology than in animal breeding is because
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simpler expressions, such as the breeder’s equation, may
break down in natural populations, for example owing to a
genotype–environment covariance [14,15]. Note that geno-
type–environment covariance refers to a non-zero covariance
between the (additive) genetic component and the environ-
mental component of individual phenotypes, cov(A,E)≠ 0,
and should not be confused with genotype by environment
interaction. A genotype–environment covariance may occur,
for example, when genetically larger individuals are able to
acquire better environments [10, p. 678]; giraffes with geneti-
cally longer necks, for example, may be able to access more
food because longer necks allow them to reach leaves higher
up in the trees. Genotype–environment covariance may occur
also in livestock populations, for example when genetically
better individuals are predominantly present in herds with
better animal management. In most cases, such a covariance
between genotype and herd environment is not a problem in
animal breeding, since breeders can separate genetic effects
from effects of the herd environment with the use of linear
mixed models (particularly the so-called ‘Animal Model’; [16])
because of considerable genetic connections between herds.

However, genetically better animals may also experience
better environments on an individual level. In dairy cattle
herds in European countries, for example, cows that produce
more milk often also receive better nutrition, as a greater
proportion of their feed consists of so-called ‘concentrates’.
Such a feeding strategy generates a positive genotype–environ-
ment covariance. Because data on individual nutrition are not
available in most cases, breeders cannot control for the individ-
ual nutrition environment in models for breeding value
and genetic parameter estimation. In this section, I investigate
whether such a genotype–environment covariance indeed
results in errors in genetic inference and in the prediction of
response to selection in livestock populations, borrowing a
model from the field of evolutionary biology ([14]; see also
[10, p. 678]). I will assume a bivariate normal distribution of
breeding values and phenotypic values, so that conditional
expectations follow from linear regression.

Following van Tienderen and de Jong [14], individual
phenotypic values are modelled as

z ¼ Aþ Eþ e, ð3:1Þ

where A is the breeding value, E the effect of the macro
environment on z and e the micro-environmental effect or
residual. Thus cov(A,e) is zero by definition. The issue is
whether a non-zero cov(A,E) indeed leads to errors in estimates
of genetic parameters, such as additive genetic variance or
heritability, and in predictions of response to selection.

In general, individual fitness may be a function of z,
A and E [14],

w ¼ aþ bzzþ bAAþ bEEþ 1, ð3:2Þ

where the betas represent selection gradients, being the partial
regression coefficients of relative fitness (w) on the elements of
the trait model (equation (3.1)). Because of multiple regression,
βzmeasures the causal effect of an individual’s trait value on its
fitness, βA measures the causal effect of an individual’s breed-
ing value on its fitness (i.e. the component not acting via z orE),
while βEmeasures the causal effect of themacro-environmental
value an individual experiences on its fitness.
Using the RPI, van Tienderen and de Jong [14] show that
genetic response to selection equals (see also [10, p. 680])

RA ¼ s2
Abz þ s2

AbA þ cov(A,E)(bz þ bE): ð3:3Þ

The first term of equation (3.3) is the breeder’s equation. The
middle term originates from the potential selection on geneti-
cally correlated traits, and is not of interest for our current
objective. The last term of equation (3.3) represents the contri-
bution of a genotype–environment covariance to the response
to selection, and is the term of main interest here. Hence, even
when selection is solely for individual phenotype, so that
βz≠ 0 while βA = βE = 0, presence of a genotype–environment
covariance causes the response to selection to deviate from
the breeder’s equation,

RA ¼ s2
Abz þ cov(A,E)bz: ð3:4Þ

Thus equation (3.4) suggests a failure of the breeder’s
equation in the presence of a genotype–environment covari-
ance. The issue is whether this result indeed implies an error
in genetic inference and in the prediction of response to selec-
tion when ignoring a genotype–environment covariance,
created for example by better feed for genetically better cows
or more food for giraffes with genetically longer necks.

We use the following simple model to investigate this
issue. Suppose cows with higher milk yield receive better
nutrition, so that they experience E-terms that further
increase their phenotypic value

E ¼ gþ bz, ð3:5Þ

where γ is a fixed intercept and b a regression coefficient
taking positive values smaller than one; 0 < b < 1. A b > 0 indi-
cates better nutrition for cows with higher yield, while b < 1 is
required to obtain realistic phenotypic values.

Substitution into equation (3.1) and dropping the constant
γ for brevity yields

z ¼ Aþ bzþ e: ð3:6Þ

Since A is a component of z, while z affects E, this situation
generates a non-zero genotype–environment covariance,
cov(E,A) = cov(bz,A) = bcov(A + E + e,A) = b[s2

A þ cov(A,E)].
Solving for cov(A,E) yields

cov(A,E) ¼ b
1� b

s2
A : ð3:7Þ

Hence, better feed for better cows (b > 0) creates a positive
genotype–environment covariance, as expected. For example
if a unit increase in z causes E to increase by 0.1, then
cov(A,E) is equal to 11.1% of the additive genetic variance
(b = 0.1→ cov(A,E) ¼ 0:111 s2

A).
Together, equations (3.4) and (3.7) suggest that a simple

prediction of response based on the breeder’s equation,
RA ¼ s2

Abz, is incorrect when b≠ 0. However, the problem
can be formulated in an alternative way, as follows. Solving
equation (3.6) for z yields

z ¼ A
1� b

þ e
1� b

,

where the E-term has now disappeared. This result suggests
the following reparameterization:

z ¼ A0 þ e0, ð3:8aÞ
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with

A0 ¼ A
1� b

and e0 ¼ e
1� b

, ð3:8bÞ

s2
A0 ¼ s2

A

(1� b)2
, s2

e0 ¼
s2
e

(1� b)2
and cov(A0,e0) ¼ 0 ð3:8cÞ

and RA0 ¼ s2
A0bz: ð3:8dÞ

In this reparametrized model, the original cov(A,E) has
disappeared, and is absorbed into A and e, leading to A0

and e0. What essentially happens here is that the expected
contribution of E to z that is caused by cov(A,E) is added to
A, leading to A0. In other words, given the genotype–environ-
ment covariance, the expected value of z given A is no longer
equal to A, but equals E(zjA) ¼ A=ð1� bÞ ¼ A0. Similarly, the
expected contribution of E to z that is caused by cov(e,E) is
added to e, leading to e0. So we have essentially removed
cov(A,E) by redefining the breeding value and the residual.
See Appendix A for a short numerical illustration.

The expressions for s2
A0 and s2

e0 show that this redefinition
leads to an increase of both the additive genetic variance and
the residual variance when the original cov(A,E) is greater
than zero (i.e. b > 0; equation 3.7). Moreover, since cov(A0,e0) = 0
for the reparametrizedmodel, the response follows immediately
from the breeder’s equation. Thus the apparent failure of the
breeder’s equation has been remedied.

The above may seem mathematical trickery to conceal
the failure of the breeder’s equation owing to a genotype–
environment covariance. However, it perfectly agrees with
the fundamental statistical nature of the additive genetic
effect (i.e. the breeding value) according to Fisher [13,17,18]).
By definition, the breeding value is the expected trait value of
an individual (apart from an intercept) given its allele counts
at all loci, as obtained by least-squares regression (see also
[12,19]). The A’ indeed represents the expected phenotypic
value of the individual given its alleles, as illustrated in Appen-
dix A. This can also be seen from the substitution of equation
(3.1) into equation (3.5),

E(zjA) ¼ Aþ E(EjA) ¼ Aþ bE(zjA),
and solving for E(z|A), which yields

E(zjA) ¼ A
1� b

¼ A0: ð3:9Þ

Hence, from a quantitative genetic perspective, the A0 is
the ‘true’, or the relevant, breeding value. Moreover, the A0

is actually easier to use than A (see below).
The distinction betweenA andA0 is of a conceptual, almost

philosophical, nature. In general, the breeding value is necess-
arily a statistical construction defined for a specific population
in a specific environment. The necessity of this construction
arises because we cannot partition phenotypic values into
functional genetic and environmental components; we can
only partition the variance statistically. Hence, also in the
absence of a genotype–environment covariance, the breeding
value remains a statistical construction. In other words, there
seems to be no justification to interpret the breeding value in
the original model, A, as the true biological quantity.

The reparametrized breeding value, A0, is not just of con-
ceptual interest, but also relevant in animal breeding practice.
When fitting an Animal Model [16,20],

z ¼ mþ Zaþ e, ð3:10Þ
to phenotypic data (z) from a population in which individ-
uals experience an environment (E) that depends on their
trait value, such as nutrition depending on milk yield (z),
the resulting estimates of breeding values and additive gen-
etic variance will refer to A0 and s2

A0 , not to A and s2
A. This

occurs because the cov(A,E) contributes to the covariance
between phenotypes of relatives, and therefore also surfaces
in the estimate of additive genetic variance. Thus A0 and
s2
A0 are easy to obtain, because they are the estimates that

result from the default model, whereas estimation of A and
s2
A would require correction for the dependency of E on z

in the Animal Model (i.e. would require knowledge of b).
Moreover, if animal management is the same in the next gen-
eration (i.e. animals are fed according to their absolute milk
yield), then also response to selection follows from DA0, not
from D �A. In other words, if cows are fed according to their
absolute milk yield, then this truly increases the additive gen-
etic variance, which in turn translates into the greater
response to selection than would have been observed in a
population where such nutrition strategy is not applied.
This makes sense, because with this feeding strategy an
increase in yield over generations will be accompanied by
an increase in E over generations. Hence, in that case, the
response follows from equation (3.8d ), not from equation
(3.4). Note that equation (3.4) refers to the change in A,
while equation (3.8d ) refers to the change in A0; so these
equations are not equivalent, as illustrated below.

A comparison of response to selection derived from each
model illustrates the conceptual difference. For the original
model, the response in breeding value follows from equations
(3.4) and (3.7),

RA ¼ s2
Abz þ cov(A,E)bz

¼ s2
Abz þ

b
1� b

s2
Abz

¼ 1
1� b

s2
Abz: ð3:11aÞ

Note this is response in A, not A0. If the feeding strategy
stays the same, the genetic change in A increases the mean z,
which in turn translates in an increase in E (owing to the feed-
ing strategy), and this increase in E also adds to the response.
Hence, given the nutrition environment, the total response in
phenotypic value owing to genetic selection consists of two
parts, R =RA + RE. The response in E owing to a change in
mean breeding value follows from the regression of E on A,

RE ¼ bE,ARA ¼ cov(A,E)
s2
A

RA ¼ b
1� b

1
1� b

s2
Abz

¼ b
(1� b)2

s2
Abz : ð3:11bÞ

Total response therefore equals

R ¼ RA þ RE ¼ 1
1� b

þ b

(1� b)2

� �
s2
Abz

¼ 1

(1� b)2
s2
Abz: ð3:11cÞ

Hence, in this perspective, the total response is the sum of
the change in mean breeding value plus a response in the
macro environment that, given the nutrition strategy, is
caused by the genetic change. In the context of PT, the RE

would be part of the second term of PT.
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For the reparametrized model, the response follows
directly from the breeder’s equation (equation 3.8d ),

RA0 ¼ s2
A0bz ¼

1

(1� b)2
s2
Abz: ð3:12Þ

This result is identical to equation (3.11c). Thus
R ¼ RA þ RE ¼ RA0 . Hence, response predictions from both
models agree, but follow from a different perspective. In con-
trast to the original parameterization, RE is part of the first
term of PT in the reparametrized model.

This example illustrates that a genotype–environment
covariance does not necessarily render the breeder’s equation
invalid. In other words, given that cows are fed according to
their absolute milk yield, equation (3.8d) yields a valid predic-
tion of response to selection, whereas equation (3.4) would
result in under-prediction because it lacks the RE component.
The key issue here is whether the genotype–environment
covariance is present across generations, or whether it is
solely a within-generation phenomenon.

If the genotype–environment covariance is present across
generations, then a change in mean breeding value over time
will be accompanied by a change in the macro environment.
For this situation, response to selection is given by RA0 . This
is for example the case when cows are fed according to
their absolutemilk yield, so that an increase in population aver-
age milk yield over generations will be accompanied by an
improvement of nutrition. A corresponding (hypothetical)
example for a natural population would be the case where gir-
affeswith longer necks can acquire more food because they can
reach higher up in the trees. In that case, an increase in mean
neck lengthwould be accompanied by an increase in the ‘nutri-
tion environment’, as an increasingly large proportion of the
trees can be used for food.

By contrast, if the genotype–environment covariance is
solely present within a generation, then a change in mean
breeding value from one generation to the next does not go
together with a corresponding change in the macro environ-
ment. For this situation, response to selection is given by RA.
This occurs, for example, when genetically larger individuals
are able to occupy relatively better environments in natural
populations, but there is no improvement of the environment
over generations. An example for animal breeding would be
the situation where better cows get better nutrition within a
generation, but the overall average nutrition is not adjusted
to the increasing milk yield over generations.

Response to selection for the situationwhere the genotype–
environment covariance is present solely within generation
(i.e. RA) can be modelled in at least three different ways. First,
one could predict RA using equation (3.4). The practical chal-
lenge, in that case, is to estimate cov(A,E) (i.e. the b in this
example). Alternatively, RA could be found by considering A0

and using the full version of PT. The first term of PT would
be equal to equation (3.12), while the second term of PT
would be equal to −RE (so the negative of equation (3.11b)),
so that the total response from both terms of PT equals
RA0 � RE ¼ RA: The −RE term represents infidelity of trans-
mission, because the cov(A,E) that was present within a
generation is not present across generations. In this approach,
the practical challenge is to quantify the second term of PT.
A third approachwould be to use amodelwithA

0
that includes

both direct and indirect genetic effects (IGE). For example,
when genetically larger individuals are able to occupy relatively
better environments, then such individuals have a negative
impact on the environment acquired by their population
members. In this perspective, the lack of an increase in the
macroenvironment over generations relates to competition
between individuals within a generation, which surfaces as a
negative direct–indirect genetic correlation in IGE models.
Such a negative direct–indirect genetic correlation reduces the
heritable variation in the trait [21–23]. The negative direct–
indirect genetic correlation will result in an unfavourable
correlated response in the IGE, analogous to the ‘deterioration
of the environment’ in the context of Fisher’s fundamental the-
orem of natural selection [13,24,25]. This negative response in
IGE corresponds to the −RE term mentioned above.
4. Emergent traits and heritable variation in
infectious disease prevalence

The partitioning of individual phenotypic values into individ-
ual breeding values and remaining non-additive genetic
terms, z =A + e, is foundational to quantitative genetics, and
to animal breeding in particular. Some traits, however, cannot
be attributed to single individuals, but are a property of a
group of individuals or of a ‘society’. Obvious examples in
natural populations are the size of a termite colony or the
number of prey caught by a hunting pack. Since single individ-
uals do not have phenotypes for such ‘emergent traits’, one
cannot simply partition phenotypic values into individual
breeding values and residuals. Nevertheless, emergent traits
must have evolved and may still show heritable variation.
Moreover, the breeding values of single individuals are relevant
for response to selection in the emergent trait, because the trans-
mission of genes to the next generation is from single parents to
their offspring, not from groups to groups. The RPI provides a
natural starting point to find the genetic variation and response
to selection for such emergent traits [23].

Emergent traits may seem absent in livestock populations
because the environment is largely controlled by the farmer
or the breeder. Indeed, emergent traits have received little
attention in animal breeding. The prevalence of an endemic
infectious disease in a population, however, provides a typical
example of an emergent trait, because it arises from a popu-
lation process of disease transmission between individuals.
Thus the infectious disease status of an individual (0/1, indicat-
ing non-infected versus infected) does not represent the sum of
the breeding value of the individual and a residual, but it is the
result of a disease transmission process in the population, and
thus also depends on other individuals and on the genes of
those individuals.

Reducing the prevalence of endemic infectious diseases in
livestock is highly relevant for animal health and welfare, and
also for human health in the case of zoonosis [26]. The classi-
cal picture, however, is that infectious disease status (0/1)
shows low heritability, which suggests that the potential for
genetic selection against infectious diseases is limited. (Note
that disease prevalence, i.e. the fraction of the population
that is infected at any point in time, is simply the mean of
individual disease status; so the response in prevalence is
the same as response in disease status.) The classical
approach, however, ignores that the prevalence of an endemic
disease is an emergent trait of the population [27,28].

In the following, the trait of interest is the equilibriumpreva-
lence of an endemic infectious disease in a population, and the
focus is on the heritable variation that determines the potential
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Figure 2. The susceptible–infected–susceptible (SIS) compartmental model
for an endemic disease. S is the number of non-infected and susceptible indi-
viduals, I is the number of infected and infectious individuals, and S + I = N.
β is the transmission rate parameter and α the recovery rate parameter. The
expected transmission rate equals βSI/N, and the expected recovery rate
equals αI. At equilibrium, βSI/N = αI, so that I/N = 1− α/β, where
α/β = 1/R0 so that P = 1− 1/R0 ( figure 3). (Online version in colour.)
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Figure 3. Prevalence as a function of R0 for an endemic disease following a
SIS-model ( figure 2), P = 1 − 1/R0. (Online version in colour.)
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response to selection in the prevalence. I showhow the quantity
relevant for response to selection can be found, and how
this quantity differs from the classical breeding value for
individual disease status. In contrast to the convention in quan-
titative genetics, I will not express breeding values as a
deviation from their mean, because this would introduce
unnecessary mathematical detail. Moreover, to minimize
mathematical detail, I will consider genetic variation among
individuals only in their susceptibility to become infected.
Thus I will ignore potential genetic variation in the propensity
of individuals to infect others (infectivity), and in the rate at
which individuals recover from infection. In this section I will
follow the notational convention common in epidemiology, so
symbols’ meanings may differ from their usage in the above
text.

Consider a simple model of an endemic disease, where
individuals can either be non-infected and susceptible (S), or
both infected (I) and infectious, the so-called compartmental
SIS-model ([29]; figure 2). Thus there are two classes of individ-
uals (compartments): susceptible individuals and infected
individuals. Moreover, there are two processes: disease trans-
mission, S→ I, where a susceptible individual becomes
infected, and recovery, I→ S, where an infected individual
recovers from the disease and becomes susceptible again.
When individuals become infected they are also immediately
infectious, and when infected individuals recover, they
become immediately susceptible again. The total number of
individuals in the population equals N = S + I, S denoting the
number of susceptible individuals and I the number of infected
individuals. Thus the symbols S and I are used both to indicate
individual disease status and the number of individuals with
this disease status, as common in epidemiology.

Quantitative epidemiology shows that the prevalence of
an infectious disease, which is the fraction of the population
that is infected, P = I/N, depends on the so-called basic repro-
duction number (R0) of the disease. R0 is the number of
individuals who become infected by a typical infected indi-
vidual in an otherwise fully susceptible population, and is
a property of the population [30–32]. When R0 > 1, an infec-
tious individual can infect more than one new individual,
so that the disease can persist in the population.

The prevalence reaches an equilibrium value when an
infected individual on average infects a single other individ-
ual. This occurs when the product of R0 and the fraction
of contact individuals who are susceptible is equal to 1; R0

(1− P) = 1. For example, when R0 = 3 an infectious individual
could in principle infect three other individuals. However,
when only one-third of their contact individuals are
susceptible, meaning 1− P = 1/3, then the effective reproduc-
tion number equals 3 × 1/3 = 1. Hence, at 1− P = 1/3 the
number of infected individuals stays constant because an
infected individual is on average replaced by a single new
infected individual, so that an equilibrium occurs at Peq = 1−
1/3= 2/3. The equilibrium prevalence, therefore, equals [32]

Peq ¼ 1� 1
R0

: ð4:1Þ

Hence, the equilibrium prevalence is determined by
R0 (figure 3). The equilibrium is reached quickly (i.e. on
much shorter time scales than a generation) and actual
prevalence tends to fluctuate around the equilibrium because
of random perturbations.

Because the equilibrium prevalence is determined by
R0 (equation (4.1)), response to selection, i.e. the genetic change
in prevalence from one generation to the next, follows from the
genetic change in R0. Thus, to measure the value of a selection
candidate with respect to response to selection, we should base
this measure on its genetic impact on R0. Hence, based on
equation (4.1), we may define an individual breeding value for
prevalence based on an individual’s additive genetic impact
on R0,

AP,i ¼ � 1
AR0,i

, ð4:2Þ

where AR0,i is the additive genetic contribution of individual i
to R0, or the ‘breeding value for R0’. (See [28] for an example
for an epidemic disease. While there are issues here with
nonlinearity and interactions, these may be addressed by con-
sidering breeding values as sums of marginal effects of alleles,
similar to breeding values for any trait [17,18]. This is not of
interest for the current objective.) Thus Ap is the quantity
relevant for response to selection, i.e. for the change in
equilibrium prevalence from one generation to the next,

DPeq ¼ DAP ¼ cov(Ap,w): ð4:3Þ

In equation (4.2), I have defined the breeding value as
the value of an individual with respect to response to selection.
In other words, since DPeq ¼ DAP, Ap is the measure of
breeding value that is relevant for response to selection. The
key question now is whether the ordinary breeding value for
individual disease status, meaning the value that we estimate
when analysing individual disease status data with, e.g. an
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animalmodel, is the same as theAp defined in equation (4.2), or
whether it is something completely different. To answer this
question, I now derive the expected value of the ordinary
breeding value for individual disease status, yi = 0,1 indicating
non-infected versus infected. (But note that prevalence is
simply the mean of individual disease status, �y ¼ P.) Because
I consider genetic variation in susceptibility to infection only,
in the following the transmission rate parameter between a
pair of individuals ij (βij) depends only on the susceptibility of
the recipient individual i, not on the infectivity of the donor
individual j; so I will use βij = βi, i denoting the susceptible
recipient individual.

The genetic component of an individual’s disease
status follows from the expectation of yi given its genes.
The expectation of yi is equal to the expected fraction of the
time that i is infected (i.e. that yi = 1, since yi = 0 otherwise).
This fraction is equal to the mean duration (Dt) of the infected
status divided by the mean duration of a full SIS cycle
(figure 2),

Ay,i ¼ E(yijgenes of i) ¼ E(DtI!S,i)
E(DtI!S,i)þ E(DtS!I,i)

:

Assuming approximately constant transmission and recovery
rates in the endemic equilibrium, the mean duration of a
status follows from the exponential distribution, and equals
the reciprocal of the corresponding rate [33]. Thus the
mean duration of the infected status is the reciprocal of the
recovery rate, α,

E(DtI!S,i) ¼ 1
a
,

(note, we assume the absence of genetic variation in recovery
rate, so αi = α). For example, if the recovery rate is 0.5/day,
then the mean recovery time is 2 days. Similarly, the mean
duration of the susceptible status is the reciprocal of the
rate with which the individual becomes infected,

E(DtS!I,i) ¼ 1
biI=N

,

where βi is the transmission rate parameter for individual i,
which reflects its susceptibility, and I/N is the fraction of its
contact individuals who are infectious. The mean duration
of a full SIS cycle, therefore, equals 1/α + 1/(βiI/N ). Hence,
the ordinary breeding value for individual disease status,
i.e. the expected phenotypic value (y) of an individual
given the average effects of its genes, equals

Ay,i ¼ 1=a
1=a þ 1=(biI=N)

ð4:4Þ

where βi is to be interpreted as the additive genetic value for
individual i, including its mean.

To investigate whether equations (4.2) and (4.4) are
identical, equation (4.4) can be expressed in terms of R0, by
relating α and β to the breeding value for R0. Recall that R0

is the number of individuals infected by a single infected
individual over their entire infectious lifetime in a fully sus-
ceptible population. Hence, R0 is the product of the mean
duration of the infectious period (1/α) and the mean
transmission rate parameter (β; R0 = β/α, [33]). Thus the
individual breeding value for R0 may be expressed as

AR0,i ¼
bi

a
: ð4:5Þ
Multiplying numerator and denominator of equation (4.4) by
βi and substituting βi/α =AR0,i and I/N = P, yields

Ay,i ¼
AR0,i P

AR0,i P þ 1
: ð4:6Þ

Equation (4.6) is the expected value of an individual’s dis-
ease status given the average effects of its genes, and
represents the breeding value that is (implicitly) estimated
when fitting a mixed model to data on individual disease
status, which is the common approach.

A comparison of equations (4.2) and (4.6) shows that
the breeding value for individual disease status (Ay,i) is mark-
edly different from the breeding value that determines
response to selection (AP,i); Ay,i is approximately only a frac-
tion P of AP,i. This is illustrated in figure 4 for a disease
with an equilibrium prevalence of 50% (i.e. R0 = 2). Hence,
Ay,i≅ PAP,i = 0.5AP,i in this example. Thus the breeding value
for response in prevalence takes a considerably wider range
of values. This means that the ordinary breeding values for
disease status strongly underestimate the prospects for gen-
etic change by artificial or natural selection, particularly
when the prevalence is small.

The difference between AP and Ay originates from positive
feedback via the ‘social environment’. Less susceptible individ-
uals, for example, are not only less likely to become infected
themselves, but they are also less likely to infect other individ-
uals in the population simply because they are less often
infected themselves. This mechanism leads to a reduction in
exposure to the pathogen for the entire population, resulting
in lower prevalence. The opposite holds for individuals who
are more susceptible than average. This positive feedback via
the social environment is included in AP, but not in the
ordinary breeding value for individual disease status Ay.

In the above example, the response in prevalence followed
from the RPI (equation (4.3)), without a contribution of
the second term of PT. By starting from the expression for the
equilibrium prevalence as a property of the population
(equation (4.1)), the effect of a change in the environment (i.e.
changing exposure to the pathogen via infectious population
members) on individual disease status is included implicitly.
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In other words, I started from an expression for prevalence that
follows from the disease transmission process in the popu-
lation, rather than treating prevalence as the average value of
the disease status of individual animals. For this reason, the
breeding value for response to selection (AP) represents a so-
called total breeding value [21,23], which includes both the
direct genetic effect of disease susceptibility on the disease
status of the focal individual itself as well as the IGE of the
focal individual’s disease susceptibility on the disease statuses
of its population members.

In an alternative approach, one could have treated the
prevalence as the mean of individual disease status values,
and derived response to selection using both terms of PT.
The first term of PT (RPI) would then reflect the mean
change in individual disease status owing to individual
genes in a constant environment (i.e. the same exposure to
infected population members as before selection) as given by
DAy, while the second term of PT would reflect the change in
prevalence owing to a change in the environment (i.e. a
reduction of the fraction of infected conspecifics leading to
lower exposure to the pathogen after selection). For the present
case, however, the first approach is considerably simpler.

In general, the IGE approach [34–36] may be interpreted
as moving components of the response to selection from
the second term of PT to the first term of PT. By extending
the definition of breeding value to include the social genetic
effects, they are shifted from the ‘environment’ to the breed-
ing value so that their contribution to response becomes part
of cov(A,w). In many cases this is convenient, because IGE
can be estimated together with direct genetic effects in an
Animal Model framework [37–39], and this approach also
reveals the total heritable variation that is available for
response to selection (the σA to be used in equations (2.2)
and (2.4); [23]).
5. Conclusion
In this article, I have connected PT to animal breeding. First, I
have connected the common expression for response to selec-
tion used by breeders to PT, and presented an exact version
of that expression, formulated in terms of fitness (equation
(2.4)). Next, I explored the problem of genotype–environment
covariance, showing that response to selection can be parti-
tioned into two terms (RA and RE) that relate to the definition
of the breeding value and to the partitioning of response
between the first and second terms of PT. The results show
that a genotype–environment covariance leads to failure of
the breeder’s equation when the genotype–environment
covariance is present only within generations but not across
generations. Finally, I investigated the breeding value and
response to selection for the prevalence of an endemic infec-
tious disease, as an example of an emergent trait. By starting
from an expression for the equilibrium prevalence of the dis-
ease as a consequence of the transmission process in the
population, instead of focussing on individual trait values, I
implicitly moved elements of response to selection from the
second to the first term of PT. This is valuable, because it
removes the ‘incomplete fidelity of transmission’, and thus
captures more of the response in terms of classical quantita-
tive genetic parameters, such as the breeding value and
heritable variation. These examples illustrate the power of PT
as a starting point to understand the response to selection.
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Appendix A – Numerical illustration of
genotype–environment covariance owing to the
feeding regime
Suppose the average cow produces 20 kg of milk per day.
We put the trait average in E, so that the mean breeding
value is zero. Hence, �E ¼ g ¼ 20 . Suppose farmers feed
cows according to their milk yield with a constant of propor-
tionality of b = 0.1. Now consider a cow with a breeding value
of A = +1 kg of milk. The initially expected milk yield of the
cow equals 20 + 1 = 21 kg. The farmer observes that the cow
is better than average, and adjusts nutrition according to
E ¼ gþ b(z� �z) ¼ 20þ 0:1� (21� 20) ¼ 20:1. Thus the
expected milk yield of the cow increases to 20.1 + 1 = 21.1.
The farmer again adjusts nutrition, giving E = 20 +
0.1 × (21.1− 20) = 20.11, so that expected milk yield of the
cow increases to 20.11 + 1 = 21.11, etc. This series converges
to an expected milk yield of 21.111… Hence, the redefined
breeding value, being the expected value of z given A,
measured as a deviation from the average, equals 1.111…,
which is equal to A0 = 1/(1− b) = 1/0.9.
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