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ABSTRACT  

Precision agriculture challenges such as automatic harvesting, phenotyping, and yield prediction 
require precise detection of plant parts such as the fruits, leaves or stems. Deep learning has emerged 
as the state-of-the-art technology for image segmentation and object detection in several domains, 
notably in self-driving vehicles and medical imaging. In recent years, deep learning methods are being 
increasingly adopted in vision-based applications for precision agriculture. In previous work, methods 
were investigated to segment the image for plant parts. However, such an approach did not yield 
object instances. In this work, we applied the state-of-the-art deep learning object detector, 
MaskRCNN, to the problem of detecting fruit and other plant parts, in the sweet pepper (capsicum 
annuum) plant. An extensive study was carried out where we investigated different transfer learning 
schemes, different convolutional neural network architectures, and varying numbers of training 
images. Experimentally, we found that MaskRCNN trained with the synthetic data and fine-tuned with 
very few empirical images is able to detect more than 95% of the sweet pepper fruit. It was also found 
that training on the synthetic data and then fine-tuning over a few empirical images led to a better 
performance in the detection of fruit, over training only on the limited set of empirical images. 
Furthermore, results show that the best model could successfully generalize to different imaging 
conditions. This work is a necessary step for applying deep learning in high-throughput robotics and 
phenotyping approaches and will open up many opportunities for smart farming and more efficient 
use of resources. Currently, training deep learning models is dependent on the knowledge and 
expertise of the scientists involved. The insights gained from this work should lead to more automatic 
training protocols, allowing widespread use in very different applications.  
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1. INTRODUCTION  

Automation and robotic tasks in agriculture such as harvesting, pruning or localized spraying require 
detailed and accurate localization of plant parts from images (Bac et. al., 2014). Traditionally, computer 
vision solutions to detect these parts were based on hand-crafted features such as shape and texture 
(Kapach et. al., 2012). However due to the large variability between different varieties of the crop, 
specimens of the same crop and variety, and in the imaging conditions (Barth, 2018; Bac, 2015), 
methods from the domain of machine learning such as convolutional neural networks, are being 
increasingly used due to their ability to cope with large amounts of variation in training data. Deep 
neural networks (Lecun et. al., 2015) have emerged as the state-of-the-art in computer vision, from 
image level classification (Krizhevsky et. al., 2012) to pixel-wise or semantic segmentation (Long et. al., 
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2015). In many applications including agriculture, object detection rather than semantic segmentation 
is required to discern individual instances in order to determine manipulation or application points for 
each object. FastRCNN (Girshick et. al., 2015) is an object detector which uses region based 
convolutional neural networks (R-CNN) combined with the selective search method to detect region 
proposals. Another fast and popular deep learning object detector is the You Only Look Once (YOLO) 
(Redmon et. al., 2016) which applies a single neural network to the full image which divides the image 
into regions and predicts bounding boxes and probabilities for each region, unlike Fast-RCNN and its 
variants which apply the model to an image at multiple locations and scales. These methods provide a 
classification with a bounding-box localization of instances of the object of interest. A variant of 
FastRCNN has been used to detect sweet peppers and other fruit from color and near infrared images 
(Sa et. al., 2016). A recent method, Mask-RCNN, extends FastRCNN by a branch for predicting an object 
mask in parallel with the existing branch for bounding box recognition (He et. al., 2017). In our previous 
work, it was shown that plant parts could be successfully semantically segmented in the image, based 
on synthetic data bootstrapping (Barth et. al., 2018) and fine-tuning with a small empirical dataset 
(Barth et. al., 2017). 

In this paper we build upon previous pixel-wise segmentation results, by using Mask-RCNN to obtain 
instance detection of plant parts. This paper also investigates different transfer learning techniques, 
with and without training on the synthetic or empirical dataset. Experimental results show that under 
the best training configuration (architecture and transfer learning scheme), almost 100% of the fruits, 
75% of the stems, and 80% of the peduncles can be detected, with few false positives. An improvement 
over the Intersection over union (IOU) metric was obtained compared to previous pixel-wise 
segmentation. Thus, the use of MaskRCNN, resulted in a practically useful method for sweet pepper 
part detection with state-of-the-art performance. 

2. MATERIALS AND METHODS 

2.1 Dataset 

The image dataset consists of the first 200 synthetic images out of the dataset from (Barth et. Al., 2017 
and Barth, 2018), modelled to approximate the empirical set visually and 50 empirical (real) images of 
a sweet-pepper crop in a commercial high-tech greenhouse. The dataset is available online. Because 
the ground truth of this dataset was on a per-pixel level and did not contain instances, the empirical 
dataset was manually relabeled for unique objects of the classes fruit, stem, and peduncle using the 
LabelMe tool (Russell et. al., 2008). For the synthetic images, the instance wise ground truth was 
obtained by re-rendering each object alone in the 3D scene, thus producing the complete shape of 
each object. To deal with occlusions, a post processing step was used to include only the class pixels 
for each instance that were also present in the original ground truth. The 200 synthetic images were 
used only for training. The first 30 images from the empirical dataset were used for training or fine-
tuning while image numbers 31 to 50 are used for testing. An alternative empirical dataset of 20 
images, that used different illumination and camera, was also acquired and labeled with the aim to 
verify the trained model's generalizability and robustness to new conditions in other datasets. 

An example image from the synthetic dataset and its ground truth are shown in Figure 1. It can be seen 
that the color image is quite realistic, compared to empirical ones in Figures 2(a) and 3(a). 

 

 

https://data.4tu.nl/repository/uuid:884958f5-b868-46e1-b3d8-a0b5d91b02c0
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Figure 1: Example of synthetic image (left), of its corresponding ground truth instance labels 
(middle), and of the GT overlaid (right). 

2.2 Deep Learning Software Setup and algorithms 

Detectron, Facebook AI Research’s software with the implementation of Mask R-CNN, was used to 
train convolutional neural network models with the image datasets from the previous section to 
perform instance segmentation of plant parts. It was installed on a workstation with an NVIDIA 
GeForce GTX 1080 Ti 11GB GPU with Ubuntu LTS 16.04 64-bit supported by CUDA 9.0. 

Mask-RCNN uses a convolutional neural network architecture such as ResNet (He et. al., 2016) as the 
backbone, which extracts the feature maps. The region proposal network (RPN) applies a sliding 
window over this feature map and calculates region proposals, which are then pooled with the feature 
maps and over each, a classifier is applied resulting in a bounding box prediction corresponding to an 
instance of the particular class. The scheme until this point is the same as FasterRCNN. An additional 
convolutional network is applied on the aligned region and feature map to obtain a mask for each 
bounding box. 

The following backbone CNN architectures were varied: the 50 and 101-layer ResNets,and ResNext 
(Xie et. al., 2017) configurations ResNext 101-32x8d (101 layers, cardinality 32, bottleneck width 8) 
and ResNext 101-64x4d (101 layers, cardinality 64, bottleneck width 4). For these architectures, 
models pre-trained on the ImageNet1k dataset were downloaded from the Detectron repository. Since 
this paper addresses the problem of sweet-pepper plant part detection, models pre-trained on 
ImageNet-1K offer an advantage since one of the classes in this dataset is ‘bell-pepper’. 

Different transfer learning schemes, training only on the synthetic dataset or only on the empirical 
dataset, or training on the synthetic set followed by fine-tuning on the empirical were also studied. 

3.  RESULTS 

For the detected objects, true positives, false positives, and false negatives were determined using a 
criterion that a 25% in overlap of the segmented instance and the ground truth masks should result in 
a positive detection thereof. This level of overlap was chosen to take into account the fact that some 
fruit and stems may have disjoint sections due to occlusions, not all of which get detected as part of 
the same instance. From these measures, the precision and recall were calculated for each plant part 
class. For comparison with earlier pixel-wise segmentation, the Jaccard Index similarity coefficient or 
intersection-over-union (IOU) (Csurka et. al., 2013) was calculated by combining all pixels for a 
particular class and image and comparing against the pixel-wise ground truth.  

Figures 2 and 3 present results of segmentation obtained with different transfer learning schemes and 
architectures, and Table 1 summarizes the figures of merit for the different configurations. 
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Figure 2: Detection on empirical image no. 36: (a) RGB image; (b) RGB with overlaid GT; detections 
with: (c) R101 trained on synthetic set; (d) R101 trained only on emp. images 1-30; (e) R101 and (f) 

X101 64x4d, both trained on synthetic and fine-tuned on emp. images 1-30. 

 

Table 1: Summary of detection statistics using Mask-RCNN with different backbone architectures 
and training schemes. The 3 best values for each metric over the empirical test set are in bold. 

Network  Fruit   Stem   Peduncle  

 P R IoU P R IoU P R IoU 

Tested on: emp 31-50 

Pixelwise (VGG)   0.76   0.41   0.39 

Experiment 1, Trained on: synth 1-200, Tested on: emp 31-50 

ResNet101 0.56 0.92 0.56 0.11 0.04 0.01 0.73 0.3 0.08 

ResNext101 32x8d 0.43 0.99 0.54 0.17 0.14 0.09 0.56 0.24 0.09 

ResNext101 64x4d 0.41 0.95 0.45 0.4 0.21 0.1 0.7 0.4 0.16 

Experiment 2, Trained on: synth 1-200, Finetuned: emp 1-30, Tested on: emp 31-50 

ResNet101 0.9 0.96 0.78 0.92 0.59 0.39 0.85 0.71 0.41 

ResNext101 32x8d 0.87 0.97 0.77 1 0.56 0.37 0.78 0.84 0.46 

ResNext101 64x4d 0.87 0.96 0.78 0.98 0.76 0.47 0.77 0.82 0.48 

Experiment 3, Trained on: emp 1-30, Tested on: emp 31-50 

ResNet101 0.87 0.97 0.76 0.97 0.56 0.33 0.79 0.62 0.36 

ResNext101 32x8d 0.87 0.94 0.74 1 0.67 0.36 0.82 0.65 0.34 

Tested on: alt. emp 1-20 

ResNet101 train syn 1-200 0.21 0.6 0.32 0 0 0.02 0.06 0.08 0.02 

ResNet101 train emp 1-30 0.77 0.71 0.72 0.77 0.5 0.16 0.64 0.6 0.2 

R101 train syn 1-200 ft emp 1-30 0.67 1 0.69 0.7 0.46 0.17 0.33 0.46 0.07 
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Figure 3: Detection results alternative emp. image no. 11: (a) RGB image; (b) RGB with overlaid GT; 
(c) detection with R101 trained on synthetic images and fine-tuned on emp. images 1-30. 

4. DISCUSSION 

From the results in Table 1, it can be seen that the best transfer learning scheme was training on the 
synthetic dataset, followed by fine-tuning on the empirical dataset. This scheme was found to perform 
better than training only on the empirical dataset. For the detection of the fruits, the best architecture 
was found to be ResNet101, whereas ResNext101 64x4d was the best for the detection of the stems. 
The two did not vary much in the detection of the peduncles. With this combination of transfer 
learning, architectures, and the full empirical training dataset, we obtained for the fruits, a precision 
of above 0.90 and a recall of close to 1.0, for the stems, a precision of close to 1.0 and a recall above 
0.75, and for the peduncles a precision and recall of close to 0.80. 

Overall, the intersection over union values for each class were higher than the respective ones 
reported in previous work on pixel-wise segmentation. Thus, state-of-the-art performance was 
achieved in detection of these plant parts using Mask-RCNN whilst determining the optimal transfer 
learning strategy, network architecture and dataset size. 

5. CONCLUSIONS 

In this work, deep learning instance detection was applied to the problem of detecting pepper plant 
parts. Experimental results show that this approach works well for the detection of fruit, which is useful 
for practical applications such as harvesting and yield estimation. Our results also show that the 
synthetic pepper dataset is useful for initial training, to detect peppers in real life images, thus reducing 
the need for a large number of manually annotated images. 

In the experiments, the best numerical results were obtained for the detection of the fruit. The 
detection of other plant parts such as stems and peduncles is a harder problem likely due to the 
similarity in color to leaves, twigs, and other unlabeled parts. The segmentation of plant parts could 
be useful for other plants grown in greenhouses and similar environments, for example tomatoes 
regarding yield estimation or stem thickness as an important trait for phenotyping.  
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