
Data driven supply allocation to individual customers considering forecast bias
International Journal of Production Economics
Seitz, Alexander; Grunow, Martin; Akkerman, Renzo
https://doi.org/10.1016/j.ijpe.2020.107683

This article is made publicly available in the institutional repository of Wageningen University and Research, under the
terms of article 25fa of the Dutch Copyright Act, also known as the Amendment Taverne. This has been done with explicit
consent by the author.

Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is
entitled to make that work publicly available for no consideration following a reasonable period of time after the work was
first published, provided that clear reference is made to the source of the first publication of the work.

This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa
implementation' project. In this project research outputs of researchers employed by Dutch Universities that comply with the
legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in
institutional repositories. Research outputs are distributed six months after their first online publication in the original
published version and with proper attribution to the source of the original publication.

You are permitted to download and use the publication for personal purposes. All rights remain with the author(s) and / or
copyright owner(s) of this work. Any use of the publication or parts of it other than authorised under article 25fa of the
Dutch Copyright act is prohibited. Wageningen University & Research and the author(s) of this publication shall not be
held responsible or liable for any damages resulting from your (re)use of this publication.

For questions regarding the public availability of this article please contact openscience.library@wur.nl

https://doi.org/10.1016/j.ijpe.2020.107683
mailto:openscience.library@wur.nl


Int. J. Production Economics 227 (2020) 107683

Available online 14 February 2020
0925-5273/© 2020 Elsevier B.V. All rights reserved.

Data driven supply allocation to individual customers considering 
forecast bias 

Alexander Seitz a,*, Martin Grunow a, Renzo Akkerman b 

a Production and Supply Chain Management, Technical University of Munich, Munich, Germany 
b Operations Research and Logistics Group, Wageningen University, Wageningen, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
Allocation planning 
Order promising 
Demand fulfilment 
Demand forecast bias 
Big data 
Supply chain planning 

A B S T R A C T   

We propose a data-driven allocation planning approach, which is designed for use in advanced planning systems 
as they are widely used in industrial environments. The approach exploits increasingly available data on indi
vidual customers and products by allocating supply on a highly granular level at high planning frequencies. It 
counteracts rationing gaming by customers, which we assume to be the reason for demand forecast biases. 

We create an incentive for truthful forecasting by not only allocating supply based on customer profitability 
but also based on forecast bias. In the long term, this approach gives access to a profit potential and an on-time 
service level increase. In the short term, however, setting such an incentive does not only have a positive impact 
on service levels but also leads to a decline in profits. Our methodology quantifies this trade off providing de
cision support for determining the extent to which the forecast bias should affect the allocation. 

In a numerical study based on the semiconductor industry, we demonstrate that the approach has a large long- 
term profit potential while having limited effect on short-term profits for significant service level incentives. The 
analysis further shows that the allocation efficiency increases with the granularity level and the predictive 
quality of the available data.   

1. Introduction 

Shortening economic and product life cycles lead to increasing de
mand variations, which are amplified through the supply chain by the 
so-called bullwhip effect. For example, the growth rates of the semi
conductor market (without memory chips), whose companies are typi
cally located upstream in the supply chain, varied between � 40% and 
þ50% since the beginning of 2009 (WSTS Inc., 2015). Consequently, 
periods of supply shortage occur more frequently. Hence, allocation 
planning (AP), i.e. deciding on when and how to fulfil which customer’s 
demand, gains importance in industrial practice. 

AP is part of a demand fulfilment process, typically implemented in 
software systems such as advanced planning systems (see Fig. 1). It re
serves quantities of inventory and planned supply receipts, together 
termed available-to-promise (ATP), for certain customer segments. 
These supply reservations, called allocated available-to-promise 
(AATP), are then used to confirm delivery dates for incoming 
customer orders in a real-time order promising step. The communication 
with the customer is often fully automated and occurs at high 

frequencies, allowing the AP to also be performed at high frequencies. 
With the recent advances in big data tools, companies are able to 

monitor the ordering behaviour of their customers on the granularity 
level of individual customers and final products. The higher trans
parency of the customers’ ordering behaviour provides opportunities to 
increase the efficiency of supply allocation. However, conventional AP 
approaches based on segmentation are not able to exploit the available 
data because customers are typically clustered according to profitability, 
disregarding their ordering behaviour. 

From the literature it is known that in order to satisfy their demands, 
the customers strategically inflate their forecasts in supply shortage 
situations to game the AP procedure of their supplier. Intuitively, one 
would assume that customers inflate their orders by a fixed bias. How
ever, the data from a large European semiconductor manufacturer, 
which we use in our case study, shows that the consumers usually 
communicate a stable forecast, but order only smaller volumes at 
irregular intervals. Fig. 2 shows the demand errors and the forecast bias 
resulting from typical customer forecasting and ordering behaviour. The 
error is defined as the part of the forecast that is not translated into 
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actual orders relative to the total forecast. Its structural component, i.e. 
its non-random part, is defined as the forecast bias, which we assume to 
be the result of the strategic order inflation behaviour. In Section 3.1, the 
exact definitions of the forecast error and the forecast bias are provided. 

For a supplier, such strategic customer behaviour, commonly 
referred to as rationing gaming (see e.g. Lee et al., 2004), leads to the 
risk of inefficient supply allocation. Scarce supply is allocated to inflated 
demand of highly profitable customer segments, which is not consumed 
by subsequent orders. Despite the supply shortage, this results in high 
stock levels. At the same time, demand of customer segments with lower 
profitability is not fulfilled in full, leading to low overall on-time service 
levels. 

In order to counteract the negative consequences of the rationing 
game, new approaches are needed to incentivise customers to truthfully 
forecast their demand. Herein, the results of big data tools monitoring 
historical demand forecast biases can be exploited to identify systematic 
gaming behaviour. 

This paper develops a data-driven allocation planning (DDAP) 
approach that exploits increasingly available data on individual cus
tomers and products by allocating supply on a highly granular level at 
high planning frequencies. It allocates ATP supply to individual cus
tomers considering customer forecast bias in addition to customer 
profitability. In the long term, this AP approach provides an incentive 
for truthful forecast information sharing, leading to a more efficient 
product allocation process and unlocking additional profit potential and 
service level improvements. The incentive depends on the extent to 
which customers with different forecast biases are served with different 
service levels. In the short term, however, the introduction of such an 
incentive leads to a decline in profits compared to an allocation entirely 
based on customer profitability. In addition, the overall service level 
across all customers is affected. These long-term and short-term effects 
must be considered when deciding on the extent to which forecast bias is 
considered in the allocation. Our paper provides a thorough basis for the 
decision by developing a framework that structures the different ana
lyses necessary to derive the information required to trade off the effects 
on long-term profit and service level potentials, incentive size, and 
short-term profits and service levels. 

The approach is developed for the use in advanced planning systems 

in industrial environments in which standardised goods are mass pro
duced and businesses use a make-to-forecast strategy in supply planning. 
Because production lead times are larger than order lead times, a 
notification-release order cycle is used, which first allocates available 
supply based on demand forecasts, i.e. notifications, provided by the 
customers and later releases this supply upon order reception. 

Using the approach in a numerical study based on the semiconductor 
industry, we demonstrate that the proposed method has a significant 
long-term profit potential and on-time service level potential. In the 
short term, it also results in lower average stock levels and an increased 
overall service level, especially for customers with truthful forecasts. 
Finally, we show that allocation on individual customer level is only 
valuable when additional data such as forecast bias and lead time is 
exploited on this granularity level. 

The remaining paper is organised as follows: Section 2 provides a 
literature review. Section 3 explains our AP approach in detail. Section 4 
introduces a case from the semiconductor industry and describes the 
performance measures used in our numerical study. It subsequently 
introduces an analysis framework for implementation of the DDAP 
approach, and describes each of the stages in detail. Throughout Section 
4, the industry case is used to illustrate the application of the framework. 
Section 5 provides a numerical study focusing on the value and 
robustness of the DDAP approach. Finally, we draw conclusions and give 
an outlook on future research in Section 6. 

2. Literature review 

Our research is related to the streams allocation planning and order 
promising, inventory rationing, revenue management and due-date 
assignment and scheduling. Inventory rationing and revenue manage
ment methodologies typically include supply planning decisions (see Liu 
et al. (2015) and Chevalier et al. (2015) for recent reviews). As described 
in Section 1, we investigate common industrial environments, in which 
the planning hierarchy (e.g. in advanced planning systems) separates 
supply decisions from allocation decisions. In this context, allocation 
decisions should be made based on the given ATP supply. In contrast, 
due-date assignment and scheduling approaches are used to plan pro
duction at the detailed shop floor level (see e.g. Gordon et al., 2012). We, 
however, investigate supply chain wide planning. As a consequence, we 
review literature on allocation planning and order promising. 

The literature divides order promising models into batch and real-time 
approaches. For a review of the field and a classification scheme for 
order promising models, see Ball et al. (2004) and Pibernik (2005). 
Batch order promising approaches imply customer prioritisation possi
bilities and are therefore operated without preceding AP. Some of the 
suggested approaches are of heuristic nature. For example, Pibernik 
(2006) and Jeong et al. (2002) describe a simple rule-based algorithm 
and a greedy algorithm respectively. Rabbani et al. (2014) develop a 
genetic algorithm for order promising and scheduling in a 
multi-machine flow shop production environment. Majority of the 
proposed methods, however, are based on optimisation. While a few 
approaches promise orders based on a given finished product supply 
(Pibernik, 2005, 2006; Seitz and Grunow, 2017), most contributions 
integrate order promising with production planning functionalities in 
assemble-to-order or make-to-order environments (Ball et al., 2003; 
Zhao et al., 2005; Tsai and Wang, 2009; Lin et al., 2010; G€ossinger and 
Kalkowski, 2015), distribution planning functionalities (Jung, 2010) or 
a combination of both (Venkatadri et al., 2006; Yang and Fung, 2014). 

Integrated batch order promising approaches lead to scattered pro
duction schedules that necessitate regular order re-promising (see 
Dickersbach, 2009). Moreover, they are computationally expensive and 
myopic in nature since they do not take future orders into account (see 
Pibernik, 2005). Finally, batch order promising approaches assume that 
customers are willing to wait until they receive an order promise. This is 
often not the case since short customer response time is perceived as 
good customer service. In such scenarios, real time order promising 

Fig. 1. General structure of a demand fulfilment process.  

Fig. 2. Demand forecast bias graph for a typical customer demand pattern.  

A. Seitz et al.                                                                                                                                                                                                                                    



International Journal of Production Economics 227 (2020) 107683

3

approaches are needed, which require preceding AP mechanisms. 
In practice, common allocation planning approaches still use simple 

business rules (Kilger and Meyr, 2015; Cederborg and Rudberg, 2009; 
Pibernik, 2006) even though they are known to increase the bullwhip 
effect (see e.g. Bakal et al., 2011). However, many more sophisticated 
approaches can be found in the literature. Alarc�on et al. (2009), 
Babarogi�c et al. (2012) and Ali et al. (2014) propose procedural 
frameworks that include supply allocation and aim at maximising 
customer service levels or short-term profits. Other authors study styl
ised special cases using probabilistic modelling to derive algorithms 
(Pibernik and Yadav, 2009; Kloos et al., 2018; Kloos and Pibernik, 2020) 
or structural characteristics of the optimal order acceptance policy 
(Chiang and Wu, 2011; Gao et al., 2012). Many scholars present linear 
programming-based approaches in which the aim is to maximise overall 
profits by integrating AP with production planning in assemble-to-order 
or make-to-order environments (Ball et al., 2004; Ervolina et al., 2009; 
Chen and Dong, 2014; Chiang and Hsu, 2014) or in make-to-stock en
vironments (Lebreton, 2015; Meyr, 2009; Cano-Belm�an and Meyr, 
2019). 

Vogel (2014) proposes a method for multi-stage customer hierar
chies. He shows that the approach can lead to higher profits compared 
with profits achieved by an optimal central allocation approach, if de
mand forecast accuracy is very low. Framinan and Perez-Gonzalez 
(2016) study the effect of customer forecast accuracy and bias on un
used capacity and customer service level in semiconductor 
manufacturing. They find that forecast bias has a negative effect on the 
effectiveness of ATP allocations, which is positively correlated to the 
extent of the bias. 

For an up-to-date overview and discussion of demand fulfilment and 
order promising in semiconductor supply chains, we refer the reader to 
M€onch et al. (2018). 

Table 1 presents an overview of publications on AP and order 
promising and compares their demand fulfilment approaches to our data 
driven allocation planning (DDAP) approach in the categories of deci
sion criteria, incorporated demand data, AP frequency and AP level. 
Even though Meyr (2009) already called for customer ordering behav
iour to be included in the profitability evaluation of a customer, neither 
he nor other researchers have proposed a relevant allocation method
ology. The DDAP approach is the first approach that systematically in
corporates customer behaviour (i.e. customer forecast bias) as a decision 
criterion into its allocation planning method. The DDAP approach is also 
the only approach planning supply allocations in a short-term rolling 
horizon fashion. Further, the DDAP approach belongs to the very few 
methodologies incorporating both forecasts and orders into their deci
sion models and considering the importance and profitability of 
customers. 

3. Data driven allocation planning methodology 

Fig. 3 gives an overview of our DDAP methodology. It is developed 

for the single-product case and divided into a mid-term and two short- 
term planning processes, executed in a rolling horizon fashion. Our 
approach can also be applied to the multi-product case provided there is 
no substitution between products. The mid-term customer PAS deter
mination process, described in Section 3.1, uses the profitability and 
historical forecast accuracy of the customers to determine their indi
vidual profitability accuracy score (PASi). The resulting score of indi
vidual customers is used in the decisions of the short-term processes AP 
and order promising. 

The short-term AP method, which is developed in Section 3.2, re
serves supply quantities becoming available in planning period t 2 T for 
forecasted demand being due in period τ 2 T. It fulfils the demands 
according to the PAS of the customers. The AP step is part of the short- 
term planning of the company. It is so because industrial customers 
update their demand forecasts in a frequent, short-term manner (e.g. 
every day). Accordingly, supply allocations are updated with a high 
frequency in order to make use of the newly available data. 

The real-time order promising approach employed in our method
ology is adapted from Meyr (2009). It uses the supply allocations to 
generate order promises pit0 τ0 for incoming orders oiτ0 in real-time. Here t0

stands for the delivery period, while τ0 represents the time period of the 
requested delivery date. Note that customers do not have to place an 
order in every time period and there is no predetermined sequence in 
which the customers order. We follow a nesting policy in the order 
promising step; i.e. orders can consume AATP quantities, which are 
reserved for customers being less preferred than the customer placing 
the order. The order promising model is presented in Appendix B. 

Finally, we illustrate the advantages of our AP model over conven
tional allocation planning (CAP) in Section 3.3. 

3.1. Mid-term customer PAS determination 

For the DDAP approach, the concepts of the forecast error and the 
forecast bias have to be distinguished. While the forecast error is simply 
defined as the deviation of the customer forecast from the final order, 
the forecast bias denotes the structural or strategic deviation. Hence, the 
forecast error consists of a random component and a systematic or 
strategic forecast bias. If the forecast bias of a customer is positive, they 
systematically or strategically inflate their demand forecasts, which we 
assume to be the result of rationing gaming behaviour. We hence ignore 
other possible reasons for the forecast bias. The DDAP approach iden
tifies rationing gaming of the customers and considers it in allocation 
planning in order to incentivise customers to truthfully forecast their 
demands. 

As described in Section 1 industrial customers displaying rationing 
gaming behaviour usually do not inflate their demand forecasts by a 
fixed ratio. Instead, constant demand forecasts of the (anticipated) 
maximum possible order size are given; the actual order sizes then 
experience substantial volatility (see Fig. 2). Hence, an allocation 
approach will not lead to an efficient supply allocation if it integrates 

Table 1 
Literature gap analysis.   

decision criteria demand data AP frequency AP levela 

customer profitability customer behaviour customer importance forecasts orders 

Alemany et al. (2015) x    x mid-term seg. 
Cano-Belm�an and Meyr (2019) x   x  mid-term seg. 
Chen and Dong (2014) x   x  mid-term seg. 
Chiang and Hsu (2014) x   x x mid-term seg. 
Ervolina et al. (2009) x   x  mid-term seg. 
Framinan and Perez-Gonzalez (2016) x   x  mid-term cust. 
Meyr (2009) x  x x x mid-term seg. 
Pibernik (2006)    x x mid-term seg. 
Pibernik and Yadav (2009)   x  x mid-term seg. 
Vogel (2014) x   x  mid-term seg. 
DDAP x x x x x short-term cust.  

a Allocation planning (AP) levels; seg.: customer segments; cust.: individual customers. 
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demand forecast bias information by discounting demand forecasts by a 
certain predetermined constant that represents the strategic forecast 
inflation of the customer. However, it is still possible to identify strategic 
gaming behaviour of the customer by determining the statistically sig
nificant positive deviation of the customers’ forecasts from their final 
orders. 

In our approach, we determine customer scores PASi, which are 
composed of the historical forecast accuracy acci and profitability profi 
of the customers i 2 I. They represent the priority of a customer for the 
supply allocation decision. Note that, here, acci is defined as the degree 
to which the forecast of customer i is free of a strategic forecast bias. The 
measure does not take the random component of the forecast error into 
account. 

A factor α 2 ½0; 1� represents the decision maker’s trade-off between 
forecast accuracy acci and profitability profi in the determination of 
PASi. At an α -value of 0 and 1, PASi is determined solely by profi and 
acci, respectively. 

The customer scores are determined using a four-step data analysis, 
which is executed in a mid-term rolling horizon fashion, e.g. once every 
year. For this analysis, we analyse the customer profitability profi, the 
historical demand forecast dhist

itτ provided by customer i in period t for 
period, and the history of orders ohist

iτ placed by customer i with a due- 
date in period τ. 

The DDAP approach is designed for large industrial suppliers, which 
usually only serve large customers with a significant revenue contribu
tion directly. Other, smaller customers are served through distributors, 
who cumulate the demands of numerous small customers and thus also 
act as large customers. In such environments, usually all direct cus
tomers place a demand forecast in every time period. Hence, the 
ordering frequency of all customers is identical and does not affect the 
below described determination of the statistically significant forecast 
bias of individual customers. For each customer, there is hence sub
stantial historical order data available. For new products, there is 
generally information on similar products available. 

Step 1: The error eitτ of every dhist
itτ is calculated for the past τ 2 Thist 

consecutive time periods using Equation (1). To base the customer 
scores on a sufficiently large dataset, Thist should contain more than 30 
time periods. However, in order to mitigate the risk of wrong customer 
scores due to changing customer behaviour over time, should be limited 
to data of maximum one year. 

eitτ ¼ 1 �
ohist

iτ
itτ ⋅ (1) 

Equation (1) is based on the assumption of large industrial customers 
described above. Hence, dhist

itτ > 0 for all i, t and τ. For environments, in 

which dhist
itτ can be 0, eitτ could be formulated in accordance to the sym

metric mean absolute percentage error (see e.g. Armstrong, 1985 or Ott 
et al., 2013). In this case, if dhist

itτ ¼ ohist
iτ ¼ 0, eitτ has to be defined as zero 

as well. 
Step 2: In order to separate strategic gaming behaviour from fore

casting errors, which increase with the forecast horizon, we determine 
the average forecast error eih for different forecast horizons h with 
Equation (2). The horizon h is defined as the time interval between the 
provision of the forecast and its indicated delivery date. Customers are 
forecasting their demands every time period for all horizons with a 
maximum horizon of hmax. 

eih¼
1

�
�Thist

�
�

X

τ2Thist

eiðτ� hÞτ: (2) 

The DDAP methodology aims at measuring the strategic component 
of eitτ. It therefore allows negative and positive values for eitτ that origin 
from random forecasting errors to cancel each other out in Equation (2). 

Step 3: To identify rationing gaming behaviour of the customers, it is 
tested if the values of eih are statistically significantly larger than zero. I. 
e. the null hypothesis H0 : eih � 0 is tested using a suitable test statistic. 
With the result of this statistical test, the forecast bias bih of customer i 
for horizon h is determined using Equation (3). If 

�
�Thist

�
� � 30 the central 

limit theorem can be applied to assume that the distribution of eih can be 
approximated by a normal distribution. Then, the student’s t-test can be 
used to determine the values of bih. 

bih ¼

�
0; if H0 is accepted
eih; if H0 is denied

(3) 

Next, the average demand bias bi of customer i is determined using 
Equation (4). In Equation (5), the forecast accuracy of a customer is 
defined as the complement of the average demand bias. 

bi ¼
1

hmax

Xhmax

h¼0
bih (4)  

acci ¼ 1 � bi (5) 

Step 4: Finally, the values of profi and acci are normalised using 
Equations (6) and (7) and the values of PASi are calculated with Equa
tion (8). 

prof norm
i ¼

profi � min
i
ðprofiÞ

max
i
ðprofiÞ � min

i
ðprofiÞ

(6)  

Fig. 3. Rolling horizon scheme for data driven allocation planning.  
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accnorm
i ¼

acci � min
i
ðacciÞ

max
i
ðacciÞ � min

i
ðacciÞ

(7)  

PASi¼ð1 � αÞ ⋅ prof norm
i þ α⋅accnorm

i (8) 

To ensure an incentive for truthful forecasting also for the most 
profitable customer ip, there must be another customer i 6¼ ip such that 
PASip < PASi. To achieve this, the following condition for α must hold: 

α > prof norm
ip � prof norm

i

prof norm
ip � prof norm

i þ accnorm
i � accnorm

ip
(9)  

3.2. Allocation planning model 

In allocation planning, the ATP supply atpt becoming available at the 
beginning of time period t is allocated to the demand forecast diτ of 
customer i due in period τ. The result of the process is the AATP quantity 
aatpitτ. 

Our allocation planning model is an adaptation of the AP approach in 
Meyr (2009). Though a heuristic, such as a greedy algorithm could be 
used to find an optimal solution to the allocation planning problem, we 
choose a linear programming model because of its flexibility in terms of 
adding additional constraints like minimum allocation quantities for 
customers resulting from contractual obligations of a supplier. 
Furthermore, the model can easily be extended with more complex 
constraints, e.g. for service level balancing between customers over time 
or allocation planning considering substitution of products. Such prob
lems, however, cannot be solved to optimality by a heuristic anymore. 

Note that the DDAP approach, which is described by Equations (10)– 
(13), differs from the model presented in Meyr (2009), which maximises 
the short-term profit of the supplier. DDAP, in contrast, prioritises the 
demand fulfilment of preferred customers, thereby explicitly consid
ering customer forecast accuracy in addition to customer profitability. 
Moreover, while in Meyr (2009) the supply is allocated to customer 
segments, our model allocates it to individual customers. Finally, while 
the model in Meyr (2009) allows free ATP quantities, which are avail
able for consumption by all customers, in the DDAP approach the entire 

available ATP supply must be allocated to the customers. Since we as
sume significant scarcity of supply at all points in time, this cannot lead 
to infeasibilities in the model.Maximise 

z¼
X

i

X

τ

hX

t
ðPASi ⋅ aatpitτÞ �

X

t<τ

�
ce

tτ ⋅ aatpitτ
�
�
X

t>τ

�
cl

tτ ⋅ aatpitτ
�i

(10)  

subject to 
X

t
aatpitτ � diτ 8i 2 I; τ 2 T; (11)  

X

i

X

τ
aatpitτ ¼ atpt 8t 2 T; (12)  

aatpitτ � 0 8i 2 I; t 2 T; τ 2 T: (13) 

The objective function (8) maximises the customer-score-weighted 
supply allocation and penalises early and late demand fulfilment with 
the factors ce

tτ and cl
tτ, respectively. It ensures that demands of the cus

tomers with high PASi -values are satisfied with priority. Constraints 
(11) ensure that the generated AATP quantities do not exceed customer 
demand forecasts. Constraints (12) state that the sum of allocated supply 
quantities must equal the total available ATP quantities. Constraints 
(13) represent non-negativity constraints. 

For the penalty costs for early and late order fulfilment, normally 
values are assigned such that early order fulfilment (i.e. temporary stock 
building) is preferred over late order fulfilment. Hence, ce

tτ and cl
tτ such 

that maxðce
tτÞ < minðcl

tτÞ, maxðcl
tτÞ < minðPASiÞ, ce

t1τ < ce
t2τ for t1 > t2 and 

cl
t1τ < cl

t2τ for t1 < t2. 

3.3. Illustration of approach 

Table 2 illustrates the potential advantages of the DDAP approach 
compared to the CAP approach for a simple single-period AP example. 
CAP reserves ATP to customer segments. It thereby solely considers 
segment profitability and satisfies demand forecasts of segments in order 
of their profitability. All time indices are omitted in Table 2 because a 
single-period problem is investigated. Furthermore, for simplicity, the 

Table 2 
Single-product, single-period example: CAP vs. DDAP.  

customer i  1 2 3 4 5 Total 

profitability profi (per-unit)  15 14 13 12 11 – 

di  100 100 100 100 100 500 
oi  70 60 90 80 100 400 
ordering sequence 5 4 1 2 3 – 
atp  – – – – – 350 
segment k  1 (customers 1, 2) 2 (customers 3, 4, 5)OT: Keep “(customers 3, 4, 5)” in single line. – 
profk  14.5 12 – 

aatpCAP
k  200 150 350 

promiseCAP
i  70 60 90 60 0 280 

ending stock – – – – – 70 
SLCAP  100% 100% 100% 75% 0% 70% 

profitCAP
i  1050 840 1170 720 0 3780 

α  – – – – – 0.6 

profnorm
i  1.0 0.75 0.5 0.25 0.0 – 

acci  0.7 0.6 0.9 0.8 1.0 – 

accnorm
i  0.25 0.0 0.75 0.5 1.0 – 

PASi  0.43 0.24 0.81 0.62 1 – 

aatpDDAP
i  50 0 100 100 100 350 

promiseDDAP
i  50 0 90 80 100 320 

ending stock – – – – – 30 
SLDDAP  71.4% 0% 100% 100% 100% 74.3% 

profitDDAP
i  750 0 1170 960 1100 3980  
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example assumes that bi ¼ ei. 
Note that both our multi-period DDAP approach and the multi- 

period CAP approach in Meyr (2009) allow re-allocation of ATP to 
any segment after each period. Within the same period, re-allocations do 
not happen, which is why we do not consider re-allocation in the 
single-period example below. 

We measure the effect of CAP and DDAP on the demand fulfilment 
performance by using the customer service level, the profit generated 
from sales and the ending stock level. All customers forecast a demand di 
of 100 units. However, their order quantities oi differ from this forecast. 
The sequence of order reception and the per-unit profit profi of the 
customers are given in the table. We assume a total ATP quantity of 350 
units. 

CAP allocates 200 units to segment 1 and 150 units to segment 2 and 
promises a total amount of 280 units, which leads to an ending stock 
level of 70 units, a total service level of 70% and a profit of 3780. 

For the DDAP approach we assume the α -level to be 0.6. The nor
malised customer profitability profnorm

i and forecast accuracy accnorm
i are 

calculated on the basis of di and oi using Equations (1) to (7) without 
time indices. The customer scores PASi follow from Equation (8). Based 
on these customer scores, the AATP quantities given in Table 2 are ob
tained when the DDAP model is run. After order promising, the DDAP 
approach leads to a total of 320 units of satisfied orders, an ending stock 
level of 30 units, a total service level of 74.3% and a profit of 3980, i.e. 
lower stocks, higher service level and higher profit than the CAP 
approach. In a multi-period setting, the ending stock is reallocated by 
both the CAP and the DDAP approach. This supply can thus be used to 
fill demands later. However, the lower stock level for DDAP leads to a 
higher on-time service level. 

Such results are due to the consideration of forecast bias data on a 
highly granular level. Note that, for this exemplary case, DDAP approach 
leads to higher profits than the CAP approach even though the model 
does not exclusively aim at fulfilling the demands of the most profitable 
clients. The example further shows that DDAP approach incentivises the 
customers to forecast their demands truthfully, since higher values of 
acci result in higher service levels. For example, for customer 5 (acc5 ¼

0:9), SLDDAP is 100% and SLCAP is 0%, while for customer 2 (acc2 ¼ 0:6), 
SLDDAP is 0% and SLCAP is 100%. 

4. Implementation of DDAP: framework and illustration 

As depicted in Fig. 3 AP and order promising are run in a rolling 
horizon scheme. In every planning period, first, AP generates AATP 
quantities based on ATP and customer demand forecast data. After
wards, customer orders are realised and promised based on the allocated 
supply. Then, the planning horizon is rolled over, new demand forecasts 
and ATP quantities become available and AP is performed again. 

The approach is implemented in Java. IBM ILOG CPLEX V12.6.0 is 
used to solve the linear programming models for AP and order 

promising. The analysis was performed on a personal computer with an 
Intel Xeon E7-4860 v2 processor with 2.6 GHz and 32 GB RAM on a 64- 
bit Microsoft Windows 7 installation. 

In this section, we introduce a generic analysis framework for the 
implementation of the DDAP approach. To ease the understanding, we 
integrate the discussion of an illustrative case study throughout the 
discussion of the framework stages. Therefore, we first introduce the 
characteristics of the industry case (Section 4.1) and the performance 
measures (Section 4.2) before we outline the framework structure 
(Section 4.3) and discuss each of its stages in detail (Section 4.4 to 4.7). 

4.1. Characteristics of illustrative industry case 

We illustrate the DDAP approach with a numerical study using his
torical demand data from the semiconductor manufacturing industry. 
Here, supply shortage situations appear frequently due to long produc
tion cycle times, high capacity investment cost and high demand vola
tility (see e.g. Ehm et al., 2011). The customers of the industry under 
review display rationing gaming behaviour. 

We use data from a large European semiconductor manufacturer. 
The dataset contains orders and demand forecasts for six standard 
products from the automotive and industrial segments of the company. 
Table 3 gives an overview of the large dataset containing 78 weeks of 
forecast data for 145 customers and the corresponding 5168 orders, 
including their arrival time details. The first 52 weeks (in sample) are 
used to generate the customer scores PASi with the four-step data 
analysis described in Section 3.1. The last 26 weeks (out-of-sample) are 
used for the numerical study presented in Section 5. The customers in 
the dataset order with an average lead time of 3 weeks. The case com
pany groups them into three segments. 

We calculate the customer forecast bias on a sample of 52 weeks and 
obtain 52 observations of the demand forecast error eiðτ� hÞτ for every 
horizon h and every customer i. We can consequently apply the central 
limit theorem to assume that the distribution of eih can be approximated 
by a normal distribution. We therefore use the student’s t-test with a 
significance level of 10% to determine the values of bih in Equation (3). 

When calculating the forecast accuracy for the out-of-sample time 
period accnorm

i ðout � of � sampleÞ, we can derive the average error erracc 

of the historical forecast accuracy acci using Equation (14). 

erracc¼

P
i2I

�
�accnorm

i � accnorm
i ðout � of � sampleÞ

�
�

jIj
(14) 

Smaller values indicate a higher predictive quality of accnorm
i for the 

out-of-sample time period. Table 3 shows that the historical forecast 
accuracy values of the customers are of different predictive quality since 
the value of erracc differs significantly between the products. However, 
the small values of erracc in Table 3 show that for a typical industrial 
environment, the historical forecast accuracy calculated over a period of 
52 weeks is usually of high predictive quality. This observation validates 
our approach to perform allocation planning at the individual customer 
level. 

For confidentiality reasons, the real profitability of the customers is 
not provided in the dataset. However, we do have information on the 
relation of profitabilities of the customers within the dataset. For our 
numerical study, we assume two scenarios for the real profitabilities of 
customers in the dataset. In the extreme case scenario, the per-piece 
profitabilities of the most and the least profitable customers are €1 
and €0, respectively; in the realistic case scenario, these profitabilities are 
€ 0.1 and € 0.067, respectively. 

4.2. Assumptions and performance measures 

To be able to measure the capability of the DDAP approach to cope 
with biased demand forecasts from the customers, the following as
sumptions are made, which eliminate other sources of uncertainty: 

Table 3 
Dataset for numerical case study.  

Products P1 P2 P3 P4 P5 P6 Total 

Number of 
customers 

12 41 23 25 18 26 145 

Number of 
orders 

182 1772 723 944 727 820 5168 

Average of 
demand 
biases bi  

8% 10% 5% 6% 12% 13% 9% 

Share of 
customers 
with positive 
bias 

50% 82% 48% 83% 71% 72% 67% 

Average error of 
accnorm

i (erracc)  
0.029 0.029 0.037 0.039 0.045 0.049 0.038  
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1. The supply quantities atpt are given.  
2. Orders will not be cancelled or rescheduled by the customers once 

they enter the system. 

Furthermore, we assume that:  

3. Orders can be fulfilled partially and with multiple shipments.  
4. If a part of an order cannot be promised when it is received, that part 

is lost. This is often demand from wholesalers who cannot substan
tially postpone their downstream sales. 

To measure the demand fulfilment performance, we use the on-time 
service level (OTSL), the total service level (TSL), the profit generated 
from sales and the average level of stock resulting from excess alloca
tion. To calculate OTSL and TSL, we use Equations (15) and (16), 
respectively. 

OTSL¼
P

i2I
P

τ2T piττ
P

i2I
P

τ2T oiτ
(15)  

TSL¼
P

i2I
P

τ2T
P

t2T pitτ
P

i2I
P

τ2T oiτ
(16) 

To analyse the incentive for customers i to provide truthful demand 
forecasts, we use the impact on the service level measures ΔOTSL and Δ 
TSL (relative to a situation in which forecast bias is not considered in the 
allocation, i.e. α ¼ 0). 

The average level of stock resulting from excess allocation s is 
defined as average over all periods t of st, which is the ending stock level 
at the end of period t. Similar to the service level measures, we introduce 
Δs as the average stock level relative to relative to a situation in which 
α ¼ 0. 

4.3. Framework structure 

The DDAP approach developed in Section 3 allocates ATP supply to 
individual customers considering customer forecast bias in addition to 
customer profitability. The use of the approach has several long-term 
potentials and short-term impacts. To be able to make an informed de
cision on the extent to which the forecast bias should be included in the 
allocation process, these potentials and impacts need to be quantified. In 
this section, we therefore develop an analysis framework consisting of 
the following stages:  

1. Determine the long-term profit and OTSL potentials of truthful 
customer forecasts (Section 4.4).  

2. Determine the size of the impact on service levels and the resulting 
incentives to provide truthful forecasts (Section 4.5).  

3. Analyse the short-term profit impact and overall service level effects 
across customers (Section 4.6).  

4. Use of the data from the previous three sections to determine the 
extent to which the forecast bias should affect allocation decisions 
(Section 4.7). 

In the following sections, we outline the generic approach before 
illustrating it for the industry case. Note that the DDAP approach is 
developed for the single product case. Hence, when applying it to 
multiple products, the values of PASi and α can be determined separately 
for all products. Hence we illustrate stages 2, 3 and 4 for an example 
product data set. 

4.4. Long-term profit and OTSL potentials 

A first indication of the long-term potentials is derived by calculating 
the demand biases bi to determine the extent to which the customers 
exhibit rationing gaming behaviour. The potentials of truthful customer 

forecasts, i.e. the long-term effect on company profits and OTSL are 
quantified by eliminating the bias from all customer forecasts in the 
dataset and using the DDAP approach with an α level of 0. I.e. we set the 
PASi values to profi to only consider customer profitability in the 
customer scoring. Then, we calculate the resulting service levels and 
profits for the extreme case scenario and compare the results to the 
service levels and profits resulting from using the DDAP approach with 
an α level of 0 without modification of customer forecasts. 

Note that for the bias free forecasting scenario using an α level of 
0 leads to the same results as using any other value for α. This is because, 
when customer forecast truthfully, acci equals 1 for all customers in the 
dataset and, thus, for all possible α levels (except 1), the differences in 
the PASi values between different customers are only determined by 
their individual profitability profi. 

Note that this analysis only quantifies the potential benefits of 
truthful forecasting in allocation planning. Benefits of other planning 
processes, e.g. mid-term allocation planning, certainly increase the 
benefits even more. Therefore, the shown analysis strongly motivates 
the development of demand fulfilment processes, like DDAP, which 
incentivise customers to forecast their demands truthfully. In addition, 
more accurate customer forecasts lead to efficiency improvements in 
other planning processes like, for example, mid-term production plan
ning. These positive effects on the supplier’s profitability are not further 
quantified. 

For the illustrative industry case, the positive values of the average of 
demand biases bi in Table 3 illustrates that the customers in the dataset 
exhibit rationing gaming behaviour. However, the share of customers 
with a positive bi shows that not all customers in the dataset show 
strategic gaming. 

The quantification of the potential is done at a supply shortage level 
of 20%, which is defined as the level to which the total customer demand 
exceeds the total available supply. Table 4 presents the result for all six 
product data sets. It shows that truthful customer forecasts increase the 
OTSL and the total profits by on average 41% and 4%. TSL are not 
affected because all supply is always consumed in a severe supply 
shortage situation. 

4.5. Incentive for customers to forecast truthfully 

In this section, we analyse the impact of truthful forecasting on the 
service level experienced by customers with high and low biases. With 
this analysis, we aim to show the existence of an incentive for customers 
to provide truthful forecasts. When customers are aware of the impact of 
their forecast bias on their service level, they are incentivized to reduce 
their bias. 

To this end, we measure ΔTSL and ΔOTSL for customers with low 
and high forecast biases for different levels of α. We first determine the 
PASi values for historical data and then run the DDAP method for each α. 
For the illustrative industry case, we use the 52 weeks in-sample data 
and run the DDAP method on this data varying the level of α between 
0 and 1 in five equidistant steps. Again, we use a supply shortage level of 
20% for the analysis. We show the result for the example of dataset P4. 
The results for all other products show the same pattern. Therefore, the 
conclusions drawn for P4 can be generalized for all six investigated 

Table 4 
Potential benefits of truthful customer forecasts.  

Product Relative difference 
OTSL 

Relative difference 
TSL 

Relative difference 
profitability 

P1 26% 0% 1% 
P2 55% 0% 3% 
P3 33% 0% 4% 
P4 37% 0% 4% 
P5 32% 0% 5% 
P6 62% 0% 9% 
Average 41% 0% 4%  
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datasets. Fig. 4 illustrates the influence of the α level on the service level 
for the first quartiles of customers with the lowest and highest forecast 
biases. Fig. 4 analyses ΔTSL and ΔOTSL relative to the DDAP perfor
mance at an α level of 0. 

As DDAP prioritises customers with low forecast biases more as α 
increases, ΔTSL and ΔOTSL increase monotonically in α for customers 
with low forecast bias and decrease monotonically in α for the customers 
with high forecast biases. Hence, the gap in ΔTSL and ΔOTSL between 
customers with low and high forecast increases in α. At high levels of α, 
differences in forecast biases between customers have a large impact on 
their service levels. 

As a result of this impact of forecast biases on service levels, espe
cially customers with relatively low profitability have an incentive to 
increase their customer score PASi by increasing their forecast accuracy. 
To ensure also an incentive for the most profitable customer exits, α 
must be chosen such that equation (9) holds (in our case, (9) does not 
impose any constraints because of a number of equally profitable 
customers). 

Note that customers always have to consider that their service level is 
determined by their own and all other customers’ behaviour. Thus, at 
every point in time, all customers are incentivized to reduce their 
forecast bias because they have to expect all other customers to do the 
same. The incentive specifically also exists for the customer with the 
currently highest PAS value as they have to assume that the other cus
tomers’ reduction of forecast bias will impact their service level nega
tively in the future if they do not change their behaviour. If, over time, 
this incentive would remove all bias, then a substantial overall 
improvement in OTSL is achievable as the analysis of the potential 
benefit in the previous section has demonstrated. A large α may help in 
achieving a larger share of this long-term potential sooner. However, the 
selection of α depends also on its short-term impacts – e.g. on 
profitability. 

4.6. Impact on short-term profits and OTSL 

As outlined in the previous section, the incentive depends on the 
extent to which customers with different forecast biases are served with 
different service levels. This has obviously an impact on the overall 
short-term service level across all customers. In addition, the introduc
tion of DDAP leads to a decline in short-term profits compared to an 
allocation entirely based on customer profitability, unless the forecast 
bias and profitability are perfectly negatively correlated (i.e. adding 
forecast bias to the allocation procedure has no impact on the alloca
tion). In reality, this situation does not occur as highly profitable cus
tomers often also show a high demand bias, strategically gaming their 
suppliers’ AP. 

To quantify these short-term impacts, we measure the impact on 

profit as well as ΔTSL and ΔOTSL across all customers for different levels 
of α using the same analysis employed in the previous section. We 
additionally measure the relative average stock level Δs. Short-term 
profits decrease monotonically in α, as DDAP stronger prioritises cus
tomers with low forecast biases at the expense of profitable customers as 
α increases. The overall ΔTSL does not depend on the level of α. The 
entire ATP supply is always consumed, because supply is short, we allow 
the fulfilment of orders after their requested delivery date, and we nest 
AATP quantities. 

Increased allocations to customers with more accurate forecasts also 
mean a decrease of redistributions of supply that was allocated to cus
tomers who subsequently ordered less than forecasted. There are three 
possibilities for redistribution: (1) If redistributions fulfil demand due in 
the same period, they have no impact on the performance measures. 
However, (2) if they fulfil demand due in earlier periods, they lead to a 
decrease of OTSL, and (3) if they serve demand due in later periods, they 
lead to an increase of s. Hence, the decrease of redistribution volumes 
resulting from an increased α leads to an increase of OTSL and a decrease 
of s. We call this the volume effect. 

Possibilities for redistributions depend on customer order lead times. 
If customers with shorter lead times receive priority, a redistribution to 
other customers with demand in the same period (redistribution possi
bility (1)) is limited. As a consequence, redistribution possibilities (2) 
and (3) have to be used to a larger extent and ΔOTSL and Δs are nega
tively affected. We call this the lead-time effect. 

For the illustrative industry case, we again use the 52 weeks in- 
sample data and run the DDAP method varying the level of α between 
0 and 1 using a supply shortage level of 20%. Fig. 5 illustrates the in
fluence of the α level on the overall service levels (ΔTSL and ΔOTSL), 
average stock levels, and short-term profits resulting from excess allo
cations for product data set P4. The graph confirms that profits (for the 
extreme case scenario and the realistic case scenario) are monotonically 
decreasing in α while the overall ΔTSL does not depend on the level of α. 

The results for the overall (average) ΔOTSL show the impact of the 
volume effect and the lead-time effect described above. For α < 0:6, the 
volume effect dominates. Excess allocations and resulting re
distributions are reduced, leading to a higher ΔOTSL and a lower Δs. 

For α > 0:6, the lead-time effect substantially reduces the volume 
effect. In our case, the customers with low demand biases tend to place 
their orders later than others. When placing large emphasis on forecast 
accuracy (high α), the supply allocation for these customers increases. 
Even though their forecasts are more accurate, they still include a de
mand bias. However, due to the short lead time, this bias cannot be 
compensated for by redistributing excess allocation to other demand 
without reducing the ΔOTSL or increasing Δs. Therefore, even though 
the ΔOTSL for the customers with low forecast bias increases with in
crease of α (as shown in the previous section), the overall ΔOTSL 

Fig. 4. a) total service level and b) on-time service level for customers with high and low forecast bias.  
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deteriorates for α levels above 0.6. For the same reason, the average 
stock levels resulting from excess allocation show a minimum at an α 
-level of 0.6. 

4.7. Sizing the incentive: reconciling long-term potentials and short-term 
impacts 

In the previous sections, we went through Stages 1, 2, and 3 of our 
analysis framework. We discussed the dependence of long-term poten
tials, incentives, and short-term impacts on the extent to which the 
forecast bias is considered in our DDAP approach. Along with generic 
insights, we provided case-specific results. For the implementation of 
the DDAP approach, we now in Stage 4 have to choose for each product a 
value for the extent to which the forecast bias is considered in addition 
to the profitability. In other words, we need to select a value for α when 
applying equation (8) as part of an implementation of DDAP in an 
advanced planning system environment. We call this selected value α*. 

In general, if the biases bi or the long-term potentials determined in 
Stage 1 are small, then the use of the DDAP approach cannot lead to 
significant improvements over traditional allocation procedures (in 
other words, we set α* ¼ 0). The larger the long-term potentials are, the 
larger the α* should be. 

The analysis for Stage 2 in Section 4.5 showed that a large α* creates 
a larger incentive, which may help achieve a larger proportion of the 
long-term potentials sooner. To ensure that also the most profitable 
customers are incentivized, the value for α* should comply with the 
minimum condition in equation (9). 

In addition to the long-term potentials, short-term impacts deter
mined in Stage 3 also influence the selection of α*. As outlined in Section 
4.6, the decrease of short-term profits in α favours a small value for α*. In 
relation to the short-term OTSL the best value for α* depends on the 
interaction between the volume effect (which favours large values for 
α*) and the lead-time effect (which mediates the volume effect). 

Stages 1, 2, and 3 of our framework provide the required quantitative 
information for decision maker to reconcile the above mentioned drivers 
in determining α* in Stage 4. In order to relate long-term potentials to 
short-term impacts, the decision maker has to assess the extent to which 
the potential can be achieved as well as the temporal dynamics behind 
achieving the potentials and their dependence on α*. This assessment 
depends on numerous situational characteristics such as the sensitivity 
of customers to incentives (which in turn depends on size and type of the 
customers) or the communication with the customers, including the 

communication of the incentives. Due to the uncertainties inherent in 
these characteristics, the reconciliation with short-term impacts also 
needs to reflect the risk preferences of the decision makers. 

For the illustrative industry case, we demonstrated in Section 4.4 
that there are significant long-term potentials (Stage 1), resulting from 
the gaming behaviour reflected in the biases listed in Section 4.1. A 
decision maker would therefore aim for a large incentive. From Section 
4.5, it is clear that even for smaller levels of α* (0.2 and above), the 
incentive is large. The minimum condition in equation (9) is also satis
fied for these levels of α* (Stage 2). 

For the short-term impacts, Section 4.6 shows only a very small 
decrease of α for the short-term profit. In relation to the short-term 
OTSL, Section 4.6 shows a significant increase up to α ¼ 0:6, after 
which it decreases (Stage 3). 

Considering the above results, the short-term profit reductions are 
relatively small (<0.5%). In contrast, we have shown in Section 4.4 that 
the profit increase potential is 4% when customers forecast truthfully, 
combined with a large increase of OTSL (37%). Therefore, α* is chosen 
such that the short-term OTSL is maximised, i.e. α* ¼ 0:6 for product 
dataset P4 (Stage 4). An application of our analysis framework to the 
other product datasets leads to the following levels of α* for datasets P1 
to P6: 0.6, 0.2, 0.4, 0.6, 0.8, and 0.4. 

5. Value and robustness of the DDAP approach 

In this section, we analyse the value and robustness of considering 
forecast bias data in allocation planning. In Section 5.1, we analyse how 
a DDAP approach would perform under different supply shortage levels. 
We then compare the performance of DDAP and CAP in Section 5.2 
depending on the predictive quality of the historical data. In Section 5.3, 
we conclude our analysis with investigating the effects of moving the 
demand fulfilment level from customer segment to individual customer 
and considering demand bias data separately. 

5.1. Value of considering forecast bias data 

To investigate the benefits of considering forecast bias data in de
mand fulfilment, we use the DDAP approach on the out-of-sample data 
and vary the level of supply shortage from 10% to 30% using, first, the 
six α* values determined in Section 4.7 (note that all analyses use α* 

values determined for a supply shortage of 20%) and, second, an α level 
of 0. 

Fig. 6 shows the service level averages over all products for the DDAP 
approach at different levels of supply shortages. The findings are dis
played relative to the performance of the DDAP approach at an α level of 
0, i.e. only considering customer profitability. 

The results in the figure clearly confirm the effectiveness of the 
incentive and the increase of OTSL for out-of-sample data. This also 
holds for supply shortage levels of 10% and 30% even though the results 
were calculated with α* values determined for the 20% supply shortage 
level. This shows that the results are robust against fluctuations in the 
supply shortage level. This simplifies an implementation of the DDAP 
approach in an advanced planning system environment. The graphs also 
show that the positive effect of considering forecast accuracy data on the 
overall OTSL increases with the level of supply shortage. The reason for 
the amplification of the given effects lies in the scarcity of supply itself. 
The influence of allocating supply more efficiently among customers on 
the service levels grows with the level of supply shortage. 

5.2. Value of DDAP depending on the predictive quality of historical data 

Table 3 in Section 4.1 shows that the historical forecast accuracy 
values of the customers are of different predictive quality since the value 
of erracc differs significantly between the products. In this section, we 
compare the demand fulfilment performance of DDAP and CAP 

Fig. 5. Service levels, stock levels and short-term profits of P4 depending on.α.  
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depending on the predictive quality of the historical data. A first-come- 
first-served (FCFS) real-time order promising without preceding AP 
serves as a benchmark. For comparability reasons, we set the frequency 
of the CAP approach to the frequency of the DDAP approach, i.e. one 
week. Fig. 7 depicts the OTSL improvements of DDAP and CAP relative 
to the FCFS approach over the average error of the historical forecast 
accuracy values erracc. 

Like the approach in Meyr (2009), CAP allocates supply to customer 
segments solely based on customer profitability data. The models used 
for allocation planning and order promising in the CAP approach are 
presented in Appendices A and B. The case company groups their cus
tomers into three different customer segments. These are used in the 
CAP approach. 

The graph shows that the DDAP approach outperforms the CAP 
approach for all the studied product data sets, i.e. predictive qualities of 
the historical forecast accuracy values, because of its more efficient 
supply allocation; thus, exploiting the availability of highly granular 
data. However, the advantage decreases with increasing erracc. This is 
intuitive since high levels of predictive quality indicate stable fore
casting behaviour of the customers. Consequently, the chosen α* values 
also lead to high benefits in the out-of-sample data. On the other hand, in 
a situation where erracc is high, the customers’ forecasting behaviour 
cannot be predicted accurately and the potentials of highly granular 
data cannot be exploited as efficiently by the DDAP approach. 

5.3. Effects of demand fulfilment on customer service level and 
consideration of demand bias 

The DDAP approach differs in two respects from the CAP approach. 
First, AP and order promising are done on individual customer level. 
Second, the demand bias data is taken into account. In this section, we 
evaluate the effects of both these aspects separately. 

To be able to measure the effect of considering forecast bias data 
when fulfilling demands at the customer segment level, we adapt the 

Fig. 6. a) total service level and b) on-time service level in dependence of the level of supply shortage.  

Fig. 7. Service levels of DDAP and CAP in dependence of the predictive quality of data.  

Table 5 
Effects of demand fulfilment granularity and consideration of demand bias on 
OTSL and profits (results relative to the performance of the CAP approach with 
customer segments).   

product customer segments individual customers 

OTSL profit OTSL profit 

CAP(α ¼ 0)  P1 – – þ0.0% � 0.01% 
P2 – – þ0.9% 0.01% 
P3 – – þ1.0% � 0.01% 
P4 – – þ0.1% 0.00% 
P5 – – þ0.3% 0.00% 
P6 – – þ1.1% 0.01% 

DDAP (α ¼ α*)  P1 þ3.3% � 0.03% þ8.9% � 0.13% 
P2 þ2.4% � 0.02% þ9.3% � 0.12% 
P3 þ4.0% � 0.07% þ5.0% � 0.09% 
P4 þ3.1% � 0.02% þ5.1% � 0.06% 
P5 þ2.2% � 0.01% þ2.4% � 0.02% 
P6 þ3.2% � 0.03% þ1.5% � 0.02%  
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DDAP model to do AP and order promising on customer segment level. 
For this, first, the average of the in-sample forecast bias bk and the 
profitability profk of the customer segment k are calculated by taking the 
average of the bi values and the profi values for all the customers i 
belonging to the segment k. Here, again, the customer segments of the 
case company are used. Afterwards, the normalised forecast accuracy 
accnorm

k and profitability profnorm
k of the segments as well as the segment 

scores PASseg
k are generated using Equations (6)–(8) for customer seg

ments. Finally, the so generated PASseg
k are used as scoreseg

k in the allo
cation planning. The resulting AP model is described in Appendix A. 

Table 5 presents the effects of fulfilling demands at customer 
segment or individual customer levels as well as using profitability of 
customers for customer scores alone or additionally considering demand 
bias data. When reading the table from left to right, the effect of 
changing the demand fulfilment granularity from customer segment to 
individual customer is shown. Reading the table from top to bottom 
shows the effect of considering forecast bias information in customer 
scores. All numbers are relative to the performance of the CAP approach. 

Changing the demand fulfilment granularity from customer segment 
to individual customer increases the OTSL between 0.0 and 1.1 per
centage points and the short-term profit (real case scenario) between 
� 0.01 and 0.01 percentage points. Therefore, changing the demand 
fulfilment granularity alone only has a weak effect on demand fulfilment 
performance. This is because, first, pooling effects within customer 
segments and, thus, flexibility in order promising is lost. Second, the 
effect on the OTSL is positive due to the fact that most customers in the 
dataset display a tendency of inflating their demand forecasts, and the 
highly profitable customers place their orders earlier than others. Hence, 
excessive AATP quantities for the highly profitable customers can be 
used to fulfil orders of the less profitable customers, which are received 
later. 

Considering demand bias data when fulfilling demands at the 
customer segment level increases the OTSL moderately between 2.2 and 
4.0 percentage points. Short-term profits are decreasing slightly be
tween � 0.07 and � 0.01 percentage points. The reason why the benefits 
in terms of OTSL are not more significant is that customers within these 
profit segments are very heterogeneous in terms of their individual 
forecast accuracy. As a consequence, customers with high demand bia
ses are grouped with customers forecasting their demands truthfully. 
Raising the α level leads to a prioritisation of customer segments with 
low average demand bias. 

Nevertheless, the demand biases of individual customers within 
prioritised segments can still be high. The overall short-term profit de
creases since, on average, customers with higher forecast accuracy tend 
to have lower profitability. 

Finally, combining both these aspects results in the highest service 
level for all products except P6. The most distinct effects are achieved for 
the products P1 and P2, for which the OTSLs of both the DDAP approach 
on customer segment level and the CAP approach on individual 
customer level are significantly outperformed. Analogously, a decrease 
of the overall short-term profits is most pronounced for these products. 
For the products P3 to P5, the increase of OTSL compared to the CAP 
approach at the individual customer level is moderate while the ad
vantages compared to the DDAP approach at the customer segment level 
are low. The overall short-term profits change analogously. 

The rationale behind the different magnitudes of leveraging effect is 
the difference between the predictive qualities of forecast accuracy 
values. While these values are of high predictive quality for the product 
datasets P1 and P2, they are of moderate quality for P3 to P5, and give 
only little indication of the forecast accuracy of customers out-of-sample 
in the dataset P6. The higher the predictive quality of the forecast ac
curacy values, the less temporary are the stocks resulting from excess 
allocation that are built by the DDAP approach. In dataset P6, erracc is 
exceptionally high so that the usage of forecast accuracy data at the 
individual customer level leads to a negative effect on the OTSL 

compared to the DDAP approach at the customer segment level. 
We, therefore, draw the following conclusions. First, the use of the 

DDAP approach is only meaningful when additional data at the indi
vidual customer level is considered. Second, when looking at OTSL, AP 
at the individual customer level, considering demand bias data robustly 
outperforms the conventional allocation planning approaches, allo
cating supply to customer segments purely based on profitability data. In 
exceptional cases, when the predictive quality of the historical forecast 
accuracy is very low, it is, however, more beneficial to fulfil demands at 
the customer segment level. Third, the benefits of the DDAP approach 
increase with the predictive quality of the historical data on customer 
forecast accuracy. 

6. Summary and conclusion 

The recent advances in big data analysis tools represent an oppor
tunity for companies to further improve their demand fulfilment pro
cesses. In particular, the exploitation of data on the ordering behaviour 
of customers, e.g. their forecast biases, can enable companies to improve 
the accuracy and robustness of their order promises and increase the 
performance of their demand fulfilment systems. Here, a first step to
wards integrating such newly available data into allocation planning 
and order promising has been taken. 

Research has shown that customers systematically inflate their de
mand forecasts in supply shortage situations to make suppliers increase 
the supply quantities reserved for them and finally satisfy their total 
actual demand. This behaviour called the rationing gaming significantly 
impairs the ability of the supplier to efficiently allocate current and 
future supply to customers. 

We propose an allocation planning methodology called data driven 
allocation planning (DDAP), which considers the data on individual 
customers and products by allocating supply on a highly granular level, 
taking systematic biases in demand forecast into account. The DDAP 
approach is designed for industrial environments using advanced plan
ning systems for demand fulfilment planning. It is therefore not only of 
high practical applicability, but also of high practical relevance, as it 
supports an efficient supply allocation, leading to a significant potential 
in customer service levels and long-term profitability compared to 
conventional allocation approaches. In addition, our approach reduces 
stocks that are created by excess allocation to customers showing low 
forecast accuracy. By increasing service levels for customers with high 
forecast accuracy, the approach incentivises customers to provide 
truthful demand forecasts and, thus, counteracts rationing gaming. To 
facilitate the implementation of the DDAP approach, we develop an 
analysis framework for a structured derivation of the information 
required on long-term potentials, incentive sizes, and short-term impacts 
to decide on the extent to which the forecast bias is considered. 

We test the DDAP approach in a numerical study using data from a 
large European semiconductor manufacturer. The analysis proves that 
allocating supply to individual customers is only valuable when addi
tional data on this granularity level is available and taken into account. 
Then, DDAP leads to a significant increase of allocation efficiency. The 
improvements become more distinct with growing scarcity of supply 
and increased predictive quality of the available data. 

Our results show increased service levels for customers that do not 
perform rationing gaming, i.e. that provide their demand forecasts 
without a strategic bias. We hereby demonstrate the capability of DDAP 
to incentivise customers for truthful forecasting. Removing a deliber
ately added forecast bias does not induce any costs, such as removing a 
non-intentional forecast error would. The latter may require planning 
tool and process improvements. The former does not require such ef
forts. Customers must therefore not trade-off between an increase of 
service levels and implementation costs for obtaining forecasts with 
higher accuracy. Also the implementation costs for the supplier are 
limited. Granular data on individual customer forecasts and orders are 
readily available in existing databases. However, the adjustment of the 
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allocation procedure in the advanced planning system does cause some 
implementation costs. 

The data we use in our numerical study indicates that mostly the 
customers with large demand volumes and high profitability show sig
nificant rationing gaming behaviour. Such customers are typically of 
high importance for the supplier. Applying the DDAP approach in such 
an environment would lead to a decline of the service levels for these 
customers. Companies with such a customer structure may therefore be 
reluctant to implement our methodology in their demand fulfilment 
processes, because they may fear to lose their most important customers. 
This may especially be the case, if key account managers have large 
influence. However, principle decisions on demand fulfilment processes 
are made on more senior management levels with a more comprehen
sive perspective on the supply chain. Senior managers are able to ac
count for the long-term profit increase potential, which we have shown 
to be substantial. They would have to combine the implementation of 
the proposed approach with an alignment of the incentive structure for 
the sales organization. 

Rationing gaming usually only occurs in (severe) supply shortage 
situations. In industries like semiconductor manufacturing, these 
shortage situations are typically of global nature. Customers are hence 
not able to source from competitors, because other suppliers do not have 
spare capacity available to fill additional demand on short notice. 
Moreover, production capacity in the semiconductor industry cannot 
easily be expanded as it requires substantial investments and installation 
and ramp-up time. In addition, suppliers often manufacture highly 
customer-specific products. This makes supplier qualification costly and 
time-consuming. Hence, customers regularly source from only one or 
two suppliers. 

In consequence, these type of semiconductor manufacturers have a 
strong market power; also towards their largest and most important 
customers. This enables semiconductor manufacturers – as well as sup
pliers in industries with similar characteristics – to apply DDAP in their 
planning processes and communicate its effects to their customers 
without losing market share. Furthermore, the increase of forecast ac
curacy will enable suppliers to serve all of their customers with higher 
service levels in the long term. 

In order to incentivise customers to truthfully forecast their de
mands, suppliers also need to communicate the effects of implementing 
DDAP on the individual service levels of customers depending on their 
forecast accuracy. This might also be part of more collaborative plan
ning initiatives between supplier and customer, such as collaborative 
planning, forecasting, and replenishment (CPFR). In many cases, such 
collaborations are common practice in the industry. They are a good 
means for the supplier to make forecast biases and their effects on ser
vice level transparent to the customers. One possibility to conduct such 
communication is to inform customers about their biases in comparison 
with an anonymized peer group. This could be combined with infor
mation on the service level increase that would have been achievable 
with an unbiased forecast. However, suppliers always need to consider 
the potentially negative effects of such communication on the long-term 

relationship with their customers. 
Our work uses data from the semiconductor industry. The general

izability of our results to other sectors has not been proven. The semi
conductor industry is characterized by high volatility of demand and 
particularly short product life cycles. The fact that DDAP is shown to be 
beneficial in this highly dynamic environment indicates possible appli
cability in other industries, although further work needs to be done in 
other sectors or with more stylised models to show or prove its wider 
applicability. 

The findings of our study indicate that an allocation approach 
additionally accounting for data on customer order lead times could lead 
to even better results. In our work we assume given supply. However, in 
the mid-term, the supply mix may be adapted to demand developments, 
even if the overall supply may remain to be short. Such supply mix 
changes are frequently implemented in the semiconductor industry, but 
are out of the scope of our paper that focusses on short-term demand 
fulfilment. Follow-up work could extend our work by investigating the 
incorporation of demand fulfilment procedures in a hierarchical 
advanced planning environment that allows for reactions on multiple 
planning levels. Furthermore, it would be interesting to integrate order 
lead-time data on the individual customer level into allocation planning 
approaches. Additionally, approaches to increase the performance of 
DDAP in environments with varying predictive quality of historical data 
have to be developed. Allocation planning methods switching from an 
individual customer level to a customer segment level when the vola
tility of demand biases reaches a certain threshold should be investi
gated. Moreover, considering substitute products in the allocation 
planning decision would be interesting; especially, taking into account 
data on the individual willingness of customers to substitute products 
has so far not been addressed. Finally, the examination of the perfor
mance of DDAP under supply uncertainty or demand uncertainty after 
order arrival indicates possibility of a further extension. Hereby, order 
rescheduling and cancellation rules, which industrial suppliers and 
customers agree upon in supply contracts, have to be taken into 
consideration. Obviously, several of these further research directions 
can be realised by exploiting additional data. 
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Appendix A 

Allocation planning at customer segment level 

In our numerical study, allocation planning at the customer segment level is done with the following linear programming model, which is an 
adaption from Meyr (2009). 

Maximise 

z¼
X

k

X

τ

hX

t

�
prof norm

k ⋅ aatpktτ
�
�
X

t<τ

�
ce

tτ ⋅ aatpktτ
�
�
X

t>τ

�
cl

tτ ⋅ aatpktτ
�i

(A.1)  
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subject to 
X

t
aatpktτ � dkτ 8k2K; τ 2 T (A.2)  

X

k

X

τ
aatpktτ ¼ atpt 8t 2 T (A.3)  

aatpktτ � 0 8k2K; t 2 T; τ 2 T (A.4) 

The objective function (A.1) maximises the segment-score-weighted supply allocation aatpktτ to customer segment k using the supply becoming 
available in period t to satisfy demand dkτ being due in period τ. The factors ce

tτ and cl
tτ penalise early and late fulfilment of demand, respectively. 

Constraints (A.2) ensure that the sum of allocated supply quantities does not exceed customer demands, while constraints (A.3) state that the sum of 
allocated quantities must equal the total available supply atpt. 

Order promising model 

The order promising model we use for our numerical study is adapted from Meyr (2009). It decides on the portions of allocated supply xit0 which are 
available in period t0 and are employed to fulfil an order of oi*τ0 product units from customer i* which is due in period τ0 . 

Maximise 

z¼
X

i2Ii*

hX

t0
ðPASixit0 Þ �

X

t0 �τ0

�
ce

t0 τ0 ⋅ xit0
�
�
X

t0>τ0

�
cl

t0 τ0 ⋅ xit0
�i

(B.1)  

subject to 
X

i2Ii*

X

t0
xit0 � oi*τ0 (B.2)  

0� xit0 �
X

τ
aatpit0 τ 8i 2 Ii* ; t

0

2 T (B.3) 

The objective function (B.1) maximises the amount of allocated supply promised to the customer. The factors ce
tτ and cl

tτ penalise early and late 
fulfilment of demand, respectively. Constraints (B.2) state that the sum of consumed supply for the incoming order must not exceed the ordered 
quantity. Constraints (B.3) ensure that the allocations aatpit0 τ set at the allocation planning step are not exceeded. 

The model allows nesting of supply allocated to customers. The customers from which customer i* is allowed to consume allocated supply are 
represented in the set Ii* , which contains all customers for which the Inequality (B.4) holds. 

PASi* � PASi (B.4) 

In case allocation planning is done at the customer segment level, we replace I with K, i* with k*, i with k and PASi with profnorm
k in Equations (B.1) to 

(B.3). k and k* represent a customer segment and the customer segment of the ordering customer, respectively. Furthermore, we replace the sets Ii* 

with Kk* , which represent the set of customer segments from which customer segment k* is allowed to consume the allocated supply. It contains all 
customer segments for which Inequality (B.5) holds. 

prof norm
k* � prof norm

k (B.5) 

In our numerical study, early fulfilment of orders is not allowed. Therefore, the promises pit0 τ0 are calculated with Equation (B.6). 

pit0 τ0 ¼

8
>><

>>:

X

t0 �τ0
xiτ0

xiτ0 ; 8t
0

> τ0
(B.6)  
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