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A B S T R A C T

Background: Kinetics is an important part of food science and statistics is a necessary key element in modeling.
Ordinary least-squares (OLS) regression is mostly used to obtain parameter estimates and their uncertainties; this
is done within the frequentist framework.
Scope and approach: This article introduces Bayesian statistics as an alternative to OLS. The background of
Bayesian statistics is briefly explained, emphasizing the difference with the frequentist approach. Basically,
frequentists go for the probability of data given a hypothesis, resulting in point estimates, while Bayesians go for
the probability of a hypothesis given the data, resulting in probability distributions for parameters. This study
shows how to apply the Bayesian approach to kinetic problems using freely available R packages. To focus on the
Bayesian approach, the kinetic problem presented is a trivial zero-order reaction concerning the formation of
furan in a soy sauce.
Key findings and conclusions: The main result is numerical and graphical output showing probability distributions
of parameters. Interpretation of regression results is shown leading to the conclusion that the Bayesian approach
yields a more intuitive result with richer information than the conventional OLS approach. The pros and cons of
the Bayesian approach are highlighted, the major pro being the intuitive and informative result and the major
con that one has to learn and apply a programming language like R or Python. The Bayesian approach is very
general and the outline shown here can be applied easily to much more complicated kinetic models.

1. Introduction

The title of this paper reflects two key phrases: ‘‘kinetic modeling’’
on the one hand, and ‘‘Bayesian’’ on the other. As an introduction to
these concepts: suppose one is interested in the fate of, say, vitamin C in
a food, hypothesizing that its concentration changes because of a che-
mical reaction (e.g., oxidation) and as a first idea the concentration of
vitamin C is assumed to decrease linearly in time; in doing so, a kinetic
model is proposed. Then, by measuring vitamin C, it appears not to
decrease linearly but, even though there is variation in the data, it
seems to decrease more exponentially. Knowledge is updated accord-
ingly and an exponential model is proposed. Working and thinking like
this, one applies, perhaps unknowingly, Bayesian reasoning: an un-
certain, prior idea is combined with uncertain data and as a result
knowledge is updated and uncertainty decreases. Bayesian statistics is
the formal way to apply such reasoning, while kinetics is the formal
way to model changes over time. Even though describing this way of
thinking seems like an open door, it is not the way classical statistics
works. The usual statistical approach is the frequentist approach based
on sampling theory. An important difference is how model parameters
are dealt with, like rate constants and activation energies in kinetics.

Such parameters cannot be observed or measured but they can be in-
ferred from data. As will be explained below, Bayes' theorem is very
useful in that respect. A fundamental difference in considering para-
meters will appear between the classical frequentist approach and the
Bayesian approach. The main purpose of this paper is to explain the
alternative approach of Bayesian reasoning and how that can be applied
to kinetic modeling.

Kinetics is an indispensable part of food science and has many ap-
plications in product and process design, and it offers, of course, also a
scientific tool to understand reactions in foods. Kinetic models are,
therefore, frequently discussed in food science journals, including the
statistical aspects of analysis of data, e.g., Goula, Prokopiou, and Stoforos
(2018), Grainger, Owens, Manley-Harris, Lane, and Field (2017), Zhang,
Chen, Boom, and Schutyser (2017), Rial-Otero, Simal-Gándara, Pose-
Juan, López-Fernández, and Yáñez (2018), to cite just a few. Often, excel
is used as the software tool to analyse kinetic data (e.g., Hites (2017)),
even though it is well recognized that it lacks some necessary statistical
tools (De Levie, 2012). The nonlinear Solver routine in Excel is not al-
ways reliable (Tellinghuisen, 2015) and does not even supply any un-
certainty in parameters; fortunately, some of these failures can be re-
medied by using additional macro's, for instance as developed by de
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Levie. This concerns specifically the macro's LS1 (linear regression with
intercept), Solveraid (calculates parameter uncertainties after usage of
the Solver for nonlinear regression) and Propagation (estimates how
uncertainties in parameters are propagated in subsequent calculations) in
the so-called Macrobundle, see website de Levie (http://www.bowdoin.
edu/~rdelevie/excellaneous/#macrobundlecontents). Another example
of an add-in to Excel is given by Halpern, Frye, and Marzzacco (2018). Of
course, also many other software programmes than Excel are possible,
commercially or freely available. Almost all of the statistical software
tools employ what is called ordinary least squares (OLS) regression, be it
linear or nonlinear. Appreciating the statistical aspects of kinetic mod-
eling is not always easy and would deserve some more attention in
publications in the view of the present author. The common (and
dominant) way of statistical modeling is based on the already mentioned
frequentist approach, the branch of statistics that is usually taught at
high schools and universities. Not too many people active in kinetics
seem to apply Bayesian statistics as another approach that could be used
in kinetic modeling. There are some exceptions in chemical engineering.
A Bayesian approach was developed in the 1960s (Box & Draper, 1965)
to handle multireponse problems in chemical engineering, see also
Stewart, Caracotsios, and Sørensen (1992) and Stewart and Caracotsios
(2008). This approach is the basis for a software programme called
Athena Visual Studio developed especially for chemical engineering
problems (http://www.athenavisual.com) that contains Bayesian op-
tions. Apart from that, there are only few references to be found that use
Bayesian methods in kinetics, e.g., Galagali and Marzouk (2015). How-
ever, the Bayesian approach is used a lot in other branches of science,
like ecology, e.g., Hobbs and Hooten (2015), Korner-Nievergelt et al.
(2016), and in the medical sciences e.g, Zwinderman (2018); interest-
ingly, it is much more popular in an area close to kinetic modeling,
namely in pharmacokinetic modeling, e.g., Krauss, Tappe, Schuppert,
Kuepfer, and Goerlitz (2015), Carreno, Lomaestro, Tietjan, and Lodise
(2017).

It is proposed here that the Bayesian approach could be an attractive
alternative to the traditional approach because it is more intuitive as to
how people think regarding statistics. Until recently, there was a good
reason to stay with the frequentist way because the Bayesian way was
computationally demanding, or even impossible. However, that has
changed the past two decades, for two reasons. First, the software to
handle statistics in the Bayesian way has enormously improved and can
now be used routinely (as will be shown here). Second, the software to
do that is freely accessible via the software package R, so basically
everyone who has a computer and access to internet can use it. Over the
last decade, R has become very popular, and is rapidly turning into the
standard for statistical modeling as well as numerous other applica-
tions. Next to that R is completely free and available for every computer
platform, it is supported by very active user groups. As a result, many
dedicated packages have been, and are being developed, freely avail-
able, well documented and, most importantly, supported by a large
community. Chances are that a particular problem has already, partly
perhaps, been tackled by someone else, and if not, there is always
someone prepared to look at the problem at hand and come up with
suggestions for a solution. ‘‘Version control systems’’ like Git, Github,
Bitbucket are directly linked to R and RStudio, thereby enabling com-
munity of workers to communicate and interact, thus contributing to
open science (Bryan, 2018). There are many specific websites for get-
ting help, as an internet search will quickly show. Next to R, other
software programs like Matlab, Mathematica, MathCad, can be used as
well, of course. Also these programs have user groups, good doc-
umentation, are powerful and user-friendly, but they are not for free
and therefore not accessible to everyone like R is. The purpose of this
publication is twofold. First, to show the advantage of the Bayesian
approach, which is suggested to be more intuitive than frequentist
statistics, and conceptually simple. Second, the purpose is to show how
Bayesian statistics can be used easily in kinetic modeling and how more
information can be extracted from data than with the frequentist

approach. The investment to be made is that one needs to learn the
language of R (or a similar language like Python, for example). While
that is indeed an investment, it is one that pays off in many ways, an
important one being that companies and universities alike are in-
creasingly using R. Since R is open access, codes are freely published
and shared, which is a great help. The outline for this paper is as fol-
lows. First, a brief recapitulation of regression is given, followed by an
introduction to the Bayesian approach to regression. This will be very
limited because there are many excellent tutorials to be found on in-
ternet, universities offer courses, papers and books are available for
more details. Some introductory papers can be found here (though not
for food science problems): Muth, Oravecz, and Gabry (2018), Baldwin
and Larson (2017), Eguchi (2008). Three books are definitely worth
mentioning for those interested in more background reading. An es-
sential, and absolutely ground breaking one for novices in modeling
and statistics is ‘‘Statistical Rethinking’‘" by McElreath (2016), another
recently published and very instructive book is ‘‘A student guide to
Bayesian Statistics’’ by Lambert (2018), and the third book worth
mentioning is ‘‘Doing Bayesian Data Analysis’’" by Kruschke (2015).
These authors focus on the concepts with a minimum of mathematical
treatment and give many examples in R.

2. Theoretical background

2.1. Statistical modeling: regression revisited

Kinetic parameters need, ultimately, to be derived from experi-
mental measurements. Experiments yield variable (and therefore un-
certain) results. Consequently, kinetic parameters estimated from these
experiments are also uncertain, and this uncertainty needs to be char-
acterized, which is why we need statistics. The statistical technique to
estimate parameters from experimental data is called regression. Let us
briefly recapitulate what we are actually doing then. Recall that the
purpose of kinetics is, simply said, to investigate how the rate of a re-
action changes over time and with temperature. Relevant parameters in
that respect are: the order of a reaction, rate constants and activation
parameters (activation energy, activation entropy and enthalpy). Based
on the law of mass action, the rate of a reaction of a component (dc/dt))
is measured via the concentration of the reactant (c) as a function of
time (t):

=c
t

k cd
d r

nt
(1)

properly called the general rate law equation. The two parameters in
this equation are the proportionality constant kr (in kinetics called the
rate constant) and the order nt . In many cases in food science literature,
authors assume a certain value for nt , mostly 0, 1, or 2. For instance,
integration of equation (1) for a zero-order reaction, i.e., =n 0t , for a
reaction where a compound is formed yields a linear relation between
concentration and time:

= +c c k tr0 (2)

in which c0 is the initial concentration. (For a degradation reaction the
+ sign becomes a - sign.) If =n 1t , a first-order model arises which
upon integration of equation (1) shows that the change in concentration
depends exponentially on time, in this case for a degradation reaction:

=c c k texp( )r0 (3)

Equation (1) can also be integrated as a whole, which yields:

= +( )c c n k t( 1)n
t r n0

1 1
1t t (4)

By fitting this equation to data, the order nt can be estimated from
experimental data next to c0 and kr . The order is usually found to be
between 0 and 3; note that it can also be fractional (see Van Boekel
(2008) for more details).

The rate constant and its dependence on temperature (not discussed
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here to keep things simple), and if needed the order nt , are to be esti-
mated from experimental data. With such knowledge we can predict the
rate of a reaction according to the kinetic model proposed. The pro-
posed kinetic model is called a deterministic model because it com-
pletely determines the outcome if we would know the parameters ex-
actly. To find these parameters we have to confront the model with
reality, in food studies usually data consisting of chemical concentra-
tions or physical measurements (called the response variable) as a
function of time t and temperature T, and occasionally pressure P
(called the independent, predictor variable or covariate).

However, as mentioned, experimental data (commonly symbolized
by yi) are always variable (and hence uncertain) and so, we need a
statistical model that describes this variability. It is well known that
experimental variation resulting from chemical and physical measure-
ments is usually well described by a normal distribution. This follows
from the central limit theorem stating that the outcome of many small,
unpredictable variations (as happens during measurements) always
lead to a normal distribution. A normal distribution is completely
characterized by its mean μ and variance 2:

=p y µ y µ( , ) 1
2

exp ( )
22

2

2 (5)

This equation should be read as: the probability of observing certain
values of experimental data y can be predicted if we know the mean and
variance of the process that generates the experimental data y. So, in
kinetics the goal is to estimate this mean and standard deviation for
each measurement at each measured point xi: see Fig. 1.

We can thus connect a measured value (for instance, the con-
centration of a chemical measured at a certain value x) to a variable
representing a central value (like the mean μ) according to a model,
while the experimental variation is described by the parameter 2

controlling the dispersion of a distribution. This makes it a statistical
model, which is for kinetics usually (but not necessarily) a Gaussian
distribution.

Writing this reasoning in mathematical/statistical language, with a
zero-order formation reaction (equation (2)) as example leads to the
following statistical model for the variation in the experimental data:

y µ~ ( , )i iN (6)

The expectation value E y( )i , or the mean µi, is coupled to the pre-
dictor variable time ti as specified by the deterministic kinetic model, in
this example the zero-order model:

= +µ c k ti r i0 (7)

Equation (6) should be read as: the variation in each experimental
data point yi (with = …i n1 datapoints) is assumed to be normally dis-
tributed with mean µi and a constant standard deviation σ (so, σ is not

supposed to depend on ti, see Fig. 1). µi is according to the proposed
model completely determined by c0 and kr ; the connection between the
measured yi and the model values µi is thus via equations (6) and (7).
Note that µi itself does not need to be estimated because it can be
calculated directly from the two to be estimated parameters via a de-
terministic relationship as expressed in Eqn. (7); uncertainty in µi re-
sults directly from propagation of uncertainty in the parameters. The
case that the standard deviation is constant over the whole range of
measurements is called homoscedastic in statistical jargon, if σ varies
with the predictor variable (time ti in this case) the data are called
heteroscedastic. To handle heteroscedastic situations in the frequentist
framework, see for instance Chapter 7 in Van Boekel (2008), for the
Bayesian framework, see Chapter 14 in McElreath (2016).

Armed with this knowledge we can now make the step towards
regression in the Bayesian and frequentist framework. First we describe
this in general terms and then we focus on kinetic analysis.

2.2. The Bayesian and the frequentist approach compared

At the basis of Bayesian statistics is Bayes' theorem, hence the name
(Bayes was an English clergyman who derived his theorem in the 18th
century). Before explaining that, let us very briefly recall what we try to
do in science. When studying a particular problem, we may build a
hypothesis about the phenomenon studied (e.g., that the kinetics can be
described by a zero- or first-order reaction), and based on that, we may
design experiments to test the hypothesis, and if necessary, adjust the
hypothesis if the outcome suggests that the original idea was not cor-
rect. Data are obtained from experiments (or by doing observations)
and based on such samples an inference is made. In the frequentist
framework, we try to generalize from the sample towards the whole
population. The parameters that characterize this population (e.g., the
mean and the standard deviation, or the rate constant in a kinetic
equation) are assumed to be fixed, whereas the data are considered
random, i.e., they contain unexplicable variation. In that view, a dataset
represents one possible outcome from the many that could have been
collected. Inference is then made by referring to a theoretical, infinite
number of repetitions (hence the name frequentist). The approach leads
to hypothesis testing and p-values, based upon long-run frequencies of
repeated sampling from a population. It is about probabilities of ob-
taining the data as they were obtained and NOT about parameters and
hypotheses, and this is, unfortunately, not always realized by re-
searchers. A p-value tells actually more about the data: what is the
probability that the sample size is large enough to detect an effect or a
relationship. Concepts such as significant or insignificant p-values and
confidence intervals are more and more criticized (e.g., Nuzzo (2014);
Baker (2016)), not because it is wrong but because many people do not
really know how to deal with it and interpret them in a wrong way. This

Fig. 1. Schematic representation of a normal probability density p y( ) of experimental measurements yi (indicated by dots) at settings xi. The line represents a linear
model = +y a b x . The expected value at xi is =E y µ( )i i according to the model, σ is the (constant) standard deviation of the experimental values yi.
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is a debate in its own right that we will not go into here, the purpose is
to show that there is an alternative (in which p-values and significance
tests are not needed). The focus in the Bayesian perspective is much
more on model fit, data visualization, uncertainty and prediction
(Baldwin & Larson, 2017). So, what is the difference? In the Bayesian
framework, data are considered fixed (fixed does not mean that varia-
tion is not acknowledged, it means that we take the data as they are
once they are obtained). In contrast to the frequentist approach, para-
meters are being considered random in the sense that we are not sure
about their real value and that we can express that uncertainty about
parameters in a probabilistic way. In the frequentist framework, how-
ever, parameters cannot be variable; they are considered to have a
fixed, though unknown, value; and this exact value cannot be estimated
precisely because the data show variation. Only if we would be able to
do an infinite number of experiments, the exact value would become
known to us, but that is obviously not realistic. In the Bayesian fra-
mework, the idea is to learn from data to update knowledge about the
initial hypothesis and parameters, in other words to decrease un-
certainty. Probability is used here to express this uncertainty, as a sort
of degree of belief, rather than using probability as a long-run fre-
quency. To summarize, the frequentist approach is to focus on the
probability of data that are obtained if a (null) hypothesis is true, p
(data|hypothesis), while Bayesians go for the probability of a hy-
pothesis given the data, p(hypothesis|data). To infer something
about a hypothesis, we need to go back from an effect that is measured
(the data) to the cause that actually produced those data (for which we
had an initial hypothesis). This is where Bayes' theorem comes in. This
theorem is formally derived from probability theory (derivation is not
shown here but can be found in many textbooks, e.g., Lambert (2018);
McElreath (2016); Kruschke (2015)) and it links cause and effect such
that the cause can be inferred from a measured effect. This is all done in
terms of probability distributions that express the uncertainty in a
quantitative way, so the outcome is not a point estimate but a prob-
ability distribution. This is an important difference with the frequentist
approach that only leads to point estimates (in the search for that un-
known, fixed parameter value). The confidence intervals that are de-
rived in the frequentist framework about point estimates are NOT
probability statements about the parameters (because these have no
variation by definition), they are stating the confidence that one can
have to obtain that parameter in that specified interval if the experi-
ment would be repeated over and over again. Most people, however,
tend to interpret frequentist confidence intervals in the bayesian way,
namely as the probability that the parameter is actually in that interval.
It should be clear that this is NOT allowed in the frequentist context.
Another important difference is that in Bayesian statistics the re-
searcher is forced to state his/her prior opinion about the hypothesis/
model/parameter that he/she assumes before the data is analyzed. That
is needed to be able to apply Bayes'theorem, which can be formulated
as:

=p p p
p

(hypothesis data) (data hypothesis) (hypothesis)
(data) (8)

The concise mathematical formulation of this is:

=p y p y p
p y

( ) ( ) ( )
( ) (9)

The notation p y( ) should be read as: the probability of θ given the
data y and p y( ) as the probability of y given θ (these are so-called
conditional probabilities). The left hand side of this equation p y( ) re-
presents the so-called posterior distribution, which is the joint prob-
ability distribution of all parameters under consideration, reflecting our
knowledge (or ignorance) about the proposed hypothesis, model or
parameter (all symbolized by θ) conditional on the data y we have ob-
tained. The numerator on the right hand side is the product of the so-
called likelihood p y( ) and the prior p ( ). The likelihood describes the
data generating process, given the hypothesis θ, and reflects the

probability of observing the data as they have been found, under the
assumption that the model is valid. The likelihood is only a proper
probability density function (i.e., is positive and sums/integrates to one)
when considered as a function of the data with the parameters fixed.
However, it is not a true probability density distribution (does not sum to
one) when the parameters are considered variable. That is why it is
called the likelihood function, expressing the likelihood of obtaining such
data under the specified model. For that reason, it is sometimes ex-
pressed as l y( ). The prior reflects our initial knowledge (or ignorance)
about the hypothesis/model/parameter θ before the data are analyzed.
Finally, the denominator in Bayes theorem is the marginal distribution of
the data, also called the marginal likelihood, (marginal means averaging
over all the parameters, the parameters are ‘‘integrated out’’ by con-
sidering all possible values of the parameters; the term marginal refers to
the margin of a table where the result of the averaging can be shown). In
other words, it is the likelihood averaged over the parameters and
weighted by their prior probabilities, it is in the end just a number (once
the data are obtained), and acts as a normalizing constant by scaling the
numerator so that the posterior becomes a real probability density dis-
tribution (integrates or sums to one).

Before the advent of computers it was a daunting, and mostly im-
possible task, to calculate this denominator for all but very simple
models. The good news is that we need not to worry anymore about
how to calculate the denominator because of the software that allows to
numerically approximate the posterior. The denominator does not de-
pend on parameters (which, remember, are integrated out), and it
therefore does not carry information about the most probable values of
θ. Consequently, it can be left out in the numerical approximation and
the basic equation for Bayes’ theorem, at least from a conceptual point
of view, becomes:

×p y l y p( ) ( ) ( ) (10)

(the sign should be read as: is proportional to). Basically, this
result shows that, apart from a scaling factor, the posterior distribution
is in fact a combination (weighted average) of the information in the
prior (our initial hypothesis θ) and in the data y (expressed in the
likelihood) with Bayes theorem being the mathematical machinery to
revert quantitatively from knowledge about the data y (which can be
observed and expressed in the likelihood function), to the cause of the
data as explained by the hypothesis/model/parameter (which can NOT
be observed, but can be inferred by applying Bayes’ theorem).

How do we choose this likelihood and prior? Starting with the
likelihood, for kinetic data this can usually be expressed as in equation
(6) where it is postulated that the variation in the data can be modelled
through the normal distribution. It must be realized, however, that it is
an assumption that can and should be checked, e.g., via normal prob-
ability plots, or tests like the Shapiro-Wilk test. To put things in per-
spective, the normal distribution is not always appropriate, for binary
outcomes a binomial distribution for the likelihood could be chosen,
and for counting problems the Poisson distribution. But for kinetic
problems based on chemical/physical measurements a normal dis-
tribution will do just fine; alternatively, a close relative of the normal
distribution, the t-distribution, could be chosen because it is more ro-
bust to outliers (Kruschke, 2015). As for the prior, this is the most de-
bated part of the Bayesian approach because it can have an impact on
the resulting posterior, and the debate is then on whether or not a re-
searcher is allowed to subjectively influence the outcome by choosing a
prior. As is convincingly shown by many authors (e.g., McElreath
(2016); Kruschke (2015); Lambert (2018)), this argument can not be
maintained to dismiss the Bayesian approach because subjectivism is
present in any scientific endeavour and the nice thing about the
Bayesian approach is that one has to specify the prior explicitly, which
puts it out in the open and makes it debatable, as it should be in science.
Fig. 2 gives some examples of possible priors.

Conceptually, the effect of the prior is as follows. If one is very
certain about a model or a parameter (for instance based on literature,
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or from earlier experiments), one can propose a strong prior with a
narrow distribution, which is then called an informative prior because
apparently the researcher already knows a lot. (If such knowledge is
available, it would actually be very strange to ignore it, which is what is
basically done in the frequentist approach!) An informative prior will
have a rather strong influence on the posterior, especially if there are
not too many data. If, however, one knows very little about θ, one can
give a so-called uninformative, or flat prior, for instance a uniform
distribution where a parameter can take on every value in an interval
specified by the researcher. In most cases, a so-called weakly in-
formative prior is the best (McElreath, 2016). It means that one should
incorporate the little knowledge that one may have, for instance that a
parameter is non negative, or has an upper bound, in the prior. This
prevents overfitting (meaning that a model is well capable to explain
the available data but not to predict new data). Incidentally, an in-
formative prior has a substantial effect on the posterior only if there is
not much information in the data. With more data available the like-
lihood becomes dominant quickly. The upper panel of Fig. 3 gives an
impression of the effect of the prior standard deviation on the posterior,
given a certain likelihood function, while the lower panel of Fig. 3
shows the effect of number of data points given an informative prior.

As mentioned above, for kinetic problems a normal (Gaussian)

distribution can be assumed for parameters such as rate constants and
activation energy. As McElreath (2016) puts it: ‘‘A Gaussian distribution
is the most natural expression of our state of ignorance, the least sur-
prising and least informative assumption to be made’‘. The standard
deviation (see Fig. 1) is one of the parameters to be estimated from
uncertain data and therefore the standard deviation that characterizes
uncertainty in the data is itself uncertain! A standard deviation cannot
be negative, so the prior should be bounded at zero. A distribution that
allows for a broad range of possible values while becoming less likely at
extremes suits the best. Experience shows that a half-Cauchy distribu-
tion for the standard deviation σ functions well as a weakly informative,
regulating prior (Lambert, 2018; McElreath, 2016); the half-Cauchy
distribution resembles a t-distribution with thick tails bounded at 0 (see
Fig. 2D); an alternative distribution could be the exponential distribu-
tion which is also bounded at 0 but does not have thick tails.

It is perhaps interesting to note that the frequentist method can
actually be considered as a special case of the Bayesian approach,
namely with a completely uninformative flat prior, so that the posterior
is only determined by the likelihood (i.e., the data), hence with only the
likelihood function as information (but remember that the likelihood
function as a function of parameters is not a valid probability dis-
tribution). One then searches for the parameter value that makes the

Fig. 2. Examples of possible prior distributions for parameters. A normal distribution with mean = 50 and standard deviation = 10 (A), a uniform distribution
between x = 10 and x = 50 (B), a gamma distribution with location parameter = 2 and scale parameter = 0.1 (C), a half-cauchy distribution with location
parameter = 0 and scale parameter = 25 (D).
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obtained data most likely; however, it does not result in a posterior
distribution if no prior is specified. A prior, however uninformative,
needs to be specified in the Bayesian approach. If prior information
about parameters is available but ignored, it would be appropriate to
mention why it is ignored, which makes the omission of the prior ac-
tually an argument against the frequentist approach. In the Bayesian
approach it cannot be ignored while the researcher is also forced to
think about the choice for a likelihood function that describes the data.

To be complete, the frequentist process of searching for the most
likely parameter without specifying a prior is called maximum like-
lihood estimation (MLE) and is also the basis for the commonly applied
ordinary least squares (OLS), if several assumptions are fulfilled (Van
Boekel, 1996). This can be illustrated as follows. If the likelihood of one
datum point y is f y( ), then the likelihood of all datapoints yi is found
from a multiplication (symbol =

n
i 1 ) of the likelihood of each in-

dividual data point (this follows from probability theory):

=
=

l y f y) (i
i

n

i
1 (11)

The value of θ that maximizes this likelihood function makes the

data as they have been observed most likely. In the search for this value
it is mathematically more easily done by taking logarithms, because
minimizing the log-likelihood ( =L y l y( ) ln( ( )i i ) gives the same result
as maximizing the likelihood:

= =
=

L y l y f yln ln ( ( ))i i
i

n

i
1 (12)

If we take the normal distribution for f y( )i (see equation (5)), it
follows that:

= =
=

L y l y
y µ

( ) ln( ( )) ln 1
2

exp
( )

2i i
i

n
i i

1
2

2

2 (13)

The last part in the right hand side of this equation contains the
sums of squares between data yi and model µi and minimizing this
sums-of-squares is equivalent to minimizing the ln(likelihood), which in
turn is equivalent to maximizing the likelihood. So, if the normal dis-
tribution describes the variation in the data with a constant standard
deviation, then it follows that minimization of the sums-of-squares is
equivalent to MLE, and this is then the rationale for using OLS in the
frequentist approach. If OLS is to be interpreted in the Bayesian

Fig. 3. Upper panel: effect of a prior normal distribution ( =µ 5 and varying prior
2 (dashed line) on the posterior outcome (solid line) with a normal likelihood

distribution ( =n 20 datapoints with =µ 12 and = 72 (dotted line). Lower panel: effect of n datapoints (normal likelihood with =µ 12 and = 72 ) (dotted line) with
a prior =µ 5 and = 0.52 (dashed line) on the posterior density (solid line).
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framework, it could be seen as using a uniform prior from to + for
the regression coefficients and a uniform prior from 0 to + for the
standard deviation. MLE is the result of maximizing over all possible
parameter values, whereas the Bayesian way results in integrating over
all possible parameter values. Inference following MLE results, there-
fore, only in point estimates, while the Bayesian approach results in a
probability distribution with much more information.

All in all, there is a different perspective on probability in the
Bayesian and frequentist approach; Bayesians consider probability as a
measure for the degree of belief, frequentists make probability state-
ments about repeated sampling from a population.

So, now we have the basis for doing Bayesian regression. These are
the four basic steps in Bayesian data analysis (after Muth et al. (2018)).

1. specify the model as a deterministic equation, whereas the like-
lihood and the prior (one for each parameter) are specified as a
statistical model

2. Estimate the model parameters (including σ) and check for con-
vergence

3. Check the fit of the model
4. Interpret the results

Incidentally, these steps are also appropriate in the frequentist fra-
mework, except for the prior and likelihood specification. A detailed
checklist for these steps in the Bayesian case can be found in Depaoli
and Van de Schoot (2017).

2.3. Software for Bayesian estimation

Before we show an example, a few words on the software that is
used nowadays in Bayesian estimation: what does it actually do? For all
but very simple cases, the formula in Bayes theorem, equation (9),
when coupled to statistical models, is not analytically solvable any-
more, it will involve enormously complicated integrals appearing in the
denominator. So, to find this posterior distribution, the best way is to
approximate it via numerical techniques. A relatively simple method is
to use a quadratic (or Gaussian) approximation to the posterior
(Looking at equation (13), the part y µ( )2 causes the quadratic shape,
and taking the exponential of that leads to the typical bell shape of a
normal distribution.). This approximation is strictly speaking only al-
lowed when the posterior has a multivariate normal distribution (which
in many cases may not be a bad assumption). The software then sear-
ches for the mode of the distribution as specified by the prior and the
likelihood, and then it searches for the curvature around this mode. For
instance, the R function ‘‘map’‘, (map = maximum a posteriori) as part
of the package ‘‘rethinking’’ can be used to this goal (McElreath, 2016).
A more rigorous approach (because no assumptions need to be made
about the posterior) is via Monte Carlo simulations and variants
thereof. What the software does is to explore the region of the posterior
(as specified by the prior and the likelihood) via random walks and
drawing many samples from the target posterior distribution; the result
is that these samples in the end represent the unknown distribution.
Techniques that are used in this respect are Gibbs sampling, Metropolis
Hasting sampling, Hamiltonian Monte Carlo and the No_U Turn sampler
(NUTS). These are commonly summarized with the term Markov Chain
Monte Carlo methods (MCMC). A Markov chain is a sequence of states
in which the location of the next state depends on the current state of
the chain. Currently, the most powerful and efficient algorithm is the
Hamiltonian Monte Carlo algorithm, and its extension NUTS, which is
used in Stan (Bürkner, 2018a; Gelman, Lee, & Guo, 2015; Kruschke,
2015; Lambert, 2018; McElreath, 2016). A very instructive tutorial
explaining MCMC can be found on the internet: http://www.flutterbys.
com.au/stats/tut/tut4.3.html. We will apply Stan in the kinetics ex-
ample later on. Those who are interested in background reading about
MCMC are referred to Betancourt (2017).

In order to use the MCMC concept fruitfully in practice, some

diagnostics are needed to check that the MCMC procedure has con-
verged. Whether or not the number of iterations in MCMC is sufficient
can be checked by looking at the so-called trace plots: they should show
no trends and should stabilize around a baseline with some random
noise. MCMC simulates a distribution in proportion to the density but a
problem can be that the consecutive samples are very similar. The so-
lution for this is to skip some samples during the iterations, this is called
‘‘thinning the sample set’‘, so that the remaining samples will be more
independent of each other. So, the modeller can indicate a thinning
factor (for instance, a thinning factor of 10 means: retaining every 10th
sample; as a consequence more iterations are needed in order to obtain
sufficient samples). Then, starting values for drawing samples are
needed (either provided by the modeller, or guessed by the software)
and it may take some time before the software ends up in the right
region. Therefore, a burn-in or warm-up interval is defined, the samples
of which will be discarded, a rule of thumb is that at least the first 10%
of the samples should be ignored, but usually 50% is used to be sure.
MCMC algorithms do not have a stopping criterion, so the modeller
should indicate the maximum number of iterations (trace plots will
indicate whether or not the number of iterations was sufficient, if not,
this number should be increased). In order to speed up the sampling
process, more chains are used (e.g., 3 or 4) at the same time. Then,
there is the Gelman and Rubin diagnostic called R-hat ( R̂), which
measures the ratio of the variance among chains and that within chains.
This ratio should become very close to 1, otherwise the chains are not
mixed well and did not converge to a stationary value; it basically
measures whether or not chains have covered the whole space of the
posterior. Another diagnostic is the ‘‘number of effective sample size’‘.
This has to do with autocorrelation of the sampling process. It compares
the number of independent draws with the same estimation accuracy of
correlated draws. The sampling algorithm rejects some samples ac-
cording to a certain criterion and calculates how many remaining
samples are effectively used. Therefore, the number of effective samples
is usually less than the number of total samples. There is no absolute
criterion for the effective sample size, if it is less than 10% of the total
sample size ones should be careful and change some settings. In any
case, it is essential to do some MCMC diagnostics before interpreting
MCMC results. The example below will demonstrate their use.

To some, the MCMC approach may seem as a black box approach,
but it is not. It is very well described and documented, and accepted as
a valid method, and supported by renowned statisticians. It is important
to realize that priors are needed for MCMC sampling, even if no prior
information is available (i.e., a noninformative prior should always be
given as the least) and that distinguishes it from maximum likelihood
estimation. Dedicated software programmes are available for MCMC
sampling, like WINBUGS, JAGS, Stan and several algorithms in R, most
of them come at no cost. An internet search on ‘‘software for MCMC’’
will give the interested reader an overview.

3. A kinetics example

For the remainder of the article, the above discussed concept is
applied; a very simple kinetics example was chosen so that the focus lies
on the Bayesian aspect rather than on the kinetic problem itself, in
other words the kinetic problem is considered trivial. In due course we
will focus much more on how the Bayesian approach can help to un-
ravel complicated kinetic problems. References for the R version, R
Studio and packages used are given in the supplemental material.
Instructions on how to install R, RStudio and Stan, as well as several
other R packages, can be found on internet. The actual R codes for the
calculations can be found on the author's GitHub repository: https://
github.com/TinyvanBoekel/Trends.

The example chosen is about the formation of furan in soy sauce at
70 °C for which a linear relation with time was found, i.e., a zero-order
reaction as in equation (2). Furan is formed in the Maillard reaction
(Huang & Barringer, 2016) as one of the reaction paths. Much can be
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said about the kinetics of this reaction (e.g., see Chapter 8 in Van Boekel
(2008)) but the main purpose here is to show how we can analyse such
data in the Bayesian way. The example was chosen as a typical food
science problem with not too many data points; information about
experimental variation could not be retrieved from the article. Such a
dataset was chosen on purpose rather than an extended dataset with
replications. Unlike the frequentist framework, Bayesian statistics is not
based on large samples, so a small sample size without replicates was
selected as a showcase. As a kinetic problem it is trivial, it is chosen for
simplicity to be able to focus attention on the Bayesian aspects of re-
gression. As mentioned, a zero-order model is proposed:

= +c c k ti r i0 (14)

The outcome of the classical (frequentist) approach via OLS is
shown, for reference, in Table S1 (provided in the supplemental ma-
terial). This table shows, among other things, the point estimates of the
slope and intercept plus 95% confidence intervals; it also shows the p-
value, which should be read as the probability that the null-hypothesis
is true. As a reminder: in classical (frequentist) statistics the null hy-
pothesis is always that there is no effect. In this case the null hypothesis
is that there is no effect of the predictor time on furan concentration
(i.e., that the slope is zero) and that the intercept equals zero. The
probability shown for the slope to be zero is low (p < 0.001), so it is
highly unlikely that the null hypothesis of no effect of heating time on
furan formation is true; on the other hand, the probability that the
intercept is zero is quite high (p = 0.59). This is how p-values should be
interpreted: as statements about the null hypothesis. With respect to the
95% confidence intervals shown in Table S1, the interpretation is that if
we would repeat the analysis many times, the parameter would be in
the interval shown for 95% of the repeated analyses. It is not a state-
ment about the parameters.

Knowing the conventional OLS outcome, a Bayesian analysis follows
next, using the above mentioned 4 steps.

3.1. Propose models

As with the frequentist approach, the two parameter deterministic
model shown in equation (14) is used, to estimate the initial con-
centration c0 and the reaction rate constant kr . This deterministic model
needs to be coupled to a statistical model. As discussed above, for
chemical and physical measurements, a normal distribution is to be
expected for the data (furan measurements), so that will be the like-
lihood function. The data are coupled to the expected value µi, which is
in turn predicted by the deterministic model. Also for the two para-
meters c0 and kr , a normal distribution is proposed as priors, each
characterized by a mean and a standard deviation, while the (assumed
constant) standard deviation is supposed to be distributed as a half-
cauchy distribution. Having proposed the deterministic and statistical
relationships, we have to provide numerical values to the prior dis-
tributions before we can proceed with the actual regression (not for µi
because it will be estimated from the parameters). We will try weakly
informative priors to start with, i.e., priors that hold some useful in-
formation without strongly influencing the final parameter estimates
(Depaoli & Van de Schoot, 2017). We will come back to the effect of
prior choice later on.

= +
c µ
µ c k t
c
k

~ ( , )

~ (0,100)
~ (1,10)

~half cauchy(25)

i i

i r i

r

0

0

N

N

N

(15)

3.2. Estimate the model parameters

The R package ‘‘brms’’ (Bayesian Regression modeling using Stan)

was used for Bayesian estimation, v. 2.8.0. brms acts as intermediate
between R and Stan (Bürkner, 2018). Stan does the actual MCMC cal-
culations (Gelman et al., 2015). The following code shows how simple
the programming actually is; what needs to be specified are the data
(’‘furandata’‘"), the likelihood (“family = gaussian” with the determi-
nistic model expressed as: ‘‘formula = furan ~ 1 + time’‘, priors for the
‘‘intercept’‘, slope (’‘b’‘) and standard deviation (’‘sigma’‘). What also
needs to be specified is the number of chains, number of iterations and
how many warm-up samples need to be discarded; the adapt_delta
setting helps to converge. Here is the brms code.

Running this code within brms in R, the package will pass on the
data, the priors and the model to Stan, and Stan will return the result of
the MCMC calculations to R for further analysis.

3.3. Check the model fit

The first thing to do after MCMC estimation is to check whether the
chains have converged, see the trace plots shown in the upper panel of
Fig. S1 (supplemental material). These have the typical ’caterpillar”
shape, arising from the mixing of the chains. It appears that the chains
are well mixed and have converged to stable values. The lower panel of
Fig. S1 (supplemental material) shows the histograms for a first im-
pression of the posterior distribution of the parameters, while the
scatter plots give an impression of the correlation between parameters,
which are, in addition, shown numerically as correlation coefficients in
the same Figure.

A numerical impression of the results is shown in Table S2 (sup-
plemental material). Two parameters in this Table tell something about
the convergence, the neff which should be > 100 and R̂ which should
be close to 1. Next to that, the Table also shows the numerical estimates
of the intercept and slope plus the uncertainties involved. Note that
these numbers should be interpreted as summaries of the posterior
densities, representing central tendency measures for the posterior ra-
ther than point estimates (Depaoli & Van de Schoot, 2017).

Though the numerical summaries from the Bayesian regression are
not exactly the same as the point estimates from the frequentist analysis
(compare Tables S1 and S2 in the supplemental material), they are
quite close. However, the difference with least-squares regression is
that we have obtained a posterior distribution with a lot of information,
whereas least-squares regression only gives a point estimate. Table S3
(supplemental material) shows the first six entries of what is inside the
posterior (out of the 2000 entries, remember that 4000 samples were
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obtained with the first 2000 warmup samples discarded). Each line in
the table shows one particular result of the 2000 MCMC estimations.
With this information in the posterior, regression lines could be cal-
culated, but also covariances and correlations between parameters (as
shown in the lower panel of Fig. S1 of the supplemental material).

Fig. 4A gives a first impression of the variation in parameter esti-
mates by plotting 10 regression lines from 10 entries in the posterior,
while Fig. 4B shows the line representing the mean of all the 2000
posterior samples. Note that this line is NOT the result from mini-
mization of sums-of-squares! Rather, it represents the most likely
combination of the parameters that are contained within the posterior.
Also note that this line is not a prediction of the model but a fit to the
experimental data; McElreath (2016) calls this retrodiction, which
seems an appropriate term as it shows how the model complies with the
data in retrospect.

3.4. Interpret the results

Having the posterior at our disposal, and knowing that the estima-
tion procedure went apparently well, we can do all kinds of analysis
with it. One is to show credibility and prediction intervals. (To distin-
guish the Bayesian approach from the frequentist approach, a Bayesian
confidence interval is called a credibility interval.) Credibility intervals
show how confident we can be in estimating the mean μ. Let's do that
first for a certain time point, for instance, what is the expected value of
furan at 100 min? The equation that we can derive from the posterior
for the regression is = + ×µ 3.06 1.48 100100 = 151.35 μg/L. But since
there is variability in c0 and kr (as quantified in the posterior) there
must also be variability in µ100, and this variability can be calculated

right away by sampling from the posterior: see Fig. 5A. We can also
establish a Highest Posterior Density Interval (HDPI) at say, 95%
credibility (could be any number, to be chosen by the researcher); this
information is supplied also in Table S2 (supplemental material), and
could be plotted if so desired.

The density profile reflected by the solid line in Fig. 5A thus shows
the range where we may expect the mean µ100 to be for =t 100 min; if
so desired, we could also indicate the range for a certain probability
(e.g., 50%, or 95%, or whatever value one finds interesting). However,
this range applies to the mean calculated at t = 100 min, not to a
future prediction at =t 100 min, which is obviously more interesting if
our final goal is to predict. So, what we need to produce next is a
prediction interval that expresses not only how confident we can be in
estimating the mean, but also in how confident we can be in predicting
new data at =t 100 min. To do that, we need to take into account the
variation present due to data collection; this latter variation is char-
acterized by the parameter σ, for which we also have estimates as
shown in Table S3 of the supplement. The result of that calculation is
represented as the distribution indicated by the dashed line in Fig. 5A.
In summary, for prediction purposes we need to take into account two
sources of variation, one being the uncertainty in estimating the mean
(due to uncertainty in the parameters) and on top of that the variability
due to experimental error (characterized by sigma). Because there is
more variation involved in prediction this is obviously a broader dis-
tribution but with the same mean, as shown in Fig. 5. Generally, instead
of looking at a specific value like µ100, we can do these calculations for
the whole spectrum covered by the regression line. This is shown in
Fig. 5B.

Next to the prediction line, Fig. 5B also shows that the measured

Fig. 4. Plot showing regression lines for the first 10 rows of the posterior (A) and the regression line obtained by applying the mean of all 2000 intercepts and
slopes (B).
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values fall within the prediction range. This is one of the so-called
posterior predictive checks (PPC): if the measured values would fall
outside that range, it would raise suspicion about the predictive per-
formance of the model. It would of course be better to have an in-
dependent new sample to compare with the model prediction but that is
not always feasible. There is another option to explore the results of the
MCMC analysis in the posterior, including posterior predictive checks,
via the package ‘‘shinystan’‘, as shown for instance by Muth et al.
(2018). It gives an interactive graphical interface to visualize, sum-
marize and diagnose the MCMC analysis. One can export tables and
graphics with this package. It is not shown here but the code to launch
this package is given with the rest of the code on the author's Gihub
repository. There are actually many more options to explore the pos-
terior. In this respect, a very instructive tutorial for linear regression in
the Bayesian way can be found on internet: http://www.flutterbys.com.
au/stats/tut/tut7.2b.html.

It may be instructive to compare the obtained marginal posteriors
for the parameters with the priors that were chosen before the analysis
to see how much we have learned from the data (Fig. 6).

The posterior densities (which were displayed as histograms in
Fig. 1 in the supplemental material) are much tighter than the priors.
The prior for kr can hardly be seen on the scale of the posterior. It goes
to show that much information has been gained from the data. It ap-
pears that the posteriors for c0 and kr are approximately normally dis-
tributed, while the posterior for σ is skewed to the right. This is usually
so for the standard deviation because it is bounded by zero as the lower
limit (McElreath, 2016). The posterior distribution for c0 shows that
zero is definitely within the interval and this is as expected because at
time zero furan is not yet formed; however, the posterior distribution
also shows that there is considerable uncertainty in this parameter, in

other words it cannot be very well estimated from the data available. In
principle, of course, an initial concentration cannot be negative, so the
posterior should not be interpreted that negative values are possible for
this parameter, it just indicates that the data do not allow it to be es-
timated as being exactly 0. The posterior for kr shows clearly that it
does not contain zero in its interval, and so there is a definite effect of
heating time on furan formation, but again with some variation around
the estimated value. A rate constant cannot be negative from a physical
point of view but it can carry a negative sign if there is a degradation
reaction rather than a formation reaction. In general, it is advised to let
the data decide whether the slope should be positive or negative. In that
sense, a normal distribution, which runs in principle from to + ,
as a prior for a rate constant makes sense. If a parameter really needs to
be restrained to positive values, one can use a distribution that only
covers positive values, such as the gamma distribution, the cauchy
distribution, the exponential distribution or the log-normal distribution.

3.5. Dealing with outliers

Although there is no strong indication for outliers in the data set
(see Fig. 4B), it might be interesting to check whether or not a t-dis-
tribution rather than a normal distribution would give different results.
The t-distribution (also called the student distribution) is much more
robust to outliers than the normal distribution (Kruschke, 2015). The t-
distribution has one parameter more, namely the parameter ν, in the
frequentist framework known as degrees of freedom. In fact, the normal
distribution is a special case of the t-distribution with = . It is very
easy in brms to do regression with the t-distribution; if so desired we
can give a prior for the parameter ν or accept the default prior which is
gamma(2,0.1). The following code shows how easy it is to move from a

Fig. 5. A: Density of µ100 for the expected furan value at t = 100 min (solid line) and for a new predicted value (dashed line). The vertical dashed line indicates the
mean value of µ100 (A). B: Regression line for the formation of furan, with the 95% credibility limits for the mean (dark grey area) as well as 95% prediction limits for
new values (light grey area).
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normal distribution to a student distribution; note that an extra prior is
given for the ν parameter.

The MCMC procedure went well as shown by the trace plots in Fig.
S2 of the supplement. The numerical summaries are shown in Table S4
for comparison with Table S2 (both shown in the supplement). The
estimates are slightly different but not drastically, the estimate for the ν
parameter is 21 with quite some variation, indicating that the assumed
distribution is not completely normal but not disturbingly so. According
to Kruschke (2015), a ν value > 30 gives virtually a normal dis-
tribution.

3.6. Choice of priors

Finally, it may be instructive to investigate how strong the effect of
priors can be on the final outcome, i.e., the posterior; this is called a
prior sensitivity analysis (Depaoli & Van de Schoot, 2017; Korner-

Nievergelt et al., 2016). Since the number of data points (six) in the
present furan example is not very high, there could be some effect of the
choice of prior on the final outcome (compare Fig. 3). However, there
appeared to be an effect only when very informative priors were used
for the parameters, i.e. when the standard deviations for the priors were
chosen to be < 0.5 for the prior on kr and<50 for the prior on c0. The
resulting fits were completely out of range in those cases, so it was
immediately obvious that underfitting occurred: the strong priors pre-
vented the model from learning from the data (McElreath, 2016). By
increasing the standard deviation, a point is reached where the prior
has no effect anymore on the numerical summaries. The choice made
above for the priors in the case study can thus be characterized as
weakly informative. One may wonder why not always use non-in-
formative priors? The reason is that priors that are slightly informative
prevent overfitting (in the sense that models get too excited about the
data, as McElreath (2016) puts it). Weakly informative priors also have
a stabilizing effect on the MCMC simulation (Korner-Nievergelt et al.,
2016).

Some guidelines for choosing priors are (see also Gelman, Simpson,
and Betancourt (2017); Depaoli and Van de Schoot (2017)):

1. Set priors according to what you think is real but leave room for
some doubt and give values in the same order of magnitude as what
you are trying to predict. Don't use flat, uninformative priors and
beware of uniform priors (they are usually unreal) unless you have a
good reason to. Most importantly, a prior must make sense to you, it
should not just be an arbitrary choice. Make a plot of the chosen
priors to visually check whether or not they display what you think
is reasonable.

Fig. 6. Density plots of c0 (A), kr (B) and σ (C). Solid lines: posterior, dashed lines: prior. The bold line indicates the 95% HDI (highest density interval) with the mean
as big dot.
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2. Be explicit about why you choose a certain prior so that it is deba-
table for your peers

3. Do a prior sensitivity analysis to get a feel for their influence.
4. Do not change a prior just to obtain a result that seems desirable,

that would come close to data manipulation. If it turns out that the
choice of a prior has a strong influence on the results, this should be
discussed in detail.

What is not shown here is that there is no principal distinction be-
tween regression of linear and nonlinear models in the Bayesian ap-
proach (McElreath, 2016). With OLS, nonlinear regression needs a
different approach than linear regression (Van Boekel, 2008). However,
depending on their complexity, nonlinear models may sometimes cause
numerical difficulties. The brms package can handle nonlinear models
(Bürkner, 2018b).

4. Conclusion: pros and cons of the Bayesian approach

In conclusion, it is hoped that this paper has contributed in gaining
more insight in the Bayesian approach of regression of kinetic models,
and the advantages it may have. In summary the main advantages of
Bayesian regression, in view of the author, are:

1. Strong emphasis on uncertainty and how we gain knowledge in
science (i.e., decrease uncertainty) by learning from data and
models, in particular by visualizing them in density plots and
credibility and prediction intervals. It makes parameters better in-
terpretable. Another thing, not shown here, is that Bayesian mod-
eling makes parameter identifiability easier, or rather that it is ea-
sier to detect with Bayesian modeling when parameters are not
identifiable (Hines, Middendorf, & Aldrich, 2014).

2. Straightforward interpretation of credibility (confidence) and pre-
diction intervals: probabilities express the uncertainty in a quanti-
tative and natural way.

3. Correct and immediate propagation of parameter uncertainties
when they are used in predictions, all the necessary information for
that is in the posterior; no intricate and hard to explain formulas are
needed as with OLS regression (De Levie, 2012).

4. Any proper deterministic model connected to the proper probability
distribution can be investigated via MCMC, linear or nonlinear,
making it a far more general approach than OLS (Hobbs & Hooten,
2015). So, we could do basically the same analysis as shown here for
a linear model for a nonlinear first-order model, for instance, or any
other model that the researcher deems appropriate. Of course, it
remains the responsibility of the researcher to check that the as-
sumptions made make sense.

5. Although not shown in this paper, Bayesian methods are easily ex-
tended to more complex models. Also, other likelihoods than the
normal distribution are easily implemented, the MCMC approach
can handle that just as easily.

6. Also not shown in this paper but worthwhile to mention is that
Bayesian methods work very well with multilevel models (some-
times also called mixed effect level models), i.e., models that share
parameters on various levels (e.g., at population and individual le-
vels); see, for instance, McElreath (2016), Lambert (2018). A recent
example using brms is given by Nalborczyk, Batailler, Loevenbruck,
Vilain, and Bürkner (2019), be it on the very different research
discipline linguistics (the levels concern gender effects on vowel
production in standard Indonesian). A case more related to food
science could be with models for growth or inactivation of micro-
organisms, to separate population effects from individual variation
caused by, for instance, different days of inoculation.

As always, there are also disadvantages:

1. One has to do some programming in a language such as R

2. One has to choose priors and likelihoods. While that may be a
challenge at first, the disadvantage turns into an advantage when
the modeller is forced to think hard about the model and the un-
derlying assumptions.

3. One has to have some idea of probability theory.
4. Computations take time, MCMC sampling from the posterior re-

quires a substantial number of iterations (the rather simple example
here takes already several minutes of calculation). This ‘‘problem’’
will diminish with ever increasing computer speed.

In the author's view, the advantages outweigh the disadvantages
considerably. Even though the point estimates of Bayesian and fre-
quentist regression do not differ substantially, at least not in the ex-
ample used, there may be the advantage of coming closer to the way
people grasp statistics intuitively. The Bayesian approach requires a
different way of thinking and a different mindset that may help in this
respect. Looking at the rapid increase in publications about this topic, it
is inevitable that this approach will also enter chemical kinetics and
food science literature soon, so we better be prepared.
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