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Abstract

Sam Vellekoop

Building an Open Source Sensing System for Continuous
Forest Canopy Monitoring

Monitoring forest canopy characteristics is important for keeping track of forest
ecosystem health and is invaluable in forest management. Leaf area index (LAI)
is one of the most used indicators for the biophysical plant canopy characteristics in a
wide range of research domains and is an important indicator for canopy water inter-
ception, radiation extinction, evapotranspiration and biomass production. Large-scale
monitoring of LAI is generally done using air- or spaceborne sensors. However, these
sensors require extensive calibration and validation using in situ LAI estimates. Con-
ventional methods for in situ LAI measurement are generally either labour-intensive
or require expensive equipment, making them less suited for monitoring LAI for a
larger area for an extended period. This is were automated sensors could provide an
opportunity. The goal of this research was to design, build and test an automated
sensing system for continuous canopy monitoring using open source hardware and
software. Using a bare minimum of materials, includng a Raspberry Pi and camera
with fisheye lens, the PiLAI was developed, a low-cost, automatic sensing system for
LAI. The PiLAI was tested against terrestrial laser scanning (TLS) and conventional
digital hemispherical photography (DHP) in two forests in the Netherlands during
autumn and spring. With a Pearson correlation of up to 0.647 between the PiLAI
and TLS and up to 0.851 between PiLAI and DHP, the PiLAI shows potential as
automated alternative for conventional methods.

Chapter 1 introduces the topic, explains the problem and describes the research ob-
jective and questions. Chapter 2 elaborates on the background of existing in situ
LAI determination methods as well as open source hardware and software. The study
areas used for this thesis are described in chapter 3. Chapter 4 is split in two parts.
The first part covers the development and a description of the PiLAI sensor system
and the second part covers the materials and methods used to test the PiLAI. Results
are found in chapter 5 and are discussed in-depth in chapter 6. Final conclusions are
found in chapter 7.
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Chapter 1

Introduction

1.1 Motivation

Forest ecosystems provide essential ecological and economical services. Both nearby
communities and wildlife benefit from these services and are dependent on them. For-
est ecosystems provide services on a larger scale as well, serving as carbon sinks and
playing an important role in nutrient cycles. Efficient nutrient cycling is important for
ecosystem health and thus for the services the forest ecosystem provides. One of the
main driving factors behind nutrient cycling is the canopy of the forest, influencing
below-canopy temperature and moisture as well as providing litter for nutrient recy-
cling (Prescott, 2002). Monitoring forest canopy characteristics is therefor important
for keeping track of forest ecosystem health and invaluable in forest management.

Leaf area index (LAI) is one of the most used indicators for the biophysical plant
canopy characteristics in a wide range of research domains (Fang, Ye, et al., 2018).
LAI is an important indicator for canopy water interception, radiation extinction,
evapotranspiration and biomass production. As such, LAI is frequently used as input
parameter for biomass production models. LAI is defined as the total one-sided area of
leaf tissue per unit of ground surface area (Watson, 1947). An index that is often used
in tandem with the LAI is the plant area index (PAI), which includes the surface area
of other above-ground vegetation as well. The PAI is generally calculated instead
of the LAI when no division can be made between leaves and other above-ground
vegetation. Since PAI and LAI are closely related and LAI is existing literature
generally only mentions LAI, both LAI and PAI will henceforth be referred to as LAI.

Although the use of LAI is widespread, measuring LAI can be difficult, especially due
to its spatial and temporal variability (Breda, 2003). Large-scale estimates of LAI can
be made using air- and spaceborne remote sensing. The potential of these methods
to monitor LAI on national, continental or global scale has been shown in a variety
of studies (J. M. Chen, Pavlic, et al., 2002; Colombo et al., 2003; Tillack et al., 2014;
Zhang et al., 2014; Alonzo et al., 2015). However, due to the complex nature of air-
and spaceborne remote sensing, the quality of these methods depend on adequate in
situ validation data (Calders, Origo, et al., 2018). This validation data preferably
covers varying types of forests and has a high temporal resolution.

Conventional methods for in situ LAI measurement are generally either labour-intensive
or require expensive equipment, making them less suited for monitoring LAI for a
larger area for an extended period. This problem increases when a higher temporal
resolution is required or the area is difficult to access. A low-cost, automated sensing
system could provide a solution to this problem. Automation of the measuring process
reduces the need for (skilled) labour, reducing monitoring costs. By keeping the costs
of the sensing system low, a vast network of sensors can be used to cover larger areas.
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(a) PAI (b) LAI

Figure 1.1: Comparison between PAI (all above-ground biomass)
and LAI (leaf area)

1.2 Research goals

The primary goal of this research was to design, build and test an automated sensing
system for continuous canopy monitoring using open source hardware and software.
Secondary goals were to assess the potential and limitations of open source sensing
systems for niche applications.

In order to achieve the mentioned research objectives, the following research questions
have been formulated:

RQ 1 How can an automated sensor for LAI measurements be build using open
source hardware?

RQ 2 How should the software environment for the sensor be set up?

RQ 3 How does the accuracy of the designed sensor compare to that of a more
consolidated system?

RQ 4 What are the possibilities and limitations of the designed system?
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Chapter 2

Background

This chapter covers a short description of conventional in situ or terrestrial methods
for measuring LAI as well as an introduction to open source and its relevance to the
development of scientific tools.

2.1 Terrestrial methods for LAI measurement

A wide range of terrestrial methods exist for LAI determination. Breda (2003) and
Jonckheere, Fleck, et al. (2004) describe and review the most consolidated of these
methods. The methods can be divided in direct methods, which measure the LAI
directly, and indirect methods, which measure one or more variables (proxies) from
which LAI can be derived.

2.1.1 Direct methods

The most consolidated methods of direct LAI determination are destructive sampling,
the model tree method and litter traps. Of these, only the latter is non-destructive.
Destructive sampling is done by harvesting the trees on a sampling plot and determin-
ing the LAI through either planimetric or gravimetric approaches. The planimetric
approach measures the area of the individual leaves using scanning planimeters (e.g.
LI-3000C, LI-3100C (LICOR, 2016)), which use a scanner over which the leaves are
drawn, or video image analysis (e.g. WinDIAS 3 (Delta-T Devices Ltd, 2017)), which
uses a digital camera and computer vision to separate the leaves from the background.
The area of individual leaves is then used to calculate the LAI. The gravimetric ap-
proach uses the correlation of dry leaf weight and LAI to determine LAI. This re-
quires the leaf mass per area (LMA) to be determined beforehand. Once the LMA
has been determined (with the planimetric approach), the dried leaves can be weighed
to determine LAI. This makes the process significantly less labour-intensive than the
planimetric approach when used in relatively homogeneous tree stands, since once
the LMA has been determined, the leaves do not have to be measured individually
anymore. However, the LMA can vary even within tree species, requiring the LMA to
be determined multiple times when used in less homogeneous tree stands (Jonckheere,
Fleck, et al., 2004).

For the model tree method a small number of trees that are representative of the forest
stand are chosen, destroying less vegetation than destructive sampling and making the
method less labour-intensive. Using this method, heterogeneity in the forest stand is
not captured as well as using the full destructive sampling method.

Litter traps are a non-destructive, direct method for LAI determination. The traps
consist of a box in which falling leaves are caught. LAI is then determined using
the gravimetric approach. This method can be up-scaled easily and generally yields
accurate LAI estimates. As this method only yields one LAI value a year, it cannot
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be used in year-round forest canopy monitoring. Furthermore, the method does not
work for tree stands that contain evergreens, as the weight of the needles cannot be
correlated to the LAI of the current or previous year (J. M. Chen, Rich, et al., 1997).

Direct methods of measurement have generally been regarded as the most accurate,
however, due to the labour-intensity of the methods, only a limited number of mea-
surements can be taken, making the methods unsuitable for monitoring. Up-scaling
can form a problem as well, especially in heterogeneous forests (Jonckheere, Fleck,
et al., 2004).

2.1.2 Indirect methods

Indirect methods of LAI determination can be subdivided in contact methods and non-
contact (optical) methods. Contact methods are allometric techniques and inclined
point quadrats. Non-contact or optical methods include laser point quadrats, gap size
distribution (TRAC (J. M. Chen and Cihlar, 1995)) analysis and gap fraction analysis
(Jonckheere, Fleck, et al., 2004).

Allometric techniques use measured dimensions of trees to determine the LAI. This
relatively simple technique (in idea, getting the correct measurements can sometimes
be difficult) can be used with just the circumference and height of the tree or with an
extensive series of measurements. Allometric techniques are generally labour-intensive
and hard to up-scale in a forest with a variety of tree species. Furthermore, as only the
woody parts of the tree are measured to determine the LAI, seasonality and tree health
are not taken into account, making these techniques unsuited for LAI monitoring.

For the inclined point quadrats method, a long needle is used to penetrate the canopy
at known zenith angle (θ), counting the number of contacts the needle makes with
leaves (Wilson, 1960). LAI (L) can be calculated as:

L =
Nθ

Kθ

where Nθ is the number of contacts at zenith angle θ and Kθ is the extinction co-
efficient at zenith angle θ. Accurate estimates of LAI require a substantial number
of measurements, making the method labour-intensive. Furthermore, inclined point
quadrats are increasingly hard to use with higher canopies, making the method un-
suited for determining LAI in high canopy forests (J. M. Chen, Rich, et al., 1997;
Jonckheere, Fleck, et al., 2004).

The laser point quadrats method follows the principles of inclined point quadrats,
substituting the long needle with a laser. This makes the method more practical in
its use, especially for high canopy forests. The substitution of a physical needle with
a laser significantly decreases the time and labour required for the method as well.
Studies with terrestrial laser scanners (TLS) have shown this is a robust method for
measuring forest canopies (Seidel, Fleck, and Leuschner, 2012; Calders, Armston, et
al., 2014; Woodgate et al., 2015; Calders, Schenkels, et al., 2015). A downside of this
method is the high cost of the TLS.

Optical terrestrial methods for LAI determination are primarily based on analysis of
gap fraction and gap size distribution. This analysis can be done with a variety of
instruments. The Tracing Radiation and Architecture of Canopies (TRAC) has been
succesfully used in different studies for determining LAI using gap size distribution
(J. M. Chen and Cihlar, 1995; J. M. Chen, Pavlic, et al., 2002). Gap fraction analysis
can be done with both widely used commercial products (e.g. LI-COR LAI-2200C)
and (digital) hemispherical photography (DHP) (Fang, W. Li, et al., 2014; Fang, Ye,
et al., 2018; Woodgate et al., 2015; Pearse, Watt, and Morgenroth, 2016). LAI deter-
mination through gap fraction analysis requires segmentation of the canopy images
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using a thresholding method, after which the gap fraction can be determined for each
annulus (ring around the image centre representing the same view zenith angle), from
which the LAI can be derived (Jonckheere, Nackaerts, et al., 2005). The simple nature
of the material needed for DHP, a digital camera and a fish-eye lens, make it a suitable
candidate for a low-cost sensing system.

Recently automatic methods for canopy monitoring have been developed. Lecerf et
al. (2010) and Brede, Gastellu-Etchegorry, et al. (2018) have shown the potential of
the PASTIS-57, a system that uses transmittance sensors to derive the LAI. Arduino
and Raspberry Pi boards have gained in popularity and have been used to sense the
environment (Ferdoush and X. Li, 2014; Kirby, L. Chapman, and V. Chapman, 2018).
X. Li et al. (2015) have designed an automatic LAI sensor for crop LAI.

2.2 Open source

A problem with existing in situ methods is the dominance of closed source or pro-
prietary standards. Proprietary software, in contrast to open source software, hides
its internal architecture, the code. Without access to the code, users depend on the
developer of the software to fix errors and add features. In some cases errors might not
be found at all and, without the user being aware of it, influence the data collection or
analysis. This creates a ’black box’ where the process by which the output is obtained
is unknown to the user. Opening the ’black box’ by using open source software can be
beneficial to science as it gives insight in the processes that deliver the output, errors
can be found and, with enough expertise, fixed by the users themselves and inherent
limitations of the software are known to the user. This can improve the reliability of
measurements and data analysis.

Open source software is not necessarily user- or community-driven. Requirements for
open source software include free distribution of the software including the source
code and permission for others to modify and redistribute the software1. Following
these requirements ensures that the software can be inspected and modified by others.
Third parties can add new features to the software, removing the need to wait for
the developer of (proprietary) software to approve of and work on a new feature
request. This can improve software interoperability as well. Although proprietary
software packages from a single developer is generally well integrated with each other,
interoperability with software from third parties can be problematic. Since the source
code is not known to the other party, it is difficult to find a solution that functions as
a bridge for the software packages.

1https://opensource.org/osd

https://opensource.org/osd
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Chapter 3

Study area

Figure 3.1: Study areas Speulderbos (upper) and Dassenbos (lower,
left).

Dassenbos and Speulderbos (Figure 3.1) were chosen as study areas for this research.

3.1 Dassenbos

The Dassenbos study area is a small forest plot (circa 3.4 ha) located in Wagenin-
gen, the Netherlands at 51.983◦ N, 5.656◦ E and is regularly used as study area by
researchers from Wageningen University and Research. The forest consists mainly of
Oak (Quercus spp.) and Birch (Betula spp.). The plot used for this research consisted
of circa 85% Oak and 15% Birch (Calders, Schenkels, et al., 2015).



8 Chapter 3. Study area

3.2 Speulderbos

Speulderbos is a circa 3300 ha large forest plot located in the Netherlands. The study
area used is located at 52.251◦ N, 5.699◦ E, close to Garderen. The study area consists
mainly of Beech (Fagus spp.) at plots A, B, C, D and E as well as Giant Fir (Abies
grandis), Norway Spruce (Picea abies) and Douglas Fir (Pseudotsuga menziesii) at
plot F (Table 3.1). The Speulderbos study area is used as reference site for biophysical
forest characteristics and is monitored using a variety of of terrestrial, airborne and
spaceborne sensors (Brede, Bartholomeus, et al., 2016; Brede, Gastellu-Etchegorry,
et al., 2018).
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Table 3.1: Speulderbos measurement plots.

Plot Subplot Description

A b01 Fagus spp.
A b02 Fagus spp.
A b03 Fagus spp.
A b04 Fagus spp.
A a05 Fagus spp.
B b01 Fagus spp.
B b02 Fagus spp.
B b03 Fagus spp.
B b04 Fagus spp.
B a05 Fagus spp.
C b01 Fagus spp.
C b02 Fagus spp.
C b03 Fagus spp.
C b04 Fagus spp.
C a05 Fagus spp.
D b01 Fagus spp.
D b02 Fagus spp.
D b03 Fagus spp.
D b04 Fagus spp.
D a05 Fagus spp.
E b01 Fagus spp.
E b02 Fagus spp.
E b03 Fagus spp.
E b04 Fagus spp.
E a05 Fagus spp.
F f01 Fagus spp. and Abies grandis (close to road)
F f02 Abies grandis (rows)
F f03 Abies grandis (rows)
F f04 Fagus spp. and Abies grandis
F f05 Abies grandis (dense)
F f06 Abies grandis (dense)
F f07 Abies grandis (close to road)
F f08 Fagus spp. and Picea abies
F f09 Picea abies
F f10 Picea abies
F f11 Picea abies
F f12 Pseudotsuga menziesii
F f13 Pseudotsuga menziesii
F f14 Pseudotsuga menziesii
F f15 Pseudotsuga menziesii
F f16 Pseudotsuga menziesii
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Chapter 4

Methodology

4.1 PiLAI

4.1.1 Hardware

The core of the PiLAI sensor system was designed to consist of only a power supply,
a Raspberry Pi as main processing unit and a camera module with fish-eye lens as
the actual sensor. The system was enclosed in a weatherproof box, with the camera
module covered by a transparent dome. One additional module that was used was a
voltage regulator to convert the 12 V from the battery to a usable 5 V for the Rasp-
berry Pi. The PiLAI is shown closed and opened in Figures 4.1 and 4.2 respectively.
Materials for the system components can be found in Table 4.1.

Figure 4.1: PiLAI sensor system when closed.

A Raspberry Pi 2B was chosen as the main processing unit as it has relatively high
processing power and enough random access memory (RAM) for image acquisition
and processing, runs primarily on open source software and is well supported by the
community. This low-cost single-board computer is frequently used in (open source)
projects and has proven to be a versatile tool. Although not consisting of open
hardware, most specifications and mechanical drawings are publicly available and the
board runs primarily open-source software. True open hardware alternatives, e.g.
Arduino, are generally too low-powered to be used in Mega-pixel image acquisition
and processing.
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Figure 4.2: PiLAI sensor system when opened.

Table 4.1: List of materials for the PiLAI.

Component Product Purchased from / provided by

Processing unit Raspberry Pi 2B reichelt.com (33e)
Camera module Joy-IT 5MP Wide-Angle Camera reichelt.com (37e)
Power source 12 V, 7 Ah lead-fleece battery Wageningen University
Voltage regulator LM2596 3A DC-DC converter Wageningen University
Storage unit Transcend MicroSDHC-Card 32 GB reichelt.com (7e)
Casing RND 265 ∗ 165 ∗ 95 mm ABS box reichelt.com (13e)
Camera cover 10 cm acrylic dome aliexpress.com (11e)

The camera module, produced by Joy-IT, consisted of an Omnivision OV5647 CMOS
sensor and a 200◦ fish-eye lens with equidistant projection. Contrary to the specified
requirements, the camera module does not consist of open source hardware. This
is due to a lack of open source options for Mega-pixel camera sensors. Although
the hardware itself is not open source, the driver software does largely consist of
open source software. This camera module has been chosen due to its open source
interface, fish-eye lens with large field of view and equidistant projection and relatively
low cost. The open source interface gives virtually complete control over the camera
settings (e.g. shutter speed, ISO value), making it a preferred choice over the OpenCV
interface which is more generic and complex and works only with supported cameras
(OpenCV, 2018).

The sensor system was enclosed in a 265 ∗ 165 ∗ 95 mm ABS box with an Ingress
Protection Marking of 65 (IP 65) and resistant to temperatures between -20 and
80 ◦C, making it weatherproof under most circumstances. The camera module was
mounted on the lid of the box, covered by a clear acrylic dome with a diameter of 10
cm.

4.1.2 Software

The Raspberry Pi was operated by Raspbian (Stretch, version 2018-06-27), a Debian-
based Linux distribution specifically designed for ARM processor architectures and



4.1. PiLAI 13

the officially supported operating system for the Raspberry Pi. Python 2.7.9 was used
for designing the software on the PiLAI.

A Python image acquisition script, responsible for setting the camera parameters, cap-
turing images, testing image for over-exposure and saving the image to a file, was cre-
ated using the opencv-python, numpy and picamera packages. This lai_camera.py
is called upon by timer.py, which continuously tests whether the capture interval
has passed. Once the capture interval has passed, timer.py instructs lai_camera.py
to open the camera device and automatically sets the shutter time. If the queried
shutter time exceeds 100 ms, the ISO value is increased by 100 and shutter time is
limited to 100 ms. This was done to ensure a short shutter time to prevent errors
from trees swaying in the wind. After the shutter time and ISO are set an image
is taken. This image is tested for under-/overexposure by lai_camera.py using the
check_histogram() function. This function returns the percentage of saturated pix-
els, pixels with a digital number (DN) of 255. If this percentage is greater than 0.2%,
the image is classified as overexposed and the shutter time is reduced by 20% before
capturing a new image and testing it. If instead no saturated pixels are found, the
image is classified as underexposed and shutter time is increased by 50% before cap-
turing a new image and testing it. A maximum of 10 tries is allowed before storing
the image as 3-channel PNG file. If no under-/overexposure is found, the image is
stored immediately.

With the data acquisition scripts solely available for the PiLAI itself, the data pro-
cessing and analysis scripts were designed to run on either the PiLAI or a per-
sonal computer. The Python script image_io.py is responsible for reading and writ-
ing acquired images in a wide variety of formats. With the captured images read,
image_processor.py is responsible for classifying the images using 3 classes: vegeta-
tion, sky and mixed. The script offers 2 separate classification algorithms, iterative
selection/K-means clustering (Ridler and Calvard, 1978) and Otsu’s algorithm, with
the possibility for the user to add new classification algorithms if needed. After clas-
sification, image_io.py stores the classified image.

Classified images are analysed by image_analyzer.py, which creates an image overlay
similar to the one shown in Figure 4.3. Gap fraction is calculated for each segment,
enabling the calculation of the clumping factor. The clumping factor corrects for the
clumping of the canopy when this deviates from a random case (S. G. Leblanc et al.,
2005). This can have a significant impact on the calculated LAI, especially for highly
clumped canopies. Gap fractions are calculated by taking the mean pixel value of
the segment and dividing it by 100. For segments with a gap fraction of 0, a gap
fraction of 0.00001 is assigned in order to prevent division by 0 in the calculation of
the clumping factor. The clumping factor for each annulus is calculated using the
log-average method (Lang, 1986; S. G. Leblanc et al., 2005):

Ωlog(θ) =
ln[P (θ)]

ln[P (θ)]
(4.1)

where Ωlog(θ) is the clumping factor for an annulus with an average zenith angle θ,
P (θ) is the average gap fraction for zenith angle θ and ln[P (θ)] is the logarithmic
average of all segments.

Using the calculated gap fractions and clumping factors, LAI is calculated using Equa-
tion 4.2 (Fernandes et al., 2001):

L = −2

∫ π/2

0

ln[P (θ)]

Ωlog(θ)
cos θ sin θdθ (4.2)



14 Chapter 4. Methodology

Figure 4.3: Overlay for the analysis of the classified images. Annuli
are drawn as well as inter-annular segments (Gardingen et al., 1999).

4.2 Data Acquisition

Data was acquired in both Dassenbos and Speulderbos. Images were acquired in
Dassenbos for the intervals 2018-11-04 till 2018-11-26 (autumn dataset) and 2019-
04-13 till 2019-05-15 (spring dataset), as shown in Table 4.2. These images cover a
variety of weather types and have been captured at multiple times during the day at
intervals of 30 minutes.

Data collection in Speulderbos was done on 2018-12-06, between 12:30 and 14:30
(UTC+1). The sky was completely cloudy (8 oktas), with a relative humidity of 96%
and a light drizzle (1.9 mm). Temperatures were between 7.3 and 12.3 ◦C with and av-
erage of 10.9 ◦C. Wind speeds were generally below 10 m/s1. Data was collected at 41
locations within Speulderbos (3.1) using the PiLAI, TLS and DHP. All measurements
were taken from a leveled tripod at a height of 1.45 m.

Measurements with the PiLAI were taken by placing the system on the tripod and
leaving it there for a number of minutes, with the PiLAI taking an image every 30
seconds. Settings for the PiLAI can be found in Table 4.3.

TLS measurements were done using a RIEGL VZ-400 TLS (Figure 4.4), provided by
Wageningen University. The VZ-400 is an active system and uses a wavelength of
1550 nm (near infrared), making the influence of light conditions negligible. Internal
sensors record information for the pitch, roll and yaw of the VZ-400 (RIEGL, 2017).
For each location a scan using an azimuth angle range of 360◦ was made while the
VZ-400 was is upright position. Due to the limiting angle zenith range (30◦ to 130◦),
a second scan was required to capture the full hemisphere. This was done with the
VZ-400 in tilted position. Settings for the VZ-400 are summarized in Table 4.4

1Source: KNMI
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Table 4.2: Dassenbos data acquisition dates.

Date Rain Cloud cover Humidity Measurements
(mm / day) (oktas) (%)

2018-11-04 0 4 90 12
2018-11-05 0 8 95 10
2018-11-06 0 8 79 12
2018-11-09 0 7 88 19
2018-11-16 0 2 92 10
2018-11-22 0 8 86 9
2018-11-23 0 6 89 8
2018-11-26 0 8 88 9
2019-04-13 0 3 75 20
2019-04-14 0 4 68 3
2019-04-15 0 3 59 14
2019-04-18 0 5 42 13
2019-04-20 0 0 43 7
2019-04-22 0 4 42 8
2019-04-23 0 6 50 1
2019-04-24 9 7 64 18
2019-04-25 5 7 79 8
2019-04-26 0 7 72 10
2019-04-27 5 8 76 15
2019-04-29 0 6 75 20
2019-05-02 4 7 86 16
2019-05-03 2 8 73 18
2019-05-09 2 7 78 24
2019-05-10 1 8 77 11
2019-05-14 0 4 62 19
2019-05-15 0 4 51 14

Table 4.3: Settings for the PiLAI.

Setting Value

Image width 2592
Image height 1944
Auto white balancing sunlight
Starting ISO 100
Max shutter time 100 ms
Max percentage saturated pixels 0.2%
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Figure 4.4: RIEGL VZ-400 TLS.

Table 4.4: Settings for the RIEGL VZ-400.

Setting Value

Theta angle start 30.00◦

Theta angle stop 130.00◦

Theta angle increment 0.06◦

Phi angle start (upright) 0.00◦

Phi angle stop (upright) 360.00◦

Phi angle start (tilted) 230.00◦

Phi angle stop (tilted) 490.00◦

Phi angle increment 0.06◦

Measurement program High speed

DHP was done using a Nikon D7000 digital SLR camera with a Sigma 4.5 mm F2.8
fish eye lens. Images were captured in sets of three for each location using exposure
bracketing, one with limited overexposure, one with limited underexposure and one in
between. This was done using varying ISO and shutter time values. Camera settings
are summarized in Table 4.5. Images were saved in Nikon Electronic Format (.NEF),
Nikon’s RAW image file format. This was done to ensure that all data (including
acquisition parameters) was saved.

Table 4.5: Settings for the Nikon D7000.

Setting Value

Image width 4992 pixels
Image height 3280 pixels
Aperture F4
Exposure program Aperture priority
Exposure mode Auto
Shooting mode Exposure bracketing
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4.3 Data Processing

4.3.1 PiLAI

PiLAI data was processed using Python (version 3.7.4). Captured images were masked
to the preferred field of view, converting degrees to pixels using Equation 4.3:

rpixel = f ∗ θ ∗ π
180

/lpixel (4.3)

where rpixel is the radius of the circle in pixels from the focal centre, f is the focal
length of the lens, θ is half the preferred field of view and lpixel is the pixel size.
The formula assumes a lens with perfect equidistant distortion. Visual analysis of
the distortion, using a calibration board (Figure 4.5), showed that this assumption is
sufficiently met by the used lens, especially for the area of interest (FOV < 160◦).

Figure 4.5: Calibration board. When there is perfect equidistant
distortion, the image shows the same distance between the angle in-

tervals.

After masking the pixels outside the preferred FOV, classification was done using
both Otsu’s method and iterative selection (K-means clustering) in order to asses
the influence of different classification algorithms on the results. Both thresholding
methods were applied to the masked RGB images and only the blue band of these.
Due to limitations of the OpenCV library, the masked images needed to be converted
to 8-bit grayscale images in order to perform the thresholding using Otsu’s method.

Due to the high number of mixed pixels (pixels with both plant and sky in them,
caused by a relatively low image resolution), iterative selection was done using 3
classes; sky (100), plant (0) and mixed (0 - 100). Mixed class pixels were assigned a
value between 0 and 100 based on their place in the histogram. This step was done
to improve consistency and accuracy.

Image analysis was done by creating an overlay with a FOV of 160 ◦ and a angu-
lar resolution of 5 ◦ (giving an overlay with 16 annuli). Inter-annular segments, as
proposed by Gardingen et al. (1999), were created, starting with 4 segments at the
center and adding 4 segments for each consecutive annulus. Gap fractions were calcu-
lated for each segment enabling the calculation of the clumping factor and LAI using
Equations 4.1 and 4.2 respectively.
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Table 4.6: Settings for preprocessing with rawpy.

Setting Value

Demosaic algorithm AHD
Noise threshold Disabled
Auto-bright threshold 0.01
Gamma (2.222, 4.5)
Chromatic aberration (1, 1)

Table 4.7: Settings for CanEye.

Setting Value

Image size (3280, 4948)
Optical center (1640, 2474)
Projection function Equidistant
COI 60◦

Angular resolution 5◦

Clumping parameter 8

4.3.2 DHP

In order to process the RAW images from the Nikon D7000, conversion to .JPG
was done using Python and the rawpy (version 0.13.1) library. Parameters for the
rawpy.RawPy.preprocess() function were left as default and are shown in Table 4.6.

After preprocessing, the images were processed using CanEye (version 6.4.9). Pro-
cessing parameters for CanEye are shown in Table 4.7. The images were classified
using CanEye’s supervised classification using 3 classes (sky, vegetation and mixed
pixel).

After data acquisition, TLS data was processed and provided by Wageningen Univer-
sity. LAI was calculated according to Calders, Schenkels, et al. (2015).

4.4 Analysis

For the analysis of the performance of the PiLAI, LAI and gap fractions for each
annulus measured with the PiLAI were compared to those measured using the Nikon
D7000 and RIEGL VZ-400. This was done for the Speulderbos dataset, using Pearson
correlation and the root mean square error (RMSE). An inter-comparison between the
Nikon D7000 and RIEGL VZ-400 was done as well. RMSE was calculated as:

RMSE =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2

In order to determine the reliability of the PiLAI measurements under different weather
and light conditions, the Dassenbos autumn and spring datasets were used to calculate
the standard deviation for different measurements taken on the same day. Standard
deviation was calculated as:

SD =

√√√√ 1

n

n∑
i=1

(xi − x̄)2
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Analysis was done using Python with the pandas (version 0.24.0), numpy (version
1.16.1), scipy (version 1.2.0) and matplotlib (version 3.0.2) packages.
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Chapter 5

Results

Figure 5.1: Images taken at plot Cb02 with PiLAI (a) and Nikon
D7000 (c), with their respective classified images using RGB iterative

selection (b) and CanEye supervised classification (d).

5.1 Accuracy

For the assessment of the accuracy of the PiLAI, the Speulderbos dataset was used.
From the 41 locations measured in Speulderbos, 35 were used in the data analysis.
This was due to missing or failed measurements from either PiLAI, TLS or DHP.
Due to the limited zenith angle (<= 60◦) used by CanEye, annuli with zenith angles
> 60◦ were not taken into account for Pearson correlation between gap fraction mea-
surements of PiLAI and DHP and those of DHP and TLS. As a result, 420 pairs of
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Figure 5.2: Images taken at plot Ea05 with PiLAI (a) and Nikon
D7000 (c), with their respective classified images using RGB iterative

selection (b) and CanEye supervised classification (d).

gap fraction measurements of 5◦ annuli were used for these correlation analyses. Cor-
relation between PiLAI and TLS gap fraction was done with the full range of zenith
angles (560 pairs) as well as with the <= 60◦ angle subset.

5.1.1 Comparison with TLS

Results from Pearson correlation between LAI estimates from PiLAI and TLS (35
samples) are shown in Table 5.1. Although a significant correlation is found using
α = 0.05, correlation between LAI estimates of PiLAI and TLS is not high, ranging
from 0.611 to 0.647.

Table 5.1: Results of Pearson correlation between LAI estimates
made with PiLAI and TLS.

Method correlation p RMSE
coefficient

K-means (RGB) 0.647 < 0.01 2.58
K-means (blue) 0.647 < 0.01 2.59
Otsu’s (RGB) 0.616 < 0.01 2.58
Otsu’s (blue) 0.611 < 0.01 2.59
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Figure 5.3: Images taken at plot Ff02 with PiLAI (a) and Nikon
D7000 (c), with their respective classified images using RGB iterative

selection (b) and CanEye supervised classification (d).

Figure 5.4 shows that there is a large discrepancy between LAI estimates from PiLAI
and TLS, with all values far below the 1:1 line. PiLAI LAI do not reach 2 while LAI
estimates from TLS exceed 5.

The results of Pearson correlation between gap fraction measurements of 5◦ annuli
from PiLAI and TLS (560 pairs) are shown in Table 5.2. A high correlation is found for
the 4 combinations of classification method and used bands, with K-means clustering
achieving higher accuracies than Otsu’s algorithm and RGB marginally outperforming
the single blue band.

As shown in Figure 5.5, TLS measurements of gap fraction are consistently lower
than those from PiLAI for zenith angles < 60◦, while slightly higher at zenith angles
> 70◦. Overestimation of the gap fraction (using PiLAI), and thus underestimation of
the LAI, at lower zenith angles is described in Calders, Origo, et al. (2018), Hancock
et al. (2014) and Seidel, Fleck, and Leuschner (2012), and can in part be attributed
to relatively low resolution images, classification issues and blooming effects. Overes-
timation of the gap fraction at higher zenith angles using TLS has in similar research
been attributed to the limited range of the laser and the large distance of objects at
these angles (Seidel, Fleck, and Leuschner, 2012). The VZ-400 used in this research
has, however, a laser with a high range.

Using the <= 60◦ zenith angle subset for Pearson correlation showed lower correlation
coefficients compared to the full range of zenith angles (Table 5.2). In part this can
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Figure 5.4: Scatter plot of LAI estimates from PiLAI and TLS.

be explained by the smaller sample size. The problem of underestimation of the gap
fraction at smaller zenith angles is greater as is shown in Figure 5.6.

5.1.2 Comparison with DHP

As shown in Table 5.3, a close correlation was found between LAI estimates from Pi-
LAI and DHP. However, the relatively high RMSE indicates a large absolute difference
in LAI values K-means clustering performed slightly better than Otsu’s algorithm.
Figure 5.7 shows the high correlation found with the relatively straight lines that the
points form. The high RMSE is indicated by the large deviation from the 1:1 line.

The results of Pearson correlation between gap fraction measurements from PiLAI and
DHP is shown in Table 5.4. Similarly to the correlation of LAI values between PiLAI
and DHP, a close correlation is found, as well as the K-means clustering performing
slightly better than Otsu’s algorithm.

Figure 5.8 shows the majority of points closely following the 1:1 line, with PiLAI
gap fraction values tending to be sligthly higher than those from DHP. Outliers are
primarily found in the outer zenith angles (50◦ to 60◦ annuli). This might be explained
by the lower resolution of the PiLAI compared to that of the Nikon D7000, resulting
in smaller leaves and branches being classified as sky pixels.

5.1.3 Cross-comparison DHP and TLS

Table 5.5 shows the results of the cross-comparison between DHP and TLS for both
LAI and gap fraction. Pearson correlation for LAI is relatively low, which is lower
than between PiLAI and TLS (Table 5.1). However, RMSE is lower as well, indicating
a better match of the absolute values of the LAI. Figure 5.9 shows the closer proximity
of the points to the 1:1 line.
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Table 5.2: Results of Pearson correlation between gap fraction mea-
surements taken with PiLAI and TLS.

Method Angles Correlation p RMSE
used coefficient

K-means (RGB) 0◦-80◦ 0.883 < 0.01 0.199
K-means (blue) 0◦-80◦ 0.881 < 0.01 0.205
Otsu’s (RGB) 0◦-80◦ 0.868 < 0.01 0.235
Otsu’s (blue) 0◦-80◦ 0.868 < 0.01 0.242
K-means (RGB) 0◦-60◦ 0.810 < 0.01 0.221
K-means (blue) 0◦-60◦ 0.807 < 0.01 0.228
Otsu’s (RGB) 0◦-60◦ 0.783 < 0.01 0.263
Otsu’s (blue) 0◦-60◦ 0.783 < 0.01 0.271

Table 5.3: Results of Pearson correlation between LAI estimates
made with PiLAI and DHP.

Method correlation p RMSE
coefficient

K-means (RGB) 0.847 < 0.01 2.30
K-means (blue) 0.851 < 0.01 2.30
Otsu’s (RGB) 0.844 < 0.01 2.28
Otsu’s (blue) 0.843 < 0.01 2.28

For the cross-comparison between DHP and TLS 420 pairs of gap fraction measure-
ments of 5◦ annuli were used. Table 5.5 shows that conventional DHP has a Pearson
correlation coefficient for TLS than the PiLAI using the same range of zenith angles
(Table 5.2).

Figure 5.10 shows a pattern similar to that of Figure 5.6, which is in agreement with
the theory that the discrepancy between TLS and PiLAI is due to the passive sensing
method of DHP (which the PiLAI uses).

5.2 Reliability

Table 5.6 shows the LAI results from the Dassenbos autumn 2018 and spring 2019
timeseries. Standard deviation of the LAI is relatively high compared to the mean.
Standard deviation seems to be slightly higher for days with precipitation. Figure 5.11
shows the timeseries for Dassenbos autumn 2018. Daily LAI estimates have a large
range compared to the daily mean. The same holds, to a lesser degree, for the spring
2019 timeseries (Figure 5.12).
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Figure 5.5: Scatter plot of gap fraction measurements from PiLAI
and TLS using all zenith angles (0◦ to 80◦).

Table 5.4: Results of Pearson correlation between gap fraction mea-
surements taken with PiLAI and DHP.

Method correlation p RMSE
coefficient

K-means (RGB) 0.897 < 0.01 0.132
K-means (blue) 0.898 < 0.01 0.137
Otsu’s (RGB) 0.875 < 0.01 0.169
Otsu’s (blue) 0.876 < 0.01 0.176

Table 5.5: Results of Pearson correlation between gap fraction and
LAI from DHP and TLS.

Variable correlation p RMSE
coefficient

LAI 0.585 < 0.01 1.30
Gap fraction 0.733 < 0.01 0.189



5.2. Reliability 27

Figure 5.6: Scatter plot of gap fraction measurements from PiLAI
and TLS using zenith angles 0◦ to 60◦.

Figure 5.7: Scatter plot of LAI estimates from PiLAI and DHP.
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Figure 5.8: Scatter plot of gap fraction measurements from PiLAI
and DHP.

Figure 5.9: Scatter plot of LAI estimates from DHP and TLS.
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Figure 5.10: Scatter plot of gap fraction measurements from DHP
and TLS.

Figure 5.11: Dassenbos autumn 2018 mean LAI and range time-
series.



30 Chapter 5. Results

Table 5.6: Dassenbos standard deviation of LAI estimates from Pi-
LAI.

Date Mean St.Dev. Precipitation Cloud cover Humidity Measurements
(mm / day) (oktas) (%) #

2018-11-04 0.478 0.124 0 4 90 12
2018-11-05 0.608 0.144 0 8 95 10
2018-11-06 0.519 0.072 0 8 79 12
2018-11-09 0.783 0.191 0 7 88 19
2018-11-16 0.502 0.073 0 2 92 10
2018-11-22 0.390 0.058 0 8 86 9
2018-11-23 0.645 0.096 0 6 89 8
2018-11-26 0.586 0.138 0 8 88 9
2019-04-13 0.204 0.103 0 3 75 20
2019-04-14 0.237 0.071 0 4 68 3
2019-04-15 0.099 0.042 0 3 59 14
2019-04-18 0.320 0.064 0 5 42 13
2019-04-20 0.366 0.044 0 0 43 7
2019-04-22 0.610 0.109 0 4 42 8
2019-04-23 0.636 N.A. 0 6 50 1
2019-04-24 0.757 0.278 9 7 64 18
2019-04-25 0.499 0.099 5 7 79 8
2019-04-26 0.893 0.263 0 7 72 10
2019-04-27 0.845 0.182 5 8 76 15
2019-04-29 0.760 0.284 0 6 75 20
2019-05-02 0.811 0.141 4 7 86 16
2019-05-03 0.712 0.170 2 8 73 18
2019-05-09 0.895 0.217 2 7 78 24
2019-05-10 0.768 0.131 1 8 77 11
2019-05-14 0.725 0.139 0 4 62 19
2019-05-15 0.629 0.131 0 4 51 14

Figure 5.12: Dassenbos spring 2019 mean LAI and range timeseries.
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Discussion

6.1 Development of the sensor system

The base sensor system is easy to build and can be done so at low cost (< 100e.
By keeping the cost low, an extensive set of sensors can be built even with a limited
research budget. Costs can be reduced even more by using a Raspberry Pi Zero or
choosing off-brand alternatives of the used materials. The system can be built with
minimal tools, making it a viable option for people with limited access to power tools.
Although not all hardware used in the sensor was open source, all hardware had open
source software interfaces, making software development easier. True open source
alternatives for the camera module are at the time of writing not readily available.

Software development of the sensor was initially done with Python for the Robotic
Operating System1 (ROS). ROS is a low-level framework that enables easy exchange of
data between different components of a system. ROS was chosen to make the sensor
system more modular and extensible, however, due to the relatively high learning
curve of ROS and the limited availability of compatible Python libraries, ROS was
considered unsuitable for the PiLAI and instead a pure Python solution was used. The
Python pycamera package provides sufficient options for precise control of the camera.
Due to the low learning curve and dominance of Python in Raspberry Pi applications,
Python is considered a suitable scripting language for the further development of the
PiLAI.

While X. Li et al. (2015) and Lecerf et al. (2010) have shown the potential of an
automatic LAI sensor, this research shows that an automatic sensor system can be
build with a bare minimum of materials. By keeping the system modular, extra
functionality can be added if needed.

6.2 Results

6.2.1 Image quality

Comparing images acquired by the PiLAI with those of the Nikon D7000 (Speulder-
bos), no significant difference was found (Figures 5.1, 5.2 and 5.3). Although the
PiLAI images lack the detail of those from the Nikon, primarily due to the lower res-
olution of the PiLAI, overall image quality seems to be similar. The lower resolution
does lead to a higher number of mixed pixels. Images acquired in Dassenbos show
that blooming due to open sky and a high position of the sun do result in overexposed
images. After in-depth inspection of the images, it was established that while the
camera did capture the full range of pixel values (DN of 0-255) for the lower part of
the image, the higher upper part had a maximum pixel value 241. This was most

1https://www.ros.org/

https://www.ros.org/
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likely due to a defect in the camera sensor module. This problem caused the func-
tion that tested for overexposure, check_histogram() to be virtually useless, causing
overexposed images not to be classified as such.

Figures 5.1, 5.2 and 5.3 show a dominance of mixed pixels for the PiLAI image classifi-
cations, whereas the Nikon D7000 images classified using CanEye’s supervised classifi-
cation show most solid parts (tree trunks and larger branches) correctly as vegetation.
In part this can be attributed to the lower pixel-density of the PiLAI images, leading to
more mixed pixels. The automatic classification algorithm of the PiLAI seems to have
a larger range for which to label a pixel as mixed pixel than the CanEye supervised
classification algorithm. As can be seen in Figures 5.1, 5.2 and 5.3, this can provide
nuances that CanEye’s supervised classification misses in some cases, including small
branches without leaves.

One of the major differences between the range of PiLAI classification methods and
CanEye’s supervised classifiction is the time required for the processing. Whereas
supervised classification took at least 6 minutes of manual work per subplot (set of 3
images), PiLAI’s most time-consuming classification method (RGB iterative selection)
took no more than 10 seconds per image (including reading and writing). Otsu’s algo-
rithm (4 images per second) and the use of only the blue band reduce processing times
even more. This reduction in labour is cost-effective and can provide opportunities
for large-scale tree canopy monitoring.

The use of only the blue channel instead of full RGB did not result in closer correlation
of the LAI estimates, contrary to what is suggested in most literature (Jonckheere,
Nackaerts, et al., 2005; Woodgate et al., 2015; Yan et al., 2019). Instead of using only
the blue channel, a camera sensitive in the near-infrared (NIR) part of the electro-
magnetic spectrum (750 nm to 1500 nm) could be used. Since green vegetation has a
high reflectance in this part of the spectrum, it is suitable for segmentation. The use of
NIR with low-cost cameras has been demonstrated by Petach et al. (2014) and Kirby,
L. Chapman, and V. Chapman (2018), and shows potential for further development,
especially when separation of leaves from other above-ground vegetation is required.

Overall, K-means clustering performed better as classification algorithm than Otsu’s
algorithm, although the differences were small. Since processing time differed signifi-
cantly between the two methods, Otsu’s algorithm might be preferred for low-powered
hardware and larger datasets.

6.2.2 Accuracy and reliability

Overall, LAI estimates from the PiLAI were low, never exceeding 2. During leaf-
on conditions (start of autumn and end of spring), such LAI values are unlikely.
Pearson correlation between the LAI estimates of the PiLAI and TLS was not very
high, with 0.647 being the highest. Woodgate et al. (2015) showed higher correlation
with conventional high resolution DHP using CanEye supervised classification (0.79),
however, high resolution DHP classified using an automatic global binary threshold
performed similarly (0.69).

Using an automated transmittance sensor, the PASTIS-57, Brede, Gastellu-Etchegorry,
et al. (2018) reported a Pearson correlation of 0.98. Compared to this, PiLAI LAI
estimates are quite inaccurate. Correlation between LAI estimates of PiLAI and DHP
was better, showing the potential of the PiLAI as an automated alternative to con-
ventional DHP. Correlation of gap fraction measurements of the PiLAI with those of
DHP and TLS showed promise, with Pearson correlation coefficients exceeding 0.8
and relatively low RMSE. The discrepancy between the Pearson correlation results of
gap fraction and LAI indicate a possible error in the calculation of the LAI.
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A cross-comparison between DHP and TLS (Table 5.5) showed that the correlation
between DHP and TLS in this study was lower than that of the PiLAI and TLS,
indicating that the PiLAI performed better than the conventional DHP. The lower
RMSE of DHP compared to the PiLAI does show that the absolute LAI estimates
of DHP are closer to those of TLS. Since no direct method for determining LAI was
used in this research, the correlation of PiLAI LAI estimates to the true LAI could
not be assessed.

Reliability of the LAI estimates from the PiLAI seems to be an issue, with daily
standard deviations exceeding 25% of the daily mean. Certain weather conditions,
especially precipitation and humidity (covering the acrylic dome), can be problematic.
Changing weather conditions can lead to a wide range of LAI values over a single day.
Relatively large variations in LAI estimates over the day can in part be explained
by the low canopy cover (actual LAI) during the measurement periods, leading to a
large influence of noise on the measurements. Extended timeseries and measurements
taken under dense-canopy conditions are likely to yield better results.

6.3 Limitations and possibilities

6.3.1 Limitations

Over the course of this research a number of limitations of the PiLAI have been
identified. One of the main limitations of the PiLAI is the limited time it can operate
on a single charge. With the Raspberry Pi 2B draining 220 mA at 5 V when idle2

(not including the camera module), the 12 V, 7 Ah battery should theoretically last
76 hours. After disabling software components with a large power consumption, such
as the graphical user interface, the battery lasted for no more than 36 hours in the
field, which is insufficient to be a viable option for automatic LAI monitoring. Using
a larger battery might not be a viable solution as it would increase the size and weight
of the system, making it less portable. Due to the voltage drop required (12 V to 5
V), a part of the energy is dissipated as heat. As such, the use of high quality 5 V
power banks might be a good solution to remove this loss. With the large consumer
demand for power banks, developments in capacity are fast and costs are relatively
low. Other solutions are the use of low-powered alternatives for the Raspberry Pi 2B.
The Raspberry Pi Zero has a significantly lower power consumption, while it is still
able to do image processing at > 5 MP resolution. Arduino boards such as the Arduino
Nano or Mega consume even less power, however, they lack the processing power for
high-resolution image processing. The use of solar panels as secondary power source
could lead to extended operational time, although their use is limited when the canopy
is dense due to low incoming solar radiation. A second prototype of the PiLAI is in
development to extend the maximum operating time by shutting off the Raspberry
Pi and cutting the power to it externally using an Arduino Nano (Figure A.1). Due
to setbacks and time constraints, the prototype could not be finished.

A second limitation is the influence of certain weather conditions on the measurements.
During the field tests condensation on the inside of the lens cover was a frequent
issue, resulting in large parts of the image being incorrectly classified. Near the end
of the field tests this issue was resolved by taping a sachet of silica gel next to the
camera module. This low-cost material absorbs moisture and is often used by shipping
companies to prevent moisture from damaging shipped goods. Precipitation caused
issues as well by covering the lens cover in water drops, although this often resolved
itself within a few hours after it stopped raining.

2http://www.pidramble.com

http://www.pidramble.com/wiki/benchmarks/power-consumption
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A third limitation that was identified was the lack of user-friendliness of the PiLAI.
Due to the lack of external buttons and screen, the PiLAI had to be set up with
its box open and the Raspberry Pi connected to a laptop. The second prototype of
the PiLAI tries to solve this issue by adding buttons and a small LCD screen to the
sensor.

6.3.2 Possibilities

Although the performance of the PiLAI on estimating LAI was a bit disappointing,
gap fraction measurements showed promising results, especially for a first prototype.
The PiLAI has shown that automatic acquisition of hemispherical images is a viable
option, as well as unsupervised classification. Due to the open source and extensible
nature of the PiLAI, continuous development of the sensor is possible. Contrary to a
closed source system, users can add other components to suit their specific needs and
develop the system further based on new research. This removes the need to buy new
(and expensive) proprietary sensors when the previous version becomes outdated.

To give greater autonomy to the sensor, a module for wireless data (e.g. 3G) could
be added to the sensor. This would enable the sensor to notify the user when the
battery is low or even do the processing in situ and sending gap fraction, clumping
factor and LAI values to the user. An added benefit of a wireless data module such as
the low-cost SIM800L is the availability of location data. Furthermore, developments
in Raspbian and the Python picamera library are likely to give even greater control
over the image acquisition process.
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Chapter 7

Conclusions

The PiLAI is a low-cost, open source, automatic sensing system for continuous canopy
monitoring. The system uses widely available components and can be build with lim-
ited experience in electronics. The system can provide canopy images at desired
intervals, automatically setting exposure parameters and testing for over- or underex-
posure. It offers the choice to do in situ processing or to collect the images from the
PiLAI and do the processing elsewhere. Intermediate data are stored, guaranteeing
reproducibility of the results. The PiLAI has the following advantages:

• Required hardware is inexpensive and widely available.

• Uses virtually exclusively open source software, reducing the risk of hidden er-
rors/anomalies and providing the opportunity for further development of the
system.

• System is easy to build and maintain.

• System is weatherproof in most situations.

• The automation of the workflow reduces manual labour to a minimum, greatly
reducing operating costs.

The prototype still has some problems, requiring further development in order to reach
its full potential as alternative for manual DHP:

• Battery life is short, voltage conversion results in waste of power due to heat
dissipation.

• Certain weather conditions (rain and high humidity) can negatively impact mea-
surements.

• The system still lacks user-friendliness.

Validation of the system showed promising results, especially considering the hard
to measure conditions (virtually no leaves in the canopy). Further validation of the
PiLAI under leaf-on conditions would be useful for more in-depth quantification of
the accuracy and reliability of the system. Overall, the PiLAI shows promise as an
automated alternative for conventional DHP.
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Appendix A

Schematics

Figure A.1: Schematic of the PiLAI v2 prototype (unfinished).
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