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Abstract
Crown shyness describes the phenomenon in which tree crowns avoid growing into each other,

producing an impressive puzzle-like pattern of complementary tree crowns in the canopy. Previous
studies defined crown shyness in terms of canopy cover or intercrown distance and found that
crown shyness is related to structural characteristics of the trees such as tree slenderness and size
differences. This study aimed to expand the current set of models for crown shyness by quantifying
the characteristic of surface complementarity among tree crowns displaying crown shyness using
terrestrial LiDAR data. Subsequently, the relationship between crown surface complementarity
and structural characteristics of the trees was analysed to verify whether previous models for
crown shyness show agreement with the model developed in this study.

A metric that quantifies the surface complementarity (Sc) of a pair of docking protein molecules
is adopted from Lawrence and Colman (1993) and applied to the point clouds of pairs of adjacent
trees. Three-dimensional tree crown surfaces were generated from the point clouds by computing
their α-shapes. Pairs that were visually determined to be overlapping scored significantly lower
Sc values than pairs that did not overlap (n=14, p < 0.01). Furthermore, average slenderness of
a pair of trees correlated positively with their Sc-score (R2 = 0.49, p < 0.01), showing accordance
with previous studies on crown shyness.

The results indicate that the 3D model for crown shyness developed in this study may contribute
to future research on crown shyness. However, testing the model on a larger set of pairs is necessary
to confirm its usefulness.

Keywords: crown shyness, complementarity, alphashapes, terrestrial LiDAR, forest canopy,
tree slenderness
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1 Introduction

1.1 Context & background

Forest structure can be defined as the spatial arrangement of above-ground biomass in a forest
(Von Gadow and Hui, 2002). Examples of forest structural characteristics include the proportions
of different size classes, the number of layers in the canopy, and the spacing between trees (Figure
1, (Aguirre et al., 2003; West et al., 2009; Bohlman and Pacala, 2012)). Forest structure plays a
key role in many ecological processes and determines to a large degree the functioning of a forest
ecosystem. For example, previous studies have shown that forest structure influences primary
productivity as it determines the way forests capture sunlight (Ishii et al., 2004; Hardiman et al.,
2011, 2013; Williams et al., 2017). Moreover, forest structure affects animal and plant communities
by the way it shapes habitats in the forest. (Tews et al., 2004; Burrascano et al., 2008; Halpern and
Spies, 2008). Additionally, forest structure may regulate a forest’s resilience against disturbances
such as windthrow (Ryan, 2002) and fire (Everham and Brokaw, 1996).

Figure 1: Schematic drawing of a forest’s structure.1 Some structural characteristics visible in the
drawing are the presence of a multi-layered canopy, a diverse range of tree sizes and closely spaced
trees.

Interactions between tree crowns influence forest structure by changing the way trees grow
(Muth and Bazzaz, 2003). The vertical and horizontal distributions of branch and foliage material
are the result of competition for canopy space between adjacent trees (Getzin et al., 2006; Rouvinen
and Kuuluvainen, 2011). Competition can lead trees to grow asymmetrical crowns instead of their
‘ideal’ symmetrical shape. The ability of trees to adapt the shape of their crown in response to
the presence of adjacent trees is called ’crown shyness’ (Jucker et al. (2015), Figure 2). Trees that
experience intense competition due to high tree densities show stronger crown plasticity, attempting
to grow in the direction of unoccupied spaces in the canopy (Schröter et al., 2012; Jucker et al.,
2015).

1Food and Agriculture Organisation, retrieved from http://www.fao.org/3/T0178E/T0178E02.gif on 26/09/2019
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Figure 2: A group of trees growing asymmetrical crowns as a result of crown plasticity. 2

Tree crowns sometimes show a degree of ‘crown shyness’ where tree crowns avoid full canopy
closure by leaving small channel-like gaps between their crowns (Figure 3). Crown shyness has been
attributed to avoidance of mutual shading (Ballare et al., 1997; Franklin and Whitelam, 2005) and
mechanical abrasion of the outer twigs (Putz et al., 1984; Meng et al., 2006). These two processes
may induce morphological changes in individual tree crowns that result in crown shyness.

To avoid mutual shading, trees sense nearby trees with ‘phytochromes’. Phytochromes are
pigments that are sensitive to red (655-665 nm) and far-red light (725-735 nm) (Li et al., 2011).
As light interacts with plant material, the red/far-red ratio decreases (Aphalo et al., 1999). When
light with a decreased red /far-red ratio is recorded in the phytochromes, a tree may direct growth
away from the source of this light (Gilbert et al., 1995). The adaptation of growth direction may
result in the formation of gaps between the trees. Crown plasticity is stronger among adjacent
trees of unequal sizes, likely because suppressed trees invest more in avoiding their large neighbours
(Muth and Bazzaz, 2003). This may result in stronger crown shyness between trees that are of
unequal size.

Alternatively, in the abrasion theory wind plays an important role (Putz et al., 1984). Rudnicki
et al. (2001) conducted an experiment in which trees were tied to each other making them sway
simultaneously under windy conditions. This prevented their branches from colliding and as a
result the space between crowns drastically declined. Moreover, another study showed that trees
inhibit twig regrowth after taking damage from abrasion, creating space between neighbouring
crowns (Hossain and Caspersen, 2012). Tree slenderness, the ratio between tree height and stem
diameter, is associated with more frequent and intense collisions between trees (Rudnicki et al.,
2003; Fish et al., 2006). Furthermore, branches of trees with low wood density are more likely
to break in a collision (Van Gelder et al., 2006). It is expected crown shyness is stronger among
slender trees and trees with low wood density.

The ability of trees to sense neighbouring trees and adapt their crown shape accordingly is an
important factor in the constitution of forest canopy structure. The process of trees optimizing
canopy space capture while avoiding neighbouring tree crowns results in the formation of comple-
mentary crown shapes. This is also visible in Figure 3, where the surfaces of the tree crowns seem
to fit into each other like puzzle pieces.

2Craig Holdrege, retrieved from http://natureinstitute.org/pub/ic/ic14/trees.pdf on 26/09/2019
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Figure 3: Camphor trees displaying crown shyness. 3

The ability of trees to sense neighbouring trees and adapt their crown shape accordingly is an
important factor in the constitution of forest canopy structure. The process of trees optimizing
canopy space capture while avoiding neighbouring tree crowns results in the formation of comple-
mentary crown shapes. This is also visible in Figure 3, where the surfaces of the tree crowns seem
to fit into each other like puzzle pieces, complementing each other’s shapes.

’Complementarity’ is a frequently used concept in ecological science and is often described as
an important biological mechanism through which species and functional diversity affect ecosystem
functioning (Morin et al., 2011; Tilman and Snell-Rood, 2014). Complementarity can be broadly
defined as differences between organisms which allow coexistence of the organisms (Petchey, 2003).
Complementarity may manifest itself in many different forms: differences in animal diets (trophic
complementarity, Poisot et al. (2013); Peralta et al. (2014)), pollinators visiting flowers at different
moments (temporal complementarity, Venjakob et al. (2016)) or differences in rooting strategies
and tree crown architecture (spatial complementarity, Ishii and Asano (2010); Liu et al. (2015)).

1.2 Problem statement

Forest canopy structure is difficult to measure (Watt and Donoghue, 2005). Research on forest
canopies and tree crowns has been impeded by laborious and suboptimal measuring techniques.
Examples of traditional techniques include sampling of crowns into a limited number of radii
(Krajicek et al., 1961; Fish et al., 2006; Goudie et al., 2009) or visual estimation of intercrown
spacing (Putz et al., 1984). Apart from being time consuming and error prone, these techniques
also fail to represent the full three-dimensional structure of trees. So far, much research on above-
ground interaction between trees has relied on two-dimensional polygon projections of tree crowns
(Lorimer, 1983; Rudnicki et al., 2001; Goudie et al., 2009; Pretzsch et al., 2015), see Figure 4.
These projections are a simplification of the detailed structure of a tree crown and taking such an
approach comes with an inevitable loss of information (Vierling et al., 2008).

3Patrice78500, retrieved from https://commons.wikimedia.org/wiki/File:Dryobalanops_Aromatica_canopy.jpg
on 26/09/2019
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Figure 4: Manual crown projection measurement4

The lack of detailed data on tree crown geometry has limited research on spatial complemen-
tarity of tree crowns. Recent studies have quantified complementarity of crown volumes for a pair
of trees by calculating the difference of crown volumes over a range of vertical strata (Williams
et al., 2017; Zheng et al., 2019). Based on the reviewed literature no research has been conducted
on the complementarity of tree crown surfaces. Surface complementarity modeling is popular in
molecular biology where the complementarity of protein molecule surfaces plays an important role
in protein aggregation (Li et al., 2013). Many molecule surface complementarity estimators quan-
tify complementarity by assessing the degree to which concave and convex sections of a pair of
molecule surfaces coincide (Figure 5, Lawrence and Colman (1993); Norel et al. (1994)). This
method can prove useful for quantifying crown surface complementarity provided there is suitable
data for a similar computation.

Figure 5: 2D schematic drawing of two protein molecule surfaces interacting. In situation 1) the
molecules are complementary: convex sections in the surface of one molecule coincide with concave
sections in the surface of the other, maximizing surface contact. In situation 2) the opposite is the
case: concave sections of both molecule surfaces coincide leaving a gap of empty space resulting in
less surface contact.

4Illustration from Pretzsch et al. (2015)
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LiDAR (Light Detection and Ranging) has the ability to capture the three-dimensional struc-
ture of trees. A scanning device sends out a large amount of laser pulses of which it records
direction and travel time when scattered back by a hard surface. With this information it is possi-
ble to construct a 3D point cloud in which the points represent every location where a laser pulse
was backscattered (Lim, 2006).

Terrestrial LiDAR systems scan inside the forest, close to the targets (Dassot et al., 2011).
The introduction of terrestrial LiDAR in forest settings is revolutionizing research on the structure
of trees and forests (Malhi et al., 2018). The availability of highly detailed tree structure data
is driving advances in traditional forest ecological challenges. Examples of this include improved
models of above-ground tree biomass (Calders et al., 2015; Gonzalez de Tanago et al., 2018), leaf
area distribution (Tang et al., 2014), and three-dimensional tree archtitecture (Lau et al., 2018;
Malhi et al., 2018). Terrestrial LiDAR is a promising technique for advancing forest ecology, but in
order to use its full potential, methods have to be developed to extract the bountiful information
from point cloud data.

Point clouds derived from LiDAR can be analyzed using computer algorithms. These algorithms
often involve a set of chosen parameters that determine the outcome of the analysis. For example,
studies on tree volume estimation using voxelized point clouds showed that choice of voxel size
may strongly influence the volume measurements (Béland et al., 2014; Lecigne et al., 2018). While
volume estimates from point clouds can still be feasibly validated with ground measurements
(Calders et al., 2015; Gonzalez de Tanago et al., 2018) more complex metrics may be computed
for which no validation data exists (Palace et al., 2016; Atkins et al., 2018). A sensitivity analysis
on the algorithm parameters can then still provide an understanding of the uncertainty in the
measurements of such metrics (Trucano et al., 2006).

1.3 Research Objectives and Research Questions

This study aims to find methods for quantifying spatial complementarity of tree crown surfaces
using point cloud data. Sensitivity of the analysis to parameter choice is considered to explore how
robust the methods are. Finally, the role of size and architectural differences between neighbouring
trees in the constitution of complementary crown shapes is analyzed.

To fulfill the aim of this research the following research questions will be addressed:

• RQ1: How can spatial complementarity of a pair of tree crown surfaces be quantified from
individual tree point clouds?

• RQ2: How do analytical parameters affect this measurement?

• RQ3: How does spatial complementarity of a pair of tree crown surfaces vary with different
size and structural characteristics of the trees?

2 Methods

2.1 Study site

Terrestrial LiDAR sampling of trees was carried out in January and February 2017 during a field
campaign in Guyana for a case study on improving allometric equations for biomass estimation
(Lau et al., 2019). The study site was a newly granted logging concession located in the East
Berbice region of Guyana (4.48 to 4.56 lat and -58.22 to -58.15 long). The area is covered by dense
wet forest and had seen little anthropogenic influence prior to the arrival of the logging company.
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2.2 Data

2.2.1 LiDAR data

Over the course of four weeks a total of 106 trees were scanned with a Riegl VZ-400 scanning
device using an angular resolution of 0.04◦. The trees were scanned from multiple positions in
a double circular pattern consisting of an inner ring at 6-8 meters and an outer ring at 11-14
meters from the focal tree (Figure 6). In total 14 pairs among 14 individuals were positioned close
enough to be considered a pair with interaction between their crowns. This was based on a visual
inspection of the proximity of the two tree crowns. The individual point clouds of those trees were
semi-automatically extracted for analysis.

Figure 6: Basic setup of the scanning positions around the tree. Reflective targets were used as
tie points to co-register the different scans.

2.2.2 Tree data

The relationship between crown surface complementarity and several variables concerning size
and structural properties of the trees will be tested. Size variables include diameter at breast height
(DBH) and the height of the trees. The structural properties to be assessed are tree slenderness
coefficient (height to DBH ratio) and wood density. Tree height and DBH were measured in situ.
Wood density values for the selected tree species are taken from the Global Wood Density Database
(Chave et al., 2009).

2.3 Measuring surface complementarity

2.3.1 Theoretical background

A method for quantifying the complementarity of molecule surfaces is adopted and applied
to the point clouds of pairs of trees. The method is taken from Lawrence and Colman (1993)
who computed pair-wise shape complementarity (from here on also referred to as Sc) of protein
molecules.

6



Figure 7: Explanatory schematic drawing of the pairwise complementarity computation, taken
from Lawrence and Colman (1993).

Figure 7 shows the idea behind the computation of Sc. A and B are two interacting protein
molecules. PA and PB (bold continuous lines) are the adjacent parts of the surfaces of A and B.
xA is a point on PA with nA as its unit normal vector in the direction of PB. x’A is the point on
PB closest to xA with n’A as its inward directed unit normal vector. For every point xA on PA the
dot product of nA and n’A can be evaluated:

SA→B = nA · n′A (1)

The same can be done in the opposite direction for every point xB on PB:

SB→A = nB · n′B (2)

Values of SA→B and SB→A can be sampled by evaluating the functions at k points on each of
the surfaces PA and PB. Sc is then defined as the average of the arithmetic means of the sampled
SB→A and SA→B values:

Sc =
1
k

∑k
i=1 S

A→B
i + 1

k

∑k
i=1 S

B→A
i

2
(3)

In short, Sc is an average of unit normal vector dot products (Equation 3). The dot product
of two unit normal vectors can be interpreted as an expression of how similar the direction of the
unit normal vectors are. The value of a unit normal vector dot product ranges from -1 (completely
opposed direction of the vectors) to 1 (vector directions perfectly line up). As shown in Figure
8, the value of dot products between the unit normal vectors of two nearest neighbours on a pair
of surfaces is related to how convex and concave sections of the surfaces are arranged. The dot
product returns negative values when the surfaces overlap (Figure 8A). When convex sections on
one surface coincide with convex sections on the other surface, the values of the unit normal vector
dot product ranges from 0 to 1 (Figure 8B). The same holds for coincidence of concave sections
on both surfaces (Figure 8C). The dot product values equal 1 when convex sections on one surface
perfectly coincide with concave sections on the other (Figure 8D).
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Figure 8: Different arrangements of convex and concave sections with their corresponding Sc values.
Situation A depicts two overlapping surface sections. In situation B and C, both surface sections
are convex or concave respectively. In situation D a concave section perfectly coincides with a
concave section.

By applying this analysis to tree crown surfaces a numerical value for tree crown surface com-
plementarity can be produced. A pair of trees with overlapping tree crown surfaces will score
low as a result of the negative values on the overlapping parts. A pair with non-overlapping tree
crowns (i.e. a pair that shows crown shyness) scores higher, especially so when concave and convex
sections coincide.

2.3.2 Segmentation of the interaction zone

The functions SA→B (Equation 1) and SB→A (Equation 2) are evaluated at points on those
parts of the surfaces that are interacting (PA and PB in Figure 7). To improve reproducibility and
allow the computation of complementarity values for large amounts of pairs a procedure for the
automatic segmentation of the surfaces into interacting and non-interacting parts was developed.

The first step in the procedure is the separation between the bole and the crown of the trees. At
this moment the point clouds are voxelized. The voxel points are used to make a vertical profile of
the tree point clouds (Figure 9). The number of points strongly increases in the vertical direction
from the first branching point onward. The first histogram bin in the vertical direction with a
density value larger than a certain threshold marks the bottom of the tree crown. All points with
a height value larger than or equal to the height value associated with that bin are selected and
classified as tree crown. A density threshold of p = 0.015 produced satisfying results for all pairs
in this dataset.

The next step is to find the points on a pair of crown surfaces which are close to each other.
This was done by performing a two way nearest neighbour search on the points in the crowns
(Figure 10). Consider a pair of tree crowns A and B. First, all points in crown A are queried for
their nearest neighbour point in crown B. This returns a set of points which are on the surface of
crown B and adjacent to crown A. This is also done in the opposite direction, querying points in
crown B for their nearest neighbour point in crown A. The resulting two sets of adjacent points
are the the input for the next operation.

8



Figure 9: A height projection of a voxelized tree point cloud (left) and its point count histogram
of height values (right). The red line indicates the height value associated with the first bin to
exceed the threshold density value (set to p = 0.015). This threshold is used to delimit the crown
area.

Figure 10: Image A: nearest neighbours (black dots) of all points in the orange tree. Image B:
nearest neighbours (red dots) of all points in the grey tree.
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Bounding boxes (Figure 11) are created around the union of the two sets of neighbouring points
shown in Figure 10. These bounding boxes are used to make a final selection of points that will
be the input for the surface generation. The bounding boxes are created by enclosing a volume
between six planes. These planes are based on the spread of the neighbouring points.

First two ’axes of interaction’ are defined to position the first four planes. The first axis of
interaction (green line, Figure 11) is defined as the straight line that connects the centroids of the
tree crowns in the XY-plane (purple dots). The set of neighbouring points (red and black, Figure
10) resulting from the two way nearest neighbour search are plotted in the XY-plane above the
trees for visibility. Red points belong to the orange tree and are the nearest neighbours to all
points in the grey tree. Black points belong to the grey tree and are the nearest neighbours to
all points in the orange tree. To determine how far the neighbouring points are spread out in the
direction of the first axis of interaction, the set of neighbouring points is projected onto this axis.
The projections with the minimum and maximum value of the line equation mark the extent over
which the tree crowns interact in this direction. The points corresponding to these projections are
marked yellow. Planes are fitted going through these points with the direction vector of the line
equation as the normal vectors of the planes.

Figure 11: The bounding box as viewed from the top. Black and red points indicate the neighbour-
ing points resulting from the two-way nearest neighbour search (Figure 10A and B respectively),
plotted above the trees for visibility. Purple dots are the centroids of the tree crowns, defining the
first axis of interaction (green line). The second axis (blue line) is a line perpendicular to the first
axis.
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The same is done for a second axis of interaction (blue line, Figure 11). This second axis
of interaction is defined as the straight line perpendicular to the first line of interaction at an
arbitrary point on the first axis of interaction. The neighbouring points are again projected on
the perpendicular line. Again planes are fitted at the points with the minimum and maximum
value of the perpendicular line equation (coloured light blue), using the direction vector of the
perpendicular line equation as the normal vectors of the planes.

Figure 12: Vertical boundaries of the bounding box (A) and the complete box including the selected
points of both trees in black and red (B).

Finally, the upper and lower bounds of the bounding box are defined by horizontal planes at
the minimum and maximum height values of the set of neighbouring points (Figure 12A). The six
planes together form a bounding box around the set of neighbouring points which contains the
interacting parts of the pair of tree crowns (Figure 12B).

2.3.3 Surface generation using α-shapes

A surface is generated for each tree around the sets of points contained in the bounding box by
computing the α-shapes of the sets (Edelsbrunner and Mucke, 1994). The α-shape of a point set
is a general case of the convex hull. The α parameter determines how convex the shape is. When
α =∞ the α-shape of a point set is identical to the convex hull of that point set. Lower α-values
allow cavities to be present in the shape. The minimum size of those cavities is proportional to the
magnitude of α. This property allows the characterization of both convex and concave sections on
the surfaces of the tree crowns.
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Figure 13: An example of the α-shapes of the interacting parts of a pair of trees.

The α-shape computation is performed in R using the ’alphashape3d’ package produced by
Lafarge et al. (2014). The computation returns a Delaunay-triangulation of the boundary points
of the tree crown as defined by the α-shape. This creates a surface of triangles with normal
vectors. The normal vectors of these triangles provide the data needed for the computation of Sc

as described in Figure 7.

2.3.4 Sampling the vectors

Not all triangles on the α-shape surfaces are relevant for the computation of Sc. The parts of
the α-shapes that are facing away from each other will have had little influence from interactions
between the tree crowns. The relevant triangles of the α-shape are selected by performing a two-
way nearest neighbour search on the triangle center points (similar to an earlier step in section
2.3.2, see page 10). The normal vectors of the selected triangles are then used in the computation
of the Sc value for the pair of tree crown surfaces (Figure 14).

Figure 14: Unit normal vectors of the sampled triangles on the α-shapes.

2.4 Statistics

Differences in surface complementarity between overlapping and non-overlapping pairs of trees
were tested using an independent samples t-test. Relationships between crown surface complemen-
tarity and tree height, diameter size, slenderness and wood density are tested using simple linear
regression. All variables were tested for normality using the Shapiro-Wilk test.

12



3 Results

3.1 Pair-wise complementarity computations

Complementarity values were succesfully computed for all 14 pairs. Half of the pairs showed
a degree of crown overlap. An example is shown in Figure 15, Sc = 0.16. The other half had no
overlap between their crowns (Figure 14, Sc = 0.71).

Figure 15: Opaque (A) and transparent (B) α-shapes for a pair of overlapping crowns (Sc = 0.16).
The transparent α-shapes in image B show the intrusion of a part of the blue crown into the red
crown. Voxel size used is 5 cm and α = 1.

The complementarity values of the overlapping pairs were significantly lower than those of
non-overlapping pairs (Figure 16, significance level 0.05, p = 0.001). The mean Sc value was 0.41
for overlapping crowns and 0.73 for non-overlapping crowns. Both groups contained one outlier.
The outlier in the group of overlapping pairs was a pair that had only small sections of overlap
compared to other overlapping pairs. The point clouds of the outlier pair in the non-overlapping
group were of inferior quality. Point density was much lower compared to other pairs and especially
at the edges points were sparsely distributed which may have lead to an incorrect representation
of the tree crown surfaces.

3.2 Effect of parameter choice on complementarity measurements

The average Sc value of the 14 pairs fluctuated slightly before the 5 cm voxel size mark (Figure
17). Using voxel sizes larger than 5 cm resulted in lower average Sc values than the smaller voxel
sizes (see left panel of Figure 19 for an example using 75 cm voxels). At voxel sizes larger than 75
cm the computation of Sc became impossible for some of the pairs. This was due to the crowns
having too little points to perform the α-shape computation.

Sample mean Sc values were relatively low at small α values and increased with larger α values,
stabilizing at α = 1 (Figure 17). The larger lower quantile and whisker of the boxplot at the lowest
α value (α = 0.2, see right panel of Figure 19) suggest this effect is more pronounced in pairs with
low complementary values. After α = 2.5 the mean Sc values of the sample decrease again (Figure
18). The sample median was much less affected by this than the sample mean (Table 1).
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Figure 16: Boxplot of the complementarity values of overlapping and non-overlapping pairs of tree
crowns. Black dots represent outliers. Whiskers indicate minimum and maximum values (excluding
outliers). Values computed using a voxel size of 5 cm and α = 1. Mean Sc of overlapping pairs
was significantly lower than non-overlapping pairs (significance level 0.05, p = 0.001).

Figure 17: Boxplots of the average Sc value for the whole sample at different settings of voxel size
(graph A) and α (graph B). Red dashed lines indicate where the average Sc value stabilizes (voxel
size 0.05m and α = 1). Voxel sizes are on a log scale.
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Figure 18: Average sample Sc for a range of α-values (black dots).
Red line is a smooth interpolation of the data points. Values
computed using 5 cm voxel size.

Table 1: Sample mean and median
surface complementarity values using
a range of α values. Values computed
using 5 cm voxel size.

α Mean Sc Median Sc

0.2 0.05 0.36
0.4 0.28 0.41
0.6 0.39 0.43
1 0.48 0.55
2 0.48 0.59
3 0.43 0.56
5 0.32 0.43
10 0.23 0.29

Figure 19: α-shapes of the same pair of trees as in Figure 15. The α-shape in image A is computed
using a voxel size of 75 cm and α = 1. The α-shape in image B is computed using a voxel size of
5 cm and α = 0.2.
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3.3 Tree size asymmetry, structure and surface complementarity

Tree size asymmetry was expressed using a ratio index of the trees in a pair. A size ratio of 1
indicates the trees in the pair have the same size. Lower values mean the trees are less equal in size.
Pairs consisting of trees of less equal size scored higher Sc values (Figure 20). The tree structure
of a pair was characterized by computing the average wood density and the average slenderness
coefficient of the pair. Low wood density and high slenderness coefficient were associated with high
crown surface complementarity values (Figure 21).

Figure 20: Simple linear regressions of crown surface complementarity and size ratios. Both
DBH (graph A) and height ratio (graph B) showed a negative association with crown surface
complementarity. This relationship was significant for tree height ratio (solid line, p=0.048 and
R2 = 0.23) but not for DBH ratio (dashed line, p=0.067 and R2 = 0.19) at the 0.05 significance
level. Sc values were calculated using α = 1 and a voxel size of 5 cm.
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Figure 21: Simple linear regressions of crown surface complementarity and tree structure charac-
teristics. Wood density was negatively associated with crown surface complimentarity (graph A),
while slenderness showed a strong positive correlation (graph B). The relation was significant for
slenderness (solid line, p=0.003 and R2 = 0.49) but not for Average wood density (dashed line,
p=0.067 and R2 = 0.15) at the 0.05 significance level. Sc values were calculated using α = 1 and
a voxel size of 5 cm.

4 Discussion

4.1 Crown overlap and surface complementarity

A metric for surface complementarity, Sc, was adopted from Lawrence and Colman (1993) and
applied to point clouds of pairs of trees. This enabled the quantification of the puzzle-like pattern
present in groups of tree crowns exhibiting crown shyness. The method produced sensible results
as overlapping crowns scored significantly lower in surface complementarity compared to non-
overlapping crowns (Figure 16). The surface complementarity values of non-overlapping crowns
are similar to those that Lawrence and Colman found for the complexes of proteins they analyzed
which ranged from 0.64 to 0.74. Since their models for molecules did not allow overlapping they
did not find such low values as for the overlapping crowns in this study.

Studies on other types of complementarity also see overlap as a sign of low complementarity
(Mason et al., 2008; Blüthgen and Klein, 2011; Aguiar et al., 2013; Poisot et al., 2013). Those
studies examined a particular trait related to resource use such as an animal’s diets (Poisot et al.,
2013; Aguiar et al., 2013) or the shade tolerance of a plant (Chen et al., 2016; Van de Peer et al.,
2018). When such traits overlap between organisms they are considered to be competing with each
other (Mason et al., 2011). Niche partitioning is the process of organisms minimizing this overlap
in order to reduce competition (Silvertown, 2004; Fish et al., 2006). Partitioning not only occurs
in terms of dietary or productivity traits but also in spatial dimensions (Lewis and Murray, 1993;
Nicholls and Racey, 2006; Albrecht et al., 2009). In this light, crown shyness can be seen as the
result of the spatial partitioning of tree crowns in an attempt to avoid direct competition from
overlapping while optimizing the use of space available for growth (Franco, 1986). The surface
complementarity metric developed in this study can help to determine how effective a pair of trees
is at using growing space without overlapping.
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4.2 The role of tree structure in crown shyness

For trees to be able to adapt their growth and avoid overlapping they need to be aware of
each other’s presence. The results of this study support the theory that physical contact plays
a role in the formation of crown shyness. The average slenderness of a pair of trees showed a
clear positive relationship with the level of shape complementarity between the pair (Figure 21).
Trees are sessile organisms but wind can make them sway around, sometimes leading to crown
collisions with adjacent trees. Slender trees sway more in the wind and are therefore more likely
to collide with one another (Rudnicki et al., 2008). Crown collisions may affect the shape of the
crown through reoriented growth after physical touch stimuli (Jaffe et al., 1985; Telewski and Jaffe,
1986; Chehab et al., 2009) or the abrasion of twigs (Putz et al., 1984). Pairs of slender trees may
achieve more complementary crown surfaces as the result of a higher frequency of physical contact
between their crowns.

Average wood density of a pair of tree was negatively associated with surface complementarity,
although not signifcantly (Figure 21). A possible explanation for the negative correlation is the
higher probability of branches breaking due to the low wood density. Anten and Schieving (2010)
as well as Van Gelder et al. (2006) found a positive relation between wood density and branch
stability. Crown collisions may therefore have a larger effect on low wood density trees than high
wood density trees. Moreover, low wood density has been related to the shade tolerance of a tree.
In general, light-demanding tree species have a low wood density while shade tolerant species have
a high wood density (Van Gelder et al., 2006; Poorter et al., 2006, 2012). It is expected that a
light-demanding tree invests more in shade avoidance and may therefore divert growth away from
adjacent trees at an earlier stage than a shade tolerant tree. Light-demanding plant species in
particular have been shown to adapt the direction of their growth as a response to mechanical
stimulation as well as changes in light quality and quantity (Pierik and De Wit, 2014).

4.3 The effect of differences in tree height and diameter size

A significant (significance level 0.05, p=0.048) negative relationship between tree height ratio
and surface complementarity was observed (Figure 20). A similar relationship was found for
DBH ratio, but this relationship was not significant. Height being a more important factor in
shading may explain the fact that the relationship is stronger for height ratio than for DBH ratio.
This finding is in line with studies on size-asymmetrical competition which found that large height
inequality between trees can induce strong morphological changes in the suppressed trees to reduce
shading (Grams and Andersen, 2007; Thorpe et al., 2010). These morphological changes may lead
to a pair of trees adapting their crown shapes to each other resulting in complementary crown
shapes.

4.4 Parameter choice

Choice of voxel size influenced the measurements of the average surface complementarity of
the sample (Figure 17). The average surface complementarity values were similar at voxel sizes
under 5 cm while computations using voxel sizes larger than 5 cm produced different and lower
surface complementarity values. This may be explained by overestimation of the crown dimensions
at low voxel resolutions. Vonderach et al. (2012) found that the volume of small branches were
subjective to overestimation when large voxel sizes were used. The same may apply to the edges
of tree crowns considering they consist of fine material such as twigs and leaves. This can lead to
situations where the crowns of two trees do not overlap in reality but their low resolution voxel
representations do because of volume overestimation at the edges resulting in lower Sc-values.

The α-value determines the level of detail of the α-shape surface. The smaller the value, the
smaller the cavities in the surface are. Higher α-values increase the minimum size of the cavities,
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leading to a more convex surface (Edelsbrunner and Mucke, 1994). The selected α-value affected
the measurement result in several ways. The sample mean surface complementarity value increased
considerably over the range from 0 to 1 (Figure 17 and 18). This effect was strong for the sample
mean but not for the sample median (Table 1), indicating that pairs scoring high complementarity
values were less affected by this than the overlapping pairs scoring low complementarity values.
When the α-shape using α = 0.2 from Figure 19 is compared with the α-shape using α = 1 in
Figure 15, it becomes clear that the surface triangles are much smaller when a lower α-value is used.
As a result, the nearest neighbour search for sampling the α-shape triangles on the α-shape using
a low α-value returns many more points in the top part of the crowns where they are overlapping
than on other, non-overlapping parts of the crown surface. This may explain the different responses
of overlapping and non-overlapping crowns to α-shape computations using a low α-value.

In the range 1 < α < 2 the computations produced stable results. In this range the surfaces
produced by the α-shape computations are less cluttered and the previously mentioned oversam-
pling in overlapping parts does not occur. The decrease in mean surface complementarity of the
sample when using α-values larger than 2 can be attributed to the loss of concave features of the
tree crowns as the α-shapes approach the convex hull of the tree point clouds. The increased con-
vexity of the α-shapes leads to lower surface complementarity values through a higher likelihood
of overlapping and the conjunction of convex surface parts (Figure 8 A and B).

Using α-shapes computed with 1 < α < 2 it was possible to capture conjunctions of convex
and concave sections of the tree crown surfaces without the overemphasis of overlap present in α-
shapes using α-values lower than 1 or the loss of concave features of the tree crowns resulting from
higher α-values. Existing literature on the use of α-shapes for 3D tree modelling shows different
approaches to choosing the appropriate α-value. Two studies using α-shape metrics as input for a
tree species classification model computed α-shapes using several α-values and then chose the value
at which the classification model produces the best results (Tokola et al., 2008; Vauhkonen et al.,
2009). At low α-values the α-shapes sometimes consist of multiple components rather than a single
connected one. Some studies ’optimized’ the α-value by selecting the smallest α-value for which
the α-shape consisted of a single connected component (Xiao et al., 2012; Korhonen et al., 2013).
This implies using a different α-value for every tree rather than a fixed one for the whole sample.
Considering the α-value determines the level of detail of the α-shape it makes sense to use a value
that fits the objective of the study being conducted. For example, when studying crown surface
respiration the surface area of soft materials such as leaves and twigs is important to consider so
a high level of detail and therefore a low α-value is advisable, while crown volume estimates can
already be accurately achieved using the coarsely detailed convex hull of a tree (Fernández-Sarría
et al., 2013).

4.5 Limitations

This study used the ’alphashape3d’ package by Lafarge et al. (2014) to generate crown surfaces
to be used in the shape complementarity method from Lawrence and Colman (1993). The compu-
tation of the final surface complementarity value involves taking the arithmetic mean of sampled
the unit normal vector dot products (Figure 7, section 2.3.1). The arithmetic mean is appropriate
in the study of Lawrence and Colman (1993) as their surface models consist of uniformly dis-
tributed and equally sized triangles. The surface models produced by the alphashape3d package
do not have this property and the triangles can differ in size. For example, the α-shape in Figure
15 shows a wide range of triangle sizes. Therefore a weighted mean would be more appropriate to
use, whereby the sizes of the triangles used for a particular unit vector dot product should be taken
into account. This way small and large triangles contribute to the final surface complementarity
value relative to their size. A possible way of weighting would be to sum the surface area of the
two triangles involved and weight the computed dot product by the proportion they make up of
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the combined surface area of the α-shapes. Taking such an approach would give a more accurate
description of the surface complementarity of a pair of crowns.

A major limitation of this study was the marginal availability of point clouds of adjacent trees.
Out of a total of 106 trees that were scanned during the 2017 campaign in Guyana, only 14 trees
were close enough to be considered adjacent. Those trees made up the 14 pairs of trees analyzed
in this study which meant that some trees were in more than one pair. The result was a small,
geographically limited and not completely independent sample. This makes it difficult to derive
meaning from the relationships found in section 3.3. A larger sample size consisting of completely
independent pairs would provide a more reliable basis for statistical inference.

Related to this is the issue of scalability. Although the methods used in this study are fully
automated, they rely heavily on high quality and correctly segmented point clouds. Small differ-
ences in the allocation of points to the trees may lead to large changes in the resulting surface
complementarity value. For example, when a branch of a tree is wrongly assigned to another tree
it may seem in the point clouds as if the tree crowns overlap while in reality they do not. For a
sample of 14 trees it was viable to manually check for such errors but as more point cloud data
becomes available this procedure becomes increasingly laborious. Many efforts are being made to
improve individual tree segmentation methods (Itakura and Hosoi, 2018; Yan et al., 2018; Williams
et al., 2019) however distinguishing tree crowns especially is structurally complex forests remains
one of the main challenges (Burt et al., 2019).

5 Conclusions and recommendations

Crown shyness has boggled the minds of forest researchers for decades. This study used terres-
trial LiDAR data to shed a new light on crown shyness. The adoption of a method from molecular
biology enabled the quantification of the puzzle-like pattern of complementary crown surfaces that
is characteristic for groups of trees displaying crown shyness. Crown surface complementarity of
pairs of trees exhibited relationships to tree size and structure that were in agreement with existing
literature on crown shyness, in particular the importance of tree slenderness in consituting crown
shyness.

Terrestrial LiDAR data is radically changing the way we observe forests. Computing plays a
crucial role in the retrieval of information from terrestrial LiDAR data. Algorithms designed to
measure point clouds often use a set of parameters that determine the outcome of the measurement.
This study showed that the choice for a particular parameter setting affects the measuring result.
When choosing parameter settings it is important to analyze and understand the effect of your
choice on the measurement and to keep in mind what level of detail is appropriate for the research
objectives in question.

Further research on this topic should consist of increasing the sample size and including trees
from different regions and forest types. Such research may be able to find stronger relationships
between crown shyness and tree size and structure and allow a more general interpretation of
such relationships. Furthermore the surface complementarity computation could be improved
by including a weighted mean instead of an arithmetic mean to increase the accuracy of the
measurement.

The metric for crown surface complementarity developed in this study may prove useful in
studies on spatial partitioning of the canopy under the influence of environmental factors such as
light availability or wind intensity. Understanding how crown collisions and competition for light
shape tree crowns may provide valuable insights into why forest are structured the way they are.
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