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ABSTRACT 

This thesis study focuses on the relevance of phenotyping efforts using unmanned aerial vehicle remote sensing 

platforms (UAV-RSPs), relative to conventional phenotyping efforts. Plant phenotyping aims at the acquisition of 

phenotypic information of plants or cells in different environments – as accurately and rapidly as possible. Major 

advances in plant phenotyping are required in order to improve plant characteristics linked to for example 

increased yield, productivity, biomass and resource efficiency. In the light of current trends as growing world 

population and climate change, these plant characteristics are of increasing importance.  

Due to both the relative short time span and limited available data, the focus of this research has been placed 

upon one specific crop and plant trait. UAV-derived hyperspectral datasets containing the imagery of winter 

barley test field located in the province of Zeeland in The Netherlands were used to explore the usefulness of 

UAV data in the detection and categorization of  the common fungal plant disease brown rust on winter barley. 

With this categorical information, insight in the susceptibility of this crop species for brown rust  – a plant trait – 

is provided, helping breeders improve the genotype selection process. The spectral data used consists of 16 

bands,  covering wavelengths from 609 to 872 nm, and was produced on the 14th of July in 2017. 

First step in this research was to determine how strong index values of existing vegetation indices are correlated 

to the validation brown rust scores  – which were obtained by manual scoring. Indices included in the research 

are the ND 790/670, NDVI, NDRE, PVI and SAVI. For the index calculations, average reflections of the wavelengths 

in the red, red edge and NIR were used. For all correlations, a trend was evident. However, a strong variation on 

the y-axis indicates variability in the data. As this research is performed on an operational trial field, where 

operational scoring was conducted by the breeding company and many external variables were not accounted 

for – as they would be in an experimental set-up – this variability was expected. The PVI performs best with a 

Pearson correlation coefficient of -0.341 on the full dataset. After reducing the data to winter barley plots scored 

with a ‘1’ for lodging – an external variable which was expected to influence the reflection significantly – the 

correlation between the index values and brown rust scores increased to -0.404. The R² values were respectively 

0.116 and 0.164.  

Secondly, the possibilities of constructing a spectral disease index (SDI) using lambda-lambda matrices were 

explored. These so-called redundancy plots were created to the methods of Aasen, Gnype et al. (2014) and 

visualize the R² values of index values based upon the index calculations using the bands indicated on the x- and 

y-axis and the brown rust scores. For these calculations the reflectances of all winter barley plots were used. The 

matrices were made for three different types of indices; normalize difference (1), orthogonal (2) and soil-

adjusted (3). The best individual R² of 0.159 was found for the orthogonal index using the wavelengths of 833 

and 872 nm; the corresponding correlation coefficient for these bands is -0.399. To further explore the potential 

of this index type, a random forest model using the indices based on the 30 best band combinations – with the 

highest R²  values – as predictors was created. The predicted brown rust scores correlated with a value of 0.517 

with the scores from the validation dataset.  

From this research, several important conclusions can be drawn. Firstly, there was a lot of noise in the data; 

further research might best have a more experimental set-up. At least the variability in the validation data – 

partially caused by the date of data acquisition and bias that comes with the scorer(s) – should be accounted for. 

Secondly, the narrowband indices performed better than the existing vegetation indices calculated using the 

mean reflection over the bands in de red, red edge and NIR. Therefore, as stated in existing literature (Mahlein, 

Rumpf et al. 2013), multispectral imagery does not seem to be suitable for identification and quantification of 

specific diseases.  

The results of this thesis are a step forward in the identification of important wavelengths and index types for 

the purpose of classifying the brown rust fungal disease on winter barley.  
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1. INTRODUCTION 

In the world of today, requirements for food, feed and raw materials are increasing (EPPN 2017). Two major 

trends, the growing world population (1) and climate change (2), underline this. The current world population of 

7.6 billion is expected to reach 8.6 billion in 2030  (UN 2017) and the discussion concerning climate change is 

ongoing; global interest in climate-conscious production increases.  

The above mentioned trends emphasize the urge of developing sustainable plant production with a higher yield 

(1) and the use of limited resources (2). The scientific challenge of the coming years lies in making further 

progresses in molecular and genetic approaches and the quantitative analysis of plant phenotypes – the latter 

has already proven to be a major bottleneck (EPPN 2017). 

A development that might be a very promising factor in making further progression in plant phenotyping efforts 

is the use of unmanned aerial vehicle remote sensing platforms (UAV-RSPs). These UAVs – equipped with various 

types of sensors – allow for high-throughput crop phenotyping,  also called ‘phenomics’. However, these systems 

come with limitations as well; collected datasets need to be pre-processed and analysed before breeders can 

derive the information they need (Jones, Serraj et al. 2009). Development of successful methods to do this will 

vary with the crop type, sensor(s) used and plant traits of interest for particular phenotyping purposes. 

1.1 RESEARCH PROPOSITION 

In this thesis, UAV-derived hyperspectral datasets containing the imagery of winter barley plots located in the 

province of Zeeland in The Netherlands will be used to explore the usefulness of UAV data in the detection and 

categorization of the plant disease brown rust – a common fungus – on winter barley. Detecting this plant disease 

and categorizing the plots with varying species of winter barley based on severity of infection, helps breeders to 

get insight in the susceptibility of the crop species for brown rust. Conventional detection and classification 

efforts of the brown rust disease are taken with the – though trained – naked eye of breeders. Ultimately, the 

information obtained by making UAV-phenotyping efforts helps to improve the companies’ selection process.  

1.2 CONTEXT AND BACKGROUND 

This section briefly discusses the main concepts for further understanding of the background of the problem 

definition and research objectives/questions as defined in chapters 3 and 4. 

1.2.1 PLANT PHENOTYPING 

Plant phenotyping is a relatively “young” science, it is aiming at acquiring phenotypic information of plants or 

cells in different environments as accurately and rapidly as possible. It links genomics with plant ecopsychology 

and agronomy (EPPN 2017). When a genotype interacts with its environment, a functional plant body – or 

phenotype – develops from that (figure 2). This functional plant body has characteristics that determine its 

performance, productivity, biomass, commercial yield and resource use 

efficiency (EPPN 2017). To improve one of these characteristics, firstly 

the relationship between environment, genotype and phenotype needs 

to be mapped thoroughly. Understanding the link between these 

concepts requires major advances in plant phenotyping (EPPN 2017). 

For this reason, plant phenotyping is a core activity of today’s breeders 

and plant researchers. 

Figure 1 | Relationship between the environment, genotype and phenotype. 
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1.2.2 FIELD PHENOTYPING AND UAV-RSPS  

Crop science research is ultimately aimed at the maximization of the crop yield; breeding is largely directed to 

developing genotypes characterized with increased yield potential (Przulj, Momcilovic et al. 2014). Field 

phenotyping efforts for plant breeding are a critical component in the determination of the association of 

genomic and phenotypic information of crops and therefore play an important role within this science. According 

to White, Andrade-Sanchez et al. (2012) and Araus and Cairns (2014), field phenotyping is the ultimate expression 

of the relative effects of genetic factors, environmental factors and their interaction on critical production traits 

such as yield potential and tolerance to abiotic/biotic stress.  

Crop traits (such as plant height, leaf color, chlorophyll content, sensitivity to diseases, biomass and yield) are 

traditionally acquired through techniques relying on manual sampling – which is both a time-consuming and a 

laborious activity  (Furbank and Tester 2011, White, Andrade-Sanchez et al. 2012, Joshua, Genevieve et al. 2013), 

and thus costly.  

The past years, alternative techniques for field based phenotyping have been considered, including ground- and 

field-based platforms. Though these platforms have important benefits (Annex B), there are some challenges 

that could limit their potential. A lot of these challenges can be addressed by using UAVs instead. For example, 

issues as non-simultaneous parameter measurement of different plots – this can take up to hours (1), vibrations 

that result from uneven terrain surfaces  (2) and soil compaction (3) can be addressed by the replacing the 

ground-based platforms by high resolution, low altitude UAVs (Sankaran, Khot et al. 2015).  

Unmanned aerial vehicle remote sensing platforms (UAV-RSPs), equipped with for example hyperspectral 

sensors or laser scanners allow for phenomics and are characterized by their non-destructivity, flexibility, 

convenient operation, on-demand access to data and high spatial resolution (Sankaran, Khot et al. 2015).  

Nevertheless, using UAVs in phenomics has its limitations as well. Think of non-operability during windy and/or 

rainy conditions, limited flight time or insufficient or unstable speed (Sankaran, Khot et al. 2015). In all cases, 

obtained datasets need to be – depending on the information that is desired – normalized, calibrated, validated 

and/or analysed for breeders to derive the information they need from the raw imagery that is collected (Jones, 

Serraj et al. 2009). When it comes to phenotyping efforts for breeding purposes, calibration might not always be 

strictly necessary; absolute values are of lesser interest than relative differences among genotypes (Jones, Serraj 

et al. 2009) – upon which decisions on selection are ultimately made.  

In addition to the above mentioned, UAV-RSP-based sensing is as well applied to easily detect the influence of 

other factors as soil compaction, field anomalies due to earlier production practices – deficit of certain nutrients, 

presence of weeds and soil variability (Sankaran, Khot et al. 2015). On top of that, apart from being an alternative 

to manual field and ground-based platform phenotyping techniques, UAV-RSPs may also account better for 

environmental variations – think of rainfall, soil characteristics, temperature, weather – than earlier techniques. 

This way, selection efficiency increases (Sankaran, Khot et al. 2015).  

Annex B provides an overview of main advantages and disadvantages of manual sampling, sampling using 

ground-based platforms and UAAV-RSP sampling. Annex C provides application examples of high-resolution 

aerial sensing in field phenomics. Note that many of these applications and technologies - in particular those of 

the plant biotic stress – are still under development. 

1.2.3 HYPERSPECTRAL DATA AND DISEASE DETECTION 

Within agricultural sites, remote sensing can be very useful to monitor the heterogeneity and vitality of crops. In 

case of a fungal infection, detection at an early growth stage is very important to successfully address the disease 

(Tischler, Thiessen et al. 2018). Knowledge on spatio-temporal dynamics of – fungal – crop diseases allows for 

the implementation of site-specific fungicide applications (Franke and Menz 2007), reducing the impact on the 

crop yield. The past years, advances have been made in detecting and identifying plant diseases using 
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hyperspectral data (Mahlein, Oerke et al. 2012, Mahlein 2016, Thomas, Kuska et al. 2018). As significant 

information on a particular disease might be present on a narrow part or band of the spectrum, hyperspectral 

imagery is very suitable for the development of spectral disease indices (SDIs; Mahlein, Steiner et al. 2012). In 

the latter study, the authors have detected and differentiated several diseases through spectral signatures of 

sugar beet leaves. Krighna, Sahoo et al. (2014) have used hyperspectral reflectance data to classify winter wheat 

in the fields of the Haryana and Punjab states of India on yellow rust – a fungal disease – infection. They measured 

reflectances in the spectral range of 350-2500nm – visible near-infrared (VNIR and shortwave infrared (SWIR), 

using a spectroradiometer. Based on the spectral data, a robust model was derived by means of partial least 

squares (PLS) regression showing strong correlation and low error. Three highly significant spectra – 428 nm, 670 

nm and 1399 nm – were identified for this particular use case. Next to the above-mentioned leaf-level studies, 

increasingly there are examples of disease detection using airborne, high resolution hyperspectral imagery. For 

instance, in order to detect Verticillium wilt – a disease that can only be controlled if detected in early 

development stages – on olive trees, Calderón, Navas-Cortés et al. (2015) used linear discriminant analysis (LDA) 

and support vector machine (SVM) methods on both high-resolution thermal and hyperspectral imagery covering 

a 3000 ha commercial olive area. They found that, among other indices, normalized canopy temperature, 

chlorophyll fluorescence, carotenoid and disease indices perform well as indicators for early and advanced stage 

infection of Verticillium wilt. Methods of other, smaller scale studies (Calderón Madrid, Navas Cortés et al. 2013) 

have shown to be valid for the larger area of this study. 
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2. PROBLEM DEFINITION 

For plant breeders, UAV-RSPs offer very promising alternatives to traditional techniques to acquire plant traits. 

Still, a lot of the acquired data products are left to be validated – on the basis of ground data/measurements. 

Before that, obtained imagery needs to be analysed to develop methods to derive information from them 

(Furbank and Tester 2011, Zaman-Allah, Vergara et al. 2015). In addition to deriving individual plant traits, it 

should be determined which (combination of) plant traits or varieties correlate best with the grain yield of 

particular crops (Lalic 2006, Mirosavljević, Pržulj et al. 2015). The latter however, falls outside the scope of this 

thesis. UAV-obtained data need to be processed, validated and analysed in order to explore the usefulness of 

integrating this type of data in the workflow of breeders. Subsequently , the UAV-derived plant trait data can be 

correlated to the harvest yield. The main issue is that proper classification methods for particular plant traits on 

the basis of UAV-derived data are still to be identified or constructed – in many cases per crop and per trait, as 

particular traits require different sensors for detection and/or classification (Yang, Liu et al. 2017). As relevant 

plant traits for breeding have varying parameters, different techniques and instruments are needed to collect 

data on them. In some cases hyper- and/or multispectral data contains relevant information – when mapping 

crop physiology for example, whereas in other cases it might be LiDAR data – suitable to measure crop traits such 

as height. A combination or fusion of different techniques or instruments for trait identification and classification 

might be theoretically the most accurate approach in many cases, commercial companies such as Limagrain 

however might prefer the use of merely one instrument – a cost-benefit analysis will determine the best choice 

in this. 

In the light of the current technical developments, Limagrain breeding company is interested in the possibilities 

that UAV-RSPs offer to their crop trait classification efforts. The company collaborates with Aurea Imaging and 

Wageningen Environmental Research (WENR) in a public private partnership to explore the potential of 

integrating the use of UAV-RSPs into their phenotyping activities – for more information see Annex A. The 

breeding activities of Limagrain cover the phenotyping of several crops, among which is winter barley. This 

cultivated grain belongs to the Poaceae or grass family and varieties are known to be susceptible to the fungal 

plant disease of barley brown rust – Puccinia hordei – to varying degrees 

Figure 2 | WENR flying with the UAV-RSP above the winter barley plots at the location of Rilland (Limagrain). 
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Attacks of brown rust are irregular (figure 4) and can ultimately cause early senescence of the crop (Melville 

1979). Usually, summer varieties of barley are more likely to get affected by brown rust than winter barley; 

especially during warmer growth seasons, the fungus is prevalent. With the current climatological developments, 

the relevance of early detection of winter barley brown rust increases. A heavily affected crop might lead to a 

reduction of 30% of the so-called Thousand-Grain-Weight (TGW) and results in a decrease of the amount of 

grains per ear (BASF 2018). Based on visible symptoms, the infection can be divided into three stages; flecking 

(1), sporulation (2) and green island (3). The tables D1-D3 in Annex D present the results of a study by Scholes 

and Farrar (1987), showing the changes in distribution of fungal mycelium and concentration of chlorophyll in 

relation to the three visible symptoms of brown rust. The study showed that particularly at high pustule density, 

the reduction in the concentration of chlorophyll as a result of brown rust infection of leaves is present. This loss 

occurs mainly in regions between the pustules and at a later stage green islands form wholly as a result of the 

synthesis of net chlorophyll. 

Fungal diseases affect crops physiologically after infection. Unfortunately, the first changes in the plant are not 

visible with the naked eye (Berryman, Eamus et al. 1991), which leaves breeders and arable farmers blind during 

this initial phase of the disease development. However, at least some of these physiological changes are 

spectroscopically measurable – a number even at an early stage (Berryman, Eamus et al. 1991). This knowledge 

underlines a relevant potential advantage of adopting hyperspectral data for detection and classification efforts 

compared to conventional – manual – scoring of brown rust. Hyperspectral data might allow Limagrain and other 

breeding companies for development of an “early warning” methodology. A specific study on the characteristics 

and spectral measurability of winter barley brown rust should be conducted to determine whether constructing 

such a methodology is feasible. 

  

Figure 3 | Healthy winter barley versus brown rust infected leaves (source: Bayer Crop Science, FarmingUK.com). 
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3.  RESEARCH OBJECTIVES AND QUESTIONS 

The main objective of this research is to explore the relevance of phenotyping efforts using UAV-RSPs relative to 

conventional phenotyping efforts. As the time span is relatively small, to meet this objective focus has been 

placed on one specific crop and plant trait. This thesis will be an exploration of the relevance of hyperspectral 

data in determining the susceptibility of different winter barley varieties for brown rust.  

This research can further be divided in three sub-objectives. The first objective is to determine whether existing 

vegetation and disease indices might offer accurate detection and classification possibilities for brown rust on 

winter barley. The second objective is to investigate the possibilities of constructing a spectral disease indice 

(SDI) for winter barley brown rust using band prioritization and decorrelation methods. Thirdly, two 

hyperspectral datasets are compared; do they allow for characterization of brown rust over time? The objectives 

are listed below: 

I. Study the correlation between brown rust infection severity and common vegetation indices. 

II. Explore the possibilities of constructing a spectral disease index (SDI) for winter barley brown  

rust using different band prioritization, selection and decorrelation methods. 

The main research question for this thesis is defined as follows: 

MRQ : What is the relevance of phenotyping efforts using UAV-RSPs relative to conventional phenotyping 

efforts for the detection of winter barley brown rust? 

In order to answer the main research question, the following sub-questions have been defined: 

SRQ1 : How strongly are the index values of existing vegetation indices correlated to the brown rust scorings?  

SRQ2 : What are the possibilities of constructing a spectral disease index (SDI) for winter barley brown rust 

using band prioritization methods? 
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4. LITERATURE STUDY 

In this chapter, some relevant – background – knowledge and literature is gathered and reviewed. The first 

paragraph includes a short characterization of winter barley, the crop which will be of interest in this thesis. 

Paragraph 4.2 presents some more background information and literature on the concept of phenotyping and 

the emerged role of UAVs within this activity is described. The last paragraph is dedicated to a short introduction 

of plant traits relevant for breeding in general and the plant trait of winter barley brown rust in particular. 

4.1 WINTER BARLEY 

In this thesis, focus has been placed on datasets obtained on winter barley plots. A very brief description of this 

grain is given in this paragraph. 

Barley (Hordeum vulgare) is a cultivated grain, belonging to the Poaceae or grass family (figure 4). Barley has one 

of the first and best known domestication processes, which started already 10.000 years ago (Zohary 1988); 

particularly in Eurasia where the favourable temperate climate is present. Hordeum vuulgare has an annual – 

summer barley – and biennial variety. In order to be able to flower in the second half of May, winter barley must 

have had enough cold during the winter. Usually, summer barley blooms a bit later. In the Netherlands, Winter 

barley is sown in the period end of September – mid-October, whereas summer barley is sown in the second half 

of February.  

 

Figure 4 | Phylogenetic relationships among seven crop plants among which barley (Hordeum vulgare). Tree is built based on information 

from the Taxonomy database of the National Center for Biological Information (ncbi.nlm.nih.gov/taxonomy).  

    

4.2 PLANT TRAITS FOR BREEDING 

For breeding purposes, there are certain important plant traits to consider. As the main goal of breeding activities 

is the maximization of (grain) yield, it is the most important and universal – but also complex – trait in cereal 

breeding (Mirosavljević, Pržulj et al. 2015). Numerous plant traits have shown a significant correlation with 

harvest potential. Development of genotypes characterized with the increase of yield potential – high-yielding 

genotypes, wide adaptation and high responses to agronomic inputs are core activities of modern day barley 

breeding (Przulj, Momcilovic et al. 2014).    

The grain yield is depending upon a combination of a multitude of different plant traits. Proper understanding 

and analysis of the relationship between these traits is therefore essential for establishing an effective breeding 

programme (Yan and Kang 2003). Naturally, not all traits are correlated to harvest potential (yet) and determining 

the influence of every single trait is an immense – and likely unnecessary – task. Examples of agronomic and 

technological plant traits that are generally known to have a significant effect on barley grain yield and quality 
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include lodging, plant height, thousand kernel weight, hectolitre mass, grain protein content, susceptibility for 

diseases, yield, brackling, lodging, etc. 

Thereby, assuming that direct selection for a certain trait could have a negative effect for other traits is 

reasonable (Lalic 2006). In fact, Lalic (2006) found that the selection for shorter stem length of barley had a 

negative effect on grain yield per plot (-18.99%), also the number of grains per spike dropped with 7,14%. In the 

same research, selection for higher grain yields per plot caused both an increase in stem length – which is a 

negative effect - and harvest index – a positive effect. This example emphasizes the fact that selection processes 

are very complex and that simply selecting on random traits related to a higher harvest index is not a guarantee 

for a successful breeding process.  

4.3 BROWN RUST 

Barley brown rust is caused by the fungus Puccinia hordei and should not be confused with brown rust of wheat 

(Puccinia recondite) – cross-infection between the two does not occur. The disease can affect various species of 

winter and spring barley. The occurrence of brown rust is irregular, however attacks – of which the course is 

influenced by the weather – can be very damaging (Melville 1979). Brown rust can only survive on living plants, 

however winter and spring barley can be infected by uredospores. 

Depending on the resistance of the barley species, brown rust can ultimately cause early senescence of the crop. 

Visible symptoms start with the appearance of fungal growth on the leaves as orange-brown pustules (figure 7). 

Later, necrotic (dead) areas will loom up and leaves will start to wilt. Eventually, dead leaves will show a yellowed 

tint (CABI 2018).  As illustrated by figure 7, the pustules spread irregularly, which makes it possible to distinguish 

brown rust from another fungus; yellow rust or Puccinia striiformis. Yellow rust is characterized by the fact that 

it’s pustules occur in stripes as the disease progresses. The time needed for brown rust pustules to develop varies 

from 60 days when temperatures are around 5 °C and six days when the temperature is about 25 °C. Brown rust 

can affect the leaves, leaf sheaths and ears – in particular the awns of the ears. 

Brown rust is known to have a late-season development – this is related to the both the temperature and time 

it takes for inoculum to build up. Though, especially when the winter has been relatively mild, brown rust can 

loom earlier. In the seasons of spring and summer, the fungus normally appears during the tillering and stem 

extension stages. However, usually the occurrence remains only slight until flag leaves emerge (Melville 1979). 

This is also the reason why brown rust rarely affects the plant size or amount of fertile tillers produced – as both 

are determined in early growth stages.  

Brown rust causes shrivelled and/or undeveloped grain and therefore has a negative effect on both the quality 

of the grain and the grain yield (Melville 1979). None of the barley varieties are immune for brown rust, however 

they differ in their susceptibility to the disease; several breeding programmes aim at the development of species 

with a high brown rust resistance.   

Figure 5 | Leaves infected with barley brown rust (Bayer Crop Science). 
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After the crop is infected, some spectroscopically 

measurable physiologic changes will occur. Firstly, 

five days after infection the cuticles – an 

extracellular hydrophobic layer covering the aerial 

epidermis of land plants – start to tear (Berryman, 

Eamus et al. 1991). This causes a decrease in turgor 

of the cells below; leaves lose their ability to 

maintain a favourable water status (figure 6).  

Also, the blue and red absorbing chlorophyll content decreases as a result of the infection. Thirdly, as the 

photosynthesis process starts when sunlight is hitting chloroplasts, the photosynthesis decreases as well. This 

causes a final spectroscopically measurable change to occur; an increase in leaf temperature. In figure 7, the 

differences in the spectral signatures of healthy and rust infected barley leaves is visualized. The most apparent 

change is the increase in reflectance from the visible to the SWIR as a leaf gets infected.   

 

Figure 7 | Spectral signatures of sugar beet in healthy or diseased condition (source:  Anne-Katrin Mahlein, Institute of Sugar Beet 

Research, University of Göttingen). Divergent reflectances marked with red circles. 

4.4 HYPERSPECTRAL VERSUS MULTISPECTRAL IMAGING 

Spectral imaging falls under the branch of spectroscopy, in which interactions between matter and 

electromagnetic radiation is studied. Hyperspectral imaging is different from multispectral imaging, as both 

techniques use a different number and width of spectral bands. Figure 8 provides a schematic overview of the 

differences between the two imaging types. Hyperspectral imaging uses more bands – tens to thousands – and 

narrower band widths – of one to several nanometres – than multispectral imaging in the same spectral range 

(Thenkabail and Lyon 2012). As an example, a sensor with merely 25 bands can be considered hyperspectral if it 

covers a range of 250 nm – each band being 10 nm wide, whereas a sensor with the same amount of discrete 

bands covering multiple parts of the spectrum – VIS, NIR, SWIR, MWIR, LWIR, is considered multispectral. The 

pixels within a hyperspectral image are typically described as data vectors, the entire image as an image cube ( 

figure 9).  

 

 

 

 

Figure 6 | A leaf’s lost ability to maintain favourable water status 

attributed by tears in the cuticle - which has a protective and 

hydrophobic function when intact (source: author). 
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Figure 8 | Illustrative example of hyperspectral and multispectral imaging (source: author). 

 

 

 

Figure 9 | Example of an hyperspectral image cube with two spatial dimensions (x, y) and multiple wavelengths (z) (Bannon 2009). 

4.5 SPECTRAL VEGETATION INDICES (SVIS) 

In remote sensing, spectral vegetation indices are widely used, they are simple and robust techniques to extract 

quantitative information on the amount of vegetation or greenness for every pixel in an image (Chuvieco 2016). 

It is assumed that the combined interaction between a small number of wavelengths sufficiently describes the 

biochemical or biophysical interaction between light and matter (Thenkabail and Lyon 2012). Typically, they 

involve the spectral transformation of a minimum of two spectral bands; one in the Red (R) and one in the Near-

Infrared (NIR). The R (0.6-0.7 μm) being the chlorophyll-absorbing region and the NIR (0.7-1.1 μm) the non-

absorbing. In the latter one, significant leaf scattering is present – which is quite unique to vegetation that is 

photosynthetically active (Chuvieco 2016). Figure 10 illustrates the difference in reflection in the NIR and IR 

between healthy (green) vegetation and senescent (brown) vegetation. The soil reflectance line indicates that 

there is almost no difference between the amount of reflectance in the R and (N)IR for soil pixels. 
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Besides the determination of greenness and amount of vegetation of a feature of an image, SVIs are also used 

as proxy measurements of biophysical variables such as the Leaf Area Index (LAI), grains volume fraction (Fv), 

biomass and photosynthesis (Kerr and Ostrovsky 2003, Pettorelli, Vik et al. 2005).  

A SVI is best seen as an “integrator” of many variables that as a composite determine photosynthetically active 

vegetation signal (Baret and Guyot 1991, Huete, Didan et al. 2002). For this reason, differentiation between the 

multiple variables responsible for changes in the composite signal – the SVI – is generally not possible (Chuvieco 

2016).  

 

 

 

 

 

 

 

 

 

When vegetation spectra are plotted in Red and Near-Infrared space, points show a triangular pattern (figure 

13). From this plot, several definitions can be made. Firstly, there is the soil line, extending linearly outward from 

the origin and where R and NIR reflectance is more or less equal – no vegetation is present. See equation 2.1 for 

the equation of the soil line, where a and b are respectively the best fit soil line slope and intercept for a range 

of soil backgrounds at different stages of wetting and drying, roughness and litter content (Chuvieco 2016). 

Closest to the origin water pixels are found, followed by dark soil and bright soil (furthest away from the origin) 

pixels.  

𝑁𝐼𝑅𝑠𝑜𝑖𝑙 =  𝑎 ∗ 𝑅𝐸𝐷𝑠𝑜𝑖𝑙 + 𝑏 

            (4.1) 

 

Figure 10 | Typical spectral signatures of healthy (green) vegetation, senescent (brown) vegetation and the soil. The R and NIR regions are 

indicated; most vegetation indices are based on these two bands (Chuvieco 2016).  

 

Figure 11 | Structure of vegetation spectra plotted in the R-NIR reflectance space (Source: Alfredo Huete). The peak vegetation – indicating 

very dense green vegetation – and the soil line are marked in red. Note that direction of the soil line depends on the dataset.  
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Secondly, the most densely vegetated pixels – “peak vegetation” – are characterized by a high reflectance in the 

NIR and low reflectance in the R.   

4.5.1 TYPES OF SVIS 

There are several types of SVIs, all related to some extent with various vegetation canopy properties, but 

significantly different in their depiction of greenness – and therefore their usefulness and complementariness 

(Chuvieco 2016). A ratio-based SVI – or ‘simple ratio’ – is created by rationing of the NIR with the R band. See the 

formula below, where NIR and R indicate the reflectance in the near-infrared and the red per pixel. 

 

𝑆𝑅 =  
 𝑁𝐼𝑅 

𝑅
 

            (4.2) 

The well-known Normalized Difference Vegetation Index (NDVI) is a functional variant of the simple ratio, ranging 

from -1 to 1 (Chuvieco 2016).  Pixel values above 0,2 indicate living green vegetation (formula 4.3). 

 

𝑁𝐷𝑉𝐼 =  
 (𝑁𝐼𝑅 − 𝑅) 

(𝑁𝐼𝑅 +  𝑅)
 

            (4.3) 

The second type of SVIs are the optimized vegetation indices. Notwithstanding the usefulness of the NDVI for 

vegetation studies, it also responds to spatial and temporal variations in soils and atmospheric influences 

(Chuvieco 2016). The Soil Adjusted Vegetation Index (SAVI) is an example of an index which allows for the 

influence of the backscattered soil signal to be removed (Huete 1988). A parameter L, which is related to the 

differential optical penetration of R and NIR light through a vegetation canopy, is incorporated in the formula. L 

is the adjustment factor (Chuvieco 2016), see formula 4.4.  

 

𝑆𝐴𝑉𝐼 =  
 𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 +  𝑅 + 𝐿
(1 + 𝐿) 

   (4.4) 

Today, many variations on the SAVI are used. Examples are the transformed SAVI (TSAVI), which is based on SAIL 

model simulations (Verhoef 1984), the generalized SAVI or GSAVI (Gilabert, González-Piqueras et al. 2002), the 

modified SAVI (MSAVI), by Qi, Chehbouni et al. (1994). Today, the most popular soil-adjusted vegetation index is 

the MSAVI2, as it does not make use of the soil line and soil brightness correction factor.  

The third group consists of orthogonal-based SVIs. These indices measure the contrast between the R and NIR 

spectral regions by the subtraction of linearly combination of R and NIR bands (Chuvieco 2016).  The most 

elementary example of such an index is the DVI, the Difference Vegetation Index, which simply extracts the R 

from the NIR. Another example is the PVI or the Perpendicular Vegetation Index (Richardson 1977), which 

calculates the orthogonal distance of a certain pixel to the soil line. See formula 4.5, where a and b are 

respectively the slope and intercept of the soil line. 
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𝑃𝑉𝐼 =  
(𝑁𝐼𝑅 –  𝑎 ∗  𝑅) − 𝑏)

(1 + 𝑎2)
1
2

 

            (4.5) 

The last (large) group of indices are the fluorescence indices. These indices are based on chlorophyll fluorescence 

and are more directly associated to diurnal changes in photosynthetic activity than common vegetation indices 

such as the NDVI – which are in fact associated with canopy structure (Chuvieco 2016).  

Naturally, there are other spectral indices using varying combinations of spectral bands. Those indices can be 

used to emphasize different image features such as snow – the Normalized Difference Snow Index (NDSI) is used 

for snow monitoring (Chuvieco 2016). Also think of the detection of burned areas or discrimination of plant water 

content and/or diseases.  

4.5.2 HYPERSPECTRAL NARROWBAND VEGETATION INDICES 

Multispectral imagery has traditionally been used for agriculture remote sensing. Thanks to technological sensor 

developments of the past few decades, hyperspectral remote sensing imagery has started to provide agriculture 

with more opportunities for information extraction on a field level (Thenkabail and Lyon 2012). Hyperspectral 

images offer the potential to build more refined vegetation indices by the use of distinct narrow bands and 

improvement of the indices for the correction of the effects of soil background (Peng, Ruiliang et al. 2003).  

Hyperspectral vegetation indices (HVIs) nowadays are developed and used for varying applications – not merely 

in the agricultural field. The most simple indices are based on individual bands and are suited to predict biomass, 

LAI (Elvidge and Chen 1995), nitrogen (N) stress (Daughtry, Walthall et al. 2000), chlorophyll concentrations 

(Blackburn 1998, Broge and Mortensen 2002) and more. A few examples of biophysical and biochemical 

properties are given in table 1.  

Table 1 | Examples of biophysical and biochemical variables present in crops which are measurable through hyperspectral remote sensing  

(Mahlein 2010). 

 Property Relevant index 
wavelengths 

Explanatory notes 

Biophysical  LAI/crop cover (No 
units/%) 

Red + NIR  Red; absorption region 
NIR; mesophyll scattering region 

 Biomass (kg m-1) 350-2500nm Similar effects on spectral 
characteristics as LAI 

Biochemical Nitrogen (%N) VIS+SWIR   
SWIR (absorption region) 

 

 Chlorophyll content 
(μg cm-2) 

450, 680 and 700-740nm 450nm; chlorophyll absorption in 
the blue 
680nm; chlorophyll absorption in 
the red 
700-740nm; displacement of the 
red edge inflection point 

 Leaf water content 
(%) 

760, 970, 1450, 1940 and 
2950nm  

Wavelengths are water 
absorption regions 

 

4.5.3 SVIS AND PLANT DISEASES 

The past years, several SVIs have been studied by scientists and researchers with the aim to detect plant diseases 

(Moshou, Bravo et al. 2004, Hillnhütter, Mahlein et al. 2011, Zhang, Pu et al. 2012). Plant diseases – which have 

an effect on the pigments and structure of the organism – can be detected using spectroradiometric and remote 

sensing techniques (Zhang, Pu et al. 2012). Remote sensing technologies potentially provide an automatic and 
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objective alternative to visual disease assessment of plant diseases (Hillnhütter, Mahlein et al. 2011, Mahlein, 

Oerke et al. 2012). The potential of spectral sensor systems for the detection of fungal diseases – such as the 

brown rust fungus – is proven in several studies: see for example Hillnhütter, Mahlein et al. (2011), Mahlein, 

Oerke et al. (2012), Mahlein, Steiner et al. (2010), Mahlein, Steiner et al. (2012), Moshou, Bravo et al. (2004) and 

Steddom, Bredehoeft et al. (2005).  

4.6 SPECTRAL DISEASE INDICES (SDIS) 

As mentioned in the previous paragraph, SVIs are commonly used to analyse and detect changes in biophysical 

and biochemical variables – but also physiological changes – in vegetation. As plant diseases affect these 

variables, SVIs have the potential to detect plant diseases. However, the identification and quantification of 

specific diseases on the basis of common SVIs has not been done so far – as these indices lack disease specificity 

(Mahlein, Rumpf et al. 2013). For this, specific – hyperspectral – data analysis methods and algorithms on 

diseases are needed. Since diseases are known to have their own characteristic spectral signature (figure 9), 

combining different – narrow – wavelength bands in a spectral disease indices (SDIs) design allows for specific 

disease detection by the use of spectral sensors (Mahlein, Rumpf et al. 2013).  

4.7 HYPERSPECTRAL DATA –  CONCEPTS, APPLICATIONS AND ANALYSIS 

This chapter contains a brief overview of relevant concepts, applications and statistical analysis methods 

concerning the hyperspectral data used for the use case of this thesis. The first paragraphs will handle important 

applications and characteristics of hyperspectral imagery. In the last paragraphs, some statistical steps that need 

to be traversed when constructing a (hyper)spectral disease index (SDI) are appointed 

4.7.1 SCALE OF APPLICATION 

Hyperspectral remote sensing is used for various applications, among which plant disease detection. Before 

taking hyperspectral images, the measurement scale needs to be defined. Thomas, Kuska et al. (2018) 

presented vision of a multi-scale model that integrates observations of the plant-pathogen interaction from the 

microscope up to airborne imaging (figure 12). 

Metabolic changes during plant-pathogen interactions are measured on a tissue and leaf scale, resistance 

phenotyping and disease detection occur on a leaf, single plant and canopy scale (Thomas, Kuska et al. 2018). In 

practice, the experiments on the lowest scales are performed in the laboratory in the context of basic research 

and to a certain extent phenotyping as well. The scale of tissue is merely achieved by using hyperspectral 

microscope systems. More practical applications such as phenotyping and precision farming require 

measurement data from greenhouses and fields on leaf, single plant and canopy scale (Thomas, Kuska et al. 

2018).  
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As barley brown rust (caused by the fungus of Puccinia hordei) can be detected on symptoms showing from a 

leaf level, it does not necessarily have to be detected on the observation of fungal spores on the tissue level. 

Though laboratories provide the most stable environmental conditions for hyperspectral experiments, these 

measurements can be performed in greenhouses or even the field as well (Thomas, Kuska et al. 2018). Fields 

allow for large-scale applications, for which the need is particularly prominent in applications such as plant 

breeding and non-invasive disease detection (David, Jose et al. 2014, Mahlein 2016).  

4.7.2 CLASSIFICATION 

Hyperspectral sensors can image areas with hundreds of different contiguous wavelength ranges, making the 

identification and classification if the composition of various materials on the land surface possible (Chein, Qian 

et al. 1999, Chuvieco 2016). In many areas, such as agriculture, minerology, surveillance, chemical imaging and 

automatic target recognition, hyperspectral data is becoming increasingly important as a classification tool 

(Chein, Qian et al. 1999). The high dimensionality of the hyperspectral data however, has its disadvantages as 

well (Chein, Qian et al. 1999); an increased computational complexity of classification (1), a negative impact of 

highly correlated features on the classification accuracy (2) and the Hughes effect (3), also having a negative 

impact on the classification accuracy when the number of training samples insufficient for the amount of features 

that need to be classified. Adding features in this case can have a considerably negative impact on the accuracy 

of classification (Chein, Qian et al. 1999). 

4.7.3 DIMENSIONALITY REDUCTION  

As a significant amount of the hyperspectral data is correlated, it is possible to compress the data by removing 

redundant spectral information present in the multiband images – called dimensionality reduction – without 

losing a significant amount of original information (Chuvieco 2016). Eliminating bands to reduce computational 

cost, facilitate information representation, improve classification accuracy and accelerate knowledge discovery 

is a popular approach (Chein, Qian et al. 1999, Chuvieco 2016).  

Dimensionality reduction methods can be broadly divided into feature extraction (1) and feature selection (2). 

Feature extraction methods are known to transform original data into a projected space. These methods include 

for example projection pursuit (PP), principal component analysis (PCA) and independent component analysis 

(ICA) (Preet 2015). Feature selection methods are used in an attempt to identify a subset of features containing 

fundamental characteristics of the data (Preet 2015); they are often preferred over feature extraction – as the 

latter method involves a transformation of the data, which might cause crucial information to be compromised 

Figure 12 | Multi-scale model integrating observations of the plant-pathogen interaction from the microscope up to airborne imaging 

(Thomas, Kuska et al. 2018). 
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and distorted. The vast majority of unsupervised feature selection methods are based on feature ranking, in 

which an objective matrix is constructed and evaluated on the basis of a variety of criteria such as information 

divergence, maximum-variance principal component analysis (MVPCA) and mutual information (MI) (Preet 

2015).  

There are various feature selection methods for hyperspectral data, including the SVM recursive Feature 

Elimination (SVM-RFE), the Correlation based Feature Selection (CFS), Minimum Redundancy Maximum 

Relevance (MRMR) feature selection, Random Forests and a band prioritization scheme on the basis of Principal 

Component Analysis (PCA) and classification criterion (Chein, Qian et al. 1999, Preet 2015). Generally, these 

methods rank features on the basis of the comparison of information from the spectral bands and the ground 

truth or reference map (Preet 2015). The ground truth is based upon existing – a priori – knowledge on the 

spectral signatures of particular common (Preet 2015).  

4.7.4 PCA BASED BAND PRIORITIZATION 

The Principal Component Analysis (PCA) is one of the most commonly used feature selection methods. It 

transforms the original data into principal components, which have a projection that shows maximal variance 

(Preet 2015).  

Chein, Qian et al. (1999) have presented a band-selection method that comprises a band prioritization and a 

band decorrelation. The band prioritization includes the prioritization of all bands according to the contained 

information to be used for classification. This, followed by a selection of bands based on their associated 

priorities. As the spectral correlation is not considered in the band prioritization (Chang 1997), they proposed a 

decorrelation using the divergence to decorrelate the prioritized bands. For the band prioritization, Chein, Qian 

et al. (1999) proposed an eigenanalysis-based method, exploiting its full usefulness by proposing PCA-based 

criteria and classification-based criteria. They revisited the band-prioritization approach of Te-Ming, Chin-Hsing 

et al. (1998), who constructed a loading-factors matrix via the eigen or spectral decomposition of an appropriate 

matrix, in which the loading factors were used to rank the priority of each band. The classification accuracy was 

determined by the number of bands that were selected – in decreasing order of priority. Additionally, Chein, 

Qian et al. (1999) propose two eigenanalysis-based criteria for band prioritization; the PCA-based criteria (1) and 

the classification-based criteria (2). For the PCA-based criteria they considered the maximum-variance PCA  

(MVPCA; 1) and the maximum-SNR PCA (MSNRPCA; 2). Two classification-based criteria were derived as well: 

the minimum-misclassification canonical analysis (MMCA) – also known as the Fisher’s discriminant analysis (1), 

and orthogonal-subspace (OSP) criteria (2). The sum of the loading factors that are produced by the bands in the 

selected band subset determine the classification power of a certain band (Chein, Qian et al. 1999). By dividing 

the classification power of the selected band subset by all bands that are being used, a band-power ratio for 

band selection can subsequently be defined (Chein, Qian et al. 1999). After prioritization of all bands, a 

divergence-based decorrelation follows in order get rid of either redundant or insignificant bands. In case there 

are two bands that diverge below a certain given threshold, the band with the lowest priority will be removed. 

Lastly, an eigenanalysis-based band prioritization can be coupled with a divergence-based band decorrelation to 

design the band-selection method that is desired (Chein, Qian et al. 1999, Preet 2015). 

4.7.5 MULTI-CORRELATION MATRIX STRATEGY 

A different strategy to select important bands or wavelength domains is the Multi-Correlation Matrix Strategy as 

developed by Aasen, Gnyp et al. (2014). Correlation matrices from hyperspectral vegetation indices help to select 

both important and redundant bands (Aasen, Gnyp et al. 2014). Aesen, Gnyo et al. have introduced the software 

HyperCor, which automates pre-processing of narrowband hyperspectral field data and computes correlation 

matrices. Additionally, their proposed multi-correlation matrix strategy combines these matrices from different 

datasets and uses more information from each matrix.  
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For their research, Aasen, Gnyp et al. (2014) had access to a large multi-temporal spectral library which they 

could derive vegetation indices and related regression models from. From a multi-year rice study, they could 

calibrate the models with data from three consecutive years and validate them with the data of two later years. 

The results – for the application of rice biomass detection in the tillering, stem elongation and heading – showed 

an improvement of the model performance by 10 to 62 percent after applying the multi-correlation matrix 

strategy. 

As described in chapter 2.4, SDIs involve the spectral transformation of a minimum of two spectral bands; these 

spectral bands are linked through a mathematical formula (Aasen, Gnyp et al. 2014, Chuvieco 2016). The amount 

of spectral bands used determines the dimension of the SDI. Aasen, Gnyp et al. (2014) used three types of two-

dimensional SDIs in HyperCor: the Ratio Vegetation Index (RVI; 4.6), Difference Vegetation Index (DVI; 4.7) and 

Normalized Difference Vegetation Index (NDVI; 4.3). 

 

𝑅𝑉𝐼 =  
 𝑁𝐼𝑅 

𝑅
 

(4.6) 

𝐷𝑉𝐼 =  𝑁𝐼𝑅 −  𝑅 

`            (4.7) 

𝑁𝐷𝑉𝐼 =  
 𝑁𝐼𝑅 −  𝑅

𝑁𝐼𝑅 + 𝑅
 

(4.3) 

The HyperCor software provides two pre-processing steps; limit the wavelengths to the range of interest by 

identification of the device that was used to collect the spectra for a given dataset (1) and eliminating the 

detector offset at the transition wavelengths from one detector to another (2). The latter step is taken as it 

strongly influences the calculated SDIs. There are multiple reasons for such an offset to occur and depends highly 

on the instrument, temperature for example can be of influence (Milton, Schaepman et al. 2009). Figure 13 

shows an example of the spectra from different nitrogen levels before and after correction for the detector 

offset.  
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Before detector offset correction 

 

After detector offset correction 

 

Figure 13 | These graphs show the spectral signatures from different nitrogen levels of a dataset of stem elongation stage in 2012  (left) 

and lambda by lambda correlation plots for biomass (right). High values (dark color) indicate that the wavelength which is set as the 

independent variable has high predictive value over the dependent wavelength. The red rectangles in the lower right graph indicate the 

main differences of before and after the detector offset in the correlation plots (Aasen, Gnyp et al. 2014).   

After pre-processing, two steps are considerable to optimize the data analysis and focus on relevant parts of the 

spectrum. Firstly, the calculation of descriptive statistics of the input dataset help to identify important parts of 

the spectrum (Bajwa and Kulkarni 2011, Mahlein, Rumpf et al. 2013). Secondly, the redundancy matrices or 

lambda by lambda correlation plots (figure 15) help to determine the usefulness of all bands by calculation of 

the degree of redundancy between two spectral bands (Thenkabail, Smith et al. 2000, Thenkabail, Enclona et al. 

2004a, Thenkabail, Enclona et al. 2004b, Aasen, Gnyp et al. 2014). A redundancy threshold can be set to exclude 

certain bands from further analysis; this way, the most useful hyperspectral narrow bands (HNBs) can be 

detected (Thenkabail, Enclona et al. 2004a, Thenkabail, Enclona et al. 2004b, Thenkabail, Mariotto et al. 2013).  

Next, a procedure follows to identify optimal band combinations for HVIs, in the form of correlation matrices 

(Thenkabail, Mariotto et al. 2013). This matrix contains the correlations of band combinations for a chosen SVI 

type – HyperCor offers ratio, difference or normalized difference (Aasen, Gnyp et al. 2014). From this, best band 

combination lists and/or histograms can be retrieved.  

It is possible that in one single correlation matrix (CM), a band combination or domain appears to be insignificant. 

For a CM, one dataset and one method (SVI  type) is used. After combining this CM with one or other CMs, bands 

may start to show the information they contain. Aasen, Gnyp et al. (2014) developed the multi-correlation 
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matrices strategy (MCMS), which allows users to gain greater insight into the significance of individual bands. 

Ultimately, the MCMS allows for identification of potential bands to be used for HVI development. The function 

of this strategy, carried out cell wise, connects the informative content of multiple CMs. For the purpose of HVI 

construction, cells with the desired features can be selected from the multi-correlation matrix directly – 

additionally, the matrix can be used for further processing instead. 

The study of Aasen, Gnyp et al. (2014) was aimed at developing HDIs predicting rice biomass at different growth 

stages and for the entire growth period – which was 2007-2009. The workflow of their study broadly consists of 

multiple steps (Annex N). Firstly, nine datasets representing a single growth stage in a single year (SGSY) and 

three datasets representing all data from a single year (SGAY) were exported for calibration. One dataset with 

combined data from all growth stages and calibration years (AGAY) was exported as well. First of all, the detector 

offset is corrected for all datasets, water absorption bands are removed and the spectral range is restricted to a 

range available for all data sets. Aasen, Gnyp et al. (2014). After obtaining the CMs and applying the MCMS and 

direct approach, band selection for the development of an HVI is ultimately done by determining the difference 

between the direct and MCMS approach. The models resulting from both approaches (figure 14) are validated 

with an independent dataset originated from the years 2011 and 2012.   

 

Figure 14 | Plots of biomass against the NDI values derived from the MCMS and direct approach together with their regression models: (a) 

tillering stage (b) stem elongation stage, (c) heading stage and across all stages (d) (Aasen, Gnyp et al. 2014). 

The results of the study show that overall, the model from the MCMS approach had a better performance. Also, 

the wavelength identification differed depending on the growth stages and the approach. All but one of the 

identified band combinations were located in the visible and NIR region; the bands for the direct approach at 

stem elongation were situated in the SWIR (Aasen, Gnyp et al. 2014). All but one band combinations were 

situated in the same wavelength domain; only the band combination from the ‘Across All Stages’ model derived 

from the direct approach do not (Annex N). Overall, for the individual growth stages of the calibration dataset, 

the MCMS model performed weaker than the direct approach model. The R² of the MCMS model is averagely 
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lower and the SEE higher than those of the direct approach model (table 2). In the validation dataset however, 

the performance of the direct approach showed poorer than the performance of the MCMS model. The 

exponential models did not perform as well as the linear models; only for the direct approach applied to the 

‘Across All Stages’ dataset the exponential model was perceived as advantageous by Aasen, Gnyp et al. (2014). 

Table 2 | Results of MCMS (grey) and direct approach (white). For both calibration and validation are given: the coefficient of determination 

(R²), standard error of the estimate (SEE) and the root mean square error (RMSE). The exponential regression model results are only achieved 

mentionable for the ‘Across all stages’ dataset (Aasen, Gnyp et al. 2014). 
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Figure 16 | Timeline marked with the collection of hyperspectral data (green) and validation brown rust, lodging and brackling scores 

(orange). The main development phases of the brown rust disease is indicated below the timeline.  

5. DATA DESCRIPTION 

As the feasibility and outcome of this study greatly depends on the potentials and restrictions that come with 

the available hyperspectral and reference data and statistical methods which will be used for the data analysis 

and SDI construction. Paragraphs 5.1 and 5.2. briefly discuss these restrictions.  

5.1 DATA COLLECTION AND TEST SITE 

Flights with the Rikola hyperspectral camera have been executed by WENR on the 

14th and the 26th of June in 2017. Imagery were taken from a field of winter barley 

plots at Rilland, located near the Belgian border in the Dutch province of Zeeland 

(figure 17).  

Data provided by Limagrain Nederland consists of field data and shapefiles – 2.823 

fields in total. The shapefiles and field data – an Excel file containing among other 

attributes the brown rust scores for each plot – have been given plot IDs – which 

needed to be checked and linked correctly.  

As the plots include so-called filling crops – “vulgewas” – and the imagery is not 

flawless, the amount of plot data that does fulfil the requirements for statistical 

analysis was not determined yet. During the phase of pre-processing, this would 

become evident for the most part.  

 

 

Annex F shows the different trial fields that were present within the winter barley field. The trial fields are filled 

with different genotypes. The different fields contain a minimum of 34 and a maximum of 921 plots.  

Both the UAV and sensor used for obtaining the hyperspectral data are lightweight systems. The Rikola Snapshot 

Hyperspectral camera is currently used in agriculture, forestry, water research and for medical and forensic 

purposes. It is the only snapshot hyperspectral device available and provides real spectral response to each pixel. 

As the device is widely used in agriculture, the systems should be very well suitable for this thesis study.  

The Altura Pro AT8 UAV was first used by WUR in 2012 and is still operative today. The most important 

disadvantage of this lightweight system is it’s limited performance under windy conditions. Further specifications 

of the Rikola sensor system used are presented in Annex D.  

 

 

 

 

 

 

 

 

Figure 15 | Location of the winter barley plots at Rilland, Zeeland (source: Aurea Imaging). 
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The timeline of figure 16 illustrates the collection of the data that was used for this thesis. The brown rust scoring 

has been performed two weeks before the first flight. As both activities occurred within the same stage of 

development of the disease, no  great developments took place within this timeframe – which means that the 

data is suitable enough for this thesis’ research purposes. The scoring of the lodging and brackling is included in 

figure 16 as they are important external variables included in this thesis study. For a visualization of the spreading 

of brown rust, lodging and brackling scores, reference is made to Annex E.   

6.2 HYPERSPECTRAL DATASETS 

For this study, two hyperspectral datasets obtained through UAV flights with a Rikola hyperspectral camera both 

executed in July 2017 are available. Each dataset contains imagery of the winter barley plots at the location of 

Rilland, Zeeland. Both datasets exist of 16 bands. Unfortunately, for some reason the camera settings for the 

second flight were different, causing the sensor to measure the reflections at wavelengths diverging from the 

first flight (table 3).  

Table 3 | The sensor settings for both Rikola flights above Rilland in June of 2017 are divergent; reflectance is measured at different 

wavelengths. Closely spaced wavelengths of the two flights are highlighted – they are of particular interest in attempting to study the spatio-

temporal development of the disease (SRQ3). 

Band Spectral 
region 

Wavelength 
(nm) 
UAV flight 14-
6-2018 

Spectral 
region 

Wavelength 
(nm) 
UAV flight 26-
6-2018 

Wavelength 
(nm) 
difference 

Wavelength 
(nm) 
difference 

1 YELLOW 609 YELLOW 514 95  

2 YELLOW 615 YELLOW 529 86  

3 RED 625 YELLOW 550 75  
4 RED 631 YELLOW 570 61  

5 RED 663 RED 630 33 1 

6 RED 682 RED 669 13  

7 RED Edge 692 RED 680 12 2 

8 RED Edge 696 RED Edge 690 6 2 

9 RED Edge 715 RED Edge 700 15  

10 RED Edge 735 RED Edge 709 26  
11 NIR 764 RED Edge 720 44  

12 NIR 793 RED Edge 739 54 4 

13 NIR 833 NIR 759 74 5 

14 NIR 862 NIR 780 82  

15 NIR 872 NIR 800 72 7 

16 NIR 887 NIR 869 18 3 

 

Figure 17 | LiDAR imagery of the winter barley plots, produced by WENR the 26th of June.  On this imagery, the flattening effects of lodging 

and brackling become evident. Naturally, affected plots containing lodged or brackled crops have a very divergent spectral signature. 
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6.2.1 DATA RESTRICTIONS 

The restrictions of the data are related to a selection of factors as listed below:  

1. Subjectivity of the validation data - as manual scoring was performed – a different view angle of the 

scoring Limagrain employees and the UAV-sensor might very well influence de the data. 

2. Time difference between the UAV-flights and manual scorings (figure 18).  

3. Diverging sensor settings of the second UAV-flight. 

4. Limited amount of bands – no bands in the blue and green spectral regions.  

5. Heterogeneity of the data itself – many external variables influencing the reflectances. 

Partly as a result of the variability between the two moments of recording, the imagery comes with both technical 

limitations as limitations due to the variability in the data itself. Though all data was gathered in the same growth 

stage of the brown rust, and therefore this should not cause major problems during the analysis phase, the 

second flight was conducted several days before harvest – meaning that the crop was brown of color. The 

imagery of the second flight is characterized by a typical signature for senescent vegetation, these reflectances 

are too divergent to allow for the addition of a proper spatio-temporal research aspect. For the difference in 

mean reflection between the two flight dates, reference is made to Annex J. The availability of spectral bands 

directs this study to the use of red, red edge and near-infrared spectral bands. Altogether, the data of the first 

flight and the validation data are useful enough for this thesis.  

6.3 IN-SITU DATA   

The validation or ground data (figure 18) was provided by Limagrain Nederland and consists of an Excel file with 

among other attributes, the plot codes and brown rust scoring given to each plot. These manual scorings were 

given by breeding experts of the company on the 30th of June in 2017 – two weeks before the first UAV-flight 

was executed.  

In theory, the brown rust – even as the brackling and lodging – scores given by Limagrain vary between values 

from 1 to 10, respectively representing low to high severity. For this part of the study, assumed is that scores of 

1 represent that the crop is not affected by the particular variable. In practice, scores from 1 to 8 were given to 

the plots. 

Figure 18 | Illustration of the Excel sheet with validation data provided by Limagrain Nederland BV. The brown rust scores are given in the 

second to last column of this screenshot. 
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6. METHODOLOGY  

For this thesis, hyperspectral UAV imagery from the Rikola hyperspectral camera was tested on its relevance in 

the classification of winter barley plots on the basis of brown rust infection severity. Existing spectral vegetation 

and/or disease indices, statistical analysis and methods were used to achieve the research objectives as defined 

in chapter three. Validation of the results was done by use of the collected ground data – conventionally 

(manually) given brown rust scores – by Limagrain Nederland. See paragraph 5.1 for an introduction of the data 

and test site. The research design can be divided in four main phases or components: 

1. Literature study 

2. Pre-processing 

3. Statistical analysis 

4. Retrospect/discussion 

 

The first, a literature research on the main concepts related to the subject, has been essential to get familiar 
with the problem – for this study, reference is made back to chapter four. The second component consists of 
the pre-processing of the data – paragraph 5.2 contains further specification of this part. The third component 
is aimed at answering the sub-research questions – producing the results of the research – using spectral 
vegetation indices and statistical methods – see paragraph 5.3. The last component concerns a conclusion and 
retrospect on the research. 

6.1 PRE-PROCESSING 

Before the provided data could be used for the statistical analysis, several pre-processing steps had to be taken. 

The storage settings for the two hyperspectral datasets is divergent and needed to be uniformized as much as 

possible. Thereby, the data obtained during the UAV flight of the 26th of June 2017 does not cover all plots. 

Additionally, the available shapefiles representing the area of the real plots still had to be fitted nicely over the 

imagery – naturally, for the data analysis it is essential to make sure that the pixels that fall within the shapefiles 

are in fact pixels that represent the different plots. The influence of plot border pixels – of which the reflectance 

contains more influence of the soil – and pixels from outside a plot is undesirable. Furthermore, the shapefile 

plots needed to be linked to the corresponding records of the ground data - initially, not all the IDs corresponded 

correctly. Finally, the reflections have been averaged per plot. 

After the calculations performed during the former steps, a basic selection of usable winter barley plots took 

place. Some plots were not scored for brown rust and/or plot shapefiles did not cover set of usable reflection 

values (figure 20). Plots that did not meet the following conditions were selected out: 

1. Available brown rust score    

2. Complete set of (16) reflection values 

3. 0% NoValue pixels  

 

During the statistical analysis, it was attempted to reduce the external variability by including the lodging and 

brackling scores of the plots. Not all plots were scored for lodging and/or brackling either, so for the purpose of 

further external variability reduction those plots had to be filtered out as well (figures 19 and 20). 
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Figure 19 | Not all plots contained a full set of brown rust, 

lodging and/or brackling scores. 

Figure 20 | Several plots were not fully covered by the 

hyperspectral imagery (this figure concerns the imagery of the 

flight executed on the 14th of June 2017). 

6.2 STATISTICAL ANALYSIS 

The statistical analysis is structured by the research questions of this study. For each of the three sub-research 

questions the relevant explanation and statistical steps are described in the following paragraphs. The first two 

were addressed using the hyperspectral data of the first flight, the third sub-research question  

6.2.1 SUB-RESEARCH QUESTION ONE 

What is the classification accuracy of existing spectral vegetation and disease indices on winter barley brown 

rust? 

As described in paragraph 5.6, spectral vegetation indices are robust and simple tools to extract quantitative 

information on the amount of vegetation of greenness for every pixel in an image (Chuvieco 2016). In the pre-

processing phase, reflections have been averaged over each of the 2639 plots that proved to be useful for this 

thesis study – in other words, the plots that survived the pre-processing phase. For answering the first research 

question, the average reflections of the plots in the RED, RED edge and NIR spectral regions have been used to 

calculate index values of a selection of indices (tables 4 and 5). 

Table 4 | Hyperspectral bands and associated wavelengths used for RED, RED edge and NIR spectral regions used for calculating the index 

values of the indices indicated in table 5. 

Spectral range Bands  Wavelengths 

RED 3, 4, 5, 6 625, 631, 663, 682 

RED edge 7, 8, 9, 10 692, 696, 715, 735 
NIR 11, 12, 13, 14, 15, 

16 
764, 793, 833, 862, 872, 887 

 

Table 5 | Explanation of the indices used for addressing the first sub-research question. 

Index Description/calculation Reference  

 
ND 790/670 

 
Normalized Difference 790/670 
This index is a so-called simple ratio index. For this study, the wavelengths of 
790 and 670 were not available. The two bands closest to these wavelengths 
were used instead. This index is a narrowband vegetation index. Note that the 
bands of the hyperspectral data used for this study are more or less 10nm of 
width. 
 

(
793𝑛𝑚 − 663𝑚𝑛

793𝑛𝑚 + 663𝑛𝑚
) 

 
(Barnes 2000) 
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NDVI  

 
Normalized Difference Vegetation Index NIR/RED 
This index is a - particularly in satellite remote sensing - widely used simple 
ratio index. Values vary between -1 and 1. Positive values above 0,2 indicate 
living vegetation. The NDVI is typically a broadband vegetation index. 
 

(
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
) 

 
 

 
(Huete and 
Jackson 1987) 

 
NDRE 

 
Normalized Difference Red Edge  
A variation of the NDVI, where the red spectral region is replaced by the red 
edge spectral region. Compared to the NDVI, the NDRE is less prone to 
saturation in higher growth stages of dense crops like winter barley. The NDRE 
has a lower correlation with the LAI and has potential to measure further 
down the canopy than the NDVI. 
 
 

(
𝑁𝐼𝑅 − 𝑅𝐸𝐷𝑒𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝐸𝐷𝑒𝑑𝑔𝑒
) 

 

 
(Barnes 2000) 

 
PVI 

 
Perpendicular Vegetation Index 
An orthogonal based vegetation index that calculates the orthogonal distance 
to the ‘soil line’ – this soil line is determined on the basis of the reflection 
values of the dataset. Variables a and b represent respectively the slope and 
intercept of this line.  
 

(𝑁𝐼𝑅 − 𝑎 ∗ 𝑅𝐸𝐷) − 𝑏

(1 + 𝑎2)
1
2

 

 
a = 0.8418540867 (slope) 
b = 2867.559548 (intercept) 
 

 
(Richardson and 
Wiegand 1978) 

 
SAVI 

 
Soil-Adjusted Vegetation Index 
This vegetation index takes into account the influence of reflection of the soil. 
Parameter L represents the soil brightness correction factor; in highly 
vegetated areas L = 1, for areas lacking green vegetation L = 0. For this study, 
the default value of  0,5 is used. When L =0, the SAVI is equal to the NDVI. 
 

(
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
) ∗ 1 + 𝐿 

L = 0,5 

 
(Huete 1988) 

 

In the attempt to determine the statistical relationship between the spectral index values and the brown rust 

scores, a simple linear regression was performed for which the mean reflections per spectral region were used 

for the calculation of the index values of the indices indicated in table 9.  

6.2.2 SUB-RESEARCH QUESTION TWO 

What are the possibilities of constructing a spectral disease index (SDI) for winter barley brown rust using band 

prioritization and decorrelation methods? 

This research question was addressed following a list of steps, specified in table 6. The steps are covering a first 

interpretation of the data, the identification of relevant SVI types and band combinations, the construction of a 
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disease index, but also some training and testing with the data. Table 7 shows the method that led to the final 

results as presented in the next chapter.  

Table 6 | Workflow addressing sub-research question two. 

 Step description Notes 

1 Calculate descriptive statistics. (1) R package ‘stats v3.6.0’ used. 
(2) Consult Annex H for theoretical 
background. 

2 Specify three SVI types for the purpose of computing 
correlation and redundancy (lambda-lambda) matrices. 

Examples of SVI types; ratio, difference, 
orthogonal, soil-adjusted, etc.  

3 Compute lambda-lambda matrices in R of all trial fields.  R package ‘stats v3.6.0’ was used. 

4 Identify optimal band combinations and SVI type for a 
hyperspectral disease index. 

The lambda-lambda plots are used as a tool 
to identify these bands and SVI type.  

5 Construct three disease indices for the detection of 
brown rust on winter barley – one per SVI type.  

Use the identified optimal band 
combination for each SVI type. 

6 Use the identified optimal SVI type and band 
combinations to build a model that predicts the brown 
rust scores of the individual plots. Correlate these 
predicted scores with the actual brown rust scores to 
identify the best SVI type. 

(1) R packages ‘stats v3.6.0’ and ‘caret v6.0-
84’ were used.  
(2) This step is not an essential step to 
construct a disease index, it rather shows 
the potential of training this data –
ultimately resulting in stronger correlations.  

 

The descriptive statistics are provided in Annex H will give a first interpretation of the data before identifying 

optimal band combinations for the construction of a spectral – disease – index. Table H1  of Annex H provides a 

summation and short explanation of the statistics that were calculated for this purpose.  
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Table 7 | The method leading the results for sub-research question two.  
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7. RESULTS 

In this chapter, the results of the statistical analysis are presented. The results addressing the two sub-research 

questions are divided over the paragraphs 7.1 to 7.2. In the first paragraph, the first results clearly show the 

potential of the information that is present in the hyperspectral data for brown rust disease detection. Paragraph 

7.2 will present  

7.1 CLASSIFICATION ACCURACY OF EXISTING SPECTRAL VEGETATION INDICES 

This paragraph is divided in two parts. The first discusses the spectral signatures per brown rust score, the second 

discusses the linear regression between existing vegetation indices and the brown rust scores.  

7.1.1 INFLUENCE OF BROWN RUST ON MEAN REFLECTANCE  

The first results of this study are the mean reflection values per band for the different brown rust scores that 

were given to the plots by Limagrain inspectors (figure 21). The reflections per band for the brown rust scores 

for each trial field can be found in Annex G. For all plots, a mean reflection value was calculated; those means 

were subsequently averaged over the brown rust scores that were given to these plots. From the graph in figure 

23, it becomes evident that the reflectances of the plots with different brown rust scores are diverging. Plots 

with a low brown rust score show the highest reflectances in the NIR bands. In the red edge region, these values 

‘flip’ around; in the red, the highest reflectances are shown by plots with the highest brown rust scores. Relatively 

few plots received a brown rust score of 1, 7 and 8, which presumably relates to the diverging lines of these 

scores at the upper and lower wavelengths. Another important factor for the diverging spectral signatures of 

these brown rust classes is that the dataset is highly heterogenous and has many external variables.  

 

Figure 21 | Mean reflections per band for each of the given brown rust scores; wavelengths are visualized in nm, mean reflectance indicated 

in  variation between 0 and 1. The histogram included in the figure illustrates the amount of observations that were made for each brown 

rust score visualized in the line graph.  The line graph shows that the mean reflectances per brown rust score are ‘flipped around’ in the near-
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infrared region – with an exception for the reflections of the plots scored with a brown rust score that was given relatively few times as 

reflectances of plots with scores of 1, 7 and 8 diverge from this trend evidently.  

7.1.2 BROWN RUST SCORES AND EXISTING VEGETATION INDICES 

From the simple linear regression that was performed to study the statistical relationship between the values of 

the indices and the brown rust scores, the correlation coefficients and coefficients of determination as presented 

in table 8 resulted. The first column concerns the results of the total population of plots. The following columns 

concern different plot selections, based on the brackling and lodging scores that were given to these plots. For 

an overview of all corresponding scatterplots, reference is made to Annex K. 

The first column shows the correlation coefficients (R) and coefficients of determination (R²) that were calculated 

using the full number of plots that ‘survived’ the pre-processing phase. In order to gain better insight in the 

influence of the two external variables brackling and lodging, calculations have been performed on a selection 

of the lowest scores – plots scored with 1 – as well. All plots have been scored on brackling, however merely 

1490 of them were scored on lodging. To make better comparisons, calculations have been performed on a plot 

selection of plots that were scored on lodging as well – see the fourth column.  

Table 8 | Correlation coefficients, coefficients of determination and root mean square errors of the indices and brown rust scores. Results 

are shown for six different plot selections – see column headers. Note that all plots were scored for brackling, therefore no separate selection 

was necessary for calculations. 

Plot selection All plots  
 

Plots with a 
brackling = 1 
score 

Plots scored on 
lodging 

Plots with a 
lodging = 1 score 

Plots with a  
lodging = 1 and 
brackling = 1 score 

 

Plot count 2637 552 1490 923 28  

       

Index  Correlation coefficient (R) 
 

     

ND 793/663 -0.260868 -0.1687804 -0.2165886 -0.2680686 -0.1519575  

NDVI -0.2447097 -0.1654338 -0.2102741 -0.2605754 -0.132526  

NDRE -0.244919 -0.1660667 -0.2247058 -0.2400066 -0.09969654  

PVI -0.3406554 -0.2809728 -0.2178211 -0.4046482 -0.2992048  

SAVI -0.2447122 -0.163625 -0.2102753 -0.349921 -0.132529  

    Average R -0.220769895  

    SD of Rs 0.066545544  

Index Coefficient of determination (R²)      

ND 793/663 0.06805210 0.02848683 0.04691062 0.07186077 0.02309107  

NDVI 0.05988284 0.02677247 0.04421519 0.06789952 0.01756314  

NDRE 0.05998532 0.02757814 0.05049271 0.05760318 0.09939999  

PVI 0.11604610 0.07894574 0.04744603 0.1637401 0.08952353  

SAVI 0.05988405 0.02677315 0.04421571 0.1224447 0.01756394  

    Average R² 
SD of R²s 

0.044684372 
0.031800344 

 

           

Index Root mean square error (RMSE)     

ND 793/663 3.387553 2.531691 3.660867 3.581784 2.292085 

NDVI 3.41603 2.567139 3.689242 3.609612 2.33088 
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NDRE 3.467002 2.626527 3.741888 3.658392 2.399267 

PVI 3.603639 2.770303 3.882055 3.799775 2.559559 

SAVI 3.530351 2.688193 3.807195 3.727494 2.469463 

    Average RMSE 
SD of RMSEs 

2.915537 
0.112429 

 

From the results, it is evident that the correlation coefficients and coefficients of determination look best for 

plots scored with 1 for lodging (table 8). From the six indices, the PVI performs best on all plot selections. The 

PVI values of plots scored with 1 for brackling are least significant, the lower count – 522 – of plots that were 

used in calculations might be of influence in this fact. Notably, despite the low count of 28, plots that were scored 

1 for both lodging and brackling show better R and R²s than those of all plots scored with 1 for brackling. Better 

results are retrieved when the variability of lodging is decreased to a minimal – as a score of 1 is in theory the 

lowest score; these plots are assumed not to be affected by the considered variable. 

The R² values are overall low, meaning the data is not closely fitted to the regression line (figure 22). The best 

performing index is the PVI and the best plot selection is the selection on plots scored with 1 for lodging – roughly 

16% of the variance is explained by the brown rust score. For the total plot selection of 2637 plots, this is almost 

12%.  

Since the R² cannot determine whether estimates of the coefficients and predictions are biased, the residual 

plots of figure 23 are visually assessed. Residuals are the difference between observed values and the values 

predicted by the regression model. The residual scatter plot and histogram show the spreading of the residuals 

from the regression performed on the PVI values and brown rust scores belonging to plots scored with 1 for 

lodging. From the scatterplot, there is hardly any heteroskedasticity notable and the distribution shows no trends 

– meaning the variance is constant and there is no drift. The histogram to the left proves the distribution of 

residuals is approaching normal, which is desirable and means the data is not biased.   

The root mean square error (RMSE; table 8) is interpret as the standard deviation of the unexplained variance – 

which is the variance between the two variables. The RMSE is in the same unit as the reflectances. Lower values 

indicate a better fit of the regression line. Interestingly, the plot selections with fewer plots – those with a 

brackling score of 1 and those with both a score of 1 for brackling and lodging – have the lowest RMSEs for all 

indices. The highest RMSEs are found for the plots scored with 1 for lodging – the fifth column. When comparing 

the individual indices, the NDVI has the lowest RMSEs with an average of 3.21. The PVI has the highest RMSEs 

with an average of 3.40. 
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Figure 22 | Scatterplot of the PVI values against the brown rust scores of plots scored with a score of 1 for lodging. The concerning plots are 

indicated in orange on the overview map that is provided with the graph. The markers of the scatterplot show a reasonable spread, however 

a trend is clearly visible along the regression line.  

 

 

 

Figure 23 | Histogram and scatterplot of the residuals, meaning the observed – fitted values,  of the regression model on the PVI values 

and brown rust scores of the plots scored with 1 for lodging. 
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7.2 CONSTRUCTING A SPECTRAL DISEASE INDEX (SDI) FOR WINTER BARLEY BROWN RUST 

This research question was addressed by creating lambda-lambda matrices to the methods of Aasen, Gnyp et al. 

(2014). Three lambda-lambda or redundancy plots were made, for three different types of narrowband indices; 

normalized difference (1), orthogonal (2) and soil-adjusted (3).  The matrices show the R² values between the 

index values based upon the index calculations using the bands indicated on the x- and y-axis and the brown rust 

scores.  

Figures I1-I3 of Annex I are heatmap visualizations of the correlations between the brown rust scores and each 

possible band combination – for this particular hyperspectral dataset – per index type. Figures 26-28 are the 

corresponding redundancy matrices. Table 9 illustrates how the index values were calculated and thus how the 

values in the correlation and redundancy matrices (figures I1-I3 of Annex I  and 24-26)  should be interpret.  

Table 9 | Calculation of the narrowband index values used to make the correlation plots visualized in figures 24-26 and the  lambda-lambda 

plots of figures 27-29 . Band X refers to the band number on the horizontal axes of these figures, band Y refers to the bands indicated on the 

vertical axes. 

 Type of index Calculation  

1  
Normalized difference 
 
- Derived from the NDVI - 
 

 

(
𝑏𝑎𝑛𝑑 𝑌 − 𝑏𝑎𝑛𝑑 𝑋

𝑏𝑎𝑛𝑑 𝑌 + 𝑏𝑎𝑛𝑑 𝑋
) 

 
 

2  
Orthogonal  
 
- Derived from the PVI –  
a = 0.8765432 
b = -0.04202 
 

 
(𝑏𝑎𝑛𝑑 𝑌 − 𝑎 ∗ 𝑏𝑎𝑛𝑑 𝑋) − 𝑏

(1 + 𝑎2)
1
2

 

 

3  
Soil-adjusted  
 
- Derived from the MSAVI2 –  

 

(
2 ∗ 𝑏𝑎𝑛𝑑 𝑌 + 1 − √(2 ∗ 𝑏𝑎𝑛𝑑 𝑌 + 1)2 − 8 ∗ (𝑏𝑎𝑛𝑑 𝑌 − 𝑏𝑎𝑛𝑑 𝑋) 

2
) 

 
 

 

The lambda-lambda plots show per index type for which band combinations the redundancy is high and for which 

combinations it is low. From these matrices, we can derive the best performing wavelengths for each index type. 

The normalized difference index using the wavelengths of 872 and 793 nm, has with 0.137 the highest R² of all. 

The optimal formula per index type is given in table 10.  

 

 



37 
 

 

Figure 24 |  Lambda-lambda (coefficient of determination R²) contour plot showing the R² values of the normalized difference (ND) index 

values ~ brown rust scores. This plot is created using the 16 band hyperspectral data retrieved at the 14th of June 2017. The axes are 

provided with the narrowband wavelengths and band numbers. The legend shows the spreading of the R² values. All band combinations   

with the value ‘NaN’, show no correlation with the brown rust scores, and therefore have no R² value either. 

 

 

 

Figure 25 |  Lambda-lambda (coefficient of determination R²) contour plot showing the R² values of the orthogonal index values ~ brown 

rust scores. This plot is created using the 16 band hyperspectral data retrieved at the 14th of June 2017. The axes are provided with the 

narrowband wavelengths and band numbers. The legend shows the spreading of the R² values.  
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Figure 26 |  Lambda-lambda (coefficient of determination R²) contour plot showing the R² values of the soil-adjusted index values ~ brown 

rust scores. This plot is created using the 16 band hyperspectral data retrieved at the 14th of June 2017. The axes are provided with the 

narrowband wavelengths and band numbers. The legend shows the spreading of the R² values.  

 

Table 10 | Optimal indices according to the lambda-lambda matrices as visualized in the figures 29-31. 

1 Normalized difference 
 

(
793𝑛𝑚 − 872𝑛𝑚

793𝑛𝑚 + 872𝑛𝑚
) 

 
2 Orthogonal  

 
a = 0.8765432 
b = -0.04202 

 
(833𝑛𝑚 − 𝑎 ∗ 872𝑛𝑚) − 𝑏

(1 + 𝑎2)
1
2

 

 

3 Soil-adjusted  
 
 

 

(
2 ∗ 833𝑛𝑚 + 1 − √(2 ∗ 833𝑛𝑚 + 1)2 − 8 ∗ (833𝑛𝑚 − 872𝑛𝑚) 

2
) 

 

The three optimal indices can further be compared by adding their index values in a predictive model. In Annex 

M, the results of these three models are presented. The Pearson correlation coefficient of the predicted brown 

rust scores and actual brown rust scores is with 0.323 the highest where the orthogonal index values are used as 

a predictor. For normalized difference the correlation is 0.249 and for soil-adjusted it is 0.198.  

In addition to the training and testing done for each index type with one predictor based on the optimal band 

combination, a coarser approach was taken as well. For each index type, the index values calculated using the 30 

best band combinations – with the highest VI ~ brown rust R² values as visualized in figures 24-26 – were used 

as variables to create a random forest repeated cross validation model. The correlations between the predicted 

brown rust scores of the test set and the actual brown rust scores are given in Annex I. The Pearson correlation 

between the predicted brown rust values and the actual brown rust values using the orthogonal index values is 

with 0.517 the highest of the three. The orthogonal index of the second row in table 10 is the best performing 

index in this study, and therefore comes the closest to a SDI for winter barley brown rust.  
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8. DISCUSSION 

In this section, final marks about this thesis study are drawn before presenting the conclusion in the next chapter.  

8.1 KEY FINDINGS & INTERPRETATIONS 

In the research problem definition and background of this thesis document, the relevance of identifying crop 

traits is broadly described. In crop science and for breeding companies, maximization of the crop yield and 

development of genotypes characterized with increased yield potential are respectively the main goals. 

Phenotyping efforts are a critical component in these developments. The potential role of UAV-RSPs, equipped 

with the relevant – in case of this study hyperspectral – sensors in rapid high-throughput crop phenotyping – 

‘phenomics’ – is proven but not yet researched thoroughly. The case study of this thesis focuses on the potential 

of UAV-derived, 16-band hyperspectral data in the classification of winter barley plots on brown rust infection.  

The results of this research indicate that there is a relationship between spectral reflectance of winter barley and 

the severity of the brown rust infection of this crop (figure 21). In other words, the question whether UAV-derived 

data could be relevant in the detection and categorization of winter barley brown rust can be answered in the 

affirmative. The relevance of UAV-RSP-based classification relative to conventional classification techniques has 

proven to be dependent of several factors.  

First step of this study was to interpret the mean reflectances of the plots for each brown rust score. Comparison 

of the mean reflectances of healthy and brown rust infected sugar beet leaves found by Mahlein, Steiner et al. 

(2012, figure 7) with the mean reflectances resulting from this thesis’ study (figure 21), indicate both similarities 

and differences. First of all, both figures show a clear distinction of healthy and infected crop in the same spectral 

region. The figures show a higher absorption in the red for uninfected crops, this is explained by a decrease of 

the blue and red absorbing chlorophyll content after a brown rust infection. In the NIR however, the reflections 

differ. In both figures, the reflection is higher but only the results of this study show that the reflections ‘flip’ 

around in the red edge region. The brown rust infected leaves then have the highest absorption in the NIR and 

‘healthy’ leaves the lowest; in the study of in the study of Mahlein, Steiner et al. this is not the case – healthy 

leaves show the highest absorption in both the red and NIR. Kept in mind should be that the studies concern 

different set-ups – respectively operational and experimental – and different crops. As reflection in the NIR is 

known to not only be dominated by leaf internal structure, leaf anatomy and epidermal surface but also the 

structure of the canopy, a difference in reflectance is not inexplicable. Most importantly, in both studies the 

distinction in reflectances for healthy and unhealthy crops can be made clearly in the same spectral regions. 

Subsequently , the mean spectral reflectances of the different plots filled with the winter barley crop and the 

brown rust scores given to these plots by breeders – the validation data – were compared. For these plots, the 

index values of commonly used vegetation indices demonstrate a moderate linear relationship with the brown 

rust scores. The PVI shows with a moderate value of -0.405 the best Pearson correlation coefficient, for a plot 

selection of plots given a score of 1 for lodging – an external variable that evidently appeared to influence the 

reflectance of the crop during this study. Attempted was to correct for both lodging and brackling in determining 

the correlations. However, overall lodging seemed to be of greater influence  as an external variable on the 

reflection values than brackling. 

By consulting lambda-lambda or redundancy matrices for different types of vegetation indices – difference, 

orthogonal and soil-adjusted (figures 24-26), relevant band combinations for the construction of a specific 

disease index were identified. Of course, bearing in mind that the available hyperspectral bands for this thesis 

study is not quite extensive – in previous studies to rust diseases on vegetation, important wavelengths in the 

green and blue were identified as well (Liu, Gu et al. 2015, Heim, Wright et al. 2019). The matrices demonstrated 

that averagely, the soil-adjusted index values show the strongest R and R² values with the brown rust scores, 

however the best individual R² value of 0.159 is found for the orthogonal  index using the wavelengths 833 and 
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872 nm.  For each index type, an index based upon the optimal band combination was constructed. After training 

the data, the brown rust scores predicted using the orthogonal index values showed the strongest correlation 

with the actual brown rust scores (Annex M), which was expected.  

With the use of index values from the best 30 band combinations, for each of the three index types another 

random forest prediction model was constructed (Annex L). Again, the model based on the orthogonal index 

values performed best; the Pearson correlation between the brown rust scores predicted by this model and the 

actual brown rust scores was 0.517. The models were based upon the entire dataset as they appeared to not 

perform well when merely the index values of plots scored with 1 for lodging were included – this would have 

been to reduce external variability and has led to more optimistic results in correlating the PVI to the brown rust 

scores for sub-research question one. Reason for the poorer predictions could be a critical decrease in amount 

of observations. It is likely that a model based on a dataset covering the index values of more winter barley plots 

with this lodging score would actually perform better than a model based on a dataset not corrected for this 

external variable.  

The results of this thesis overall meet the expectations. As a fungal disease affects a crop on a physiological level 

and therefore has an effect on the pigments and structure of the organism, it was expected that the brown rust 

scores would correlate with the index values derived from the mean reflections for each plot. Given the modest 

size of the dataset and regarding the external variables uncontrolled circumstances, the found correlations are 

within the expected values. Strong correlations in studies like this are merely found when external variability is 

carefully addressed and the hyperspectral dataset is larger.  

8.2 IMPLICATIONS 

The findings of this thesis study support the existing literature regarding spectral disease indices and plant 

diseases. The correlations found during this thesis study are moderate. Given the circumstances under which the 

study was performed, these correlations are enough evidence that brown rust on winter barley can be detected 

using remote sensing techniques – or more specifically; using spectral vegetation indices.  

Though this research did not succeed to identify the specific wavelengths for a well-performing, accurate disease 

index for winter barley brown rust possible, it is not an insignificant contribution to this purpose. First of all, the 

spectral signatures characteristic for the different stages of this fungal disease give a clear first impression of 

which spectral regions could well be relevant for further research to this topic. Secondly, from the redundancy 

matrices presented in the results of the second research question, the best band combinations for the particular 

hyperspectral dataset of this study could be retrieved. This information is a proper starting point for future 

research. Lastly, the prediction models using the index values as predictors show promising results as correlations 

for each index type became stronger.  

8.3 LIMITATIONS 

There are several major factors influencing the reliability of the results, most are related to the data collection. 

Firstly, the hyperspectral data itself has some restrictions. The two hyperspectral datasets used, consisted of a 

modest number of 16 bands in the spectral range covering wavelengths in the red, red edge and near-infrared 

region. However, without known cause, the sensor settings of the second flight are divergent – causing different 

wavelengths to be assigned to the bands. Also, due to the limited spectral range, the methodological choices in 

relation to vegetation indices used for this study were constrained to indices covering bands within the red to 

near-infrared spectral range; indices using for example bands in the blue could not be included.  

Regarding the validation data, for this research the provided brown rust scores have been assumed to be 

unbiased and accurate. All brown rust scorings were performed by a breeding company on the same day. 

However, if different employees have participated in this task – how skilled they may be, the scorings might be 
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slightly biased. Performing these kind of disease assessments is a skill, which is not mastered at the same level 

by everyone. Naturally, this would affect the statistical analysis.  

The hyperspectral data used and the validation data were collected two weeks apart. Ideally, this would have 

been on the same day, as both the growth stage of the crop and disease itself develop over time – fortunate, the 

two moments of data collection fall within the same development stage of the fungus. Thereby, the external 

variability increases as the moment of data collection of both datasets is further apart – think for example of the 

influence of lodging and brackling.  

The external variability is a point of attention itself. The number of factors influencing the mean reflection values 

for the different bands per plot – starting point for the analysis performed in this research – is large. For example, 

the spectrally measurable physiological changes typical for an infection with brown rust, may very well have 

other causes – including other diseases. These causes should be ruled out as much as possible in further studies 

to this subject. 
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9. CONCLUSION 

This thesis study aimed to determine the relevance of phenotyping efforts using UAV-RSPs relative to 

conventional phenotyping efforts for the detection of winter barley brown rust. With the correlations found 

during this research – though moderate – it can be concluded that UAV-RSPs have the potential of becoming 

very important for the detection of winter barley brown rust in the future. Index values of existing vegetation 

indices – the NDVI, PVI and SAVI – showed moderate Pearson correlations with the validation brown rust scores. 

Further analysis on the potential of the available 16 narrow bands has led to stronger correlations. From the 

lambda-lambda – redundancy – matrices, the best 30 band combinations were read; after training the data using 

the index values of indices based on these band combinations, it appeared that the orthogonal index values 

performed best. After training the data with the 30 best performing orthogonal indices, the predicted brown rust 

scores of the test set and brown rust scores from the validation data had a correlation coefficient of 0.517. 

Though the results are promising, there currently are conditions that do not contribute to the potential of UAV-

RSPs in the detection of winter barley brown rust. Most have to do with the pre-processing and research set-up. 

Concerning the pre-processing of the data, much attention should be paid to automation of outlier detection 

and the positioning of shapefiles or polygons on the imagery of the crop plots. The winter barley plots are not in 

a straight grid, meaning that the positioning of the shapefiles for this thesis was a manual task. If the positioning 

of a shapefile would be a few centimetres off, the mean reflection is influenced by bare soil pixels – this would  

affect the statistical analysis negatively. Writing an algorithm for automatic plot detection is necessary to bring 

phenotyping using UAV-RSPs into practice – this is a study on itself. Note that for this research, merely the mean 

reflections per winter barley plot were used for the analysis. Future research might best include a study to the 

spreading of reflection values within each plot, this would help characterizing the spreading of the disease over 

time as well. 

Regarding the research set-up, factors that help improving the results of further research on this topic are 

evident. Most importantly, the size of the hyperspectral dataset should be increased, both in number of bands – 

or at least spectral regions – and years covered. The latter is very important; as Aesen, Gnyp et al. (2014) stated, 

in one single correlation or redundancy matrix, a band combination or range might appear to be insignificant for 

index construction. However, after combining multiple matrices from different years, bands may start to show 

the information they actually contain. From a multi-temporal dataset, several vegetation indices and regression 

models can be derived. During this thesis, it was not possible to combine multiple matrices, which has been a 

limiting factor during the analytical phase. The size of the dataset in spectral bands is important as well. In order 

to actually formulate a specific disease index such as a winter barley brown rust index, the search for information 

on more wavelengths than those that were available for this particular study should be continued. Attention 

should be paid to pre-setting the sensor bands of the hyperspectral camera to relevant – in this case lower – 

wavelengths. The first suggestion based on previous literature would be to use the highest possible band under 

1000 nm as in the study of Mahlein, Steiner et al. (2010), the differences in reflection values between healthy 

and rust infected crop would increase. Secondly, their research showed a difference as well around 465 nm, 

meaning that for further research on disease detection, preferably both the green and blue spectrum are 

represented as well. A spectroradiometer could help identifying significant wavelengths as well for this particular 

matter. 

In addition to the above mentioned, the external variability should be reduced as much as possible. Perhaps, first 

there should be done more research on the external variability itself. Strongly influencing external variability 

might originate from the object – in this case a crop –  itself. For example, the different genotypes were not given 

much attention in this study, while their spectral signatures may vary. On top of that, there are other factors that 

may cause the same spectrally measurable physiological symptoms or changes as implied by the fungal disease 

brown rust. Another origin for external variability is the circumstances under which the data is collected. Within 

an hour, weather conditions can change as such – in any case the position of the sun – that it affects the data.   
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Regarding the validation data, this would in future research better be collected at the time of the UAV-flight, or 

at least not two weeks from this moment. The same accounts for the collection of data on for example lodging, 

brackling or other external variables that future researchers wish to account for. For example, if the scoring of 

lodging and brackling was performed too early, the influence of these variables may have changed at the time of 

the flight – the scorings then are no longer accurate. Regarding the collection of the validation data; if this task 

is performed by more than one person, this should be documented. As involving multiple employees – each 

bringing their own bias – might result in increased variance within the data, knowing which employee scored 

which group of plots is essential to explain this variance. An even better option would be to test the 

reproducibility of the employees performing the assessments (Steddom, Bredehoeft et al. 2005). 

Lastly, accounted should be for potential other causes for the spectrally measurable symptoms that are identical 

to those of a brown rust infection – think of loss in water content and decreased photosynthesis. Other causes 

may for example be other diseases, but also weather .  

This thesis’ research offers a first step in the identification of important wavelengths and index types for the 

purpose of classifying brown rust on winter barley. The spectral regions that have proven to be important, match 

with the spectral regions identified found relevant in previous research (Mahlein 2010). Furthermore, this 

research helped identify important facets for future research to this topic.  
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Gilabert, M. A., J. González-Piqueras, F. J. Garcı́a-
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GLOSSARY  

 
Bias 

The distance that a statistic describing a given sample has from 

reality of the population of the sample was taken from.  

 

Biased estimator  

In the case of a biased estimator, the sampling distribution is 

not evenly distributed around the true parameter. The 

estimator is consistently over- or underestimating. Respectively 

resulting in a high bias or low bias; the sampling distribution is 

‘biased’ and does not come close to the true sampling 

distribution. A biased estimator is not desired in statistics.   

 

Coefficient of determination  

Abbreviated R². A value usually between 0 and 1, where the 

latter indicates a perfect fit of the regression predictions on the 

data. Values outside this range might imply a wrongly chosen 

model. The predictors are calculated by least-squares 

regression.  

 

Correlation coefficient (Pearson) 

Abbreviated R. A value between 1 (meaning a perfect positive 

correlation) and -1 (a strong perfect negative correlation; 

variables move in a perfect opposite direction). Values around 0 

represent the weakest correlations. In remote sensing, 

correlation coefficients are used to determine the strength of a 

relationship between two bands.  

 

Correlogram  

Graph/visualization of a correlation matrix.  

 

Covariance 

How values in one band vary with respect to the values of 

another spectral band. If they vary both in a positive direction 

for example, they are correlated. Always a comparison between 

multiple bands. The covariance of a band with itself is the 

variance.  

 

Dimensionality reduction 

A process in which the number of random variables – in remote 

sensing these would be bands – of consideration is reduced. 

This is done by obtaining a set of principal variables – which are 

a subset of the complete set of variables, containing to a large 

extent the structure and information that is carried by the 

complete set of variables.  

 

Eigenvalues 

Variances of synthetic bands or principal components. These 

values – the lambda’s – are of decreasing value; lambda one is 

larger than lambda two and so on. 

 

Eigenvectors 

Eigenvectors define the direction of the axes of the synthetic 

bands. So the first eigenvector defines the direction of the first 

synthetic band or principal component. Eigenvectors should be 

uncorrelated and perpendicular to each other. 

 

Feature extraction  

A dimensionality reduction method involving the  

transformation of original hyperspectral data into a projected 

space, with the risk of crucial and critical information to be 

compromised and distorted (Chein, Qian et al. 1999). 

 

Feature ranking  

The construction and evaluation of an objective matrix based on 

various criteria such as information divergence, MVPCA and MI 

(Chein, Qian et al. 1999). 

 

Feature selection  

A dimensionality reduction method striving at the discovery of a 

subset of features which capture the fundamental 

characteristics of the data, while processing sufficient capacity 

to discriminate between classes (Chein, Qian et al. 1999). 

 

Fisher’s discriminant analysis  

Also known as minimum-misclassification canonical analysis 

(MMCA),  

 

Fitted value 

Also known as predicted values; the mean response value that 

is predicted by a statistical  model after the input of the value of 

the predictor.  

 

Genotype  

The combination of characteristics as determined in the genetic 

material. 

 

Greenness 

 A composite signal of leaf chlorophyll content, leaf area, 

canopy cover and canopy structure. This index has a high 

sensitivity to spatial and temporal variations in greenness. 

However, it does not help in attempts to differentiate between 

the possible causes of these variations – may it be for example a 

change in LAI or leaf chlorophyll content (Chuvieco 2016).  

 

Ground truth 

 Also known as reference map; in remote sensing it refers to 

information collected on location.  

 

 
Figure i | Scatterplots of unbiased and biased heteroscedastic and 

homoscedastic distributed variables. Green graphs concern unbiased 

data, the red graphs are from biased datasets.  
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Heteroskedasticity 

When the variance of errors given the independent variable of X 

is not constant. The variance depends on Xi as Xi increases, the 

magnitude of errors increases.  

Homoskedasticity  

In case of heteroskedasticity, the variance of errors given the 

independent variable X is constant. In other words, all errors 

made by the model are basically constant as X increases.  

 

Hughes effect 

Also known as the Hughes phenomenon, peaking paradox or 

the curse of dimensionality. In 1968, Hughes showed through 

statistical analysis how the accuracy of a classifier is dependent 

of the number of training examples/pixels. Many researchers 

tried to void or reduce the Hughes effect as it has an effect on 

classification techniques.  

 

Unlike broadband – e.g. Landsat – data, hyperspectral 

narrowband imagery can have up to hundreds or thousands of 

spectral bands. This larger amount of spectral bands is very 

advantageous for complex classification purposes. However, the 

amount of training pixels required to maintain a decent 

statistical confidence and functionality for classification 

purposes grows exponentially with the number of spectral 

bands. Statistical integrity (1) and class accuracy (2) require 

enough training pixels to train the classifier (1) and an equally 

large number of training pixels for each class (2). 

 

Hyperspectral camera  

Camera that obtains data (it records spectra) with the aim to 

identify objects, materials or locate processes. With 

hyperspectral imaging, contiguous spectral bands are 

measured. See Annex A, figure A for an illustration. 

 

Information divergence 

Measurement of the difference between to – nonnegative – 

matrices.  

  

Lambda to lambda plot  

Redundancy matrices, calculations of correlations between all 

wavelength pairs of the dataset; the calculated value represents 

the degree of redundancy between the two wavelengths 

(Aasen, Gnyp et al. 2014). 

 

Loadings 

All elements of the eigenvectors. 

 

Lodging  

The bending of a crops its stem around ground level, it is a 

permanent displacement that makes it difficult or impossible to 

harvest the crop. Difference is made between stem and root 

lodging. The latter is caused by a failing root system, whereas 

stem lodging can be caused by high winds and heavy rainfall.  

 

Linear orthogonal transformation 

A principal component analysis is an example of a linear 

orthogonal transformation. The result of a linear orthogonal 

transformation of spectral bands is a set of uncorrelated 

variables or ‘synthetic bands’, a linear combination of all input 

spectral bands. These bands contain ‘new’ spectral information 

in a decreasing order from band 1 to band n. The last synthetic 

bands are very noisy, they contain very little spectral 

information. 

 

In case of a two dimensional analysis, this type of 

transformation consists of a translation (1), where the origin of 

the axis system is moved to the centre of all pixel values and a 

rotation (2) in such a way that the first axis will point into the 

direction of the largest variation and the second axis into the 

direction of second largest variation.  

 

Multispectral camera  

Camera that obtains data within specific wavelength ranges – 

which might be separated by filters or by the use of instruments 

that are sensitive to particular wavelengths – so it measures 

spaced spectral bands. See Annex A, figure A for an illustration. 

 

Hyperspectral narrowband  

Imaging of hyperspectral bands with a narrow (usually 3-10 nm) 

bandwidth. The amount of bands in a hyperspectral image 

varies; from hundreds to thousands.  

 

Neckling    

Situation where the ears (of the winter barley stem) drop off.  

 

Null hypothesis  

The null hypothesis states that there is no relationship between 

two variables. Generally this hypothesis is a default assumption 

until the opposite is proved.  

 

Orthomosaic  

An aerial photograph which is geometrically corrected (or 

“orthorectified”) in such a way that the scale is uniform, 

meaning that the photo does not have more distortions than a 

map. Also known as orthophoto, orthophotograph or 

orthoimage. 

 

Phenotype  

The combination of characteristics that are formed with the 

influence of external factors on the phenotype (EPPN 2017). 

 

Phenotyping  

Accurate and rapid acquisition of phenotypic information of 

plants or cells in different environments. 

 

Phenomics   

Rapid high-throughput crop phenotyping 

 

Principal Component Analysis  

Also known as the Karhunen-Loeve Transform, a decorrelation 

technique that is widely used for data compression and 

interpretation. It transforms data coordinates in such a fashion 

that the first principal component vector is along the direction 

of maximum variance. It then maximizes the variance in 

successive components (Chein, Qian et al. 1999, Richards 2006). 

Principal Component Analysis is done for the purpose of data 

reduction (1), visual interpretation – as the first three synthetic 

bands or principal components provide most of the information 

and contain more than 95% of the variation – (2) and 

improvement of image analysis – e.g. redundancy can decrease 

the separability of classes. See the definition of linear 

orthogonal transformation as well.  
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Random Forest 

Random forest – or ‘random decision forest’ – is a powerful 

supervised machine learning algorithm. It is suited for 

performing both progression and classification tasks. It operates 

by constructing a multitude of decision trees during training and 

– in classification – giving the mode of the different classes as 

the output class; in regression this would be the mean 

prediction of the individual trees.  

 

Real-time kinematic (RTK)  

Real-time kinematic (RTK) positioning is a satellite navigation 

technique used to enhance the precision of position data 

derived from satellite based positioning systems (global 

navigation satellite systems, GNSS) such as GPS, GLONASS, 

Galileo, and BeiDou. 

 

Redundancy  

The amount of variance of a variable that is explained by 

another independent variable. The higher the redundancy, the 

higher the ability to predict. In remote sensing, redundancy 

reduction of spectral bands is highly desirable.  

 

Regression analysis 

Estimating the relationship among multiple variables by the use 

of statistical processes.  

 

(Regression) error 

In regression, errors and residuals are easily confused as they 

are closely related to each other. The error defines how much 

the observed value deviates from the true value, for the 

definition of the residual, see ‘Residual’ below in the glossary.  

 

Regression line 

On the regression line, a trend is represented that describes 

how the response variable – y-axis – changes as the 

independent variable on the x-axis changes.  

 

Regression residual  

Also known as the prediction errors. The difference between an 

observed value of the dependent variable and the predicted 

value is a residual. Each data point has a residual. The residual is 

calculated as follows: observed value - predicted value. The sum 

and the mean of the residuals both equal to zero. Residuals are 

measured to determine how far the values are from the 

regression line. 

 

Residual  

In statistics, a residual is the difference between the observed 

value and the mean value that is predicted by a model for that 

observation. In regression, residual values are useful as they 

indicate to which extent in a certain model is accounted for in 

the variation in observed data. 

 

Root mean square error 

Root Mean Square Errors (RMSEs) measure how spread out the 

residuals around the regression line are; it is the square root of 

the variance of the residuals. The RMSE has the same unit as 

the response variable and shows how close observed values are 

to the models predicted values. A lower RMSE indicates a better 

fit.  

 

 

Spectroscopy 

In spectroscopy, the absorption and emission of light – and 

other radiation – by the matter of interest is studied with 

relation to the dependency of these processes on the radiation 

wavelength.    

 

Signal to noise ratio 

In this ratio, the level of a desired signal is compared to the 

level of background noise. When a ratio is higher than 1:1, this 

indicates the presence of more signal than noise.  

   

Stalk lodging   

The breakage of the stalk below the ear (crop). 

 

Standard deviation  

Tells something about the spread around the mean value.  

Technological (plant) traits  

 

Unbiased estimator 

In this case, the sampling distribution is evenly distributed 

around the true parameter; it is not over- or underestimating. 

The sampling distribution comes close to or equals the true 

distribution. An unbiased estimator is desired in statistics. 

 

Variance  

The spread of values around the mean value of a certain band. 

Also explained as the difference of every pixel value with the 

mean value of the band.  

 

Wavelength    

The distance between cycles within an electromagnetic wave. 

 

Winter barley  

Biennial variation of the cultivated grain Hordeum vulgare, 

which blooms in the second half of May. 

 

ABBREVIATIONS   

 

AGAY  

All growth stages, all years 

 

CFS  

Correlation based Feature Selection 

 

CSLI  

Cercospora Leaf Spot Index 

 

DEM  

Digital elevation model 

 

DSM  

Digital surface model  

 

FLIR  

Forward looking infrared (radar); radiometer  

 

Fv 

Grains volume fraction 

 

GNDVI  

Green Normalized Vegetation Index 
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HDI  

Hyperspectral vegetation index 

ICA  

Independent component analysis 

IR  

Infrared (spectral band/region) 

 

LAI  

Leaf Area Index 

 

LiDAR  

Light Detection and Ranging 

 

MI  

Mutual information  

 

LWI  

Leaf Area Index 

 

MMCA  

Minimum-misclassification canonical analysis 

(also known as Fisher’s discriminant analysis)  

 

MRMR  

Minimum Redundancy Maximum Relevance  

 

MSAVI(2)  

Modified Soil-Adjusted Vegetation Index (2) 

 

MSNRPCA  

Maximum-SNR PCA  

 

MVPCA  

Maximum-variance principal component analysis 

 

NaN 

Not a number 

 

NDSI  

Normalized Difference Snow Index 

 

NDVI  

Normalized Difference Vegetation Index NIR/RED 

 

NDRE 

Normalized Difference Red Edge 

 

NIR  

Near-Infrared (spectral band/region) 

 

NSI  

Nitrogen Stress Index 

 

OHM  

Object height model  

 

OSP  

Orthogonal-subspace projection 

 

PCA  

Principal component analysis 

 

PPP  

Public Private Partnership 

 

PP  

Projection pursuit  

 

PRI  

Photochemical Reflectance Index 

 

PVI 

Perpendicular Vegetation Index 

 

R 

Coefficient of correlation 

 

R² 

Coefficient of determination 

 

R(ED)  

Red (spectral band/region) 

 

RGB  

Red Green Blue (spectral bands/regions) 

 

RMSE 

Root Mean Square Error 

 

RTK   

Real-time kinematic (positioning) 

 

SAIL  

Scattered by arbitrary inclined leaves 

 

SAVI 

Soil-Adjusted Vegetation Index 

 

SDI  

Spectral Disease Index 

 

SGAY  

Single growth stage, all years 

 

SGSY  

Single growth stage, single year 

 

SNR or S/N 

Signal-to-noise ratio. 

 

SR  

Simple Ratio 

 

SVI  

Spectral Vegetation Index 

 

SVM  

Support Vector Machine  

 

TSAVI  

Transformed Soil-Adjusted Vegetation Index 

 

UAV  
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Unmanned aerial vehicle 

 

UAV-RSP  

Unmanned aerial vehicle remote sensing platform 

 

VI  

Vegetation Index 

 

WENR  

Wageningen Environmental Research 

 

WUR  

Wageningen University & Research 

ABBREVIATIONS OF STATISTICAL TERMS 

 

n Sample size 

SD  Standard deviation 

S² Variance 

cov(X,Y) Covariance 

R (Pearson) correlation 
coefficient 

R² Coefficient of determination 
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13. APPENDICES  

 

ANNEX A 

Public Private Partnership 

Limagrain Nederland BV, Aurea Imaging and the WUR (WENR) collaborate in the context of the developments 

regarding phenotyping using UAVs in a PPS with an expected time span of four years. The genetic material and 

reference data provided through the breeding trials executed by Limagrain Nederland BV allow for validation of 

products derived during remote sensing studies by Aurea Imaging and the WUR.  

Table A1 | Parties involved in the Public Private Partnership 'Next generation phenotyping'. 

 

The first has primarily been aimed at the optimisation of the production of good quality images with 

hyperspectral, multispectral, LiDAR, RGB and thermal imaging systems - see Table 3 - and first interpretations of 

the data (quality).  

 

Table A2 | Imaging technologies used for data acquisition during the PPP between the WUR, Aurea Imaging and Limagrain Nederland BV.  

 

For each site, the list of deliverables as defined in Table 5 were formulated. During the first year, these 

deliverables were improved on their shortcomings and Real Time Kinematic (RTK) or Post Processed Kinematic 

(PPK). The second year, drone flights were repeated and the data obtained and the focus shifted to the plant 

traits – while improvements on RTK/PPK and shortcomings continued.  

 

Table A3 | Deliverables and trait focus per technology used in during the PPP. 

 

The years three and four have initially been reserved for the focus on more advanced analysis of complex traits.  

Organization Location Involved 

Limagrian Nederland BV Rilland, Zeeland Piet Reyns, Eva Ampe 

Aurea Imaging Zaventem (België) Bert Rijk 

WUR + WENR Wageningen, Gelderland Sander Mücher, Henk Kramer, Lammert Kooistra, Gert Kooistra, 
Rick van de Zedde 

Technology Aurea WUR 

LiDAR                - RiCopter 

Hyperspectral camera                - RICOLA 

Multispectral camera Sequoia MUMSY 

Thermal camera FLIR Tau2 640 radiometric WORKSWE LL WIRIS (tba) 

RGB senseFly S.O.D.A. 20 MP RiCopter, Phantom 3 

Technology Deliverables Trait focus 

LiDAR DEM, DSM Biomass, height, lodging 

Hyperspectral camera Georeferenced hyperspectral data cubes Biomass, disease (brown rust) 
Multispectral camera Multispectral mosaics (including NIR region) Varying plant responses to a deficiency of 

nutrients, water stress, diseases (brown rust) 

Thermal camera Thermal images Diseases (brown rust), water stress, stomatal 
conductance (leaf temperature) 

RGB RGB coloured LiDAR points, spatially high 
resolution mosaics with high RTK positioning 

Ground cover, plant count, greenness (visible 
properties) 
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Crops of interest in this PPP are maize grain, silo corn and winter barley, all grown at multiple plots in the region 

of Schouwen (maize grain and silo corn), the municipality of Rilland  (winter barley) and the municipality of Reusel 

(silo corn).   
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ANNEX B 

Main advantages and disadvantages of manual sampling, sampling using ground-based platforms and UAV-

RSP sampling (Guijun Yang 2017). 

Table B1 | Sampling advantages and disadvantages of manual sampling, ground-based platforms and UAV-RSPs. 

Manual Sampling Ground-based platforms UAV-RSPs 
 

+ - + - + - 

Use of human 
eye  

Slow Fast(er) No unique “fit for 
all” platform to 
phenotype 
diverse crops 

Fast UAV operation 
often limited by 
sensor payload 
(size/weight), 
operating 
altitude and 
flight time. 

 Destructive Less or non-
destructive 

Non-
simultaneous 
measurement of 
plots 

Non-destructive  

 Laborious  Non-laborious Compaction of 
soil 

Non-laborious  

 Costly 
procedures 

Less costly, 
however cost-
effectiveness for 
rapid field 
phenotyping still 
an issue 

Vibrations 
resulting from 
uneven terrain 
surfaces 

Low operational 
costs 

 
 
 
 
 

   Still issues on 
adjustment to 
row and plant 
spacing, 
inconsistencies in 
plot sizes and 
plant height 

Flexible, 
convenient 
operation 

 

  Plot-level data 
captured with GPS 

 On-demand 
access to data 

 

 Does not allow 
for phenomics 

Allows for 
phenomics, which 
may better 
account for 
environmental 
variations 

 Allows for 
phenomics, which 
may better 
account for 
environmental 
variations 

 

  High spatial 
resolution 

 High spatial 
resolution 

 

 No benefit from 
current 
developments in 
data-processing 
algorithms/tool 

Allows to benefit 
from current 
developments in 
data-processing 
algorithms/tools 

 Allows to benefit 
from current 
developments in 
data-processing 
algorithms/tools  
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ANNEX C 

Applications of high-resolution aerial sensing in field phenomics (Sankaran, Khot et al. 2015). 

Table C1 | Applications of high-resolution sensing in field phenomics (Sankaran, Khot et al. 2015). 

Application Symptoms/ 
Parameters 

Indicators Techniques 

Plant water stress ▪ Reduced 
stomatal closure 

▪ Decreased 
photosynthesis 

▪ Decreased 
growth 

▪ Exacerbation of 
heat stress 
(reduced 
transpirational 
cooling) 

-  

▪ Temperature in leaves 
(to determine plant 
tolerance to water 
stress) 

▪ Biomass (determine 
plant growth) 

▪ Thermal infrared 
sensing  

▪ Multispectral 
imaging 

▪ Near-infrared 
imaging (determine 
reduced biomass due 
to water stress) 

Plant nutrient 
deficiency (1) and 
heat stress (2) 

(1) 
▪ Lower 

chlorophyll 
content  

▪ Lower growth 
rate 

▪ Tissue necrosis  
▪ Higher disease 

susceptibility  
(2) 

▪ Osmotic stress, 
stomatal closure  

▪ Decreased 
stomatal 
conductance  

▪ Increased leaf 
temperature 

▪ Decreased 
photosynthesis 

 

▪ Temperature in leaves  
▪ Correlation between NSI 

(nitrogen stress index) 
and  grain yield 

▪ Correlation between 
crop senescence index 
and NDVI 

▪ Plant primary responses 
to salinity and heat 
stress 

▪ Canopy temperature 
changes 

▪ Visible to near-
infrared spectral 
reflectance (changes 
in photosynthetic 
and stomatal 
conductance) 

▪ Thermal imaging , 
possibly combined 
with RGB imaging 
(detect plant primary 
responses to salinity 
and water stress and 
canopy temperature 
changes) 

Plant biotic stress Depending on the 
diseases/pests 
development and 
symptoms  

▪ Disease severity 
▪ Susceptibility to 

diseases of different 
varieties 

▪ Assessing/monitoring 
pathogen in atmosphere  

▪ Multispectral 
imaging (high-
resolution) 

▪ Correlate simple 
vegetation indices 
(NDVI, LWI, CLSI) 
with the disease 
severity 

▪ Correlate thermal 
imaging and PRI to 
disease severity 

Plant growth 
parameters 

▪ Emergence + 
number of 
emerging plants 

▪ Plant vigor 
▪ LAI 
▪ Biomass 
▪ Plant maturity 
▪ Height  
▪ Grow width 
▪ Canopy closure 
▪  

 ▪ Estimate GNDVI 
using multispectral 
imaging (to study 
emergence/spring) 

▪ Using false color 
multiband image to 
determine (number 
of ) emergence 
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Crop yield 
potential 
assessment 

▪ Plant flowering 
date 

▪ Number of heads 
(seeds) per plant 

▪ Size, volume, 
weight of plant at 
time of harvest  

▪ Canopy vigor 

Correlating the parameters to the 
crop yield  

▪ Correlating canopy 
vigor/winter 
survival/spring stand 
to yield potential 
using GNDVI 

▪ Quantification of 
large field plots 
through 
multispectral imaging  
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ANNEX D 

 

Figure D1 | The Rikola Snapshot Hyperspectral Camera (source: Senop) 

Specifications of the Rikola Snapshot Hyperspectral Camera (Senop) 

The Rikola hyperspectral camera was used to obtain the datasets used in this thesis study; it is a spectral system 

providing snapshot images in the visible and near-infrared spectral range. The pixels it produces are true image 

pixels – so no interpolation is used. It is a lightweight – 720 grams – and robust camera. The system is currently 

used in agriculture, forestry, water research and for medical and forensic purposes. For full specifications, see 

the technical data provided by Senop in the table below.  

 

Figure D2 | Technical illustrations of the Rikola camera as provided by its producer Senop. 

Table D1 | Specifications of the  Rikola Snapshot Hyperspectral camera. 

Parameter Specified value Remarks 
Horizontal FOV 36,5°  

Vertical FOV 36,6°  

F-number ~ 28  

Focal length ~ 9 mm Camera has fixed optics 

Ground pixel 6,5 cm at 100 m altitude  

Default Spectral Range 500-900 nm Other ranges: 400—700, 450-800 and 
550-900 

Spectral Resolution ~10 nm, FWHM Over the range of 500-830 nm 
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Spectral step  ~1 nm Peak wavelength can be sleected by ± 
1 nm accuracy 

Calibration Unit Spectral radiance  

Spectral Bands ~ 380° max The band amount is programmable. 
The used band amount can be selected 
between 1-380 for the default range 

Image Sensor CMOS Pixel size is 5,5μ x 5,5μ 

Dynamic Range 12 bits  

Esposure Time 0,12-3000 ms Adjustable 

Frame Rate 30 frames/sec Frame rate with 10 ms exposure time 
and 1010 - 648 pixels image size 

Operational Voltage 7-9 V  7,5 V is recommended 

Power Consumption 5,3 W average 10,0 W momentarily  

Weight ~ 720 gram Without battery, GPS and relative 
irradiance sensor 
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ANNEX E 

Visualizations of the brown rust, lodging and brackling scoring of the plots.  

Limagrain employees have scored the plots manually. Low scores represent low severity and high scores a high severity. In theory, scores from 1 to 10 could have been 

given – however for this  Noted should be the not all plots were scored on lodging; merely the EV field (northern/upper part).  

                                         

Figure E1 | Brown rust scoring of the winter barley plots at the Limagrain location of Rilland. The scoring 

was performed at the 30th of May 2017. In total,  

 Figure E2 | Brackling scoring of the winter barley plots at the Limagrain location of Rilland. The scoring 

was performed in the period of the 29th of June and the 3rd of July 2017. 
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Figure E3 | Lodging scoring of the winter barley plots at the Limagrain location of Rilland. The scoring 

was performed at the 13th of June 2017. Note that merely the upper half of the field was scored for 

lodging. 
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ANNEX F 

Overview of the different trial fields with winter barley on the Limagrain location of Rilland. 

                       

Figure F1 | Top view of the trial fields within the winter barley field. Each trial field is filled with a 

particular genotype. Plot codes are based on the numbers indicated at the x- and y-axis of the EV and 

MV fields. 

Figure F2  | Top view of the winter barley plots at the Limagrain location of Rilland. 
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ANNEX G 

Reflections per band for brown rust scores for each trial field.  

Noted should be the plot count per brown rust score for each of the trial fields. These counts are given below the graphs in a table and help interpret the data. For example, 

the trial field of Y16RBY has a low total plot count of 39 – which is relatively low, therefore the reflection values of a singular plot have a large effect on the mean values as 

presented in the graph of this field (figure G1). 

 

                     

 

Figure G1 | Y16RBY. Total plot count: 39.   Figure G2 | Y16RDH. Total plot count: 445.    Figure G3 | Y16RNL. Total plot count: 921. Note: merely one plot was

             scored with a brown rust score of 8. 
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Figure G4  | Y3BEFR. Total plot count: 79   Figure G5 | NL6RSU. Total plot count: 416.   Figure G6 | Y26R63. Total plot count: 56. 
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Figure G7| WBCO6F. Total plot count: 35.   Figure G8 | NL6VRA.Total plot count: 34.   Figure G9 | Y26R62_1. Total plot count: 49. 
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Figure G10 | Y26R62_2. Total plot count: 80.  Figure G11 | Y26R61_1. Total plot count: 80.  Figure G12 | Y26R61_2. Total plot count: 80. 
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Figure G13 | Y36RDE_1. Total plot count: 94.  Figure G14| Y36RDE_2. Total plot count: 92. 
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Table G1 – Counts of the brown rust scores per trial field.  

Plot code   Plot code   Plot code   Plot code   Plot code   Plot code   

Y16RBY Brown rust 

score 

Plot count Y3BEFR Brown rust 

score 

Plot count WBCO6F Brown rust 

score 

Plot count Y26R62_2 Brown rust 

score 

Plot count Y36RDE_1 Brown rust 

score 

Plot count Y36RDE_2 Brown rust 

score 

Plot count 

 1 0  1 1  1 0  1 4  1 0  1 0 

 2 2  2 7  2 6  2 6  2 11  2 7 

 3 13  3 15  3 16  3 40  3 56  3 47 

 4 7  4 23  4 11  4 23  4 16  4 23 

 5 6  5 19  5 0  5 4  5 10  5 12 

 6 2  6 10  6 1  6 2  6 1  6 3 

 7 5  7 4  7 1  7 1  7 0  7 0 

Plot code 8 4 Plot code 8 0 Plot code 8 0 Plot code 8 0  8 0  8 0 

Y16RDH Brown rust 

score 

Plot count NL6RSU Brown rust 

score 

Plot count NL16VRA Brown rust 

score 

Plot count Y26R61_1 Brown rust 

score 

Plot count 

 1 0  1 0  1 0  1 4 

 2 40  2 187  2 6  2 15 

 3 146  3 174  3 18  3 32 

 4 141  4 36  4 8  4 21 

 5 85  5 15  5 1  5 4 

 6 29  6 4  6 1  6 4 

 7 4  7 0  7 0  7 0 

Plot code 8 0 Plot code 8 0 Plot code 8 0 Plot code 8 0 

Y16RNL Brown rust 

score 

Plot count Y26R63 Brown rust 

score 

Plot count NL16VRA Brown rust 

score 

Plot count Y26R61_2 Brown rust 

score 

Plot count 

 1 0  1 0  1 0  1 6 

 2 89  2 8  2 6  2 26 

 3 274  3 27  3 18  3 25 

 4 335  4 13  4 8  4 13 

 5 148  5 8  5 1  5 7 

 6 65  6 0  6 1  6 2 

 7 9  7 0  7 0  7 1 

 8 1  8 0  8 0  8 0 
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ANNEX H 

Descriptive statistics  

Table H1 | Overview and short explanation of the descriptive statistics calculated for sub-research question two. 

1 Mean vector 

  
The mean vector matrix contains the overall means for each spectral band. (These values are required to do 
the translation in the PCA analysis – the shift of the origin to the centre of all pixel values.) 
 

μ𝑘 =
∑ 𝑋𝑘𝑗

𝑛
𝑗=1

𝑛
=  

𝑠𝑢𝑚 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒𝑠
 

           
                                                                                                                                                                        (5.1) 
 

2 Variances 

  
The variances per spectral band are show the spread around the mean value. Note that the division is by n-1, 
this is done so to get an unbiased estimate of the variance.  
 

σ𝑘
2 =

∑ (𝑋𝑘𝑗 − μ𝑘)2𝑛
𝑗=1

(𝑛 − 1)
= 

 
 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑒𝑣𝑒𝑟𝑦 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑏𝑎𝑛𝑑 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒2 𝑎𝑑𝑑𝑒𝑑 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 − 1
 

           
                                                                                                                                                                        (5.2) 
 

3 Covariances  

  
How values in one band (k) vary with respect to the values in another spectral band (l). 
 

c𝑘𝑙 =
∑ (𝑋𝑘𝑗 − μ𝑘)((𝑋𝑙𝑗 − μ𝑙)𝑛

𝑗=1

(𝑛 − 1)
=  

 
𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑣𝑒𝑟𝑦 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ 𝑏𝑎𝑛𝑑 𝑘 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 ∗

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑣𝑒𝑟𝑦 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ 𝑏𝑎𝑛𝑑 𝑙 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒, 𝑎𝑑𝑑𝑒𝑑 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒𝑠
 

           
                                                                                                                                                                        (5.3) 
 

4 Eigenvalues and -vectors 

  
Eigenvalues are simply the factor by which the eigenvector of the transformation – of the original pixel values 
into principal components – are stretched or squished. Eigenvalues are calculated by subtracting lambda’s 
from the diagonal of the covariance matrix and subsequently taking the determinant (D) from that matrix. In 
a two-dimensional example, 𝜆1 and 𝜆2 are calculated solving the following equation: 
 
 
 

𝐶11 − 𝜆         𝐶12                       
         𝐶21                 𝐶22 −  𝜆       = 0 

 
(𝐶11 − 𝜆)( 𝐶22 −  𝜆) − 𝐶12 ∗ 𝐶21 = 0 

                                                                                                                                                                                         (5.4) 
 
(Note that the trace of this matrix, the summation of all the values along the diagonal – the variances – is equal 
to the trace of the covariance matrix; the total variation is still the same before dimensionality reduction is 
done.)  
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Subsequently, eigenvectors define the direction of the exes of the synthetic bands or principal components. 
The eigenvector b𝑖  for each synthetic band and solution λ𝑖  is calculated solving the equation below – the 
example is again of a two-dimensional case:  
 

(𝐶 − 𝜆𝑖 ∗  𝐼)𝑏𝑖 = 0 

 

(
𝐶11 − λ1        𝐶12          

 𝐶21                 𝐶22 − λ1
) (

𝑏11

𝑏12
) =  (

0

0
) −→ 𝑏1  

 

(
𝐶11 − λ2        𝐶12          

 𝐶21                 𝐶22 − λ2
) (

𝑏11

𝑏12
) =  (

0

0
) −→ 𝑏2 

 
                                                                                                                                                                                         (5.5) 
Note that I is the unity. Eigenvectors 𝑏1 and 𝑏2 are perpendicular to each other.  
 

5 Correlation coefficients  

  
A value between -1 and 1, representing an strong negative correlation and a strong positive correlation. Values 
around zero represent the lowest correlations possible – zero means no correlation at all.   
 

ρ𝑘𝑙 =
c𝑘𝑙

σ𝑘 ∗ σ𝑙
=   

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑 𝑘 ∗ 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑛𝑑 𝑙
 

 
                                                                                                                                                                                         (5.6) 
 

6 Residuals 

  
In regression, residuals – also known as prediction errors – are the differences between the observed values 
of the dependent variable and the predicted variable. The residuals are measured in order to determine how 
far the values are from the regression line; each value has a residual. Both the mean and the sum of the 
residuals equals zero. The residual is calculated as follows:  
 

e𝑖 = 𝑦𝑖 − ŷ𝑖 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 
                                                                                                                                                                                        (5.7) 
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Figure H1 | Matrix with the covariances and variances – on the diagonal – of the mean reflections of the 16 bands.  

 

 

Figure H2 | Eigenvalues and eigenvectors of the mean reflections of the 16 bands.  
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Figure H3 | Lambda-lambda plot of the mean reflections in the 16 bands.  
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Figure H4 | Residual plots of bands 2 ad 13 (left) and bands 13 and 15 (left).  
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ANNEX I 

Correlation matrices  

Correlation plots of the correlations between the normalized difference (figure I1), orthogonal (figure I2) and soil-adjusted (figure I3) index values and the brown rust scores 

from the validation dataset: 

Vegetation index (band X, band Y) ~ Brown rust score 

 

 

Figure I1 |  Correlation plot showing the Pearson correlation values of the normalized difference (ND) index values ~ brown rust scores. This plot is created using the 16 band hyperspectral data retrieved at the 14th 

of June 2017. The axes are provided with the narrowband wavelengths and band numbers. The legend shows the spreading of the correlation values. Empty values indicate there is no correlation. The strongest 

correlation with the brown rust scores is achieved when using bands 12 and 15 for calculating the index value; the NIR wavelengths of 793 and 872 nm are assigned to these bands – see table 4.  
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Figure I2 |  Correlation plot showing the Pearson correlation values of the orthogonal index values ~ brown rust scores. This plot is created using the 16 band hyperspectral data retrieved at the 14th of June 2017. The 

axes are provided with the narrowband wavelengths and band numbers. The legend shows the spreading of the correlation values. The legend shows the spreading of the correlation values. The strongest correlation 

with the brown rust scores is achieved when using bands 2/3 and 11/12 for calculating the index value; the red and NIR wavelengths of 615/625 and 764/793 nm are assigned to these bands – see table 4. 
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Figure I3 |  Correlation plot showing the Pearson correlation values of the soil-adjusted index values ~ brown rust scores. This plot is created using the 16 band hyperspectral data retrieved at the 14th of June 2017. 

The axes are provided with the narrowband wavelengths and band numbers. The legend shows the spreading of the correlation val ues.  The legend shows the spreading of the correlation values. The strongest 

correlation with the brown rust scores is achieved when using bands 9 and 10 for calculating the index value; the NIR wavelengths of 715 and 735 nm are assigned to these bands – see table 4. 
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ANNEX J 

Mean reflections of the hyperspectral datasets of flight one and flight two 

In order to perceive a first impression of the comparison between the mean reflectances per band and brown rust score of the different flight data, the mean reflectances of 

both flights are shown in the graphs of figures J1 and J2. Noted should be that during the second flight, merely the left half of the EV and MV fields – see figure F1 of Annex F 

– were captured by the sensor. In other words, the statistical data of this flight is based upon half of the amount of winter barley plots from the first flight.  

                          

Figure J1 | Mean reflections per band and brown rust score, retrieved during the flight of the 14th of 

June 2017. 

Figure J2 | Mean reflections per band and brown rust score, retrieved during the flight of the 26th of 

June 2017. 
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ANNEX K 

Scatterplots of the vegetation index values against the brown rust scores.  

 

The regression lines are included in the graphs. An overview map of plots that are included in the graph is given – plots included in the calculations are marked in orange.  

 

Scatterplots which include all 2637 winter barley plots  

 

 
Figure I1 | Scatterplot of the ND 793/663 index values against the brown rust scores of all plots.  

 

 
Figure I2 | Scatterplot of the NDVI values against the brown rust scores of all plots. 

 

 

 

 
Figure I3 |Scatterplot of the NDVI red edge values against the brown rust scores of all plots.  

 

  
 

 

 

 

 

 

 

 

 

Figure I4 |Scatterplot of the PVI values against the brown rust scores of all plots. 
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Figure I5 |Scatterplot of the SAVI values against the brown rust scores of all plots.  

 

 

 

 

Scatterplots which include the plots scored on lodging  

 

 
Figure I6 | Scatterplot of the ND 793/663 index against the brown rust scores of all plots scored on 

lodging.  

 

 

 
Figure I7 | Scatterplot of the NDVI against the brown rust scores of all plots scored on lodging.  

 

 

 

 

 

 

 
Figure I8 | Scatterplot of the NDVI red edge against the brown rust scores of all plots scored on lodging. 
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Figure I9 | Scatterplot of the PVI against the brown rust scores of all plots scored on lodging.  

 

 

 
 

 
Figure I10 | Scatterplot of the SAVI against the brown rust scores of all plots scored on lodging.  

 

 

 

Scatterplots which include all plots scored 1 for lodging 

 

 
Figure I11 | Scatterplot of the SAVI against the brown rust scores of all plots scored 1 for lodging.  

 

 

 

 

 
Figure I12 | Scatterplot of the NDVI against the brown rust scores of all plots scored 1 for lodging. 
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Figure I13 | Scatterplot of the NDVI RedEdge against the brown rust scores of all plots scored 1 for 

lodging.  

 

 

 

 
Figure I14 | Scatterplot of the PVI against the brown rust scores of all plots scored 1 for lodging.  

 

 

 

 
Figure I15 | Scatterplot of the SAVI against the brown rust scores of all plots scored 1 for lodging.  

 

Scatterplots which include all plots scored 1 for brackling 

 

 
Figure I16 | Scatterplot of the ND 793/663 index against the brown rust scores of all plots scored 1 for 

brackling. 
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Figure I17 | Scatterplot of the NDVI against the brown rust scores of all plots scored 1 for brackling.  

 

 

 

 

 

 
Figure I18 | Scatterplot of the NDVI RedEdge against the brown rust scores of all plots scored 1 for 

brackling.  

 

 

 
Figure I19 | Scatterplot of the PVI against the brown rust scores of all plots scored 1 for brackling.  

 

 

 
Figure I20 | Scatterplot of the PVI against the brown rust scores of all plots scored 1 for brackling.  
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Scatterplots which include all plots scored 1 for both lodging and brackling 

 

 
Figure I21 | Scatterplot of the ND 793/663 index against the brown rust scores of all plots scored 1 for 

both lodging and brackling.  

 

 

 

 

 

 
Figure I22 | Scatterplot of the NDVI against the brown rust scores of all plots scored 1 on both lodging 

and brackling.  

 

 

 
Figure I23 | Scatterplot of the NDVI RedEdge against the brown rust scores of all plots scored 1 on 

both lodging and brackling.  

 

 

 

 

 

 
Figure I24 | Scatterplot of the PVI against the brown rust scores of all plots scored 1 on both lodging 

and brackling.  
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Figure I25 | Scatterplot of the SAVI against the brown rust scores of all plots scored 1 on both lodging 

and brackling.  
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ANNEX L 

 

Correlations predicted brown rust scores ~ validation brown rust scores; one predictor 

 

Figures L1-L3 show the correlations between the predicted brown rust scores resulting from a random forest model using the caret() package in R. For each of the three 

models, a summary is given below the resulting scatterplot and Pearson correlation value. The data was divided in a test set of 757 and a training set of 1774 samples – each 

feature represents a winter barley plot. The resampling method was a 5 fold, cross-validation. The predictor used for each model is the index type as shown in the first column, 

calculated according to the formula’s as indicated in figure 11.  

 

       
        

Resampling results: 

RMSE      Rsquared    MAE       

1.240401  0.04410295  0.9712456 

 

Resampling results: 

RMSE      Rsquared    MAE       

1.232706  0.05003601  0.9690183 

 
Figure L1 | Normalized difference. Pearson correlation coefficient: 0.2487714. Figure  L2 | Orthogonal. Pearson correlation coefficient: 0.3232609.
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Resampling results: 

RMSE      Rsquared    MAE       

1.240401  0.04410295  0.9712456 

 

 

 

Figure L3 | Soil-adjusted. Pearson correlation coefficient: 0.1979202  
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ANNEX M 

 

Correlations predicted brown rust scores ~ validation brown rust scores; 30 predictors 

 

Figures M1-M3 show the correlations between the predicted brown rust scores resulting from a random forest model using the caret() package in R. For each of the three 

models, a summary is given below the resulting scatterplot and Pearson correlation value. The data was divided in a test set of 757 and a training set of 1774 samples – each 

feature represents a winter barley plot. The resampling method was a 5 fold, cross-validation The 30 predictors are the index values of the 30 band combinations showing 

the best R² values – for all R² values see figures 24-26. 

 

            

Resampling results across tuning parameters: 

  mtry  RMSE      Rsquared   MAE       

   3    1.018094  0.2339434  0.7931552 

  13    1.017062  0.2367557  0.7920206 

  16    1.016369  0.2378079  0.7914480 

RMSE was used to select the optimal model using the smallest value. 

The final value used for the model was mtry = 16. 

 

Resampling results across tuning parameters: 

  mtry  RMSE       Rsquared   MAE       

  18    0.9936212  0.2710060  0.7724441 

  22    0.9956034  0.2684926  0.7735685 

  29    0.9968648  0.2668320  0.7744089 

RMSE was used to select the optimal model using the smallest value. 

The final value used for the model was mtry = 18. 

 
Figure M1 | Normalized difference. Pearson correlation coefficient: 0.4736703. Figure M2 | Orthogonal. Pearson correlation coefficient: 0.5166168. 
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Resampling results across tuning parameters: 

  mtry  RMSE      Rsquared   MAE       

  11    1.020113  0.2358295  0.7979662 

  13    1.020466  0.2356145  0.7977443 

  16    1.021460  0.2347564  0.7977621 

RMSE was used to select the optimal model using the smallest value. 

The final value used for the model was mtry = 11. 

 

Figure M3 | Soil-adjusted. Pearson correlation coefficient: 0.4780202. 
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ANNEX N

 

Workflow of the MCMS study 

 

Table N1 | Workflow of the MCMS 2007-2009 rice biomass study by Aasen, Gnyp et al. (2014). 

Step Activity Phase 

1 Export datasets  
(a) SGSY; 9 datasets  
(b) SGAY; 3 datasets 
(c) AGAY; 1 dataset 

Correlation Matrix (CM) computation 

2 Correct detector offset for all datasets Correlation Matrix (CM) computation 

3 Removal water absorption bands (1330-1480 nm) Correlation Matrix (CM) computation 

4 Restriction of spectral range to a range that is 
available for all datasets with low signal to noise 
ratio (in this case 400-1700 nm) 

Correlation Matrix (CM) computation 

5 (Optionally) set minimum R ² level Correlation Matrix (CM) computation 

6 (Optionally) set significance level Correlation Matrix (CM) computation 

7 Specify SVI type (ratio, difference, normalized 
difference) 

Correlation Matrix (CM) computation 

8 Automatic processing CMs          - HyperCor 

9 Import CMs for SGSY (three for each year) into 
MATLAB®, stack data into a multi-dimensional array 

Multi-Correlation Matric Strategy approach 

10 Apply an average function as MCMS function 
(fMCMS) on the datasets to obtain a matrix 
containing the mean correlation values for all band 
combinations 

Multi-Correlation Matric Strategy approach 

11 Extract band combination of the highest mean 
correlation value (best band combination) 

Multi-Correlation Matric Strategy approach 

12 Use extracted bands with the SGAY dataset to 
develop a ( both linear and exponential) prediction 
model (in Microsoft ™ Excel 2013) – repeat 
procedure for all growth stages 

Multi-Correlation Matric Strategy approach 

13 For model development for the entire growing 
period, step 12 is applied using the AGAY dataset 
instead of the SGAY dataset 

Multi-Correlation Matric Strategy approach 

14 Use CMs of SGAY dataset , extract band 
combination with highest coefficient of 
determination for each grow stage 

Direct approach 

15 Use the extracted band combinations together with 
SGAY data to develop a linear and exponential 
model  

Direct approach 

16 To develop the linear and exponential models across 
all growth stages, steps 14 and 15 are repeated with 
the CM of the AGAY dataset 

Direct approach 

17 Derive the best band combination by calculating the 
difference between the MCMS and direct approach 

Band combination selection 

18 Validate models from both the MCMS and direct 
approach, all models are applied on an independent 
dataset (in this case from the years 2011 and 2012) 

Validation 

 


