Past and present trends in food packaging

Dr. E.U. Thoden van Velzen

2 december 2009, Brussels

Back to the nineties

Past trends	and what happened	
Active packaging	Oxygen absorbers: too expensive and complicated	
Intelligent packaging	On crates & trolleys	
Nanotechnology	Nano-clay is still promising rest: Science-fiction	
Bio-degradable packaging	Flow-pack organic F&V	

What did happen?

- Centralised pre-packing of meat, fish, cheese....
 - Rise of Modified atmosphere packaging
- Rise of the Convenience fresh food industry
 - Rise of E-MAP
- Weight reduction
- Growth of plastic packaging

Rise of MAP

History of meat packaging in NL

- **60's**
 - Supermarkets expand
 - Meat is pre-packed
 - White styrofoam tray
 - PVC stretch

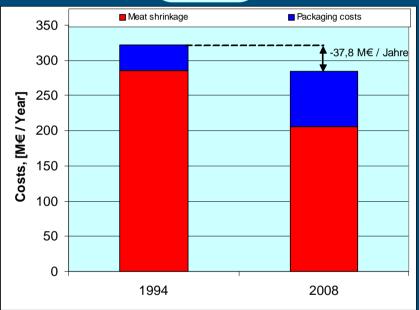
- 1964 first tests MAP
- 1975 Begin MAP
- 2000 Break through MAP
 - Large retailers start
- **2009: 60 % MAP**

Modified atmosphere packaging for meat

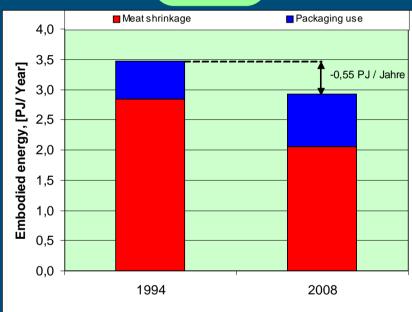
Higher direct costs

+0,07 €/pack

- Packages
- Gasses, machines...
- Lower indirect costs


<-0,10 €/pack

- Longer shelf life
 - Less shrinkage in shops
 - Less night shifts
 - Lower delivery frequency


 $(8 - 10 \rightarrow 4 - 5\%)$

Balances

Financial: -37.8 M€ / Year

Environment: -0.55 PJ / Year

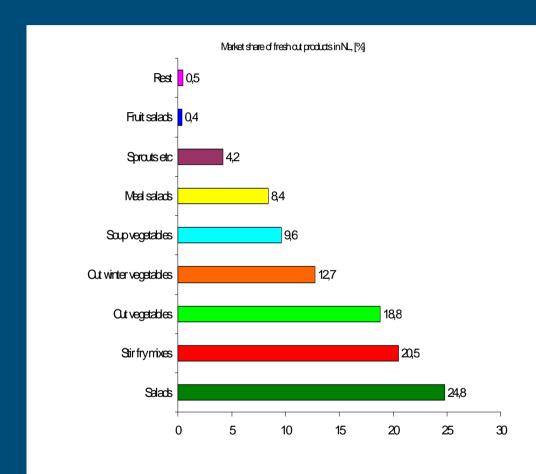
Rise of fresh cut

Industry

(E-MAP)

Fresh cut food products – Dutch perspective

- Important
 - Largest source of income for Dutch retail
 - Fresh turnover 10 B€
 - Fresh cut greens turnover > 750 M€ in 2005, +14% /yr
 - Traffic generator
 - Trends:
 - Fresh = healthy, tasty, convenient


- Complex
 - Fresh produce lives
 - Quality varies > 100%
 - Sourcing issues
 - Large portfolios
 - 100-250 fresh cut fruit and vegetable products / shop

Pre-packed fresh cut products AGROTECHNOLOGY & FOOD SCIENCES GROUP WAGENINGENUR

Development fresh cut industry

- 70's: few offerings
- 1985 Iceberg lettuce
- 90's: enormous growth
- Largest change in retail

Supply chain organisation

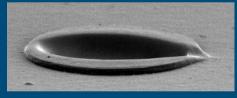
Retail Fresh cut industry Produce trade

Film suppliers

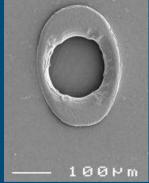
Machine builders

- Target = Profit for retail
 - 100% private label with contract suppliers
 - Free trade, no contract farming
 - Very competitive field for suppliers
- Packaging technology made it possible!
 - Every fresh cut producer via trail-and-error

Respiration

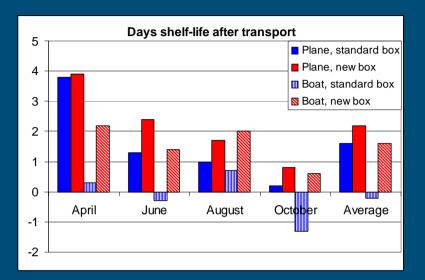

- Complex
- From 1 to 300 ml O_2/kg .hour

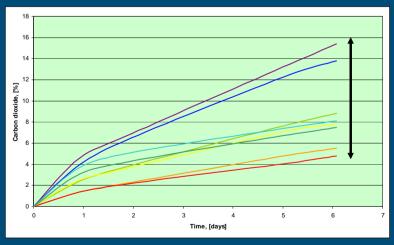
- Flow-packs (20 x 30 cm):
- \sim -> 300 100.000 ml O_2/m^2 .bar.day
- \sim -> 500 300.000 ml CO₂/m².bar.day
- Mostly used solutions
 - BOPP/CPP/AF + micro-perforations


$$R_C = K_1 \cdot \exp\left(\frac{-E_a}{R \cdot T}\right) \left\{1 + K_2 \cdot \exp\left(-k_d \cdot t\right)\right\}$$

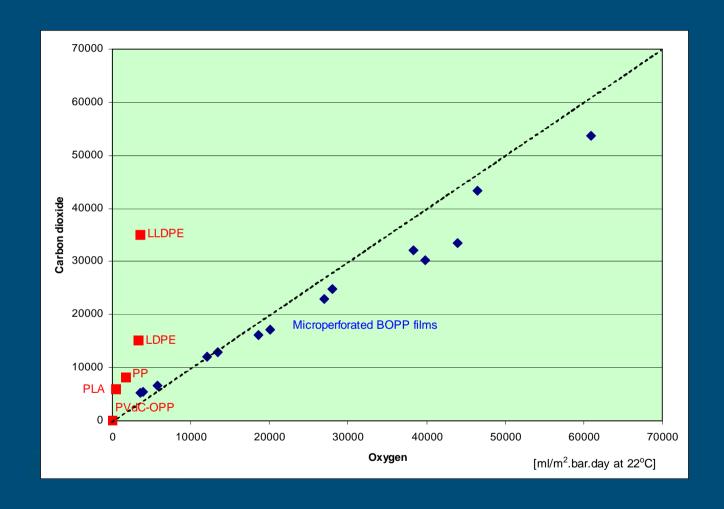
$$vO_2 = v \max O_2 \times \left[\frac{O_2}{(KmO_2 + O_2) \times (1 + \frac{CO_2}{KmnCO_2})} \right]$$

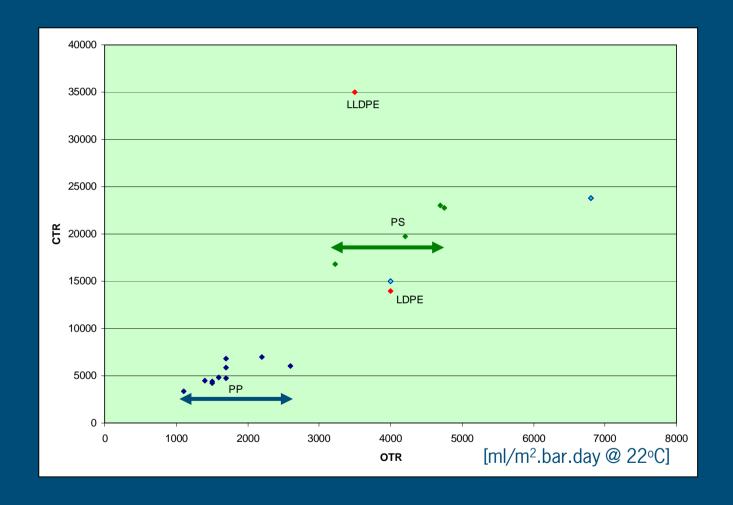
$$V_{CO2} = RQ_{ox} \cdot V_{O_2} + \frac{Vm_{CO_2(f)}}{1 + \left(\frac{O_2}{Kmn_{O_2(f)}}\right)}$$



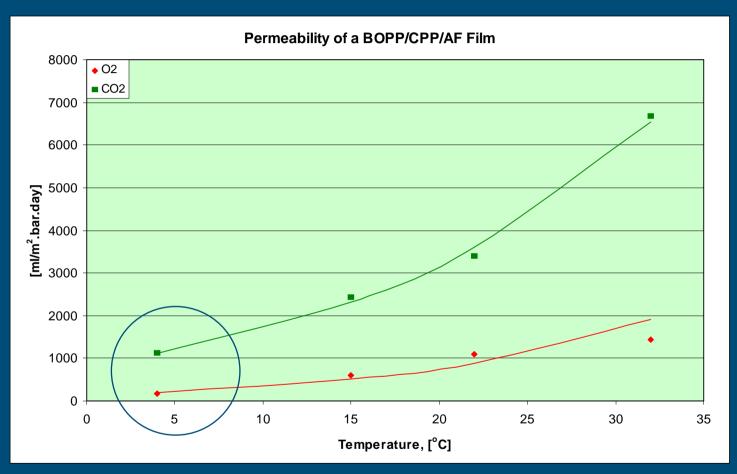


Variation in quality

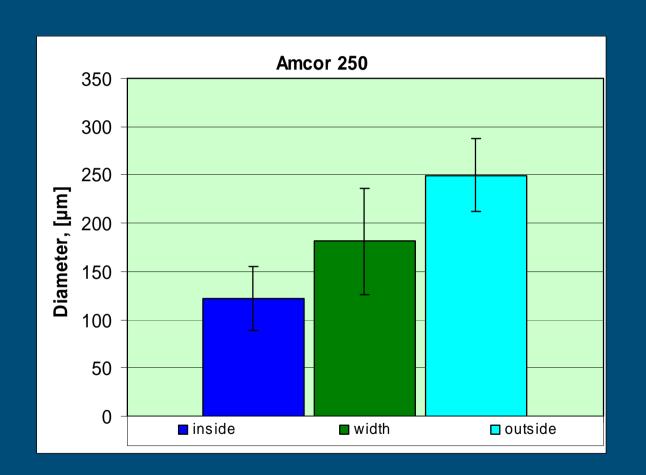

- Large difference between reality and theory (Literature)
- Variations of >100% in:
 - Microbiological load
 - Respiration activity
- Origin, harvest method, growing conditions, seed type....
- Simultaneously:
 - Control the initial quality and
 - Optimise packaging

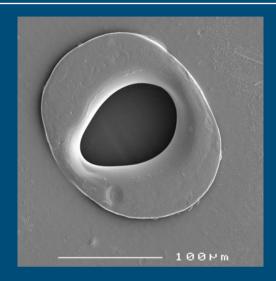


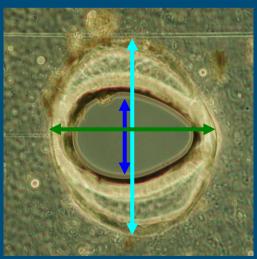
Commercially applied flow-pack films



Closer view


Temperature dependance




OTR, CTR and WVTR need to be specified at 7°C and 80-100%RH

Laser perforated films

Successful E-MAP applications

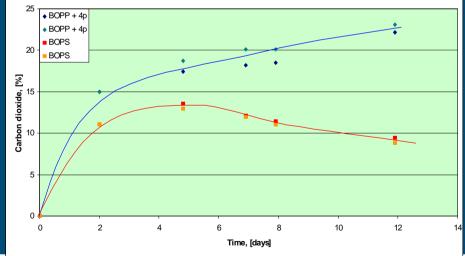
- Strawberries soft fruit
- Broccoli
- Chicory
- Stir fry mixes
- Soup vegetables
- _

Strawberries in MAP

Shelf life

 $18^{\circ}C$ 5 -> 7 days

12°C 6 -> 8 days



Stir fry mixes

- 5-10 Products in mix
- Optimal pre-treatments
 - Decontamination whole products
 - Cutting method
 - Washing method
 - Edible coatings (Ca²⁺, vitamin C)
- Flow-packs with 2-6 Micro-perf.
 - Compromise atmosphere
 - 5-7 days of shelf life

Anaerobic E-MAP

- Method to avoid discolorations/ enzymatic browning
- Control the influx of O_2
 - Not too much → Discoloration
 - Not too little → Fermentation
- Control the outflux of CO₂
 - Avoid suffocation in high CO₂ atmospheres
 - Raise α (CO₂/O₂)

E-MAP for double fresh meals

- Steam and cook meals
 - 2005: 5-7 days SL -> 20% shrinkage -> 5 €/meal

Solution

- Optimally fresh vegetables
 - Quality focussed purchase
 - Pre-treatments
 - Decontamination
- Optimal E-MAP for freshly cut vegetables
- Protective marinade for meat / fish component
- SL of 9-12 days feasible

3 Steps towards a high quality fresh cut product

■ 1 Temperature ↓

Best Process

2 Control initial product quality

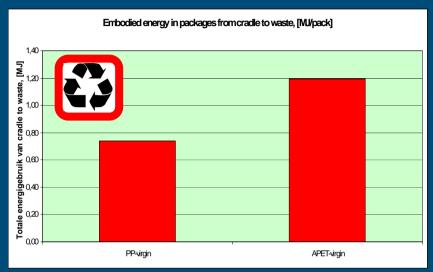
Quality oriented purchase policy

Decontaminate

Best Products

3 Optimising packages

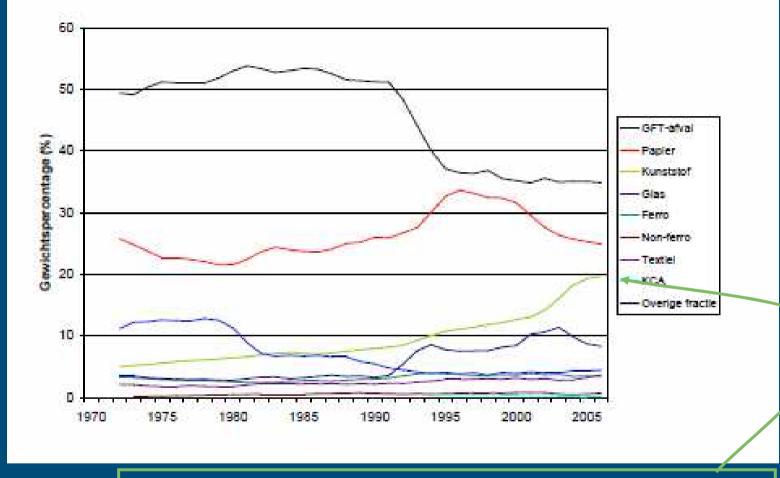
Best Package



Top-seals for luxury salads

- Marketing
 - PET & Alu. > cla.-PP, PS > PP
- Product quality:
 - PS > PP > PET & Alu

- PET vs PP: Δ€ =+0,04 €/tray
- Environmental impact
 - PET vs PP: $\Delta EI = +0.45 \text{ MJ/tray}$


Rise of the fresh cut industry in NL

	1985	2005
Turnover, [M€]	<1	750
Profit, [M€]	<1	>300
Packaging use, [ton]	~0	+1700 BOPP film +500 PET trays

Weight reduction and the growth of plastic packaging

Growth of plastic in Dutch MSW

Plastics packaging in MSW ~ 630 kton / year

Weight reductions

- From cans + glass jars to laminated board
- Thinner PET bottles...

 From thicker laminated films to thinner metallised / coated films

GUA: plastic packaging most

eco-efficient

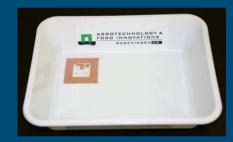
Past trends in retrospect

Active packaging

- Oxygen scavengers work great with:
 - Nuts, coffee, tea, cured meat, beer
 - Post-pasteurised meals....
- Not applied
 - Costs > +0,01 € / pack
 - Production logistics
 - Difficult to integrate
 - Limited capacity of integrated absorbers

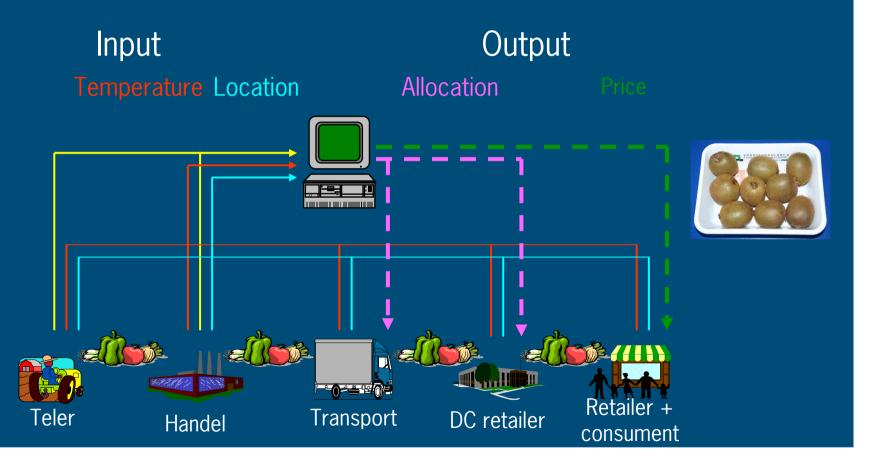
- No quality benefits confirmed under real-life test conditions for:
 - Controlled release systems
 - Ethylene scrubbers
 - CO₂ release systems
 -

Controlled release?


- Anti-oxidants, Anti-microbial agents, enzym inhibitors...
- Anti-microbial agents most widely studied
 - Only benzoic acid / sorbic acid are double allowed
 - Ag+/zeolites does not work
 - Essential oils work best as part of a marinade
 - Musterd oil & cheese -> strong off taste in first weeks
 - Chitosan film -> production, sealing issues and costs

Intelligent packaging?

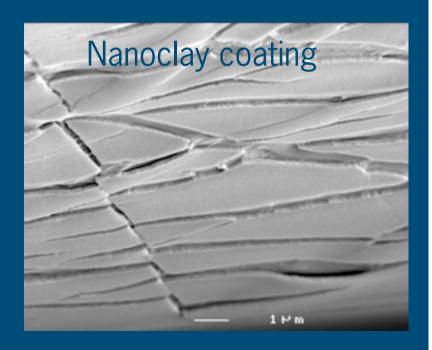
- Packaging that reports information on the quality of the packed goods to outside world
 - Quality sensors, pH sensors
 - Time-Temperature-Integrators
 - RFID+temperature/RH sensor


- Most simple: label that discolours at a threshold temperature
- Most elaborate: RFID+

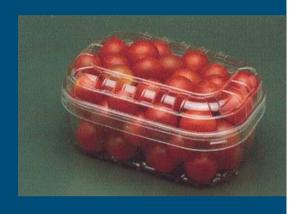
Advanced stock management systems

Product shrinkage NL: 1 billion € / jaar

Intelligent packaging


- Often used:
 - temporarily to optimise food chains and find and solve bottle-necks
 - on crates/ trolleys to reduce lost cargo in supply chains
- No systematic use in supply chains on consumer packaging level
 - Investment costs in equipment and business culture change are too large
 - Retailers do not want to infringe their fresh image

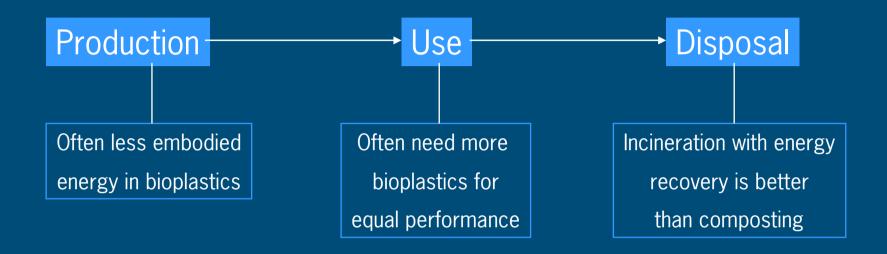
<u>Nanotechnology</u>


- Nanoclay barriers
 - In development and difficult
 - Exfoliation in polymers
 - Colour
 - Temperature sensitivity
 - Large potential for material reduction
 - Migration test procedures for approval still unclear
 - Although there is no prove for real danger

- Sensor & actuator technology in packages
 - Science fiction

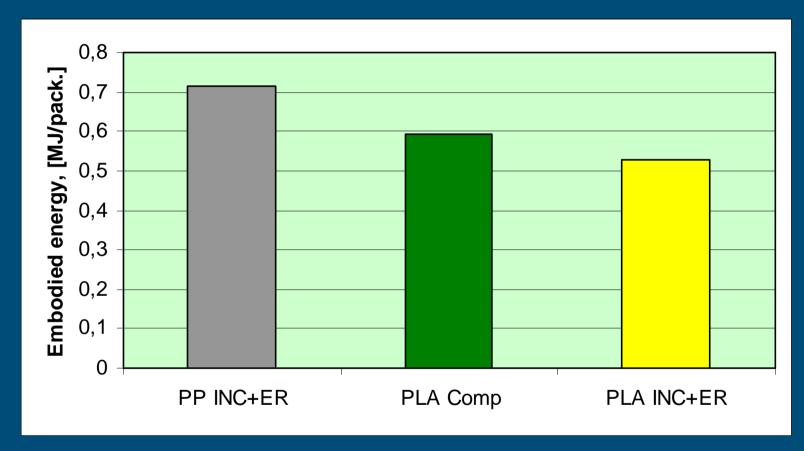
Bio-degradable and renewable packages

- Current applications
 - Beer cups
 - PLA does not splinter
 - Organic fresh produce
 - Avoid upsetting the heavy users of organic food
 - Cheapest campaign to promote a sustainable image
- Other applications: difficult to get equal performance
- Generate free publicity



Environmental impact of packages

- Energy balance \rightarrow CO₂ formation \rightarrow GWP
- Formation of final waste
- Depletion of non-renewable raw materials
- Additives
 - Not dangerous for the human, but for the planet?
 - ,molecule of the month


Environmental impact of packages

 Bioplastics can be better, especially when there are few technical (permeability) constraints and the household waste is incinerated with energy recovery

Energy balance for yoghurt cups

Take care: different for every application, do not generalise!

Bio-barriers

- Various bio-barriers in development
 - PLA-SiOx-PLA
 - PLA-PVOH+nanoclay
 - Starch laminates
- Problems with
 - Machinability
 - Permeability

 Applications of fresh foods with medium shelf life (4-6 wks) in barrier packages not successful yet

Bio-degradable packages

- Price: always (a bit) more expensive
- Performance: equal or less
- Environment: sometimes better, sometimes not

Present trends - 2020

- Lighter & thinner packaging
- Fresher products:
 - Best product + best proces + best package (E-MAP)
- Renewable packaging
- Recyclable packaging

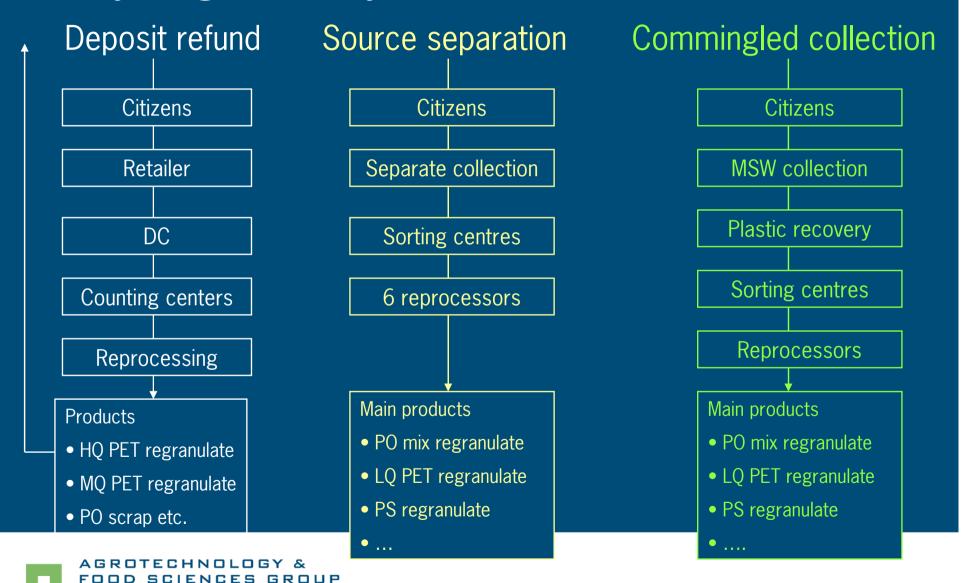
Packaging recycling: what should happen

Growth of plastic packaging -> recycling

- Plastic packaging is a integral part of an efficient modern society
 - GUA: without, CO₂-emissions would be much larger
- But the relative growth of plastic packaging is nonsustainable
 - Political need for efficient recycling programs
 - Without a clear business need to do so

Political motivation for recycling

- Plastic packages contain energy
 - NL > 60 PJ (2% national energy use)
- Crude oil will become expensive in 10-50 years
- Long term strategy:
 - Recycled plastics for the most demanding applications
 - Biobased plastics for less demanding applications


The ideal situation

- Efficient recycling system
 - Low costs and high yields
 - Recycling system costs < costs for virgin polymers
 - Impurities should be dealt with
- Sorting and reprocessing should be done within Europe
- Process should yield regranulate that ultimately can be used in the packaging industry
 - Is partially possible, but not implemented yet

Recycling: not a cycle but linked chains

WAGENINGENUR

Deposit refund systems

- Suitable for few types of packaging: 4-5%
 - Large PET soda bottles
 - Large HDPE washing liquid bottles

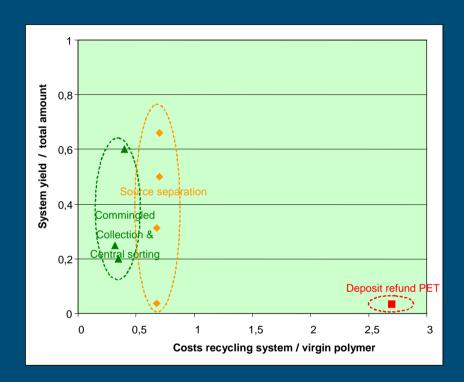
- High (hidden) costs
 - Labor, floor space, RVM's
 - Costs are 2500-3000 €/ton
- But for 17% B2B recycling!

- Mostly used system in EU
 - High response rates are claimed, but:
 - 5-30% is impurity
 - 10-30% overall material reuse
 - Rest for energy recovery
 - Substantial costs are made for collection, sorting and reprocessing
 - Materiel reuse at best: non food packaging, no recycling
- Need for more efficiency
 - New process technologies
 - Simplified business chains
 - Cost reduction

Commingled collection and centralised recovery

- Plastics can also be automatically be separated from MSW with MRF
 - Lower qualities
 - High recovery rates possible
 - Rigid and Flexible packaging recovered

- But:
 - Few existing waste companies can add a MRF
 - New recycling processes needed to deal with this new quality



System performance

- Too early for a full evaluation
 - Process chains are not completely formed, yet
- Major uncertainty:
 - Possible higher processing costs for plastics recovered from MSW
 - More overlap expected

Future outlook

- Long term strategy:
 - Recycled plastics for the most demanding applications
 - Bio-based plastics for less demanding applications
- Plastic recycling needs to mature fast
 - Collection cost reductions (politics)
 - New processing technologies (innovation)
 - High level applications: packaging (reCYCLing)

Thank you!

© Wageningen UR

