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Abstract: Phenotyping of crops is important due to increasing pressure on food production. Therefore,
an accurate estimation of biomass during the growing season can be important to optimize the yield.
The potential of data acquisition by UAV-LiDAR to estimate fresh biomass and crop height was
investigated for three different crops (potato, sugar beet, and winter wheat) grown in Wageningen
(The Netherlands) from June to August 2018. Biomass was estimated using the 3DPI algorithm, while
crop height was estimated using the mean height of a variable number of highest points for each m2.
The 3DPI algorithm proved to estimate biomass well for sugar beet (R2 = 0.68, RMSE = 17.47 g/m2)
and winter wheat (R2 = 0.82, RMSE = 13.94 g/m2). Also, the height estimates worked well for sugar
beet (R2 = 0.70, RMSE = 7.4 cm) and wheat (R2 = 0.78, RMSE = 3.4 cm). However, for potato both
plant height (R2 = 0.50, RMSE = 12 cm) and biomass estimation (R2 = 0.24, RMSE = 22.09 g/m2),
it proved to be less reliable due to the complex canopy structure and the ridges on which potatoes are
grown. In general, for accurate biomass and crop height estimates using those algorithms, the flight
conditions (altitude, speed, location of flight lines) should be comparable to the settings for which
the models are calibrated since changing conditions do influence the estimated biomass and crop
height strongly.
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1. Introduction

Phenotyping of crops is important to estimate biomass and the potential yield of new varieties of
agricultural crops. Due to the increasing need to increase food production and improve the associated
quality, it is important to optimize the yield, for which accurate estimation of biomass during the growing
season is needed. In this context, phenotyping focuses on the characterization of morphological as well
as physiological crop traits. Morphological parameters, such as plant height, stem diameter, leaf area
or leaf area index (LAI), leaf angle, stalk length, and in-plant space [1], can be determined with LiDAR
(light detection and ranging). Research on phenotyping using LiDAR often focusses on one specific
crop, for example, wheat [2,3] or cotton [4].

Phenotyping of individual plants can be done in very high detail with LiDAR, analyzing complex
phenotypical properties, such as leaf area, leaf width, and leaf angle [5,6]. For this, plants were put
on a slowly turning platform while a fixed LiDAR instrument was used. A drawback of this setup is
the low throughput of the scanning system while there is also a need to evaluate phenotypes under
field conditions.

For high-throughput phenotyping, traits such as plant-height, LAI, and leaf cover fraction are
determined directly in the field, using a LiDAR-based system mounted on a vehicle or RGB cameras
mounted on a UAV (unmanned aerial vehicle) [3,4,7]. Tractor based LiDAR systems data have shown
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good correlation with in situ field measurements of plant height. Sun et al. [4] published an R2 of 0.98
for cotton plants, [2] published an R2 of 0.99 for wheat, and [7] showed an R2 of 0.90 for wheat. These
studies show the capability of LiDAR to measure basic phenotypes such as plant height. However,
LiDAR systems mounted on tractors can be unsuitable for labour-intensive crops such as rice or in
orchards [8], for example, due to compaction of the soil [9]. A UAV equipped with a LiDAR system
can overcome those limitations.

Earlier research on the relation between plant height and biomass was based on varying approaches
for plant height measurements. Madec et al. [7] found an R2 of 0.88 for the correlation between plant
height and field-measured biomass, using a tractor based LiDAR system. Bendig et al. [10] used a
structure from a motion (SfM) technique on UAV acquired imagery to derive plant height and found
an R2 of 0.81 between field-measured height and SfM derived height.

In the last few years, LiDAR systems have been miniaturized, resulting in lower weights and
reduced dimensions, and as a result, can be operated from UAVs. This development opens the way
towards high throughput derived, more complex products like biomass and yield, thus, improving the
speed and frequency at which these plant traits can be acquired in the field in an undisturbed way.

LiDAR-based biomass estimates of agricultural crops can be derived in different ways. Based on
the Lambert-Beer LAI model of [11], the authors of [2] developed a biomass prediction model called
the 3-Dimensional Profile Index (3DPI). Where the LIDAR 3D point cloud is divided into layers and
for each layer, the fraction of points divided by the total amount of points is calculated. These layers
are then summed, and the 3DPI values can be related to biomass with a linear function. As follow
up [2] also proposed a voxel-based method (3DVI) to estimate the biomass of wheat. The 3DVI method
divides the LIDAR 3D point cloud in voxels of equal size and calculates the ratio between the number
of voxels containing points and the number of subdivisions in the horizontal plane. They showed
that 3DVI could estimate wheat biomass accurately with an R2 of 0.91, and for 3DPI, an R2 of 0.93
was achieved. Jimenez et al. [2] used a tractor based LiDAR system. An alternative approach using
airborne LiDAR was proposed by [12], who used Pearson’s correlation analysis and structural equation
modelling (SEM) to estimate plant height and LAI, which proved to be the best predictors of the
biomass of maize (R2 of 0.87).

The goal of this study was to investigate the potential of UAV-LiDAR for estimation of crop height
and fresh weight biomass for three different agricultural crops. For this, the RIEGL RiCOPTER with a
VUX-SYS LiDAR system was flown over fields with sugar beet, wheat, and potatoes, on a number of
moments during the growing season. First, it was investigated how accurate this system can estimate
crop height and biomass. Next, we answered the question if it is possible to create models that are
generally applicable for different crops. Finally, we did experiments with different UAV flight patterns,
altitudes, and speeds to investigate if this influences the LiDAR-derived plant height and biomass
estimation. Optimization of the flight parameters was beyond the scope of this paper.

2. Materials and Methods

2.1. Study Area

Three fields with different crops, each covering approximately 2 ha, were selected at the experimental
farm of Wageningen University, located just north of Wageningen in the Netherlands (Figure 1). The three
types of arable crops in this study are sugar beet, winter wheat, and potatoes (Table 1), which were
planted on a Placic Podzol [13]. The variation in elevation in the fields is very small with a height
difference of less than 10 cm going from east to west in the area. Orientation of the main crop rows for
all three crops is north–south. The plant density of winter wheat was 260 plants/m2. Planting distance
for potato and sugar beet was 30 cm and 23 cm, respectively.
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Figure 1. Left: Overview of fields within the study area: indicated are the three different fields and
crops that are studied. The image was taken on 4 June 2018. The large inset shows the location of
Wageningen in the Netherlands. Right: Impression of the three different crops used in this research.
Potato and sugar beet images were taken on 5 June 2018. The winter wheat image was taken on
25 June 2018.

Table 1. General information about the three crops planted in the study area.

Crop Type Sugar Beet Potato Winter Wheat

Fieldname Dijkgraaf Com02 Braam
Planting month April 2018 April 2018 October 2017

Harvesting month October 2018 September 2018 August 2018
Size (hectare) 1.99 2.0 1.78

2.2. Data Acquisition

UAV-LiDAR data and field measurements of crop height and biomass were collected simultaneously
on four dates (Table 2). For the 1st, 2nd, and 4th flight date, field data were collected on the same day,
directly starting after the flight and finished within 3 to 4 hours. The 3rd flight day was not planned
initially, so no field measurements were done on that day, but this flight was conducted only 2 days
after the 2nd flight. Therefore, the field data collected at the day of the 2nd flight were used for both
those flights.
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Table 2. Flying dates and corresponding growth stages for the crops in selected fields.

Day Date of Flight Sugar Beet Potato Winter Wheat

1 07-06-2018 Vegetative Vegetative/Tuber initiation Heading
2 25-06-2018 Vegetative Tuber bulking Ripening
3 27-06-2018 Vegetative Tuber bulking Ripening
4 11-07-2018 Vegetative Tuber bulking Ripening

2.2.1. Field Data Collection

Plant height was measured using a ruler at 14–21 locations in each field. Locations were chosen
in such a way that differences within the field were well represented. On each location, an average
height was calculated based on three height measurements of randomly selected plants taken within
15 cm of each other. Biomass was determined through destructive sampling at different locations
within the field, differing from the plant height sampling locations [14]. For potato and sugar beet,
five biomass samples per field were taken and for winter wheat three. Biomass was harvested after the
flights. Biomass samples were taken for the first, second, and fourth flight day only, which resulted
in 15 samples for both potato and sugar beet and 9 samples for winter wheat. For potato, biomass
was harvested for one meter along the potato ridge and converted to biomass per 1 m2. The same
procedure was used for harvesting the sugar beet, where one meter in the planting direction was
harvested and converted to biomass per 1 m2. For wheat, an area of 1 m2 area was harvested. Biomass
was measured as fresh biomass weight directly after harvesting. Table 3 shows the mean and standard
deviation of every field campaign. The location of every crop trait measurement was measured with a
Topcon HIPER V RTK-GNSS system (TOPCON, Japan), which has a sub centimeter accuracy.

Table 3. Mean and standard deviation of field measurements separated per crop and sampling date.

Crop Sampling Date
Plant Height Biomass Fresh Weight

Sample
Size

Mean
(m)

Standard
Deviation (m)

Sample
Size

Mean
(g/m2)

Standard
Deviation (g/m2)

Potato
07 June 2018 21 0.599 0.073 5 3364.93 461.65
25 June 2018 20 0.690 0.229 5 3546.40 846.19
11 July 2018 20 0.547 0.151 5 3749.07 889.75

Sugar beet
07 June 2018 16 0.275 0.098 5 1237.55 650.85
25 June 2018 20 0.501 0.099 5 3834.40 1374.40
11 July 2018 15 0.445 0.105 5 3656.00 1191.38

Winter
wheat

07 June 2018 17 0.483 0.063 3 3477.37 751.71
25 June 2018 14 0.489 0.076 3 3371.67 940.45
11 July 2018 20 0.449 0.076 3 1583.00 473.11

2.2.2. UAV-LiDAR Data

LiDAR data were collected using the RIEGL RiCOPTER UAV system (Riegl, Austria) with the
VUX-SYS laser scanner mounted underneath. The authors of [15] provided a description of the details
of the system. The VUX LiDAR unit has an accuracy of 1 cm and precision of 0.5 cm. The absolute
positioning error on the ground also depends on the IMU accuracy, which was <5 cm in the horizontal
and <10 cm in vertical direction. Analysis of previous datasets acquired with the same setup resulted
in positioning errors of <5 cm. The scanner pulse repetition rate was set at 550 kHz, the scanner angle
from 30–330 degrees, and the scanner speeds were synchronized with the UAV forward speed to create
a regular point spacing. On the predefined dates, UAV-LiDAR data was acquired by flying at 40 m
above ground level (m.a.g.l.) with a programmed speed of 6 m/s. The actual flight altitude and speed
can deviate slightly from those preset values and were calculated from the flight recordings afterwards
(Table 4: mean flying height and speed).

Further, to assess the influence of the flying height and speed on the accuracy of acquired
phenological parameters, additional flights were done within a few days after the second flight day,
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with heights varying from 20 to 90 m above ground level, and with programmed speeds ranging from
3 m/s to 8 m/s. An overview of the flights and the actual flight data is shown in Table 4. The code given
in Table 4 is later used to identify the data acquired from each flight.

Table 4. Overview of flight dates, including flight codes and corresponding general flight details The flight
codes are 1) indicating the flight number; 2) the flight altitude (LA = Low Altitude, MA = Medium
Altitude, HA = High Altitude; 3) and flight speed (LS = Low Speed, MS = Medium Speed, HS = High
Speed). Those codes will be used throughout the paper.

Flight
Date

Flight
Number

Related
Field Data

Code
Mean Flying

Height (m.a.g.l.)
Mean Flying
Speed (m/s)

Number of
Flight Lines

Average Point Density (points/m2)
Wheat Potato Sugar Beet

07-6-2018 1 07-6-2018 Day1-MA-MS 41.84 5.85 11 997 833 933
25-6-2018 1 25-6-2018 Day2-MA-MS 45.32 5.88 9 960 777 664
25-6-2018 2 25-6-2018 Day2-LA-MS 24.16 4.17 7 1516 659 805
25-6-2018 3 25-6-2018 Day2-LA-LS 20.05 2.73 5 2755 1402 1262
27-6-2018 1 25-6-2018 Day3-HA-HS 92.68 7.39 11 575 446 432
27-6-2018 2 25-6-2018 Day3-LA-LS 22.71 2.93 9 2257 2097 804
11-7-2018 1 11-7-2018 Day4-MA-MS 42.14 5.78 11 1011 873 1003

If during the analysis it appeared that field measurements of plant height or biomass ended up in
the same pixel as a driving path as seen from the Lidar 3D point cloud, the point was moved 1 pixel
away from the driving path. This was the case for one point in the winter wheat dataset. Further,
the field measurement locations were selected before the flights were made. Points that appeared to be
in areas with a much lower LiDAR point density were excluded from the height and biomass analysis.
Two winter wheat points during the last flight date had to be excluded for this reason.

2.3. Data Pre-Processing

Riegl RiCOPTER data was pre-processed to co-registered point cloud datasets (Figure 2) using the
standard Riegl processing chain as outlined by Brede et al. [15]. This includes trajectory processing,
for which a virtual GNSS base station was used. The movements of the UAV platform were corrected
using the POSPac software (Applanix, Canada), which combines the GNSS correction and the
movement data recorded by the IMU, with a reported precision of ~1–2 cm for all flights. To produce
a geo-referenced point cloud, the flight path, and raw point cloud data were combined in RiPROCESS
(Riegl, Austria). Further refinement of the point cloud, using automatically detected surfaces, was done
by RiPRECISION (Riegl, Austria). The final co-registered and geo-referenced point cloud datasets were
stored in LAS format.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 19 
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The point clouds were clipped for the boundaries of the three fields (Figure 1). The ground points
were selected using LasTools (Rapidlasso, USA) with the lasground function. From the points classified
as ground, a triangulated irregular network (TIN) was created. The height of each non-ground classified
point was calculated as the height above this TIN, using the “replace z” option in lasground. The same
procedure was applied for all the three fields.

2.4. Data Analysis

2.4.1. LiDAR Based Plant Height

Due to the difference in the structure of the crop canopies, the highest point in the point cloud
is not always the best representation for the field-measured crop height. Therefore, for each grid
cell of 1 m2 the average plant height was derived by including a certain number of top-of canopy
points. To determine the amount of top-of-canopy points needed to get the best plant height estimation,
a theory was used that is more commonly used in economics to decide on the best allocation of
products: the Pareto efficiency score [16]. This method compares different alternatives and based on
preset criteria, calculates a score of optimal performance. In this case, we used this method here to
decide based on two criteria, namely the highest R2 and lowest root mean squared error (RMSE), which
are calculated for each alternative of measured plant height and a certain number of top-of canopy
points. The method then only selects the combination for which no better combination exists. This
can result in multiple optimal Pareto efficiency scores. Next, from these Pareto efficient combinations,
the combination with the highest R2 is selected. This was done once for the whole growing season
for every crop. The corresponding number of top-of canopy points of this combination was used to
calculate the plant height of each raster cell within the field. A linear model relating field plant height
measurements to LiDAR-derived plant height was built using the 3D LiDAR point cloud by taking the
optimal number of top-of-canopy points into account.

2.4.2. Crop Biomass

To estimate biomass from the LiDAR point cloud, the 3DPI method as developed by the authors
of [2] and described by Equation (1) was used and calculated for a cell size of 1 m2:

3DPI =
∑i=n

i=0

(
pi

pt
ek pcs

pt

)
(1)

where i is a given 10 mm vertical layer with 0 being the ground layer and n the uppermost layer
respectively; k is a tuning parameter changing from −1 to 5 by steps of 0.05; pi is the number of LiDAR
points for a given layer of 50 mm; pt is the total number of LiDAR points for all layers; and pcs is the
cumulative sum of LiDAR points intercepted above a given layer of 50 mm, as described in [2].

To derive the biomass prediction model, a linear regression was performed between the
dimensionless 3DPI indicator and the biomass measured in the field based on the 3DPI indicator.
First, the optimal value for the parameter k was determined. For each individual crop and flight,
the 3DPI score was calculated by varying the k-parameter from −1 to 5 by increments of 0.05. The best
k-parameter was chosen based on the correlation between the field measurements and the 3DPI score.
The data for each crop was combined into a crop-specific seasonal prediction model for the flights
Day1-MA-MS, Day2-MA-MS, and DAY4-MA-MS. Secondly, all the data of these flights and crops were
combined into a general non-crop-specific seasonal prediction model.

Next, the flight data from DAY2-LA-MS, DAY2-LA-LS, DAY3-HA-HS, and DAY3-LA-LS were
used to determine the effects of different flight specification and were compared to Day2-MA-MS.
The 3DPI for these four flights was calculated using the same field measurements of plant height
and biomass as for Day2-MA-MS. This enabled the analysis of different flight settings because only
the 3DPI indicator differed between the flights so a direct comparison can be made. To visualize the
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differences between these four flights, maps of predicted biomass were derived and difference maps of
each flight with flight Day2-MA-MS were calculated.

2.4.3. Model Validation

To assess the performance of the models (Figure 2) for determining biomass, plant height, and the
general models, three statistical indicators were used; the coefficient of determination (R2), the mean
absolute error (MAE), and the RMSE. We included a cross validated MAE and RMSE, using a k-fold
cross validation. For each k-fold, the out-sample RMSE and MAE were calculated, after which they
were averaged over the n-number of k-folds used in the cross validation. These averaged out-sample
RMSE and MAE were compared to the in-sample RMSE and MAE. This comparison shows the
predictive power of the model (out-sample errors).

For the plant height analysis, a 10-fold cross validation was performed, using 61, 51, and 51 samples
for potato, sugar beet, and wheat, respectively (Table 3). For the biomass estimation, a repeated
5 × 3-fold cross validation was performed. The reason for this repeated cross validation for biomass is
the limited amount of biomass samples available for the statistical analysis. In this case, we used 15,
15, and 9 samples for potato, sugar beet, and wheat, respectively (Table 3).

For the biomass error analysis, the MAE and RMSE were then normalized by dividing by
Xmax-Xmin, where Xmax is the highest measured biomass sample in the dataset and Xmin the lowest
measured biomass sample in the dataset, resulting in a normalized mean absolute error (NMAE) and
normalized RMSE (NRMSE).

3. Results

3.1. Crop Specific Models

3.1.1. Plant Height

Based on the analysis of the Pareto efficiency scores, the LiDAR plant height for each grid cell
of 1 m2 is based on the top 10 points for potato, on the top 90 points for sugar beet, and for winter
wheat on the top 30 points. The average height of these points serves as the LiDAR-based plant
height estimation.

The correlation between field-measured height and LiDAR-based plant height is highest for sugar
beet and winter wheat (Figure 3). Plant height was most accurately derived for winter wheat with
an RMSE of 3.4 cm. Determining plant height for potato proved to be the most difficult, showing
relatively large residuals.
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Figure 3. Scatter plots showing measured plant height vs derived plant height, where potato is based
on the 10 highest points within a pixel, sugar beet on top 90 highest points, and winter wheat on the
top 30 highest points. The blue line in the Figure is the 1:1 line.

Figure 3 shows that there is a general over prediction of plant height for potato while winter
wheat shows an underestimation. As winter wheat has a relatively open and erectophile structure,
the number of returns in the top of the canopy could be lower, resulting in an underestimation of
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height. Although sugar beet falls on the 1:1 line, the prediction of plant height has a higher spread
than winter wheat, which is shown by the larger MAE and RMSE. The over prediction of potato is
most likely the result of the complex canopy, which is explained in more detail in the discussion.

3.1.2. Biomass

Choosing k = 1 for potato and winter wheat and k = 3 for sugar beet results in the best fit for
the biomass models. Values lower than k = 1 proved to be very unstable in the performance for the
3DPI algorithm, showing large fluctuation in R2 values. Values higher than k = 3 became saturated
and showed only minor increases in R2. For potato and winter wheat the model errors, NMAE and
NRMSE are the smallest for k = 1 (Figure 4), while for sugar beets the errors are smallest for k = 3.
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indicator, deviating K between 1, 2, or 3. Showing biomass estimations for potato, sugar beet,
and winter wheat, including the dimensionless normalized in-sample.

Potato shows a relatively large difference between the NMAE and NRMSE compared to those of
sugar beet and winter wheat. This indicates that the low R2 is most likely the result of large residuals
(Figure 4). Furthermore, the spread in points for potato is less equally distributed between large and
small residuals compared to the spread of points for sugar beet and winter wheat (Figure 5). This
explains the larger NRMSE and NMAE of potato.

The prediction model for potato does not provide reliable estimates of biomass, especially
for values higher than 3500 g/m2 (Figure 5) in which biomass is underestimated. Furthermore,
the scatterplot does not show a strong relation. For sugar beet, there is a good correspondence between
the fresh biomass in the field and the LiDAR predicted biomass (Figure 5). Also, the crop development
during the growing season is captured well: during flight 1, the sugar beets were still small, and the
field was only partially covered, while during flights 2 and 4 the sugar beets had grown, which is also
derived from the UAV-LiDAR observations.

The biomass of winter wheat was determined most accurately. For flights 1 and 2, the points are
practically on the 1:1 line (Figure 5). During the 4th flight, the wheat had ripened, which lowered the
amount of fresh biomass.
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Figure 5. Scatter plots showing the relation between measured biomass and predicted for potato (k = 1),
sugar beet (k = 3) and winter wheat (k = 1). The blue line in the Figure is the 1:1 line.

3.2. General Prediction Models

3.2.1. Crop Height

When combining the crops into a general prediction model for plant height, the RMSE is 10.1 cm
(Figure 6). This error is much larger compared to the crop-specific models. For example, this accuracy
was 3.4 cm for winter wheat in the single crop model (Figure 3).
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The colours in the left Figure show each separate crop. The blue line indicates the 1:1 line.

The Pareto method is used to determine the optimized number of points to be used to calculate
the height per pixel, which showed that using 100 points per pixel yielded the best fit for the general
model, resulting in an R2 of 0.61 for the general model. This is lower than the R2 for sugar beet and
winter wheat (0.70 and 0.78, respectively), but higher than that of potato (0.49). The residual plot
shows a random distribution of points with one outlier (Figure 6). This point comes from the potato
dataset, but no valid reason was found to exclude the point.

3.2.2. Biomass

The general model for biomass performed worse for biomass prediction of winter wheat; the
normalized error increased to 17.07% for the general model compared to 13.9% for the crop-specific
model (Figure 7) based on tuning-parameter k = 3. The general models were fitted using different
k-factors, where the R2 was 0.47 for k = 1, 0.49 for k = 2 and 0.50 for k = 3. The generic model saturates
for higher biomass predictions, especially for winter wheat (Figure 7). This indicates that a new model
should be built for the higher biomass estimates. However, the general model can be used to predict
biomass for potatoes (NRMSE = 22.1%) and sugar beet (NRMSE = 17.47%), in which NRMSE values
are larger than those of the general model (NRMSE = 17.07%).
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Figure 7. Scatter plot showing the relation between measured biomass and fitted biomass, for k = 3.
The colours indicate the original crop data used for the model. The blue line in the Figure is the 1:1 line.
On the right, the corresponding residual plot is shown. Showing the fitted plant height plotted against
the model residuals.

The cross validated NRMSE shows that biomass can be predicted on a new dataset with an
NRMSE_cv of 17.61%. The NRMSE_cv is 0.54 larger than the NRMSE for k = 3. This indicates that the
model could be used for fields, where no biomass samples were taken for calibration.

3.3. Influence of Flight Characteristics on Plant Height

Changes in flight characteristics (altitude and speed) result in differences in point cloud density
(Figure 8), where a cross section (10 × 0.2 m) of the sugar beet point clouds of four flights with different
flight characteristics are shown. The flights were done on two days, with one day in between, but we
assumed that the crops did not change between those two days.
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Figure 8. Profile plot for sugar beet showing a profile of 0.20 x 10 m. From top to bottom, it shows the
flights DAY2-LA-MS, DAY2-LA-LS, DAY3-HA-HS, and DAY3-LA-LS. The green colours indicate plant
material, where darker colours indicate a higher elevation of the point. The red points indicate the
points classified as ground points.

Measured plant height is consistent for the different flight characteristics, except for the high
and fast flight (DAY3-HA-HS: 90 m, 8 m/s). As can be seen in Figure 8, this results in a much lower
point density and an underestimation of the crop height, shown by the lighter green colours in
Figure 9. However, the spatial patterns of crop height between the four sets of flight characteristics are
comparable. The locations with low and high crop height show a comparable location and distribution.
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For DAY3-LA-LS height map, the north-western corner of the field was not covered well by the
pre-programmed flight path, which resulted in a lower point density and, thus, an underestimation
of crop height. This indicates that the flight characteristics do not influence the spatial patterns of
estimated crop height, but it is important to keep them consistent for measuring temporal changes in
crop height.
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Figure 9. Maps indicating the estimated plant height in meters for sugar beet for DAY2-LA-MS,
DAY2-LA-LS, DAY3-HA-HS, and DAY3-LA-LS. Darker greens indicate a higher plant height.

3.4. Influence of Flight Characteristics on Biomass

Biomass maps based on the 3DPI scores show varying patterns of biomass, dependent on the
flight characteristics (Figure 10). The absolute differences, compared to flight Day2-MA-MS (40 m,
6 m/s), are more clearly visible in Figure 10. Flying higher and faster (DAY3-HA-HS), results in an
underestimation of the amount of biomass. For flight DAY3-HA-HS, the average biomass estimation
was 1622.1 g/m2, where for Day2-MA-MS, the average biomass estimation was 2479.7 g/m2 (Table 5).
For the other flight characteristics, the overall estimate of biomass does not deviate too much from the
standard flight settings, but there are locations where the estimated biomass for the adapted flights
is lower compared to the standard flight. Further investigations learned that those areas are located
exactly between two flight lines. It is important to indicate that the exact position of the flight lines
was not consistent for the different flights. For each of the flights with the standard settings, the same
pre-programmed flight paths were used, but for the flights with adapted altitude and speed, new flight
plans were made, resulting in different flight patterns. This results in a different point density and
point distribution along the dataset, which appears to influence the estimated biomass more than the
altitude and speed.



Remote Sens. 2020, 12, 17 12 of 18

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 19 

 

3.4. Influence of Flight Characteristics on Biomass 

Biomass maps based on the 3DPI scores show varying patterns of biomass, dependent on the 

flight characteristics (Figure 10). The absolute differences, compared to flight Day2-MA-MS (40 m, 6 

m/s), are more clearly visible in Figure 10. Flying higher and faster (DAY3-HA-HS), results in an 

underestimation of the amount of biomass. For flight DAY3-HA-HS, the average biomass estimation 

was 1622.1 g/m2, where for Day2-MA-MS, the average biomass estimation was 2479.7 g/m2 (Table 5). 

For the other flight characteristics, the overall estimate of biomass does not deviate too much from 

the standard flight settings, but there are locations where the estimated biomass for the adapted 

flights is lower compared to the standard flight. Further investigations learned that those areas are 

located exactly between two flight lines. It is important to indicate that the exact position of the flight 

lines was not consistent for the different flights. For each of the flights with the standard settings, the 

same pre-programmed flight paths were used, but for the flights with adapted altitude and speed, 

new flight plans were made, resulting in different flight patterns. This results in a different point 

density and point distribution along the dataset, which appears to influence the estimated biomass 

more than the altitude and speed. 

 

Figure 10. Maps indicating for flight DAY2-LA-MS, DAY2-LA-LS, DAY3-HA-HS, and DAY3-LA-LS 

the estimated biomass in grams for winter wheat. Darker greens mean a larger biomass prediction. 

 

Figure 10. Maps indicating for flight DAY2-LA-MS, DAY2-LA-LS, DAY3-HA-HS, and DAY3-LA-LS the
estimated biomass in grams for winter wheat. Darker greens mean a larger biomass prediction.

Table 5. Overview of mean and standard deviation for the flights discussed in Figures 8–10. The data
for plant heights are from sugar beet, and the data for the biomass data are from the winter wheat maps.
For Day1-MA-MS, Day2-MA-MS and Day4-MA-MS, there is no data (nd) in the difference cell because
these were not compared to Day2-MA-MS.

Flight
Plant Height (m) Biomass (g/m2)

Data Difference Data Difference
Mean SD Mean SD Mean SD Mean SD

Day1-MA-MS 0.186 0.096 nd nd 2181.38 1182.68 nd nd
Day2-MA-MS 0.443 0.153 nd nd 2479.68 1133.56 nd nd
Day2-LA-MS 0.445 0.149 0.002 0.050 2603.81 1164.33 96.80 1014.95
Day2-LA-LS 0.466 0.160 0.022 0.085 2720.69 1157.64 202.70 929.70
Day3-HA-HS 0.403 0.134 0.040 0.056 1622.14 1132.21 –857.79 871.38
Day3-LA-LS 0.472 0.164 0.026 0.069 2435.03 1421.60 –44.97 1018.49

Day4-MA-MS 0.445 0.136 nd nd 2164.12 1261.95 nd nd

The biomass prediction for flight Day3-HA-HS shows an under prediction compared to the other
flights (Table 5), where for plant height the difference in the mean between the flights are smaller.
The sugar beet plant height estimation shows almost no variation between the flight characteristics
describing the field data from 29 June 2018. The biomass estimations for winter wheat does appear to
be sensitive to a difference in flight characteristics. There are large differences in the mean prediction
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between the different flight specifications, where for faster and higher flights (Figure 11 and Table 5:
DAY3-HA-HS), an under prediction of biomass occurs compared to flight Day2-MA-MS.
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Figure 11. Maps indicating pixel differences between the biomass prediction for winter wheat of Flight
Day2-MA-MS and, respectively, DAY2-LA-MS, DAY2-LA-LS, DAY3-HA-HS, and DAY3-LA-LS. Positive
values (blue) indicate a higher prediction for, respectively, DAY2-LA-MS, DAY2-LA-LS, DAY3-HA-HS,
and DAY3-LA-LS compared to Day2-MA-MS.

4. Discussion

4.1. Plant Height

Depending on the type of crop, the accuracy for plant height retrieval varied between 3.4 cm
for winter wheat, 7.4 cm for sugar beet, and 12 cm for potato (Figure 3). Previous research efforts on
determining plant height via LiDAR have focused on winter wheat, where Jimenez-Berni et al. [2]
found an accuracy of 1.7 cm for a ground-based LiDAR system. Madec et al. [7] compared plant height
derived from a LiDAR scanner on a ground vehicle with estimates from SfM analysis on RGB-UAV
images. The latter method provided an accuracy of 3.47 cm for winter wheat plant height, proving
that the methodology presented within this paper proves just as accurate. Homan et al. [17] showed
that using a terrestrial laser scanner (TLS), the RMSE was 2.7 cm for wheat, which is comparable to
the achieved accuracy by the RiEGL RiCOPTER UAV LiDAR system. This, and previous research,
shows that using a UAV-based LiDAR system can be used to accurately assess plant height for winter
wheat fields.

However, the accuracy drops for crops with a more complicated canopy structure, such as potato
and sugar beet, where it proves to be harder to provide a plant height estimate with high accuracy.
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This starts with the procedure for field measurements. Winter wheat is an easy-to-measure crop in the
field due to its erectophile structure and a homogeneous pattern in height. Potato and sugar beet and
their planophile leaf angle distribution prove to be harder to measure within the field, which is further
complicated for potatoes since it is grown on ridges. Therefore, it is visually harder to determine the
highest point of a specific location. We tried to account for this by averaging field measurements over
the three highest points in close proximity, but we cannot ignore the fact that there are uncertainties in
the field measurements (Table 3).

In particular, potato proved to be a difficult crop because it grows on ridges, showing the need for
a good digital terrain model (DTM) of these ridges. A flight should be performed just after planting
the potato to get a good DTM, which can be used to normalize the 3D LIDAR point cloud of the
flights further during the growing season. This research started when the potato plants were already
developed, resulting in a closed canopy, making it impossible to create a good DTM. This could be one
of the reasons for the worse performance of potato height estimation.

As a result, the standard deviations for potato are generally larger than for the other two crops
(Table 3). Especially on 25 June when the potato plants were fully grown, it proved more difficult to
get accurate measurements.

4.2. Biomass

The 3DPI algorithm proved to estimate the biomass of winter wheat (NRMSE = 13.9% and
R2 = 0.82) and sugar beet (NRMSE = 17.47% and R2 = 0.68) well, showing slightly higher accuracies
compared to the paper of [2], where an NRMSE of 19.82% was achieved for winter wheat. It should
be noticed that the early growth stages are not included in this study, which partially explains the
differences in NRMSE. For winter wheat, similar results were obtained in [18], where a linear relation
was also examined between LiDAR-derived plant height and biomass, reporting an R2 of 0.88.

Possible improvements in the amount of biomass for winter wheat could be made using the dry
weight of the plant material. Especially during the ripening phase, the water content of winter wheat
decreases [19], resulting in a mismatch between the 3DPI algorithm and the measured fresh weight
biomass. The 3DPI method is developed on plant structure and does not account for the changing
water content within the winter wheat. Also, research by [20] showed that LiDAR laser scans proved to
be useful in determining leaf water content. This shows that there is an influence on the return signal,
which is influenced by the water content that has not been accounted for now. This effect depends on
the architecture, size, and density of the crop and, as such, is crop dependent.

The 3DPI algorithm proved to be unsuitable for estimating the biomass of potato. The 3DPI
algorithm was developed for winter wheat and not tested on other crops so far. Probably the main
reason is the very dense canopy, resulting in very few points in the lower parts of the canopy, which
resulted in a small number of returns lower in the canopy. These points underneath the canopy are
needed to create a complete height profile relative to the 30 cm high ridges where potatoes are grown
on, resulting in a better representation of the above ground biomass. The reason the algorithm works
better for sugar beet, which also shows a relatively dense canopy, is that sugar beet has larger inter-row
spacing which leads to more hits from larger scan angles.

The biomass prediction could possibly be improved for areas with a low points density by
changing the p_i layer size in the 3DPI algorithm. In this study, a p_i layer size of 50 mm was chosen
for two reasons. Firstly, because our point density was lower than of the experiment done by [2],
choosing a p_i of 10 mm would result in layers with no points in it. This could possibly influence the
3DPI algorithm negatively. Thus, increasing the p_i layer size resulted in an increase in points per p_i
layer, but how this influences the final 3DPI indicator should be further researched. Secondly, choosing
a larger p_i resulted in a faster computation time, which was useful for the large files we had.

Possible further research could be done using machine learning, where the 3DPI may be one
of many predictors to estimate biomass. Using, for example, a PLS regression as mentioned in [21],
or using machine learning approaches like [22], where a deep convolutional network was used to
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predict biomass using RGB imagery. Or the machine learning approach of [23], where they used a
range of spectral indices as predictors to estimate above ground biomass with an NRMSE of 24.95%.
Combining these different methodologies with a predictor such as the 3DPI indicator could result in a
better prediction of biomass.

4.3. General Models

The accuracy of the prediction of plant height using the general prediction model is 10.1 cm,
which is lower than those for the crop-specific prediction models of sugar beet (7.4 cm) and winter
wheat (3.4 cm).

The general model for biomass prediction displays a strong influence of sugar beet on the total
prediction model (Figure 7). The general model has the best predictive power at k = 3, showing
this influence. Sugar beet had the highest predictive power for k = 3, with the other two crops at
k = 1 (Figure 5). The reason for this over-representation of sugar beet is due to larger sample size of
15 samples compared to nine for winter wheat and the better performance of the sugar beet biomass
model compared to that of potato. Combining these two explains why at k = 3, the model has the
highest predictive power. When combining data from different crops, extra attention should be paid to
include an equal sample size of the multiple crops. Therefore, using a crop-specific model to estimate
crop height from UAV-LiDAR data proves to increase the prediction accuracy. However, depending on
the accuracy requirements, a general model could provide plant height estimations with an accuracy
of 10.1 cm and a biomass estimation with an accuracy of 17.07%. The results of this research show that
crop-specific biomass models have a higher retrieval accuracy; however, further research is required to
evaluate if general models can be relevant for mixed cropping systems.

Again, the trade-off is visible between a general biomass model, compared to the specialized
models for each individual crop. Furthermore, the model now has to be fitted through three kinds of
crops, which are completely different from each other. It was also indicated that different K-values were
needed to get a good fit of the specialized biomass models. A certain combination of 3DPI indicator
and measured biomass for potato does not necessarily correspond to the same combination of the 3DPI
indicator and measured biomass for winter wheat. Therefore, limiting this general applicability of the
model, the 3DPI appears to be crop sensitive. Possible other factors, such a height statistics derived
from the LiDAR 3D point cloud as analyzed in [21] or the spectral vegetation indices of [23], could be
helpful to make the 3DPI method less crop sensitive, which is something for further research.

4.4. Influence of Flight Altitude and Speed on Biomass and Plant Height Estimation

Plant height estimation from 3D points can be accurately achieved when the data is acquired
at high speed and relatively high altitude. The LiDAR-derived plant height from DAY3-HA-HS,
which was acquired at 92.68 m.a.g.l. and a speed of 7.39 m/s, still shows the same patterns as with
DAY2-LA-MS and DAY2-LA-LS, but the general plant height is lower (Figure 9). The LiDAR-derived
plant height underestimates the plant height compared to DAY2-LA-MS on average with 4.03 cm. This
underestimation is still smaller than the sugar beet plant height model error of 7.2 cm, showing that
acquiring plant height could be done with these settings. Therefore, speeding up data collection and
covering larger areas is feasible.

Applying the generic model for sugar beet on the 3D points clouds from the flights DAY2-LA-MS,
DAY2-LA-LS, DAY3-HA-HS, and DAY3-LA-LS showed that between DAY2-LA-MS, DAY2-LA-LS
and DAY3-LA-LS, there is no real difference in LiDAR-derived plant height. This indicates that
there is no real benefit in slowing down to 2.53 m/s or decreasing flying height. The different flight
specifications do result in different point densities and point distributions. However, this results mostly
in more points underneath the canopy, which has only a minor influence on the top of canopy points.
To increase accuracy, a DTM could be created before plants start to grow, decreasing the dependence
on getting enough returns underneath the canopy.
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For biomass estimation, the under the canopy points are important, where for DAY3-HA-HS,
a large under estimation is made averaging 858.8 g/m2 compared to the biomass prediction for
DAY2-LA-MS. There are not enough points to represent the full height of the plant. The non-normalised
accuracy of the winter wheat biomass model was 415.8 g/m2. Showing the inaccuracy of data acquired
at 92.68 m.a.g.l. and 7.39 m/s compared to that of DAY2-LA-MS, acquired at 24.16 m.a.g.l. and 4.17 m/s.

Changing flight characteristics shows some areas with patches where the biomass for wheat is
underestimated (Figure 10). These patches appear to result from areas that are not covered with any
flight lines and almost no perpendicular flight lines. It appears to be crop-specific as these patches do
not appear for sugar beet and potato. A possible reason why it affects winter wheat more is that laser
pulses from the LiDAR UAV penetrate more easily due to its erectophile leaf structure compared to the
planophile leaf structure of potato and sugar beet. Sofonia et al. [24] showed that for a LiDAR-based
application, a cross-flight pattern worked best. A better cross pattern and closer flight lines could,
therefore, possibly improve biomass estimation in general because laser pulses are acquired from
multiple directions increasing the chance of hitting parts of the plant underneath the canopy and
remove these unwanted patches. For an accurate biomass prediction, a homogeneous point density
is needed.

To allow a good estimation of biomass and crop height over the growing season, it is necessary
to keep the flight patterns consistent for all flights. Our results show that biomass and crop height
estimation errors increase if the point density and point distribution vary from the circumstances used
to calibrate the models. To determine the optimal flight pattern, altitude, and speed, more intensive
experiments should be done.

4.5. Outlook

Our results show the possibilities for UAV LiDAR to estimate plant phenotypes, such as biomass
and plant height, accurately and with high throughput. This fills the gap between slower but highly
accurate tractor-based LiDAR systems and high-throughput but less-detailed manned airborne systems
as indicated by [25]. Therefore, providing a solution to situations where a quick analysis of the field
is required, tractor-based solutions are not suitable. Furthermore, this study shows that crop trait
monitoring can be done throughout the season, using the same model trained on data from the whole
season. Moreover, this research showed that under uncontrolled conditions, relevant biomass and
plant height estimations can be made, which is marked as a bottleneck in the review paper of [26].
When using UAV-LiDAR for high-throughput estimation of plant height and biomass [27], time should
be invested in creating a detailed and structured flight plan. A flight plan would ideally consist
of a cross-flight pattern and it will cover the whole field, where flights lines are created alongside
the boundaries.

This research furthermore showed that there are limitations to the biomass estimation for certain
crops and that models developed for a specific crop cannot directly be used for other crops, and generic
models should be used with care. For a fully operational approach, an effort should be made towards
combining LiDAR with hyperspectral data, as mentioned by [22,23,26], so models can be trained for
a range of crops. This will increase both the accuracy and general applicability of high-throughput
biomass estimation models. Also, alternative methods for canopy height determination from UAV-based
3D point cloud datasets have recently been published [28].

5. Conclusions

Retrieval of plant height and biomass using UAV-LiDAR proved to be possible for sugar beet
and winter wheat. While for potato both plant height and biomass estimation proved to be hard
due to the complex canopy structure and the ridges on which potatoes are grown. For plant height,
the data acquisition can be performed relatively fast and at high altitudes increasing opportunities for
high-throughput approaches. However, for accurate biomass estimates, the flight conditions (altitude,
speed, location of flight lines) should be kept constant. The higher acquisition speed, compared to, for
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example, tractor-based LiDAR systems, means that UAV-LiDAR can be used to assess large areas and
can provide data quickly. Creating a reliable general model to predict biomass for different crops results
in a lower accuracy, especially when crops with a dense canopy like potato are included. To increase
the predictive performance of both LiDAR-derived plant height and biomass, a clear DTM should be
created before germination of the plants. This accurate DTM could then be used to accurately perform
the height normalization of the 3D LiDAR point cloud.
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